1// Copyright 2010 The Go Authors. All rights reserved. 2// Use of this source code is governed by a BSD-style 3// license that can be found in the LICENSE file. 4 5package cmplx 6 7import "math" 8 9// The original C code, the long comment, and the constants 10// below are from http://netlib.sandia.gov/cephes/c9x-complex/clog.c. 11// The go code is a simplified version of the original C. 12// 13// Cephes Math Library Release 2.8: June, 2000 14// Copyright 1984, 1987, 1989, 1992, 2000 by Stephen L. Moshier 15// 16// The readme file at http://netlib.sandia.gov/cephes/ says: 17// Some software in this archive may be from the book _Methods and 18// Programs for Mathematical Functions_ (Prentice-Hall or Simon & Schuster 19// International, 1989) or from the Cephes Mathematical Library, a 20// commercial product. In either event, it is copyrighted by the author. 21// What you see here may be used freely but it comes with no support or 22// guarantee. 23// 24// The two known misprints in the book are repaired here in the 25// source listings for the gamma function and the incomplete beta 26// integral. 27// 28// Stephen L. Moshier 29// [email protected] 30 31// Complex power function 32// 33// DESCRIPTION: 34// 35// Raises complex A to the complex Zth power. 36// Definition is per AMS55 # 4.2.8, 37// analytically equivalent to cpow(a,z) = cexp(z clog(a)). 38// 39// ACCURACY: 40// 41// Relative error: 42// arithmetic domain # trials peak rms 43// IEEE -10,+10 30000 9.4e-15 1.5e-15 44 45// Pow returns x**y, the base-x exponential of y. 46// For generalized compatibility with [math.Pow]: 47// 48// Pow(0, ±0) returns 1+0i 49// Pow(0, c) for real(c)<0 returns Inf+0i if imag(c) is zero, otherwise Inf+Inf i. 50func Pow(x, y complex128) complex128 { 51 if x == 0 { // Guaranteed also true for x == -0. 52 if IsNaN(y) { 53 return NaN() 54 } 55 r, i := real(y), imag(y) 56 switch { 57 case r == 0: 58 return 1 59 case r < 0: 60 if i == 0 { 61 return complex(math.Inf(1), 0) 62 } 63 return Inf() 64 case r > 0: 65 return 0 66 } 67 panic("not reached") 68 } 69 modulus := Abs(x) 70 if modulus == 0 { 71 return complex(0, 0) 72 } 73 r := math.Pow(modulus, real(y)) 74 arg := Phase(x) 75 theta := real(y) * arg 76 if imag(y) != 0 { 77 r *= math.Exp(-imag(y) * arg) 78 theta += imag(y) * math.Log(modulus) 79 } 80 s, c := math.Sincos(theta) 81 return complex(r*c, r*s) 82} 83