1// Copyright 2010 The Go Authors. All rights reserved. 2// Use of this source code is governed by a BSD-style 3// license that can be found in the LICENSE file. 4 5package cmplx 6 7import "math" 8 9// The original C code, the long comment, and the constants 10// below are from http://netlib.sandia.gov/cephes/c9x-complex/clog.c. 11// The go code is a simplified version of the original C. 12// 13// Cephes Math Library Release 2.8: June, 2000 14// Copyright 1984, 1987, 1989, 1992, 2000 by Stephen L. Moshier 15// 16// The readme file at http://netlib.sandia.gov/cephes/ says: 17// Some software in this archive may be from the book _Methods and 18// Programs for Mathematical Functions_ (Prentice-Hall or Simon & Schuster 19// International, 1989) or from the Cephes Mathematical Library, a 20// commercial product. In either event, it is copyrighted by the author. 21// What you see here may be used freely but it comes with no support or 22// guarantee. 23// 24// The two known misprints in the book are repaired here in the 25// source listings for the gamma function and the incomplete beta 26// integral. 27// 28// Stephen L. Moshier 29// [email protected] 30 31// Complex square root 32// 33// DESCRIPTION: 34// 35// If z = x + iy, r = |z|, then 36// 37// 1/2 38// Re w = [ (r + x)/2 ] , 39// 40// 1/2 41// Im w = [ (r - x)/2 ] . 42// 43// Cancellation error in r-x or r+x is avoided by using the 44// identity 2 Re w Im w = y. 45// 46// Note that -w is also a square root of z. The root chosen 47// is always in the right half plane and Im w has the same sign as y. 48// 49// ACCURACY: 50// 51// Relative error: 52// arithmetic domain # trials peak rms 53// DEC -10,+10 25000 3.2e-17 9.6e-18 54// IEEE -10,+10 1,000,000 2.9e-16 6.1e-17 55 56// Sqrt returns the square root of x. 57// The result r is chosen so that real(r) ≥ 0 and imag(r) has the same sign as imag(x). 58func Sqrt(x complex128) complex128 { 59 if imag(x) == 0 { 60 // Ensure that imag(r) has the same sign as imag(x) for imag(x) == signed zero. 61 if real(x) == 0 { 62 return complex(0, imag(x)) 63 } 64 if real(x) < 0 { 65 return complex(0, math.Copysign(math.Sqrt(-real(x)), imag(x))) 66 } 67 return complex(math.Sqrt(real(x)), imag(x)) 68 } else if math.IsInf(imag(x), 0) { 69 return complex(math.Inf(1.0), imag(x)) 70 } 71 if real(x) == 0 { 72 if imag(x) < 0 { 73 r := math.Sqrt(-0.5 * imag(x)) 74 return complex(r, -r) 75 } 76 r := math.Sqrt(0.5 * imag(x)) 77 return complex(r, r) 78 } 79 a := real(x) 80 b := imag(x) 81 var scale float64 82 // Rescale to avoid internal overflow or underflow. 83 if math.Abs(a) > 4 || math.Abs(b) > 4 { 84 a *= 0.25 85 b *= 0.25 86 scale = 2 87 } else { 88 a *= 1.8014398509481984e16 // 2**54 89 b *= 1.8014398509481984e16 90 scale = 7.450580596923828125e-9 // 2**-27 91 } 92 r := math.Hypot(a, b) 93 var t float64 94 if a > 0 { 95 t = math.Sqrt(0.5*r + 0.5*a) 96 r = scale * math.Abs((0.5*b)/t) 97 t *= scale 98 } else { 99 r = math.Sqrt(0.5*r - 0.5*a) 100 t = scale * math.Abs((0.5*b)/r) 101 r *= scale 102 } 103 if b < 0 { 104 return complex(t, -r) 105 } 106 return complex(t, r) 107} 108