1// Copyright 2009 The Go Authors. All rights reserved.
2// Use of this source code is governed by a BSD-style
3// license that can be found in the LICENSE file.
4
5package reflect
6
7import (
8	"errors"
9	"internal/abi"
10	"internal/goarch"
11	"internal/itoa"
12	"internal/unsafeheader"
13	"math"
14	"runtime"
15	"unsafe"
16)
17
18// Value is the reflection interface to a Go value.
19//
20// Not all methods apply to all kinds of values. Restrictions,
21// if any, are noted in the documentation for each method.
22// Use the Kind method to find out the kind of value before
23// calling kind-specific methods. Calling a method
24// inappropriate to the kind of type causes a run time panic.
25//
26// The zero Value represents no value.
27// Its [Value.IsValid] method returns false, its Kind method returns [Invalid],
28// its String method returns "<invalid Value>", and all other methods panic.
29// Most functions and methods never return an invalid value.
30// If one does, its documentation states the conditions explicitly.
31//
32// A Value can be used concurrently by multiple goroutines provided that
33// the underlying Go value can be used concurrently for the equivalent
34// direct operations.
35//
36// To compare two Values, compare the results of the Interface method.
37// Using == on two Values does not compare the underlying values
38// they represent.
39type Value struct {
40	// typ_ holds the type of the value represented by a Value.
41	// Access using the typ method to avoid escape of v.
42	typ_ *abi.Type
43
44	// Pointer-valued data or, if flagIndir is set, pointer to data.
45	// Valid when either flagIndir is set or typ.pointers() is true.
46	ptr unsafe.Pointer
47
48	// flag holds metadata about the value.
49	//
50	// The lowest five bits give the Kind of the value, mirroring typ.Kind().
51	//
52	// The next set of bits are flag bits:
53	//	- flagStickyRO: obtained via unexported not embedded field, so read-only
54	//	- flagEmbedRO: obtained via unexported embedded field, so read-only
55	//	- flagIndir: val holds a pointer to the data
56	//	- flagAddr: v.CanAddr is true (implies flagIndir and ptr is non-nil)
57	//	- flagMethod: v is a method value.
58	// If ifaceIndir(typ), code can assume that flagIndir is set.
59	//
60	// The remaining 22+ bits give a method number for method values.
61	// If flag.kind() != Func, code can assume that flagMethod is unset.
62	flag
63
64	// A method value represents a curried method invocation
65	// like r.Read for some receiver r. The typ+val+flag bits describe
66	// the receiver r, but the flag's Kind bits say Func (methods are
67	// functions), and the top bits of the flag give the method number
68	// in r's type's method table.
69}
70
71type flag uintptr
72
73const (
74	flagKindWidth        = 5 // there are 27 kinds
75	flagKindMask    flag = 1<<flagKindWidth - 1
76	flagStickyRO    flag = 1 << 5
77	flagEmbedRO     flag = 1 << 6
78	flagIndir       flag = 1 << 7
79	flagAddr        flag = 1 << 8
80	flagMethod      flag = 1 << 9
81	flagMethodShift      = 10
82	flagRO          flag = flagStickyRO | flagEmbedRO
83)
84
85func (f flag) kind() Kind {
86	return Kind(f & flagKindMask)
87}
88
89func (f flag) ro() flag {
90	if f&flagRO != 0 {
91		return flagStickyRO
92	}
93	return 0
94}
95
96func (v Value) typ() *abi.Type {
97	// Types are either static (for compiler-created types) or
98	// heap-allocated but always reachable (for reflection-created
99	// types, held in the central map). So there is no need to
100	// escape types. noescape here help avoid unnecessary escape
101	// of v.
102	return (*abi.Type)(abi.NoEscape(unsafe.Pointer(v.typ_)))
103}
104
105// pointer returns the underlying pointer represented by v.
106// v.Kind() must be Pointer, Map, Chan, Func, or UnsafePointer
107// if v.Kind() == Pointer, the base type must not be not-in-heap.
108func (v Value) pointer() unsafe.Pointer {
109	if v.typ().Size() != goarch.PtrSize || !v.typ().Pointers() {
110		panic("can't call pointer on a non-pointer Value")
111	}
112	if v.flag&flagIndir != 0 {
113		return *(*unsafe.Pointer)(v.ptr)
114	}
115	return v.ptr
116}
117
118// packEface converts v to the empty interface.
119func packEface(v Value) any {
120	t := v.typ()
121	var i any
122	e := (*abi.EmptyInterface)(unsafe.Pointer(&i))
123	// First, fill in the data portion of the interface.
124	switch {
125	case t.IfaceIndir():
126		if v.flag&flagIndir == 0 {
127			panic("bad indir")
128		}
129		// Value is indirect, and so is the interface we're making.
130		ptr := v.ptr
131		if v.flag&flagAddr != 0 {
132			c := unsafe_New(t)
133			typedmemmove(t, c, ptr)
134			ptr = c
135		}
136		e.Data = ptr
137	case v.flag&flagIndir != 0:
138		// Value is indirect, but interface is direct. We need
139		// to load the data at v.ptr into the interface data word.
140		e.Data = *(*unsafe.Pointer)(v.ptr)
141	default:
142		// Value is direct, and so is the interface.
143		e.Data = v.ptr
144	}
145	// Now, fill in the type portion. We're very careful here not
146	// to have any operation between the e.word and e.typ assignments
147	// that would let the garbage collector observe the partially-built
148	// interface value.
149	e.Type = t
150	return i
151}
152
153// unpackEface converts the empty interface i to a Value.
154func unpackEface(i any) Value {
155	e := (*abi.EmptyInterface)(unsafe.Pointer(&i))
156	// NOTE: don't read e.word until we know whether it is really a pointer or not.
157	t := e.Type
158	if t == nil {
159		return Value{}
160	}
161	f := flag(t.Kind())
162	if t.IfaceIndir() {
163		f |= flagIndir
164	}
165	return Value{t, e.Data, f}
166}
167
168// A ValueError occurs when a Value method is invoked on
169// a [Value] that does not support it. Such cases are documented
170// in the description of each method.
171type ValueError struct {
172	Method string
173	Kind   Kind
174}
175
176func (e *ValueError) Error() string {
177	if e.Kind == 0 {
178		return "reflect: call of " + e.Method + " on zero Value"
179	}
180	return "reflect: call of " + e.Method + " on " + e.Kind.String() + " Value"
181}
182
183// valueMethodName returns the name of the exported calling method on Value.
184func valueMethodName() string {
185	var pc [5]uintptr
186	n := runtime.Callers(1, pc[:])
187	frames := runtime.CallersFrames(pc[:n])
188	var frame runtime.Frame
189	for more := true; more; {
190		const prefix = "reflect.Value."
191		frame, more = frames.Next()
192		name := frame.Function
193		if len(name) > len(prefix) && name[:len(prefix)] == prefix {
194			methodName := name[len(prefix):]
195			if len(methodName) > 0 && 'A' <= methodName[0] && methodName[0] <= 'Z' {
196				return name
197			}
198		}
199	}
200	return "unknown method"
201}
202
203// nonEmptyInterface is the header for an interface value with methods.
204type nonEmptyInterface struct {
205	itab *abi.ITab
206	word unsafe.Pointer
207}
208
209// mustBe panics if f's kind is not expected.
210// Making this a method on flag instead of on Value
211// (and embedding flag in Value) means that we can write
212// the very clear v.mustBe(Bool) and have it compile into
213// v.flag.mustBe(Bool), which will only bother to copy the
214// single important word for the receiver.
215func (f flag) mustBe(expected Kind) {
216	// TODO(mvdan): use f.kind() again once mid-stack inlining gets better
217	if Kind(f&flagKindMask) != expected {
218		panic(&ValueError{valueMethodName(), f.kind()})
219	}
220}
221
222// mustBeExported panics if f records that the value was obtained using
223// an unexported field.
224func (f flag) mustBeExported() {
225	if f == 0 || f&flagRO != 0 {
226		f.mustBeExportedSlow()
227	}
228}
229
230func (f flag) mustBeExportedSlow() {
231	if f == 0 {
232		panic(&ValueError{valueMethodName(), Invalid})
233	}
234	if f&flagRO != 0 {
235		panic("reflect: " + valueMethodName() + " using value obtained using unexported field")
236	}
237}
238
239// mustBeAssignable panics if f records that the value is not assignable,
240// which is to say that either it was obtained using an unexported field
241// or it is not addressable.
242func (f flag) mustBeAssignable() {
243	if f&flagRO != 0 || f&flagAddr == 0 {
244		f.mustBeAssignableSlow()
245	}
246}
247
248func (f flag) mustBeAssignableSlow() {
249	if f == 0 {
250		panic(&ValueError{valueMethodName(), Invalid})
251	}
252	// Assignable if addressable and not read-only.
253	if f&flagRO != 0 {
254		panic("reflect: " + valueMethodName() + " using value obtained using unexported field")
255	}
256	if f&flagAddr == 0 {
257		panic("reflect: " + valueMethodName() + " using unaddressable value")
258	}
259}
260
261// Addr returns a pointer value representing the address of v.
262// It panics if [Value.CanAddr] returns false.
263// Addr is typically used to obtain a pointer to a struct field
264// or slice element in order to call a method that requires a
265// pointer receiver.
266func (v Value) Addr() Value {
267	if v.flag&flagAddr == 0 {
268		panic("reflect.Value.Addr of unaddressable value")
269	}
270	// Preserve flagRO instead of using v.flag.ro() so that
271	// v.Addr().Elem() is equivalent to v (#32772)
272	fl := v.flag & flagRO
273	return Value{ptrTo(v.typ()), v.ptr, fl | flag(Pointer)}
274}
275
276// Bool returns v's underlying value.
277// It panics if v's kind is not [Bool].
278func (v Value) Bool() bool {
279	// panicNotBool is split out to keep Bool inlineable.
280	if v.kind() != Bool {
281		v.panicNotBool()
282	}
283	return *(*bool)(v.ptr)
284}
285
286func (v Value) panicNotBool() {
287	v.mustBe(Bool)
288}
289
290var bytesType = rtypeOf(([]byte)(nil))
291
292// Bytes returns v's underlying value.
293// It panics if v's underlying value is not a slice of bytes or
294// an addressable array of bytes.
295func (v Value) Bytes() []byte {
296	// bytesSlow is split out to keep Bytes inlineable for unnamed []byte.
297	if v.typ_ == bytesType { // ok to use v.typ_ directly as comparison doesn't cause escape
298		return *(*[]byte)(v.ptr)
299	}
300	return v.bytesSlow()
301}
302
303func (v Value) bytesSlow() []byte {
304	switch v.kind() {
305	case Slice:
306		if v.typ().Elem().Kind() != abi.Uint8 {
307			panic("reflect.Value.Bytes of non-byte slice")
308		}
309		// Slice is always bigger than a word; assume flagIndir.
310		return *(*[]byte)(v.ptr)
311	case Array:
312		if v.typ().Elem().Kind() != abi.Uint8 {
313			panic("reflect.Value.Bytes of non-byte array")
314		}
315		if !v.CanAddr() {
316			panic("reflect.Value.Bytes of unaddressable byte array")
317		}
318		p := (*byte)(v.ptr)
319		n := int((*arrayType)(unsafe.Pointer(v.typ())).Len)
320		return unsafe.Slice(p, n)
321	}
322	panic(&ValueError{"reflect.Value.Bytes", v.kind()})
323}
324
325// runes returns v's underlying value.
326// It panics if v's underlying value is not a slice of runes (int32s).
327func (v Value) runes() []rune {
328	v.mustBe(Slice)
329	if v.typ().Elem().Kind() != abi.Int32 {
330		panic("reflect.Value.Bytes of non-rune slice")
331	}
332	// Slice is always bigger than a word; assume flagIndir.
333	return *(*[]rune)(v.ptr)
334}
335
336// CanAddr reports whether the value's address can be obtained with [Value.Addr].
337// Such values are called addressable. A value is addressable if it is
338// an element of a slice, an element of an addressable array,
339// a field of an addressable struct, or the result of dereferencing a pointer.
340// If CanAddr returns false, calling [Value.Addr] will panic.
341func (v Value) CanAddr() bool {
342	return v.flag&flagAddr != 0
343}
344
345// CanSet reports whether the value of v can be changed.
346// A [Value] can be changed only if it is addressable and was not
347// obtained by the use of unexported struct fields.
348// If CanSet returns false, calling [Value.Set] or any type-specific
349// setter (e.g., [Value.SetBool], [Value.SetInt]) will panic.
350func (v Value) CanSet() bool {
351	return v.flag&(flagAddr|flagRO) == flagAddr
352}
353
354// Call calls the function v with the input arguments in.
355// For example, if len(in) == 3, v.Call(in) represents the Go call v(in[0], in[1], in[2]).
356// Call panics if v's Kind is not [Func].
357// It returns the output results as Values.
358// As in Go, each input argument must be assignable to the
359// type of the function's corresponding input parameter.
360// If v is a variadic function, Call creates the variadic slice parameter
361// itself, copying in the corresponding values.
362func (v Value) Call(in []Value) []Value {
363	v.mustBe(Func)
364	v.mustBeExported()
365	return v.call("Call", in)
366}
367
368// CallSlice calls the variadic function v with the input arguments in,
369// assigning the slice in[len(in)-1] to v's final variadic argument.
370// For example, if len(in) == 3, v.CallSlice(in) represents the Go call v(in[0], in[1], in[2]...).
371// CallSlice panics if v's Kind is not [Func] or if v is not variadic.
372// It returns the output results as Values.
373// As in Go, each input argument must be assignable to the
374// type of the function's corresponding input parameter.
375func (v Value) CallSlice(in []Value) []Value {
376	v.mustBe(Func)
377	v.mustBeExported()
378	return v.call("CallSlice", in)
379}
380
381var callGC bool // for testing; see TestCallMethodJump and TestCallArgLive
382
383const debugReflectCall = false
384
385func (v Value) call(op string, in []Value) []Value {
386	// Get function pointer, type.
387	t := (*funcType)(unsafe.Pointer(v.typ()))
388	var (
389		fn       unsafe.Pointer
390		rcvr     Value
391		rcvrtype *abi.Type
392	)
393	if v.flag&flagMethod != 0 {
394		rcvr = v
395		rcvrtype, t, fn = methodReceiver(op, v, int(v.flag)>>flagMethodShift)
396	} else if v.flag&flagIndir != 0 {
397		fn = *(*unsafe.Pointer)(v.ptr)
398	} else {
399		fn = v.ptr
400	}
401
402	if fn == nil {
403		panic("reflect.Value.Call: call of nil function")
404	}
405
406	isSlice := op == "CallSlice"
407	n := t.NumIn()
408	isVariadic := t.IsVariadic()
409	if isSlice {
410		if !isVariadic {
411			panic("reflect: CallSlice of non-variadic function")
412		}
413		if len(in) < n {
414			panic("reflect: CallSlice with too few input arguments")
415		}
416		if len(in) > n {
417			panic("reflect: CallSlice with too many input arguments")
418		}
419	} else {
420		if isVariadic {
421			n--
422		}
423		if len(in) < n {
424			panic("reflect: Call with too few input arguments")
425		}
426		if !isVariadic && len(in) > n {
427			panic("reflect: Call with too many input arguments")
428		}
429	}
430	for _, x := range in {
431		if x.Kind() == Invalid {
432			panic("reflect: " + op + " using zero Value argument")
433		}
434	}
435	for i := 0; i < n; i++ {
436		if xt, targ := in[i].Type(), t.In(i); !xt.AssignableTo(toRType(targ)) {
437			panic("reflect: " + op + " using " + xt.String() + " as type " + stringFor(targ))
438		}
439	}
440	if !isSlice && isVariadic {
441		// prepare slice for remaining values
442		m := len(in) - n
443		slice := MakeSlice(toRType(t.In(n)), m, m)
444		elem := toRType(t.In(n)).Elem() // FIXME cast to slice type and Elem()
445		for i := 0; i < m; i++ {
446			x := in[n+i]
447			if xt := x.Type(); !xt.AssignableTo(elem) {
448				panic("reflect: cannot use " + xt.String() + " as type " + elem.String() + " in " + op)
449			}
450			slice.Index(i).Set(x)
451		}
452		origIn := in
453		in = make([]Value, n+1)
454		copy(in[:n], origIn)
455		in[n] = slice
456	}
457
458	nin := len(in)
459	if nin != t.NumIn() {
460		panic("reflect.Value.Call: wrong argument count")
461	}
462	nout := t.NumOut()
463
464	// Register argument space.
465	var regArgs abi.RegArgs
466
467	// Compute frame type.
468	frametype, framePool, abid := funcLayout(t, rcvrtype)
469
470	// Allocate a chunk of memory for frame if needed.
471	var stackArgs unsafe.Pointer
472	if frametype.Size() != 0 {
473		if nout == 0 {
474			stackArgs = framePool.Get().(unsafe.Pointer)
475		} else {
476			// Can't use pool if the function has return values.
477			// We will leak pointer to args in ret, so its lifetime is not scoped.
478			stackArgs = unsafe_New(frametype)
479		}
480	}
481	frameSize := frametype.Size()
482
483	if debugReflectCall {
484		println("reflect.call", stringFor(&t.Type))
485		abid.dump()
486	}
487
488	// Copy inputs into args.
489
490	// Handle receiver.
491	inStart := 0
492	if rcvrtype != nil {
493		// Guaranteed to only be one word in size,
494		// so it will only take up exactly 1 abiStep (either
495		// in a register or on the stack).
496		switch st := abid.call.steps[0]; st.kind {
497		case abiStepStack:
498			storeRcvr(rcvr, stackArgs)
499		case abiStepPointer:
500			storeRcvr(rcvr, unsafe.Pointer(&regArgs.Ptrs[st.ireg]))
501			fallthrough
502		case abiStepIntReg:
503			storeRcvr(rcvr, unsafe.Pointer(&regArgs.Ints[st.ireg]))
504		case abiStepFloatReg:
505			storeRcvr(rcvr, unsafe.Pointer(&regArgs.Floats[st.freg]))
506		default:
507			panic("unknown ABI parameter kind")
508		}
509		inStart = 1
510	}
511
512	// Handle arguments.
513	for i, v := range in {
514		v.mustBeExported()
515		targ := toRType(t.In(i))
516		// TODO(mknyszek): Figure out if it's possible to get some
517		// scratch space for this assignment check. Previously, it
518		// was possible to use space in the argument frame.
519		v = v.assignTo("reflect.Value.Call", &targ.t, nil)
520	stepsLoop:
521		for _, st := range abid.call.stepsForValue(i + inStart) {
522			switch st.kind {
523			case abiStepStack:
524				// Copy values to the "stack."
525				addr := add(stackArgs, st.stkOff, "precomputed stack arg offset")
526				if v.flag&flagIndir != 0 {
527					typedmemmove(&targ.t, addr, v.ptr)
528				} else {
529					*(*unsafe.Pointer)(addr) = v.ptr
530				}
531				// There's only one step for a stack-allocated value.
532				break stepsLoop
533			case abiStepIntReg, abiStepPointer:
534				// Copy values to "integer registers."
535				if v.flag&flagIndir != 0 {
536					offset := add(v.ptr, st.offset, "precomputed value offset")
537					if st.kind == abiStepPointer {
538						// Duplicate this pointer in the pointer area of the
539						// register space. Otherwise, there's the potential for
540						// this to be the last reference to v.ptr.
541						regArgs.Ptrs[st.ireg] = *(*unsafe.Pointer)(offset)
542					}
543					intToReg(&regArgs, st.ireg, st.size, offset)
544				} else {
545					if st.kind == abiStepPointer {
546						// See the comment in abiStepPointer case above.
547						regArgs.Ptrs[st.ireg] = v.ptr
548					}
549					regArgs.Ints[st.ireg] = uintptr(v.ptr)
550				}
551			case abiStepFloatReg:
552				// Copy values to "float registers."
553				if v.flag&flagIndir == 0 {
554					panic("attempted to copy pointer to FP register")
555				}
556				offset := add(v.ptr, st.offset, "precomputed value offset")
557				floatToReg(&regArgs, st.freg, st.size, offset)
558			default:
559				panic("unknown ABI part kind")
560			}
561		}
562	}
563	// TODO(mknyszek): Remove this when we no longer have
564	// caller reserved spill space.
565	frameSize = align(frameSize, goarch.PtrSize)
566	frameSize += abid.spill
567
568	// Mark pointers in registers for the return path.
569	regArgs.ReturnIsPtr = abid.outRegPtrs
570
571	if debugReflectCall {
572		regArgs.Dump()
573	}
574
575	// For testing; see TestCallArgLive.
576	if callGC {
577		runtime.GC()
578	}
579
580	// Call.
581	call(frametype, fn, stackArgs, uint32(frametype.Size()), uint32(abid.retOffset), uint32(frameSize), &regArgs)
582
583	// For testing; see TestCallMethodJump.
584	if callGC {
585		runtime.GC()
586	}
587
588	var ret []Value
589	if nout == 0 {
590		if stackArgs != nil {
591			typedmemclr(frametype, stackArgs)
592			framePool.Put(stackArgs)
593		}
594	} else {
595		if stackArgs != nil {
596			// Zero the now unused input area of args,
597			// because the Values returned by this function contain pointers to the args object,
598			// and will thus keep the args object alive indefinitely.
599			typedmemclrpartial(frametype, stackArgs, 0, abid.retOffset)
600		}
601
602		// Wrap Values around return values in args.
603		ret = make([]Value, nout)
604		for i := 0; i < nout; i++ {
605			tv := t.Out(i)
606			if tv.Size() == 0 {
607				// For zero-sized return value, args+off may point to the next object.
608				// In this case, return the zero value instead.
609				ret[i] = Zero(toRType(tv))
610				continue
611			}
612			steps := abid.ret.stepsForValue(i)
613			if st := steps[0]; st.kind == abiStepStack {
614				// This value is on the stack. If part of a value is stack
615				// allocated, the entire value is according to the ABI. So
616				// just make an indirection into the allocated frame.
617				fl := flagIndir | flag(tv.Kind())
618				ret[i] = Value{tv, add(stackArgs, st.stkOff, "tv.Size() != 0"), fl}
619				// Note: this does introduce false sharing between results -
620				// if any result is live, they are all live.
621				// (And the space for the args is live as well, but as we've
622				// cleared that space it isn't as big a deal.)
623				continue
624			}
625
626			// Handle pointers passed in registers.
627			if !tv.IfaceIndir() {
628				// Pointer-valued data gets put directly
629				// into v.ptr.
630				if steps[0].kind != abiStepPointer {
631					print("kind=", steps[0].kind, ", type=", stringFor(tv), "\n")
632					panic("mismatch between ABI description and types")
633				}
634				ret[i] = Value{tv, regArgs.Ptrs[steps[0].ireg], flag(tv.Kind())}
635				continue
636			}
637
638			// All that's left is values passed in registers that we need to
639			// create space for and copy values back into.
640			//
641			// TODO(mknyszek): We make a new allocation for each register-allocated
642			// value, but previously we could always point into the heap-allocated
643			// stack frame. This is a regression that could be fixed by adding
644			// additional space to the allocated stack frame and storing the
645			// register-allocated return values into the allocated stack frame and
646			// referring there in the resulting Value.
647			s := unsafe_New(tv)
648			for _, st := range steps {
649				switch st.kind {
650				case abiStepIntReg:
651					offset := add(s, st.offset, "precomputed value offset")
652					intFromReg(&regArgs, st.ireg, st.size, offset)
653				case abiStepPointer:
654					s := add(s, st.offset, "precomputed value offset")
655					*((*unsafe.Pointer)(s)) = regArgs.Ptrs[st.ireg]
656				case abiStepFloatReg:
657					offset := add(s, st.offset, "precomputed value offset")
658					floatFromReg(&regArgs, st.freg, st.size, offset)
659				case abiStepStack:
660					panic("register-based return value has stack component")
661				default:
662					panic("unknown ABI part kind")
663				}
664			}
665			ret[i] = Value{tv, s, flagIndir | flag(tv.Kind())}
666		}
667	}
668
669	return ret
670}
671
672// callReflect is the call implementation used by a function
673// returned by MakeFunc. In many ways it is the opposite of the
674// method Value.call above. The method above converts a call using Values
675// into a call of a function with a concrete argument frame, while
676// callReflect converts a call of a function with a concrete argument
677// frame into a call using Values.
678// It is in this file so that it can be next to the call method above.
679// The remainder of the MakeFunc implementation is in makefunc.go.
680//
681// NOTE: This function must be marked as a "wrapper" in the generated code,
682// so that the linker can make it work correctly for panic and recover.
683// The gc compilers know to do that for the name "reflect.callReflect".
684//
685// ctxt is the "closure" generated by MakeFunc.
686// frame is a pointer to the arguments to that closure on the stack.
687// retValid points to a boolean which should be set when the results
688// section of frame is set.
689//
690// regs contains the argument values passed in registers and will contain
691// the values returned from ctxt.fn in registers.
692func callReflect(ctxt *makeFuncImpl, frame unsafe.Pointer, retValid *bool, regs *abi.RegArgs) {
693	if callGC {
694		// Call GC upon entry during testing.
695		// Getting our stack scanned here is the biggest hazard, because
696		// our caller (makeFuncStub) could have failed to place the last
697		// pointer to a value in regs' pointer space, in which case it
698		// won't be visible to the GC.
699		runtime.GC()
700	}
701	ftyp := ctxt.ftyp
702	f := ctxt.fn
703
704	_, _, abid := funcLayout(ftyp, nil)
705
706	// Copy arguments into Values.
707	ptr := frame
708	in := make([]Value, 0, int(ftyp.InCount))
709	for i, typ := range ftyp.InSlice() {
710		if typ.Size() == 0 {
711			in = append(in, Zero(toRType(typ)))
712			continue
713		}
714		v := Value{typ, nil, flag(typ.Kind())}
715		steps := abid.call.stepsForValue(i)
716		if st := steps[0]; st.kind == abiStepStack {
717			if typ.IfaceIndir() {
718				// value cannot be inlined in interface data.
719				// Must make a copy, because f might keep a reference to it,
720				// and we cannot let f keep a reference to the stack frame
721				// after this function returns, not even a read-only reference.
722				v.ptr = unsafe_New(typ)
723				if typ.Size() > 0 {
724					typedmemmove(typ, v.ptr, add(ptr, st.stkOff, "typ.size > 0"))
725				}
726				v.flag |= flagIndir
727			} else {
728				v.ptr = *(*unsafe.Pointer)(add(ptr, st.stkOff, "1-ptr"))
729			}
730		} else {
731			if typ.IfaceIndir() {
732				// All that's left is values passed in registers that we need to
733				// create space for the values.
734				v.flag |= flagIndir
735				v.ptr = unsafe_New(typ)
736				for _, st := range steps {
737					switch st.kind {
738					case abiStepIntReg:
739						offset := add(v.ptr, st.offset, "precomputed value offset")
740						intFromReg(regs, st.ireg, st.size, offset)
741					case abiStepPointer:
742						s := add(v.ptr, st.offset, "precomputed value offset")
743						*((*unsafe.Pointer)(s)) = regs.Ptrs[st.ireg]
744					case abiStepFloatReg:
745						offset := add(v.ptr, st.offset, "precomputed value offset")
746						floatFromReg(regs, st.freg, st.size, offset)
747					case abiStepStack:
748						panic("register-based return value has stack component")
749					default:
750						panic("unknown ABI part kind")
751					}
752				}
753			} else {
754				// Pointer-valued data gets put directly
755				// into v.ptr.
756				if steps[0].kind != abiStepPointer {
757					print("kind=", steps[0].kind, ", type=", stringFor(typ), "\n")
758					panic("mismatch between ABI description and types")
759				}
760				v.ptr = regs.Ptrs[steps[0].ireg]
761			}
762		}
763		in = append(in, v)
764	}
765
766	// Call underlying function.
767	out := f(in)
768	numOut := ftyp.NumOut()
769	if len(out) != numOut {
770		panic("reflect: wrong return count from function created by MakeFunc")
771	}
772
773	// Copy results back into argument frame and register space.
774	if numOut > 0 {
775		for i, typ := range ftyp.OutSlice() {
776			v := out[i]
777			if v.typ() == nil {
778				panic("reflect: function created by MakeFunc using " + funcName(f) +
779					" returned zero Value")
780			}
781			if v.flag&flagRO != 0 {
782				panic("reflect: function created by MakeFunc using " + funcName(f) +
783					" returned value obtained from unexported field")
784			}
785			if typ.Size() == 0 {
786				continue
787			}
788
789			// Convert v to type typ if v is assignable to a variable
790			// of type t in the language spec.
791			// See issue 28761.
792			//
793			//
794			// TODO(mknyszek): In the switch to the register ABI we lost
795			// the scratch space here for the register cases (and
796			// temporarily for all the cases).
797			//
798			// If/when this happens, take note of the following:
799			//
800			// We must clear the destination before calling assignTo,
801			// in case assignTo writes (with memory barriers) to the
802			// target location used as scratch space. See issue 39541.
803			v = v.assignTo("reflect.MakeFunc", typ, nil)
804		stepsLoop:
805			for _, st := range abid.ret.stepsForValue(i) {
806				switch st.kind {
807				case abiStepStack:
808					// Copy values to the "stack."
809					addr := add(ptr, st.stkOff, "precomputed stack arg offset")
810					// Do not use write barriers. The stack space used
811					// for this call is not adequately zeroed, and we
812					// are careful to keep the arguments alive until we
813					// return to makeFuncStub's caller.
814					if v.flag&flagIndir != 0 {
815						memmove(addr, v.ptr, st.size)
816					} else {
817						// This case must be a pointer type.
818						*(*uintptr)(addr) = uintptr(v.ptr)
819					}
820					// There's only one step for a stack-allocated value.
821					break stepsLoop
822				case abiStepIntReg, abiStepPointer:
823					// Copy values to "integer registers."
824					if v.flag&flagIndir != 0 {
825						offset := add(v.ptr, st.offset, "precomputed value offset")
826						intToReg(regs, st.ireg, st.size, offset)
827					} else {
828						// Only populate the Ints space on the return path.
829						// This is safe because out is kept alive until the
830						// end of this function, and the return path through
831						// makeFuncStub has no preemption, so these pointers
832						// are always visible to the GC.
833						regs.Ints[st.ireg] = uintptr(v.ptr)
834					}
835				case abiStepFloatReg:
836					// Copy values to "float registers."
837					if v.flag&flagIndir == 0 {
838						panic("attempted to copy pointer to FP register")
839					}
840					offset := add(v.ptr, st.offset, "precomputed value offset")
841					floatToReg(regs, st.freg, st.size, offset)
842				default:
843					panic("unknown ABI part kind")
844				}
845			}
846		}
847	}
848
849	// Announce that the return values are valid.
850	// After this point the runtime can depend on the return values being valid.
851	*retValid = true
852
853	// We have to make sure that the out slice lives at least until
854	// the runtime knows the return values are valid. Otherwise, the
855	// return values might not be scanned by anyone during a GC.
856	// (out would be dead, and the return slots not yet alive.)
857	runtime.KeepAlive(out)
858
859	// runtime.getArgInfo expects to be able to find ctxt on the
860	// stack when it finds our caller, makeFuncStub. Make sure it
861	// doesn't get garbage collected.
862	runtime.KeepAlive(ctxt)
863}
864
865// methodReceiver returns information about the receiver
866// described by v. The Value v may or may not have the
867// flagMethod bit set, so the kind cached in v.flag should
868// not be used.
869// The return value rcvrtype gives the method's actual receiver type.
870// The return value t gives the method type signature (without the receiver).
871// The return value fn is a pointer to the method code.
872func methodReceiver(op string, v Value, methodIndex int) (rcvrtype *abi.Type, t *funcType, fn unsafe.Pointer) {
873	i := methodIndex
874	if v.typ().Kind() == abi.Interface {
875		tt := (*interfaceType)(unsafe.Pointer(v.typ()))
876		if uint(i) >= uint(len(tt.Methods)) {
877			panic("reflect: internal error: invalid method index")
878		}
879		m := &tt.Methods[i]
880		if !tt.nameOff(m.Name).IsExported() {
881			panic("reflect: " + op + " of unexported method")
882		}
883		iface := (*nonEmptyInterface)(v.ptr)
884		if iface.itab == nil {
885			panic("reflect: " + op + " of method on nil interface value")
886		}
887		rcvrtype = iface.itab.Type
888		fn = unsafe.Pointer(&unsafe.Slice(&iface.itab.Fun[0], i+1)[i])
889		t = (*funcType)(unsafe.Pointer(tt.typeOff(m.Typ)))
890	} else {
891		rcvrtype = v.typ()
892		ms := v.typ().ExportedMethods()
893		if uint(i) >= uint(len(ms)) {
894			panic("reflect: internal error: invalid method index")
895		}
896		m := ms[i]
897		if !nameOffFor(v.typ(), m.Name).IsExported() {
898			panic("reflect: " + op + " of unexported method")
899		}
900		ifn := textOffFor(v.typ(), m.Ifn)
901		fn = unsafe.Pointer(&ifn)
902		t = (*funcType)(unsafe.Pointer(typeOffFor(v.typ(), m.Mtyp)))
903	}
904	return
905}
906
907// v is a method receiver. Store at p the word which is used to
908// encode that receiver at the start of the argument list.
909// Reflect uses the "interface" calling convention for
910// methods, which always uses one word to record the receiver.
911func storeRcvr(v Value, p unsafe.Pointer) {
912	t := v.typ()
913	if t.Kind() == abi.Interface {
914		// the interface data word becomes the receiver word
915		iface := (*nonEmptyInterface)(v.ptr)
916		*(*unsafe.Pointer)(p) = iface.word
917	} else if v.flag&flagIndir != 0 && !t.IfaceIndir() {
918		*(*unsafe.Pointer)(p) = *(*unsafe.Pointer)(v.ptr)
919	} else {
920		*(*unsafe.Pointer)(p) = v.ptr
921	}
922}
923
924// align returns the result of rounding x up to a multiple of n.
925// n must be a power of two.
926func align(x, n uintptr) uintptr {
927	return (x + n - 1) &^ (n - 1)
928}
929
930// callMethod is the call implementation used by a function returned
931// by makeMethodValue (used by v.Method(i).Interface()).
932// It is a streamlined version of the usual reflect call: the caller has
933// already laid out the argument frame for us, so we don't have
934// to deal with individual Values for each argument.
935// It is in this file so that it can be next to the two similar functions above.
936// The remainder of the makeMethodValue implementation is in makefunc.go.
937//
938// NOTE: This function must be marked as a "wrapper" in the generated code,
939// so that the linker can make it work correctly for panic and recover.
940// The gc compilers know to do that for the name "reflect.callMethod".
941//
942// ctxt is the "closure" generated by makeMethodValue.
943// frame is a pointer to the arguments to that closure on the stack.
944// retValid points to a boolean which should be set when the results
945// section of frame is set.
946//
947// regs contains the argument values passed in registers and will contain
948// the values returned from ctxt.fn in registers.
949func callMethod(ctxt *methodValue, frame unsafe.Pointer, retValid *bool, regs *abi.RegArgs) {
950	rcvr := ctxt.rcvr
951	rcvrType, valueFuncType, methodFn := methodReceiver("call", rcvr, ctxt.method)
952
953	// There are two ABIs at play here.
954	//
955	// methodValueCall was invoked with the ABI assuming there was no
956	// receiver ("value ABI") and that's what frame and regs are holding.
957	//
958	// Meanwhile, we need to actually call the method with a receiver, which
959	// has its own ABI ("method ABI"). Everything that follows is a translation
960	// between the two.
961	_, _, valueABI := funcLayout(valueFuncType, nil)
962	valueFrame, valueRegs := frame, regs
963	methodFrameType, methodFramePool, methodABI := funcLayout(valueFuncType, rcvrType)
964
965	// Make a new frame that is one word bigger so we can store the receiver.
966	// This space is used for both arguments and return values.
967	methodFrame := methodFramePool.Get().(unsafe.Pointer)
968	var methodRegs abi.RegArgs
969
970	// Deal with the receiver. It's guaranteed to only be one word in size.
971	switch st := methodABI.call.steps[0]; st.kind {
972	case abiStepStack:
973		// Only copy the receiver to the stack if the ABI says so.
974		// Otherwise, it'll be in a register already.
975		storeRcvr(rcvr, methodFrame)
976	case abiStepPointer:
977		// Put the receiver in a register.
978		storeRcvr(rcvr, unsafe.Pointer(&methodRegs.Ptrs[st.ireg]))
979		fallthrough
980	case abiStepIntReg:
981		storeRcvr(rcvr, unsafe.Pointer(&methodRegs.Ints[st.ireg]))
982	case abiStepFloatReg:
983		storeRcvr(rcvr, unsafe.Pointer(&methodRegs.Floats[st.freg]))
984	default:
985		panic("unknown ABI parameter kind")
986	}
987
988	// Translate the rest of the arguments.
989	for i, t := range valueFuncType.InSlice() {
990		valueSteps := valueABI.call.stepsForValue(i)
991		methodSteps := methodABI.call.stepsForValue(i + 1)
992
993		// Zero-sized types are trivial: nothing to do.
994		if len(valueSteps) == 0 {
995			if len(methodSteps) != 0 {
996				panic("method ABI and value ABI do not align")
997			}
998			continue
999		}
1000
1001		// There are four cases to handle in translating each
1002		// argument:
1003		// 1. Stack -> stack translation.
1004		// 2. Stack -> registers translation.
1005		// 3. Registers -> stack translation.
1006		// 4. Registers -> registers translation.
1007
1008		// If the value ABI passes the value on the stack,
1009		// then the method ABI does too, because it has strictly
1010		// fewer arguments. Simply copy between the two.
1011		if vStep := valueSteps[0]; vStep.kind == abiStepStack {
1012			mStep := methodSteps[0]
1013			// Handle stack -> stack translation.
1014			if mStep.kind == abiStepStack {
1015				if vStep.size != mStep.size {
1016					panic("method ABI and value ABI do not align")
1017				}
1018				typedmemmove(t,
1019					add(methodFrame, mStep.stkOff, "precomputed stack offset"),
1020					add(valueFrame, vStep.stkOff, "precomputed stack offset"))
1021				continue
1022			}
1023			// Handle stack -> register translation.
1024			for _, mStep := range methodSteps {
1025				from := add(valueFrame, vStep.stkOff+mStep.offset, "precomputed stack offset")
1026				switch mStep.kind {
1027				case abiStepPointer:
1028					// Do the pointer copy directly so we get a write barrier.
1029					methodRegs.Ptrs[mStep.ireg] = *(*unsafe.Pointer)(from)
1030					fallthrough // We need to make sure this ends up in Ints, too.
1031				case abiStepIntReg:
1032					intToReg(&methodRegs, mStep.ireg, mStep.size, from)
1033				case abiStepFloatReg:
1034					floatToReg(&methodRegs, mStep.freg, mStep.size, from)
1035				default:
1036					panic("unexpected method step")
1037				}
1038			}
1039			continue
1040		}
1041		// Handle register -> stack translation.
1042		if mStep := methodSteps[0]; mStep.kind == abiStepStack {
1043			for _, vStep := range valueSteps {
1044				to := add(methodFrame, mStep.stkOff+vStep.offset, "precomputed stack offset")
1045				switch vStep.kind {
1046				case abiStepPointer:
1047					// Do the pointer copy directly so we get a write barrier.
1048					*(*unsafe.Pointer)(to) = valueRegs.Ptrs[vStep.ireg]
1049				case abiStepIntReg:
1050					intFromReg(valueRegs, vStep.ireg, vStep.size, to)
1051				case abiStepFloatReg:
1052					floatFromReg(valueRegs, vStep.freg, vStep.size, to)
1053				default:
1054					panic("unexpected value step")
1055				}
1056			}
1057			continue
1058		}
1059		// Handle register -> register translation.
1060		if len(valueSteps) != len(methodSteps) {
1061			// Because it's the same type for the value, and it's assigned
1062			// to registers both times, it should always take up the same
1063			// number of registers for each ABI.
1064			panic("method ABI and value ABI don't align")
1065		}
1066		for i, vStep := range valueSteps {
1067			mStep := methodSteps[i]
1068			if mStep.kind != vStep.kind {
1069				panic("method ABI and value ABI don't align")
1070			}
1071			switch vStep.kind {
1072			case abiStepPointer:
1073				// Copy this too, so we get a write barrier.
1074				methodRegs.Ptrs[mStep.ireg] = valueRegs.Ptrs[vStep.ireg]
1075				fallthrough
1076			case abiStepIntReg:
1077				methodRegs.Ints[mStep.ireg] = valueRegs.Ints[vStep.ireg]
1078			case abiStepFloatReg:
1079				methodRegs.Floats[mStep.freg] = valueRegs.Floats[vStep.freg]
1080			default:
1081				panic("unexpected value step")
1082			}
1083		}
1084	}
1085
1086	methodFrameSize := methodFrameType.Size()
1087	// TODO(mknyszek): Remove this when we no longer have
1088	// caller reserved spill space.
1089	methodFrameSize = align(methodFrameSize, goarch.PtrSize)
1090	methodFrameSize += methodABI.spill
1091
1092	// Mark pointers in registers for the return path.
1093	methodRegs.ReturnIsPtr = methodABI.outRegPtrs
1094
1095	// Call.
1096	// Call copies the arguments from scratch to the stack, calls fn,
1097	// and then copies the results back into scratch.
1098	call(methodFrameType, methodFn, methodFrame, uint32(methodFrameType.Size()), uint32(methodABI.retOffset), uint32(methodFrameSize), &methodRegs)
1099
1100	// Copy return values.
1101	//
1102	// This is somewhat simpler because both ABIs have an identical
1103	// return value ABI (the types are identical). As a result, register
1104	// results can simply be copied over. Stack-allocated values are laid
1105	// out the same, but are at different offsets from the start of the frame
1106	// Ignore any changes to args.
1107	// Avoid constructing out-of-bounds pointers if there are no return values.
1108	// because the arguments may be laid out differently.
1109	if valueRegs != nil {
1110		*valueRegs = methodRegs
1111	}
1112	if retSize := methodFrameType.Size() - methodABI.retOffset; retSize > 0 {
1113		valueRet := add(valueFrame, valueABI.retOffset, "valueFrame's size > retOffset")
1114		methodRet := add(methodFrame, methodABI.retOffset, "methodFrame's size > retOffset")
1115		// This copies to the stack. Write barriers are not needed.
1116		memmove(valueRet, methodRet, retSize)
1117	}
1118
1119	// Tell the runtime it can now depend on the return values
1120	// being properly initialized.
1121	*retValid = true
1122
1123	// Clear the scratch space and put it back in the pool.
1124	// This must happen after the statement above, so that the return
1125	// values will always be scanned by someone.
1126	typedmemclr(methodFrameType, methodFrame)
1127	methodFramePool.Put(methodFrame)
1128
1129	// See the comment in callReflect.
1130	runtime.KeepAlive(ctxt)
1131
1132	// Keep valueRegs alive because it may hold live pointer results.
1133	// The caller (methodValueCall) has it as a stack object, which is only
1134	// scanned when there is a reference to it.
1135	runtime.KeepAlive(valueRegs)
1136}
1137
1138// funcName returns the name of f, for use in error messages.
1139func funcName(f func([]Value) []Value) string {
1140	pc := *(*uintptr)(unsafe.Pointer(&f))
1141	rf := runtime.FuncForPC(pc)
1142	if rf != nil {
1143		return rf.Name()
1144	}
1145	return "closure"
1146}
1147
1148// Cap returns v's capacity.
1149// It panics if v's Kind is not [Array], [Chan], [Slice] or pointer to [Array].
1150func (v Value) Cap() int {
1151	// capNonSlice is split out to keep Cap inlineable for slice kinds.
1152	if v.kind() == Slice {
1153		return (*unsafeheader.Slice)(v.ptr).Cap
1154	}
1155	return v.capNonSlice()
1156}
1157
1158func (v Value) capNonSlice() int {
1159	k := v.kind()
1160	switch k {
1161	case Array:
1162		return v.typ().Len()
1163	case Chan:
1164		return chancap(v.pointer())
1165	case Ptr:
1166		if v.typ().Elem().Kind() == abi.Array {
1167			return v.typ().Elem().Len()
1168		}
1169		panic("reflect: call of reflect.Value.Cap on ptr to non-array Value")
1170	}
1171	panic(&ValueError{"reflect.Value.Cap", v.kind()})
1172}
1173
1174// Close closes the channel v.
1175// It panics if v's Kind is not [Chan] or
1176// v is a receive-only channel.
1177func (v Value) Close() {
1178	v.mustBe(Chan)
1179	v.mustBeExported()
1180	tt := (*chanType)(unsafe.Pointer(v.typ()))
1181	if ChanDir(tt.Dir)&SendDir == 0 {
1182		panic("reflect: close of receive-only channel")
1183	}
1184
1185	chanclose(v.pointer())
1186}
1187
1188// CanComplex reports whether [Value.Complex] can be used without panicking.
1189func (v Value) CanComplex() bool {
1190	switch v.kind() {
1191	case Complex64, Complex128:
1192		return true
1193	default:
1194		return false
1195	}
1196}
1197
1198// Complex returns v's underlying value, as a complex128.
1199// It panics if v's Kind is not [Complex64] or [Complex128]
1200func (v Value) Complex() complex128 {
1201	k := v.kind()
1202	switch k {
1203	case Complex64:
1204		return complex128(*(*complex64)(v.ptr))
1205	case Complex128:
1206		return *(*complex128)(v.ptr)
1207	}
1208	panic(&ValueError{"reflect.Value.Complex", v.kind()})
1209}
1210
1211// Elem returns the value that the interface v contains
1212// or that the pointer v points to.
1213// It panics if v's Kind is not [Interface] or [Pointer].
1214// It returns the zero Value if v is nil.
1215func (v Value) Elem() Value {
1216	k := v.kind()
1217	switch k {
1218	case Interface:
1219		var eface any
1220		if v.typ().NumMethod() == 0 {
1221			eface = *(*any)(v.ptr)
1222		} else {
1223			eface = (any)(*(*interface {
1224				M()
1225			})(v.ptr))
1226		}
1227		x := unpackEface(eface)
1228		if x.flag != 0 {
1229			x.flag |= v.flag.ro()
1230		}
1231		return x
1232	case Pointer:
1233		ptr := v.ptr
1234		if v.flag&flagIndir != 0 {
1235			if v.typ().IfaceIndir() {
1236				// This is a pointer to a not-in-heap object. ptr points to a uintptr
1237				// in the heap. That uintptr is the address of a not-in-heap object.
1238				// In general, pointers to not-in-heap objects can be total junk.
1239				// But Elem() is asking to dereference it, so the user has asserted
1240				// that at least it is a valid pointer (not just an integer stored in
1241				// a pointer slot). So let's check, to make sure that it isn't a pointer
1242				// that the runtime will crash on if it sees it during GC or write barriers.
1243				// Since it is a not-in-heap pointer, all pointers to the heap are
1244				// forbidden! That makes the test pretty easy.
1245				// See issue 48399.
1246				if !verifyNotInHeapPtr(*(*uintptr)(ptr)) {
1247					panic("reflect: reflect.Value.Elem on an invalid notinheap pointer")
1248				}
1249			}
1250			ptr = *(*unsafe.Pointer)(ptr)
1251		}
1252		// The returned value's address is v's value.
1253		if ptr == nil {
1254			return Value{}
1255		}
1256		tt := (*ptrType)(unsafe.Pointer(v.typ()))
1257		typ := tt.Elem
1258		fl := v.flag&flagRO | flagIndir | flagAddr
1259		fl |= flag(typ.Kind())
1260		return Value{typ, ptr, fl}
1261	}
1262	panic(&ValueError{"reflect.Value.Elem", v.kind()})
1263}
1264
1265// Field returns the i'th field of the struct v.
1266// It panics if v's Kind is not [Struct] or i is out of range.
1267func (v Value) Field(i int) Value {
1268	if v.kind() != Struct {
1269		panic(&ValueError{"reflect.Value.Field", v.kind()})
1270	}
1271	tt := (*structType)(unsafe.Pointer(v.typ()))
1272	if uint(i) >= uint(len(tt.Fields)) {
1273		panic("reflect: Field index out of range")
1274	}
1275	field := &tt.Fields[i]
1276	typ := field.Typ
1277
1278	// Inherit permission bits from v, but clear flagEmbedRO.
1279	fl := v.flag&(flagStickyRO|flagIndir|flagAddr) | flag(typ.Kind())
1280	// Using an unexported field forces flagRO.
1281	if !field.Name.IsExported() {
1282		if field.Embedded() {
1283			fl |= flagEmbedRO
1284		} else {
1285			fl |= flagStickyRO
1286		}
1287	}
1288	// Either flagIndir is set and v.ptr points at struct,
1289	// or flagIndir is not set and v.ptr is the actual struct data.
1290	// In the former case, we want v.ptr + offset.
1291	// In the latter case, we must have field.offset = 0,
1292	// so v.ptr + field.offset is still the correct address.
1293	ptr := add(v.ptr, field.Offset, "same as non-reflect &v.field")
1294	return Value{typ, ptr, fl}
1295}
1296
1297// FieldByIndex returns the nested field corresponding to index.
1298// It panics if evaluation requires stepping through a nil
1299// pointer or a field that is not a struct.
1300func (v Value) FieldByIndex(index []int) Value {
1301	if len(index) == 1 {
1302		return v.Field(index[0])
1303	}
1304	v.mustBe(Struct)
1305	for i, x := range index {
1306		if i > 0 {
1307			if v.Kind() == Pointer && v.typ().Elem().Kind() == abi.Struct {
1308				if v.IsNil() {
1309					panic("reflect: indirection through nil pointer to embedded struct")
1310				}
1311				v = v.Elem()
1312			}
1313		}
1314		v = v.Field(x)
1315	}
1316	return v
1317}
1318
1319// FieldByIndexErr returns the nested field corresponding to index.
1320// It returns an error if evaluation requires stepping through a nil
1321// pointer, but panics if it must step through a field that
1322// is not a struct.
1323func (v Value) FieldByIndexErr(index []int) (Value, error) {
1324	if len(index) == 1 {
1325		return v.Field(index[0]), nil
1326	}
1327	v.mustBe(Struct)
1328	for i, x := range index {
1329		if i > 0 {
1330			if v.Kind() == Ptr && v.typ().Elem().Kind() == abi.Struct {
1331				if v.IsNil() {
1332					return Value{}, errors.New("reflect: indirection through nil pointer to embedded struct field " + nameFor(v.typ().Elem()))
1333				}
1334				v = v.Elem()
1335			}
1336		}
1337		v = v.Field(x)
1338	}
1339	return v, nil
1340}
1341
1342// FieldByName returns the struct field with the given name.
1343// It returns the zero Value if no field was found.
1344// It panics if v's Kind is not [Struct].
1345func (v Value) FieldByName(name string) Value {
1346	v.mustBe(Struct)
1347	if f, ok := toRType(v.typ()).FieldByName(name); ok {
1348		return v.FieldByIndex(f.Index)
1349	}
1350	return Value{}
1351}
1352
1353// FieldByNameFunc returns the struct field with a name
1354// that satisfies the match function.
1355// It panics if v's Kind is not [Struct].
1356// It returns the zero Value if no field was found.
1357func (v Value) FieldByNameFunc(match func(string) bool) Value {
1358	if f, ok := toRType(v.typ()).FieldByNameFunc(match); ok {
1359		return v.FieldByIndex(f.Index)
1360	}
1361	return Value{}
1362}
1363
1364// CanFloat reports whether [Value.Float] can be used without panicking.
1365func (v Value) CanFloat() bool {
1366	switch v.kind() {
1367	case Float32, Float64:
1368		return true
1369	default:
1370		return false
1371	}
1372}
1373
1374// Float returns v's underlying value, as a float64.
1375// It panics if v's Kind is not [Float32] or [Float64]
1376func (v Value) Float() float64 {
1377	k := v.kind()
1378	switch k {
1379	case Float32:
1380		return float64(*(*float32)(v.ptr))
1381	case Float64:
1382		return *(*float64)(v.ptr)
1383	}
1384	panic(&ValueError{"reflect.Value.Float", v.kind()})
1385}
1386
1387var uint8Type = rtypeOf(uint8(0))
1388
1389// Index returns v's i'th element.
1390// It panics if v's Kind is not [Array], [Slice], or [String] or i is out of range.
1391func (v Value) Index(i int) Value {
1392	switch v.kind() {
1393	case Array:
1394		tt := (*arrayType)(unsafe.Pointer(v.typ()))
1395		if uint(i) >= uint(tt.Len) {
1396			panic("reflect: array index out of range")
1397		}
1398		typ := tt.Elem
1399		offset := uintptr(i) * typ.Size()
1400
1401		// Either flagIndir is set and v.ptr points at array,
1402		// or flagIndir is not set and v.ptr is the actual array data.
1403		// In the former case, we want v.ptr + offset.
1404		// In the latter case, we must be doing Index(0), so offset = 0,
1405		// so v.ptr + offset is still the correct address.
1406		val := add(v.ptr, offset, "same as &v[i], i < tt.len")
1407		fl := v.flag&(flagIndir|flagAddr) | v.flag.ro() | flag(typ.Kind()) // bits same as overall array
1408		return Value{typ, val, fl}
1409
1410	case Slice:
1411		// Element flag same as Elem of Pointer.
1412		// Addressable, indirect, possibly read-only.
1413		s := (*unsafeheader.Slice)(v.ptr)
1414		if uint(i) >= uint(s.Len) {
1415			panic("reflect: slice index out of range")
1416		}
1417		tt := (*sliceType)(unsafe.Pointer(v.typ()))
1418		typ := tt.Elem
1419		val := arrayAt(s.Data, i, typ.Size(), "i < s.Len")
1420		fl := flagAddr | flagIndir | v.flag.ro() | flag(typ.Kind())
1421		return Value{typ, val, fl}
1422
1423	case String:
1424		s := (*unsafeheader.String)(v.ptr)
1425		if uint(i) >= uint(s.Len) {
1426			panic("reflect: string index out of range")
1427		}
1428		p := arrayAt(s.Data, i, 1, "i < s.Len")
1429		fl := v.flag.ro() | flag(Uint8) | flagIndir
1430		return Value{uint8Type, p, fl}
1431	}
1432	panic(&ValueError{"reflect.Value.Index", v.kind()})
1433}
1434
1435// CanInt reports whether Int can be used without panicking.
1436func (v Value) CanInt() bool {
1437	switch v.kind() {
1438	case Int, Int8, Int16, Int32, Int64:
1439		return true
1440	default:
1441		return false
1442	}
1443}
1444
1445// Int returns v's underlying value, as an int64.
1446// It panics if v's Kind is not [Int], [Int8], [Int16], [Int32], or [Int64].
1447func (v Value) Int() int64 {
1448	k := v.kind()
1449	p := v.ptr
1450	switch k {
1451	case Int:
1452		return int64(*(*int)(p))
1453	case Int8:
1454		return int64(*(*int8)(p))
1455	case Int16:
1456		return int64(*(*int16)(p))
1457	case Int32:
1458		return int64(*(*int32)(p))
1459	case Int64:
1460		return *(*int64)(p)
1461	}
1462	panic(&ValueError{"reflect.Value.Int", v.kind()})
1463}
1464
1465// CanInterface reports whether [Value.Interface] can be used without panicking.
1466func (v Value) CanInterface() bool {
1467	if v.flag == 0 {
1468		panic(&ValueError{"reflect.Value.CanInterface", Invalid})
1469	}
1470	return v.flag&flagRO == 0
1471}
1472
1473// Interface returns v's current value as an interface{}.
1474// It is equivalent to:
1475//
1476//	var i interface{} = (v's underlying value)
1477//
1478// It panics if the Value was obtained by accessing
1479// unexported struct fields.
1480func (v Value) Interface() (i any) {
1481	return valueInterface(v, true)
1482}
1483
1484func valueInterface(v Value, safe bool) any {
1485	if v.flag == 0 {
1486		panic(&ValueError{"reflect.Value.Interface", Invalid})
1487	}
1488	if safe && v.flag&flagRO != 0 {
1489		// Do not allow access to unexported values via Interface,
1490		// because they might be pointers that should not be
1491		// writable or methods or function that should not be callable.
1492		panic("reflect.Value.Interface: cannot return value obtained from unexported field or method")
1493	}
1494	if v.flag&flagMethod != 0 {
1495		v = makeMethodValue("Interface", v)
1496	}
1497
1498	if v.kind() == Interface {
1499		// Special case: return the element inside the interface.
1500		// Empty interface has one layout, all interfaces with
1501		// methods have a second layout.
1502		if v.NumMethod() == 0 {
1503			return *(*any)(v.ptr)
1504		}
1505		return *(*interface {
1506			M()
1507		})(v.ptr)
1508	}
1509
1510	return packEface(v)
1511}
1512
1513// InterfaceData returns a pair of unspecified uintptr values.
1514// It panics if v's Kind is not Interface.
1515//
1516// In earlier versions of Go, this function returned the interface's
1517// value as a uintptr pair. As of Go 1.4, the implementation of
1518// interface values precludes any defined use of InterfaceData.
1519//
1520// Deprecated: The memory representation of interface values is not
1521// compatible with InterfaceData.
1522func (v Value) InterfaceData() [2]uintptr {
1523	v.mustBe(Interface)
1524	// The compiler loses track as it converts to uintptr. Force escape.
1525	escapes(v.ptr)
1526	// We treat this as a read operation, so we allow
1527	// it even for unexported data, because the caller
1528	// has to import "unsafe" to turn it into something
1529	// that can be abused.
1530	// Interface value is always bigger than a word; assume flagIndir.
1531	return *(*[2]uintptr)(v.ptr)
1532}
1533
1534// IsNil reports whether its argument v is nil. The argument must be
1535// a chan, func, interface, map, pointer, or slice value; if it is
1536// not, IsNil panics. Note that IsNil is not always equivalent to a
1537// regular comparison with nil in Go. For example, if v was created
1538// by calling [ValueOf] with an uninitialized interface variable i,
1539// i==nil will be true but v.IsNil will panic as v will be the zero
1540// Value.
1541func (v Value) IsNil() bool {
1542	k := v.kind()
1543	switch k {
1544	case Chan, Func, Map, Pointer, UnsafePointer:
1545		if v.flag&flagMethod != 0 {
1546			return false
1547		}
1548		ptr := v.ptr
1549		if v.flag&flagIndir != 0 {
1550			ptr = *(*unsafe.Pointer)(ptr)
1551		}
1552		return ptr == nil
1553	case Interface, Slice:
1554		// Both interface and slice are nil if first word is 0.
1555		// Both are always bigger than a word; assume flagIndir.
1556		return *(*unsafe.Pointer)(v.ptr) == nil
1557	}
1558	panic(&ValueError{"reflect.Value.IsNil", v.kind()})
1559}
1560
1561// IsValid reports whether v represents a value.
1562// It returns false if v is the zero Value.
1563// If [Value.IsValid] returns false, all other methods except String panic.
1564// Most functions and methods never return an invalid Value.
1565// If one does, its documentation states the conditions explicitly.
1566func (v Value) IsValid() bool {
1567	return v.flag != 0
1568}
1569
1570// IsZero reports whether v is the zero value for its type.
1571// It panics if the argument is invalid.
1572func (v Value) IsZero() bool {
1573	switch v.kind() {
1574	case Bool:
1575		return !v.Bool()
1576	case Int, Int8, Int16, Int32, Int64:
1577		return v.Int() == 0
1578	case Uint, Uint8, Uint16, Uint32, Uint64, Uintptr:
1579		return v.Uint() == 0
1580	case Float32, Float64:
1581		return v.Float() == 0
1582	case Complex64, Complex128:
1583		return v.Complex() == 0
1584	case Array:
1585		if v.flag&flagIndir == 0 {
1586			return v.ptr == nil
1587		}
1588		typ := (*abi.ArrayType)(unsafe.Pointer(v.typ()))
1589		// If the type is comparable, then compare directly with zero.
1590		if typ.Equal != nil && typ.Size() <= abi.ZeroValSize {
1591			// v.ptr doesn't escape, as Equal functions are compiler generated
1592			// and never escape. The escape analysis doesn't know, as it is a
1593			// function pointer call.
1594			return typ.Equal(abi.NoEscape(v.ptr), unsafe.Pointer(&zeroVal[0]))
1595		}
1596		if typ.TFlag&abi.TFlagRegularMemory != 0 {
1597			// For some types where the zero value is a value where all bits of this type are 0
1598			// optimize it.
1599			return isZero(unsafe.Slice(((*byte)(v.ptr)), typ.Size()))
1600		}
1601		n := int(typ.Len)
1602		for i := 0; i < n; i++ {
1603			if !v.Index(i).IsZero() {
1604				return false
1605			}
1606		}
1607		return true
1608	case Chan, Func, Interface, Map, Pointer, Slice, UnsafePointer:
1609		return v.IsNil()
1610	case String:
1611		return v.Len() == 0
1612	case Struct:
1613		if v.flag&flagIndir == 0 {
1614			return v.ptr == nil
1615		}
1616		typ := (*abi.StructType)(unsafe.Pointer(v.typ()))
1617		// If the type is comparable, then compare directly with zero.
1618		if typ.Equal != nil && typ.Size() <= abi.ZeroValSize {
1619			// See noescape justification above.
1620			return typ.Equal(abi.NoEscape(v.ptr), unsafe.Pointer(&zeroVal[0]))
1621		}
1622		if typ.TFlag&abi.TFlagRegularMemory != 0 {
1623			// For some types where the zero value is a value where all bits of this type are 0
1624			// optimize it.
1625			return isZero(unsafe.Slice(((*byte)(v.ptr)), typ.Size()))
1626		}
1627
1628		n := v.NumField()
1629		for i := 0; i < n; i++ {
1630			if !v.Field(i).IsZero() && v.Type().Field(i).Name != "_" {
1631				return false
1632			}
1633		}
1634		return true
1635	default:
1636		// This should never happen, but will act as a safeguard for later,
1637		// as a default value doesn't makes sense here.
1638		panic(&ValueError{"reflect.Value.IsZero", v.Kind()})
1639	}
1640}
1641
1642// isZero For all zeros, performance is not as good as
1643// return bytealg.Count(b, byte(0)) == len(b)
1644func isZero(b []byte) bool {
1645	if len(b) == 0 {
1646		return true
1647	}
1648	const n = 32
1649	// Align memory addresses to 8 bytes.
1650	for uintptr(unsafe.Pointer(&b[0]))%8 != 0 {
1651		if b[0] != 0 {
1652			return false
1653		}
1654		b = b[1:]
1655		if len(b) == 0 {
1656			return true
1657		}
1658	}
1659	for len(b)%8 != 0 {
1660		if b[len(b)-1] != 0 {
1661			return false
1662		}
1663		b = b[:len(b)-1]
1664	}
1665	if len(b) == 0 {
1666		return true
1667	}
1668	w := unsafe.Slice((*uint64)(unsafe.Pointer(&b[0])), len(b)/8)
1669	for len(w)%n != 0 {
1670		if w[0] != 0 {
1671			return false
1672		}
1673		w = w[1:]
1674	}
1675	for len(w) >= n {
1676		if w[0] != 0 || w[1] != 0 || w[2] != 0 || w[3] != 0 ||
1677			w[4] != 0 || w[5] != 0 || w[6] != 0 || w[7] != 0 ||
1678			w[8] != 0 || w[9] != 0 || w[10] != 0 || w[11] != 0 ||
1679			w[12] != 0 || w[13] != 0 || w[14] != 0 || w[15] != 0 ||
1680			w[16] != 0 || w[17] != 0 || w[18] != 0 || w[19] != 0 ||
1681			w[20] != 0 || w[21] != 0 || w[22] != 0 || w[23] != 0 ||
1682			w[24] != 0 || w[25] != 0 || w[26] != 0 || w[27] != 0 ||
1683			w[28] != 0 || w[29] != 0 || w[30] != 0 || w[31] != 0 {
1684			return false
1685		}
1686		w = w[n:]
1687	}
1688	return true
1689}
1690
1691// SetZero sets v to be the zero value of v's type.
1692// It panics if [Value.CanSet] returns false.
1693func (v Value) SetZero() {
1694	v.mustBeAssignable()
1695	switch v.kind() {
1696	case Bool:
1697		*(*bool)(v.ptr) = false
1698	case Int:
1699		*(*int)(v.ptr) = 0
1700	case Int8:
1701		*(*int8)(v.ptr) = 0
1702	case Int16:
1703		*(*int16)(v.ptr) = 0
1704	case Int32:
1705		*(*int32)(v.ptr) = 0
1706	case Int64:
1707		*(*int64)(v.ptr) = 0
1708	case Uint:
1709		*(*uint)(v.ptr) = 0
1710	case Uint8:
1711		*(*uint8)(v.ptr) = 0
1712	case Uint16:
1713		*(*uint16)(v.ptr) = 0
1714	case Uint32:
1715		*(*uint32)(v.ptr) = 0
1716	case Uint64:
1717		*(*uint64)(v.ptr) = 0
1718	case Uintptr:
1719		*(*uintptr)(v.ptr) = 0
1720	case Float32:
1721		*(*float32)(v.ptr) = 0
1722	case Float64:
1723		*(*float64)(v.ptr) = 0
1724	case Complex64:
1725		*(*complex64)(v.ptr) = 0
1726	case Complex128:
1727		*(*complex128)(v.ptr) = 0
1728	case String:
1729		*(*string)(v.ptr) = ""
1730	case Slice:
1731		*(*unsafeheader.Slice)(v.ptr) = unsafeheader.Slice{}
1732	case Interface:
1733		*(*abi.EmptyInterface)(v.ptr) = abi.EmptyInterface{}
1734	case Chan, Func, Map, Pointer, UnsafePointer:
1735		*(*unsafe.Pointer)(v.ptr) = nil
1736	case Array, Struct:
1737		typedmemclr(v.typ(), v.ptr)
1738	default:
1739		// This should never happen, but will act as a safeguard for later,
1740		// as a default value doesn't makes sense here.
1741		panic(&ValueError{"reflect.Value.SetZero", v.Kind()})
1742	}
1743}
1744
1745// Kind returns v's Kind.
1746// If v is the zero Value ([Value.IsValid] returns false), Kind returns Invalid.
1747func (v Value) Kind() Kind {
1748	return v.kind()
1749}
1750
1751// Len returns v's length.
1752// It panics if v's Kind is not [Array], [Chan], [Map], [Slice], [String], or pointer to [Array].
1753func (v Value) Len() int {
1754	// lenNonSlice is split out to keep Len inlineable for slice kinds.
1755	if v.kind() == Slice {
1756		return (*unsafeheader.Slice)(v.ptr).Len
1757	}
1758	return v.lenNonSlice()
1759}
1760
1761func (v Value) lenNonSlice() int {
1762	switch k := v.kind(); k {
1763	case Array:
1764		tt := (*arrayType)(unsafe.Pointer(v.typ()))
1765		return int(tt.Len)
1766	case Chan:
1767		return chanlen(v.pointer())
1768	case Map:
1769		return maplen(v.pointer())
1770	case String:
1771		// String is bigger than a word; assume flagIndir.
1772		return (*unsafeheader.String)(v.ptr).Len
1773	case Ptr:
1774		if v.typ().Elem().Kind() == abi.Array {
1775			return v.typ().Elem().Len()
1776		}
1777		panic("reflect: call of reflect.Value.Len on ptr to non-array Value")
1778	}
1779	panic(&ValueError{"reflect.Value.Len", v.kind()})
1780}
1781
1782var stringType = rtypeOf("")
1783
1784// MapIndex returns the value associated with key in the map v.
1785// It panics if v's Kind is not [Map].
1786// It returns the zero Value if key is not found in the map or if v represents a nil map.
1787// As in Go, the key's value must be assignable to the map's key type.
1788func (v Value) MapIndex(key Value) Value {
1789	v.mustBe(Map)
1790	tt := (*mapType)(unsafe.Pointer(v.typ()))
1791
1792	// Do not require key to be exported, so that DeepEqual
1793	// and other programs can use all the keys returned by
1794	// MapKeys as arguments to MapIndex. If either the map
1795	// or the key is unexported, though, the result will be
1796	// considered unexported. This is consistent with the
1797	// behavior for structs, which allow read but not write
1798	// of unexported fields.
1799
1800	var e unsafe.Pointer
1801	if (tt.Key == stringType || key.kind() == String) && tt.Key == key.typ() && tt.Elem.Size() <= abi.MapMaxElemBytes {
1802		k := *(*string)(key.ptr)
1803		e = mapaccess_faststr(v.typ(), v.pointer(), k)
1804	} else {
1805		key = key.assignTo("reflect.Value.MapIndex", tt.Key, nil)
1806		var k unsafe.Pointer
1807		if key.flag&flagIndir != 0 {
1808			k = key.ptr
1809		} else {
1810			k = unsafe.Pointer(&key.ptr)
1811		}
1812		e = mapaccess(v.typ(), v.pointer(), k)
1813	}
1814	if e == nil {
1815		return Value{}
1816	}
1817	typ := tt.Elem
1818	fl := (v.flag | key.flag).ro()
1819	fl |= flag(typ.Kind())
1820	return copyVal(typ, fl, e)
1821}
1822
1823// MapKeys returns a slice containing all the keys present in the map,
1824// in unspecified order.
1825// It panics if v's Kind is not [Map].
1826// It returns an empty slice if v represents a nil map.
1827func (v Value) MapKeys() []Value {
1828	v.mustBe(Map)
1829	tt := (*mapType)(unsafe.Pointer(v.typ()))
1830	keyType := tt.Key
1831
1832	fl := v.flag.ro() | flag(keyType.Kind())
1833
1834	m := v.pointer()
1835	mlen := int(0)
1836	if m != nil {
1837		mlen = maplen(m)
1838	}
1839	var it hiter
1840	mapiterinit(v.typ(), m, &it)
1841	a := make([]Value, mlen)
1842	var i int
1843	for i = 0; i < len(a); i++ {
1844		key := mapiterkey(&it)
1845		if key == nil {
1846			// Someone deleted an entry from the map since we
1847			// called maplen above. It's a data race, but nothing
1848			// we can do about it.
1849			break
1850		}
1851		a[i] = copyVal(keyType, fl, key)
1852		mapiternext(&it)
1853	}
1854	return a[:i]
1855}
1856
1857// hiter's structure matches runtime.hiter's structure.
1858// Having a clone here allows us to embed a map iterator
1859// inside type MapIter so that MapIters can be re-used
1860// without doing any allocations.
1861type hiter struct {
1862	key         unsafe.Pointer
1863	elem        unsafe.Pointer
1864	t           unsafe.Pointer
1865	h           unsafe.Pointer
1866	buckets     unsafe.Pointer
1867	bptr        unsafe.Pointer
1868	overflow    *[]unsafe.Pointer
1869	oldoverflow *[]unsafe.Pointer
1870	startBucket uintptr
1871	offset      uint8
1872	wrapped     bool
1873	B           uint8
1874	i           uint8
1875	bucket      uintptr
1876	checkBucket uintptr
1877}
1878
1879func (h *hiter) initialized() bool {
1880	return h.t != nil
1881}
1882
1883// A MapIter is an iterator for ranging over a map.
1884// See [Value.MapRange].
1885type MapIter struct {
1886	m     Value
1887	hiter hiter
1888}
1889
1890// Key returns the key of iter's current map entry.
1891func (iter *MapIter) Key() Value {
1892	if !iter.hiter.initialized() {
1893		panic("MapIter.Key called before Next")
1894	}
1895	iterkey := mapiterkey(&iter.hiter)
1896	if iterkey == nil {
1897		panic("MapIter.Key called on exhausted iterator")
1898	}
1899
1900	t := (*mapType)(unsafe.Pointer(iter.m.typ()))
1901	ktype := t.Key
1902	return copyVal(ktype, iter.m.flag.ro()|flag(ktype.Kind()), iterkey)
1903}
1904
1905// SetIterKey assigns to v the key of iter's current map entry.
1906// It is equivalent to v.Set(iter.Key()), but it avoids allocating a new Value.
1907// As in Go, the key must be assignable to v's type and
1908// must not be derived from an unexported field.
1909func (v Value) SetIterKey(iter *MapIter) {
1910	if !iter.hiter.initialized() {
1911		panic("reflect: Value.SetIterKey called before Next")
1912	}
1913	iterkey := mapiterkey(&iter.hiter)
1914	if iterkey == nil {
1915		panic("reflect: Value.SetIterKey called on exhausted iterator")
1916	}
1917
1918	v.mustBeAssignable()
1919	var target unsafe.Pointer
1920	if v.kind() == Interface {
1921		target = v.ptr
1922	}
1923
1924	t := (*mapType)(unsafe.Pointer(iter.m.typ()))
1925	ktype := t.Key
1926
1927	iter.m.mustBeExported() // do not let unexported m leak
1928	key := Value{ktype, iterkey, iter.m.flag | flag(ktype.Kind()) | flagIndir}
1929	key = key.assignTo("reflect.MapIter.SetKey", v.typ(), target)
1930	typedmemmove(v.typ(), v.ptr, key.ptr)
1931}
1932
1933// Value returns the value of iter's current map entry.
1934func (iter *MapIter) Value() Value {
1935	if !iter.hiter.initialized() {
1936		panic("MapIter.Value called before Next")
1937	}
1938	iterelem := mapiterelem(&iter.hiter)
1939	if iterelem == nil {
1940		panic("MapIter.Value called on exhausted iterator")
1941	}
1942
1943	t := (*mapType)(unsafe.Pointer(iter.m.typ()))
1944	vtype := t.Elem
1945	return copyVal(vtype, iter.m.flag.ro()|flag(vtype.Kind()), iterelem)
1946}
1947
1948// SetIterValue assigns to v the value of iter's current map entry.
1949// It is equivalent to v.Set(iter.Value()), but it avoids allocating a new Value.
1950// As in Go, the value must be assignable to v's type and
1951// must not be derived from an unexported field.
1952func (v Value) SetIterValue(iter *MapIter) {
1953	if !iter.hiter.initialized() {
1954		panic("reflect: Value.SetIterValue called before Next")
1955	}
1956	iterelem := mapiterelem(&iter.hiter)
1957	if iterelem == nil {
1958		panic("reflect: Value.SetIterValue called on exhausted iterator")
1959	}
1960
1961	v.mustBeAssignable()
1962	var target unsafe.Pointer
1963	if v.kind() == Interface {
1964		target = v.ptr
1965	}
1966
1967	t := (*mapType)(unsafe.Pointer(iter.m.typ()))
1968	vtype := t.Elem
1969
1970	iter.m.mustBeExported() // do not let unexported m leak
1971	elem := Value{vtype, iterelem, iter.m.flag | flag(vtype.Kind()) | flagIndir}
1972	elem = elem.assignTo("reflect.MapIter.SetValue", v.typ(), target)
1973	typedmemmove(v.typ(), v.ptr, elem.ptr)
1974}
1975
1976// Next advances the map iterator and reports whether there is another
1977// entry. It returns false when iter is exhausted; subsequent
1978// calls to [MapIter.Key], [MapIter.Value], or [MapIter.Next] will panic.
1979func (iter *MapIter) Next() bool {
1980	if !iter.m.IsValid() {
1981		panic("MapIter.Next called on an iterator that does not have an associated map Value")
1982	}
1983	if !iter.hiter.initialized() {
1984		mapiterinit(iter.m.typ(), iter.m.pointer(), &iter.hiter)
1985	} else {
1986		if mapiterkey(&iter.hiter) == nil {
1987			panic("MapIter.Next called on exhausted iterator")
1988		}
1989		mapiternext(&iter.hiter)
1990	}
1991	return mapiterkey(&iter.hiter) != nil
1992}
1993
1994// Reset modifies iter to iterate over v.
1995// It panics if v's Kind is not [Map] and v is not the zero Value.
1996// Reset(Value{}) causes iter to not to refer to any map,
1997// which may allow the previously iterated-over map to be garbage collected.
1998func (iter *MapIter) Reset(v Value) {
1999	if v.IsValid() {
2000		v.mustBe(Map)
2001	}
2002	iter.m = v
2003	iter.hiter = hiter{}
2004}
2005
2006// MapRange returns a range iterator for a map.
2007// It panics if v's Kind is not [Map].
2008//
2009// Call [MapIter.Next] to advance the iterator, and [MapIter.Key]/[MapIter.Value] to access each entry.
2010// [MapIter.Next] returns false when the iterator is exhausted.
2011// MapRange follows the same iteration semantics as a range statement.
2012//
2013// Example:
2014//
2015//	iter := reflect.ValueOf(m).MapRange()
2016//	for iter.Next() {
2017//		k := iter.Key()
2018//		v := iter.Value()
2019//		...
2020//	}
2021func (v Value) MapRange() *MapIter {
2022	// This is inlinable to take advantage of "function outlining".
2023	// The allocation of MapIter can be stack allocated if the caller
2024	// does not allow it to escape.
2025	// See https://blog.filippo.io/efficient-go-apis-with-the-inliner/
2026	if v.kind() != Map {
2027		v.panicNotMap()
2028	}
2029	return &MapIter{m: v}
2030}
2031
2032// Force slow panicking path not inlined, so it won't add to the
2033// inlining budget of the caller.
2034// TODO: undo when the inliner is no longer bottom-up only.
2035//
2036//go:noinline
2037func (f flag) panicNotMap() {
2038	f.mustBe(Map)
2039}
2040
2041// copyVal returns a Value containing the map key or value at ptr,
2042// allocating a new variable as needed.
2043func copyVal(typ *abi.Type, fl flag, ptr unsafe.Pointer) Value {
2044	if typ.IfaceIndir() {
2045		// Copy result so future changes to the map
2046		// won't change the underlying value.
2047		c := unsafe_New(typ)
2048		typedmemmove(typ, c, ptr)
2049		return Value{typ, c, fl | flagIndir}
2050	}
2051	return Value{typ, *(*unsafe.Pointer)(ptr), fl}
2052}
2053
2054// Method returns a function value corresponding to v's i'th method.
2055// The arguments to a Call on the returned function should not include
2056// a receiver; the returned function will always use v as the receiver.
2057// Method panics if i is out of range or if v is a nil interface value.
2058func (v Value) Method(i int) Value {
2059	if v.typ() == nil {
2060		panic(&ValueError{"reflect.Value.Method", Invalid})
2061	}
2062	if v.flag&flagMethod != 0 || uint(i) >= uint(toRType(v.typ()).NumMethod()) {
2063		panic("reflect: Method index out of range")
2064	}
2065	if v.typ().Kind() == abi.Interface && v.IsNil() {
2066		panic("reflect: Method on nil interface value")
2067	}
2068	fl := v.flag.ro() | (v.flag & flagIndir)
2069	fl |= flag(Func)
2070	fl |= flag(i)<<flagMethodShift | flagMethod
2071	return Value{v.typ(), v.ptr, fl}
2072}
2073
2074// NumMethod returns the number of methods in the value's method set.
2075//
2076// For a non-interface type, it returns the number of exported methods.
2077//
2078// For an interface type, it returns the number of exported and unexported methods.
2079func (v Value) NumMethod() int {
2080	if v.typ() == nil {
2081		panic(&ValueError{"reflect.Value.NumMethod", Invalid})
2082	}
2083	if v.flag&flagMethod != 0 {
2084		return 0
2085	}
2086	return toRType(v.typ()).NumMethod()
2087}
2088
2089// MethodByName returns a function value corresponding to the method
2090// of v with the given name.
2091// The arguments to a Call on the returned function should not include
2092// a receiver; the returned function will always use v as the receiver.
2093// It returns the zero Value if no method was found.
2094func (v Value) MethodByName(name string) Value {
2095	if v.typ() == nil {
2096		panic(&ValueError{"reflect.Value.MethodByName", Invalid})
2097	}
2098	if v.flag&flagMethod != 0 {
2099		return Value{}
2100	}
2101	m, ok := toRType(v.typ()).MethodByName(name)
2102	if !ok {
2103		return Value{}
2104	}
2105	return v.Method(m.Index)
2106}
2107
2108// NumField returns the number of fields in the struct v.
2109// It panics if v's Kind is not [Struct].
2110func (v Value) NumField() int {
2111	v.mustBe(Struct)
2112	tt := (*structType)(unsafe.Pointer(v.typ()))
2113	return len(tt.Fields)
2114}
2115
2116// OverflowComplex reports whether the complex128 x cannot be represented by v's type.
2117// It panics if v's Kind is not [Complex64] or [Complex128].
2118func (v Value) OverflowComplex(x complex128) bool {
2119	k := v.kind()
2120	switch k {
2121	case Complex64:
2122		return overflowFloat32(real(x)) || overflowFloat32(imag(x))
2123	case Complex128:
2124		return false
2125	}
2126	panic(&ValueError{"reflect.Value.OverflowComplex", v.kind()})
2127}
2128
2129// OverflowFloat reports whether the float64 x cannot be represented by v's type.
2130// It panics if v's Kind is not [Float32] or [Float64].
2131func (v Value) OverflowFloat(x float64) bool {
2132	k := v.kind()
2133	switch k {
2134	case Float32:
2135		return overflowFloat32(x)
2136	case Float64:
2137		return false
2138	}
2139	panic(&ValueError{"reflect.Value.OverflowFloat", v.kind()})
2140}
2141
2142func overflowFloat32(x float64) bool {
2143	if x < 0 {
2144		x = -x
2145	}
2146	return math.MaxFloat32 < x && x <= math.MaxFloat64
2147}
2148
2149// OverflowInt reports whether the int64 x cannot be represented by v's type.
2150// It panics if v's Kind is not [Int], [Int8], [Int16], [Int32], or [Int64].
2151func (v Value) OverflowInt(x int64) bool {
2152	k := v.kind()
2153	switch k {
2154	case Int, Int8, Int16, Int32, Int64:
2155		bitSize := v.typ().Size() * 8
2156		trunc := (x << (64 - bitSize)) >> (64 - bitSize)
2157		return x != trunc
2158	}
2159	panic(&ValueError{"reflect.Value.OverflowInt", v.kind()})
2160}
2161
2162// OverflowUint reports whether the uint64 x cannot be represented by v's type.
2163// It panics if v's Kind is not [Uint], [Uintptr], [Uint8], [Uint16], [Uint32], or [Uint64].
2164func (v Value) OverflowUint(x uint64) bool {
2165	k := v.kind()
2166	switch k {
2167	case Uint, Uintptr, Uint8, Uint16, Uint32, Uint64:
2168		bitSize := v.typ_.Size() * 8 // ok to use v.typ_ directly as Size doesn't escape
2169		trunc := (x << (64 - bitSize)) >> (64 - bitSize)
2170		return x != trunc
2171	}
2172	panic(&ValueError{"reflect.Value.OverflowUint", v.kind()})
2173}
2174
2175//go:nocheckptr
2176// This prevents inlining Value.Pointer when -d=checkptr is enabled,
2177// which ensures cmd/compile can recognize unsafe.Pointer(v.Pointer())
2178// and make an exception.
2179
2180// Pointer returns v's value as a uintptr.
2181// It panics if v's Kind is not [Chan], [Func], [Map], [Pointer], [Slice], [String], or [UnsafePointer].
2182//
2183// If v's Kind is [Func], the returned pointer is an underlying
2184// code pointer, but not necessarily enough to identify a
2185// single function uniquely. The only guarantee is that the
2186// result is zero if and only if v is a nil func Value.
2187//
2188// If v's Kind is [Slice], the returned pointer is to the first
2189// element of the slice. If the slice is nil the returned value
2190// is 0.  If the slice is empty but non-nil the return value is non-zero.
2191//
2192// If v's Kind is [String], the returned pointer is to the first
2193// element of the underlying bytes of string.
2194//
2195// It's preferred to use uintptr(Value.UnsafePointer()) to get the equivalent result.
2196func (v Value) Pointer() uintptr {
2197	// The compiler loses track as it converts to uintptr. Force escape.
2198	escapes(v.ptr)
2199
2200	k := v.kind()
2201	switch k {
2202	case Pointer:
2203		if !v.typ().Pointers() {
2204			val := *(*uintptr)(v.ptr)
2205			// Since it is a not-in-heap pointer, all pointers to the heap are
2206			// forbidden! See comment in Value.Elem and issue #48399.
2207			if !verifyNotInHeapPtr(val) {
2208				panic("reflect: reflect.Value.Pointer on an invalid notinheap pointer")
2209			}
2210			return val
2211		}
2212		fallthrough
2213	case Chan, Map, UnsafePointer:
2214		return uintptr(v.pointer())
2215	case Func:
2216		if v.flag&flagMethod != 0 {
2217			// As the doc comment says, the returned pointer is an
2218			// underlying code pointer but not necessarily enough to
2219			// identify a single function uniquely. All method expressions
2220			// created via reflect have the same underlying code pointer,
2221			// so their Pointers are equal. The function used here must
2222			// match the one used in makeMethodValue.
2223			return methodValueCallCodePtr()
2224		}
2225		p := v.pointer()
2226		// Non-nil func value points at data block.
2227		// First word of data block is actual code.
2228		if p != nil {
2229			p = *(*unsafe.Pointer)(p)
2230		}
2231		return uintptr(p)
2232	case Slice:
2233		return uintptr((*unsafeheader.Slice)(v.ptr).Data)
2234	case String:
2235		return uintptr((*unsafeheader.String)(v.ptr).Data)
2236	}
2237	panic(&ValueError{"reflect.Value.Pointer", v.kind()})
2238}
2239
2240// Recv receives and returns a value from the channel v.
2241// It panics if v's Kind is not [Chan].
2242// The receive blocks until a value is ready.
2243// The boolean value ok is true if the value x corresponds to a send
2244// on the channel, false if it is a zero value received because the channel is closed.
2245func (v Value) Recv() (x Value, ok bool) {
2246	v.mustBe(Chan)
2247	v.mustBeExported()
2248	return v.recv(false)
2249}
2250
2251// internal recv, possibly non-blocking (nb).
2252// v is known to be a channel.
2253func (v Value) recv(nb bool) (val Value, ok bool) {
2254	tt := (*chanType)(unsafe.Pointer(v.typ()))
2255	if ChanDir(tt.Dir)&RecvDir == 0 {
2256		panic("reflect: recv on send-only channel")
2257	}
2258	t := tt.Elem
2259	val = Value{t, nil, flag(t.Kind())}
2260	var p unsafe.Pointer
2261	if t.IfaceIndir() {
2262		p = unsafe_New(t)
2263		val.ptr = p
2264		val.flag |= flagIndir
2265	} else {
2266		p = unsafe.Pointer(&val.ptr)
2267	}
2268	selected, ok := chanrecv(v.pointer(), nb, p)
2269	if !selected {
2270		val = Value{}
2271	}
2272	return
2273}
2274
2275// Send sends x on the channel v.
2276// It panics if v's kind is not [Chan] or if x's type is not the same type as v's element type.
2277// As in Go, x's value must be assignable to the channel's element type.
2278func (v Value) Send(x Value) {
2279	v.mustBe(Chan)
2280	v.mustBeExported()
2281	v.send(x, false)
2282}
2283
2284// internal send, possibly non-blocking.
2285// v is known to be a channel.
2286func (v Value) send(x Value, nb bool) (selected bool) {
2287	tt := (*chanType)(unsafe.Pointer(v.typ()))
2288	if ChanDir(tt.Dir)&SendDir == 0 {
2289		panic("reflect: send on recv-only channel")
2290	}
2291	x.mustBeExported()
2292	x = x.assignTo("reflect.Value.Send", tt.Elem, nil)
2293	var p unsafe.Pointer
2294	if x.flag&flagIndir != 0 {
2295		p = x.ptr
2296	} else {
2297		p = unsafe.Pointer(&x.ptr)
2298	}
2299	return chansend(v.pointer(), p, nb)
2300}
2301
2302// Set assigns x to the value v.
2303// It panics if [Value.CanSet] returns false.
2304// As in Go, x's value must be assignable to v's type and
2305// must not be derived from an unexported field.
2306func (v Value) Set(x Value) {
2307	v.mustBeAssignable()
2308	x.mustBeExported() // do not let unexported x leak
2309	var target unsafe.Pointer
2310	if v.kind() == Interface {
2311		target = v.ptr
2312	}
2313	x = x.assignTo("reflect.Set", v.typ(), target)
2314	if x.flag&flagIndir != 0 {
2315		if x.ptr == unsafe.Pointer(&zeroVal[0]) {
2316			typedmemclr(v.typ(), v.ptr)
2317		} else {
2318			typedmemmove(v.typ(), v.ptr, x.ptr)
2319		}
2320	} else {
2321		*(*unsafe.Pointer)(v.ptr) = x.ptr
2322	}
2323}
2324
2325// SetBool sets v's underlying value.
2326// It panics if v's Kind is not [Bool] or if [Value.CanSet] returns false.
2327func (v Value) SetBool(x bool) {
2328	v.mustBeAssignable()
2329	v.mustBe(Bool)
2330	*(*bool)(v.ptr) = x
2331}
2332
2333// SetBytes sets v's underlying value.
2334// It panics if v's underlying value is not a slice of bytes.
2335func (v Value) SetBytes(x []byte) {
2336	v.mustBeAssignable()
2337	v.mustBe(Slice)
2338	if toRType(v.typ()).Elem().Kind() != Uint8 { // TODO add Elem method, fix mustBe(Slice) to return slice.
2339		panic("reflect.Value.SetBytes of non-byte slice")
2340	}
2341	*(*[]byte)(v.ptr) = x
2342}
2343
2344// setRunes sets v's underlying value.
2345// It panics if v's underlying value is not a slice of runes (int32s).
2346func (v Value) setRunes(x []rune) {
2347	v.mustBeAssignable()
2348	v.mustBe(Slice)
2349	if v.typ().Elem().Kind() != abi.Int32 {
2350		panic("reflect.Value.setRunes of non-rune slice")
2351	}
2352	*(*[]rune)(v.ptr) = x
2353}
2354
2355// SetComplex sets v's underlying value to x.
2356// It panics if v's Kind is not [Complex64] or [Complex128], or if [Value.CanSet] returns false.
2357func (v Value) SetComplex(x complex128) {
2358	v.mustBeAssignable()
2359	switch k := v.kind(); k {
2360	default:
2361		panic(&ValueError{"reflect.Value.SetComplex", v.kind()})
2362	case Complex64:
2363		*(*complex64)(v.ptr) = complex64(x)
2364	case Complex128:
2365		*(*complex128)(v.ptr) = x
2366	}
2367}
2368
2369// SetFloat sets v's underlying value to x.
2370// It panics if v's Kind is not [Float32] or [Float64], or if [Value.CanSet] returns false.
2371func (v Value) SetFloat(x float64) {
2372	v.mustBeAssignable()
2373	switch k := v.kind(); k {
2374	default:
2375		panic(&ValueError{"reflect.Value.SetFloat", v.kind()})
2376	case Float32:
2377		*(*float32)(v.ptr) = float32(x)
2378	case Float64:
2379		*(*float64)(v.ptr) = x
2380	}
2381}
2382
2383// SetInt sets v's underlying value to x.
2384// It panics if v's Kind is not [Int], [Int8], [Int16], [Int32], or [Int64], or if [Value.CanSet] returns false.
2385func (v Value) SetInt(x int64) {
2386	v.mustBeAssignable()
2387	switch k := v.kind(); k {
2388	default:
2389		panic(&ValueError{"reflect.Value.SetInt", v.kind()})
2390	case Int:
2391		*(*int)(v.ptr) = int(x)
2392	case Int8:
2393		*(*int8)(v.ptr) = int8(x)
2394	case Int16:
2395		*(*int16)(v.ptr) = int16(x)
2396	case Int32:
2397		*(*int32)(v.ptr) = int32(x)
2398	case Int64:
2399		*(*int64)(v.ptr) = x
2400	}
2401}
2402
2403// SetLen sets v's length to n.
2404// It panics if v's Kind is not [Slice] or if n is negative or
2405// greater than the capacity of the slice.
2406func (v Value) SetLen(n int) {
2407	v.mustBeAssignable()
2408	v.mustBe(Slice)
2409	s := (*unsafeheader.Slice)(v.ptr)
2410	if uint(n) > uint(s.Cap) {
2411		panic("reflect: slice length out of range in SetLen")
2412	}
2413	s.Len = n
2414}
2415
2416// SetCap sets v's capacity to n.
2417// It panics if v's Kind is not [Slice] or if n is smaller than the length or
2418// greater than the capacity of the slice.
2419func (v Value) SetCap(n int) {
2420	v.mustBeAssignable()
2421	v.mustBe(Slice)
2422	s := (*unsafeheader.Slice)(v.ptr)
2423	if n < s.Len || n > s.Cap {
2424		panic("reflect: slice capacity out of range in SetCap")
2425	}
2426	s.Cap = n
2427}
2428
2429// SetMapIndex sets the element associated with key in the map v to elem.
2430// It panics if v's Kind is not [Map].
2431// If elem is the zero Value, SetMapIndex deletes the key from the map.
2432// Otherwise if v holds a nil map, SetMapIndex will panic.
2433// As in Go, key's elem must be assignable to the map's key type,
2434// and elem's value must be assignable to the map's elem type.
2435func (v Value) SetMapIndex(key, elem Value) {
2436	v.mustBe(Map)
2437	v.mustBeExported()
2438	key.mustBeExported()
2439	tt := (*mapType)(unsafe.Pointer(v.typ()))
2440
2441	if (tt.Key == stringType || key.kind() == String) && tt.Key == key.typ() && tt.Elem.Size() <= abi.MapMaxElemBytes {
2442		k := *(*string)(key.ptr)
2443		if elem.typ() == nil {
2444			mapdelete_faststr(v.typ(), v.pointer(), k)
2445			return
2446		}
2447		elem.mustBeExported()
2448		elem = elem.assignTo("reflect.Value.SetMapIndex", tt.Elem, nil)
2449		var e unsafe.Pointer
2450		if elem.flag&flagIndir != 0 {
2451			e = elem.ptr
2452		} else {
2453			e = unsafe.Pointer(&elem.ptr)
2454		}
2455		mapassign_faststr(v.typ(), v.pointer(), k, e)
2456		return
2457	}
2458
2459	key = key.assignTo("reflect.Value.SetMapIndex", tt.Key, nil)
2460	var k unsafe.Pointer
2461	if key.flag&flagIndir != 0 {
2462		k = key.ptr
2463	} else {
2464		k = unsafe.Pointer(&key.ptr)
2465	}
2466	if elem.typ() == nil {
2467		mapdelete(v.typ(), v.pointer(), k)
2468		return
2469	}
2470	elem.mustBeExported()
2471	elem = elem.assignTo("reflect.Value.SetMapIndex", tt.Elem, nil)
2472	var e unsafe.Pointer
2473	if elem.flag&flagIndir != 0 {
2474		e = elem.ptr
2475	} else {
2476		e = unsafe.Pointer(&elem.ptr)
2477	}
2478	mapassign(v.typ(), v.pointer(), k, e)
2479}
2480
2481// SetUint sets v's underlying value to x.
2482// It panics if v's Kind is not [Uint], [Uintptr], [Uint8], [Uint16], [Uint32], or [Uint64], or if [Value.CanSet] returns false.
2483func (v Value) SetUint(x uint64) {
2484	v.mustBeAssignable()
2485	switch k := v.kind(); k {
2486	default:
2487		panic(&ValueError{"reflect.Value.SetUint", v.kind()})
2488	case Uint:
2489		*(*uint)(v.ptr) = uint(x)
2490	case Uint8:
2491		*(*uint8)(v.ptr) = uint8(x)
2492	case Uint16:
2493		*(*uint16)(v.ptr) = uint16(x)
2494	case Uint32:
2495		*(*uint32)(v.ptr) = uint32(x)
2496	case Uint64:
2497		*(*uint64)(v.ptr) = x
2498	case Uintptr:
2499		*(*uintptr)(v.ptr) = uintptr(x)
2500	}
2501}
2502
2503// SetPointer sets the [unsafe.Pointer] value v to x.
2504// It panics if v's Kind is not [UnsafePointer].
2505func (v Value) SetPointer(x unsafe.Pointer) {
2506	v.mustBeAssignable()
2507	v.mustBe(UnsafePointer)
2508	*(*unsafe.Pointer)(v.ptr) = x
2509}
2510
2511// SetString sets v's underlying value to x.
2512// It panics if v's Kind is not [String] or if [Value.CanSet] returns false.
2513func (v Value) SetString(x string) {
2514	v.mustBeAssignable()
2515	v.mustBe(String)
2516	*(*string)(v.ptr) = x
2517}
2518
2519// Slice returns v[i:j].
2520// It panics if v's Kind is not [Array], [Slice] or [String], or if v is an unaddressable array,
2521// or if the indexes are out of bounds.
2522func (v Value) Slice(i, j int) Value {
2523	var (
2524		cap  int
2525		typ  *sliceType
2526		base unsafe.Pointer
2527	)
2528	switch kind := v.kind(); kind {
2529	default:
2530		panic(&ValueError{"reflect.Value.Slice", v.kind()})
2531
2532	case Array:
2533		if v.flag&flagAddr == 0 {
2534			panic("reflect.Value.Slice: slice of unaddressable array")
2535		}
2536		tt := (*arrayType)(unsafe.Pointer(v.typ()))
2537		cap = int(tt.Len)
2538		typ = (*sliceType)(unsafe.Pointer(tt.Slice))
2539		base = v.ptr
2540
2541	case Slice:
2542		typ = (*sliceType)(unsafe.Pointer(v.typ()))
2543		s := (*unsafeheader.Slice)(v.ptr)
2544		base = s.Data
2545		cap = s.Cap
2546
2547	case String:
2548		s := (*unsafeheader.String)(v.ptr)
2549		if i < 0 || j < i || j > s.Len {
2550			panic("reflect.Value.Slice: string slice index out of bounds")
2551		}
2552		var t unsafeheader.String
2553		if i < s.Len {
2554			t = unsafeheader.String{Data: arrayAt(s.Data, i, 1, "i < s.Len"), Len: j - i}
2555		}
2556		return Value{v.typ(), unsafe.Pointer(&t), v.flag}
2557	}
2558
2559	if i < 0 || j < i || j > cap {
2560		panic("reflect.Value.Slice: slice index out of bounds")
2561	}
2562
2563	// Declare slice so that gc can see the base pointer in it.
2564	var x []unsafe.Pointer
2565
2566	// Reinterpret as *unsafeheader.Slice to edit.
2567	s := (*unsafeheader.Slice)(unsafe.Pointer(&x))
2568	s.Len = j - i
2569	s.Cap = cap - i
2570	if cap-i > 0 {
2571		s.Data = arrayAt(base, i, typ.Elem.Size(), "i < cap")
2572	} else {
2573		// do not advance pointer, to avoid pointing beyond end of slice
2574		s.Data = base
2575	}
2576
2577	fl := v.flag.ro() | flagIndir | flag(Slice)
2578	return Value{typ.Common(), unsafe.Pointer(&x), fl}
2579}
2580
2581// Slice3 is the 3-index form of the slice operation: it returns v[i:j:k].
2582// It panics if v's Kind is not [Array] or [Slice], or if v is an unaddressable array,
2583// or if the indexes are out of bounds.
2584func (v Value) Slice3(i, j, k int) Value {
2585	var (
2586		cap  int
2587		typ  *sliceType
2588		base unsafe.Pointer
2589	)
2590	switch kind := v.kind(); kind {
2591	default:
2592		panic(&ValueError{"reflect.Value.Slice3", v.kind()})
2593
2594	case Array:
2595		if v.flag&flagAddr == 0 {
2596			panic("reflect.Value.Slice3: slice of unaddressable array")
2597		}
2598		tt := (*arrayType)(unsafe.Pointer(v.typ()))
2599		cap = int(tt.Len)
2600		typ = (*sliceType)(unsafe.Pointer(tt.Slice))
2601		base = v.ptr
2602
2603	case Slice:
2604		typ = (*sliceType)(unsafe.Pointer(v.typ()))
2605		s := (*unsafeheader.Slice)(v.ptr)
2606		base = s.Data
2607		cap = s.Cap
2608	}
2609
2610	if i < 0 || j < i || k < j || k > cap {
2611		panic("reflect.Value.Slice3: slice index out of bounds")
2612	}
2613
2614	// Declare slice so that the garbage collector
2615	// can see the base pointer in it.
2616	var x []unsafe.Pointer
2617
2618	// Reinterpret as *unsafeheader.Slice to edit.
2619	s := (*unsafeheader.Slice)(unsafe.Pointer(&x))
2620	s.Len = j - i
2621	s.Cap = k - i
2622	if k-i > 0 {
2623		s.Data = arrayAt(base, i, typ.Elem.Size(), "i < k <= cap")
2624	} else {
2625		// do not advance pointer, to avoid pointing beyond end of slice
2626		s.Data = base
2627	}
2628
2629	fl := v.flag.ro() | flagIndir | flag(Slice)
2630	return Value{typ.Common(), unsafe.Pointer(&x), fl}
2631}
2632
2633// String returns the string v's underlying value, as a string.
2634// String is a special case because of Go's String method convention.
2635// Unlike the other getters, it does not panic if v's Kind is not [String].
2636// Instead, it returns a string of the form "<T value>" where T is v's type.
2637// The fmt package treats Values specially. It does not call their String
2638// method implicitly but instead prints the concrete values they hold.
2639func (v Value) String() string {
2640	// stringNonString is split out to keep String inlineable for string kinds.
2641	if v.kind() == String {
2642		return *(*string)(v.ptr)
2643	}
2644	return v.stringNonString()
2645}
2646
2647func (v Value) stringNonString() string {
2648	if v.kind() == Invalid {
2649		return "<invalid Value>"
2650	}
2651	// If you call String on a reflect.Value of other type, it's better to
2652	// print something than to panic. Useful in debugging.
2653	return "<" + v.Type().String() + " Value>"
2654}
2655
2656// TryRecv attempts to receive a value from the channel v but will not block.
2657// It panics if v's Kind is not [Chan].
2658// If the receive delivers a value, x is the transferred value and ok is true.
2659// If the receive cannot finish without blocking, x is the zero Value and ok is false.
2660// If the channel is closed, x is the zero value for the channel's element type and ok is false.
2661func (v Value) TryRecv() (x Value, ok bool) {
2662	v.mustBe(Chan)
2663	v.mustBeExported()
2664	return v.recv(true)
2665}
2666
2667// TrySend attempts to send x on the channel v but will not block.
2668// It panics if v's Kind is not [Chan].
2669// It reports whether the value was sent.
2670// As in Go, x's value must be assignable to the channel's element type.
2671func (v Value) TrySend(x Value) bool {
2672	v.mustBe(Chan)
2673	v.mustBeExported()
2674	return v.send(x, true)
2675}
2676
2677// Type returns v's type.
2678func (v Value) Type() Type {
2679	if v.flag != 0 && v.flag&flagMethod == 0 {
2680		return (*rtype)(noescape(unsafe.Pointer(v.typ_))) // inline of toRType(v.typ()), for own inlining in inline test
2681	}
2682	return v.typeSlow()
2683}
2684
2685func (v Value) typeSlow() Type {
2686	if v.flag == 0 {
2687		panic(&ValueError{"reflect.Value.Type", Invalid})
2688	}
2689
2690	typ := v.typ()
2691	if v.flag&flagMethod == 0 {
2692		return toRType(v.typ())
2693	}
2694
2695	// Method value.
2696	// v.typ describes the receiver, not the method type.
2697	i := int(v.flag) >> flagMethodShift
2698	if v.typ().Kind() == abi.Interface {
2699		// Method on interface.
2700		tt := (*interfaceType)(unsafe.Pointer(typ))
2701		if uint(i) >= uint(len(tt.Methods)) {
2702			panic("reflect: internal error: invalid method index")
2703		}
2704		m := &tt.Methods[i]
2705		return toRType(typeOffFor(typ, m.Typ))
2706	}
2707	// Method on concrete type.
2708	ms := typ.ExportedMethods()
2709	if uint(i) >= uint(len(ms)) {
2710		panic("reflect: internal error: invalid method index")
2711	}
2712	m := ms[i]
2713	return toRType(typeOffFor(typ, m.Mtyp))
2714}
2715
2716// CanUint reports whether [Value.Uint] can be used without panicking.
2717func (v Value) CanUint() bool {
2718	switch v.kind() {
2719	case Uint, Uint8, Uint16, Uint32, Uint64, Uintptr:
2720		return true
2721	default:
2722		return false
2723	}
2724}
2725
2726// Uint returns v's underlying value, as a uint64.
2727// It panics if v's Kind is not [Uint], [Uintptr], [Uint8], [Uint16], [Uint32], or [Uint64].
2728func (v Value) Uint() uint64 {
2729	k := v.kind()
2730	p := v.ptr
2731	switch k {
2732	case Uint:
2733		return uint64(*(*uint)(p))
2734	case Uint8:
2735		return uint64(*(*uint8)(p))
2736	case Uint16:
2737		return uint64(*(*uint16)(p))
2738	case Uint32:
2739		return uint64(*(*uint32)(p))
2740	case Uint64:
2741		return *(*uint64)(p)
2742	case Uintptr:
2743		return uint64(*(*uintptr)(p))
2744	}
2745	panic(&ValueError{"reflect.Value.Uint", v.kind()})
2746}
2747
2748//go:nocheckptr
2749// This prevents inlining Value.UnsafeAddr when -d=checkptr is enabled,
2750// which ensures cmd/compile can recognize unsafe.Pointer(v.UnsafeAddr())
2751// and make an exception.
2752
2753// UnsafeAddr returns a pointer to v's data, as a uintptr.
2754// It panics if v is not addressable.
2755//
2756// It's preferred to use uintptr(Value.Addr().UnsafePointer()) to get the equivalent result.
2757func (v Value) UnsafeAddr() uintptr {
2758	if v.typ() == nil {
2759		panic(&ValueError{"reflect.Value.UnsafeAddr", Invalid})
2760	}
2761	if v.flag&flagAddr == 0 {
2762		panic("reflect.Value.UnsafeAddr of unaddressable value")
2763	}
2764	// The compiler loses track as it converts to uintptr. Force escape.
2765	escapes(v.ptr)
2766	return uintptr(v.ptr)
2767}
2768
2769// UnsafePointer returns v's value as a [unsafe.Pointer].
2770// It panics if v's Kind is not [Chan], [Func], [Map], [Pointer], [Slice], [String] or [UnsafePointer].
2771//
2772// If v's Kind is [Func], the returned pointer is an underlying
2773// code pointer, but not necessarily enough to identify a
2774// single function uniquely. The only guarantee is that the
2775// result is zero if and only if v is a nil func Value.
2776//
2777// If v's Kind is [Slice], the returned pointer is to the first
2778// element of the slice. If the slice is nil the returned value
2779// is nil.  If the slice is empty but non-nil the return value is non-nil.
2780//
2781// If v's Kind is [String], the returned pointer is to the first
2782// element of the underlying bytes of string.
2783func (v Value) UnsafePointer() unsafe.Pointer {
2784	k := v.kind()
2785	switch k {
2786	case Pointer:
2787		if !v.typ().Pointers() {
2788			// Since it is a not-in-heap pointer, all pointers to the heap are
2789			// forbidden! See comment in Value.Elem and issue #48399.
2790			if !verifyNotInHeapPtr(*(*uintptr)(v.ptr)) {
2791				panic("reflect: reflect.Value.UnsafePointer on an invalid notinheap pointer")
2792			}
2793			return *(*unsafe.Pointer)(v.ptr)
2794		}
2795		fallthrough
2796	case Chan, Map, UnsafePointer:
2797		return v.pointer()
2798	case Func:
2799		if v.flag&flagMethod != 0 {
2800			// As the doc comment says, the returned pointer is an
2801			// underlying code pointer but not necessarily enough to
2802			// identify a single function uniquely. All method expressions
2803			// created via reflect have the same underlying code pointer,
2804			// so their Pointers are equal. The function used here must
2805			// match the one used in makeMethodValue.
2806			code := methodValueCallCodePtr()
2807			return *(*unsafe.Pointer)(unsafe.Pointer(&code))
2808		}
2809		p := v.pointer()
2810		// Non-nil func value points at data block.
2811		// First word of data block is actual code.
2812		if p != nil {
2813			p = *(*unsafe.Pointer)(p)
2814		}
2815		return p
2816	case Slice:
2817		return (*unsafeheader.Slice)(v.ptr).Data
2818	case String:
2819		return (*unsafeheader.String)(v.ptr).Data
2820	}
2821	panic(&ValueError{"reflect.Value.UnsafePointer", v.kind()})
2822}
2823
2824// StringHeader is the runtime representation of a string.
2825// It cannot be used safely or portably and its representation may
2826// change in a later release.
2827// Moreover, the Data field is not sufficient to guarantee the data
2828// it references will not be garbage collected, so programs must keep
2829// a separate, correctly typed pointer to the underlying data.
2830//
2831// Deprecated: Use unsafe.String or unsafe.StringData instead.
2832type StringHeader struct {
2833	Data uintptr
2834	Len  int
2835}
2836
2837// SliceHeader is the runtime representation of a slice.
2838// It cannot be used safely or portably and its representation may
2839// change in a later release.
2840// Moreover, the Data field is not sufficient to guarantee the data
2841// it references will not be garbage collected, so programs must keep
2842// a separate, correctly typed pointer to the underlying data.
2843//
2844// Deprecated: Use unsafe.Slice or unsafe.SliceData instead.
2845type SliceHeader struct {
2846	Data uintptr
2847	Len  int
2848	Cap  int
2849}
2850
2851func typesMustMatch(what string, t1, t2 Type) {
2852	if t1 != t2 {
2853		panic(what + ": " + t1.String() + " != " + t2.String())
2854	}
2855}
2856
2857// arrayAt returns the i-th element of p,
2858// an array whose elements are eltSize bytes wide.
2859// The array pointed at by p must have at least i+1 elements:
2860// it is invalid (but impossible to check here) to pass i >= len,
2861// because then the result will point outside the array.
2862// whySafe must explain why i < len. (Passing "i < len" is fine;
2863// the benefit is to surface this assumption at the call site.)
2864func arrayAt(p unsafe.Pointer, i int, eltSize uintptr, whySafe string) unsafe.Pointer {
2865	return add(p, uintptr(i)*eltSize, "i < len")
2866}
2867
2868// Grow increases the slice's capacity, if necessary, to guarantee space for
2869// another n elements. After Grow(n), at least n elements can be appended
2870// to the slice without another allocation.
2871//
2872// It panics if v's Kind is not a [Slice] or if n is negative or too large to
2873// allocate the memory.
2874func (v Value) Grow(n int) {
2875	v.mustBeAssignable()
2876	v.mustBe(Slice)
2877	v.grow(n)
2878}
2879
2880// grow is identical to Grow but does not check for assignability.
2881func (v Value) grow(n int) {
2882	p := (*unsafeheader.Slice)(v.ptr)
2883	switch {
2884	case n < 0:
2885		panic("reflect.Value.Grow: negative len")
2886	case p.Len+n < 0:
2887		panic("reflect.Value.Grow: slice overflow")
2888	case p.Len+n > p.Cap:
2889		t := v.typ().Elem()
2890		*p = growslice(t, *p, n)
2891	}
2892}
2893
2894// extendSlice extends a slice by n elements.
2895//
2896// Unlike Value.grow, which modifies the slice in place and
2897// does not change the length of the slice in place,
2898// extendSlice returns a new slice value with the length
2899// incremented by the number of specified elements.
2900func (v Value) extendSlice(n int) Value {
2901	v.mustBeExported()
2902	v.mustBe(Slice)
2903
2904	// Shallow copy the slice header to avoid mutating the source slice.
2905	sh := *(*unsafeheader.Slice)(v.ptr)
2906	s := &sh
2907	v.ptr = unsafe.Pointer(s)
2908	v.flag = flagIndir | flag(Slice) // equivalent flag to MakeSlice
2909
2910	v.grow(n) // fine to treat as assignable since we allocate a new slice header
2911	s.Len += n
2912	return v
2913}
2914
2915// Clear clears the contents of a map or zeros the contents of a slice.
2916//
2917// It panics if v's Kind is not [Map] or [Slice].
2918func (v Value) Clear() {
2919	switch v.Kind() {
2920	case Slice:
2921		sh := *(*unsafeheader.Slice)(v.ptr)
2922		st := (*sliceType)(unsafe.Pointer(v.typ()))
2923		typedarrayclear(st.Elem, sh.Data, sh.Len)
2924	case Map:
2925		mapclear(v.typ(), v.pointer())
2926	default:
2927		panic(&ValueError{"reflect.Value.Clear", v.Kind()})
2928	}
2929}
2930
2931// Append appends the values x to a slice s and returns the resulting slice.
2932// As in Go, each x's value must be assignable to the slice's element type.
2933func Append(s Value, x ...Value) Value {
2934	s.mustBe(Slice)
2935	n := s.Len()
2936	s = s.extendSlice(len(x))
2937	for i, v := range x {
2938		s.Index(n + i).Set(v)
2939	}
2940	return s
2941}
2942
2943// AppendSlice appends a slice t to a slice s and returns the resulting slice.
2944// The slices s and t must have the same element type.
2945func AppendSlice(s, t Value) Value {
2946	s.mustBe(Slice)
2947	t.mustBe(Slice)
2948	typesMustMatch("reflect.AppendSlice", s.Type().Elem(), t.Type().Elem())
2949	ns := s.Len()
2950	nt := t.Len()
2951	s = s.extendSlice(nt)
2952	Copy(s.Slice(ns, ns+nt), t)
2953	return s
2954}
2955
2956// Copy copies the contents of src into dst until either
2957// dst has been filled or src has been exhausted.
2958// It returns the number of elements copied.
2959// Dst and src each must have kind [Slice] or [Array], and
2960// dst and src must have the same element type.
2961//
2962// As a special case, src can have kind [String] if the element type of dst is kind [Uint8].
2963func Copy(dst, src Value) int {
2964	dk := dst.kind()
2965	if dk != Array && dk != Slice {
2966		panic(&ValueError{"reflect.Copy", dk})
2967	}
2968	if dk == Array {
2969		dst.mustBeAssignable()
2970	}
2971	dst.mustBeExported()
2972
2973	sk := src.kind()
2974	var stringCopy bool
2975	if sk != Array && sk != Slice {
2976		stringCopy = sk == String && dst.typ().Elem().Kind() == abi.Uint8
2977		if !stringCopy {
2978			panic(&ValueError{"reflect.Copy", sk})
2979		}
2980	}
2981	src.mustBeExported()
2982
2983	de := dst.typ().Elem()
2984	if !stringCopy {
2985		se := src.typ().Elem()
2986		typesMustMatch("reflect.Copy", toType(de), toType(se))
2987	}
2988
2989	var ds, ss unsafeheader.Slice
2990	if dk == Array {
2991		ds.Data = dst.ptr
2992		ds.Len = dst.Len()
2993		ds.Cap = ds.Len
2994	} else {
2995		ds = *(*unsafeheader.Slice)(dst.ptr)
2996	}
2997	if sk == Array {
2998		ss.Data = src.ptr
2999		ss.Len = src.Len()
3000		ss.Cap = ss.Len
3001	} else if sk == Slice {
3002		ss = *(*unsafeheader.Slice)(src.ptr)
3003	} else {
3004		sh := *(*unsafeheader.String)(src.ptr)
3005		ss.Data = sh.Data
3006		ss.Len = sh.Len
3007		ss.Cap = sh.Len
3008	}
3009
3010	return typedslicecopy(de.Common(), ds, ss)
3011}
3012
3013// A runtimeSelect is a single case passed to rselect.
3014// This must match ../runtime/select.go:/runtimeSelect
3015type runtimeSelect struct {
3016	dir SelectDir      // SelectSend, SelectRecv or SelectDefault
3017	typ *rtype         // channel type
3018	ch  unsafe.Pointer // channel
3019	val unsafe.Pointer // ptr to data (SendDir) or ptr to receive buffer (RecvDir)
3020}
3021
3022// rselect runs a select. It returns the index of the chosen case.
3023// If the case was a receive, val is filled in with the received value.
3024// The conventional OK bool indicates whether the receive corresponds
3025// to a sent value.
3026//
3027// rselect generally doesn't escape the runtimeSelect slice, except
3028// that for the send case the value to send needs to escape. We don't
3029// have a way to represent that in the function signature. So we handle
3030// that with a forced escape in function Select.
3031//
3032//go:noescape
3033func rselect([]runtimeSelect) (chosen int, recvOK bool)
3034
3035// A SelectDir describes the communication direction of a select case.
3036type SelectDir int
3037
3038// NOTE: These values must match ../runtime/select.go:/selectDir.
3039
3040const (
3041	_             SelectDir = iota
3042	SelectSend              // case Chan <- Send
3043	SelectRecv              // case <-Chan:
3044	SelectDefault           // default
3045)
3046
3047// A SelectCase describes a single case in a select operation.
3048// The kind of case depends on Dir, the communication direction.
3049//
3050// If Dir is SelectDefault, the case represents a default case.
3051// Chan and Send must be zero Values.
3052//
3053// If Dir is SelectSend, the case represents a send operation.
3054// Normally Chan's underlying value must be a channel, and Send's underlying value must be
3055// assignable to the channel's element type. As a special case, if Chan is a zero Value,
3056// then the case is ignored, and the field Send will also be ignored and may be either zero
3057// or non-zero.
3058//
3059// If Dir is [SelectRecv], the case represents a receive operation.
3060// Normally Chan's underlying value must be a channel and Send must be a zero Value.
3061// If Chan is a zero Value, then the case is ignored, but Send must still be a zero Value.
3062// When a receive operation is selected, the received Value is returned by Select.
3063type SelectCase struct {
3064	Dir  SelectDir // direction of case
3065	Chan Value     // channel to use (for send or receive)
3066	Send Value     // value to send (for send)
3067}
3068
3069// Select executes a select operation described by the list of cases.
3070// Like the Go select statement, it blocks until at least one of the cases
3071// can proceed, makes a uniform pseudo-random choice,
3072// and then executes that case. It returns the index of the chosen case
3073// and, if that case was a receive operation, the value received and a
3074// boolean indicating whether the value corresponds to a send on the channel
3075// (as opposed to a zero value received because the channel is closed).
3076// Select supports a maximum of 65536 cases.
3077func Select(cases []SelectCase) (chosen int, recv Value, recvOK bool) {
3078	if len(cases) > 65536 {
3079		panic("reflect.Select: too many cases (max 65536)")
3080	}
3081	// NOTE: Do not trust that caller is not modifying cases data underfoot.
3082	// The range is safe because the caller cannot modify our copy of the len
3083	// and each iteration makes its own copy of the value c.
3084	var runcases []runtimeSelect
3085	if len(cases) > 4 {
3086		// Slice is heap allocated due to runtime dependent capacity.
3087		runcases = make([]runtimeSelect, len(cases))
3088	} else {
3089		// Slice can be stack allocated due to constant capacity.
3090		runcases = make([]runtimeSelect, len(cases), 4)
3091	}
3092
3093	haveDefault := false
3094	for i, c := range cases {
3095		rc := &runcases[i]
3096		rc.dir = c.Dir
3097		switch c.Dir {
3098		default:
3099			panic("reflect.Select: invalid Dir")
3100
3101		case SelectDefault: // default
3102			if haveDefault {
3103				panic("reflect.Select: multiple default cases")
3104			}
3105			haveDefault = true
3106			if c.Chan.IsValid() {
3107				panic("reflect.Select: default case has Chan value")
3108			}
3109			if c.Send.IsValid() {
3110				panic("reflect.Select: default case has Send value")
3111			}
3112
3113		case SelectSend:
3114			ch := c.Chan
3115			if !ch.IsValid() {
3116				break
3117			}
3118			ch.mustBe(Chan)
3119			ch.mustBeExported()
3120			tt := (*chanType)(unsafe.Pointer(ch.typ()))
3121			if ChanDir(tt.Dir)&SendDir == 0 {
3122				panic("reflect.Select: SendDir case using recv-only channel")
3123			}
3124			rc.ch = ch.pointer()
3125			rc.typ = toRType(&tt.Type)
3126			v := c.Send
3127			if !v.IsValid() {
3128				panic("reflect.Select: SendDir case missing Send value")
3129			}
3130			v.mustBeExported()
3131			v = v.assignTo("reflect.Select", tt.Elem, nil)
3132			if v.flag&flagIndir != 0 {
3133				rc.val = v.ptr
3134			} else {
3135				rc.val = unsafe.Pointer(&v.ptr)
3136			}
3137			// The value to send needs to escape. See the comment at rselect for
3138			// why we need forced escape.
3139			escapes(rc.val)
3140
3141		case SelectRecv:
3142			if c.Send.IsValid() {
3143				panic("reflect.Select: RecvDir case has Send value")
3144			}
3145			ch := c.Chan
3146			if !ch.IsValid() {
3147				break
3148			}
3149			ch.mustBe(Chan)
3150			ch.mustBeExported()
3151			tt := (*chanType)(unsafe.Pointer(ch.typ()))
3152			if ChanDir(tt.Dir)&RecvDir == 0 {
3153				panic("reflect.Select: RecvDir case using send-only channel")
3154			}
3155			rc.ch = ch.pointer()
3156			rc.typ = toRType(&tt.Type)
3157			rc.val = unsafe_New(tt.Elem)
3158		}
3159	}
3160
3161	chosen, recvOK = rselect(runcases)
3162	if runcases[chosen].dir == SelectRecv {
3163		tt := (*chanType)(unsafe.Pointer(runcases[chosen].typ))
3164		t := tt.Elem
3165		p := runcases[chosen].val
3166		fl := flag(t.Kind())
3167		if t.IfaceIndir() {
3168			recv = Value{t, p, fl | flagIndir}
3169		} else {
3170			recv = Value{t, *(*unsafe.Pointer)(p), fl}
3171		}
3172	}
3173	return chosen, recv, recvOK
3174}
3175
3176/*
3177 * constructors
3178 */
3179
3180// implemented in package runtime
3181
3182//go:noescape
3183func unsafe_New(*abi.Type) unsafe.Pointer
3184
3185//go:noescape
3186func unsafe_NewArray(*abi.Type, int) unsafe.Pointer
3187
3188// MakeSlice creates a new zero-initialized slice value
3189// for the specified slice type, length, and capacity.
3190func MakeSlice(typ Type, len, cap int) Value {
3191	if typ.Kind() != Slice {
3192		panic("reflect.MakeSlice of non-slice type")
3193	}
3194	if len < 0 {
3195		panic("reflect.MakeSlice: negative len")
3196	}
3197	if cap < 0 {
3198		panic("reflect.MakeSlice: negative cap")
3199	}
3200	if len > cap {
3201		panic("reflect.MakeSlice: len > cap")
3202	}
3203
3204	s := unsafeheader.Slice{Data: unsafe_NewArray(&(typ.Elem().(*rtype).t), cap), Len: len, Cap: cap}
3205	return Value{&typ.(*rtype).t, unsafe.Pointer(&s), flagIndir | flag(Slice)}
3206}
3207
3208// SliceAt returns a [Value] representing a slice whose underlying
3209// data starts at p, with length and capacity equal to n.
3210//
3211// This is like [unsafe.Slice].
3212func SliceAt(typ Type, p unsafe.Pointer, n int) Value {
3213	unsafeslice(typ.common(), p, n)
3214	s := unsafeheader.Slice{Data: p, Len: n, Cap: n}
3215	return Value{SliceOf(typ).common(), unsafe.Pointer(&s), flagIndir | flag(Slice)}
3216}
3217
3218// MakeChan creates a new channel with the specified type and buffer size.
3219func MakeChan(typ Type, buffer int) Value {
3220	if typ.Kind() != Chan {
3221		panic("reflect.MakeChan of non-chan type")
3222	}
3223	if buffer < 0 {
3224		panic("reflect.MakeChan: negative buffer size")
3225	}
3226	if typ.ChanDir() != BothDir {
3227		panic("reflect.MakeChan: unidirectional channel type")
3228	}
3229	t := typ.common()
3230	ch := makechan(t, buffer)
3231	return Value{t, ch, flag(Chan)}
3232}
3233
3234// MakeMap creates a new map with the specified type.
3235func MakeMap(typ Type) Value {
3236	return MakeMapWithSize(typ, 0)
3237}
3238
3239// MakeMapWithSize creates a new map with the specified type
3240// and initial space for approximately n elements.
3241func MakeMapWithSize(typ Type, n int) Value {
3242	if typ.Kind() != Map {
3243		panic("reflect.MakeMapWithSize of non-map type")
3244	}
3245	t := typ.common()
3246	m := makemap(t, n)
3247	return Value{t, m, flag(Map)}
3248}
3249
3250// Indirect returns the value that v points to.
3251// If v is a nil pointer, Indirect returns a zero Value.
3252// If v is not a pointer, Indirect returns v.
3253func Indirect(v Value) Value {
3254	if v.Kind() != Pointer {
3255		return v
3256	}
3257	return v.Elem()
3258}
3259
3260// ValueOf returns a new Value initialized to the concrete value
3261// stored in the interface i. ValueOf(nil) returns the zero Value.
3262func ValueOf(i any) Value {
3263	if i == nil {
3264		return Value{}
3265	}
3266	return unpackEface(i)
3267}
3268
3269// Zero returns a Value representing the zero value for the specified type.
3270// The result is different from the zero value of the Value struct,
3271// which represents no value at all.
3272// For example, Zero(TypeOf(42)) returns a Value with Kind [Int] and value 0.
3273// The returned value is neither addressable nor settable.
3274func Zero(typ Type) Value {
3275	if typ == nil {
3276		panic("reflect: Zero(nil)")
3277	}
3278	t := &typ.(*rtype).t
3279	fl := flag(t.Kind())
3280	if t.IfaceIndir() {
3281		var p unsafe.Pointer
3282		if t.Size() <= abi.ZeroValSize {
3283			p = unsafe.Pointer(&zeroVal[0])
3284		} else {
3285			p = unsafe_New(t)
3286		}
3287		return Value{t, p, fl | flagIndir}
3288	}
3289	return Value{t, nil, fl}
3290}
3291
3292//go:linkname zeroVal runtime.zeroVal
3293var zeroVal [abi.ZeroValSize]byte
3294
3295// New returns a Value representing a pointer to a new zero value
3296// for the specified type. That is, the returned Value's Type is [PointerTo](typ).
3297func New(typ Type) Value {
3298	if typ == nil {
3299		panic("reflect: New(nil)")
3300	}
3301	t := &typ.(*rtype).t
3302	pt := ptrTo(t)
3303	if pt.IfaceIndir() {
3304		// This is a pointer to a not-in-heap type.
3305		panic("reflect: New of type that may not be allocated in heap (possibly undefined cgo C type)")
3306	}
3307	ptr := unsafe_New(t)
3308	fl := flag(Pointer)
3309	return Value{pt, ptr, fl}
3310}
3311
3312// NewAt returns a Value representing a pointer to a value of the
3313// specified type, using p as that pointer.
3314func NewAt(typ Type, p unsafe.Pointer) Value {
3315	fl := flag(Pointer)
3316	t := typ.(*rtype)
3317	return Value{t.ptrTo(), p, fl}
3318}
3319
3320// assignTo returns a value v that can be assigned directly to dst.
3321// It panics if v is not assignable to dst.
3322// For a conversion to an interface type, target, if not nil,
3323// is a suggested scratch space to use.
3324// target must be initialized memory (or nil).
3325func (v Value) assignTo(context string, dst *abi.Type, target unsafe.Pointer) Value {
3326	if v.flag&flagMethod != 0 {
3327		v = makeMethodValue(context, v)
3328	}
3329
3330	switch {
3331	case directlyAssignable(dst, v.typ()):
3332		// Overwrite type so that they match.
3333		// Same memory layout, so no harm done.
3334		fl := v.flag&(flagAddr|flagIndir) | v.flag.ro()
3335		fl |= flag(dst.Kind())
3336		return Value{dst, v.ptr, fl}
3337
3338	case implements(dst, v.typ()):
3339		if v.Kind() == Interface && v.IsNil() {
3340			// A nil ReadWriter passed to nil Reader is OK,
3341			// but using ifaceE2I below will panic.
3342			// Avoid the panic by returning a nil dst (e.g., Reader) explicitly.
3343			return Value{dst, nil, flag(Interface)}
3344		}
3345		x := valueInterface(v, false)
3346		if target == nil {
3347			target = unsafe_New(dst)
3348		}
3349		if dst.NumMethod() == 0 {
3350			*(*any)(target) = x
3351		} else {
3352			ifaceE2I(dst, x, target)
3353		}
3354		return Value{dst, target, flagIndir | flag(Interface)}
3355	}
3356
3357	// Failed.
3358	panic(context + ": value of type " + stringFor(v.typ()) + " is not assignable to type " + stringFor(dst))
3359}
3360
3361// Convert returns the value v converted to type t.
3362// If the usual Go conversion rules do not allow conversion
3363// of the value v to type t, or if converting v to type t panics, Convert panics.
3364func (v Value) Convert(t Type) Value {
3365	if v.flag&flagMethod != 0 {
3366		v = makeMethodValue("Convert", v)
3367	}
3368	op := convertOp(t.common(), v.typ())
3369	if op == nil {
3370		panic("reflect.Value.Convert: value of type " + stringFor(v.typ()) + " cannot be converted to type " + t.String())
3371	}
3372	return op(v, t)
3373}
3374
3375// CanConvert reports whether the value v can be converted to type t.
3376// If v.CanConvert(t) returns true then v.Convert(t) will not panic.
3377func (v Value) CanConvert(t Type) bool {
3378	vt := v.Type()
3379	if !vt.ConvertibleTo(t) {
3380		return false
3381	}
3382	// Converting from slice to array or to pointer-to-array can panic
3383	// depending on the value.
3384	switch {
3385	case vt.Kind() == Slice && t.Kind() == Array:
3386		if t.Len() > v.Len() {
3387			return false
3388		}
3389	case vt.Kind() == Slice && t.Kind() == Pointer && t.Elem().Kind() == Array:
3390		n := t.Elem().Len()
3391		if n > v.Len() {
3392			return false
3393		}
3394	}
3395	return true
3396}
3397
3398// Comparable reports whether the value v is comparable.
3399// If the type of v is an interface, this checks the dynamic type.
3400// If this reports true then v.Interface() == x will not panic for any x,
3401// nor will v.Equal(u) for any Value u.
3402func (v Value) Comparable() bool {
3403	k := v.Kind()
3404	switch k {
3405	case Invalid:
3406		return false
3407
3408	case Array:
3409		switch v.Type().Elem().Kind() {
3410		case Interface, Array, Struct:
3411			for i := 0; i < v.Type().Len(); i++ {
3412				if !v.Index(i).Comparable() {
3413					return false
3414				}
3415			}
3416			return true
3417		}
3418		return v.Type().Comparable()
3419
3420	case Interface:
3421		return v.IsNil() || v.Elem().Comparable()
3422
3423	case Struct:
3424		for i := 0; i < v.NumField(); i++ {
3425			if !v.Field(i).Comparable() {
3426				return false
3427			}
3428		}
3429		return true
3430
3431	default:
3432		return v.Type().Comparable()
3433	}
3434}
3435
3436// Equal reports true if v is equal to u.
3437// For two invalid values, Equal will report true.
3438// For an interface value, Equal will compare the value within the interface.
3439// Otherwise, If the values have different types, Equal will report false.
3440// Otherwise, for arrays and structs Equal will compare each element in order,
3441// and report false if it finds non-equal elements.
3442// During all comparisons, if values of the same type are compared,
3443// and the type is not comparable, Equal will panic.
3444func (v Value) Equal(u Value) bool {
3445	if v.Kind() == Interface {
3446		v = v.Elem()
3447	}
3448	if u.Kind() == Interface {
3449		u = u.Elem()
3450	}
3451
3452	if !v.IsValid() || !u.IsValid() {
3453		return v.IsValid() == u.IsValid()
3454	}
3455
3456	if v.Kind() != u.Kind() || v.Type() != u.Type() {
3457		return false
3458	}
3459
3460	// Handle each Kind directly rather than calling valueInterface
3461	// to avoid allocating.
3462	switch v.Kind() {
3463	default:
3464		panic("reflect.Value.Equal: invalid Kind")
3465	case Bool:
3466		return v.Bool() == u.Bool()
3467	case Int, Int8, Int16, Int32, Int64:
3468		return v.Int() == u.Int()
3469	case Uint, Uint8, Uint16, Uint32, Uint64, Uintptr:
3470		return v.Uint() == u.Uint()
3471	case Float32, Float64:
3472		return v.Float() == u.Float()
3473	case Complex64, Complex128:
3474		return v.Complex() == u.Complex()
3475	case String:
3476		return v.String() == u.String()
3477	case Chan, Pointer, UnsafePointer:
3478		return v.Pointer() == u.Pointer()
3479	case Array:
3480		// u and v have the same type so they have the same length
3481		vl := v.Len()
3482		if vl == 0 {
3483			// panic on [0]func()
3484			if !v.Type().Elem().Comparable() {
3485				break
3486			}
3487			return true
3488		}
3489		for i := 0; i < vl; i++ {
3490			if !v.Index(i).Equal(u.Index(i)) {
3491				return false
3492			}
3493		}
3494		return true
3495	case Struct:
3496		// u and v have the same type so they have the same fields
3497		nf := v.NumField()
3498		for i := 0; i < nf; i++ {
3499			if !v.Field(i).Equal(u.Field(i)) {
3500				return false
3501			}
3502		}
3503		return true
3504	case Func, Map, Slice:
3505		break
3506	}
3507	panic("reflect.Value.Equal: values of type " + v.Type().String() + " are not comparable")
3508}
3509
3510// convertOp returns the function to convert a value of type src
3511// to a value of type dst. If the conversion is illegal, convertOp returns nil.
3512func convertOp(dst, src *abi.Type) func(Value, Type) Value {
3513	switch Kind(src.Kind()) {
3514	case Int, Int8, Int16, Int32, Int64:
3515		switch Kind(dst.Kind()) {
3516		case Int, Int8, Int16, Int32, Int64, Uint, Uint8, Uint16, Uint32, Uint64, Uintptr:
3517			return cvtInt
3518		case Float32, Float64:
3519			return cvtIntFloat
3520		case String:
3521			return cvtIntString
3522		}
3523
3524	case Uint, Uint8, Uint16, Uint32, Uint64, Uintptr:
3525		switch Kind(dst.Kind()) {
3526		case Int, Int8, Int16, Int32, Int64, Uint, Uint8, Uint16, Uint32, Uint64, Uintptr:
3527			return cvtUint
3528		case Float32, Float64:
3529			return cvtUintFloat
3530		case String:
3531			return cvtUintString
3532		}
3533
3534	case Float32, Float64:
3535		switch Kind(dst.Kind()) {
3536		case Int, Int8, Int16, Int32, Int64:
3537			return cvtFloatInt
3538		case Uint, Uint8, Uint16, Uint32, Uint64, Uintptr:
3539			return cvtFloatUint
3540		case Float32, Float64:
3541			return cvtFloat
3542		}
3543
3544	case Complex64, Complex128:
3545		switch Kind(dst.Kind()) {
3546		case Complex64, Complex128:
3547			return cvtComplex
3548		}
3549
3550	case String:
3551		if dst.Kind() == abi.Slice && pkgPathFor(dst.Elem()) == "" {
3552			switch Kind(dst.Elem().Kind()) {
3553			case Uint8:
3554				return cvtStringBytes
3555			case Int32:
3556				return cvtStringRunes
3557			}
3558		}
3559
3560	case Slice:
3561		if dst.Kind() == abi.String && pkgPathFor(src.Elem()) == "" {
3562			switch Kind(src.Elem().Kind()) {
3563			case Uint8:
3564				return cvtBytesString
3565			case Int32:
3566				return cvtRunesString
3567			}
3568		}
3569		// "x is a slice, T is a pointer-to-array type,
3570		// and the slice and array types have identical element types."
3571		if dst.Kind() == abi.Pointer && dst.Elem().Kind() == abi.Array && src.Elem() == dst.Elem().Elem() {
3572			return cvtSliceArrayPtr
3573		}
3574		// "x is a slice, T is an array type,
3575		// and the slice and array types have identical element types."
3576		if dst.Kind() == abi.Array && src.Elem() == dst.Elem() {
3577			return cvtSliceArray
3578		}
3579
3580	case Chan:
3581		if dst.Kind() == abi.Chan && specialChannelAssignability(dst, src) {
3582			return cvtDirect
3583		}
3584	}
3585
3586	// dst and src have same underlying type.
3587	if haveIdenticalUnderlyingType(dst, src, false) {
3588		return cvtDirect
3589	}
3590
3591	// dst and src are non-defined pointer types with same underlying base type.
3592	if dst.Kind() == abi.Pointer && nameFor(dst) == "" &&
3593		src.Kind() == abi.Pointer && nameFor(src) == "" &&
3594		haveIdenticalUnderlyingType(elem(dst), elem(src), false) {
3595		return cvtDirect
3596	}
3597
3598	if implements(dst, src) {
3599		if src.Kind() == abi.Interface {
3600			return cvtI2I
3601		}
3602		return cvtT2I
3603	}
3604
3605	return nil
3606}
3607
3608// makeInt returns a Value of type t equal to bits (possibly truncated),
3609// where t is a signed or unsigned int type.
3610func makeInt(f flag, bits uint64, t Type) Value {
3611	typ := t.common()
3612	ptr := unsafe_New(typ)
3613	switch typ.Size() {
3614	case 1:
3615		*(*uint8)(ptr) = uint8(bits)
3616	case 2:
3617		*(*uint16)(ptr) = uint16(bits)
3618	case 4:
3619		*(*uint32)(ptr) = uint32(bits)
3620	case 8:
3621		*(*uint64)(ptr) = bits
3622	}
3623	return Value{typ, ptr, f | flagIndir | flag(typ.Kind())}
3624}
3625
3626// makeFloat returns a Value of type t equal to v (possibly truncated to float32),
3627// where t is a float32 or float64 type.
3628func makeFloat(f flag, v float64, t Type) Value {
3629	typ := t.common()
3630	ptr := unsafe_New(typ)
3631	switch typ.Size() {
3632	case 4:
3633		*(*float32)(ptr) = float32(v)
3634	case 8:
3635		*(*float64)(ptr) = v
3636	}
3637	return Value{typ, ptr, f | flagIndir | flag(typ.Kind())}
3638}
3639
3640// makeFloat32 returns a Value of type t equal to v, where t is a float32 type.
3641func makeFloat32(f flag, v float32, t Type) Value {
3642	typ := t.common()
3643	ptr := unsafe_New(typ)
3644	*(*float32)(ptr) = v
3645	return Value{typ, ptr, f | flagIndir | flag(typ.Kind())}
3646}
3647
3648// makeComplex returns a Value of type t equal to v (possibly truncated to complex64),
3649// where t is a complex64 or complex128 type.
3650func makeComplex(f flag, v complex128, t Type) Value {
3651	typ := t.common()
3652	ptr := unsafe_New(typ)
3653	switch typ.Size() {
3654	case 8:
3655		*(*complex64)(ptr) = complex64(v)
3656	case 16:
3657		*(*complex128)(ptr) = v
3658	}
3659	return Value{typ, ptr, f | flagIndir | flag(typ.Kind())}
3660}
3661
3662func makeString(f flag, v string, t Type) Value {
3663	ret := New(t).Elem()
3664	ret.SetString(v)
3665	ret.flag = ret.flag&^flagAddr | f
3666	return ret
3667}
3668
3669func makeBytes(f flag, v []byte, t Type) Value {
3670	ret := New(t).Elem()
3671	ret.SetBytes(v)
3672	ret.flag = ret.flag&^flagAddr | f
3673	return ret
3674}
3675
3676func makeRunes(f flag, v []rune, t Type) Value {
3677	ret := New(t).Elem()
3678	ret.setRunes(v)
3679	ret.flag = ret.flag&^flagAddr | f
3680	return ret
3681}
3682
3683// These conversion functions are returned by convertOp
3684// for classes of conversions. For example, the first function, cvtInt,
3685// takes any value v of signed int type and returns the value converted
3686// to type t, where t is any signed or unsigned int type.
3687
3688// convertOp: intXX -> [u]intXX
3689func cvtInt(v Value, t Type) Value {
3690	return makeInt(v.flag.ro(), uint64(v.Int()), t)
3691}
3692
3693// convertOp: uintXX -> [u]intXX
3694func cvtUint(v Value, t Type) Value {
3695	return makeInt(v.flag.ro(), v.Uint(), t)
3696}
3697
3698// convertOp: floatXX -> intXX
3699func cvtFloatInt(v Value, t Type) Value {
3700	return makeInt(v.flag.ro(), uint64(int64(v.Float())), t)
3701}
3702
3703// convertOp: floatXX -> uintXX
3704func cvtFloatUint(v Value, t Type) Value {
3705	return makeInt(v.flag.ro(), uint64(v.Float()), t)
3706}
3707
3708// convertOp: intXX -> floatXX
3709func cvtIntFloat(v Value, t Type) Value {
3710	return makeFloat(v.flag.ro(), float64(v.Int()), t)
3711}
3712
3713// convertOp: uintXX -> floatXX
3714func cvtUintFloat(v Value, t Type) Value {
3715	return makeFloat(v.flag.ro(), float64(v.Uint()), t)
3716}
3717
3718// convertOp: floatXX -> floatXX
3719func cvtFloat(v Value, t Type) Value {
3720	if v.Type().Kind() == Float32 && t.Kind() == Float32 {
3721		// Don't do any conversion if both types have underlying type float32.
3722		// This avoids converting to float64 and back, which will
3723		// convert a signaling NaN to a quiet NaN. See issue 36400.
3724		return makeFloat32(v.flag.ro(), *(*float32)(v.ptr), t)
3725	}
3726	return makeFloat(v.flag.ro(), v.Float(), t)
3727}
3728
3729// convertOp: complexXX -> complexXX
3730func cvtComplex(v Value, t Type) Value {
3731	return makeComplex(v.flag.ro(), v.Complex(), t)
3732}
3733
3734// convertOp: intXX -> string
3735func cvtIntString(v Value, t Type) Value {
3736	s := "\uFFFD"
3737	if x := v.Int(); int64(rune(x)) == x {
3738		s = string(rune(x))
3739	}
3740	return makeString(v.flag.ro(), s, t)
3741}
3742
3743// convertOp: uintXX -> string
3744func cvtUintString(v Value, t Type) Value {
3745	s := "\uFFFD"
3746	if x := v.Uint(); uint64(rune(x)) == x {
3747		s = string(rune(x))
3748	}
3749	return makeString(v.flag.ro(), s, t)
3750}
3751
3752// convertOp: []byte -> string
3753func cvtBytesString(v Value, t Type) Value {
3754	return makeString(v.flag.ro(), string(v.Bytes()), t)
3755}
3756
3757// convertOp: string -> []byte
3758func cvtStringBytes(v Value, t Type) Value {
3759	return makeBytes(v.flag.ro(), []byte(v.String()), t)
3760}
3761
3762// convertOp: []rune -> string
3763func cvtRunesString(v Value, t Type) Value {
3764	return makeString(v.flag.ro(), string(v.runes()), t)
3765}
3766
3767// convertOp: string -> []rune
3768func cvtStringRunes(v Value, t Type) Value {
3769	return makeRunes(v.flag.ro(), []rune(v.String()), t)
3770}
3771
3772// convertOp: []T -> *[N]T
3773func cvtSliceArrayPtr(v Value, t Type) Value {
3774	n := t.Elem().Len()
3775	if n > v.Len() {
3776		panic("reflect: cannot convert slice with length " + itoa.Itoa(v.Len()) + " to pointer to array with length " + itoa.Itoa(n))
3777	}
3778	h := (*unsafeheader.Slice)(v.ptr)
3779	return Value{t.common(), h.Data, v.flag&^(flagIndir|flagAddr|flagKindMask) | flag(Pointer)}
3780}
3781
3782// convertOp: []T -> [N]T
3783func cvtSliceArray(v Value, t Type) Value {
3784	n := t.Len()
3785	if n > v.Len() {
3786		panic("reflect: cannot convert slice with length " + itoa.Itoa(v.Len()) + " to array with length " + itoa.Itoa(n))
3787	}
3788	h := (*unsafeheader.Slice)(v.ptr)
3789	typ := t.common()
3790	ptr := h.Data
3791	c := unsafe_New(typ)
3792	typedmemmove(typ, c, ptr)
3793	ptr = c
3794
3795	return Value{typ, ptr, v.flag&^(flagAddr|flagKindMask) | flag(Array)}
3796}
3797
3798// convertOp: direct copy
3799func cvtDirect(v Value, typ Type) Value {
3800	f := v.flag
3801	t := typ.common()
3802	ptr := v.ptr
3803	if f&flagAddr != 0 {
3804		// indirect, mutable word - make a copy
3805		c := unsafe_New(t)
3806		typedmemmove(t, c, ptr)
3807		ptr = c
3808		f &^= flagAddr
3809	}
3810	return Value{t, ptr, v.flag.ro() | f} // v.flag.ro()|f == f?
3811}
3812
3813// convertOp: concrete -> interface
3814func cvtT2I(v Value, typ Type) Value {
3815	target := unsafe_New(typ.common())
3816	x := valueInterface(v, false)
3817	if typ.NumMethod() == 0 {
3818		*(*any)(target) = x
3819	} else {
3820		ifaceE2I(typ.common(), x, target)
3821	}
3822	return Value{typ.common(), target, v.flag.ro() | flagIndir | flag(Interface)}
3823}
3824
3825// convertOp: interface -> interface
3826func cvtI2I(v Value, typ Type) Value {
3827	if v.IsNil() {
3828		ret := Zero(typ)
3829		ret.flag |= v.flag.ro()
3830		return ret
3831	}
3832	return cvtT2I(v.Elem(), typ)
3833}
3834
3835// implemented in ../runtime
3836//
3837//go:noescape
3838func chancap(ch unsafe.Pointer) int
3839
3840//go:noescape
3841func chanclose(ch unsafe.Pointer)
3842
3843//go:noescape
3844func chanlen(ch unsafe.Pointer) int
3845
3846// Note: some of the noescape annotations below are technically a lie,
3847// but safe in the context of this package. Functions like chansend0
3848// and mapassign0 don't escape the referent, but may escape anything
3849// the referent points to (they do shallow copies of the referent).
3850// We add a 0 to their names and wrap them in functions with the
3851// proper escape behavior.
3852
3853//go:noescape
3854func chanrecv(ch unsafe.Pointer, nb bool, val unsafe.Pointer) (selected, received bool)
3855
3856//go:noescape
3857func chansend0(ch unsafe.Pointer, val unsafe.Pointer, nb bool) bool
3858
3859func chansend(ch unsafe.Pointer, val unsafe.Pointer, nb bool) bool {
3860	contentEscapes(val)
3861	return chansend0(ch, val, nb)
3862}
3863
3864func makechan(typ *abi.Type, size int) (ch unsafe.Pointer)
3865func makemap(t *abi.Type, cap int) (m unsafe.Pointer)
3866
3867//go:noescape
3868func mapaccess(t *abi.Type, m unsafe.Pointer, key unsafe.Pointer) (val unsafe.Pointer)
3869
3870//go:noescape
3871func mapaccess_faststr(t *abi.Type, m unsafe.Pointer, key string) (val unsafe.Pointer)
3872
3873//go:noescape
3874func mapassign0(t *abi.Type, m unsafe.Pointer, key, val unsafe.Pointer)
3875
3876// mapassign should be an internal detail,
3877// but widely used packages access it using linkname.
3878// Notable members of the hall of shame include:
3879//   - github.com/modern-go/reflect2
3880//   - github.com/goccy/go-json
3881//
3882// Do not remove or change the type signature.
3883// See go.dev/issue/67401.
3884//
3885//go:linkname mapassign
3886func mapassign(t *abi.Type, m unsafe.Pointer, key, val unsafe.Pointer) {
3887	contentEscapes(key)
3888	contentEscapes(val)
3889	mapassign0(t, m, key, val)
3890}
3891
3892//go:noescape
3893func mapassign_faststr0(t *abi.Type, m unsafe.Pointer, key string, val unsafe.Pointer)
3894
3895func mapassign_faststr(t *abi.Type, m unsafe.Pointer, key string, val unsafe.Pointer) {
3896	contentEscapes((*unsafeheader.String)(unsafe.Pointer(&key)).Data)
3897	contentEscapes(val)
3898	mapassign_faststr0(t, m, key, val)
3899}
3900
3901//go:noescape
3902func mapdelete(t *abi.Type, m unsafe.Pointer, key unsafe.Pointer)
3903
3904//go:noescape
3905func mapdelete_faststr(t *abi.Type, m unsafe.Pointer, key string)
3906
3907//go:noescape
3908func mapiterinit(t *abi.Type, m unsafe.Pointer, it *hiter)
3909
3910//go:noescape
3911func mapiterkey(it *hiter) (key unsafe.Pointer)
3912
3913//go:noescape
3914func mapiterelem(it *hiter) (elem unsafe.Pointer)
3915
3916//go:noescape
3917func mapiternext(it *hiter)
3918
3919//go:noescape
3920func maplen(m unsafe.Pointer) int
3921
3922func mapclear(t *abi.Type, m unsafe.Pointer)
3923
3924// call calls fn with "stackArgsSize" bytes of stack arguments laid out
3925// at stackArgs and register arguments laid out in regArgs. frameSize is
3926// the total amount of stack space that will be reserved by call, so this
3927// should include enough space to spill register arguments to the stack in
3928// case of preemption.
3929//
3930// After fn returns, call copies stackArgsSize-stackRetOffset result bytes
3931// back into stackArgs+stackRetOffset before returning, for any return
3932// values passed on the stack. Register-based return values will be found
3933// in the same regArgs structure.
3934//
3935// regArgs must also be prepared with an appropriate ReturnIsPtr bitmap
3936// indicating which registers will contain pointer-valued return values. The
3937// purpose of this bitmap is to keep pointers visible to the GC between
3938// returning from reflectcall and actually using them.
3939//
3940// If copying result bytes back from the stack, the caller must pass the
3941// argument frame type as stackArgsType, so that call can execute appropriate
3942// write barriers during the copy.
3943//
3944// Arguments passed through to call do not escape. The type is used only in a
3945// very limited callee of call, the stackArgs are copied, and regArgs is only
3946// used in the call frame.
3947//
3948//go:noescape
3949//go:linkname call runtime.reflectcall
3950func call(stackArgsType *abi.Type, f, stackArgs unsafe.Pointer, stackArgsSize, stackRetOffset, frameSize uint32, regArgs *abi.RegArgs)
3951
3952func ifaceE2I(t *abi.Type, src any, dst unsafe.Pointer)
3953
3954// memmove copies size bytes to dst from src. No write barriers are used.
3955//
3956//go:noescape
3957func memmove(dst, src unsafe.Pointer, size uintptr)
3958
3959// typedmemmove copies a value of type t to dst from src.
3960//
3961//go:noescape
3962func typedmemmove(t *abi.Type, dst, src unsafe.Pointer)
3963
3964// typedmemclr zeros the value at ptr of type t.
3965//
3966//go:noescape
3967func typedmemclr(t *abi.Type, ptr unsafe.Pointer)
3968
3969// typedmemclrpartial is like typedmemclr but assumes that
3970// dst points off bytes into the value and only clears size bytes.
3971//
3972//go:noescape
3973func typedmemclrpartial(t *abi.Type, ptr unsafe.Pointer, off, size uintptr)
3974
3975// typedslicecopy copies a slice of elemType values from src to dst,
3976// returning the number of elements copied.
3977//
3978//go:noescape
3979func typedslicecopy(t *abi.Type, dst, src unsafeheader.Slice) int
3980
3981// typedarrayclear zeroes the value at ptr of an array of elemType,
3982// only clears len elem.
3983//
3984//go:noescape
3985func typedarrayclear(elemType *abi.Type, ptr unsafe.Pointer, len int)
3986
3987//go:noescape
3988func typehash(t *abi.Type, p unsafe.Pointer, h uintptr) uintptr
3989
3990func verifyNotInHeapPtr(p uintptr) bool
3991
3992//go:noescape
3993func growslice(t *abi.Type, old unsafeheader.Slice, num int) unsafeheader.Slice
3994
3995//go:noescape
3996func unsafeslice(t *abi.Type, ptr unsafe.Pointer, len int)
3997
3998// Dummy annotation marking that the value x escapes,
3999// for use in cases where the reflect code is so clever that
4000// the compiler cannot follow.
4001func escapes(x any) {
4002	if dummy.b {
4003		dummy.x = x
4004	}
4005}
4006
4007var dummy struct {
4008	b bool
4009	x any
4010}
4011
4012// Dummy annotation marking that the content of value x
4013// escapes (i.e. modeling roughly heap=*x),
4014// for use in cases where the reflect code is so clever that
4015// the compiler cannot follow.
4016func contentEscapes(x unsafe.Pointer) {
4017	if dummy.b {
4018		escapes(*(*any)(x)) // the dereference may not always be safe, but never executed
4019	}
4020}
4021
4022// This is just a wrapper around abi.NoEscape. The inlining heuristics are
4023// finnicky and for whatever reason treat the local call to noescape as much
4024// lower cost with respect to the inliner budget. (That is, replacing calls to
4025// noescape with abi.NoEscape will cause inlining tests to fail.)
4026//
4027//go:nosplit
4028func noescape(p unsafe.Pointer) unsafe.Pointer {
4029	return abi.NoEscape(p)
4030}
4031