1// Copyright 2011 The Go Authors. All rights reserved. 2// Use of this source code is governed by a BSD-style 3// license that can be found in the LICENSE file. 4 5package runtime_test 6 7import ( 8 "fmt" 9 "math/bits" 10 "math/rand" 11 "os" 12 "reflect" 13 "runtime" 14 "runtime/debug" 15 "slices" 16 "strings" 17 "sync" 18 "sync/atomic" 19 "testing" 20 "time" 21 "unsafe" 22) 23 24func TestGcSys(t *testing.T) { 25 t.Skip("skipping known-flaky test; golang.org/issue/37331") 26 if os.Getenv("GOGC") == "off" { 27 t.Skip("skipping test; GOGC=off in environment") 28 } 29 got := runTestProg(t, "testprog", "GCSys") 30 want := "OK\n" 31 if got != want { 32 t.Fatalf("expected %q, but got %q", want, got) 33 } 34} 35 36func TestGcDeepNesting(t *testing.T) { 37 type T [2][2][2][2][2][2][2][2][2][2]*int 38 a := new(T) 39 40 // Prevent the compiler from applying escape analysis. 41 // This makes sure new(T) is allocated on heap, not on the stack. 42 t.Logf("%p", a) 43 44 a[0][0][0][0][0][0][0][0][0][0] = new(int) 45 *a[0][0][0][0][0][0][0][0][0][0] = 13 46 runtime.GC() 47 if *a[0][0][0][0][0][0][0][0][0][0] != 13 { 48 t.Fail() 49 } 50} 51 52func TestGcMapIndirection(t *testing.T) { 53 defer debug.SetGCPercent(debug.SetGCPercent(1)) 54 runtime.GC() 55 type T struct { 56 a [256]int 57 } 58 m := make(map[T]T) 59 for i := 0; i < 2000; i++ { 60 var a T 61 a.a[0] = i 62 m[a] = T{} 63 } 64} 65 66func TestGcArraySlice(t *testing.T) { 67 type X struct { 68 buf [1]byte 69 nextbuf []byte 70 next *X 71 } 72 var head *X 73 for i := 0; i < 10; i++ { 74 p := &X{} 75 p.buf[0] = 42 76 p.next = head 77 if head != nil { 78 p.nextbuf = head.buf[:] 79 } 80 head = p 81 runtime.GC() 82 } 83 for p := head; p != nil; p = p.next { 84 if p.buf[0] != 42 { 85 t.Fatal("corrupted heap") 86 } 87 } 88} 89 90func TestGcRescan(t *testing.T) { 91 type X struct { 92 c chan error 93 nextx *X 94 } 95 type Y struct { 96 X 97 nexty *Y 98 p *int 99 } 100 var head *Y 101 for i := 0; i < 10; i++ { 102 p := &Y{} 103 p.c = make(chan error) 104 if head != nil { 105 p.nextx = &head.X 106 } 107 p.nexty = head 108 p.p = new(int) 109 *p.p = 42 110 head = p 111 runtime.GC() 112 } 113 for p := head; p != nil; p = p.nexty { 114 if *p.p != 42 { 115 t.Fatal("corrupted heap") 116 } 117 } 118} 119 120func TestGcLastTime(t *testing.T) { 121 ms := new(runtime.MemStats) 122 t0 := time.Now().UnixNano() 123 runtime.GC() 124 t1 := time.Now().UnixNano() 125 runtime.ReadMemStats(ms) 126 last := int64(ms.LastGC) 127 if t0 > last || last > t1 { 128 t.Fatalf("bad last GC time: got %v, want [%v, %v]", last, t0, t1) 129 } 130 pause := ms.PauseNs[(ms.NumGC+255)%256] 131 // Due to timer granularity, pause can actually be 0 on windows 132 // or on virtualized environments. 133 if pause == 0 { 134 t.Logf("last GC pause was 0") 135 } else if pause > 10e9 { 136 t.Logf("bad last GC pause: got %v, want [0, 10e9]", pause) 137 } 138} 139 140var hugeSink any 141 142func TestHugeGCInfo(t *testing.T) { 143 // The test ensures that compiler can chew these huge types even on weakest machines. 144 // The types are not allocated at runtime. 145 if hugeSink != nil { 146 // 400MB on 32 bots, 4TB on 64-bits. 147 const n = (400 << 20) + (unsafe.Sizeof(uintptr(0))-4)<<40 148 hugeSink = new([n]*byte) 149 hugeSink = new([n]uintptr) 150 hugeSink = new(struct { 151 x float64 152 y [n]*byte 153 z []string 154 }) 155 hugeSink = new(struct { 156 x float64 157 y [n]uintptr 158 z []string 159 }) 160 } 161} 162 163func TestPeriodicGC(t *testing.T) { 164 if runtime.GOARCH == "wasm" { 165 t.Skip("no sysmon on wasm yet") 166 } 167 168 // Make sure we're not in the middle of a GC. 169 runtime.GC() 170 171 var ms1, ms2 runtime.MemStats 172 runtime.ReadMemStats(&ms1) 173 174 // Make periodic GC run continuously. 175 orig := *runtime.ForceGCPeriod 176 *runtime.ForceGCPeriod = 0 177 178 // Let some periodic GCs happen. In a heavily loaded system, 179 // it's possible these will be delayed, so this is designed to 180 // succeed quickly if things are working, but to give it some 181 // slack if things are slow. 182 var numGCs uint32 183 const want = 2 184 for i := 0; i < 200 && numGCs < want; i++ { 185 time.Sleep(5 * time.Millisecond) 186 187 // Test that periodic GC actually happened. 188 runtime.ReadMemStats(&ms2) 189 numGCs = ms2.NumGC - ms1.NumGC 190 } 191 *runtime.ForceGCPeriod = orig 192 193 if numGCs < want { 194 t.Fatalf("no periodic GC: got %v GCs, want >= 2", numGCs) 195 } 196} 197 198func TestGcZombieReporting(t *testing.T) { 199 // This test is somewhat sensitive to how the allocator works. 200 // Pointers in zombies slice may cross-span, thus we 201 // add invalidptr=0 for avoiding the badPointer check. 202 // See issue https://golang.org/issues/49613/ 203 got := runTestProg(t, "testprog", "GCZombie", "GODEBUG=invalidptr=0") 204 want := "found pointer to free object" 205 if !strings.Contains(got, want) { 206 t.Fatalf("expected %q in output, but got %q", want, got) 207 } 208} 209 210func TestGCTestMoveStackOnNextCall(t *testing.T) { 211 t.Parallel() 212 var onStack int 213 // GCTestMoveStackOnNextCall can fail in rare cases if there's 214 // a preemption. This won't happen many times in quick 215 // succession, so just retry a few times. 216 for retry := 0; retry < 5; retry++ { 217 runtime.GCTestMoveStackOnNextCall() 218 if moveStackCheck(t, &onStack, uintptr(unsafe.Pointer(&onStack))) { 219 // Passed. 220 return 221 } 222 } 223 t.Fatal("stack did not move") 224} 225 226// This must not be inlined because the point is to force a stack 227// growth check and move the stack. 228// 229//go:noinline 230func moveStackCheck(t *testing.T, new *int, old uintptr) bool { 231 // new should have been updated by the stack move; 232 // old should not have. 233 234 // Capture new's value before doing anything that could 235 // further move the stack. 236 new2 := uintptr(unsafe.Pointer(new)) 237 238 t.Logf("old stack pointer %x, new stack pointer %x", old, new2) 239 if new2 == old { 240 // Check that we didn't screw up the test's escape analysis. 241 if cls := runtime.GCTestPointerClass(unsafe.Pointer(new)); cls != "stack" { 242 t.Fatalf("test bug: new (%#x) should be a stack pointer, not %s", new2, cls) 243 } 244 // This was a real failure. 245 return false 246 } 247 return true 248} 249 250func TestGCTestMoveStackRepeatedly(t *testing.T) { 251 // Move the stack repeatedly to make sure we're not doubling 252 // it each time. 253 for i := 0; i < 100; i++ { 254 runtime.GCTestMoveStackOnNextCall() 255 moveStack1(false) 256 } 257} 258 259//go:noinline 260func moveStack1(x bool) { 261 // Make sure this function doesn't get auto-nosplit. 262 if x { 263 println("x") 264 } 265} 266 267func TestGCTestIsReachable(t *testing.T) { 268 var all, half []unsafe.Pointer 269 var want uint64 270 for i := 0; i < 16; i++ { 271 // The tiny allocator muddies things, so we use a 272 // scannable type. 273 p := unsafe.Pointer(new(*int)) 274 all = append(all, p) 275 if i%2 == 0 { 276 half = append(half, p) 277 want |= 1 << i 278 } 279 } 280 281 got := runtime.GCTestIsReachable(all...) 282 if got&want != want { 283 // This is a serious bug - an object is live (due to the KeepAlive 284 // call below), but isn't reported as such. 285 t.Fatalf("live object not in reachable set; want %b, got %b", want, got) 286 } 287 if bits.OnesCount64(got&^want) > 1 { 288 // Note: we can occasionally have a value that is retained even though 289 // it isn't live, due to conservative scanning of stack frames. 290 // See issue 67204. For now, we allow a "slop" of 1 unintentionally 291 // retained object. 292 t.Fatalf("dead object in reachable set; want %b, got %b", want, got) 293 } 294 runtime.KeepAlive(half) 295} 296 297var pointerClassBSS *int 298var pointerClassData = 42 299 300func TestGCTestPointerClass(t *testing.T) { 301 t.Parallel() 302 check := func(p unsafe.Pointer, want string) { 303 t.Helper() 304 got := runtime.GCTestPointerClass(p) 305 if got != want { 306 // Convert the pointer to a uintptr to avoid 307 // escaping it. 308 t.Errorf("for %#x, want class %s, got %s", uintptr(p), want, got) 309 } 310 } 311 var onStack int 312 var notOnStack int 313 check(unsafe.Pointer(&onStack), "stack") 314 check(unsafe.Pointer(runtime.Escape(¬OnStack)), "heap") 315 check(unsafe.Pointer(&pointerClassBSS), "bss") 316 check(unsafe.Pointer(&pointerClassData), "data") 317 check(nil, "other") 318} 319 320func BenchmarkAllocation(b *testing.B) { 321 type T struct { 322 x, y *byte 323 } 324 ngo := runtime.GOMAXPROCS(0) 325 work := make(chan bool, b.N+ngo) 326 result := make(chan *T) 327 for i := 0; i < b.N; i++ { 328 work <- true 329 } 330 for i := 0; i < ngo; i++ { 331 work <- false 332 } 333 for i := 0; i < ngo; i++ { 334 go func() { 335 var x *T 336 for <-work { 337 for i := 0; i < 1000; i++ { 338 x = &T{} 339 } 340 } 341 result <- x 342 }() 343 } 344 for i := 0; i < ngo; i++ { 345 <-result 346 } 347} 348 349func TestPrintGC(t *testing.T) { 350 if testing.Short() { 351 t.Skip("Skipping in short mode") 352 } 353 defer runtime.GOMAXPROCS(runtime.GOMAXPROCS(2)) 354 done := make(chan bool) 355 go func() { 356 for { 357 select { 358 case <-done: 359 return 360 default: 361 runtime.GC() 362 } 363 } 364 }() 365 for i := 0; i < 1e4; i++ { 366 func() { 367 defer print("") 368 }() 369 } 370 close(done) 371} 372 373func testTypeSwitch(x any) error { 374 switch y := x.(type) { 375 case nil: 376 // ok 377 case error: 378 return y 379 } 380 return nil 381} 382 383func testAssert(x any) error { 384 if y, ok := x.(error); ok { 385 return y 386 } 387 return nil 388} 389 390func testAssertVar(x any) error { 391 var y, ok = x.(error) 392 if ok { 393 return y 394 } 395 return nil 396} 397 398var a bool 399 400//go:noinline 401func testIfaceEqual(x any) { 402 if x == "abc" { 403 a = true 404 } 405} 406 407func TestPageAccounting(t *testing.T) { 408 // Grow the heap in small increments. This used to drop the 409 // pages-in-use count below zero because of a rounding 410 // mismatch (golang.org/issue/15022). 411 const blockSize = 64 << 10 412 blocks := make([]*[blockSize]byte, (64<<20)/blockSize) 413 for i := range blocks { 414 blocks[i] = new([blockSize]byte) 415 } 416 417 // Check that the running page count matches reality. 418 pagesInUse, counted := runtime.CountPagesInUse() 419 if pagesInUse != counted { 420 t.Fatalf("mheap_.pagesInUse is %d, but direct count is %d", pagesInUse, counted) 421 } 422} 423 424func init() { 425 // Enable ReadMemStats' double-check mode. 426 *runtime.DoubleCheckReadMemStats = true 427} 428 429func TestReadMemStats(t *testing.T) { 430 base, slow := runtime.ReadMemStatsSlow() 431 if base != slow { 432 logDiff(t, "MemStats", reflect.ValueOf(base), reflect.ValueOf(slow)) 433 t.Fatal("memstats mismatch") 434 } 435} 436 437func logDiff(t *testing.T, prefix string, got, want reflect.Value) { 438 typ := got.Type() 439 switch typ.Kind() { 440 case reflect.Array, reflect.Slice: 441 if got.Len() != want.Len() { 442 t.Logf("len(%s): got %v, want %v", prefix, got, want) 443 return 444 } 445 for i := 0; i < got.Len(); i++ { 446 logDiff(t, fmt.Sprintf("%s[%d]", prefix, i), got.Index(i), want.Index(i)) 447 } 448 case reflect.Struct: 449 for i := 0; i < typ.NumField(); i++ { 450 gf, wf := got.Field(i), want.Field(i) 451 logDiff(t, prefix+"."+typ.Field(i).Name, gf, wf) 452 } 453 case reflect.Map: 454 t.Fatal("not implemented: logDiff for map") 455 default: 456 if got.Interface() != want.Interface() { 457 t.Logf("%s: got %v, want %v", prefix, got, want) 458 } 459 } 460} 461 462func BenchmarkReadMemStats(b *testing.B) { 463 var ms runtime.MemStats 464 const heapSize = 100 << 20 465 x := make([]*[1024]byte, heapSize/1024) 466 for i := range x { 467 x[i] = new([1024]byte) 468 } 469 470 b.ResetTimer() 471 for i := 0; i < b.N; i++ { 472 runtime.ReadMemStats(&ms) 473 } 474 475 runtime.KeepAlive(x) 476} 477 478func applyGCLoad(b *testing.B) func() { 479 // We’ll apply load to the runtime with maxProcs-1 goroutines 480 // and use one more to actually benchmark. It doesn't make sense 481 // to try to run this test with only 1 P (that's what 482 // BenchmarkReadMemStats is for). 483 maxProcs := runtime.GOMAXPROCS(-1) 484 if maxProcs == 1 { 485 b.Skip("This benchmark can only be run with GOMAXPROCS > 1") 486 } 487 488 // Code to build a big tree with lots of pointers. 489 type node struct { 490 children [16]*node 491 } 492 var buildTree func(depth int) *node 493 buildTree = func(depth int) *node { 494 tree := new(node) 495 if depth != 0 { 496 for i := range tree.children { 497 tree.children[i] = buildTree(depth - 1) 498 } 499 } 500 return tree 501 } 502 503 // Keep the GC busy by continuously generating large trees. 504 done := make(chan struct{}) 505 var wg sync.WaitGroup 506 for i := 0; i < maxProcs-1; i++ { 507 wg.Add(1) 508 go func() { 509 defer wg.Done() 510 var hold *node 511 loop: 512 for { 513 hold = buildTree(5) 514 select { 515 case <-done: 516 break loop 517 default: 518 } 519 } 520 runtime.KeepAlive(hold) 521 }() 522 } 523 return func() { 524 close(done) 525 wg.Wait() 526 } 527} 528 529func BenchmarkReadMemStatsLatency(b *testing.B) { 530 stop := applyGCLoad(b) 531 532 // Spend this much time measuring latencies. 533 latencies := make([]time.Duration, 0, 1024) 534 535 // Run for timeToBench hitting ReadMemStats continuously 536 // and measuring the latency. 537 b.ResetTimer() 538 var ms runtime.MemStats 539 for i := 0; i < b.N; i++ { 540 // Sleep for a bit, otherwise we're just going to keep 541 // stopping the world and no one will get to do anything. 542 time.Sleep(100 * time.Millisecond) 543 start := time.Now() 544 runtime.ReadMemStats(&ms) 545 latencies = append(latencies, time.Since(start)) 546 } 547 // Make sure to stop the timer before we wait! The load created above 548 // is very heavy-weight and not easy to stop, so we could end up 549 // confusing the benchmarking framework for small b.N. 550 b.StopTimer() 551 stop() 552 553 // Disable the default */op metrics. 554 // ns/op doesn't mean anything because it's an average, but we 555 // have a sleep in our b.N loop above which skews this significantly. 556 b.ReportMetric(0, "ns/op") 557 b.ReportMetric(0, "B/op") 558 b.ReportMetric(0, "allocs/op") 559 560 // Sort latencies then report percentiles. 561 slices.Sort(latencies) 562 b.ReportMetric(float64(latencies[len(latencies)*50/100]), "p50-ns") 563 b.ReportMetric(float64(latencies[len(latencies)*90/100]), "p90-ns") 564 b.ReportMetric(float64(latencies[len(latencies)*99/100]), "p99-ns") 565} 566 567func TestUserForcedGC(t *testing.T) { 568 // Test that runtime.GC() triggers a GC even if GOGC=off. 569 defer debug.SetGCPercent(debug.SetGCPercent(-1)) 570 571 var ms1, ms2 runtime.MemStats 572 runtime.ReadMemStats(&ms1) 573 runtime.GC() 574 runtime.ReadMemStats(&ms2) 575 if ms1.NumGC == ms2.NumGC { 576 t.Fatalf("runtime.GC() did not trigger GC") 577 } 578 if ms1.NumForcedGC == ms2.NumForcedGC { 579 t.Fatalf("runtime.GC() was not accounted in NumForcedGC") 580 } 581} 582 583func writeBarrierBenchmark(b *testing.B, f func()) { 584 runtime.GC() 585 var ms runtime.MemStats 586 runtime.ReadMemStats(&ms) 587 //b.Logf("heap size: %d MB", ms.HeapAlloc>>20) 588 589 // Keep GC running continuously during the benchmark, which in 590 // turn keeps the write barrier on continuously. 591 var stop uint32 592 done := make(chan bool) 593 go func() { 594 for atomic.LoadUint32(&stop) == 0 { 595 runtime.GC() 596 } 597 close(done) 598 }() 599 defer func() { 600 atomic.StoreUint32(&stop, 1) 601 <-done 602 }() 603 604 b.ResetTimer() 605 f() 606 b.StopTimer() 607} 608 609func BenchmarkWriteBarrier(b *testing.B) { 610 if runtime.GOMAXPROCS(-1) < 2 { 611 // We don't want GC to take our time. 612 b.Skip("need GOMAXPROCS >= 2") 613 } 614 615 // Construct a large tree both so the GC runs for a while and 616 // so we have a data structure to manipulate the pointers of. 617 type node struct { 618 l, r *node 619 } 620 var wbRoots []*node 621 var mkTree func(level int) *node 622 mkTree = func(level int) *node { 623 if level == 0 { 624 return nil 625 } 626 n := &node{mkTree(level - 1), mkTree(level - 1)} 627 if level == 10 { 628 // Seed GC with enough early pointers so it 629 // doesn't start termination barriers when it 630 // only has the top of the tree. 631 wbRoots = append(wbRoots, n) 632 } 633 return n 634 } 635 const depth = 22 // 64 MB 636 root := mkTree(22) 637 638 writeBarrierBenchmark(b, func() { 639 var stack [depth]*node 640 tos := -1 641 642 // There are two write barriers per iteration, so i+=2. 643 for i := 0; i < b.N; i += 2 { 644 if tos == -1 { 645 stack[0] = root 646 tos = 0 647 } 648 649 // Perform one step of reversing the tree. 650 n := stack[tos] 651 if n.l == nil { 652 tos-- 653 } else { 654 n.l, n.r = n.r, n.l 655 stack[tos] = n.l 656 stack[tos+1] = n.r 657 tos++ 658 } 659 660 if i%(1<<12) == 0 { 661 // Avoid non-preemptible loops (see issue #10958). 662 runtime.Gosched() 663 } 664 } 665 }) 666 667 runtime.KeepAlive(wbRoots) 668} 669 670func BenchmarkBulkWriteBarrier(b *testing.B) { 671 if runtime.GOMAXPROCS(-1) < 2 { 672 // We don't want GC to take our time. 673 b.Skip("need GOMAXPROCS >= 2") 674 } 675 676 // Construct a large set of objects we can copy around. 677 const heapSize = 64 << 20 678 type obj [16]*byte 679 ptrs := make([]*obj, heapSize/unsafe.Sizeof(obj{})) 680 for i := range ptrs { 681 ptrs[i] = new(obj) 682 } 683 684 writeBarrierBenchmark(b, func() { 685 const blockSize = 1024 686 var pos int 687 for i := 0; i < b.N; i += blockSize { 688 // Rotate block. 689 block := ptrs[pos : pos+blockSize] 690 first := block[0] 691 copy(block, block[1:]) 692 block[blockSize-1] = first 693 694 pos += blockSize 695 if pos+blockSize > len(ptrs) { 696 pos = 0 697 } 698 699 runtime.Gosched() 700 } 701 }) 702 703 runtime.KeepAlive(ptrs) 704} 705 706func BenchmarkScanStackNoLocals(b *testing.B) { 707 var ready sync.WaitGroup 708 teardown := make(chan bool) 709 for j := 0; j < 10; j++ { 710 ready.Add(1) 711 go func() { 712 x := 100000 713 countpwg(&x, &ready, teardown) 714 }() 715 } 716 ready.Wait() 717 b.ResetTimer() 718 for i := 0; i < b.N; i++ { 719 b.StartTimer() 720 runtime.GC() 721 runtime.GC() 722 b.StopTimer() 723 } 724 close(teardown) 725} 726 727func BenchmarkMSpanCountAlloc(b *testing.B) { 728 // Allocate one dummy mspan for the whole benchmark. 729 s := runtime.AllocMSpan() 730 defer runtime.FreeMSpan(s) 731 732 // n is the number of bytes to benchmark against. 733 // n must always be a multiple of 8, since gcBits is 734 // always rounded up 8 bytes. 735 for _, n := range []int{8, 16, 32, 64, 128} { 736 b.Run(fmt.Sprintf("bits=%d", n*8), func(b *testing.B) { 737 // Initialize a new byte slice with pseduo-random data. 738 bits := make([]byte, n) 739 rand.Read(bits) 740 741 b.ResetTimer() 742 for i := 0; i < b.N; i++ { 743 runtime.MSpanCountAlloc(s, bits) 744 } 745 }) 746 } 747} 748 749func countpwg(n *int, ready *sync.WaitGroup, teardown chan bool) { 750 if *n == 0 { 751 ready.Done() 752 <-teardown 753 return 754 } 755 *n-- 756 countpwg(n, ready, teardown) 757} 758 759func TestMemoryLimit(t *testing.T) { 760 if testing.Short() { 761 t.Skip("stress test that takes time to run") 762 } 763 if runtime.NumCPU() < 4 { 764 t.Skip("want at least 4 CPUs for this test") 765 } 766 got := runTestProg(t, "testprog", "GCMemoryLimit") 767 want := "OK\n" 768 if got != want { 769 t.Fatalf("expected %q, but got %q", want, got) 770 } 771} 772 773func TestMemoryLimitNoGCPercent(t *testing.T) { 774 if testing.Short() { 775 t.Skip("stress test that takes time to run") 776 } 777 if runtime.NumCPU() < 4 { 778 t.Skip("want at least 4 CPUs for this test") 779 } 780 got := runTestProg(t, "testprog", "GCMemoryLimitNoGCPercent") 781 want := "OK\n" 782 if got != want { 783 t.Fatalf("expected %q, but got %q", want, got) 784 } 785} 786 787func TestMyGenericFunc(t *testing.T) { 788 runtime.MyGenericFunc[int]() 789} 790