1// Copyright 2011 The Go Authors. All rights reserved.
2// Use of this source code is governed by a BSD-style
3// license that can be found in the LICENSE file.
4
5// Package parse builds parse trees for templates as defined by text/template
6// and html/template. Clients should use those packages to construct templates
7// rather than this one, which provides shared internal data structures not
8// intended for general use.
9package parse
10
11import (
12	"bytes"
13	"fmt"
14	"runtime"
15	"strconv"
16	"strings"
17)
18
19// Tree is the representation of a single parsed template.
20type Tree struct {
21	Name      string    // name of the template represented by the tree.
22	ParseName string    // name of the top-level template during parsing, for error messages.
23	Root      *ListNode // top-level root of the tree.
24	Mode      Mode      // parsing mode.
25	text      string    // text parsed to create the template (or its parent)
26	// Parsing only; cleared after parse.
27	funcs      []map[string]any
28	lex        *lexer
29	token      [3]item // three-token lookahead for parser.
30	peekCount  int
31	vars       []string // variables defined at the moment.
32	treeSet    map[string]*Tree
33	actionLine int // line of left delim starting action
34	rangeDepth int
35}
36
37// A mode value is a set of flags (or 0). Modes control parser behavior.
38type Mode uint
39
40const (
41	ParseComments Mode = 1 << iota // parse comments and add them to AST
42	SkipFuncCheck                  // do not check that functions are defined
43)
44
45// Copy returns a copy of the [Tree]. Any parsing state is discarded.
46func (t *Tree) Copy() *Tree {
47	if t == nil {
48		return nil
49	}
50	return &Tree{
51		Name:      t.Name,
52		ParseName: t.ParseName,
53		Root:      t.Root.CopyList(),
54		text:      t.text,
55	}
56}
57
58// Parse returns a map from template name to [Tree], created by parsing the
59// templates described in the argument string. The top-level template will be
60// given the specified name. If an error is encountered, parsing stops and an
61// empty map is returned with the error.
62func Parse(name, text, leftDelim, rightDelim string, funcs ...map[string]any) (map[string]*Tree, error) {
63	treeSet := make(map[string]*Tree)
64	t := New(name)
65	t.text = text
66	_, err := t.Parse(text, leftDelim, rightDelim, treeSet, funcs...)
67	return treeSet, err
68}
69
70// next returns the next token.
71func (t *Tree) next() item {
72	if t.peekCount > 0 {
73		t.peekCount--
74	} else {
75		t.token[0] = t.lex.nextItem()
76	}
77	return t.token[t.peekCount]
78}
79
80// backup backs the input stream up one token.
81func (t *Tree) backup() {
82	t.peekCount++
83}
84
85// backup2 backs the input stream up two tokens.
86// The zeroth token is already there.
87func (t *Tree) backup2(t1 item) {
88	t.token[1] = t1
89	t.peekCount = 2
90}
91
92// backup3 backs the input stream up three tokens
93// The zeroth token is already there.
94func (t *Tree) backup3(t2, t1 item) { // Reverse order: we're pushing back.
95	t.token[1] = t1
96	t.token[2] = t2
97	t.peekCount = 3
98}
99
100// peek returns but does not consume the next token.
101func (t *Tree) peek() item {
102	if t.peekCount > 0 {
103		return t.token[t.peekCount-1]
104	}
105	t.peekCount = 1
106	t.token[0] = t.lex.nextItem()
107	return t.token[0]
108}
109
110// nextNonSpace returns the next non-space token.
111func (t *Tree) nextNonSpace() (token item) {
112	for {
113		token = t.next()
114		if token.typ != itemSpace {
115			break
116		}
117	}
118	return token
119}
120
121// peekNonSpace returns but does not consume the next non-space token.
122func (t *Tree) peekNonSpace() item {
123	token := t.nextNonSpace()
124	t.backup()
125	return token
126}
127
128// Parsing.
129
130// New allocates a new parse tree with the given name.
131func New(name string, funcs ...map[string]any) *Tree {
132	return &Tree{
133		Name:  name,
134		funcs: funcs,
135	}
136}
137
138// ErrorContext returns a textual representation of the location of the node in the input text.
139// The receiver is only used when the node does not have a pointer to the tree inside,
140// which can occur in old code.
141func (t *Tree) ErrorContext(n Node) (location, context string) {
142	pos := int(n.Position())
143	tree := n.tree()
144	if tree == nil {
145		tree = t
146	}
147	text := tree.text[:pos]
148	byteNum := strings.LastIndex(text, "\n")
149	if byteNum == -1 {
150		byteNum = pos // On first line.
151	} else {
152		byteNum++ // After the newline.
153		byteNum = pos - byteNum
154	}
155	lineNum := 1 + strings.Count(text, "\n")
156	context = n.String()
157	return fmt.Sprintf("%s:%d:%d", tree.ParseName, lineNum, byteNum), context
158}
159
160// errorf formats the error and terminates processing.
161func (t *Tree) errorf(format string, args ...any) {
162	t.Root = nil
163	format = fmt.Sprintf("template: %s:%d: %s", t.ParseName, t.token[0].line, format)
164	panic(fmt.Errorf(format, args...))
165}
166
167// error terminates processing.
168func (t *Tree) error(err error) {
169	t.errorf("%s", err)
170}
171
172// expect consumes the next token and guarantees it has the required type.
173func (t *Tree) expect(expected itemType, context string) item {
174	token := t.nextNonSpace()
175	if token.typ != expected {
176		t.unexpected(token, context)
177	}
178	return token
179}
180
181// expectOneOf consumes the next token and guarantees it has one of the required types.
182func (t *Tree) expectOneOf(expected1, expected2 itemType, context string) item {
183	token := t.nextNonSpace()
184	if token.typ != expected1 && token.typ != expected2 {
185		t.unexpected(token, context)
186	}
187	return token
188}
189
190// unexpected complains about the token and terminates processing.
191func (t *Tree) unexpected(token item, context string) {
192	if token.typ == itemError {
193		extra := ""
194		if t.actionLine != 0 && t.actionLine != token.line {
195			extra = fmt.Sprintf(" in action started at %s:%d", t.ParseName, t.actionLine)
196			if strings.HasSuffix(token.val, " action") {
197				extra = extra[len(" in action"):] // avoid "action in action"
198			}
199		}
200		t.errorf("%s%s", token, extra)
201	}
202	t.errorf("unexpected %s in %s", token, context)
203}
204
205// recover is the handler that turns panics into returns from the top level of Parse.
206func (t *Tree) recover(errp *error) {
207	e := recover()
208	if e != nil {
209		if _, ok := e.(runtime.Error); ok {
210			panic(e)
211		}
212		if t != nil {
213			t.stopParse()
214		}
215		*errp = e.(error)
216	}
217}
218
219// startParse initializes the parser, using the lexer.
220func (t *Tree) startParse(funcs []map[string]any, lex *lexer, treeSet map[string]*Tree) {
221	t.Root = nil
222	t.lex = lex
223	t.vars = []string{"$"}
224	t.funcs = funcs
225	t.treeSet = treeSet
226	lex.options = lexOptions{
227		emitComment: t.Mode&ParseComments != 0,
228		breakOK:     !t.hasFunction("break"),
229		continueOK:  !t.hasFunction("continue"),
230	}
231}
232
233// stopParse terminates parsing.
234func (t *Tree) stopParse() {
235	t.lex = nil
236	t.vars = nil
237	t.funcs = nil
238	t.treeSet = nil
239}
240
241// Parse parses the template definition string to construct a representation of
242// the template for execution. If either action delimiter string is empty, the
243// default ("{{" or "}}") is used. Embedded template definitions are added to
244// the treeSet map.
245func (t *Tree) Parse(text, leftDelim, rightDelim string, treeSet map[string]*Tree, funcs ...map[string]any) (tree *Tree, err error) {
246	defer t.recover(&err)
247	t.ParseName = t.Name
248	lexer := lex(t.Name, text, leftDelim, rightDelim)
249	t.startParse(funcs, lexer, treeSet)
250	t.text = text
251	t.parse()
252	t.add()
253	t.stopParse()
254	return t, nil
255}
256
257// add adds tree to t.treeSet.
258func (t *Tree) add() {
259	tree := t.treeSet[t.Name]
260	if tree == nil || IsEmptyTree(tree.Root) {
261		t.treeSet[t.Name] = t
262		return
263	}
264	if !IsEmptyTree(t.Root) {
265		t.errorf("template: multiple definition of template %q", t.Name)
266	}
267}
268
269// IsEmptyTree reports whether this tree (node) is empty of everything but space or comments.
270func IsEmptyTree(n Node) bool {
271	switch n := n.(type) {
272	case nil:
273		return true
274	case *ActionNode:
275	case *CommentNode:
276		return true
277	case *IfNode:
278	case *ListNode:
279		for _, node := range n.Nodes {
280			if !IsEmptyTree(node) {
281				return false
282			}
283		}
284		return true
285	case *RangeNode:
286	case *TemplateNode:
287	case *TextNode:
288		return len(bytes.TrimSpace(n.Text)) == 0
289	case *WithNode:
290	default:
291		panic("unknown node: " + n.String())
292	}
293	return false
294}
295
296// parse is the top-level parser for a template, essentially the same
297// as itemList except it also parses {{define}} actions.
298// It runs to EOF.
299func (t *Tree) parse() {
300	t.Root = t.newList(t.peek().pos)
301	for t.peek().typ != itemEOF {
302		if t.peek().typ == itemLeftDelim {
303			delim := t.next()
304			if t.nextNonSpace().typ == itemDefine {
305				newT := New("definition") // name will be updated once we know it.
306				newT.text = t.text
307				newT.Mode = t.Mode
308				newT.ParseName = t.ParseName
309				newT.startParse(t.funcs, t.lex, t.treeSet)
310				newT.parseDefinition()
311				continue
312			}
313			t.backup2(delim)
314		}
315		switch n := t.textOrAction(); n.Type() {
316		case nodeEnd, nodeElse:
317			t.errorf("unexpected %s", n)
318		default:
319			t.Root.append(n)
320		}
321	}
322}
323
324// parseDefinition parses a {{define}} ...  {{end}} template definition and
325// installs the definition in t.treeSet. The "define" keyword has already
326// been scanned.
327func (t *Tree) parseDefinition() {
328	const context = "define clause"
329	name := t.expectOneOf(itemString, itemRawString, context)
330	var err error
331	t.Name, err = strconv.Unquote(name.val)
332	if err != nil {
333		t.error(err)
334	}
335	t.expect(itemRightDelim, context)
336	var end Node
337	t.Root, end = t.itemList()
338	if end.Type() != nodeEnd {
339		t.errorf("unexpected %s in %s", end, context)
340	}
341	t.add()
342	t.stopParse()
343}
344
345// itemList:
346//
347//	textOrAction*
348//
349// Terminates at {{end}} or {{else}}, returned separately.
350func (t *Tree) itemList() (list *ListNode, next Node) {
351	list = t.newList(t.peekNonSpace().pos)
352	for t.peekNonSpace().typ != itemEOF {
353		n := t.textOrAction()
354		switch n.Type() {
355		case nodeEnd, nodeElse:
356			return list, n
357		}
358		list.append(n)
359	}
360	t.errorf("unexpected EOF")
361	return
362}
363
364// textOrAction:
365//
366//	text | comment | action
367func (t *Tree) textOrAction() Node {
368	switch token := t.nextNonSpace(); token.typ {
369	case itemText:
370		return t.newText(token.pos, token.val)
371	case itemLeftDelim:
372		t.actionLine = token.line
373		defer t.clearActionLine()
374		return t.action()
375	case itemComment:
376		return t.newComment(token.pos, token.val)
377	default:
378		t.unexpected(token, "input")
379	}
380	return nil
381}
382
383func (t *Tree) clearActionLine() {
384	t.actionLine = 0
385}
386
387// Action:
388//
389//	control
390//	command ("|" command)*
391//
392// Left delim is past. Now get actions.
393// First word could be a keyword such as range.
394func (t *Tree) action() (n Node) {
395	switch token := t.nextNonSpace(); token.typ {
396	case itemBlock:
397		return t.blockControl()
398	case itemBreak:
399		return t.breakControl(token.pos, token.line)
400	case itemContinue:
401		return t.continueControl(token.pos, token.line)
402	case itemElse:
403		return t.elseControl()
404	case itemEnd:
405		return t.endControl()
406	case itemIf:
407		return t.ifControl()
408	case itemRange:
409		return t.rangeControl()
410	case itemTemplate:
411		return t.templateControl()
412	case itemWith:
413		return t.withControl()
414	}
415	t.backup()
416	token := t.peek()
417	// Do not pop variables; they persist until "end".
418	return t.newAction(token.pos, token.line, t.pipeline("command", itemRightDelim))
419}
420
421// Break:
422//
423//	{{break}}
424//
425// Break keyword is past.
426func (t *Tree) breakControl(pos Pos, line int) Node {
427	if token := t.nextNonSpace(); token.typ != itemRightDelim {
428		t.unexpected(token, "{{break}}")
429	}
430	if t.rangeDepth == 0 {
431		t.errorf("{{break}} outside {{range}}")
432	}
433	return t.newBreak(pos, line)
434}
435
436// Continue:
437//
438//	{{continue}}
439//
440// Continue keyword is past.
441func (t *Tree) continueControl(pos Pos, line int) Node {
442	if token := t.nextNonSpace(); token.typ != itemRightDelim {
443		t.unexpected(token, "{{continue}}")
444	}
445	if t.rangeDepth == 0 {
446		t.errorf("{{continue}} outside {{range}}")
447	}
448	return t.newContinue(pos, line)
449}
450
451// Pipeline:
452//
453//	declarations? command ('|' command)*
454func (t *Tree) pipeline(context string, end itemType) (pipe *PipeNode) {
455	token := t.peekNonSpace()
456	pipe = t.newPipeline(token.pos, token.line, nil)
457	// Are there declarations or assignments?
458decls:
459	if v := t.peekNonSpace(); v.typ == itemVariable {
460		t.next()
461		// Since space is a token, we need 3-token look-ahead here in the worst case:
462		// in "$x foo" we need to read "foo" (as opposed to ":=") to know that $x is an
463		// argument variable rather than a declaration. So remember the token
464		// adjacent to the variable so we can push it back if necessary.
465		tokenAfterVariable := t.peek()
466		next := t.peekNonSpace()
467		switch {
468		case next.typ == itemAssign, next.typ == itemDeclare:
469			pipe.IsAssign = next.typ == itemAssign
470			t.nextNonSpace()
471			pipe.Decl = append(pipe.Decl, t.newVariable(v.pos, v.val))
472			t.vars = append(t.vars, v.val)
473		case next.typ == itemChar && next.val == ",":
474			t.nextNonSpace()
475			pipe.Decl = append(pipe.Decl, t.newVariable(v.pos, v.val))
476			t.vars = append(t.vars, v.val)
477			if context == "range" && len(pipe.Decl) < 2 {
478				switch t.peekNonSpace().typ {
479				case itemVariable, itemRightDelim, itemRightParen:
480					// second initialized variable in a range pipeline
481					goto decls
482				default:
483					t.errorf("range can only initialize variables")
484				}
485			}
486			t.errorf("too many declarations in %s", context)
487		case tokenAfterVariable.typ == itemSpace:
488			t.backup3(v, tokenAfterVariable)
489		default:
490			t.backup2(v)
491		}
492	}
493	for {
494		switch token := t.nextNonSpace(); token.typ {
495		case end:
496			// At this point, the pipeline is complete
497			t.checkPipeline(pipe, context)
498			return
499		case itemBool, itemCharConstant, itemComplex, itemDot, itemField, itemIdentifier,
500			itemNumber, itemNil, itemRawString, itemString, itemVariable, itemLeftParen:
501			t.backup()
502			pipe.append(t.command())
503		default:
504			t.unexpected(token, context)
505		}
506	}
507}
508
509func (t *Tree) checkPipeline(pipe *PipeNode, context string) {
510	// Reject empty pipelines
511	if len(pipe.Cmds) == 0 {
512		t.errorf("missing value for %s", context)
513	}
514	// Only the first command of a pipeline can start with a non executable operand
515	for i, c := range pipe.Cmds[1:] {
516		switch c.Args[0].Type() {
517		case NodeBool, NodeDot, NodeNil, NodeNumber, NodeString:
518			// With A|B|C, pipeline stage 2 is B
519			t.errorf("non executable command in pipeline stage %d", i+2)
520		}
521	}
522}
523
524func (t *Tree) parseControl(context string) (pos Pos, line int, pipe *PipeNode, list, elseList *ListNode) {
525	defer t.popVars(len(t.vars))
526	pipe = t.pipeline(context, itemRightDelim)
527	if context == "range" {
528		t.rangeDepth++
529	}
530	var next Node
531	list, next = t.itemList()
532	if context == "range" {
533		t.rangeDepth--
534	}
535	switch next.Type() {
536	case nodeEnd: //done
537	case nodeElse:
538		// Special case for "else if" and "else with".
539		// If the "else" is followed immediately by an "if" or "with",
540		// the elseControl will have left the "if" or "with" token pending. Treat
541		//	{{if a}}_{{else if b}}_{{end}}
542		//  {{with a}}_{{else with b}}_{{end}}
543		// as
544		//	{{if a}}_{{else}}{{if b}}_{{end}}{{end}}
545		//  {{with a}}_{{else}}{{with b}}_{{end}}{{end}}.
546		// To do this, parse the "if" or "with" as usual and stop at it {{end}};
547		// the subsequent{{end}} is assumed. This technique works even for long if-else-if chains.
548		if context == "if" && t.peek().typ == itemIf {
549			t.next() // Consume the "if" token.
550			elseList = t.newList(next.Position())
551			elseList.append(t.ifControl())
552		} else if context == "with" && t.peek().typ == itemWith {
553			t.next()
554			elseList = t.newList(next.Position())
555			elseList.append(t.withControl())
556		} else {
557			elseList, next = t.itemList()
558			if next.Type() != nodeEnd {
559				t.errorf("expected end; found %s", next)
560			}
561		}
562	}
563	return pipe.Position(), pipe.Line, pipe, list, elseList
564}
565
566// If:
567//
568//	{{if pipeline}} itemList {{end}}
569//	{{if pipeline}} itemList {{else}} itemList {{end}}
570//
571// If keyword is past.
572func (t *Tree) ifControl() Node {
573	return t.newIf(t.parseControl("if"))
574}
575
576// Range:
577//
578//	{{range pipeline}} itemList {{end}}
579//	{{range pipeline}} itemList {{else}} itemList {{end}}
580//
581// Range keyword is past.
582func (t *Tree) rangeControl() Node {
583	r := t.newRange(t.parseControl("range"))
584	return r
585}
586
587// With:
588//
589//	{{with pipeline}} itemList {{end}}
590//	{{with pipeline}} itemList {{else}} itemList {{end}}
591//
592// If keyword is past.
593func (t *Tree) withControl() Node {
594	return t.newWith(t.parseControl("with"))
595}
596
597// End:
598//
599//	{{end}}
600//
601// End keyword is past.
602func (t *Tree) endControl() Node {
603	return t.newEnd(t.expect(itemRightDelim, "end").pos)
604}
605
606// Else:
607//
608//	{{else}}
609//
610// Else keyword is past.
611func (t *Tree) elseControl() Node {
612	peek := t.peekNonSpace()
613	// The "{{else if ... " and "{{else with ..." will be
614	// treated as "{{else}}{{if ..." and "{{else}}{{with ...".
615	// So return the else node here.
616	if peek.typ == itemIf || peek.typ == itemWith {
617		return t.newElse(peek.pos, peek.line)
618	}
619	token := t.expect(itemRightDelim, "else")
620	return t.newElse(token.pos, token.line)
621}
622
623// Block:
624//
625//	{{block stringValue pipeline}}
626//
627// Block keyword is past.
628// The name must be something that can evaluate to a string.
629// The pipeline is mandatory.
630func (t *Tree) blockControl() Node {
631	const context = "block clause"
632
633	token := t.nextNonSpace()
634	name := t.parseTemplateName(token, context)
635	pipe := t.pipeline(context, itemRightDelim)
636
637	block := New(name) // name will be updated once we know it.
638	block.text = t.text
639	block.Mode = t.Mode
640	block.ParseName = t.ParseName
641	block.startParse(t.funcs, t.lex, t.treeSet)
642	var end Node
643	block.Root, end = block.itemList()
644	if end.Type() != nodeEnd {
645		t.errorf("unexpected %s in %s", end, context)
646	}
647	block.add()
648	block.stopParse()
649
650	return t.newTemplate(token.pos, token.line, name, pipe)
651}
652
653// Template:
654//
655//	{{template stringValue pipeline}}
656//
657// Template keyword is past. The name must be something that can evaluate
658// to a string.
659func (t *Tree) templateControl() Node {
660	const context = "template clause"
661	token := t.nextNonSpace()
662	name := t.parseTemplateName(token, context)
663	var pipe *PipeNode
664	if t.nextNonSpace().typ != itemRightDelim {
665		t.backup()
666		// Do not pop variables; they persist until "end".
667		pipe = t.pipeline(context, itemRightDelim)
668	}
669	return t.newTemplate(token.pos, token.line, name, pipe)
670}
671
672func (t *Tree) parseTemplateName(token item, context string) (name string) {
673	switch token.typ {
674	case itemString, itemRawString:
675		s, err := strconv.Unquote(token.val)
676		if err != nil {
677			t.error(err)
678		}
679		name = s
680	default:
681		t.unexpected(token, context)
682	}
683	return
684}
685
686// command:
687//
688//	operand (space operand)*
689//
690// space-separated arguments up to a pipeline character or right delimiter.
691// we consume the pipe character but leave the right delim to terminate the action.
692func (t *Tree) command() *CommandNode {
693	cmd := t.newCommand(t.peekNonSpace().pos)
694	for {
695		t.peekNonSpace() // skip leading spaces.
696		operand := t.operand()
697		if operand != nil {
698			cmd.append(operand)
699		}
700		switch token := t.next(); token.typ {
701		case itemSpace:
702			continue
703		case itemRightDelim, itemRightParen:
704			t.backup()
705		case itemPipe:
706			// nothing here; break loop below
707		default:
708			t.unexpected(token, "operand")
709		}
710		break
711	}
712	if len(cmd.Args) == 0 {
713		t.errorf("empty command")
714	}
715	return cmd
716}
717
718// operand:
719//
720//	term .Field*
721//
722// An operand is a space-separated component of a command,
723// a term possibly followed by field accesses.
724// A nil return means the next item is not an operand.
725func (t *Tree) operand() Node {
726	node := t.term()
727	if node == nil {
728		return nil
729	}
730	if t.peek().typ == itemField {
731		chain := t.newChain(t.peek().pos, node)
732		for t.peek().typ == itemField {
733			chain.Add(t.next().val)
734		}
735		// Compatibility with original API: If the term is of type NodeField
736		// or NodeVariable, just put more fields on the original.
737		// Otherwise, keep the Chain node.
738		// Obvious parsing errors involving literal values are detected here.
739		// More complex error cases will have to be handled at execution time.
740		switch node.Type() {
741		case NodeField:
742			node = t.newField(chain.Position(), chain.String())
743		case NodeVariable:
744			node = t.newVariable(chain.Position(), chain.String())
745		case NodeBool, NodeString, NodeNumber, NodeNil, NodeDot:
746			t.errorf("unexpected . after term %q", node.String())
747		default:
748			node = chain
749		}
750	}
751	return node
752}
753
754// term:
755//
756//	literal (number, string, nil, boolean)
757//	function (identifier)
758//	.
759//	.Field
760//	$
761//	'(' pipeline ')'
762//
763// A term is a simple "expression".
764// A nil return means the next item is not a term.
765func (t *Tree) term() Node {
766	switch token := t.nextNonSpace(); token.typ {
767	case itemIdentifier:
768		checkFunc := t.Mode&SkipFuncCheck == 0
769		if checkFunc && !t.hasFunction(token.val) {
770			t.errorf("function %q not defined", token.val)
771		}
772		return NewIdentifier(token.val).SetTree(t).SetPos(token.pos)
773	case itemDot:
774		return t.newDot(token.pos)
775	case itemNil:
776		return t.newNil(token.pos)
777	case itemVariable:
778		return t.useVar(token.pos, token.val)
779	case itemField:
780		return t.newField(token.pos, token.val)
781	case itemBool:
782		return t.newBool(token.pos, token.val == "true")
783	case itemCharConstant, itemComplex, itemNumber:
784		number, err := t.newNumber(token.pos, token.val, token.typ)
785		if err != nil {
786			t.error(err)
787		}
788		return number
789	case itemLeftParen:
790		return t.pipeline("parenthesized pipeline", itemRightParen)
791	case itemString, itemRawString:
792		s, err := strconv.Unquote(token.val)
793		if err != nil {
794			t.error(err)
795		}
796		return t.newString(token.pos, token.val, s)
797	}
798	t.backup()
799	return nil
800}
801
802// hasFunction reports if a function name exists in the Tree's maps.
803func (t *Tree) hasFunction(name string) bool {
804	for _, funcMap := range t.funcs {
805		if funcMap == nil {
806			continue
807		}
808		if funcMap[name] != nil {
809			return true
810		}
811	}
812	return false
813}
814
815// popVars trims the variable list to the specified length
816func (t *Tree) popVars(n int) {
817	t.vars = t.vars[:n]
818}
819
820// useVar returns a node for a variable reference. It errors if the
821// variable is not defined.
822func (t *Tree) useVar(pos Pos, name string) Node {
823	v := t.newVariable(pos, name)
824	for _, varName := range t.vars {
825		if varName == v.Ident[0] {
826			return v
827		}
828	}
829	t.errorf("undefined variable %q", v.Ident[0])
830	return nil
831}
832