xref: /aosp_15_r20/system/keymint/ta/src/lib.rs (revision 9860b7637a5f185913c70aa0caabe3ecb78441e4)
1 // Copyright 2022, The Android Open Source Project
2 //
3 // Licensed under the Apache License, Version 2.0 (the "License");
4 // you may not use this file except in compliance with the License.
5 // You may obtain a copy of the License at
6 //
7 //     http://www.apache.org/licenses/LICENSE-2.0
8 //
9 // Unless required by applicable law or agreed to in writing, software
10 // distributed under the License is distributed on an "AS IS" BASIS,
11 // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12 // See the License for the specific language governing permissions and
13 // limitations under the License.
14 
15 //! KeyMint trusted application (TA) implementation.
16 
17 #![no_std]
18 extern crate alloc;
19 
20 use alloc::{
21     boxed::Box, collections::BTreeMap, format, rc::Rc, string::String, string::ToString, vec::Vec,
22 };
23 use core::cmp::Ordering;
24 use core::mem::size_of;
25 use core::{cell::RefCell, convert::TryFrom};
26 use device::DiceInfo;
27 use kmr_common::{
28     crypto::{self, hmac, OpaqueOr},
29     get_bool_tag_value,
30     keyblob::{self, RootOfTrustInfo, SecureDeletionSlot},
31     km_err, tag, try_to_vec, vec_try, vec_try_with_capacity, Error, FallibleAllocExt,
32 };
33 use kmr_wire::{
34     coset::TaggedCborSerializable,
35     keymint::{
36         Digest, ErrorCode, HardwareAuthToken, KeyCharacteristics, KeyMintHardwareInfo, KeyOrigin,
37         KeyParam, SecurityLevel, Tag, VerifiedBootState, NEXT_MESSAGE_SIGNAL_FALSE,
38         NEXT_MESSAGE_SIGNAL_TRUE,
39     },
40     rpc,
41     rpc::{EekCurve, IRPC_V2, IRPC_V3},
42     sharedsecret::SharedSecretParameters,
43     *,
44 };
45 use log::{error, info, trace, warn};
46 
47 mod cert;
48 mod clock;
49 pub mod device;
50 pub mod keys;
51 mod operation;
52 pub mod rkp;
53 mod secret;
54 
55 use keys::KeyImport;
56 use operation::{OpHandle, Operation};
57 
58 #[cfg(test)]
59 mod tests;
60 
61 /// Possible KeyMint HAL versions
62 #[repr(i32)]
63 #[derive(Debug, Clone, Copy, PartialEq, Eq)]
64 pub enum KeyMintHalVersion {
65     /// V4 adds support for attestation of module information.
66     V4 = 400,
67     /// V3 adds support for attestation of second IMEI value.
68     V3 = 300,
69     /// V2 adds support for curve 25519 and root-of-trust transfer.
70     V2 = 200,
71     /// V1 is the initial version of the KeyMint HAL.
72     V1 = 100,
73 }
74 
75 /// Version code for current KeyMint.
76 pub const KEYMINT_CURRENT_VERSION: KeyMintHalVersion = KeyMintHalVersion::V4;
77 
78 /// Maximum number of parallel operations supported when running as TEE.
79 const MAX_TEE_OPERATIONS: usize = 16;
80 
81 /// Maximum number of parallel operations supported when running as StrongBox.
82 const MAX_STRONGBOX_OPERATIONS: usize = 4;
83 
84 /// Maximum number of keys whose use count can be tracked.
85 const MAX_USE_COUNTED_KEYS: usize = 32;
86 
87 /// Tags allowed in `KeyMintTa::additional_attestation_info`.
88 const ALLOWED_ADDITIONAL_ATTESTATION_TAGS: &[Tag] = &[Tag::ModuleHash];
89 
90 /// Per-key ID use count.
91 struct UseCount {
92     key_id: KeyId,
93     count: u64,
94 }
95 
96 /// Attestation chain information.
97 struct AttestationChainInfo {
98     /// Chain of certificates from intermediate to root.
99     chain: Vec<keymint::Certificate>,
100     /// Subject field from the first certificate in the chain, as an ASN.1 DER encoded `Name` (cf
101     /// RFC 5280 s4.1.2.4).
102     issuer: Vec<u8>,
103 }
104 
105 /// KeyMint device implementation, running in secure environment.
106 pub struct KeyMintTa {
107     /**
108      * State that is fixed on construction.
109      */
110 
111     /// Trait objects that hold this device's implementations of the abstract cryptographic
112     /// functionality traits.
113     imp: crypto::Implementation,
114 
115     /// Trait objects that hold this device's implementations of per-device functionality.
116     dev: device::Implementation,
117 
118     /// Information about this particular KeyMint implementation's hardware.
119     hw_info: HardwareInfo,
120 
121     /// Information about the implementation of the IRemotelyProvisionedComponent (IRPC) HAL.
122     rpc_info: RpcInfo,
123 
124     /// The version of the HAL AIDL interface specification that this TA acts as.
125     aidl_version: KeyMintHalVersion,
126 
127     /**
128      * State that is set after the TA starts, but latched thereafter.
129      */
130 
131     /// Parameters for shared secret negotiation.
132     shared_secret_params: Option<SharedSecretParameters>,
133 
134     /// Information provided by the bootloader once at start of day.
135     boot_info: Option<keymint::BootInfo>,
136     rot_data: Option<Vec<u8>>,
137 
138     /// Information provided by the HAL service once at start of day.
139     hal_info: Option<HalInfo>,
140 
141     /// Additional information to attest to, provided by Android. Refer to
142     /// `IKeyMintDevice::setAdditionalAttestationInfo()`.
143     additional_attestation_info: Vec<KeyParam>,
144 
145     /// Attestation chain information, retrieved on first use.
146     attestation_chain_info: RefCell<BTreeMap<device::SigningKeyType, AttestationChainInfo>>,
147 
148     /// Attestation ID information, fixed forever for a device, but retrieved on first use.
149     attestation_id_info: RefCell<Option<Rc<AttestationIdInfo>>>,
150 
151     /// Public DICE artifacts (UDS certs and the DICE chain) included in the certificate signing
152     /// requests (CSR) and the algorithm used to sign the CSR for IRemotelyProvisionedComponent
153     /// (IRPC) HAL. Fixed for a device. Retrieved on first use.
154     ///
155     /// Note: This information is cached only in the implementations of IRPC HAL V3 and
156     /// IRPC HAL V2 in production mode.
157     dice_info: RefCell<Option<Rc<DiceInfo>>>,
158 
159     /// Whether the device is still in early-boot.
160     in_early_boot: bool,
161 
162     /// Device HMAC implementation which uses the `ISharedSecret` negotiated key.
163     device_hmac: Option<Box<dyn device::DeviceHmac>>,
164 
165     /**
166      * State that changes during operation.
167      */
168 
169     /// Challenge for root-of-trust transfer (StrongBox only).
170     rot_challenge: [u8; 16],
171 
172     /// The operation table.
173     operations: Vec<Option<Operation>>,
174 
175     /// Use counts for keys where this is tracked.
176     use_count: [Option<UseCount>; MAX_USE_COUNTED_KEYS],
177 
178     /// Operation handle of the (single) in-flight operation that requires trusted user presence.
179     presence_required_op: Option<OpHandle>,
180 }
181 
182 /// A helper method that can be used by the TA for processing the responses to be sent to the
183 /// HAL service. Splits large response messages into multiple parts based on the capacity of the
184 /// channel from the TA to the HAL. One element in the returned response array consists of:
185 /// <next_msg_signal + response data> where next_msg_signal is a byte whose value is 1 if there are
186 /// more messages in the response array following this one. This signal should be used by the HAL
187 /// side to decide whether or not to wait for more messages. Implementation of this method must be
188 /// in sync with its counterpart in the `kmr-hal` crate.
split_rsp(mut rsp_data: &[u8], max_size: usize) -> Result<Vec<Vec<u8>>, Error>189 pub fn split_rsp(mut rsp_data: &[u8], max_size: usize) -> Result<Vec<Vec<u8>>, Error> {
190     if rsp_data.is_empty() || max_size < 2 {
191         return Err(km_err!(
192             InvalidArgument,
193             "response data is empty or max size: {} is invalid",
194             max_size
195         ));
196     }
197     // Need to allocate one byte for the more_msg_signal.
198     let allowed_msg_length = max_size - 1;
199     let mut num_of_splits = rsp_data.len() / allowed_msg_length;
200     if rsp_data.len() % allowed_msg_length > 0 {
201         num_of_splits += 1;
202     }
203     let mut split_rsp = vec_try_with_capacity!(num_of_splits)?;
204     while rsp_data.len() > allowed_msg_length {
205         let mut rsp = vec_try_with_capacity!(allowed_msg_length + 1)?;
206         rsp.push(NEXT_MESSAGE_SIGNAL_TRUE);
207         rsp.extend_from_slice(&rsp_data[..allowed_msg_length]);
208         trace!("Current response size with signalling byte: {}", rsp.len());
209         split_rsp.push(rsp);
210         rsp_data = &rsp_data[allowed_msg_length..];
211     }
212     let mut last_rsp = vec_try_with_capacity!(rsp_data.len() + 1)?;
213     last_rsp.push(NEXT_MESSAGE_SIGNAL_FALSE);
214     last_rsp.extend_from_slice(rsp_data);
215     split_rsp.push(last_rsp);
216     Ok(split_rsp)
217 }
218 
219 /// Hardware information.
220 #[derive(Clone, Debug)]
221 pub struct HardwareInfo {
222     // Fields that correspond to the HAL `KeyMintHardwareInfo` type.
223     /// Security level that this KeyMint implementation is running at.
224     pub security_level: SecurityLevel,
225     /// Version number.
226     pub version_number: i32,
227     /// KeyMint implementation name.
228     pub impl_name: &'static str,
229     /// Author of KeyMint implementation.
230     pub author_name: &'static str,
231     /// Unique identifier for this KeyMint.
232     pub unique_id: &'static str,
233     // The `timestamp_token_required` field in `KeyMintHardwareInfo` is skipped here because it gets
234     // set depending on whether a local clock is available.
235 }
236 
237 /// Information required to construct the structures defined in RpcHardwareInfo.aidl
238 /// and DeviceInfo.aidl, for IRemotelyProvisionedComponent (IRPC) HAL V2.
239 #[derive(Debug)]
240 pub struct RpcInfoV2 {
241     // Fields used in `RpcHardwareInfo.aidl`:
242     /// Author of KeyMint implementation.
243     pub author_name: &'static str,
244     /// EEK curve supported by this implementation.
245     pub supported_eek_curve: EekCurve,
246     /// Unique identifier for this KeyMint.
247     pub unique_id: &'static str,
248     /// Indication of whether secure boot is enforced for the processor running this code.
249     /// Used as `DeviceInfo.fused`.
250     pub fused: bool,
251 }
252 
253 /// Information required to construct the structures defined in RpcHardwareInfo.aidl
254 /// and DeviceInfo.aidl, for IRemotelyProvisionedComponent (IRPC) HAL V3.
255 #[derive(Debug)]
256 pub struct RpcInfoV3 {
257     // Fields used in `RpcHardwareInfo.aidl`:
258     /// Author of KeyMint implementation.
259     pub author_name: &'static str,
260     /// Unique identifier for this KeyMint.
261     pub unique_id: &'static str,
262     /// Indication of whether secure boot is enforced for the processor running this code.
263     /// Used as `DeviceInfo.fused`.
264     pub fused: bool,
265     /// Supported number of keys in a CSR.
266     pub supported_num_of_keys_in_csr: i32,
267 }
268 
269 /// Enum to distinguish the set of information required for different versions of IRPC HAL
270 /// implementations
271 pub enum RpcInfo {
272     /// Information for v2 of the IRPC HAL.
273     V2(RpcInfoV2),
274     /// Information for v3 of the IRPC HAL.
275     V3(RpcInfoV3),
276 }
277 
278 impl RpcInfo {
279     /// Indicate the HAL version of RPC information.
get_version(&self) -> i32280     pub fn get_version(&self) -> i32 {
281         match self {
282             RpcInfo::V2(_) => IRPC_V2,
283             RpcInfo::V3(_) => IRPC_V3,
284         }
285     }
286 }
287 
288 /// Information provided once at service start by the HAL service, describing
289 /// the state of the userspace operating system (which may change from boot to
290 /// boot, e.g. for running GSI).
291 #[derive(Clone, Copy, Debug)]
292 pub struct HalInfo {
293     /// OS version.
294     pub os_version: u32,
295     /// OS patchlevel, in YYYYMM format.
296     pub os_patchlevel: u32,
297     /// Vendor patchlevel, in YYYYMMDD format
298     pub vendor_patchlevel: u32,
299 }
300 
301 /// Identifier for a keyblob.
302 #[derive(Clone, PartialEq, Eq, PartialOrd, Ord)]
303 struct KeyId([u8; 32]);
304 
305 impl KeyMintTa {
306     /// Create a new [`KeyMintTa`] instance.
new( hw_info: HardwareInfo, rpc_info: RpcInfo, imp: crypto::Implementation, dev: device::Implementation, ) -> Self307     pub fn new(
308         hw_info: HardwareInfo,
309         rpc_info: RpcInfo,
310         imp: crypto::Implementation,
311         dev: device::Implementation,
312     ) -> Self {
313         let max_operations = if hw_info.security_level == SecurityLevel::Strongbox {
314             MAX_STRONGBOX_OPERATIONS
315         } else {
316             MAX_TEE_OPERATIONS
317         };
318         Self {
319             imp,
320             dev,
321             in_early_boot: true,
322             device_hmac: None,
323             rot_challenge: [0; 16],
324             // Work around Rust limitation that `vec![None; n]` doesn't work.
325             operations: (0..max_operations).map(|_| None).collect(),
326             use_count: Default::default(),
327             presence_required_op: None,
328             shared_secret_params: None,
329             hw_info,
330             rpc_info,
331             aidl_version: KEYMINT_CURRENT_VERSION,
332             boot_info: None,
333             rot_data: None,
334             hal_info: None,
335             attestation_chain_info: RefCell::new(BTreeMap::new()),
336             attestation_id_info: RefCell::new(None),
337             dice_info: RefCell::new(None),
338             additional_attestation_info: Vec::new(),
339         }
340     }
341 
342     /// Returns key used to sign auth tokens
get_hmac_key(&self) -> Option<hmac::Key>343     pub fn get_hmac_key(&self) -> Option<hmac::Key> {
344         match &self.device_hmac {
345             Some(device_hmac) => device_hmac.get_hmac_key(),
346             None => None,
347         }
348     }
349 
350     /// Indicate whether the current device is acting as a StrongBox instance.
is_strongbox(&self) -> bool351     pub fn is_strongbox(&self) -> bool {
352         self.hw_info.security_level == SecurityLevel::Strongbox
353     }
354 
355     /// Indicate whether the current device has secure storage available.
secure_storage_available(&self) -> kmr_common::tag::SecureStorage356     fn secure_storage_available(&self) -> kmr_common::tag::SecureStorage {
357         if self.dev.sdd_mgr.is_some() {
358             kmr_common::tag::SecureStorage::Available
359         } else {
360             kmr_common::tag::SecureStorage::Unavailable
361         }
362     }
363 
364     /// Return the device's boot information.
boot_info(&self) -> Result<&keymint::BootInfo, Error>365     fn boot_info(&self) -> Result<&keymint::BootInfo, Error> {
366         self.boot_info
367             .as_ref()
368             .ok_or_else(|| km_err!(HardwareNotYetAvailable, "no boot info available"))
369     }
370 
371     /// Return a copy of the device's boot information, with the verified boot key
372     /// hashed (if necessary).
boot_info_hashed_key(&self) -> Result<keymint::BootInfo, Error>373     fn boot_info_hashed_key(&self) -> Result<keymint::BootInfo, Error> {
374         let mut boot_info = self.boot_info()?.clone();
375         if boot_info.verified_boot_key.len() > 32 {
376             // It looks like we have the actual key, not a hash thereof.  Change that.
377             boot_info.verified_boot_key =
378                 try_to_vec(&self.imp.sha256.hash(&boot_info.verified_boot_key)?)?;
379         }
380         Ok(boot_info)
381     }
382 
383     /// Parse and decrypt an encrypted key blob, allowing through keys that require upgrade due to
384     /// patchlevel updates.  Keys that appear to be in a legacy format may still emit a
385     /// [`ErrorCode::KeyRequiresUpgrade`] error.
keyblob_parse_decrypt_backlevel( &self, key_blob: &[u8], params: &[KeyParam], ) -> Result<(keyblob::PlaintextKeyBlob, Option<SecureDeletionSlot>), Error>386     fn keyblob_parse_decrypt_backlevel(
387         &self,
388         key_blob: &[u8],
389         params: &[KeyParam],
390     ) -> Result<(keyblob::PlaintextKeyBlob, Option<SecureDeletionSlot>), Error> {
391         let encrypted_keyblob = match keyblob::EncryptedKeyBlob::new(key_blob) {
392             Ok(k) => k,
393             Err(e) => {
394                 // We might have failed to parse the keyblob because it is in some prior format.
395                 if let Some(old_key) = self.dev.legacy_key.as_ref() {
396                     if old_key.is_legacy_key(key_blob, params, self.boot_info()?) {
397                         return Err(km_err!(
398                             KeyRequiresUpgrade,
399                             "legacy key detected, request upgrade"
400                         ));
401                     }
402                 }
403                 return Err(e);
404             }
405         };
406         let hidden = tag::hidden(params, self.root_of_trust()?)?;
407         let sdd_slot = encrypted_keyblob.secure_deletion_slot();
408         let root_kek = self.root_kek(encrypted_keyblob.kek_context())?;
409         let keyblob = keyblob::decrypt(
410             match &self.dev.sdd_mgr {
411                 None => None,
412                 Some(mr) => Some(&**mr),
413             },
414             &*self.imp.aes,
415             &*self.imp.hkdf,
416             &root_kek,
417             encrypted_keyblob,
418             hidden,
419         )?;
420         Ok((keyblob, sdd_slot))
421     }
422 
423     /// Parse and decrypt an encrypted key blob, detecting keys that require upgrade.
keyblob_parse_decrypt( &self, key_blob: &[u8], params: &[KeyParam], ) -> Result<(keyblob::PlaintextKeyBlob, Option<SecureDeletionSlot>), Error>424     fn keyblob_parse_decrypt(
425         &self,
426         key_blob: &[u8],
427         params: &[KeyParam],
428     ) -> Result<(keyblob::PlaintextKeyBlob, Option<SecureDeletionSlot>), Error> {
429         let (keyblob, slot) = self.keyblob_parse_decrypt_backlevel(key_blob, params)?;
430 
431         // Check all of the patchlevels and versions to see if key upgrade is required.
432         fn check(v: &u32, curr: u32, name: &str) -> Result<(), Error> {
433             match (*v).cmp(&curr) {
434                 Ordering::Less => Err(km_err!(
435                     KeyRequiresUpgrade,
436                     "keyblob with old {} {} needs upgrade to current {}",
437                     name,
438                     v,
439                     curr
440                 )),
441                 Ordering::Equal => Ok(()),
442                 Ordering::Greater => Err(km_err!(
443                     InvalidKeyBlob,
444                     "keyblob with future {} {} (current {})",
445                     name,
446                     v,
447                     curr
448                 )),
449             }
450         }
451 
452         let key_chars = keyblob.characteristics_at(self.hw_info.security_level)?;
453         for param in key_chars {
454             match param {
455                 KeyParam::OsVersion(v) => {
456                     if let Some(hal_info) = &self.hal_info {
457                         if hal_info.os_version == 0 {
458                             // Special case: upgrades to OS version zero are always allowed.
459                             if *v != 0 {
460                                 warn!("requesting upgrade to OS version 0");
461                                 return Err(km_err!(
462                                     KeyRequiresUpgrade,
463                                     "keyblob with OS version {} needs upgrade to current version 0",
464                                     v,
465                                 ));
466                             }
467                         } else {
468                             check(v, hal_info.os_version, "OS version")?;
469                         }
470                     } else {
471                         error!("OS version not available, can't check for upgrade from {}", v);
472                     }
473                 }
474                 KeyParam::OsPatchlevel(v) => {
475                     if let Some(hal_info) = &self.hal_info {
476                         check(v, hal_info.os_patchlevel, "OS patchlevel")?;
477                     } else {
478                         error!("OS patchlevel not available, can't check for upgrade from {}", v);
479                     }
480                 }
481                 KeyParam::VendorPatchlevel(v) => {
482                     if let Some(hal_info) = &self.hal_info {
483                         check(v, hal_info.vendor_patchlevel, "vendor patchlevel")?;
484                     } else {
485                         error!(
486                             "vendor patchlevel not available, can't check for upgrade from {}",
487                             v
488                         );
489                     }
490                 }
491                 KeyParam::BootPatchlevel(v) => {
492                     if let Some(boot_info) = &self.boot_info {
493                         check(v, boot_info.boot_patchlevel, "boot patchlevel")?;
494                     } else {
495                         error!("boot patchlevel not available, can't check for upgrade from {}", v);
496                     }
497                 }
498                 _ => {}
499             }
500         }
501         Ok((keyblob, slot))
502     }
503 
504     /// Generate a unique identifier for a keyblob.
key_id(&self, keyblob: &[u8]) -> Result<KeyId, Error>505     fn key_id(&self, keyblob: &[u8]) -> Result<KeyId, Error> {
506         let mut hmac_op =
507             self.imp.hmac.begin(crypto::hmac::Key(vec_try![0; 16]?).into(), Digest::Sha256)?;
508         hmac_op.update(keyblob)?;
509         let tag = hmac_op.finish()?;
510 
511         Ok(KeyId(tag.try_into().map_err(|_e| {
512             km_err!(SecureHwCommunicationFailed, "wrong size output from HMAC-SHA256")
513         })?))
514     }
515 
516     /// Increment the use count for the given key ID, failing if `max_uses` is reached.
update_use_count(&mut self, key_id: KeyId, max_uses: u32) -> Result<(), Error>517     fn update_use_count(&mut self, key_id: KeyId, max_uses: u32) -> Result<(), Error> {
518         let mut free_idx = None;
519         let mut slot_idx = None;
520         for idx in 0..self.use_count.len() {
521             match &self.use_count[idx] {
522                 None if free_idx.is_none() => free_idx = Some(idx),
523                 None => {}
524                 Some(UseCount { key_id: k, count: _count }) if *k == key_id => {
525                     slot_idx = Some(idx);
526                     break;
527                 }
528                 Some(_) => {}
529             }
530         }
531         if slot_idx.is_none() {
532             // First use of this key ID; use a free slot if available.
533             if let Some(idx) = free_idx {
534                 self.use_count[idx] = Some(UseCount { key_id, count: 0 });
535                 slot_idx = Some(idx);
536             }
537         }
538 
539         if let Some(idx) = slot_idx {
540             let c = self.use_count[idx].as_mut().unwrap(); // safe: code above guarantees
541             if c.count >= max_uses as u64 {
542                 Err(km_err!(KeyMaxOpsExceeded, "use count {} >= limit {}", c.count, max_uses))
543             } else {
544                 c.count += 1;
545                 Ok(())
546             }
547         } else {
548             Err(km_err!(TooManyOperations, "too many use-counted keys already in play"))
549         }
550     }
551 
552     /// Configure the boot-specific root of trust info.  KeyMint implementors should call this
553     /// method when this information arrives from the bootloader (which happens in an
554     /// implementation-specific manner).
set_boot_info(&mut self, boot_info: keymint::BootInfo) -> Result<(), Error>555     pub fn set_boot_info(&mut self, boot_info: keymint::BootInfo) -> Result<(), Error> {
556         if !self.in_early_boot {
557             error!("Rejecting attempt to set boot info {:?} after early boot", boot_info);
558             return Err(km_err!(
559                 EarlyBootEnded,
560                 "attempt to set boot info to {boot_info:?} after early boot"
561             ));
562         }
563         if let Some(existing_boot_info) = &self.boot_info {
564             if *existing_boot_info == boot_info {
565                 warn!(
566                     "Boot info already set, ignoring second attempt to set same values {:?}",
567                     boot_info
568                 );
569             } else {
570                 return Err(km_err!(
571                     RootOfTrustAlreadySet,
572                     "attempt to set boot info to {:?} but already set to {:?}",
573                     boot_info,
574                     existing_boot_info
575                 ));
576             }
577         } else {
578             info!("Setting boot_info to {:?}", boot_info);
579             let rot_info = RootOfTrustInfo {
580                 verified_boot_key: boot_info.verified_boot_key.clone(),
581                 device_boot_locked: boot_info.device_boot_locked,
582                 verified_boot_state: boot_info.verified_boot_state,
583             };
584             self.boot_info = Some(boot_info);
585             self.rot_data =
586                 Some(rot_info.into_vec().map_err(|e| {
587                     km_err!(EncodingError, "failed to encode root-of-trust: {:?}", e)
588                 })?);
589         }
590         Ok(())
591     }
592 
593     /// Check if HAL-derived information has been set. This is used as an
594     /// indication that we are past the boot stage.
is_hal_info_set(&self) -> bool595     pub fn is_hal_info_set(&self) -> bool {
596         self.hal_info.is_some()
597     }
598 
599     /// Configure the HAL-derived information, learnt from the userspace
600     /// operating system.
set_hal_info(&mut self, hal_info: HalInfo)601     pub fn set_hal_info(&mut self, hal_info: HalInfo) {
602         if self.hal_info.is_none() {
603             info!("Setting hal_info to {:?}", hal_info);
604             self.hal_info = Some(hal_info);
605         } else {
606             warn!(
607                 "Hal info already set to {:?}, ignoring new values {:?}",
608                 self.hal_info, hal_info
609             );
610         }
611     }
612 
613     /// Configure the version of the HAL that this TA should act as.
set_hal_version(&mut self, aidl_version: u32) -> Result<(), Error>614     pub fn set_hal_version(&mut self, aidl_version: u32) -> Result<(), Error> {
615         self.aidl_version = match aidl_version {
616             100 => KeyMintHalVersion::V1,
617             200 => KeyMintHalVersion::V2,
618             300 => KeyMintHalVersion::V3,
619             400 => KeyMintHalVersion::V4,
620             _ => return Err(km_err!(InvalidArgument, "unsupported HAL version {}", aidl_version)),
621         };
622         info!("Set aidl_version to {:?}", self.aidl_version);
623         Ok(())
624     }
625 
626     /// Configure attestation IDs externally.
set_attestation_ids(&self, ids: AttestationIdInfo)627     pub fn set_attestation_ids(&self, ids: AttestationIdInfo) {
628         if self.dev.attest_ids.is_some() {
629             error!("Attempt to set attestation IDs externally");
630         } else if self.attestation_id_info.borrow().is_some() {
631             error!("Attempt to set attestation IDs when already set");
632         } else {
633             warn!("Setting attestation IDs directly");
634             *self.attestation_id_info.borrow_mut() = Some(Rc::new(ids));
635         }
636     }
637 
638     /// Retrieve the attestation ID information for the device, if available.
get_attestation_ids(&self) -> Option<Rc<AttestationIdInfo>>639     fn get_attestation_ids(&self) -> Option<Rc<AttestationIdInfo>> {
640         if self.attestation_id_info.borrow().is_none() {
641             if let Some(get_ids_impl) = self.dev.attest_ids.as_ref() {
642                 // Attestation IDs are not populated, but we have a trait implementation that
643                 // may provide them.
644                 match get_ids_impl.get() {
645                     Ok(ids) => *self.attestation_id_info.borrow_mut() = Some(Rc::new(ids)),
646                     Err(e) => error!("Failed to retrieve attestation IDs: {:?}", e),
647                 }
648             }
649         }
650         self.attestation_id_info.borrow().as_ref().cloned()
651     }
652 
653     /// Retrieve the DICE info for the device, if available.
get_dice_info(&self) -> Option<Rc<DiceInfo>>654     fn get_dice_info(&self) -> Option<Rc<DiceInfo>> {
655         if self.dice_info.borrow().is_none() {
656             // DICE info is not populated, but we have a trait method that
657             // may provide them.
658             match self.dev.rpc.get_dice_info(rpc::TestMode(false)) {
659                 Ok(dice_info) => *self.dice_info.borrow_mut() = Some(Rc::new(dice_info)),
660                 Err(e) => error!("Failed to retrieve DICE info: {:?}", e),
661             }
662         }
663         self.dice_info.borrow().as_ref().cloned()
664     }
665 
666     /// Process a single serialized request, returning a serialized response.
process(&mut self, req_data: &[u8]) -> Vec<u8>667     pub fn process(&mut self, req_data: &[u8]) -> Vec<u8> {
668         let (req_code, rsp) = match PerformOpReq::from_slice(req_data) {
669             Ok(req) => {
670                 trace!("-> TA: received request {:?}", req.code());
671                 (Some(req.code()), self.process_req(req))
672             }
673             Err(e) => {
674                 error!("failed to decode CBOR request: {:?}", e);
675                 // We need to report the error to the HAL, but we don't know whether the request was
676                 // for the `IRemotelyProvisionedComponent` or for one of the other HALs, so we don't
677                 // know what numbering space the error codes are expected to be in.  Assume the
678                 // shared KeyMint `ErrorCode` space.
679                 (None, error_rsp(ErrorCode::EncodingError as i32))
680             }
681         };
682         trace!("<- TA: send response {:?} rc {}", req_code, rsp.error_code);
683         match rsp.into_vec() {
684             Ok(rsp_data) => rsp_data,
685             Err(e) => {
686                 error!("failed to encode CBOR response: {:?}", e);
687                 invalid_cbor_rsp_data().to_vec()
688             }
689         }
690     }
691 
692     /// Process a single request, returning a [`PerformOpResponse`].
693     ///
694     /// Select the appropriate method based on the request type, and use the
695     /// request fields as parameters to the method.  In the opposite direction,
696     /// build a response message from the values returned by the method.
process_req(&mut self, req: PerformOpReq) -> PerformOpResponse697     fn process_req(&mut self, req: PerformOpReq) -> PerformOpResponse {
698         match req {
699             // Internal messages.
700             PerformOpReq::SetBootInfo(req) => {
701                 let verified_boot_state = match VerifiedBootState::try_from(req.verified_boot_state)
702                 {
703                     Ok(state) => state,
704                     Err(e) => return op_error_rsp(SetBootInfoRequest::CODE, Error::Cbor(e)),
705                 };
706                 match self.set_boot_info(keymint::BootInfo {
707                     verified_boot_key: req.verified_boot_key,
708                     device_boot_locked: req.device_boot_locked,
709                     verified_boot_state,
710                     verified_boot_hash: req.verified_boot_hash,
711                     boot_patchlevel: req.boot_patchlevel,
712                 }) {
713                     Ok(_) => op_ok_rsp(PerformOpRsp::SetBootInfo(SetBootInfoResponse {})),
714                     Err(e) => op_error_rsp(SetBootInfoRequest::CODE, e),
715                 }
716             }
717             PerformOpReq::SetHalInfo(req) => {
718                 self.set_hal_info(HalInfo {
719                     os_version: req.os_version,
720                     os_patchlevel: req.os_patchlevel,
721                     vendor_patchlevel: req.vendor_patchlevel,
722                 });
723                 op_ok_rsp(PerformOpRsp::SetHalInfo(SetHalInfoResponse {}))
724             }
725             PerformOpReq::SetAttestationIds(req) => {
726                 self.set_attestation_ids(req.ids);
727                 op_ok_rsp(PerformOpRsp::SetAttestationIds(SetAttestationIdsResponse {}))
728             }
729             PerformOpReq::SetHalVersion(req) => match self.set_hal_version(req.aidl_version) {
730                 Ok(_) => op_ok_rsp(PerformOpRsp::SetHalVersion(SetHalVersionResponse {})),
731                 Err(e) => op_error_rsp(SetHalVersionRequest::CODE, e),
732             },
733 
734             // ISharedSecret messages.
735             PerformOpReq::SharedSecretGetSharedSecretParameters(_req) => {
736                 match self.get_shared_secret_params() {
737                     Ok(ret) => op_ok_rsp(PerformOpRsp::SharedSecretGetSharedSecretParameters(
738                         GetSharedSecretParametersResponse { ret },
739                     )),
740                     Err(e) => op_error_rsp(GetSharedSecretParametersRequest::CODE, e),
741                 }
742             }
743             PerformOpReq::SharedSecretComputeSharedSecret(req) => {
744                 match self.compute_shared_secret(&req.params) {
745                     Ok(ret) => op_ok_rsp(PerformOpRsp::SharedSecretComputeSharedSecret(
746                         ComputeSharedSecretResponse { ret },
747                     )),
748                     Err(e) => op_error_rsp(ComputeSharedSecretRequest::CODE, e),
749                 }
750             }
751 
752             // ISecureClock messages.
753             PerformOpReq::SecureClockGenerateTimeStamp(req) => {
754                 match self.generate_timestamp(req.challenge) {
755                     Ok(ret) => op_ok_rsp(PerformOpRsp::SecureClockGenerateTimeStamp(
756                         GenerateTimeStampResponse { ret },
757                     )),
758                     Err(e) => op_error_rsp(GenerateTimeStampRequest::CODE, e),
759                 }
760             }
761 
762             // IKeyMintDevice messages.
763             PerformOpReq::DeviceGetHardwareInfo(_req) => match self.get_hardware_info() {
764                 Ok(ret) => {
765                     op_ok_rsp(PerformOpRsp::DeviceGetHardwareInfo(GetHardwareInfoResponse { ret }))
766                 }
767                 Err(e) => op_error_rsp(GetHardwareInfoRequest::CODE, e),
768             },
769             PerformOpReq::DeviceAddRngEntropy(req) => match self.add_rng_entropy(&req.data) {
770                 Ok(_ret) => op_ok_rsp(PerformOpRsp::DeviceAddRngEntropy(AddRngEntropyResponse {})),
771                 Err(e) => op_error_rsp(AddRngEntropyRequest::CODE, e),
772             },
773             PerformOpReq::DeviceGenerateKey(req) => {
774                 match self.generate_key(&req.key_params, req.attestation_key) {
775                     Ok(ret) => {
776                         op_ok_rsp(PerformOpRsp::DeviceGenerateKey(GenerateKeyResponse { ret }))
777                     }
778                     Err(e) => op_error_rsp(GenerateKeyRequest::CODE, e),
779                 }
780             }
781             PerformOpReq::DeviceImportKey(req) => {
782                 match self.import_key(
783                     &req.key_params,
784                     req.key_format,
785                     &req.key_data,
786                     req.attestation_key,
787                     KeyImport::NonWrapped,
788                 ) {
789                     Ok(ret) => op_ok_rsp(PerformOpRsp::DeviceImportKey(ImportKeyResponse { ret })),
790                     Err(e) => op_error_rsp(ImportKeyRequest::CODE, e),
791                 }
792             }
793             PerformOpReq::DeviceImportWrappedKey(req) => {
794                 match self.import_wrapped_key(
795                     &req.wrapped_key_data,
796                     &req.wrapping_key_blob,
797                     &req.masking_key,
798                     &req.unwrapping_params,
799                     req.password_sid,
800                     req.biometric_sid,
801                 ) {
802                     Ok(ret) => {
803                         op_ok_rsp(PerformOpRsp::DeviceImportWrappedKey(ImportWrappedKeyResponse {
804                             ret,
805                         }))
806                     }
807                     Err(e) => op_error_rsp(ImportWrappedKeyRequest::CODE, e),
808                 }
809             }
810             PerformOpReq::DeviceUpgradeKey(req) => {
811                 match self.upgrade_key(&req.key_blob_to_upgrade, req.upgrade_params) {
812                     Ok(ret) => {
813                         op_ok_rsp(PerformOpRsp::DeviceUpgradeKey(UpgradeKeyResponse { ret }))
814                     }
815                     Err(e) => op_error_rsp(UpgradeKeyRequest::CODE, e),
816                 }
817             }
818             PerformOpReq::DeviceDeleteKey(req) => match self.delete_key(&req.key_blob) {
819                 Ok(_ret) => op_ok_rsp(PerformOpRsp::DeviceDeleteKey(DeleteKeyResponse {})),
820                 Err(e) => op_error_rsp(DeleteKeyRequest::CODE, e),
821             },
822             PerformOpReq::DeviceDeleteAllKeys(_req) => match self.delete_all_keys() {
823                 Ok(_ret) => op_ok_rsp(PerformOpRsp::DeviceDeleteAllKeys(DeleteAllKeysResponse {})),
824                 Err(e) => op_error_rsp(DeleteAllKeysRequest::CODE, e),
825             },
826             PerformOpReq::DeviceDestroyAttestationIds(_req) => match self.destroy_attestation_ids()
827             {
828                 Ok(_ret) => op_ok_rsp(PerformOpRsp::DeviceDestroyAttestationIds(
829                     DestroyAttestationIdsResponse {},
830                 )),
831                 Err(e) => op_error_rsp(DestroyAttestationIdsRequest::CODE, e),
832             },
833             PerformOpReq::DeviceBegin(req) => {
834                 match self.begin_operation(req.purpose, &req.key_blob, req.params, req.auth_token) {
835                     Ok(ret) => op_ok_rsp(PerformOpRsp::DeviceBegin(BeginResponse { ret })),
836                     Err(e) => op_error_rsp(BeginRequest::CODE, e),
837                 }
838             }
839             PerformOpReq::DeviceEarlyBootEnded(_req) => match self.early_boot_ended() {
840                 Ok(_ret) => {
841                     op_ok_rsp(PerformOpRsp::DeviceEarlyBootEnded(EarlyBootEndedResponse {}))
842                 }
843                 Err(e) => op_error_rsp(EarlyBootEndedRequest::CODE, e),
844             },
845             PerformOpReq::DeviceConvertStorageKeyToEphemeral(req) => {
846                 match self.convert_storage_key_to_ephemeral(&req.storage_key_blob) {
847                     Ok(ret) => op_ok_rsp(PerformOpRsp::DeviceConvertStorageKeyToEphemeral(
848                         ConvertStorageKeyToEphemeralResponse { ret },
849                     )),
850                     Err(e) => op_error_rsp(ConvertStorageKeyToEphemeralRequest::CODE, e),
851                 }
852             }
853             PerformOpReq::DeviceGetKeyCharacteristics(req) => {
854                 match self.get_key_characteristics(&req.key_blob, req.app_id, req.app_data) {
855                     Ok(ret) => op_ok_rsp(PerformOpRsp::DeviceGetKeyCharacteristics(
856                         GetKeyCharacteristicsResponse { ret },
857                     )),
858                     Err(e) => op_error_rsp(GetKeyCharacteristicsRequest::CODE, e),
859                 }
860             }
861             PerformOpReq::GetRootOfTrustChallenge(_req) => match self.get_root_of_trust_challenge()
862             {
863                 Ok(ret) => op_ok_rsp(PerformOpRsp::GetRootOfTrustChallenge(
864                     GetRootOfTrustChallengeResponse { ret },
865                 )),
866                 Err(e) => op_error_rsp(GetRootOfTrustChallengeRequest::CODE, e),
867             },
868             PerformOpReq::GetRootOfTrust(req) => match self.get_root_of_trust(&req.challenge) {
869                 Ok(ret) => op_ok_rsp(PerformOpRsp::GetRootOfTrust(GetRootOfTrustResponse { ret })),
870                 Err(e) => op_error_rsp(GetRootOfTrustRequest::CODE, e),
871             },
872             PerformOpReq::SendRootOfTrust(req) => {
873                 match self.send_root_of_trust(&req.root_of_trust) {
874                     Ok(_ret) => {
875                         op_ok_rsp(PerformOpRsp::SendRootOfTrust(SendRootOfTrustResponse {}))
876                     }
877                     Err(e) => op_error_rsp(SendRootOfTrustRequest::CODE, e),
878                 }
879             }
880             PerformOpReq::SetAdditionalAttestationInfo(req) => {
881                 match self.set_additional_attestation_info(req.info) {
882                     Ok(_ret) => op_ok_rsp(PerformOpRsp::SetAdditionalAttestationInfo(
883                         SetAdditionalAttestationInfoResponse {},
884                     )),
885                     Err(e) => op_error_rsp(SetAdditionalAttestationInfoRequest::CODE, e),
886                 }
887             }
888 
889             // IKeyMintOperation messages.
890             PerformOpReq::OperationUpdateAad(req) => match self.op_update_aad(
891                 OpHandle(req.op_handle),
892                 &req.input,
893                 req.auth_token,
894                 req.timestamp_token,
895             ) {
896                 Ok(_ret) => op_ok_rsp(PerformOpRsp::OperationUpdateAad(UpdateAadResponse {})),
897                 Err(e) => op_error_rsp(UpdateAadRequest::CODE, e),
898             },
899             PerformOpReq::OperationUpdate(req) => {
900                 match self.op_update(
901                     OpHandle(req.op_handle),
902                     &req.input,
903                     req.auth_token,
904                     req.timestamp_token,
905                 ) {
906                     Ok(ret) => op_ok_rsp(PerformOpRsp::OperationUpdate(UpdateResponse { ret })),
907                     Err(e) => op_error_rsp(UpdateRequest::CODE, e),
908                 }
909             }
910             PerformOpReq::OperationFinish(req) => {
911                 match self.op_finish(
912                     OpHandle(req.op_handle),
913                     req.input.as_deref(),
914                     req.signature.as_deref(),
915                     req.auth_token,
916                     req.timestamp_token,
917                     req.confirmation_token.as_deref(),
918                 ) {
919                     Ok(ret) => op_ok_rsp(PerformOpRsp::OperationFinish(FinishResponse { ret })),
920                     Err(e) => op_error_rsp(FinishRequest::CODE, e),
921                 }
922             }
923             PerformOpReq::OperationAbort(req) => match self.op_abort(OpHandle(req.op_handle)) {
924                 Ok(_ret) => op_ok_rsp(PerformOpRsp::OperationAbort(AbortResponse {})),
925                 Err(e) => op_error_rsp(AbortRequest::CODE, e),
926             },
927 
928             // IRemotelyProvisionedComponentOperation messages.
929             PerformOpReq::RpcGetHardwareInfo(_req) => match self.get_rpc_hardware_info() {
930                 Ok(ret) => {
931                     op_ok_rsp(PerformOpRsp::RpcGetHardwareInfo(GetRpcHardwareInfoResponse { ret }))
932                 }
933                 Err(e) => op_error_rsp(GetRpcHardwareInfoRequest::CODE, e),
934             },
935             PerformOpReq::RpcGenerateEcdsaP256KeyPair(req) => {
936                 match self.generate_ecdsa_p256_keypair(rpc::TestMode(req.test_mode)) {
937                     Ok((pubkey, ret)) => op_ok_rsp(PerformOpRsp::RpcGenerateEcdsaP256KeyPair(
938                         GenerateEcdsaP256KeyPairResponse { maced_public_key: pubkey, ret },
939                     )),
940                     Err(e) => op_error_rsp(GenerateEcdsaP256KeyPairRequest::CODE, e),
941                 }
942             }
943             PerformOpReq::RpcGenerateCertificateRequest(req) => {
944                 match self.generate_cert_req(
945                     rpc::TestMode(req.test_mode),
946                     req.keys_to_sign,
947                     &req.endpoint_encryption_cert_chain,
948                     &req.challenge,
949                 ) {
950                     Ok((device_info, protected_data, ret)) => {
951                         op_ok_rsp(PerformOpRsp::RpcGenerateCertificateRequest(
952                             GenerateCertificateRequestResponse { device_info, protected_data, ret },
953                         ))
954                     }
955                     Err(e) => op_error_rsp(GenerateCertificateRequestRequest::CODE, e),
956                 }
957             }
958             PerformOpReq::RpcGenerateCertificateV2Request(req) => {
959                 match self.generate_cert_req_v2(req.keys_to_sign, &req.challenge) {
960                     Ok(ret) => op_ok_rsp(PerformOpRsp::RpcGenerateCertificateV2Request(
961                         GenerateCertificateRequestV2Response { ret },
962                     )),
963                     Err(e) => op_error_rsp(GenerateCertificateRequestV2Request::CODE, e),
964                 }
965             }
966         }
967     }
968 
add_rng_entropy(&mut self, data: &[u8]) -> Result<(), Error>969     fn add_rng_entropy(&mut self, data: &[u8]) -> Result<(), Error> {
970         if data.len() > 2048 {
971             return Err(km_err!(InvalidInputLength, "entropy size {} too large", data.len()));
972         };
973 
974         info!("add {} bytes of entropy", data.len());
975         self.imp.rng.add_entropy(data);
976         Ok(())
977     }
978 
early_boot_ended(&mut self) -> Result<(), Error>979     fn early_boot_ended(&mut self) -> Result<(), Error> {
980         info!("early boot ended");
981         self.in_early_boot = false;
982         Ok(())
983     }
984 
get_hardware_info(&self) -> Result<KeyMintHardwareInfo, Error>985     fn get_hardware_info(&self) -> Result<KeyMintHardwareInfo, Error> {
986         Ok(KeyMintHardwareInfo {
987             version_number: self.hw_info.version_number,
988             security_level: self.hw_info.security_level,
989             key_mint_name: self.hw_info.impl_name.to_string(),
990             key_mint_author_name: self.hw_info.author_name.to_string(),
991             timestamp_token_required: self.imp.clock.is_none(),
992         })
993     }
994 
delete_key(&mut self, keyblob: &[u8]) -> Result<(), Error>995     fn delete_key(&mut self, keyblob: &[u8]) -> Result<(), Error> {
996         // Parse the keyblob. It cannot be decrypted, because hidden parameters are not available
997         // (there is no `params` for them to arrive in).
998         if let Ok(keyblob::EncryptedKeyBlob::V1(encrypted_keyblob)) =
999             keyblob::EncryptedKeyBlob::new(keyblob)
1000         {
1001             // We have to trust that any secure deletion slot in the keyblob is valid, because the
1002             // key can't be decrypted.
1003             if let (Some(sdd_mgr), Some(slot)) =
1004                 (&mut self.dev.sdd_mgr, encrypted_keyblob.secure_deletion_slot)
1005             {
1006                 if let Err(e) = sdd_mgr.delete_secret(slot) {
1007                     error!("failed to delete secure deletion slot: {:?}", e);
1008                 }
1009             }
1010         } else {
1011             // We might have failed to parse the keyblob because it is in some prior format.
1012             if let Some(old_key) = self.dev.legacy_key.as_mut() {
1013                 if let Err(e) = old_key.delete_legacy_key(keyblob) {
1014                     error!("failed to parse keyblob as legacy : {:?}, ignoring", e);
1015                 }
1016             } else {
1017                 error!("failed to parse keyblob, ignoring");
1018             }
1019         }
1020 
1021         Ok(())
1022     }
1023 
delete_all_keys(&mut self) -> Result<(), Error>1024     fn delete_all_keys(&mut self) -> Result<(), Error> {
1025         if let Some(sdd_mgr) = &mut self.dev.sdd_mgr {
1026             error!("secure deleting all keys -- device likely to need factory reset!");
1027             sdd_mgr.delete_all();
1028         }
1029         Ok(())
1030     }
1031 
destroy_attestation_ids(&mut self) -> Result<(), Error>1032     fn destroy_attestation_ids(&mut self) -> Result<(), Error> {
1033         match self.dev.attest_ids.as_mut() {
1034             Some(attest_ids) => {
1035                 // Drop any cached copies too.
1036                 *self.attestation_id_info.borrow_mut() = None;
1037                 error!("destroying all device attestation IDs!");
1038                 attest_ids.destroy_all()
1039             }
1040             None => {
1041                 error!("destroying device attestation IDs requested but not supported");
1042                 Err(km_err!(Unimplemented, "no attestation ID functionality available"))
1043             }
1044         }
1045     }
1046 
get_root_of_trust_challenge(&mut self) -> Result<[u8; 16], Error>1047     fn get_root_of_trust_challenge(&mut self) -> Result<[u8; 16], Error> {
1048         if !self.is_strongbox() {
1049             return Err(km_err!(Unimplemented, "root-of-trust challenge only for StrongBox"));
1050         }
1051         self.imp.rng.fill_bytes(&mut self.rot_challenge[..]);
1052         Ok(self.rot_challenge)
1053     }
1054 
get_root_of_trust(&mut self, challenge: &[u8]) -> Result<Vec<u8>, Error>1055     fn get_root_of_trust(&mut self, challenge: &[u8]) -> Result<Vec<u8>, Error> {
1056         if self.is_strongbox() {
1057             return Err(km_err!(Unimplemented, "root-of-trust retrieval not for StrongBox"));
1058         }
1059         let payload = self
1060             .boot_info_hashed_key()?
1061             .to_tagged_vec()
1062             .map_err(|_e| km_err!(EncodingError, "Failed to CBOR-encode RootOfTrust"))?;
1063 
1064         let mac0 = coset::CoseMac0Builder::new()
1065             .protected(
1066                 coset::HeaderBuilder::new().algorithm(coset::iana::Algorithm::HMAC_256_256).build(),
1067             )
1068             .payload(payload)
1069             .try_create_tag(challenge, |data| self.device_hmac(data))?
1070             .build();
1071         mac0.to_tagged_vec()
1072             .map_err(|_e| km_err!(EncodingError, "Failed to CBOR-encode RootOfTrust"))
1073     }
1074 
send_root_of_trust(&mut self, root_of_trust: &[u8]) -> Result<(), Error>1075     fn send_root_of_trust(&mut self, root_of_trust: &[u8]) -> Result<(), Error> {
1076         if !self.is_strongbox() {
1077             return Err(km_err!(Unimplemented, "root-of-trust delivery only for StrongBox"));
1078         }
1079         let mac0 = coset::CoseMac0::from_tagged_slice(root_of_trust)
1080             .map_err(|_e| km_err!(InvalidArgument, "Failed to CBOR-decode CoseMac0"))?;
1081         mac0.verify_tag(&self.rot_challenge, |tag, data| {
1082             match self.verify_device_hmac(data, tag) {
1083                 Ok(true) => Ok(()),
1084                 Ok(false) => {
1085                     Err(km_err!(VerificationFailed, "HMAC verification of RootOfTrust failed"))
1086                 }
1087                 Err(e) => Err(e),
1088             }
1089         })?;
1090         let payload =
1091             mac0.payload.ok_or_else(|| km_err!(InvalidArgument, "Missing payload in CoseMac0"))?;
1092         let boot_info = keymint::BootInfo::from_tagged_slice(&payload)
1093             .map_err(|_e| km_err!(InvalidArgument, "Failed to CBOR-decode RootOfTrust"))?;
1094         if self.boot_info.is_none() {
1095             info!("Setting boot_info to TEE-provided {:?}", boot_info);
1096             self.boot_info = Some(boot_info);
1097         } else {
1098             info!("Ignoring TEE-provided RootOfTrust {:?} as already set", boot_info);
1099         }
1100         Ok(())
1101     }
1102 
set_additional_attestation_info(&mut self, info: Vec<KeyParam>) -> Result<(), Error>1103     fn set_additional_attestation_info(&mut self, info: Vec<KeyParam>) -> Result<(), Error> {
1104         for param in info {
1105             let tag = param.tag();
1106             if !ALLOWED_ADDITIONAL_ATTESTATION_TAGS.contains(&tag) {
1107                 warn!("ignoring non-allowlisted tag: {tag:?}");
1108                 continue;
1109             }
1110             match self.additional_attestation_info.iter().find(|&x| x.tag() == tag) {
1111                 Some(value) if value == &param => {
1112                     warn!(
1113                         concat!(
1114                             "additional attestation info for: {:?} already set, ignoring repeated",
1115                             " attempt to set same info"
1116                         ),
1117                         param
1118                     );
1119                     continue;
1120                 }
1121                 Some(value) => {
1122                     return Err(set_additional_attestation_info_err(
1123                         tag,
1124                         format!(
1125                             concat!(
1126                             "attempt to set additional attestation info for: {:?}, but that tag",
1127                             " already has a different value set: {:?}"
1128                         ),
1129                             param, value
1130                         ),
1131                     ));
1132                 }
1133                 None => {
1134                     self.additional_attestation_info.push(param.clone());
1135                 }
1136             }
1137         }
1138         Ok(())
1139     }
1140 
convert_storage_key_to_ephemeral(&self, keyblob: &[u8]) -> Result<Vec<u8>, Error>1141     fn convert_storage_key_to_ephemeral(&self, keyblob: &[u8]) -> Result<Vec<u8>, Error> {
1142         if let Some(sk_wrapper) = &self.dev.sk_wrapper {
1143             // Parse and decrypt the keyblob. Note that there is no way to provide extra hidden
1144             // params on the API.
1145             let (keyblob, _) = self.keyblob_parse_decrypt(keyblob, &[])?;
1146 
1147             // Check that the keyblob is indeed a storage key.
1148             let chars = keyblob.characteristics_at(self.hw_info.security_level)?;
1149             if !get_bool_tag_value!(chars, StorageKey)? {
1150                 return Err(km_err!(InvalidArgument, "attempting to convert non-storage key"));
1151             }
1152 
1153             // Now that we've got the key material, use a device-specific method to re-wrap it
1154             // with an ephemeral key.
1155             sk_wrapper.ephemeral_wrap(&keyblob.key_material)
1156         } else {
1157             Err(km_err!(Unimplemented, "storage key wrapping unavailable"))
1158         }
1159     }
1160 
get_key_characteristics( &self, key_blob: &[u8], app_id: Vec<u8>, app_data: Vec<u8>, ) -> Result<Vec<KeyCharacteristics>, Error>1161     fn get_key_characteristics(
1162         &self,
1163         key_blob: &[u8],
1164         app_id: Vec<u8>,
1165         app_data: Vec<u8>,
1166     ) -> Result<Vec<KeyCharacteristics>, Error> {
1167         // Parse and decrypt the keyblob, which requires extra hidden params.
1168         let mut params = vec_try_with_capacity!(2)?;
1169         if !app_id.is_empty() {
1170             params.push(KeyParam::ApplicationId(app_id)); // capacity enough
1171         }
1172         if !app_data.is_empty() {
1173             params.push(KeyParam::ApplicationData(app_data)); // capacity enough
1174         }
1175         let (keyblob, _) = self.keyblob_parse_decrypt(key_blob, &params)?;
1176         Ok(keyblob.characteristics)
1177     }
1178 
1179     /// Generate an HMAC-SHA256 value over the data using the device's HMAC key (if available).
device_hmac(&self, data: &[u8]) -> Result<Vec<u8>, Error>1180     fn device_hmac(&self, data: &[u8]) -> Result<Vec<u8>, Error> {
1181         match &self.device_hmac {
1182             Some(traitobj) => traitobj.hmac(&*self.imp.hmac, data),
1183             None => {
1184                 error!("HMAC requested but no key available!");
1185                 Err(km_err!(HardwareNotYetAvailable, "HMAC key not agreed"))
1186             }
1187         }
1188     }
1189 
1190     /// Verify an HMAC-SHA256 value over the data using the device's HMAC key (if available).
verify_device_hmac(&self, data: &[u8], mac: &[u8]) -> Result<bool, Error>1191     fn verify_device_hmac(&self, data: &[u8], mac: &[u8]) -> Result<bool, Error> {
1192         let remac = self.device_hmac(data)?;
1193         Ok(self.imp.compare.eq(mac, &remac))
1194     }
1195 
1196     /// Return the root of trust that is bound into keyblobs.
root_of_trust(&self) -> Result<&[u8], Error>1197     fn root_of_trust(&self) -> Result<&[u8], Error> {
1198         match &self.rot_data {
1199             Some(data) => Ok(data),
1200             None => Err(km_err!(HardwareNotYetAvailable, "No root-of-trust info available")),
1201         }
1202     }
1203 
1204     /// Return the root key used for key encryption.
root_kek(&self, context: &[u8]) -> Result<OpaqueOr<hmac::Key>, Error>1205     fn root_kek(&self, context: &[u8]) -> Result<OpaqueOr<hmac::Key>, Error> {
1206         self.dev.keys.root_kek(context)
1207     }
1208 
1209     /// Add KeyMint-generated tags to the provided [`KeyCharacteristics`].
add_keymint_tags( &self, chars: &mut Vec<KeyCharacteristics>, origin: KeyOrigin, ) -> Result<(), Error>1210     fn add_keymint_tags(
1211         &self,
1212         chars: &mut Vec<KeyCharacteristics>,
1213         origin: KeyOrigin,
1214     ) -> Result<(), Error> {
1215         for kc in chars {
1216             if kc.security_level == self.hw_info.security_level {
1217                 kc.authorizations.try_push(KeyParam::Origin(origin))?;
1218                 if let Some(hal_info) = &self.hal_info {
1219                     kc.authorizations.try_extend_from_slice(&[
1220                         KeyParam::OsVersion(hal_info.os_version),
1221                         KeyParam::OsPatchlevel(hal_info.os_patchlevel),
1222                         KeyParam::VendorPatchlevel(hal_info.vendor_patchlevel),
1223                     ])?;
1224                 }
1225                 if let Some(boot_info) = &self.boot_info {
1226                     kc.authorizations
1227                         .try_push(KeyParam::BootPatchlevel(boot_info.boot_patchlevel))?;
1228                 }
1229                 return Ok(());
1230             }
1231         }
1232         Err(km_err!(
1233             InvalidArgument,
1234             "no characteristics at our security level {:?}",
1235             self.hw_info.security_level
1236         ))
1237     }
1238 }
1239 
1240 /// Create an OK response structure with the given inner response message.
op_ok_rsp(rsp: PerformOpRsp) -> PerformOpResponse1241 fn op_ok_rsp(rsp: PerformOpRsp) -> PerformOpResponse {
1242     // Zero is OK in any context.
1243     PerformOpResponse { error_code: 0, rsp: Some(rsp) }
1244 }
1245 
1246 /// Create a response structure with the given error code.
error_rsp(error_code: i32) -> PerformOpResponse1247 fn error_rsp(error_code: i32) -> PerformOpResponse {
1248     PerformOpResponse { error_code, rsp: None }
1249 }
1250 
1251 /// Create a response structure with the given error.
op_error_rsp(op: KeyMintOperation, err: Error) -> PerformOpResponse1252 fn op_error_rsp(op: KeyMintOperation, err: Error) -> PerformOpResponse {
1253     warn!("failing {:?} request with error {:?}", op, err);
1254     if kmr_wire::is_rpc_operation(op) {
1255         // The IRemotelyProvisionedComponent HAL uses a different error space than the
1256         // other HALs.
1257         let rpc_err: rpc::ErrorCode = match err {
1258             Error::Cbor(_) | Error::Der(_) | Error::Alloc(_) => rpc::ErrorCode::Failed,
1259             Error::Hal(_, _) => {
1260                 error!("encountered non-RKP error on RKP method! {:?}", err);
1261                 rpc::ErrorCode::Failed
1262             }
1263             Error::Rpc(e, _) => e,
1264         };
1265         error_rsp(rpc_err as i32)
1266     } else {
1267         let hal_err = match err {
1268             Error::Cbor(_) | Error::Der(_) => ErrorCode::InvalidArgument,
1269             Error::Hal(e, _) => e,
1270             Error::Rpc(_, _) => {
1271                 error!("encountered RKP error on non-RKP method! {:?}", err);
1272                 ErrorCode::InvalidArgument
1273             }
1274             Error::Alloc(_) => ErrorCode::MemoryAllocationFailed,
1275         };
1276         error_rsp(hal_err as i32)
1277     }
1278 }
1279 
1280 /// Create an Error for [`KeyMintTa::set_additional_attestation_info`] failure that corresponds to
1281 /// the specified tag.
set_additional_attestation_info_err(tag: Tag, err_msg: String) -> Error1282 fn set_additional_attestation_info_err(tag: Tag, err_msg: String) -> Error {
1283     match tag {
1284         Tag::ModuleHash => km_err!(ModuleHashAlreadySet, "{}", err_msg),
1285         _ => km_err!(InvalidTag, "unexpected tag: {tag:?}"),
1286     }
1287 }
1288 
1289 /// Hand-encoded [`PerformOpResponse`] data for [`ErrorCode::UNKNOWN_ERROR`].
1290 /// Does not perform CBOR serialization (and so is suitable for error reporting if/when
1291 /// CBOR serialization fails).
invalid_cbor_rsp_data() -> [u8; 5]1292 fn invalid_cbor_rsp_data() -> [u8; 5] {
1293     [
1294         0x82, // 2-arr
1295         0x39, // nint, len 2
1296         0x03, // 0x3e7(999)
1297         0xe7, // = -1000
1298         0x80, // 0-arr
1299     ]
1300 }
1301 
1302 /// Build the HMAC input for a [`HardwareAuthToken`]
hardware_auth_token_mac_input(token: &HardwareAuthToken) -> Result<Vec<u8>, Error>1303 pub fn hardware_auth_token_mac_input(token: &HardwareAuthToken) -> Result<Vec<u8>, Error> {
1304     let mut result = vec_try_with_capacity!(
1305         size_of::<u8>() + // version=0 (BE)
1306         size_of::<i64>() + // challenge (Host)
1307         size_of::<i64>() + // user_id (Host)
1308         size_of::<i64>() + // authenticator_id (Host)
1309         size_of::<i32>() + // authenticator_type (BE)
1310         size_of::<i64>() // timestamp (BE)
1311     )?;
1312     result.extend_from_slice(&0u8.to_be_bytes()[..]);
1313     result.extend_from_slice(&token.challenge.to_ne_bytes()[..]);
1314     result.extend_from_slice(&token.user_id.to_ne_bytes()[..]);
1315     result.extend_from_slice(&token.authenticator_id.to_ne_bytes()[..]);
1316     result.extend_from_slice(&(token.authenticator_type as i32).to_be_bytes()[..]);
1317     result.extend_from_slice(&token.timestamp.milliseconds.to_be_bytes()[..]);
1318     Ok(result)
1319 }
1320