xref: /btstack/port/stm32-f4discovery-cc256x/Drivers/STM32F4xx_HAL_Driver/Src/stm32f4xx_hal_rcc.c (revision 225f4ba4fe806afeda1ee8519bb5f4a8ce540af2)
1 /**
2   ******************************************************************************
3   * @file    stm32f4xx_hal_rcc.c
4   * @author  MCD Application Team
5   * @brief   RCC HAL module driver.
6   *          This file provides firmware functions to manage the following
7   *          functionalities of the Reset and Clock Control (RCC) peripheral:
8   *           + Initialization and de-initialization functions
9   *           + Peripheral Control functions
10   *
11   @verbatim
12   ==============================================================================
13                       ##### RCC specific features #####
14   ==============================================================================
15     [..]
16       After reset the device is running from Internal High Speed oscillator
17       (HSI 16MHz) with Flash 0 wait state, Flash prefetch buffer, D-Cache
18       and I-Cache are disabled, and all peripherals are off except internal
19       SRAM, Flash and JTAG.
20       (+) There is no prescaler on High speed (AHB) and Low speed (APB) busses;
21           all peripherals mapped on these busses are running at HSI speed.
22       (+) The clock for all peripherals is switched off, except the SRAM and FLASH.
23       (+) All GPIOs are in input floating state, except the JTAG pins which
24           are assigned to be used for debug purpose.
25 
26     [..]
27       Once the device started from reset, the user application has to:
28       (+) Configure the clock source to be used to drive the System clock
29           (if the application needs higher frequency/performance)
30       (+) Configure the System clock frequency and Flash settings
31       (+) Configure the AHB and APB busses prescalers
32       (+) Enable the clock for the peripheral(s) to be used
33       (+) Configure the clock source(s) for peripherals which clocks are not
34           derived from the System clock (I2S, RTC, ADC, USB OTG FS/SDIO/RNG)
35 
36                       ##### RCC Limitations #####
37   ==============================================================================
38     [..]
39       A delay between an RCC peripheral clock enable and the effective peripheral
40       enabling should be taken into account in order to manage the peripheral read/write
41       from/to registers.
42       (+) This delay depends on the peripheral mapping.
43       (+) If peripheral is mapped on AHB: the delay is 2 AHB clock cycle
44           after the clock enable bit is set on the hardware register
45       (+) If peripheral is mapped on APB: the delay is 2 APB clock cycle
46           after the clock enable bit is set on the hardware register
47 
48     [..]
49       Implemented Workaround:
50       (+) For AHB & APB peripherals, a dummy read to the peripheral register has been
51           inserted in each __HAL_RCC_PPP_CLK_ENABLE() macro.
52 
53   @endverbatim
54   ******************************************************************************
55   * @attention
56   *
57   * <h2><center>&copy; Copyright (c) 2017 STMicroelectronics.
58   * All rights reserved.</center></h2>
59   *
60   * This software component is licensed by ST under BSD 3-Clause license,
61   * the "License"; You may not use this file except in compliance with the
62   * License. You may obtain a copy of the License at:
63   *                        opensource.org/licenses/BSD-3-Clause
64   *
65   ******************************************************************************
66   */
67 
68 /* Includes ------------------------------------------------------------------*/
69 #include "stm32f4xx_hal.h"
70 
71 /** @addtogroup STM32F4xx_HAL_Driver
72   * @{
73   */
74 
75 /** @defgroup RCC RCC
76   * @brief RCC HAL module driver
77   * @{
78   */
79 
80 #ifdef HAL_RCC_MODULE_ENABLED
81 
82 /* Private typedef -----------------------------------------------------------*/
83 /* Private define ------------------------------------------------------------*/
84 /** @addtogroup RCC_Private_Constants
85   * @{
86   */
87 
88 /* Private macro -------------------------------------------------------------*/
89 #define __MCO1_CLK_ENABLE()   __HAL_RCC_GPIOA_CLK_ENABLE()
90 #define MCO1_GPIO_PORT        GPIOA
91 #define MCO1_PIN              GPIO_PIN_8
92 
93 #define __MCO2_CLK_ENABLE()   __HAL_RCC_GPIOC_CLK_ENABLE()
94 #define MCO2_GPIO_PORT         GPIOC
95 #define MCO2_PIN               GPIO_PIN_9
96 /**
97   * @}
98   */
99 
100 /* Private variables ---------------------------------------------------------*/
101 /** @defgroup RCC_Private_Variables RCC Private Variables
102   * @{
103   */
104 /**
105   * @}
106   */
107 /* Private function prototypes -----------------------------------------------*/
108 /* Private functions ---------------------------------------------------------*/
109 
110 /** @defgroup RCC_Exported_Functions RCC Exported Functions
111   *  @{
112   */
113 
114 /** @defgroup RCC_Exported_Functions_Group1 Initialization and de-initialization functions
115  *  @brief    Initialization and Configuration functions
116  *
117 @verbatim
118  ===============================================================================
119            ##### Initialization and de-initialization functions #####
120  ===============================================================================
121     [..]
122       This section provides functions allowing to configure the internal/external oscillators
123       (HSE, HSI, LSE, LSI, PLL, CSS and MCO) and the System busses clocks (SYSCLK, AHB, APB1
124        and APB2).
125 
126     [..] Internal/external clock and PLL configuration
127          (#) HSI (high-speed internal), 16 MHz factory-trimmed RC used directly or through
128              the PLL as System clock source.
129 
130          (#) LSI (low-speed internal), 32 KHz low consumption RC used as IWDG and/or RTC
131              clock source.
132 
133          (#) HSE (high-speed external), 4 to 26 MHz crystal oscillator used directly or
134              through the PLL as System clock source. Can be used also as RTC clock source.
135 
136          (#) LSE (low-speed external), 32 KHz oscillator used as RTC clock source.
137 
138          (#) PLL (clocked by HSI or HSE), featuring two different output clocks:
139            (++) The first output is used to generate the high speed system clock (up to 168 MHz)
140            (++) The second output is used to generate the clock for the USB OTG FS (48 MHz),
141                 the random analog generator (<=48 MHz) and the SDIO (<= 48 MHz).
142 
143          (#) CSS (Clock security system), once enable using the macro __HAL_RCC_CSS_ENABLE()
144              and if a HSE clock failure occurs(HSE used directly or through PLL as System
145              clock source), the System clocks automatically switched to HSI and an interrupt
146              is generated if enabled. The interrupt is linked to the Cortex-M4 NMI
147              (Non-Maskable Interrupt) exception vector.
148 
149          (#) MCO1 (microcontroller clock output), used to output HSI, LSE, HSE or PLL
150              clock (through a configurable prescaler) on PA8 pin.
151 
152          (#) MCO2 (microcontroller clock output), used to output HSE, PLL, SYSCLK or PLLI2S
153              clock (through a configurable prescaler) on PC9 pin.
154 
155     [..] System, AHB and APB busses clocks configuration
156          (#) Several clock sources can be used to drive the System clock (SYSCLK): HSI,
157              HSE and PLL.
158              The AHB clock (HCLK) is derived from System clock through configurable
159              prescaler and used to clock the CPU, memory and peripherals mapped
160              on AHB bus (DMA, GPIO...). APB1 (PCLK1) and APB2 (PCLK2) clocks are derived
161              from AHB clock through configurable prescalers and used to clock
162              the peripherals mapped on these busses. You can use
163              "HAL_RCC_GetSysClockFreq()" function to retrieve the frequencies of these clocks.
164 
165          (#) For the STM32F405xx/07xx and STM32F415xx/17xx devices, the maximum
166              frequency of the SYSCLK and HCLK is 168 MHz, PCLK2 84 MHz and PCLK1 42 MHz.
167              Depending on the device voltage range, the maximum frequency should
168              be adapted accordingly (refer to the product datasheets for more details).
169 
170          (#) For the STM32F42xxx, STM32F43xxx, STM32F446xx, STM32F469xx and STM32F479xx devices,
171              the maximum frequency of the SYSCLK and HCLK is 180 MHz, PCLK2 90 MHz and PCLK1 45 MHz.
172              Depending on the device voltage range, the maximum frequency should
173              be adapted accordingly (refer to the product datasheets for more details).
174 
175          (#) For the STM32F401xx, the maximum frequency of the SYSCLK and HCLK is 84 MHz,
176              PCLK2 84 MHz and PCLK1 42 MHz.
177              Depending on the device voltage range, the maximum frequency should
178              be adapted accordingly (refer to the product datasheets for more details).
179 
180          (#) For the STM32F41xxx, the maximum frequency of the SYSCLK and HCLK is 100 MHz,
181              PCLK2 100 MHz and PCLK1 50 MHz.
182              Depending on the device voltage range, the maximum frequency should
183              be adapted accordingly (refer to the product datasheets for more details).
184 
185 @endverbatim
186   * @{
187   */
188 
189 /**
190   * @brief  Resets the RCC clock configuration to the default reset state.
191   * @note   The default reset state of the clock configuration is given below:
192   *            - HSI ON and used as system clock source
193   *            - HSE and PLL OFF
194   *            - AHB, APB1 and APB2 prescaler set to 1.
195   *            - CSS, MCO1 and MCO2 OFF
196   *            - All interrupts disabled
197   * @note   This function doesn't modify the configuration of the
198   *            - Peripheral clocks
199   *            - LSI, LSE and RTC clocks
200   * @retval HAL status
201   */
HAL_RCC_DeInit(void)202 __weak HAL_StatusTypeDef HAL_RCC_DeInit(void)
203 {
204   return HAL_OK;
205 }
206 
207 /**
208   * @brief  Initializes the RCC Oscillators according to the specified parameters in the
209   *         RCC_OscInitTypeDef.
210   * @param  RCC_OscInitStruct pointer to an RCC_OscInitTypeDef structure that
211   *         contains the configuration information for the RCC Oscillators.
212   * @note   The PLL is not disabled when used as system clock.
213   * @note   Transitions LSE Bypass to LSE On and LSE On to LSE Bypass are not
214   *         supported by this API. User should request a transition to LSE Off
215   *         first and then LSE On or LSE Bypass.
216   * @note   Transition HSE Bypass to HSE On and HSE On to HSE Bypass are not
217   *         supported by this API. User should request a transition to HSE Off
218   *         first and then HSE On or HSE Bypass.
219   * @retval HAL status
220   */
HAL_RCC_OscConfig(RCC_OscInitTypeDef * RCC_OscInitStruct)221 __weak HAL_StatusTypeDef HAL_RCC_OscConfig(RCC_OscInitTypeDef  *RCC_OscInitStruct)
222 {
223   uint32_t tickstart;
224 
225   /* Check Null pointer */
226   if(RCC_OscInitStruct == NULL)
227   {
228     return HAL_ERROR;
229   }
230 
231   /* Check the parameters */
232   assert_param(IS_RCC_OSCILLATORTYPE(RCC_OscInitStruct->OscillatorType));
233   /*------------------------------- HSE Configuration ------------------------*/
234   if(((RCC_OscInitStruct->OscillatorType) & RCC_OSCILLATORTYPE_HSE) == RCC_OSCILLATORTYPE_HSE)
235   {
236     /* Check the parameters */
237     assert_param(IS_RCC_HSE(RCC_OscInitStruct->HSEState));
238     /* When the HSE is used as system clock or clock source for PLL in these cases HSE will not disabled */
239     if((__HAL_RCC_GET_SYSCLK_SOURCE() == RCC_CFGR_SWS_HSE) ||\
240       ((__HAL_RCC_GET_SYSCLK_SOURCE() == RCC_CFGR_SWS_PLL) && ((RCC->PLLCFGR & RCC_PLLCFGR_PLLSRC) == RCC_PLLCFGR_PLLSRC_HSE)))
241     {
242       if((__HAL_RCC_GET_FLAG(RCC_FLAG_HSERDY) != RESET) && (RCC_OscInitStruct->HSEState == RCC_HSE_OFF))
243       {
244         return HAL_ERROR;
245       }
246     }
247     else
248     {
249       /* Set the new HSE configuration ---------------------------------------*/
250       __HAL_RCC_HSE_CONFIG(RCC_OscInitStruct->HSEState);
251 
252       /* Check the HSE State */
253       if((RCC_OscInitStruct->HSEState) != RCC_HSE_OFF)
254       {
255         /* Get Start Tick */
256         tickstart = HAL_GetTick();
257 
258         /* Wait till HSE is ready */
259         while(__HAL_RCC_GET_FLAG(RCC_FLAG_HSERDY) == RESET)
260         {
261           if((HAL_GetTick() - tickstart ) > HSE_TIMEOUT_VALUE)
262           {
263             return HAL_TIMEOUT;
264           }
265         }
266       }
267       else
268       {
269         /* Get Start Tick */
270         tickstart = HAL_GetTick();
271 
272         /* Wait till HSE is bypassed or disabled */
273         while(__HAL_RCC_GET_FLAG(RCC_FLAG_HSERDY) != RESET)
274         {
275           if((HAL_GetTick() - tickstart ) > HSE_TIMEOUT_VALUE)
276           {
277             return HAL_TIMEOUT;
278           }
279         }
280       }
281     }
282   }
283   /*----------------------------- HSI Configuration --------------------------*/
284   if(((RCC_OscInitStruct->OscillatorType) & RCC_OSCILLATORTYPE_HSI) == RCC_OSCILLATORTYPE_HSI)
285   {
286     /* Check the parameters */
287     assert_param(IS_RCC_HSI(RCC_OscInitStruct->HSIState));
288     assert_param(IS_RCC_CALIBRATION_VALUE(RCC_OscInitStruct->HSICalibrationValue));
289 
290     /* Check if HSI is used as system clock or as PLL source when PLL is selected as system clock */
291     if((__HAL_RCC_GET_SYSCLK_SOURCE() == RCC_CFGR_SWS_HSI) ||\
292       ((__HAL_RCC_GET_SYSCLK_SOURCE() == RCC_CFGR_SWS_PLL) && ((RCC->PLLCFGR & RCC_PLLCFGR_PLLSRC) == RCC_PLLCFGR_PLLSRC_HSI)))
293     {
294       /* When HSI is used as system clock it will not disabled */
295       if((__HAL_RCC_GET_FLAG(RCC_FLAG_HSIRDY) != RESET) && (RCC_OscInitStruct->HSIState != RCC_HSI_ON))
296       {
297         return HAL_ERROR;
298       }
299       /* Otherwise, just the calibration is allowed */
300       else
301       {
302         /* Adjusts the Internal High Speed oscillator (HSI) calibration value.*/
303         __HAL_RCC_HSI_CALIBRATIONVALUE_ADJUST(RCC_OscInitStruct->HSICalibrationValue);
304       }
305     }
306     else
307     {
308       /* Check the HSI State */
309       if((RCC_OscInitStruct->HSIState)!= RCC_HSI_OFF)
310       {
311         /* Enable the Internal High Speed oscillator (HSI). */
312         __HAL_RCC_HSI_ENABLE();
313 
314         /* Get Start Tick*/
315         tickstart = HAL_GetTick();
316 
317         /* Wait till HSI is ready */
318         while(__HAL_RCC_GET_FLAG(RCC_FLAG_HSIRDY) == RESET)
319         {
320           if((HAL_GetTick() - tickstart ) > HSI_TIMEOUT_VALUE)
321           {
322             return HAL_TIMEOUT;
323           }
324         }
325 
326         /* Adjusts the Internal High Speed oscillator (HSI) calibration value. */
327         __HAL_RCC_HSI_CALIBRATIONVALUE_ADJUST(RCC_OscInitStruct->HSICalibrationValue);
328       }
329       else
330       {
331         /* Disable the Internal High Speed oscillator (HSI). */
332         __HAL_RCC_HSI_DISABLE();
333 
334         /* Get Start Tick*/
335         tickstart = HAL_GetTick();
336 
337         /* Wait till HSI is ready */
338         while(__HAL_RCC_GET_FLAG(RCC_FLAG_HSIRDY) != RESET)
339         {
340           if((HAL_GetTick() - tickstart ) > HSI_TIMEOUT_VALUE)
341           {
342             return HAL_TIMEOUT;
343           }
344         }
345       }
346     }
347   }
348   /*------------------------------ LSI Configuration -------------------------*/
349   if(((RCC_OscInitStruct->OscillatorType) & RCC_OSCILLATORTYPE_LSI) == RCC_OSCILLATORTYPE_LSI)
350   {
351     /* Check the parameters */
352     assert_param(IS_RCC_LSI(RCC_OscInitStruct->LSIState));
353 
354     /* Check the LSI State */
355     if((RCC_OscInitStruct->LSIState)!= RCC_LSI_OFF)
356     {
357       /* Enable the Internal Low Speed oscillator (LSI). */
358       __HAL_RCC_LSI_ENABLE();
359 
360       /* Get Start Tick*/
361       tickstart = HAL_GetTick();
362 
363       /* Wait till LSI is ready */
364       while(__HAL_RCC_GET_FLAG(RCC_FLAG_LSIRDY) == RESET)
365       {
366         if((HAL_GetTick() - tickstart ) > LSI_TIMEOUT_VALUE)
367         {
368           return HAL_TIMEOUT;
369         }
370       }
371     }
372     else
373     {
374       /* Disable the Internal Low Speed oscillator (LSI). */
375       __HAL_RCC_LSI_DISABLE();
376 
377       /* Get Start Tick */
378       tickstart = HAL_GetTick();
379 
380       /* Wait till LSI is ready */
381       while(__HAL_RCC_GET_FLAG(RCC_FLAG_LSIRDY) != RESET)
382       {
383         if((HAL_GetTick() - tickstart ) > LSI_TIMEOUT_VALUE)
384         {
385           return HAL_TIMEOUT;
386         }
387       }
388     }
389   }
390   /*------------------------------ LSE Configuration -------------------------*/
391   if(((RCC_OscInitStruct->OscillatorType) & RCC_OSCILLATORTYPE_LSE) == RCC_OSCILLATORTYPE_LSE)
392   {
393     FlagStatus       pwrclkchanged = RESET;
394 
395     /* Check the parameters */
396     assert_param(IS_RCC_LSE(RCC_OscInitStruct->LSEState));
397 
398     /* Update LSE configuration in Backup Domain control register    */
399     /* Requires to enable write access to Backup Domain of necessary */
400     if(__HAL_RCC_PWR_IS_CLK_DISABLED())
401     {
402       __HAL_RCC_PWR_CLK_ENABLE();
403       pwrclkchanged = SET;
404     }
405 
406     if(HAL_IS_BIT_CLR(PWR->CR, PWR_CR_DBP))
407     {
408       /* Enable write access to Backup domain */
409       SET_BIT(PWR->CR, PWR_CR_DBP);
410 
411       /* Wait for Backup domain Write protection disable */
412       tickstart = HAL_GetTick();
413 
414       while(HAL_IS_BIT_CLR(PWR->CR, PWR_CR_DBP))
415       {
416         if((HAL_GetTick() - tickstart) > RCC_DBP_TIMEOUT_VALUE)
417         {
418           return HAL_TIMEOUT;
419         }
420       }
421     }
422 
423     /* Set the new LSE configuration -----------------------------------------*/
424     __HAL_RCC_LSE_CONFIG(RCC_OscInitStruct->LSEState);
425     /* Check the LSE State */
426     if((RCC_OscInitStruct->LSEState) != RCC_LSE_OFF)
427     {
428       /* Get Start Tick*/
429       tickstart = HAL_GetTick();
430 
431       /* Wait till LSE is ready */
432       while(__HAL_RCC_GET_FLAG(RCC_FLAG_LSERDY) == RESET)
433       {
434         if((HAL_GetTick() - tickstart ) > RCC_LSE_TIMEOUT_VALUE)
435         {
436           return HAL_TIMEOUT;
437         }
438       }
439     }
440     else
441     {
442       /* Get Start Tick */
443       tickstart = HAL_GetTick();
444 
445       /* Wait till LSE is ready */
446       while(__HAL_RCC_GET_FLAG(RCC_FLAG_LSERDY) != RESET)
447       {
448         if((HAL_GetTick() - tickstart ) > RCC_LSE_TIMEOUT_VALUE)
449         {
450           return HAL_TIMEOUT;
451         }
452       }
453     }
454 
455     /* Restore clock configuration if changed */
456     if(pwrclkchanged == SET)
457     {
458       __HAL_RCC_PWR_CLK_DISABLE();
459     }
460   }
461   /*-------------------------------- PLL Configuration -----------------------*/
462   /* Check the parameters */
463   assert_param(IS_RCC_PLL(RCC_OscInitStruct->PLL.PLLState));
464   if ((RCC_OscInitStruct->PLL.PLLState) != RCC_PLL_NONE)
465   {
466     /* Check if the PLL is used as system clock or not */
467     if(__HAL_RCC_GET_SYSCLK_SOURCE() != RCC_CFGR_SWS_PLL)
468     {
469       if((RCC_OscInitStruct->PLL.PLLState) == RCC_PLL_ON)
470       {
471         /* Check the parameters */
472         assert_param(IS_RCC_PLLSOURCE(RCC_OscInitStruct->PLL.PLLSource));
473         assert_param(IS_RCC_PLLM_VALUE(RCC_OscInitStruct->PLL.PLLM));
474         assert_param(IS_RCC_PLLN_VALUE(RCC_OscInitStruct->PLL.PLLN));
475         assert_param(IS_RCC_PLLP_VALUE(RCC_OscInitStruct->PLL.PLLP));
476         assert_param(IS_RCC_PLLQ_VALUE(RCC_OscInitStruct->PLL.PLLQ));
477 
478         /* Disable the main PLL. */
479         __HAL_RCC_PLL_DISABLE();
480 
481         /* Get Start Tick */
482         tickstart = HAL_GetTick();
483 
484         /* Wait till PLL is ready */
485         while(__HAL_RCC_GET_FLAG(RCC_FLAG_PLLRDY) != RESET)
486         {
487           if((HAL_GetTick() - tickstart ) > PLL_TIMEOUT_VALUE)
488           {
489             return HAL_TIMEOUT;
490           }
491         }
492 
493         /* Configure the main PLL clock source, multiplication and division factors. */
494         WRITE_REG(RCC->PLLCFGR, (RCC_OscInitStruct->PLL.PLLSource                                            | \
495                                  RCC_OscInitStruct->PLL.PLLM                                                 | \
496                                  (RCC_OscInitStruct->PLL.PLLN << RCC_PLLCFGR_PLLN_Pos)             | \
497                                  (((RCC_OscInitStruct->PLL.PLLP >> 1U) - 1U) << RCC_PLLCFGR_PLLP_Pos) | \
498                                  (RCC_OscInitStruct->PLL.PLLQ << RCC_PLLCFGR_PLLQ_Pos)));
499         /* Enable the main PLL. */
500         __HAL_RCC_PLL_ENABLE();
501 
502         /* Get Start Tick */
503         tickstart = HAL_GetTick();
504 
505         /* Wait till PLL is ready */
506         while(__HAL_RCC_GET_FLAG(RCC_FLAG_PLLRDY) == RESET)
507         {
508           if((HAL_GetTick() - tickstart ) > PLL_TIMEOUT_VALUE)
509           {
510             return HAL_TIMEOUT;
511           }
512         }
513       }
514       else
515       {
516         /* Disable the main PLL. */
517         __HAL_RCC_PLL_DISABLE();
518 
519         /* Get Start Tick */
520         tickstart = HAL_GetTick();
521 
522         /* Wait till PLL is ready */
523         while(__HAL_RCC_GET_FLAG(RCC_FLAG_PLLRDY) != RESET)
524         {
525           if((HAL_GetTick() - tickstart ) > PLL_TIMEOUT_VALUE)
526           {
527             return HAL_TIMEOUT;
528           }
529         }
530       }
531     }
532     else
533     {
534       return HAL_ERROR;
535     }
536   }
537   return HAL_OK;
538 }
539 
540 /**
541   * @brief  Initializes the CPU, AHB and APB busses clocks according to the specified
542   *         parameters in the RCC_ClkInitStruct.
543   * @param  RCC_ClkInitStruct pointer to an RCC_OscInitTypeDef structure that
544   *         contains the configuration information for the RCC peripheral.
545   * @param  FLatency FLASH Latency, this parameter depend on device selected
546   *
547   * @note   The SystemCoreClock CMSIS variable is used to store System Clock Frequency
548   *         and updated by HAL_RCC_GetHCLKFreq() function called within this function
549   *
550   * @note   The HSI is used (enabled by hardware) as system clock source after
551   *         startup from Reset, wake-up from STOP and STANDBY mode, or in case
552   *         of failure of the HSE used directly or indirectly as system clock
553   *         (if the Clock Security System CSS is enabled).
554   *
555   * @note   A switch from one clock source to another occurs only if the target
556   *         clock source is ready (clock stable after startup delay or PLL locked).
557   *         If a clock source which is not yet ready is selected, the switch will
558   *         occur when the clock source will be ready.
559   *
560   * @note   Depending on the device voltage range, the software has to set correctly
561   *         HPRE[3:0] bits to ensure that HCLK not exceed the maximum allowed frequency
562   *         (for more details refer to section above "Initialization/de-initialization functions")
563   * @retval None
564   */
HAL_RCC_ClockConfig(RCC_ClkInitTypeDef * RCC_ClkInitStruct,uint32_t FLatency)565 HAL_StatusTypeDef HAL_RCC_ClockConfig(RCC_ClkInitTypeDef  *RCC_ClkInitStruct, uint32_t FLatency)
566 {
567   uint32_t tickstart;
568 
569   /* Check Null pointer */
570   if(RCC_ClkInitStruct == NULL)
571   {
572     return HAL_ERROR;
573   }
574 
575   /* Check the parameters */
576   assert_param(IS_RCC_CLOCKTYPE(RCC_ClkInitStruct->ClockType));
577   assert_param(IS_FLASH_LATENCY(FLatency));
578 
579   /* To correctly read data from FLASH memory, the number of wait states (LATENCY)
580     must be correctly programmed according to the frequency of the CPU clock
581     (HCLK) and the supply voltage of the device. */
582 
583   /* Increasing the number of wait states because of higher CPU frequency */
584   if(FLatency > __HAL_FLASH_GET_LATENCY())
585   {
586     /* Program the new number of wait states to the LATENCY bits in the FLASH_ACR register */
587     __HAL_FLASH_SET_LATENCY(FLatency);
588 
589     /* Check that the new number of wait states is taken into account to access the Flash
590     memory by reading the FLASH_ACR register */
591     if(__HAL_FLASH_GET_LATENCY() != FLatency)
592     {
593       return HAL_ERROR;
594     }
595   }
596 
597   /*-------------------------- HCLK Configuration --------------------------*/
598   if(((RCC_ClkInitStruct->ClockType) & RCC_CLOCKTYPE_HCLK) == RCC_CLOCKTYPE_HCLK)
599   {
600     /* Set the highest APBx dividers in order to ensure that we do not go through
601        a non-spec phase whatever we decrease or increase HCLK. */
602     if(((RCC_ClkInitStruct->ClockType) & RCC_CLOCKTYPE_PCLK1) == RCC_CLOCKTYPE_PCLK1)
603     {
604       MODIFY_REG(RCC->CFGR, RCC_CFGR_PPRE1, RCC_HCLK_DIV16);
605     }
606 
607     if(((RCC_ClkInitStruct->ClockType) & RCC_CLOCKTYPE_PCLK2) == RCC_CLOCKTYPE_PCLK2)
608     {
609       MODIFY_REG(RCC->CFGR, RCC_CFGR_PPRE2, (RCC_HCLK_DIV16 << 3));
610     }
611 
612     assert_param(IS_RCC_HCLK(RCC_ClkInitStruct->AHBCLKDivider));
613     MODIFY_REG(RCC->CFGR, RCC_CFGR_HPRE, RCC_ClkInitStruct->AHBCLKDivider);
614   }
615 
616   /*------------------------- SYSCLK Configuration ---------------------------*/
617   if(((RCC_ClkInitStruct->ClockType) & RCC_CLOCKTYPE_SYSCLK) == RCC_CLOCKTYPE_SYSCLK)
618   {
619     assert_param(IS_RCC_SYSCLKSOURCE(RCC_ClkInitStruct->SYSCLKSource));
620 
621     /* HSE is selected as System Clock Source */
622     if(RCC_ClkInitStruct->SYSCLKSource == RCC_SYSCLKSOURCE_HSE)
623     {
624       /* Check the HSE ready flag */
625       if(__HAL_RCC_GET_FLAG(RCC_FLAG_HSERDY) == RESET)
626       {
627         return HAL_ERROR;
628       }
629     }
630     /* PLL is selected as System Clock Source */
631     else if((RCC_ClkInitStruct->SYSCLKSource == RCC_SYSCLKSOURCE_PLLCLK)   ||
632             (RCC_ClkInitStruct->SYSCLKSource == RCC_SYSCLKSOURCE_PLLRCLK))
633     {
634       /* Check the PLL ready flag */
635       if(__HAL_RCC_GET_FLAG(RCC_FLAG_PLLRDY) == RESET)
636       {
637         return HAL_ERROR;
638       }
639     }
640     /* HSI is selected as System Clock Source */
641     else
642     {
643       /* Check the HSI ready flag */
644       if(__HAL_RCC_GET_FLAG(RCC_FLAG_HSIRDY) == RESET)
645       {
646         return HAL_ERROR;
647       }
648     }
649 
650     __HAL_RCC_SYSCLK_CONFIG(RCC_ClkInitStruct->SYSCLKSource);
651 
652     /* Get Start Tick */
653     tickstart = HAL_GetTick();
654 
655     while (__HAL_RCC_GET_SYSCLK_SOURCE() != (RCC_ClkInitStruct->SYSCLKSource << RCC_CFGR_SWS_Pos))
656     {
657       if ((HAL_GetTick() - tickstart) > CLOCKSWITCH_TIMEOUT_VALUE)
658       {
659         return HAL_TIMEOUT;
660       }
661     }
662   }
663 
664   /* Decreasing the number of wait states because of lower CPU frequency */
665   if(FLatency < __HAL_FLASH_GET_LATENCY())
666   {
667      /* Program the new number of wait states to the LATENCY bits in the FLASH_ACR register */
668     __HAL_FLASH_SET_LATENCY(FLatency);
669 
670     /* Check that the new number of wait states is taken into account to access the Flash
671     memory by reading the FLASH_ACR register */
672     if(__HAL_FLASH_GET_LATENCY() != FLatency)
673     {
674       return HAL_ERROR;
675     }
676   }
677 
678   /*-------------------------- PCLK1 Configuration ---------------------------*/
679   if(((RCC_ClkInitStruct->ClockType) & RCC_CLOCKTYPE_PCLK1) == RCC_CLOCKTYPE_PCLK1)
680   {
681     assert_param(IS_RCC_PCLK(RCC_ClkInitStruct->APB1CLKDivider));
682     MODIFY_REG(RCC->CFGR, RCC_CFGR_PPRE1, RCC_ClkInitStruct->APB1CLKDivider);
683   }
684 
685   /*-------------------------- PCLK2 Configuration ---------------------------*/
686   if(((RCC_ClkInitStruct->ClockType) & RCC_CLOCKTYPE_PCLK2) == RCC_CLOCKTYPE_PCLK2)
687   {
688     assert_param(IS_RCC_PCLK(RCC_ClkInitStruct->APB2CLKDivider));
689     MODIFY_REG(RCC->CFGR, RCC_CFGR_PPRE2, ((RCC_ClkInitStruct->APB2CLKDivider) << 3U));
690   }
691 
692   /* Update the SystemCoreClock global variable */
693   SystemCoreClock = HAL_RCC_GetSysClockFreq() >> AHBPrescTable[(RCC->CFGR & RCC_CFGR_HPRE)>> RCC_CFGR_HPRE_Pos];
694 
695   /* Configure the source of time base considering new system clocks settings */
696   HAL_InitTick (TICK_INT_PRIORITY);
697 
698   return HAL_OK;
699 }
700 
701 /**
702   * @}
703   */
704 
705 /** @defgroup RCC_Exported_Functions_Group2 Peripheral Control functions
706  *  @brief   RCC clocks control functions
707  *
708 @verbatim
709  ===============================================================================
710                       ##### Peripheral Control functions #####
711  ===============================================================================
712     [..]
713     This subsection provides a set of functions allowing to control the RCC Clocks
714     frequencies.
715 
716 @endverbatim
717   * @{
718   */
719 
720 /**
721   * @brief  Selects the clock source to output on MCO1 pin(PA8) or on MCO2 pin(PC9).
722   * @note   PA8/PC9 should be configured in alternate function mode.
723   * @param  RCC_MCOx specifies the output direction for the clock source.
724   *          This parameter can be one of the following values:
725   *            @arg RCC_MCO1: Clock source to output on MCO1 pin(PA8).
726   *            @arg RCC_MCO2: Clock source to output on MCO2 pin(PC9).
727   * @param  RCC_MCOSource specifies the clock source to output.
728   *          This parameter can be one of the following values:
729   *            @arg RCC_MCO1SOURCE_HSI: HSI clock selected as MCO1 source
730   *            @arg RCC_MCO1SOURCE_LSE: LSE clock selected as MCO1 source
731   *            @arg RCC_MCO1SOURCE_HSE: HSE clock selected as MCO1 source
732   *            @arg RCC_MCO1SOURCE_PLLCLK: main PLL clock selected as MCO1 source
733   *            @arg RCC_MCO2SOURCE_SYSCLK: System clock (SYSCLK) selected as MCO2 source
734   *            @arg RCC_MCO2SOURCE_PLLI2SCLK: PLLI2S clock selected as MCO2 source, available for all STM32F4 devices except STM32F410xx
735   *            @arg RCC_MCO2SOURCE_I2SCLK: I2SCLK clock selected as MCO2 source, available only for STM32F410Rx devices
736   *            @arg RCC_MCO2SOURCE_HSE: HSE clock selected as MCO2 source
737   *            @arg RCC_MCO2SOURCE_PLLCLK: main PLL clock selected as MCO2 source
738   * @param  RCC_MCODiv specifies the MCOx prescaler.
739   *          This parameter can be one of the following values:
740   *            @arg RCC_MCODIV_1: no division applied to MCOx clock
741   *            @arg RCC_MCODIV_2: division by 2 applied to MCOx clock
742   *            @arg RCC_MCODIV_3: division by 3 applied to MCOx clock
743   *            @arg RCC_MCODIV_4: division by 4 applied to MCOx clock
744   *            @arg RCC_MCODIV_5: division by 5 applied to MCOx clock
745   * @note  For STM32F410Rx devices to output I2SCLK clock on MCO2 you should have
746   *        at last one of the SPI clocks enabled (SPI1, SPI2 or SPI5).
747   * @retval None
748   */
HAL_RCC_MCOConfig(uint32_t RCC_MCOx,uint32_t RCC_MCOSource,uint32_t RCC_MCODiv)749 void HAL_RCC_MCOConfig(uint32_t RCC_MCOx, uint32_t RCC_MCOSource, uint32_t RCC_MCODiv)
750 {
751   GPIO_InitTypeDef GPIO_InitStruct;
752   /* Check the parameters */
753   assert_param(IS_RCC_MCO(RCC_MCOx));
754   assert_param(IS_RCC_MCODIV(RCC_MCODiv));
755   /* RCC_MCO1 */
756   if(RCC_MCOx == RCC_MCO1)
757   {
758     assert_param(IS_RCC_MCO1SOURCE(RCC_MCOSource));
759 
760     /* MCO1 Clock Enable */
761     __MCO1_CLK_ENABLE();
762 
763     /* Configure the MCO1 pin in alternate function mode */
764     GPIO_InitStruct.Pin = MCO1_PIN;
765     GPIO_InitStruct.Mode = GPIO_MODE_AF_PP;
766     GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_VERY_HIGH;
767     GPIO_InitStruct.Pull = GPIO_NOPULL;
768     GPIO_InitStruct.Alternate = GPIO_AF0_MCO;
769     HAL_GPIO_Init(MCO1_GPIO_PORT, &GPIO_InitStruct);
770 
771     /* Mask MCO1 and MCO1PRE[2:0] bits then Select MCO1 clock source and prescaler */
772     MODIFY_REG(RCC->CFGR, (RCC_CFGR_MCO1 | RCC_CFGR_MCO1PRE), (RCC_MCOSource | RCC_MCODiv));
773 
774    /* This RCC MCO1 enable feature is available only on STM32F410xx devices */
775 #if defined(RCC_CFGR_MCO1EN)
776     __HAL_RCC_MCO1_ENABLE();
777 #endif /* RCC_CFGR_MCO1EN */
778   }
779 #if defined(RCC_CFGR_MCO2)
780   else
781   {
782     assert_param(IS_RCC_MCO2SOURCE(RCC_MCOSource));
783 
784     /* MCO2 Clock Enable */
785     __MCO2_CLK_ENABLE();
786 
787     /* Configure the MCO2 pin in alternate function mode */
788     GPIO_InitStruct.Pin = MCO2_PIN;
789     GPIO_InitStruct.Mode = GPIO_MODE_AF_PP;
790     GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_VERY_HIGH;
791     GPIO_InitStruct.Pull = GPIO_NOPULL;
792     GPIO_InitStruct.Alternate = GPIO_AF0_MCO;
793     HAL_GPIO_Init(MCO2_GPIO_PORT, &GPIO_InitStruct);
794 
795     /* Mask MCO2 and MCO2PRE[2:0] bits then Select MCO2 clock source and prescaler */
796     MODIFY_REG(RCC->CFGR, (RCC_CFGR_MCO2 | RCC_CFGR_MCO2PRE), (RCC_MCOSource | (RCC_MCODiv << 3U)));
797 
798    /* This RCC MCO2 enable feature is available only on STM32F410Rx devices */
799 #if defined(RCC_CFGR_MCO2EN)
800     __HAL_RCC_MCO2_ENABLE();
801 #endif /* RCC_CFGR_MCO2EN */
802   }
803 #endif /* RCC_CFGR_MCO2 */
804 }
805 
806 /**
807   * @brief  Enables the Clock Security System.
808   * @note   If a failure is detected on the HSE oscillator clock, this oscillator
809   *         is automatically disabled and an interrupt is generated to inform the
810   *         software about the failure (Clock Security System Interrupt, CSSI),
811   *         allowing the MCU to perform rescue operations. The CSSI is linked to
812   *         the Cortex-M4 NMI (Non-Maskable Interrupt) exception vector.
813   * @retval None
814   */
HAL_RCC_EnableCSS(void)815 void HAL_RCC_EnableCSS(void)
816 {
817   *(__IO uint32_t *) RCC_CR_CSSON_BB = (uint32_t)ENABLE;
818 }
819 
820 /**
821   * @brief  Disables the Clock Security System.
822   * @retval None
823   */
HAL_RCC_DisableCSS(void)824 void HAL_RCC_DisableCSS(void)
825 {
826   *(__IO uint32_t *) RCC_CR_CSSON_BB = (uint32_t)DISABLE;
827 }
828 
829 /**
830   * @brief  Returns the SYSCLK frequency
831   *
832   * @note   The system frequency computed by this function is not the real
833   *         frequency in the chip. It is calculated based on the predefined
834   *         constant and the selected clock source:
835   * @note     If SYSCLK source is HSI, function returns values based on HSI_VALUE(*)
836   * @note     If SYSCLK source is HSE, function returns values based on HSE_VALUE(**)
837   * @note     If SYSCLK source is PLL, function returns values based on HSE_VALUE(**)
838   *           or HSI_VALUE(*) multiplied/divided by the PLL factors.
839   * @note     (*) HSI_VALUE is a constant defined in stm32f4xx_hal_conf.h file (default value
840   *               16 MHz) but the real value may vary depending on the variations
841   *               in voltage and temperature.
842   * @note     (**) HSE_VALUE is a constant defined in stm32f4xx_hal_conf.h file (default value
843   *                25 MHz), user has to ensure that HSE_VALUE is same as the real
844   *                frequency of the crystal used. Otherwise, this function may
845   *                have wrong result.
846   *
847   * @note   The result of this function could be not correct when using fractional
848   *         value for HSE crystal.
849   *
850   * @note   This function can be used by the user application to compute the
851   *         baudrate for the communication peripherals or configure other parameters.
852   *
853   * @note   Each time SYSCLK changes, this function must be called to update the
854   *         right SYSCLK value. Otherwise, any configuration based on this function will be incorrect.
855   *
856   *
857   * @retval SYSCLK frequency
858   */
HAL_RCC_GetSysClockFreq(void)859 __weak uint32_t HAL_RCC_GetSysClockFreq(void)
860 {
861   uint32_t pllm = 0U, pllvco = 0U, pllp = 0U;
862   uint32_t sysclockfreq = 0U;
863 
864   /* Get SYSCLK source -------------------------------------------------------*/
865   switch (RCC->CFGR & RCC_CFGR_SWS)
866   {
867     case RCC_CFGR_SWS_HSI:  /* HSI used as system clock source */
868     {
869       sysclockfreq = HSI_VALUE;
870        break;
871     }
872     case RCC_CFGR_SWS_HSE:  /* HSE used as system clock  source */
873     {
874       sysclockfreq = HSE_VALUE;
875       break;
876     }
877     case RCC_CFGR_SWS_PLL:  /* PLL used as system clock  source */
878     {
879       /* PLL_VCO = (HSE_VALUE or HSI_VALUE / PLLM) * PLLN
880       SYSCLK = PLL_VCO / PLLP */
881       pllm = RCC->PLLCFGR & RCC_PLLCFGR_PLLM;
882       if(__HAL_RCC_GET_PLL_OSCSOURCE() != RCC_PLLSOURCE_HSI)
883       {
884         /* HSE used as PLL clock source */
885         pllvco = (uint32_t) ((((uint64_t) HSE_VALUE * ((uint64_t) ((RCC->PLLCFGR & RCC_PLLCFGR_PLLN) >> RCC_PLLCFGR_PLLN_Pos)))) / (uint64_t)pllm);
886       }
887       else
888       {
889         /* HSI used as PLL clock source */
890         pllvco = (uint32_t) ((((uint64_t) HSI_VALUE * ((uint64_t) ((RCC->PLLCFGR & RCC_PLLCFGR_PLLN) >> RCC_PLLCFGR_PLLN_Pos)))) / (uint64_t)pllm);
891       }
892       pllp = ((((RCC->PLLCFGR & RCC_PLLCFGR_PLLP) >> RCC_PLLCFGR_PLLP_Pos) + 1U) *2U);
893 
894       sysclockfreq = pllvco/pllp;
895       break;
896     }
897     default:
898     {
899       sysclockfreq = HSI_VALUE;
900       break;
901     }
902   }
903   return sysclockfreq;
904 }
905 
906 /**
907   * @brief  Returns the HCLK frequency
908   * @note   Each time HCLK changes, this function must be called to update the
909   *         right HCLK value. Otherwise, any configuration based on this function will be incorrect.
910   *
911   * @note   The SystemCoreClock CMSIS variable is used to store System Clock Frequency
912   *         and updated within this function
913   * @retval HCLK frequency
914   */
HAL_RCC_GetHCLKFreq(void)915 uint32_t HAL_RCC_GetHCLKFreq(void)
916 {
917   return SystemCoreClock;
918 }
919 
920 /**
921   * @brief  Returns the PCLK1 frequency
922   * @note   Each time PCLK1 changes, this function must be called to update the
923   *         right PCLK1 value. Otherwise, any configuration based on this function will be incorrect.
924   * @retval PCLK1 frequency
925   */
HAL_RCC_GetPCLK1Freq(void)926 uint32_t HAL_RCC_GetPCLK1Freq(void)
927 {
928   /* Get HCLK source and Compute PCLK1 frequency ---------------------------*/
929   return (HAL_RCC_GetHCLKFreq() >> APBPrescTable[(RCC->CFGR & RCC_CFGR_PPRE1)>> RCC_CFGR_PPRE1_Pos]);
930 }
931 
932 /**
933   * @brief  Returns the PCLK2 frequency
934   * @note   Each time PCLK2 changes, this function must be called to update the
935   *         right PCLK2 value. Otherwise, any configuration based on this function will be incorrect.
936   * @retval PCLK2 frequency
937   */
HAL_RCC_GetPCLK2Freq(void)938 uint32_t HAL_RCC_GetPCLK2Freq(void)
939 {
940   /* Get HCLK source and Compute PCLK2 frequency ---------------------------*/
941   return (HAL_RCC_GetHCLKFreq()>> APBPrescTable[(RCC->CFGR & RCC_CFGR_PPRE2)>> RCC_CFGR_PPRE2_Pos]);
942 }
943 
944 /**
945   * @brief  Configures the RCC_OscInitStruct according to the internal
946   * RCC configuration registers.
947   * @param  RCC_OscInitStruct pointer to an RCC_OscInitTypeDef structure that
948   * will be configured.
949   * @retval None
950   */
HAL_RCC_GetOscConfig(RCC_OscInitTypeDef * RCC_OscInitStruct)951 __weak void HAL_RCC_GetOscConfig(RCC_OscInitTypeDef  *RCC_OscInitStruct)
952 {
953   /* Set all possible values for the Oscillator type parameter ---------------*/
954   RCC_OscInitStruct->OscillatorType = RCC_OSCILLATORTYPE_HSE | RCC_OSCILLATORTYPE_HSI | RCC_OSCILLATORTYPE_LSE | RCC_OSCILLATORTYPE_LSI;
955 
956   /* Get the HSE configuration -----------------------------------------------*/
957   if((RCC->CR &RCC_CR_HSEBYP) == RCC_CR_HSEBYP)
958   {
959     RCC_OscInitStruct->HSEState = RCC_HSE_BYPASS;
960   }
961   else if((RCC->CR &RCC_CR_HSEON) == RCC_CR_HSEON)
962   {
963     RCC_OscInitStruct->HSEState = RCC_HSE_ON;
964   }
965   else
966   {
967     RCC_OscInitStruct->HSEState = RCC_HSE_OFF;
968   }
969 
970   /* Get the HSI configuration -----------------------------------------------*/
971   if((RCC->CR &RCC_CR_HSION) == RCC_CR_HSION)
972   {
973     RCC_OscInitStruct->HSIState = RCC_HSI_ON;
974   }
975   else
976   {
977     RCC_OscInitStruct->HSIState = RCC_HSI_OFF;
978   }
979 
980   RCC_OscInitStruct->HSICalibrationValue = (uint32_t)((RCC->CR &RCC_CR_HSITRIM) >> RCC_CR_HSITRIM_Pos);
981 
982   /* Get the LSE configuration -----------------------------------------------*/
983   if((RCC->BDCR &RCC_BDCR_LSEBYP) == RCC_BDCR_LSEBYP)
984   {
985     RCC_OscInitStruct->LSEState = RCC_LSE_BYPASS;
986   }
987   else if((RCC->BDCR &RCC_BDCR_LSEON) == RCC_BDCR_LSEON)
988   {
989     RCC_OscInitStruct->LSEState = RCC_LSE_ON;
990   }
991   else
992   {
993     RCC_OscInitStruct->LSEState = RCC_LSE_OFF;
994   }
995 
996   /* Get the LSI configuration -----------------------------------------------*/
997   if((RCC->CSR &RCC_CSR_LSION) == RCC_CSR_LSION)
998   {
999     RCC_OscInitStruct->LSIState = RCC_LSI_ON;
1000   }
1001   else
1002   {
1003     RCC_OscInitStruct->LSIState = RCC_LSI_OFF;
1004   }
1005 
1006   /* Get the PLL configuration -----------------------------------------------*/
1007   if((RCC->CR &RCC_CR_PLLON) == RCC_CR_PLLON)
1008   {
1009     RCC_OscInitStruct->PLL.PLLState = RCC_PLL_ON;
1010   }
1011   else
1012   {
1013     RCC_OscInitStruct->PLL.PLLState = RCC_PLL_OFF;
1014   }
1015   RCC_OscInitStruct->PLL.PLLSource = (uint32_t)(RCC->PLLCFGR & RCC_PLLCFGR_PLLSRC);
1016   RCC_OscInitStruct->PLL.PLLM = (uint32_t)(RCC->PLLCFGR & RCC_PLLCFGR_PLLM);
1017   RCC_OscInitStruct->PLL.PLLN = (uint32_t)((RCC->PLLCFGR & RCC_PLLCFGR_PLLN) >> RCC_PLLCFGR_PLLN_Pos);
1018   RCC_OscInitStruct->PLL.PLLP = (uint32_t)((((RCC->PLLCFGR & RCC_PLLCFGR_PLLP) + RCC_PLLCFGR_PLLP_0) << 1U) >> RCC_PLLCFGR_PLLP_Pos);
1019   RCC_OscInitStruct->PLL.PLLQ = (uint32_t)((RCC->PLLCFGR & RCC_PLLCFGR_PLLQ) >> RCC_PLLCFGR_PLLQ_Pos);
1020 }
1021 
1022 /**
1023   * @brief  Configures the RCC_ClkInitStruct according to the internal
1024   * RCC configuration registers.
1025   * @param  RCC_ClkInitStruct pointer to an RCC_ClkInitTypeDef structure that
1026   * will be configured.
1027   * @param  pFLatency Pointer on the Flash Latency.
1028   * @retval None
1029   */
HAL_RCC_GetClockConfig(RCC_ClkInitTypeDef * RCC_ClkInitStruct,uint32_t * pFLatency)1030 void HAL_RCC_GetClockConfig(RCC_ClkInitTypeDef  *RCC_ClkInitStruct, uint32_t *pFLatency)
1031 {
1032   /* Set all possible values for the Clock type parameter --------------------*/
1033   RCC_ClkInitStruct->ClockType = RCC_CLOCKTYPE_SYSCLK | RCC_CLOCKTYPE_HCLK | RCC_CLOCKTYPE_PCLK1 | RCC_CLOCKTYPE_PCLK2;
1034 
1035   /* Get the SYSCLK configuration --------------------------------------------*/
1036   RCC_ClkInitStruct->SYSCLKSource = (uint32_t)(RCC->CFGR & RCC_CFGR_SW);
1037 
1038   /* Get the HCLK configuration ----------------------------------------------*/
1039   RCC_ClkInitStruct->AHBCLKDivider = (uint32_t)(RCC->CFGR & RCC_CFGR_HPRE);
1040 
1041   /* Get the APB1 configuration ----------------------------------------------*/
1042   RCC_ClkInitStruct->APB1CLKDivider = (uint32_t)(RCC->CFGR & RCC_CFGR_PPRE1);
1043 
1044   /* Get the APB2 configuration ----------------------------------------------*/
1045   RCC_ClkInitStruct->APB2CLKDivider = (uint32_t)((RCC->CFGR & RCC_CFGR_PPRE2) >> 3U);
1046 
1047   /* Get the Flash Wait State (Latency) configuration ------------------------*/
1048   *pFLatency = (uint32_t)(FLASH->ACR & FLASH_ACR_LATENCY);
1049 }
1050 
1051 /**
1052   * @brief This function handles the RCC CSS interrupt request.
1053   * @note This API should be called under the NMI_Handler().
1054   * @retval None
1055   */
HAL_RCC_NMI_IRQHandler(void)1056 void HAL_RCC_NMI_IRQHandler(void)
1057 {
1058   /* Check RCC CSSF flag  */
1059   if(__HAL_RCC_GET_IT(RCC_IT_CSS))
1060   {
1061     /* RCC Clock Security System interrupt user callback */
1062     HAL_RCC_CSSCallback();
1063 
1064     /* Clear RCC CSS pending bit */
1065     __HAL_RCC_CLEAR_IT(RCC_IT_CSS);
1066   }
1067 }
1068 
1069 /**
1070   * @brief  RCC Clock Security System interrupt callback
1071   * @retval None
1072   */
HAL_RCC_CSSCallback(void)1073 __weak void HAL_RCC_CSSCallback(void)
1074 {
1075   /* NOTE : This function Should not be modified, when the callback is needed,
1076             the HAL_RCC_CSSCallback could be implemented in the user file
1077    */
1078 }
1079 
1080 /**
1081   * @}
1082   */
1083 
1084 /**
1085   * @}
1086   */
1087 
1088 #endif /* HAL_RCC_MODULE_ENABLED */
1089 /**
1090   * @}
1091   */
1092 
1093 /**
1094   * @}
1095   */
1096 
1097 /************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/
1098