xref: /btstack/port/stm32-f4discovery-usb/Drivers/CMSIS/NN/Source/SoftmaxFunctions/arm_softmax_q15.c (revision a8f7f3fcbcd51f8d2e92aca076b6a9f812db358c)
1 /*
2  * Copyright (C) 2010-2018 Arm Limited or its affiliates. All rights reserved.
3  *
4  * SPDX-License-Identifier: Apache-2.0
5  *
6  * Licensed under the Apache License, Version 2.0 (the License); you may
7  * not use this file except in compliance with the License.
8  * You may obtain a copy of the License at
9  *
10  * www.apache.org/licenses/LICENSE-2.0
11  *
12  * Unless required by applicable law or agreed to in writing, software
13  * distributed under the License is distributed on an AS IS BASIS, WITHOUT
14  * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
15  * See the License for the specific language governing permissions and
16  * limitations under the License.
17  */
18 
19 /* ----------------------------------------------------------------------
20  * Project:      CMSIS NN Library
21  * Title:        arm_softmax_q15.c
22  * Description:  Q15 softmax function
23  *
24  * $Date:        20. February 2018
25  * $Revision:    V.1.0.0
26  *
27  * Target Processor:  Cortex-M cores
28  *
29  * -------------------------------------------------------------------- */
30 
31 #include "arm_math.h"
32 #include "arm_nnfunctions.h"
33 
34 /**
35  *  @ingroup groupNN
36  */
37 
38 /**
39  * @addtogroup Softmax
40  * @{
41  */
42 
43   /**
44    * @brief Q15 softmax function
45    * @param[in]       vec_in      pointer to input vector
46    * @param[in]       dim_vec     input vector dimention
47    * @param[out]      p_out       pointer to output vector
48    * @return none.
49    *
50    * @details
51    *
52    *  Here, instead of typical e based softmax, we use
53    *  2-based softmax, i.e.,:
54    *
55    *  y_i = 2^(x_i) / sum(2^x_j)
56    *
57    *  The relative output will be different here.
58    *  But mathematically, the gradient will be the same
59    *  with a log(2) scaling factor.
60    *
61    */
62 
arm_softmax_q15(const q15_t * vec_in,const uint16_t dim_vec,q15_t * p_out)63 void arm_softmax_q15(const q15_t * vec_in, const uint16_t dim_vec, q15_t * p_out)
64 {
65     q31_t     sum;
66     int16_t   i;
67     uint8_t   shift;
68     q31_t     base;
69     base = -1 * 0x100000;
70     for (i = 0; i < dim_vec; i++)
71     {
72         if (vec_in[i] > base)
73         {
74             base = vec_in[i];
75         }
76     }
77 
78     /* we ignore really small values
79      * anyway, they will be 0 after shrinking
80      * to q15_t
81      */
82     base = base - 16;
83 
84     sum = 0;
85 
86     for (i = 0; i < dim_vec; i++)
87     {
88         if (vec_in[i] > base)
89         {
90             shift = (uint8_t)__USAT(vec_in[i] - base, 5);
91             sum += 0x1 << shift;
92         }
93     }
94 
95     /* This is effectively (0x1 << 32) / sum */
96     int64_t div_base = 0x100000000LL;
97     int output_base = (int32_t)(div_base / sum);
98 
99     /* Final confidence will be output_base >> ( 17 - (vec_in[i] - base) )
100      * so 32768 (0x1<<15) -> 100% confidence when sum = 0x1 << 16, output_base = 0x1 << 16
101      * and vec_in[i]-base = 16
102      */
103     for (i = 0; i < dim_vec; i++)
104     {
105         if (vec_in[i] > base)
106         {
107             /* Here minimum value of 17+base-vec[i] will be 1 */
108             shift = (uint8_t)__USAT(17+base-vec_in[i], 5);
109             p_out[i] = (q15_t) __SSAT((output_base >> shift), 16);
110         } else
111         {
112             p_out[i] = 0;
113         }
114     }
115 
116 }
117 
118 /**
119  * @} end of Softmax group
120  */
121