1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Copyright (C) 2020 Google LLC
4 * Author: Will Deacon <[email protected]>
5 */
6
7 #ifndef __ARM64_KVM_PGTABLE_H__
8 #define __ARM64_KVM_PGTABLE_H__
9
10 #include <linux/bits.h>
11 #include <linux/kvm_host.h>
12 #include <linux/types.h>
13
14 #define KVM_PGTABLE_FIRST_LEVEL -1
15 #define KVM_PGTABLE_LAST_LEVEL 3
16
17 /*
18 * The largest supported block sizes for KVM (no 52-bit PA support):
19 * - 4K (level 1): 1GB
20 * - 16K (level 2): 32MB
21 * - 64K (level 2): 512MB
22 */
23 #ifdef CONFIG_ARM64_4K_PAGES
24 #define KVM_PGTABLE_MIN_BLOCK_LEVEL 1
25 #else
26 #define KVM_PGTABLE_MIN_BLOCK_LEVEL 2
27 #endif
28
29 #define kvm_lpa2_is_enabled() system_supports_lpa2()
30
kvm_get_parange_max(void)31 static inline u64 kvm_get_parange_max(void)
32 {
33 if (kvm_lpa2_is_enabled() ||
34 (IS_ENABLED(CONFIG_ARM64_PA_BITS_52) && PAGE_SHIFT == 16))
35 return ID_AA64MMFR0_EL1_PARANGE_52;
36 else
37 return ID_AA64MMFR0_EL1_PARANGE_48;
38 }
39
kvm_get_parange(u64 mmfr0)40 static inline u64 kvm_get_parange(u64 mmfr0)
41 {
42 u64 parange_max = kvm_get_parange_max();
43 u64 parange = cpuid_feature_extract_unsigned_field(mmfr0,
44 ID_AA64MMFR0_EL1_PARANGE_SHIFT);
45 if (parange > parange_max)
46 parange = parange_max;
47
48 return parange;
49 }
50
51 typedef u64 kvm_pte_t;
52
53 #define KVM_PTE_VALID BIT(0)
54
55 #define KVM_PTE_ADDR_MASK GENMASK(47, PAGE_SHIFT)
56 #define KVM_PTE_ADDR_51_48 GENMASK(15, 12)
57 #define KVM_PTE_ADDR_MASK_LPA2 GENMASK(49, PAGE_SHIFT)
58 #define KVM_PTE_ADDR_51_50_LPA2 GENMASK(9, 8)
59
60 #define KVM_PHYS_INVALID (-1ULL)
61
62 #define KVM_PTE_LEAF_ATTR_LO GENMASK(11, 2)
63
64 #define KVM_PTE_LEAF_ATTR_LO_S1_ATTRIDX GENMASK(4, 2)
65 #define KVM_PTE_LEAF_ATTR_LO_S1_AP GENMASK(7, 6)
66 #define KVM_PTE_LEAF_ATTR_LO_S1_AP_RO \
67 ({ cpus_have_final_cap(ARM64_KVM_HVHE) ? 2 : 3; })
68 #define KVM_PTE_LEAF_ATTR_LO_S1_AP_RW \
69 ({ cpus_have_final_cap(ARM64_KVM_HVHE) ? 0 : 1; })
70 #define KVM_PTE_LEAF_ATTR_LO_S1_SH GENMASK(9, 8)
71 #define KVM_PTE_LEAF_ATTR_LO_S1_SH_IS 3
72 #define KVM_PTE_LEAF_ATTR_LO_S1_AF BIT(10)
73
74 #define KVM_PTE_LEAF_ATTR_LO_S2_MEMATTR GENMASK(5, 2)
75 #define KVM_PTE_LEAF_ATTR_LO_S2_S2AP_R BIT(6)
76 #define KVM_PTE_LEAF_ATTR_LO_S2_S2AP_W BIT(7)
77 #define KVM_PTE_LEAF_ATTR_LO_S2_SH GENMASK(9, 8)
78 #define KVM_PTE_LEAF_ATTR_LO_S2_SH_IS 3
79 #define KVM_PTE_LEAF_ATTR_LO_S2_AF BIT(10)
80
81 #define KVM_PTE_LEAF_ATTR_HI GENMASK(63, 50)
82
83 #define KVM_PTE_LEAF_ATTR_HI_SW GENMASK(58, 55)
84
85 #define KVM_PTE_LEAF_ATTR_HI_S1_XN BIT(54)
86
87 #define KVM_PTE_LEAF_ATTR_HI_S2_XN BIT(54)
88
89 #define KVM_PTE_LEAF_ATTR_HI_S1_GP BIT(50)
90
91 #define KVM_PTE_LEAF_ATTR_S2_PERMS (KVM_PTE_LEAF_ATTR_LO_S2_S2AP_R | \
92 KVM_PTE_LEAF_ATTR_LO_S2_S2AP_W | \
93 KVM_PTE_LEAF_ATTR_HI_S2_XN)
94
95 #define KVM_INVALID_PTE_OWNER_MASK GENMASK(9, 2)
96 #define KVM_MAX_OWNER_ID 1
97
98 /*
99 * Used to indicate a pte for which a 'break-before-make' sequence is in
100 * progress.
101 */
102 #define KVM_INVALID_PTE_LOCKED BIT(10)
103
kvm_pte_valid(kvm_pte_t pte)104 static inline bool kvm_pte_valid(kvm_pte_t pte)
105 {
106 return pte & KVM_PTE_VALID;
107 }
108
kvm_pte_to_phys(kvm_pte_t pte)109 static inline u64 kvm_pte_to_phys(kvm_pte_t pte)
110 {
111 u64 pa;
112
113 if (kvm_lpa2_is_enabled()) {
114 pa = pte & KVM_PTE_ADDR_MASK_LPA2;
115 pa |= FIELD_GET(KVM_PTE_ADDR_51_50_LPA2, pte) << 50;
116 } else {
117 pa = pte & KVM_PTE_ADDR_MASK;
118 if (PAGE_SHIFT == 16)
119 pa |= FIELD_GET(KVM_PTE_ADDR_51_48, pte) << 48;
120 }
121
122 return pa;
123 }
124
kvm_phys_to_pte(u64 pa)125 static inline kvm_pte_t kvm_phys_to_pte(u64 pa)
126 {
127 kvm_pte_t pte;
128
129 if (kvm_lpa2_is_enabled()) {
130 pte = pa & KVM_PTE_ADDR_MASK_LPA2;
131 pa &= GENMASK(51, 50);
132 pte |= FIELD_PREP(KVM_PTE_ADDR_51_50_LPA2, pa >> 50);
133 } else {
134 pte = pa & KVM_PTE_ADDR_MASK;
135 if (PAGE_SHIFT == 16) {
136 pa &= GENMASK(51, 48);
137 pte |= FIELD_PREP(KVM_PTE_ADDR_51_48, pa >> 48);
138 }
139 }
140
141 return pte;
142 }
143
kvm_pte_to_pfn(kvm_pte_t pte)144 static inline kvm_pfn_t kvm_pte_to_pfn(kvm_pte_t pte)
145 {
146 return __phys_to_pfn(kvm_pte_to_phys(pte));
147 }
148
kvm_granule_shift(s8 level)149 static inline u64 kvm_granule_shift(s8 level)
150 {
151 /* Assumes KVM_PGTABLE_LAST_LEVEL is 3 */
152 return ARM64_HW_PGTABLE_LEVEL_SHIFT(level);
153 }
154
kvm_granule_size(s8 level)155 static inline u64 kvm_granule_size(s8 level)
156 {
157 return BIT(kvm_granule_shift(level));
158 }
159
kvm_level_supports_block_mapping(s8 level)160 static inline bool kvm_level_supports_block_mapping(s8 level)
161 {
162 return level >= KVM_PGTABLE_MIN_BLOCK_LEVEL;
163 }
164
kvm_supported_block_sizes(void)165 static inline u32 kvm_supported_block_sizes(void)
166 {
167 s8 level = KVM_PGTABLE_MIN_BLOCK_LEVEL;
168 u32 r = 0;
169
170 for (; level <= KVM_PGTABLE_LAST_LEVEL; level++)
171 r |= BIT(kvm_granule_shift(level));
172
173 return r;
174 }
175
kvm_is_block_size_supported(u64 size)176 static inline bool kvm_is_block_size_supported(u64 size)
177 {
178 bool is_power_of_two = IS_ALIGNED(size, size);
179
180 return is_power_of_two && (size & kvm_supported_block_sizes());
181 }
182
183 /**
184 * struct kvm_pgtable_mm_ops - Memory management callbacks.
185 * @zalloc_page: Allocate a single zeroed memory page.
186 * The @arg parameter can be used by the walker
187 * to pass a memcache. The initial refcount of
188 * the page is 1.
189 * @zalloc_pages_exact: Allocate an exact number of zeroed memory pages.
190 * The @size parameter is in bytes, and is rounded
191 * up to the next page boundary. The resulting
192 * allocation is physically contiguous.
193 * @free_pages_exact: Free an exact number of memory pages previously
194 * allocated by zalloc_pages_exact.
195 * @free_unlinked_table: Free an unlinked paging structure by unlinking and
196 * dropping references.
197 * @get_page: Increment the refcount on a page.
198 * @put_page: Decrement the refcount on a page. When the
199 * refcount reaches 0 the page is automatically
200 * freed.
201 * @page_count: Return the refcount of a page.
202 * @phys_to_virt: Convert a physical address into a virtual
203 * address mapped in the current context.
204 * @virt_to_phys: Convert a virtual address mapped in the current
205 * context into a physical address.
206 * @dcache_clean_inval_poc: Clean and invalidate the data cache to the PoC
207 * for the specified memory address range.
208 * @icache_inval_pou: Invalidate the instruction cache to the PoU
209 * for the specified memory address range.
210 */
211 struct kvm_pgtable_mm_ops {
212 void* (*zalloc_page)(void *arg);
213 void* (*zalloc_pages_exact)(size_t size);
214 void (*free_pages_exact)(void *addr, size_t size);
215 void (*free_unlinked_table)(void *addr, s8 level);
216 void (*get_page)(void *addr);
217 void (*put_page)(void *addr);
218 int (*page_count)(void *addr);
219 void* (*phys_to_virt)(phys_addr_t phys);
220 phys_addr_t (*virt_to_phys)(void *addr);
221 void (*dcache_clean_inval_poc)(void *addr, size_t size);
222 void (*icache_inval_pou)(void *addr, size_t size);
223 };
224
225 /**
226 * enum kvm_pgtable_stage2_flags - Stage-2 page-table flags.
227 * @KVM_PGTABLE_S2_NOFWB: Don't enforce Normal-WB even if the CPUs have
228 * ARM64_HAS_STAGE2_FWB.
229 * @KVM_PGTABLE_S2_IDMAP: Only use identity mappings.
230 */
231 enum kvm_pgtable_stage2_flags {
232 KVM_PGTABLE_S2_NOFWB = BIT(0),
233 KVM_PGTABLE_S2_IDMAP = BIT(1),
234 };
235
236 /**
237 * enum kvm_pgtable_prot - Page-table permissions and attributes.
238 * @KVM_PGTABLE_PROT_X: Execute permission.
239 * @KVM_PGTABLE_PROT_W: Write permission.
240 * @KVM_PGTABLE_PROT_R: Read permission.
241 * @KVM_PGTABLE_PROT_DEVICE: Device attributes.
242 * @KVM_PGTABLE_PROT_NORMAL_NC: Normal noncacheable attributes.
243 * @KVM_PGTABLE_PROT_SW0: Software bit 0.
244 * @KVM_PGTABLE_PROT_SW1: Software bit 1.
245 * @KVM_PGTABLE_PROT_SW2: Software bit 2.
246 * @KVM_PGTABLE_PROT_SW3: Software bit 3.
247 */
248 enum kvm_pgtable_prot {
249 KVM_PGTABLE_PROT_X = BIT(0),
250 KVM_PGTABLE_PROT_W = BIT(1),
251 KVM_PGTABLE_PROT_R = BIT(2),
252
253 KVM_PGTABLE_PROT_DEVICE = BIT(3),
254 KVM_PGTABLE_PROT_NORMAL_NC = BIT(4),
255
256 KVM_PGTABLE_PROT_SW0 = BIT(55),
257 KVM_PGTABLE_PROT_SW1 = BIT(56),
258 KVM_PGTABLE_PROT_SW2 = BIT(57),
259 KVM_PGTABLE_PROT_SW3 = BIT(58),
260 };
261
262 #define KVM_PGTABLE_PROT_RW (KVM_PGTABLE_PROT_R | KVM_PGTABLE_PROT_W)
263 #define KVM_PGTABLE_PROT_RWX (KVM_PGTABLE_PROT_RW | KVM_PGTABLE_PROT_X)
264
265 #define PKVM_HOST_MEM_PROT KVM_PGTABLE_PROT_RWX
266 #define PKVM_HOST_MMIO_PROT KVM_PGTABLE_PROT_RW
267
268 #define PAGE_HYP KVM_PGTABLE_PROT_RW
269 #define PAGE_HYP_EXEC (KVM_PGTABLE_PROT_R | KVM_PGTABLE_PROT_X)
270 #define PAGE_HYP_RO (KVM_PGTABLE_PROT_R)
271 #define PAGE_HYP_DEVICE (PAGE_HYP | KVM_PGTABLE_PROT_DEVICE)
272
273 typedef bool (*kvm_pgtable_force_pte_cb_t)(u64 addr, u64 end,
274 enum kvm_pgtable_prot prot);
275
276 /**
277 * enum kvm_pgtable_walk_flags - Flags to control a depth-first page-table walk.
278 * @KVM_PGTABLE_WALK_LEAF: Visit leaf entries, including invalid
279 * entries.
280 * @KVM_PGTABLE_WALK_TABLE_PRE: Visit table entries before their
281 * children.
282 * @KVM_PGTABLE_WALK_TABLE_POST: Visit table entries after their
283 * children.
284 * @KVM_PGTABLE_WALK_SHARED: Indicates the page-tables may be shared
285 * with other software walkers.
286 * @KVM_PGTABLE_WALK_HANDLE_FAULT: Indicates the page-table walk was
287 * invoked from a fault handler.
288 * @KVM_PGTABLE_WALK_SKIP_BBM_TLBI: Visit and update table entries
289 * without Break-before-make's
290 * TLB invalidation.
291 * @KVM_PGTABLE_WALK_SKIP_CMO: Visit and update table entries
292 * without Cache maintenance
293 * operations required.
294 */
295 enum kvm_pgtable_walk_flags {
296 KVM_PGTABLE_WALK_LEAF = BIT(0),
297 KVM_PGTABLE_WALK_TABLE_PRE = BIT(1),
298 KVM_PGTABLE_WALK_TABLE_POST = BIT(2),
299 KVM_PGTABLE_WALK_SHARED = BIT(3),
300 KVM_PGTABLE_WALK_HANDLE_FAULT = BIT(4),
301 KVM_PGTABLE_WALK_SKIP_BBM_TLBI = BIT(5),
302 KVM_PGTABLE_WALK_SKIP_CMO = BIT(6),
303 };
304
305 struct kvm_pgtable_visit_ctx {
306 kvm_pte_t *ptep;
307 kvm_pte_t old;
308 void *arg;
309 struct kvm_pgtable_mm_ops *mm_ops;
310 u64 start;
311 u64 addr;
312 u64 end;
313 s8 level;
314 enum kvm_pgtable_walk_flags flags;
315 };
316
317 typedef int (*kvm_pgtable_visitor_fn_t)(const struct kvm_pgtable_visit_ctx *ctx,
318 enum kvm_pgtable_walk_flags visit);
319
kvm_pgtable_walk_shared(const struct kvm_pgtable_visit_ctx * ctx)320 static inline bool kvm_pgtable_walk_shared(const struct kvm_pgtable_visit_ctx *ctx)
321 {
322 return ctx->flags & KVM_PGTABLE_WALK_SHARED;
323 }
324
325 /**
326 * struct kvm_pgtable_walker - Hook into a page-table walk.
327 * @cb: Callback function to invoke during the walk.
328 * @arg: Argument passed to the callback function.
329 * @flags: Bitwise-OR of flags to identify the entry types on which to
330 * invoke the callback function.
331 */
332 struct kvm_pgtable_walker {
333 const kvm_pgtable_visitor_fn_t cb;
334 void * const arg;
335 const enum kvm_pgtable_walk_flags flags;
336 };
337
338 /*
339 * RCU cannot be used in a non-kernel context such as the hyp. As such, page
340 * table walkers used in hyp do not call into RCU and instead use other
341 * synchronization mechanisms (such as a spinlock).
342 */
343 #if defined(__KVM_NVHE_HYPERVISOR__) || defined(__KVM_VHE_HYPERVISOR__)
344
345 typedef kvm_pte_t *kvm_pteref_t;
346
kvm_dereference_pteref(struct kvm_pgtable_walker * walker,kvm_pteref_t pteref)347 static inline kvm_pte_t *kvm_dereference_pteref(struct kvm_pgtable_walker *walker,
348 kvm_pteref_t pteref)
349 {
350 return pteref;
351 }
352
kvm_pgtable_walk_begin(struct kvm_pgtable_walker * walker)353 static inline int kvm_pgtable_walk_begin(struct kvm_pgtable_walker *walker)
354 {
355 /*
356 * Due to the lack of RCU (or a similar protection scheme), only
357 * non-shared table walkers are allowed in the hypervisor.
358 */
359 if (walker->flags & KVM_PGTABLE_WALK_SHARED)
360 return -EPERM;
361
362 return 0;
363 }
364
kvm_pgtable_walk_end(struct kvm_pgtable_walker * walker)365 static inline void kvm_pgtable_walk_end(struct kvm_pgtable_walker *walker) {}
366
kvm_pgtable_walk_lock_held(void)367 static inline bool kvm_pgtable_walk_lock_held(void)
368 {
369 return true;
370 }
371
372 #else
373
374 typedef kvm_pte_t __rcu *kvm_pteref_t;
375
kvm_dereference_pteref(struct kvm_pgtable_walker * walker,kvm_pteref_t pteref)376 static inline kvm_pte_t *kvm_dereference_pteref(struct kvm_pgtable_walker *walker,
377 kvm_pteref_t pteref)
378 {
379 return rcu_dereference_check(pteref, !(walker->flags & KVM_PGTABLE_WALK_SHARED));
380 }
381
kvm_pgtable_walk_begin(struct kvm_pgtable_walker * walker)382 static inline int kvm_pgtable_walk_begin(struct kvm_pgtable_walker *walker)
383 {
384 if (walker->flags & KVM_PGTABLE_WALK_SHARED)
385 rcu_read_lock();
386
387 return 0;
388 }
389
kvm_pgtable_walk_end(struct kvm_pgtable_walker * walker)390 static inline void kvm_pgtable_walk_end(struct kvm_pgtable_walker *walker)
391 {
392 if (walker->flags & KVM_PGTABLE_WALK_SHARED)
393 rcu_read_unlock();
394 }
395
kvm_pgtable_walk_lock_held(void)396 static inline bool kvm_pgtable_walk_lock_held(void)
397 {
398 return rcu_read_lock_held();
399 }
400
401 #endif
402
403 /**
404 * struct kvm_pgtable - KVM page-table.
405 * @ia_bits: Maximum input address size, in bits.
406 * @start_level: Level at which the page-table walk starts.
407 * @pgd: Pointer to the first top-level entry of the page-table.
408 * @mm_ops: Memory management callbacks.
409 * @mmu: Stage-2 KVM MMU struct. Unused for stage-1 page-tables.
410 * @flags: Stage-2 page-table flags.
411 * @force_pte_cb: Function that returns true if page level mappings must
412 * be used instead of block mappings.
413 */
414 struct kvm_pgtable {
415 union {
416 struct rb_root pkvm_mappings;
417 struct {
418 u32 ia_bits;
419 s8 start_level;
420 kvm_pteref_t pgd;
421 struct kvm_pgtable_mm_ops *mm_ops;
422
423 /* Stage-2 only */
424 enum kvm_pgtable_stage2_flags flags;
425 kvm_pgtable_force_pte_cb_t force_pte_cb;
426 };
427 };
428 struct kvm_s2_mmu *mmu;
429 };
430
431 /**
432 * kvm_pgtable_hyp_init() - Initialise a hypervisor stage-1 page-table.
433 * @pgt: Uninitialised page-table structure to initialise.
434 * @va_bits: Maximum virtual address bits.
435 * @mm_ops: Memory management callbacks.
436 *
437 * Return: 0 on success, negative error code on failure.
438 */
439 int kvm_pgtable_hyp_init(struct kvm_pgtable *pgt, u32 va_bits,
440 struct kvm_pgtable_mm_ops *mm_ops);
441
442 /**
443 * kvm_pgtable_hyp_destroy() - Destroy an unused hypervisor stage-1 page-table.
444 * @pgt: Page-table structure initialised by kvm_pgtable_hyp_init().
445 *
446 * The page-table is assumed to be unreachable by any hardware walkers prior
447 * to freeing and therefore no TLB invalidation is performed.
448 */
449 void kvm_pgtable_hyp_destroy(struct kvm_pgtable *pgt);
450
451 /**
452 * kvm_pgtable_hyp_map() - Install a mapping in a hypervisor stage-1 page-table.
453 * @pgt: Page-table structure initialised by kvm_pgtable_hyp_init().
454 * @addr: Virtual address at which to place the mapping.
455 * @size: Size of the mapping.
456 * @phys: Physical address of the memory to map.
457 * @prot: Permissions and attributes for the mapping.
458 *
459 * The offset of @addr within a page is ignored, @size is rounded-up to
460 * the next page boundary and @phys is rounded-down to the previous page
461 * boundary.
462 *
463 * If device attributes are not explicitly requested in @prot, then the
464 * mapping will be normal, cacheable. Attempts to install a new mapping
465 * for a virtual address that is already mapped will be rejected with an
466 * error and a WARN().
467 *
468 * Return: 0 on success, negative error code on failure.
469 */
470 int kvm_pgtable_hyp_map(struct kvm_pgtable *pgt, u64 addr, u64 size, u64 phys,
471 enum kvm_pgtable_prot prot);
472
473 /**
474 * kvm_pgtable_hyp_unmap() - Remove a mapping from a hypervisor stage-1 page-table.
475 * @pgt: Page-table structure initialised by kvm_pgtable_hyp_init().
476 * @addr: Virtual address from which to remove the mapping.
477 * @size: Size of the mapping.
478 *
479 * The offset of @addr within a page is ignored, @size is rounded-up to
480 * the next page boundary and @phys is rounded-down to the previous page
481 * boundary.
482 *
483 * TLB invalidation is performed for each page-table entry cleared during the
484 * unmapping operation and the reference count for the page-table page
485 * containing the cleared entry is decremented, with unreferenced pages being
486 * freed. The unmapping operation will stop early if it encounters either an
487 * invalid page-table entry or a valid block mapping which maps beyond the range
488 * being unmapped.
489 *
490 * Return: Number of bytes unmapped, which may be 0.
491 */
492 u64 kvm_pgtable_hyp_unmap(struct kvm_pgtable *pgt, u64 addr, u64 size);
493
494 /**
495 * kvm_get_vtcr() - Helper to construct VTCR_EL2
496 * @mmfr0: Sanitized value of SYS_ID_AA64MMFR0_EL1 register.
497 * @mmfr1: Sanitized value of SYS_ID_AA64MMFR1_EL1 register.
498 * @phys_shfit: Value to set in VTCR_EL2.T0SZ.
499 *
500 * The VTCR value is common across all the physical CPUs on the system.
501 * We use system wide sanitised values to fill in different fields,
502 * except for Hardware Management of Access Flags. HA Flag is set
503 * unconditionally on all CPUs, as it is safe to run with or without
504 * the feature and the bit is RES0 on CPUs that don't support it.
505 *
506 * Return: VTCR_EL2 value
507 */
508 u64 kvm_get_vtcr(u64 mmfr0, u64 mmfr1, u32 phys_shift);
509
510 /**
511 * kvm_pgtable_stage2_pgd_size() - Helper to compute size of a stage-2 PGD
512 * @vtcr: Content of the VTCR register.
513 *
514 * Return: the size (in bytes) of the stage-2 PGD
515 */
516 size_t kvm_pgtable_stage2_pgd_size(u64 vtcr);
517
518 /**
519 * __kvm_pgtable_stage2_init() - Initialise a guest stage-2 page-table.
520 * @pgt: Uninitialised page-table structure to initialise.
521 * @mmu: S2 MMU context for this S2 translation
522 * @mm_ops: Memory management callbacks.
523 * @flags: Stage-2 configuration flags.
524 * @force_pte_cb: Function that returns true if page level mappings must
525 * be used instead of block mappings.
526 *
527 * Return: 0 on success, negative error code on failure.
528 */
529 int __kvm_pgtable_stage2_init(struct kvm_pgtable *pgt, struct kvm_s2_mmu *mmu,
530 struct kvm_pgtable_mm_ops *mm_ops,
531 enum kvm_pgtable_stage2_flags flags,
532 kvm_pgtable_force_pte_cb_t force_pte_cb);
533
kvm_pgtable_stage2_init(struct kvm_pgtable * pgt,struct kvm_s2_mmu * mmu,struct kvm_pgtable_mm_ops * mm_ops)534 static inline int kvm_pgtable_stage2_init(struct kvm_pgtable *pgt, struct kvm_s2_mmu *mmu,
535 struct kvm_pgtable_mm_ops *mm_ops)
536 {
537 return __kvm_pgtable_stage2_init(pgt, mmu, mm_ops, 0, NULL);
538 }
539
540 /**
541 * kvm_pgtable_stage2_destroy() - Destroy an unused guest stage-2 page-table.
542 * @pgt: Page-table structure initialised by kvm_pgtable_stage2_init*().
543 *
544 * The page-table is assumed to be unreachable by any hardware walkers prior
545 * to freeing and therefore no TLB invalidation is performed.
546 */
547 void kvm_pgtable_stage2_destroy(struct kvm_pgtable *pgt);
548
549 /**
550 * kvm_pgtable_stage2_free_unlinked() - Free an unlinked stage-2 paging structure.
551 * @mm_ops: Memory management callbacks.
552 * @pgtable: Unlinked stage-2 paging structure to be freed.
553 * @level: Level of the stage-2 paging structure to be freed.
554 *
555 * The page-table is assumed to be unreachable by any hardware walkers prior to
556 * freeing and therefore no TLB invalidation is performed.
557 */
558 void kvm_pgtable_stage2_free_unlinked(struct kvm_pgtable_mm_ops *mm_ops, void *pgtable, s8 level);
559
560 /**
561 * kvm_pgtable_stage2_create_unlinked() - Create an unlinked stage-2 paging structure.
562 * @pgt: Page-table structure initialised by kvm_pgtable_stage2_init*().
563 * @phys: Physical address of the memory to map.
564 * @level: Starting level of the stage-2 paging structure to be created.
565 * @prot: Permissions and attributes for the mapping.
566 * @mc: Cache of pre-allocated and zeroed memory from which to allocate
567 * page-table pages.
568 * @force_pte: Force mappings to PAGE_SIZE granularity.
569 *
570 * Returns an unlinked page-table tree. This new page-table tree is
571 * not reachable (i.e., it is unlinked) from the root pgd and it's
572 * therefore unreachableby the hardware page-table walker. No TLB
573 * invalidation or CMOs are performed.
574 *
575 * If device attributes are not explicitly requested in @prot, then the
576 * mapping will be normal, cacheable.
577 *
578 * Return: The fully populated (unlinked) stage-2 paging structure, or
579 * an ERR_PTR(error) on failure.
580 */
581 kvm_pte_t *kvm_pgtable_stage2_create_unlinked(struct kvm_pgtable *pgt,
582 u64 phys, s8 level,
583 enum kvm_pgtable_prot prot,
584 void *mc, bool force_pte);
585
586 /**
587 * kvm_pgtable_stage2_map() - Install a mapping in a guest stage-2 page-table.
588 * @pgt: Page-table structure initialised by kvm_pgtable_stage2_init*().
589 * @addr: Intermediate physical address at which to place the mapping.
590 * @size: Size of the mapping.
591 * @phys: Physical address of the memory to map.
592 * @prot: Permissions and attributes for the mapping.
593 * @mc: Cache of pre-allocated and zeroed memory from which to allocate
594 * page-table pages.
595 * @flags: Flags to control the page-table walk (ex. a shared walk)
596 *
597 * The offset of @addr within a page is ignored, @size is rounded-up to
598 * the next page boundary and @phys is rounded-down to the previous page
599 * boundary.
600 *
601 * If device attributes are not explicitly requested in @prot, then the
602 * mapping will be normal, cacheable.
603 *
604 * Note that the update of a valid leaf PTE in this function will be aborted,
605 * if it's trying to recreate the exact same mapping or only change the access
606 * permissions. Instead, the vCPU will exit one more time from guest if still
607 * needed and then go through the path of relaxing permissions.
608 *
609 * Note that this function will both coalesce existing table entries and split
610 * existing block mappings, relying on page-faults to fault back areas outside
611 * of the new mapping lazily.
612 *
613 * Return: 0 on success, negative error code on failure.
614 */
615 int kvm_pgtable_stage2_map(struct kvm_pgtable *pgt, u64 addr, u64 size,
616 u64 phys, enum kvm_pgtable_prot prot,
617 void *mc, enum kvm_pgtable_walk_flags flags);
618
619 /**
620 * kvm_pgtable_stage2_set_owner() - Unmap and annotate pages in the IPA space to
621 * track ownership.
622 * @pgt: Page-table structure initialised by kvm_pgtable_stage2_init*().
623 * @addr: Base intermediate physical address to annotate.
624 * @size: Size of the annotated range.
625 * @mc: Cache of pre-allocated and zeroed memory from which to allocate
626 * page-table pages.
627 * @owner_id: Unique identifier for the owner of the page.
628 *
629 * By default, all page-tables are owned by identifier 0. This function can be
630 * used to mark portions of the IPA space as owned by other entities. When a
631 * stage 2 is used with identity-mappings, these annotations allow to use the
632 * page-table data structure as a simple rmap.
633 *
634 * Return: 0 on success, negative error code on failure.
635 */
636 int kvm_pgtable_stage2_set_owner(struct kvm_pgtable *pgt, u64 addr, u64 size,
637 void *mc, u8 owner_id);
638
639 /**
640 * kvm_pgtable_stage2_unmap() - Remove a mapping from a guest stage-2 page-table.
641 * @pgt: Page-table structure initialised by kvm_pgtable_stage2_init*().
642 * @addr: Intermediate physical address from which to remove the mapping.
643 * @size: Size of the mapping.
644 *
645 * The offset of @addr within a page is ignored and @size is rounded-up to
646 * the next page boundary.
647 *
648 * TLB invalidation is performed for each page-table entry cleared during the
649 * unmapping operation and the reference count for the page-table page
650 * containing the cleared entry is decremented, with unreferenced pages being
651 * freed. Unmapping a cacheable page will ensure that it is clean to the PoC if
652 * FWB is not supported by the CPU.
653 *
654 * Return: 0 on success, negative error code on failure.
655 */
656 int kvm_pgtable_stage2_unmap(struct kvm_pgtable *pgt, u64 addr, u64 size);
657
658 /**
659 * kvm_pgtable_stage2_wrprotect() - Write-protect guest stage-2 address range
660 * without TLB invalidation.
661 * @pgt: Page-table structure initialised by kvm_pgtable_stage2_init*().
662 * @addr: Intermediate physical address from which to write-protect,
663 * @size: Size of the range.
664 *
665 * The offset of @addr within a page is ignored and @size is rounded-up to
666 * the next page boundary.
667 *
668 * Note that it is the caller's responsibility to invalidate the TLB after
669 * calling this function to ensure that the updated permissions are visible
670 * to the CPUs.
671 *
672 * Return: 0 on success, negative error code on failure.
673 */
674 int kvm_pgtable_stage2_wrprotect(struct kvm_pgtable *pgt, u64 addr, u64 size);
675
676 /**
677 * kvm_pgtable_stage2_mkyoung() - Set the access flag in a page-table entry.
678 * @pgt: Page-table structure initialised by kvm_pgtable_stage2_init*().
679 * @addr: Intermediate physical address to identify the page-table entry.
680 * @flags: Flags to control the page-table walk (ex. a shared walk)
681 *
682 * The offset of @addr within a page is ignored.
683 *
684 * If there is a valid, leaf page-table entry used to translate @addr, then
685 * set the access flag in that entry.
686 */
687 void kvm_pgtable_stage2_mkyoung(struct kvm_pgtable *pgt, u64 addr,
688 enum kvm_pgtable_walk_flags flags);
689
690 /**
691 * kvm_pgtable_stage2_test_clear_young() - Test and optionally clear the access
692 * flag in a page-table entry.
693 * @pgt: Page-table structure initialised by kvm_pgtable_stage2_init*().
694 * @addr: Intermediate physical address to identify the page-table entry.
695 * @size: Size of the address range to visit.
696 * @mkold: True if the access flag should be cleared.
697 *
698 * The offset of @addr within a page is ignored.
699 *
700 * Tests and conditionally clears the access flag for every valid, leaf
701 * page-table entry used to translate the range [@addr, @addr + @size).
702 *
703 * Note that it is the caller's responsibility to invalidate the TLB after
704 * calling this function to ensure that the updated permissions are visible
705 * to the CPUs.
706 *
707 * Return: True if any of the visited PTEs had the access flag set.
708 */
709 bool kvm_pgtable_stage2_test_clear_young(struct kvm_pgtable *pgt, u64 addr,
710 u64 size, bool mkold);
711
712 /**
713 * kvm_pgtable_stage2_relax_perms() - Relax the permissions enforced by a
714 * page-table entry.
715 * @pgt: Page-table structure initialised by kvm_pgtable_stage2_init*().
716 * @addr: Intermediate physical address to identify the page-table entry.
717 * @prot: Additional permissions to grant for the mapping.
718 * @flags: Flags to control the page-table walk (ex. a shared walk)
719 *
720 * The offset of @addr within a page is ignored.
721 *
722 * If there is a valid, leaf page-table entry used to translate @addr, then
723 * relax the permissions in that entry according to the read, write and
724 * execute permissions specified by @prot. No permissions are removed, and
725 * TLB invalidation is performed after updating the entry. Software bits cannot
726 * be set or cleared using kvm_pgtable_stage2_relax_perms().
727 *
728 * Return: 0 on success, negative error code on failure.
729 */
730 int kvm_pgtable_stage2_relax_perms(struct kvm_pgtable *pgt, u64 addr,
731 enum kvm_pgtable_prot prot,
732 enum kvm_pgtable_walk_flags flags);
733
734 /**
735 * kvm_pgtable_stage2_flush_range() - Clean and invalidate data cache to Point
736 * of Coherency for guest stage-2 address
737 * range.
738 * @pgt: Page-table structure initialised by kvm_pgtable_stage2_init*().
739 * @addr: Intermediate physical address from which to flush.
740 * @size: Size of the range.
741 *
742 * The offset of @addr within a page is ignored and @size is rounded-up to
743 * the next page boundary.
744 *
745 * Return: 0 on success, negative error code on failure.
746 */
747 int kvm_pgtable_stage2_flush(struct kvm_pgtable *pgt, u64 addr, u64 size);
748
749 /**
750 * kvm_pgtable_stage2_split() - Split a range of huge pages into leaf PTEs pointing
751 * to PAGE_SIZE guest pages.
752 * @pgt: Page-table structure initialised by kvm_pgtable_stage2_init().
753 * @addr: Intermediate physical address from which to split.
754 * @size: Size of the range.
755 * @mc: Cache of pre-allocated and zeroed memory from which to allocate
756 * page-table pages.
757 *
758 * The function tries to split any level 1 or 2 entry that overlaps
759 * with the input range (given by @addr and @size).
760 *
761 * Return: 0 on success, negative error code on failure. Note that
762 * kvm_pgtable_stage2_split() is best effort: it tries to break as many
763 * blocks in the input range as allowed by @mc_capacity.
764 */
765 int kvm_pgtable_stage2_split(struct kvm_pgtable *pgt, u64 addr, u64 size,
766 struct kvm_mmu_memory_cache *mc);
767
768 /**
769 * kvm_pgtable_walk() - Walk a page-table.
770 * @pgt: Page-table structure initialised by kvm_pgtable_*_init().
771 * @addr: Input address for the start of the walk.
772 * @size: Size of the range to walk.
773 * @walker: Walker callback description.
774 *
775 * The offset of @addr within a page is ignored and @size is rounded-up to
776 * the next page boundary.
777 *
778 * The walker will walk the page-table entries corresponding to the input
779 * address range specified, visiting entries according to the walker flags.
780 * Invalid entries are treated as leaf entries. The visited page table entry is
781 * reloaded after invoking the walker callback, allowing the walker to descend
782 * into a newly installed table.
783 *
784 * Returning a negative error code from the walker callback function will
785 * terminate the walk immediately with the same error code.
786 *
787 * Return: 0 on success, negative error code on failure.
788 */
789 int kvm_pgtable_walk(struct kvm_pgtable *pgt, u64 addr, u64 size,
790 struct kvm_pgtable_walker *walker);
791
792 /**
793 * kvm_pgtable_get_leaf() - Walk a page-table and retrieve the leaf entry
794 * with its level.
795 * @pgt: Page-table structure initialised by kvm_pgtable_*_init()
796 * or a similar initialiser.
797 * @addr: Input address for the start of the walk.
798 * @ptep: Pointer to storage for the retrieved PTE.
799 * @level: Pointer to storage for the level of the retrieved PTE.
800 *
801 * The offset of @addr within a page is ignored.
802 *
803 * The walker will walk the page-table entries corresponding to the input
804 * address specified, retrieving the leaf corresponding to this address.
805 * Invalid entries are treated as leaf entries.
806 *
807 * Return: 0 on success, negative error code on failure.
808 */
809 int kvm_pgtable_get_leaf(struct kvm_pgtable *pgt, u64 addr,
810 kvm_pte_t *ptep, s8 *level);
811
812 /**
813 * kvm_pgtable_stage2_pte_prot() - Retrieve the protection attributes of a
814 * stage-2 Page-Table Entry.
815 * @pte: Page-table entry
816 *
817 * Return: protection attributes of the page-table entry in the enum
818 * kvm_pgtable_prot format.
819 */
820 enum kvm_pgtable_prot kvm_pgtable_stage2_pte_prot(kvm_pte_t pte);
821
822 /**
823 * kvm_pgtable_hyp_pte_prot() - Retrieve the protection attributes of a stage-1
824 * Page-Table Entry.
825 * @pte: Page-table entry
826 *
827 * Return: protection attributes of the page-table entry in the enum
828 * kvm_pgtable_prot format.
829 */
830 enum kvm_pgtable_prot kvm_pgtable_hyp_pte_prot(kvm_pte_t pte);
831
832 /**
833 * kvm_tlb_flush_vmid_range() - Invalidate/flush a range of TLB entries
834 *
835 * @mmu: Stage-2 KVM MMU struct
836 * @addr: The base Intermediate physical address from which to invalidate
837 * @size: Size of the range from the base to invalidate
838 */
839 void kvm_tlb_flush_vmid_range(struct kvm_s2_mmu *mmu,
840 phys_addr_t addr, size_t size);
841 #endif /* __ARM64_KVM_PGTABLE_H__ */
842