1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Based on arch/arm/kernel/setup.c
4 *
5 * Copyright (C) 1995-2001 Russell King
6 * Copyright (C) 2012 ARM Ltd.
7 */
8
9 #include <linux/acpi.h>
10 #include <linux/export.h>
11 #include <linux/kernel.h>
12 #include <linux/stddef.h>
13 #include <linux/ioport.h>
14 #include <linux/delay.h>
15 #include <linux/initrd.h>
16 #include <linux/console.h>
17 #include <linux/cache.h>
18 #include <linux/screen_info.h>
19 #include <linux/init.h>
20 #include <linux/kexec.h>
21 #include <linux/root_dev.h>
22 #include <linux/cpu.h>
23 #include <linux/interrupt.h>
24 #include <linux/smp.h>
25 #include <linux/fs.h>
26 #include <linux/panic_notifier.h>
27 #include <linux/proc_fs.h>
28 #include <linux/memblock.h>
29 #include <linux/of_fdt.h>
30 #include <linux/efi.h>
31 #include <linux/psci.h>
32 #include <linux/sched/task.h>
33 #include <linux/scs.h>
34 #include <linux/mm.h>
35
36 #include <asm/acpi.h>
37 #include <asm/fixmap.h>
38 #include <asm/cpu.h>
39 #include <asm/cputype.h>
40 #include <asm/daifflags.h>
41 #include <asm/elf.h>
42 #include <asm/cpufeature.h>
43 #include <asm/cpu_ops.h>
44 #include <asm/kasan.h>
45 #include <asm/numa.h>
46 #include <asm/rsi.h>
47 #include <asm/scs.h>
48 #include <asm/sections.h>
49 #include <asm/setup.h>
50 #include <asm/smp_plat.h>
51 #include <asm/cacheflush.h>
52 #include <asm/tlbflush.h>
53 #include <asm/traps.h>
54 #include <asm/efi.h>
55 #include <asm/xen/hypervisor.h>
56 #include <asm/mmu_context.h>
57
58 static int num_standard_resources;
59 static struct resource *standard_resources;
60
61 phys_addr_t __fdt_pointer __initdata;
62 u64 mmu_enabled_at_boot __initdata;
63
64 /*
65 * Standard memory resources
66 */
67 static struct resource mem_res[] = {
68 {
69 .name = "Kernel code",
70 .start = 0,
71 .end = 0,
72 .flags = IORESOURCE_SYSTEM_RAM
73 },
74 {
75 .name = "Kernel data",
76 .start = 0,
77 .end = 0,
78 .flags = IORESOURCE_SYSTEM_RAM
79 }
80 };
81
82 #define kernel_code mem_res[0]
83 #define kernel_data mem_res[1]
84
85 /*
86 * The recorded values of x0 .. x3 upon kernel entry.
87 */
88 u64 __cacheline_aligned boot_args[4];
89
smp_setup_processor_id(void)90 void __init smp_setup_processor_id(void)
91 {
92 u64 mpidr = read_cpuid_mpidr() & MPIDR_HWID_BITMASK;
93 set_cpu_logical_map(0, mpidr);
94
95 pr_info("Booting Linux on physical CPU 0x%010lx [0x%08x]\n",
96 (unsigned long)mpidr, read_cpuid_id());
97 }
98
arch_match_cpu_phys_id(int cpu,u64 phys_id)99 bool arch_match_cpu_phys_id(int cpu, u64 phys_id)
100 {
101 return phys_id == cpu_logical_map(cpu);
102 }
103
104 struct mpidr_hash mpidr_hash;
105 /**
106 * smp_build_mpidr_hash - Pre-compute shifts required at each affinity
107 * level in order to build a linear index from an
108 * MPIDR value. Resulting algorithm is a collision
109 * free hash carried out through shifting and ORing
110 */
smp_build_mpidr_hash(void)111 static void __init smp_build_mpidr_hash(void)
112 {
113 u32 i, affinity, fs[4], bits[4], ls;
114 u64 mask = 0;
115 /*
116 * Pre-scan the list of MPIDRS and filter out bits that do
117 * not contribute to affinity levels, ie they never toggle.
118 */
119 for_each_possible_cpu(i)
120 mask |= (cpu_logical_map(i) ^ cpu_logical_map(0));
121 pr_debug("mask of set bits %#llx\n", mask);
122 /*
123 * Find and stash the last and first bit set at all affinity levels to
124 * check how many bits are required to represent them.
125 */
126 for (i = 0; i < 4; i++) {
127 affinity = MPIDR_AFFINITY_LEVEL(mask, i);
128 /*
129 * Find the MSB bit and LSB bits position
130 * to determine how many bits are required
131 * to express the affinity level.
132 */
133 ls = fls(affinity);
134 fs[i] = affinity ? ffs(affinity) - 1 : 0;
135 bits[i] = ls - fs[i];
136 }
137 /*
138 * An index can be created from the MPIDR_EL1 by isolating the
139 * significant bits at each affinity level and by shifting
140 * them in order to compress the 32 bits values space to a
141 * compressed set of values. This is equivalent to hashing
142 * the MPIDR_EL1 through shifting and ORing. It is a collision free
143 * hash though not minimal since some levels might contain a number
144 * of CPUs that is not an exact power of 2 and their bit
145 * representation might contain holes, eg MPIDR_EL1[7:0] = {0x2, 0x80}.
146 */
147 mpidr_hash.shift_aff[0] = MPIDR_LEVEL_SHIFT(0) + fs[0];
148 mpidr_hash.shift_aff[1] = MPIDR_LEVEL_SHIFT(1) + fs[1] - bits[0];
149 mpidr_hash.shift_aff[2] = MPIDR_LEVEL_SHIFT(2) + fs[2] -
150 (bits[1] + bits[0]);
151 mpidr_hash.shift_aff[3] = MPIDR_LEVEL_SHIFT(3) +
152 fs[3] - (bits[2] + bits[1] + bits[0]);
153 mpidr_hash.mask = mask;
154 mpidr_hash.bits = bits[3] + bits[2] + bits[1] + bits[0];
155 pr_debug("MPIDR hash: aff0[%u] aff1[%u] aff2[%u] aff3[%u] mask[%#llx] bits[%u]\n",
156 mpidr_hash.shift_aff[0],
157 mpidr_hash.shift_aff[1],
158 mpidr_hash.shift_aff[2],
159 mpidr_hash.shift_aff[3],
160 mpidr_hash.mask,
161 mpidr_hash.bits);
162 /*
163 * 4x is an arbitrary value used to warn on a hash table much bigger
164 * than expected on most systems.
165 */
166 if (mpidr_hash_size() > 4 * num_possible_cpus())
167 pr_warn("Large number of MPIDR hash buckets detected\n");
168 }
169
setup_machine_fdt(phys_addr_t dt_phys)170 static void __init setup_machine_fdt(phys_addr_t dt_phys)
171 {
172 int size;
173 void *dt_virt = fixmap_remap_fdt(dt_phys, &size, PAGE_KERNEL);
174 const char *name;
175
176 if (dt_virt)
177 memblock_reserve(dt_phys, size);
178
179 /*
180 * dt_virt is a fixmap address, hence __pa(dt_virt) can't be used.
181 * Pass dt_phys directly.
182 */
183 if (!early_init_dt_scan(dt_virt, dt_phys)) {
184 pr_crit("\n"
185 "Error: invalid device tree blob at physical address %pa (virtual address 0x%px)\n"
186 "The dtb must be 8-byte aligned and must not exceed 2 MB in size\n"
187 "\nPlease check your bootloader.",
188 &dt_phys, dt_virt);
189
190 /*
191 * Note that in this _really_ early stage we cannot even BUG()
192 * or oops, so the least terrible thing to do is cpu_relax(),
193 * or else we could end-up printing non-initialized data, etc.
194 */
195 while (true)
196 cpu_relax();
197 }
198
199 /* Early fixups are done, map the FDT as read-only now */
200 fixmap_remap_fdt(dt_phys, &size, PAGE_KERNEL_RO);
201
202 name = of_flat_dt_get_machine_name();
203 if (!name)
204 return;
205
206 pr_info("Machine model: %s\n", name);
207 dump_stack_set_arch_desc("%s (DT)", name);
208 }
209
request_standard_resources(void)210 static void __init request_standard_resources(void)
211 {
212 struct memblock_region *region;
213 struct resource *res;
214 unsigned long i = 0;
215 size_t res_size;
216
217 kernel_code.start = __pa_symbol(_stext);
218 kernel_code.end = __pa_symbol(__init_begin - 1);
219 kernel_data.start = __pa_symbol(_sdata);
220 kernel_data.end = __pa_symbol(_end - 1);
221 insert_resource(&iomem_resource, &kernel_code);
222 insert_resource(&iomem_resource, &kernel_data);
223
224 num_standard_resources = memblock.memory.cnt;
225 res_size = num_standard_resources * sizeof(*standard_resources);
226 standard_resources = memblock_alloc_or_panic(res_size, SMP_CACHE_BYTES);
227
228 for_each_mem_region(region) {
229 res = &standard_resources[i++];
230 if (memblock_is_nomap(region)) {
231 res->name = "reserved";
232 res->flags = IORESOURCE_MEM;
233 res->start = __pfn_to_phys(memblock_region_reserved_base_pfn(region));
234 res->end = __pfn_to_phys(memblock_region_reserved_end_pfn(region)) - 1;
235 } else {
236 res->name = "System RAM";
237 res->flags = IORESOURCE_SYSTEM_RAM | IORESOURCE_BUSY;
238 res->start = __pfn_to_phys(memblock_region_memory_base_pfn(region));
239 res->end = __pfn_to_phys(memblock_region_memory_end_pfn(region)) - 1;
240 }
241
242 insert_resource(&iomem_resource, res);
243 }
244 }
245
reserve_memblock_reserved_regions(void)246 static int __init reserve_memblock_reserved_regions(void)
247 {
248 u64 i, j;
249
250 for (i = 0; i < num_standard_resources; ++i) {
251 struct resource *mem = &standard_resources[i];
252 phys_addr_t r_start, r_end, mem_size = resource_size(mem);
253
254 if (!memblock_is_region_reserved(mem->start, mem_size))
255 continue;
256
257 for_each_reserved_mem_range(j, &r_start, &r_end) {
258 resource_size_t start, end;
259
260 start = max(PFN_PHYS(PFN_DOWN(r_start)), mem->start);
261 end = min(PFN_PHYS(PFN_UP(r_end)) - 1, mem->end);
262
263 if (start > mem->end || end < mem->start)
264 continue;
265
266 reserve_region_with_split(mem, start, end, "reserved");
267 }
268 }
269
270 return 0;
271 }
272 arch_initcall(reserve_memblock_reserved_regions);
273
274 u64 __cpu_logical_map[NR_CPUS] = { [0 ... NR_CPUS-1] = INVALID_HWID };
275
cpu_logical_map(unsigned int cpu)276 u64 cpu_logical_map(unsigned int cpu)
277 {
278 return __cpu_logical_map[cpu];
279 }
280
setup_arch(char ** cmdline_p)281 void __init __no_sanitize_address setup_arch(char **cmdline_p)
282 {
283 setup_initial_init_mm(_stext, _etext, _edata, _end);
284
285 *cmdline_p = boot_command_line;
286
287 kaslr_init();
288
289 early_fixmap_init();
290 early_ioremap_init();
291
292 setup_machine_fdt(__fdt_pointer);
293
294 /*
295 * Initialise the static keys early as they may be enabled by the
296 * cpufeature code and early parameters.
297 */
298 jump_label_init();
299 parse_early_param();
300
301 dynamic_scs_init();
302
303 /*
304 * The primary CPU enters the kernel with all DAIF exceptions masked.
305 *
306 * We must unmask Debug and SError before preemption or scheduling is
307 * possible to ensure that these are consistently unmasked across
308 * threads, and we want to unmask SError as soon as possible after
309 * initializing earlycon so that we can report any SErrors immediately.
310 *
311 * IRQ and FIQ will be unmasked after the root irqchip has been
312 * detected and initialized.
313 */
314 local_daif_restore(DAIF_PROCCTX_NOIRQ);
315
316 /*
317 * TTBR0 is only used for the identity mapping at this stage. Make it
318 * point to zero page to avoid speculatively fetching new entries.
319 */
320 cpu_uninstall_idmap();
321
322 xen_early_init();
323 efi_init();
324
325 if (!efi_enabled(EFI_BOOT)) {
326 if ((u64)_text % MIN_KIMG_ALIGN)
327 pr_warn(FW_BUG "Kernel image misaligned at boot, please fix your bootloader!");
328 WARN_TAINT(mmu_enabled_at_boot, TAINT_FIRMWARE_WORKAROUND,
329 FW_BUG "Booted with MMU enabled!");
330 }
331
332 arm64_memblock_init();
333
334 paging_init();
335
336 acpi_table_upgrade();
337
338 /* Parse the ACPI tables for possible boot-time configuration */
339 acpi_boot_table_init();
340
341 if (acpi_disabled)
342 unflatten_device_tree();
343
344 bootmem_init();
345
346 kasan_init();
347
348 request_standard_resources();
349
350 early_ioremap_reset();
351
352 if (acpi_disabled)
353 psci_dt_init();
354 else
355 psci_acpi_init();
356
357 arm64_rsi_init();
358
359 init_bootcpu_ops();
360 smp_init_cpus();
361 smp_build_mpidr_hash();
362
363 #ifdef CONFIG_ARM64_SW_TTBR0_PAN
364 /*
365 * Make sure init_thread_info.ttbr0 always generates translation
366 * faults in case uaccess_enable() is inadvertently called by the init
367 * thread.
368 */
369 init_task.thread_info.ttbr0 = phys_to_ttbr(__pa_symbol(reserved_pg_dir));
370 #endif
371
372 if (boot_args[1] || boot_args[2] || boot_args[3]) {
373 pr_err("WARNING: x1-x3 nonzero in violation of boot protocol:\n"
374 "\tx1: %016llx\n\tx2: %016llx\n\tx3: %016llx\n"
375 "This indicates a broken bootloader or old kernel\n",
376 boot_args[1], boot_args[2], boot_args[3]);
377 }
378 }
379
cpu_can_disable(unsigned int cpu)380 static inline bool cpu_can_disable(unsigned int cpu)
381 {
382 #ifdef CONFIG_HOTPLUG_CPU
383 const struct cpu_operations *ops = get_cpu_ops(cpu);
384
385 if (ops && ops->cpu_can_disable)
386 return ops->cpu_can_disable(cpu);
387 #endif
388 return false;
389 }
390
arch_cpu_is_hotpluggable(int num)391 bool arch_cpu_is_hotpluggable(int num)
392 {
393 return cpu_can_disable(num);
394 }
395
dump_kernel_offset(void)396 static void dump_kernel_offset(void)
397 {
398 const unsigned long offset = kaslr_offset();
399
400 if (IS_ENABLED(CONFIG_RANDOMIZE_BASE) && offset > 0) {
401 pr_emerg("Kernel Offset: 0x%lx from 0x%lx\n",
402 offset, KIMAGE_VADDR);
403 pr_emerg("PHYS_OFFSET: 0x%llx\n", PHYS_OFFSET);
404 } else {
405 pr_emerg("Kernel Offset: disabled\n");
406 }
407 }
408
arm64_panic_block_dump(struct notifier_block * self,unsigned long v,void * p)409 static int arm64_panic_block_dump(struct notifier_block *self,
410 unsigned long v, void *p)
411 {
412 dump_kernel_offset();
413 dump_cpu_features();
414 dump_mem_limit();
415 return 0;
416 }
417
418 static struct notifier_block arm64_panic_block = {
419 .notifier_call = arm64_panic_block_dump
420 };
421
register_arm64_panic_block(void)422 static int __init register_arm64_panic_block(void)
423 {
424 atomic_notifier_chain_register(&panic_notifier_list,
425 &arm64_panic_block);
426 return 0;
427 }
428 device_initcall(register_arm64_panic_block);
429
check_mmu_enabled_at_boot(void)430 static int __init check_mmu_enabled_at_boot(void)
431 {
432 if (!efi_enabled(EFI_BOOT) && mmu_enabled_at_boot)
433 panic("Non-EFI boot detected with MMU and caches enabled");
434 return 0;
435 }
436 device_initcall_sync(check_mmu_enabled_at_boot);
437