1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Copyright (C) 2009. SUSE Linux Products GmbH. All rights reserved.
4 *
5 * Authors:
6 * Alexander Graf <[email protected]>
7 * Kevin Wolf <[email protected]>
8 * Paul Mackerras <[email protected]>
9 *
10 * Description:
11 * Functions relating to running KVM on Book 3S processors where
12 * we don't have access to hypervisor mode, and we run the guest
13 * in problem state (user mode).
14 *
15 * This file is derived from arch/powerpc/kvm/44x.c,
16 * by Hollis Blanchard <[email protected]>.
17 */
18
19 #include <linux/kvm_host.h>
20 #include <linux/export.h>
21 #include <linux/err.h>
22 #include <linux/slab.h>
23
24 #include <asm/reg.h>
25 #include <asm/cputable.h>
26 #include <asm/cacheflush.h>
27 #include <linux/uaccess.h>
28 #include <asm/interrupt.h>
29 #include <asm/io.h>
30 #include <asm/kvm_ppc.h>
31 #include <asm/kvm_book3s.h>
32 #include <asm/mmu_context.h>
33 #include <asm/switch_to.h>
34 #include <asm/firmware.h>
35 #include <asm/setup.h>
36 #include <linux/gfp.h>
37 #include <linux/sched.h>
38 #include <linux/vmalloc.h>
39 #include <linux/highmem.h>
40 #include <linux/module.h>
41 #include <linux/miscdevice.h>
42 #include <asm/asm-prototypes.h>
43 #include <asm/tm.h>
44
45 #include "book3s.h"
46
47 #define CREATE_TRACE_POINTS
48 #include "trace_pr.h"
49
50 /* #define EXIT_DEBUG */
51 /* #define DEBUG_EXT */
52
53 static int kvmppc_handle_ext(struct kvm_vcpu *vcpu, unsigned int exit_nr,
54 ulong msr);
55 #ifdef CONFIG_PPC_BOOK3S_64
56 static int kvmppc_handle_fac(struct kvm_vcpu *vcpu, ulong fac);
57 #endif
58
59 /* Some compatibility defines */
60 #ifdef CONFIG_PPC_BOOK3S_32
61 #define MSR_USER32 MSR_USER
62 #define MSR_USER64 MSR_USER
63 #define HW_PAGE_SIZE PAGE_SIZE
64 #define HPTE_R_M _PAGE_COHERENT
65 #endif
66
kvmppc_is_split_real(struct kvm_vcpu * vcpu)67 static bool kvmppc_is_split_real(struct kvm_vcpu *vcpu)
68 {
69 ulong msr = kvmppc_get_msr(vcpu);
70 return (msr & (MSR_IR|MSR_DR)) == MSR_DR;
71 }
72
kvmppc_fixup_split_real(struct kvm_vcpu * vcpu)73 static void kvmppc_fixup_split_real(struct kvm_vcpu *vcpu)
74 {
75 ulong msr = kvmppc_get_msr(vcpu);
76 ulong pc = kvmppc_get_pc(vcpu);
77
78 /* We are in DR only split real mode */
79 if ((msr & (MSR_IR|MSR_DR)) != MSR_DR)
80 return;
81
82 /* We have not fixed up the guest already */
83 if (vcpu->arch.hflags & BOOK3S_HFLAG_SPLIT_HACK)
84 return;
85
86 /* The code is in fixupable address space */
87 if (pc & SPLIT_HACK_MASK)
88 return;
89
90 vcpu->arch.hflags |= BOOK3S_HFLAG_SPLIT_HACK;
91 kvmppc_set_pc(vcpu, pc | SPLIT_HACK_OFFS);
92 }
93
kvmppc_unfixup_split_real(struct kvm_vcpu * vcpu)94 static void kvmppc_unfixup_split_real(struct kvm_vcpu *vcpu)
95 {
96 if (vcpu->arch.hflags & BOOK3S_HFLAG_SPLIT_HACK) {
97 ulong pc = kvmppc_get_pc(vcpu);
98 ulong lr = kvmppc_get_lr(vcpu);
99 if ((pc & SPLIT_HACK_MASK) == SPLIT_HACK_OFFS)
100 kvmppc_set_pc(vcpu, pc & ~SPLIT_HACK_MASK);
101 if ((lr & SPLIT_HACK_MASK) == SPLIT_HACK_OFFS)
102 kvmppc_set_lr(vcpu, lr & ~SPLIT_HACK_MASK);
103 vcpu->arch.hflags &= ~BOOK3S_HFLAG_SPLIT_HACK;
104 }
105 }
106
kvmppc_inject_interrupt_pr(struct kvm_vcpu * vcpu,int vec,u64 srr1_flags)107 static void kvmppc_inject_interrupt_pr(struct kvm_vcpu *vcpu, int vec, u64 srr1_flags)
108 {
109 unsigned long msr, pc, new_msr, new_pc;
110
111 kvmppc_unfixup_split_real(vcpu);
112
113 msr = kvmppc_get_msr(vcpu);
114 pc = kvmppc_get_pc(vcpu);
115 new_msr = vcpu->arch.intr_msr;
116 new_pc = to_book3s(vcpu)->hior + vec;
117
118 #ifdef CONFIG_PPC_BOOK3S_64
119 /* If transactional, change to suspend mode on IRQ delivery */
120 if (MSR_TM_TRANSACTIONAL(msr))
121 new_msr |= MSR_TS_S;
122 else
123 new_msr |= msr & MSR_TS_MASK;
124 #endif
125
126 kvmppc_set_srr0(vcpu, pc);
127 kvmppc_set_srr1(vcpu, (msr & SRR1_MSR_BITS) | srr1_flags);
128 kvmppc_set_pc(vcpu, new_pc);
129 kvmppc_set_msr(vcpu, new_msr);
130 }
131
kvmppc_core_vcpu_load_pr(struct kvm_vcpu * vcpu,int cpu)132 static void kvmppc_core_vcpu_load_pr(struct kvm_vcpu *vcpu, int cpu)
133 {
134 #ifdef CONFIG_PPC_BOOK3S_64
135 struct kvmppc_book3s_shadow_vcpu *svcpu = svcpu_get(vcpu);
136 memcpy(svcpu->slb, to_book3s(vcpu)->slb_shadow, sizeof(svcpu->slb));
137 svcpu->slb_max = to_book3s(vcpu)->slb_shadow_max;
138 svcpu->in_use = 0;
139 svcpu_put(svcpu);
140
141 /* Disable AIL if supported */
142 if (cpu_has_feature(CPU_FTR_HVMODE)) {
143 if (cpu_has_feature(CPU_FTR_ARCH_207S))
144 mtspr(SPRN_LPCR, mfspr(SPRN_LPCR) & ~LPCR_AIL);
145 if (cpu_has_feature(CPU_FTR_ARCH_300) && (current->thread.fscr & FSCR_SCV))
146 mtspr(SPRN_FSCR, mfspr(SPRN_FSCR) & ~FSCR_SCV);
147 }
148 #endif
149
150 vcpu->cpu = smp_processor_id();
151 #ifdef CONFIG_PPC_BOOK3S_32
152 current->thread.kvm_shadow_vcpu = vcpu->arch.shadow_vcpu;
153 #endif
154
155 if (kvmppc_is_split_real(vcpu))
156 kvmppc_fixup_split_real(vcpu);
157
158 kvmppc_restore_tm_pr(vcpu);
159 }
160
kvmppc_core_vcpu_put_pr(struct kvm_vcpu * vcpu)161 static void kvmppc_core_vcpu_put_pr(struct kvm_vcpu *vcpu)
162 {
163 #ifdef CONFIG_PPC_BOOK3S_64
164 struct kvmppc_book3s_shadow_vcpu *svcpu = svcpu_get(vcpu);
165 if (svcpu->in_use) {
166 kvmppc_copy_from_svcpu(vcpu);
167 }
168 memcpy(to_book3s(vcpu)->slb_shadow, svcpu->slb, sizeof(svcpu->slb));
169 to_book3s(vcpu)->slb_shadow_max = svcpu->slb_max;
170 svcpu_put(svcpu);
171
172 /* Enable AIL if supported */
173 if (cpu_has_feature(CPU_FTR_HVMODE)) {
174 if (cpu_has_feature(CPU_FTR_ARCH_207S))
175 mtspr(SPRN_LPCR, mfspr(SPRN_LPCR) | LPCR_AIL_3);
176 if (cpu_has_feature(CPU_FTR_ARCH_300) && (current->thread.fscr & FSCR_SCV))
177 mtspr(SPRN_FSCR, mfspr(SPRN_FSCR) | FSCR_SCV);
178 }
179 #endif
180
181 if (kvmppc_is_split_real(vcpu))
182 kvmppc_unfixup_split_real(vcpu);
183
184 kvmppc_giveup_ext(vcpu, MSR_FP | MSR_VEC | MSR_VSX);
185 kvmppc_giveup_fac(vcpu, FSCR_TAR_LG);
186 kvmppc_save_tm_pr(vcpu);
187
188 vcpu->cpu = -1;
189 }
190
191 /* Copy data needed by real-mode code from vcpu to shadow vcpu */
kvmppc_copy_to_svcpu(struct kvm_vcpu * vcpu)192 void kvmppc_copy_to_svcpu(struct kvm_vcpu *vcpu)
193 {
194 struct kvmppc_book3s_shadow_vcpu *svcpu = svcpu_get(vcpu);
195
196 svcpu->gpr[0] = vcpu->arch.regs.gpr[0];
197 svcpu->gpr[1] = vcpu->arch.regs.gpr[1];
198 svcpu->gpr[2] = vcpu->arch.regs.gpr[2];
199 svcpu->gpr[3] = vcpu->arch.regs.gpr[3];
200 svcpu->gpr[4] = vcpu->arch.regs.gpr[4];
201 svcpu->gpr[5] = vcpu->arch.regs.gpr[5];
202 svcpu->gpr[6] = vcpu->arch.regs.gpr[6];
203 svcpu->gpr[7] = vcpu->arch.regs.gpr[7];
204 svcpu->gpr[8] = vcpu->arch.regs.gpr[8];
205 svcpu->gpr[9] = vcpu->arch.regs.gpr[9];
206 svcpu->gpr[10] = vcpu->arch.regs.gpr[10];
207 svcpu->gpr[11] = vcpu->arch.regs.gpr[11];
208 svcpu->gpr[12] = vcpu->arch.regs.gpr[12];
209 svcpu->gpr[13] = vcpu->arch.regs.gpr[13];
210 svcpu->cr = vcpu->arch.regs.ccr;
211 svcpu->xer = vcpu->arch.regs.xer;
212 svcpu->ctr = vcpu->arch.regs.ctr;
213 svcpu->lr = vcpu->arch.regs.link;
214 svcpu->pc = vcpu->arch.regs.nip;
215 #ifdef CONFIG_PPC_BOOK3S_64
216 svcpu->shadow_fscr = vcpu->arch.shadow_fscr;
217 #endif
218 /*
219 * Now also save the current time base value. We use this
220 * to find the guest purr and spurr value.
221 */
222 vcpu->arch.entry_tb = get_tb();
223 vcpu->arch.entry_vtb = get_vtb();
224 if (cpu_has_feature(CPU_FTR_ARCH_207S))
225 vcpu->arch.entry_ic = mfspr(SPRN_IC);
226 svcpu->in_use = true;
227
228 svcpu_put(svcpu);
229 }
230
kvmppc_recalc_shadow_msr(struct kvm_vcpu * vcpu)231 static void kvmppc_recalc_shadow_msr(struct kvm_vcpu *vcpu)
232 {
233 ulong guest_msr = kvmppc_get_msr(vcpu);
234 ulong smsr = guest_msr;
235
236 /* Guest MSR values */
237 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
238 smsr &= MSR_FE0 | MSR_FE1 | MSR_SF | MSR_SE | MSR_BE | MSR_LE |
239 MSR_TM | MSR_TS_MASK;
240 #else
241 smsr &= MSR_FE0 | MSR_FE1 | MSR_SF | MSR_SE | MSR_BE | MSR_LE;
242 #endif
243 /* Process MSR values */
244 smsr |= MSR_ME | MSR_RI | MSR_IR | MSR_DR | MSR_PR | MSR_EE;
245 /* External providers the guest reserved */
246 smsr |= (guest_msr & vcpu->arch.guest_owned_ext);
247 /* 64-bit Process MSR values */
248 #ifdef CONFIG_PPC_BOOK3S_64
249 smsr |= MSR_HV;
250 #endif
251 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
252 /*
253 * in guest privileged state, we want to fail all TM transactions.
254 * So disable MSR TM bit so that all tbegin. will be able to be
255 * trapped into host.
256 */
257 if (!(guest_msr & MSR_PR))
258 smsr &= ~MSR_TM;
259 #endif
260 vcpu->arch.shadow_msr = smsr;
261 }
262
263 /* Copy data touched by real-mode code from shadow vcpu back to vcpu */
kvmppc_copy_from_svcpu(struct kvm_vcpu * vcpu)264 void kvmppc_copy_from_svcpu(struct kvm_vcpu *vcpu)
265 {
266 struct kvmppc_book3s_shadow_vcpu *svcpu = svcpu_get(vcpu);
267 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
268 ulong old_msr;
269 #endif
270
271 /*
272 * Maybe we were already preempted and synced the svcpu from
273 * our preempt notifiers. Don't bother touching this svcpu then.
274 */
275 if (!svcpu->in_use)
276 goto out;
277
278 vcpu->arch.regs.gpr[0] = svcpu->gpr[0];
279 vcpu->arch.regs.gpr[1] = svcpu->gpr[1];
280 vcpu->arch.regs.gpr[2] = svcpu->gpr[2];
281 vcpu->arch.regs.gpr[3] = svcpu->gpr[3];
282 vcpu->arch.regs.gpr[4] = svcpu->gpr[4];
283 vcpu->arch.regs.gpr[5] = svcpu->gpr[5];
284 vcpu->arch.regs.gpr[6] = svcpu->gpr[6];
285 vcpu->arch.regs.gpr[7] = svcpu->gpr[7];
286 vcpu->arch.regs.gpr[8] = svcpu->gpr[8];
287 vcpu->arch.regs.gpr[9] = svcpu->gpr[9];
288 vcpu->arch.regs.gpr[10] = svcpu->gpr[10];
289 vcpu->arch.regs.gpr[11] = svcpu->gpr[11];
290 vcpu->arch.regs.gpr[12] = svcpu->gpr[12];
291 vcpu->arch.regs.gpr[13] = svcpu->gpr[13];
292 vcpu->arch.regs.ccr = svcpu->cr;
293 vcpu->arch.regs.xer = svcpu->xer;
294 vcpu->arch.regs.ctr = svcpu->ctr;
295 vcpu->arch.regs.link = svcpu->lr;
296 vcpu->arch.regs.nip = svcpu->pc;
297 vcpu->arch.shadow_srr1 = svcpu->shadow_srr1;
298 vcpu->arch.fault_dar = svcpu->fault_dar;
299 vcpu->arch.fault_dsisr = svcpu->fault_dsisr;
300 vcpu->arch.last_inst = svcpu->last_inst;
301 #ifdef CONFIG_PPC_BOOK3S_64
302 vcpu->arch.shadow_fscr = svcpu->shadow_fscr;
303 #endif
304 /*
305 * Update purr and spurr using time base on exit.
306 */
307 vcpu->arch.purr += get_tb() - vcpu->arch.entry_tb;
308 vcpu->arch.spurr += get_tb() - vcpu->arch.entry_tb;
309 to_book3s(vcpu)->vtb += get_vtb() - vcpu->arch.entry_vtb;
310 if (cpu_has_feature(CPU_FTR_ARCH_207S))
311 vcpu->arch.ic += mfspr(SPRN_IC) - vcpu->arch.entry_ic;
312
313 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
314 /*
315 * Unlike other MSR bits, MSR[TS]bits can be changed at guest without
316 * notifying host:
317 * modified by unprivileged instructions like "tbegin"/"tend"/
318 * "tresume"/"tsuspend" in PR KVM guest.
319 *
320 * It is necessary to sync here to calculate a correct shadow_msr.
321 *
322 * privileged guest's tbegin will be failed at present. So we
323 * only take care of problem state guest.
324 */
325 old_msr = kvmppc_get_msr(vcpu);
326 if (unlikely((old_msr & MSR_PR) &&
327 (vcpu->arch.shadow_srr1 & (MSR_TS_MASK)) !=
328 (old_msr & (MSR_TS_MASK)))) {
329 old_msr &= ~(MSR_TS_MASK);
330 old_msr |= (vcpu->arch.shadow_srr1 & (MSR_TS_MASK));
331 kvmppc_set_msr_fast(vcpu, old_msr);
332 kvmppc_recalc_shadow_msr(vcpu);
333 }
334 #endif
335
336 svcpu->in_use = false;
337
338 out:
339 svcpu_put(svcpu);
340 }
341
342 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
kvmppc_save_tm_sprs(struct kvm_vcpu * vcpu)343 void kvmppc_save_tm_sprs(struct kvm_vcpu *vcpu)
344 {
345 tm_enable();
346 vcpu->arch.tfhar = mfspr(SPRN_TFHAR);
347 vcpu->arch.texasr = mfspr(SPRN_TEXASR);
348 vcpu->arch.tfiar = mfspr(SPRN_TFIAR);
349 tm_disable();
350 }
351
kvmppc_restore_tm_sprs(struct kvm_vcpu * vcpu)352 void kvmppc_restore_tm_sprs(struct kvm_vcpu *vcpu)
353 {
354 tm_enable();
355 mtspr(SPRN_TFHAR, vcpu->arch.tfhar);
356 mtspr(SPRN_TEXASR, vcpu->arch.texasr);
357 mtspr(SPRN_TFIAR, vcpu->arch.tfiar);
358 tm_disable();
359 }
360
361 /* loadup math bits which is enabled at kvmppc_get_msr() but not enabled at
362 * hardware.
363 */
kvmppc_handle_lost_math_exts(struct kvm_vcpu * vcpu)364 static void kvmppc_handle_lost_math_exts(struct kvm_vcpu *vcpu)
365 {
366 ulong exit_nr;
367 ulong ext_diff = (kvmppc_get_msr(vcpu) & ~vcpu->arch.guest_owned_ext) &
368 (MSR_FP | MSR_VEC | MSR_VSX);
369
370 if (!ext_diff)
371 return;
372
373 if (ext_diff == MSR_FP)
374 exit_nr = BOOK3S_INTERRUPT_FP_UNAVAIL;
375 else if (ext_diff == MSR_VEC)
376 exit_nr = BOOK3S_INTERRUPT_ALTIVEC;
377 else
378 exit_nr = BOOK3S_INTERRUPT_VSX;
379
380 kvmppc_handle_ext(vcpu, exit_nr, ext_diff);
381 }
382
kvmppc_save_tm_pr(struct kvm_vcpu * vcpu)383 void kvmppc_save_tm_pr(struct kvm_vcpu *vcpu)
384 {
385 if (!(MSR_TM_ACTIVE(kvmppc_get_msr(vcpu)))) {
386 kvmppc_save_tm_sprs(vcpu);
387 return;
388 }
389
390 kvmppc_giveup_fac(vcpu, FSCR_TAR_LG);
391 kvmppc_giveup_ext(vcpu, MSR_VSX);
392
393 preempt_disable();
394 _kvmppc_save_tm_pr(vcpu, mfmsr());
395 preempt_enable();
396 }
397
kvmppc_restore_tm_pr(struct kvm_vcpu * vcpu)398 void kvmppc_restore_tm_pr(struct kvm_vcpu *vcpu)
399 {
400 if (!MSR_TM_ACTIVE(kvmppc_get_msr(vcpu))) {
401 kvmppc_restore_tm_sprs(vcpu);
402 if (kvmppc_get_msr(vcpu) & MSR_TM) {
403 kvmppc_handle_lost_math_exts(vcpu);
404 if (vcpu->arch.fscr & FSCR_TAR)
405 kvmppc_handle_fac(vcpu, FSCR_TAR_LG);
406 }
407 return;
408 }
409
410 preempt_disable();
411 _kvmppc_restore_tm_pr(vcpu, kvmppc_get_msr(vcpu));
412 preempt_enable();
413
414 if (kvmppc_get_msr(vcpu) & MSR_TM) {
415 kvmppc_handle_lost_math_exts(vcpu);
416 if (vcpu->arch.fscr & FSCR_TAR)
417 kvmppc_handle_fac(vcpu, FSCR_TAR_LG);
418 }
419 }
420 #endif
421
kvmppc_core_check_requests_pr(struct kvm_vcpu * vcpu)422 static int kvmppc_core_check_requests_pr(struct kvm_vcpu *vcpu)
423 {
424 int r = 1; /* Indicate we want to get back into the guest */
425
426 /* We misuse TLB_FLUSH to indicate that we want to clear
427 all shadow cache entries */
428 if (kvm_check_request(KVM_REQ_TLB_FLUSH, vcpu))
429 kvmppc_mmu_pte_flush(vcpu, 0, 0);
430
431 return r;
432 }
433
434 /************* MMU Notifiers *************/
do_kvm_unmap_gfn(struct kvm * kvm,struct kvm_gfn_range * range)435 static bool do_kvm_unmap_gfn(struct kvm *kvm, struct kvm_gfn_range *range)
436 {
437 unsigned long i;
438 struct kvm_vcpu *vcpu;
439
440 kvm_for_each_vcpu(i, vcpu, kvm)
441 kvmppc_mmu_pte_pflush(vcpu, range->start << PAGE_SHIFT,
442 range->end << PAGE_SHIFT);
443
444 return false;
445 }
446
kvm_unmap_gfn_range_pr(struct kvm * kvm,struct kvm_gfn_range * range)447 static bool kvm_unmap_gfn_range_pr(struct kvm *kvm, struct kvm_gfn_range *range)
448 {
449 return do_kvm_unmap_gfn(kvm, range);
450 }
451
kvm_age_gfn_pr(struct kvm * kvm,struct kvm_gfn_range * range)452 static bool kvm_age_gfn_pr(struct kvm *kvm, struct kvm_gfn_range *range)
453 {
454 /* XXX could be more clever ;) */
455 return false;
456 }
457
kvm_test_age_gfn_pr(struct kvm * kvm,struct kvm_gfn_range * range)458 static bool kvm_test_age_gfn_pr(struct kvm *kvm, struct kvm_gfn_range *range)
459 {
460 /* XXX could be more clever ;) */
461 return false;
462 }
463
464 /*****************************************/
465
kvmppc_set_msr_pr(struct kvm_vcpu * vcpu,u64 msr)466 static void kvmppc_set_msr_pr(struct kvm_vcpu *vcpu, u64 msr)
467 {
468 ulong old_msr;
469
470 /* For PAPR guest, make sure MSR reflects guest mode */
471 if (vcpu->arch.papr_enabled)
472 msr = (msr & ~MSR_HV) | MSR_ME;
473
474 #ifdef EXIT_DEBUG
475 printk(KERN_INFO "KVM: Set MSR to 0x%llx\n", msr);
476 #endif
477
478 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
479 /* We should never target guest MSR to TS=10 && PR=0,
480 * since we always fail transaction for guest privilege
481 * state.
482 */
483 if (!(msr & MSR_PR) && MSR_TM_TRANSACTIONAL(msr))
484 kvmppc_emulate_tabort(vcpu,
485 TM_CAUSE_KVM_FAC_UNAV | TM_CAUSE_PERSISTENT);
486 #endif
487
488 old_msr = kvmppc_get_msr(vcpu);
489 msr &= to_book3s(vcpu)->msr_mask;
490 kvmppc_set_msr_fast(vcpu, msr);
491 kvmppc_recalc_shadow_msr(vcpu);
492
493 if (msr & MSR_POW) {
494 if (!vcpu->arch.pending_exceptions) {
495 kvm_vcpu_halt(vcpu);
496 vcpu->stat.generic.halt_wakeup++;
497
498 /* Unset POW bit after we woke up */
499 msr &= ~MSR_POW;
500 kvmppc_set_msr_fast(vcpu, msr);
501 }
502 }
503
504 if (kvmppc_is_split_real(vcpu))
505 kvmppc_fixup_split_real(vcpu);
506 else
507 kvmppc_unfixup_split_real(vcpu);
508
509 if ((kvmppc_get_msr(vcpu) & (MSR_PR|MSR_IR|MSR_DR)) !=
510 (old_msr & (MSR_PR|MSR_IR|MSR_DR))) {
511 kvmppc_mmu_flush_segments(vcpu);
512 kvmppc_mmu_map_segment(vcpu, kvmppc_get_pc(vcpu));
513
514 /* Preload magic page segment when in kernel mode */
515 if (!(msr & MSR_PR) && vcpu->arch.magic_page_pa) {
516 struct kvm_vcpu_arch *a = &vcpu->arch;
517
518 if (msr & MSR_DR)
519 kvmppc_mmu_map_segment(vcpu, a->magic_page_ea);
520 else
521 kvmppc_mmu_map_segment(vcpu, a->magic_page_pa);
522 }
523 }
524
525 /*
526 * When switching from 32 to 64-bit, we may have a stale 32-bit
527 * magic page around, we need to flush it. Typically 32-bit magic
528 * page will be instantiated when calling into RTAS. Note: We
529 * assume that such transition only happens while in kernel mode,
530 * ie, we never transition from user 32-bit to kernel 64-bit with
531 * a 32-bit magic page around.
532 */
533 if (vcpu->arch.magic_page_pa &&
534 !(old_msr & MSR_PR) && !(old_msr & MSR_SF) && (msr & MSR_SF)) {
535 /* going from RTAS to normal kernel code */
536 kvmppc_mmu_pte_flush(vcpu, (uint32_t)vcpu->arch.magic_page_pa,
537 ~0xFFFUL);
538 }
539
540 /* Preload FPU if it's enabled */
541 if (kvmppc_get_msr(vcpu) & MSR_FP)
542 kvmppc_handle_ext(vcpu, BOOK3S_INTERRUPT_FP_UNAVAIL, MSR_FP);
543
544 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
545 if (kvmppc_get_msr(vcpu) & MSR_TM)
546 kvmppc_handle_lost_math_exts(vcpu);
547 #endif
548 }
549
kvmppc_set_pvr_pr(struct kvm_vcpu * vcpu,u32 pvr)550 static void kvmppc_set_pvr_pr(struct kvm_vcpu *vcpu, u32 pvr)
551 {
552 u32 host_pvr;
553
554 vcpu->arch.hflags &= ~BOOK3S_HFLAG_SLB;
555 vcpu->arch.pvr = pvr;
556 #ifdef CONFIG_PPC_BOOK3S_64
557 if ((pvr >= 0x330000) && (pvr < 0x70330000)) {
558 kvmppc_mmu_book3s_64_init(vcpu);
559 if (!to_book3s(vcpu)->hior_explicit)
560 to_book3s(vcpu)->hior = 0xfff00000;
561 to_book3s(vcpu)->msr_mask = 0xffffffffffffffffULL;
562 vcpu->arch.cpu_type = KVM_CPU_3S_64;
563 } else
564 #endif
565 {
566 kvmppc_mmu_book3s_32_init(vcpu);
567 if (!to_book3s(vcpu)->hior_explicit)
568 to_book3s(vcpu)->hior = 0;
569 to_book3s(vcpu)->msr_mask = 0xffffffffULL;
570 vcpu->arch.cpu_type = KVM_CPU_3S_32;
571 }
572
573 kvmppc_sanity_check(vcpu);
574
575 /* If we are in hypervisor level on 970, we can tell the CPU to
576 * treat DCBZ as 32 bytes store */
577 vcpu->arch.hflags &= ~BOOK3S_HFLAG_DCBZ32;
578 if (vcpu->arch.mmu.is_dcbz32(vcpu) && (mfmsr() & MSR_HV) &&
579 !strcmp(cur_cpu_spec->platform, "ppc970"))
580 vcpu->arch.hflags |= BOOK3S_HFLAG_DCBZ32;
581
582 /* Cell performs badly if MSR_FEx are set. So let's hope nobody
583 really needs them in a VM on Cell and force disable them. */
584 if (!strcmp(cur_cpu_spec->platform, "ppc-cell-be"))
585 to_book3s(vcpu)->msr_mask &= ~(MSR_FE0 | MSR_FE1);
586
587 /*
588 * If they're asking for POWER6 or later, set the flag
589 * indicating that we can do multiple large page sizes
590 * and 1TB segments.
591 * Also set the flag that indicates that tlbie has the large
592 * page bit in the RB operand instead of the instruction.
593 */
594 switch (PVR_VER(pvr)) {
595 case PVR_POWER6:
596 case PVR_POWER7:
597 case PVR_POWER7p:
598 case PVR_POWER8:
599 case PVR_POWER8E:
600 case PVR_POWER8NVL:
601 case PVR_HX_C2000:
602 case PVR_POWER9:
603 vcpu->arch.hflags |= BOOK3S_HFLAG_MULTI_PGSIZE |
604 BOOK3S_HFLAG_NEW_TLBIE;
605 break;
606 }
607
608 #ifdef CONFIG_PPC_BOOK3S_32
609 /* 32 bit Book3S always has 32 byte dcbz */
610 vcpu->arch.hflags |= BOOK3S_HFLAG_DCBZ32;
611 #endif
612
613 /* On some CPUs we can execute paired single operations natively */
614 asm ( "mfpvr %0" : "=r"(host_pvr));
615 switch (host_pvr) {
616 case 0x00080200: /* lonestar 2.0 */
617 case 0x00088202: /* lonestar 2.2 */
618 case 0x70000100: /* gekko 1.0 */
619 case 0x00080100: /* gekko 2.0 */
620 case 0x00083203: /* gekko 2.3a */
621 case 0x00083213: /* gekko 2.3b */
622 case 0x00083204: /* gekko 2.4 */
623 case 0x00083214: /* gekko 2.4e (8SE) - retail HW2 */
624 case 0x00087200: /* broadway */
625 vcpu->arch.hflags |= BOOK3S_HFLAG_NATIVE_PS;
626 /* Enable HID2.PSE - in case we need it later */
627 mtspr(SPRN_HID2_GEKKO, mfspr(SPRN_HID2_GEKKO) | (1 << 29));
628 }
629 }
630
631 /* Book3s_32 CPUs always have 32 bytes cache line size, which Linux assumes. To
632 * make Book3s_32 Linux work on Book3s_64, we have to make sure we trap dcbz to
633 * emulate 32 bytes dcbz length.
634 *
635 * The Book3s_64 inventors also realized this case and implemented a special bit
636 * in the HID5 register, which is a hypervisor ressource. Thus we can't use it.
637 *
638 * My approach here is to patch the dcbz instruction on executing pages.
639 */
kvmppc_patch_dcbz(struct kvm_vcpu * vcpu,struct kvmppc_pte * pte)640 static void kvmppc_patch_dcbz(struct kvm_vcpu *vcpu, struct kvmppc_pte *pte)
641 {
642 struct kvm_host_map map;
643 u64 hpage_offset;
644 u32 *page;
645 int i, r;
646
647 r = kvm_vcpu_map(vcpu, pte->raddr >> PAGE_SHIFT, &map);
648 if (r)
649 return;
650
651 hpage_offset = pte->raddr & ~PAGE_MASK;
652 hpage_offset &= ~0xFFFULL;
653 hpage_offset /= 4;
654
655 page = map.hva;
656
657 /* patch dcbz into reserved instruction, so we trap */
658 for (i=hpage_offset; i < hpage_offset + (HW_PAGE_SIZE / 4); i++)
659 if ((be32_to_cpu(page[i]) & 0xff0007ff) == INS_DCBZ)
660 page[i] &= cpu_to_be32(0xfffffff7);
661
662 kvm_vcpu_unmap(vcpu, &map);
663 }
664
kvmppc_visible_gpa(struct kvm_vcpu * vcpu,gpa_t gpa)665 static bool kvmppc_visible_gpa(struct kvm_vcpu *vcpu, gpa_t gpa)
666 {
667 ulong mp_pa = vcpu->arch.magic_page_pa;
668
669 if (!(kvmppc_get_msr(vcpu) & MSR_SF))
670 mp_pa = (uint32_t)mp_pa;
671
672 gpa &= ~0xFFFULL;
673 if (unlikely(mp_pa) && unlikely((mp_pa & KVM_PAM) == (gpa & KVM_PAM))) {
674 return true;
675 }
676
677 return kvm_is_visible_gfn(vcpu->kvm, gpa >> PAGE_SHIFT);
678 }
679
kvmppc_handle_pagefault(struct kvm_vcpu * vcpu,ulong eaddr,int vec)680 static int kvmppc_handle_pagefault(struct kvm_vcpu *vcpu,
681 ulong eaddr, int vec)
682 {
683 bool data = (vec == BOOK3S_INTERRUPT_DATA_STORAGE);
684 bool iswrite = false;
685 int r = RESUME_GUEST;
686 int relocated;
687 int page_found = 0;
688 struct kvmppc_pte pte = { 0 };
689 bool dr = (kvmppc_get_msr(vcpu) & MSR_DR) ? true : false;
690 bool ir = (kvmppc_get_msr(vcpu) & MSR_IR) ? true : false;
691 u64 vsid;
692
693 relocated = data ? dr : ir;
694 if (data && (vcpu->arch.fault_dsisr & DSISR_ISSTORE))
695 iswrite = true;
696
697 /* Resolve real address if translation turned on */
698 if (relocated) {
699 page_found = vcpu->arch.mmu.xlate(vcpu, eaddr, &pte, data, iswrite);
700 } else {
701 pte.may_execute = true;
702 pte.may_read = true;
703 pte.may_write = true;
704 pte.raddr = eaddr & KVM_PAM;
705 pte.eaddr = eaddr;
706 pte.vpage = eaddr >> 12;
707 pte.page_size = MMU_PAGE_64K;
708 pte.wimg = HPTE_R_M;
709 }
710
711 switch (kvmppc_get_msr(vcpu) & (MSR_DR|MSR_IR)) {
712 case 0:
713 pte.vpage |= ((u64)VSID_REAL << (SID_SHIFT - 12));
714 break;
715 case MSR_DR:
716 if (!data &&
717 (vcpu->arch.hflags & BOOK3S_HFLAG_SPLIT_HACK) &&
718 ((pte.raddr & SPLIT_HACK_MASK) == SPLIT_HACK_OFFS))
719 pte.raddr &= ~SPLIT_HACK_MASK;
720 fallthrough;
721 case MSR_IR:
722 vcpu->arch.mmu.esid_to_vsid(vcpu, eaddr >> SID_SHIFT, &vsid);
723
724 if ((kvmppc_get_msr(vcpu) & (MSR_DR|MSR_IR)) == MSR_DR)
725 pte.vpage |= ((u64)VSID_REAL_DR << (SID_SHIFT - 12));
726 else
727 pte.vpage |= ((u64)VSID_REAL_IR << (SID_SHIFT - 12));
728 pte.vpage |= vsid;
729
730 if (vsid == -1)
731 page_found = -EINVAL;
732 break;
733 }
734
735 if (vcpu->arch.mmu.is_dcbz32(vcpu) &&
736 (!(vcpu->arch.hflags & BOOK3S_HFLAG_DCBZ32))) {
737 /*
738 * If we do the dcbz hack, we have to NX on every execution,
739 * so we can patch the executing code. This renders our guest
740 * NX-less.
741 */
742 pte.may_execute = !data;
743 }
744
745 if (page_found == -ENOENT || page_found == -EPERM) {
746 /* Page not found in guest PTE entries, or protection fault */
747 u64 flags;
748
749 if (page_found == -EPERM)
750 flags = DSISR_PROTFAULT;
751 else
752 flags = DSISR_NOHPTE;
753 if (data) {
754 flags |= vcpu->arch.fault_dsisr & DSISR_ISSTORE;
755 kvmppc_core_queue_data_storage(vcpu, 0, eaddr, flags);
756 } else {
757 kvmppc_core_queue_inst_storage(vcpu, flags);
758 }
759 } else if (page_found == -EINVAL) {
760 /* Page not found in guest SLB */
761 kvmppc_set_dar(vcpu, kvmppc_get_fault_dar(vcpu));
762 kvmppc_book3s_queue_irqprio(vcpu, vec + 0x80);
763 } else if (kvmppc_visible_gpa(vcpu, pte.raddr)) {
764 if (data && !(vcpu->arch.fault_dsisr & DSISR_NOHPTE)) {
765 /*
766 * There is already a host HPTE there, presumably
767 * a read-only one for a page the guest thinks
768 * is writable, so get rid of it first.
769 */
770 kvmppc_mmu_unmap_page(vcpu, &pte);
771 }
772 /* The guest's PTE is not mapped yet. Map on the host */
773 if (kvmppc_mmu_map_page(vcpu, &pte, iswrite) == -EIO) {
774 /* Exit KVM if mapping failed */
775 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
776 return RESUME_HOST;
777 }
778 if (data)
779 vcpu->stat.sp_storage++;
780 else if (vcpu->arch.mmu.is_dcbz32(vcpu) &&
781 (!(vcpu->arch.hflags & BOOK3S_HFLAG_DCBZ32)))
782 kvmppc_patch_dcbz(vcpu, &pte);
783 } else {
784 /* MMIO */
785 vcpu->stat.mmio_exits++;
786 vcpu->arch.paddr_accessed = pte.raddr;
787 vcpu->arch.vaddr_accessed = pte.eaddr;
788 r = kvmppc_emulate_mmio(vcpu);
789 if ( r == RESUME_HOST_NV )
790 r = RESUME_HOST;
791 }
792
793 return r;
794 }
795
796 /* Give up external provider (FPU, Altivec, VSX) */
kvmppc_giveup_ext(struct kvm_vcpu * vcpu,ulong msr)797 void kvmppc_giveup_ext(struct kvm_vcpu *vcpu, ulong msr)
798 {
799 struct thread_struct *t = ¤t->thread;
800
801 /*
802 * VSX instructions can access FP and vector registers, so if
803 * we are giving up VSX, make sure we give up FP and VMX as well.
804 */
805 if (msr & MSR_VSX)
806 msr |= MSR_FP | MSR_VEC;
807
808 msr &= vcpu->arch.guest_owned_ext;
809 if (!msr)
810 return;
811
812 #ifdef DEBUG_EXT
813 printk(KERN_INFO "Giving up ext 0x%lx\n", msr);
814 #endif
815
816 if (msr & MSR_FP) {
817 /*
818 * Note that on CPUs with VSX, giveup_fpu stores
819 * both the traditional FP registers and the added VSX
820 * registers into thread.fp_state.fpr[].
821 */
822 if (t->regs->msr & MSR_FP)
823 giveup_fpu(current);
824 t->fp_save_area = NULL;
825 }
826
827 #ifdef CONFIG_ALTIVEC
828 if (msr & MSR_VEC) {
829 if (current->thread.regs->msr & MSR_VEC)
830 giveup_altivec(current);
831 t->vr_save_area = NULL;
832 }
833 #endif
834
835 vcpu->arch.guest_owned_ext &= ~(msr | MSR_VSX);
836 kvmppc_recalc_shadow_msr(vcpu);
837 }
838
839 /* Give up facility (TAR / EBB / DSCR) */
kvmppc_giveup_fac(struct kvm_vcpu * vcpu,ulong fac)840 void kvmppc_giveup_fac(struct kvm_vcpu *vcpu, ulong fac)
841 {
842 #ifdef CONFIG_PPC_BOOK3S_64
843 if (!(vcpu->arch.shadow_fscr & (1ULL << fac))) {
844 /* Facility not available to the guest, ignore giveup request*/
845 return;
846 }
847
848 switch (fac) {
849 case FSCR_TAR_LG:
850 vcpu->arch.tar = mfspr(SPRN_TAR);
851 mtspr(SPRN_TAR, current->thread.tar);
852 vcpu->arch.shadow_fscr &= ~FSCR_TAR;
853 break;
854 }
855 #endif
856 }
857
858 /* Handle external providers (FPU, Altivec, VSX) */
kvmppc_handle_ext(struct kvm_vcpu * vcpu,unsigned int exit_nr,ulong msr)859 static int kvmppc_handle_ext(struct kvm_vcpu *vcpu, unsigned int exit_nr,
860 ulong msr)
861 {
862 struct thread_struct *t = ¤t->thread;
863
864 /* When we have paired singles, we emulate in software */
865 if (vcpu->arch.hflags & BOOK3S_HFLAG_PAIRED_SINGLE)
866 return RESUME_GUEST;
867
868 if (!(kvmppc_get_msr(vcpu) & msr)) {
869 kvmppc_book3s_queue_irqprio(vcpu, exit_nr);
870 return RESUME_GUEST;
871 }
872
873 if (msr == MSR_VSX) {
874 /* No VSX? Give an illegal instruction interrupt */
875 #ifdef CONFIG_VSX
876 if (!cpu_has_feature(CPU_FTR_VSX))
877 #endif
878 {
879 kvmppc_core_queue_program(vcpu, SRR1_PROGILL);
880 return RESUME_GUEST;
881 }
882
883 /*
884 * We have to load up all the FP and VMX registers before
885 * we can let the guest use VSX instructions.
886 */
887 msr = MSR_FP | MSR_VEC | MSR_VSX;
888 }
889
890 /* See if we already own all the ext(s) needed */
891 msr &= ~vcpu->arch.guest_owned_ext;
892 if (!msr)
893 return RESUME_GUEST;
894
895 #ifdef DEBUG_EXT
896 printk(KERN_INFO "Loading up ext 0x%lx\n", msr);
897 #endif
898
899 if (msr & MSR_FP) {
900 preempt_disable();
901 enable_kernel_fp();
902 load_fp_state(&vcpu->arch.fp);
903 disable_kernel_fp();
904 t->fp_save_area = &vcpu->arch.fp;
905 preempt_enable();
906 }
907
908 if (msr & MSR_VEC) {
909 #ifdef CONFIG_ALTIVEC
910 preempt_disable();
911 enable_kernel_altivec();
912 load_vr_state(&vcpu->arch.vr);
913 disable_kernel_altivec();
914 t->vr_save_area = &vcpu->arch.vr;
915 preempt_enable();
916 #endif
917 }
918
919 t->regs->msr |= msr;
920 vcpu->arch.guest_owned_ext |= msr;
921 kvmppc_recalc_shadow_msr(vcpu);
922
923 return RESUME_GUEST;
924 }
925
926 /*
927 * Kernel code using FP or VMX could have flushed guest state to
928 * the thread_struct; if so, get it back now.
929 */
kvmppc_handle_lost_ext(struct kvm_vcpu * vcpu)930 static void kvmppc_handle_lost_ext(struct kvm_vcpu *vcpu)
931 {
932 unsigned long lost_ext;
933
934 lost_ext = vcpu->arch.guest_owned_ext & ~current->thread.regs->msr;
935 if (!lost_ext)
936 return;
937
938 if (lost_ext & MSR_FP) {
939 preempt_disable();
940 enable_kernel_fp();
941 load_fp_state(&vcpu->arch.fp);
942 disable_kernel_fp();
943 preempt_enable();
944 }
945 #ifdef CONFIG_ALTIVEC
946 if (lost_ext & MSR_VEC) {
947 preempt_disable();
948 enable_kernel_altivec();
949 load_vr_state(&vcpu->arch.vr);
950 disable_kernel_altivec();
951 preempt_enable();
952 }
953 #endif
954 current->thread.regs->msr |= lost_ext;
955 }
956
957 #ifdef CONFIG_PPC_BOOK3S_64
958
kvmppc_trigger_fac_interrupt(struct kvm_vcpu * vcpu,ulong fac)959 void kvmppc_trigger_fac_interrupt(struct kvm_vcpu *vcpu, ulong fac)
960 {
961 /* Inject the Interrupt Cause field and trigger a guest interrupt */
962 vcpu->arch.fscr &= ~(0xffULL << 56);
963 vcpu->arch.fscr |= (fac << 56);
964 kvmppc_book3s_queue_irqprio(vcpu, BOOK3S_INTERRUPT_FAC_UNAVAIL);
965 }
966
kvmppc_emulate_fac(struct kvm_vcpu * vcpu,ulong fac)967 static void kvmppc_emulate_fac(struct kvm_vcpu *vcpu, ulong fac)
968 {
969 enum emulation_result er = EMULATE_FAIL;
970
971 if (!(kvmppc_get_msr(vcpu) & MSR_PR))
972 er = kvmppc_emulate_instruction(vcpu);
973
974 if ((er != EMULATE_DONE) && (er != EMULATE_AGAIN)) {
975 /* Couldn't emulate, trigger interrupt in guest */
976 kvmppc_trigger_fac_interrupt(vcpu, fac);
977 }
978 }
979
980 /* Enable facilities (TAR, EBB, DSCR) for the guest */
kvmppc_handle_fac(struct kvm_vcpu * vcpu,ulong fac)981 static int kvmppc_handle_fac(struct kvm_vcpu *vcpu, ulong fac)
982 {
983 bool guest_fac_enabled;
984 BUG_ON(!cpu_has_feature(CPU_FTR_ARCH_207S));
985
986 /*
987 * Not every facility is enabled by FSCR bits, check whether the
988 * guest has this facility enabled at all.
989 */
990 switch (fac) {
991 case FSCR_TAR_LG:
992 case FSCR_EBB_LG:
993 guest_fac_enabled = (vcpu->arch.fscr & (1ULL << fac));
994 break;
995 case FSCR_TM_LG:
996 guest_fac_enabled = kvmppc_get_msr(vcpu) & MSR_TM;
997 break;
998 default:
999 guest_fac_enabled = false;
1000 break;
1001 }
1002
1003 if (!guest_fac_enabled) {
1004 /* Facility not enabled by the guest */
1005 kvmppc_trigger_fac_interrupt(vcpu, fac);
1006 return RESUME_GUEST;
1007 }
1008
1009 switch (fac) {
1010 case FSCR_TAR_LG:
1011 /* TAR switching isn't lazy in Linux yet */
1012 current->thread.tar = mfspr(SPRN_TAR);
1013 mtspr(SPRN_TAR, vcpu->arch.tar);
1014 vcpu->arch.shadow_fscr |= FSCR_TAR;
1015 break;
1016 default:
1017 kvmppc_emulate_fac(vcpu, fac);
1018 break;
1019 }
1020
1021 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1022 /* Since we disabled MSR_TM at privilege state, the mfspr instruction
1023 * for TM spr can trigger TM fac unavailable. In this case, the
1024 * emulation is handled by kvmppc_emulate_fac(), which invokes
1025 * kvmppc_emulate_mfspr() finally. But note the mfspr can include
1026 * RT for NV registers. So it need to restore those NV reg to reflect
1027 * the update.
1028 */
1029 if ((fac == FSCR_TM_LG) && !(kvmppc_get_msr(vcpu) & MSR_PR))
1030 return RESUME_GUEST_NV;
1031 #endif
1032
1033 return RESUME_GUEST;
1034 }
1035
kvmppc_set_fscr(struct kvm_vcpu * vcpu,u64 fscr)1036 void kvmppc_set_fscr(struct kvm_vcpu *vcpu, u64 fscr)
1037 {
1038 if (fscr & FSCR_SCV)
1039 fscr &= ~FSCR_SCV; /* SCV must not be enabled */
1040 /* Prohibit prefixed instructions for now */
1041 fscr &= ~FSCR_PREFIX;
1042 if ((vcpu->arch.fscr & FSCR_TAR) && !(fscr & FSCR_TAR)) {
1043 /* TAR got dropped, drop it in shadow too */
1044 kvmppc_giveup_fac(vcpu, FSCR_TAR_LG);
1045 } else if (!(vcpu->arch.fscr & FSCR_TAR) && (fscr & FSCR_TAR)) {
1046 vcpu->arch.fscr = fscr;
1047 kvmppc_handle_fac(vcpu, FSCR_TAR_LG);
1048 return;
1049 }
1050
1051 vcpu->arch.fscr = fscr;
1052 }
1053 #endif
1054
kvmppc_setup_debug(struct kvm_vcpu * vcpu)1055 static void kvmppc_setup_debug(struct kvm_vcpu *vcpu)
1056 {
1057 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) {
1058 u64 msr = kvmppc_get_msr(vcpu);
1059
1060 kvmppc_set_msr(vcpu, msr | MSR_SE);
1061 }
1062 }
1063
kvmppc_clear_debug(struct kvm_vcpu * vcpu)1064 static void kvmppc_clear_debug(struct kvm_vcpu *vcpu)
1065 {
1066 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) {
1067 u64 msr = kvmppc_get_msr(vcpu);
1068
1069 kvmppc_set_msr(vcpu, msr & ~MSR_SE);
1070 }
1071 }
1072
kvmppc_exit_pr_progint(struct kvm_vcpu * vcpu,unsigned int exit_nr)1073 static int kvmppc_exit_pr_progint(struct kvm_vcpu *vcpu, unsigned int exit_nr)
1074 {
1075 enum emulation_result er;
1076 ulong flags;
1077 ppc_inst_t last_inst;
1078 int emul, r;
1079
1080 /*
1081 * shadow_srr1 only contains valid flags if we came here via a program
1082 * exception. The other exceptions (emulation assist, FP unavailable,
1083 * etc.) do not provide flags in SRR1, so use an illegal-instruction
1084 * exception when injecting a program interrupt into the guest.
1085 */
1086 if (exit_nr == BOOK3S_INTERRUPT_PROGRAM)
1087 flags = vcpu->arch.shadow_srr1 & 0x1f0000ull;
1088 else
1089 flags = SRR1_PROGILL;
1090
1091 emul = kvmppc_get_last_inst(vcpu, INST_GENERIC, &last_inst);
1092 if (emul != EMULATE_DONE)
1093 return RESUME_GUEST;
1094
1095 if (kvmppc_get_msr(vcpu) & MSR_PR) {
1096 #ifdef EXIT_DEBUG
1097 pr_info("Userspace triggered 0x700 exception at\n 0x%lx (0x%x)\n",
1098 kvmppc_get_pc(vcpu), ppc_inst_val(last_inst));
1099 #endif
1100 if ((ppc_inst_val(last_inst) & 0xff0007ff) != (INS_DCBZ & 0xfffffff7)) {
1101 kvmppc_core_queue_program(vcpu, flags);
1102 return RESUME_GUEST;
1103 }
1104 }
1105
1106 vcpu->stat.emulated_inst_exits++;
1107 er = kvmppc_emulate_instruction(vcpu);
1108 switch (er) {
1109 case EMULATE_DONE:
1110 r = RESUME_GUEST_NV;
1111 break;
1112 case EMULATE_AGAIN:
1113 r = RESUME_GUEST;
1114 break;
1115 case EMULATE_FAIL:
1116 pr_crit("%s: emulation at %lx failed (%08x)\n",
1117 __func__, kvmppc_get_pc(vcpu), ppc_inst_val(last_inst));
1118 kvmppc_core_queue_program(vcpu, flags);
1119 r = RESUME_GUEST;
1120 break;
1121 case EMULATE_DO_MMIO:
1122 vcpu->run->exit_reason = KVM_EXIT_MMIO;
1123 r = RESUME_HOST_NV;
1124 break;
1125 case EMULATE_EXIT_USER:
1126 r = RESUME_HOST_NV;
1127 break;
1128 default:
1129 BUG();
1130 }
1131
1132 return r;
1133 }
1134
kvmppc_handle_exit_pr(struct kvm_vcpu * vcpu,unsigned int exit_nr)1135 int kvmppc_handle_exit_pr(struct kvm_vcpu *vcpu, unsigned int exit_nr)
1136 {
1137 struct kvm_run *run = vcpu->run;
1138 int r = RESUME_HOST;
1139 int s;
1140
1141 vcpu->stat.sum_exits++;
1142
1143 run->exit_reason = KVM_EXIT_UNKNOWN;
1144 run->ready_for_interrupt_injection = 1;
1145
1146 /* We get here with MSR.EE=1 */
1147
1148 trace_kvm_exit(exit_nr, vcpu);
1149 guest_exit();
1150
1151 switch (exit_nr) {
1152 case BOOK3S_INTERRUPT_INST_STORAGE:
1153 {
1154 ulong shadow_srr1 = vcpu->arch.shadow_srr1;
1155 vcpu->stat.pf_instruc++;
1156
1157 if (kvmppc_is_split_real(vcpu))
1158 kvmppc_fixup_split_real(vcpu);
1159
1160 #ifdef CONFIG_PPC_BOOK3S_32
1161 /* We set segments as unused segments when invalidating them. So
1162 * treat the respective fault as segment fault. */
1163 {
1164 struct kvmppc_book3s_shadow_vcpu *svcpu;
1165 u32 sr;
1166
1167 svcpu = svcpu_get(vcpu);
1168 sr = svcpu->sr[kvmppc_get_pc(vcpu) >> SID_SHIFT];
1169 svcpu_put(svcpu);
1170 if (sr == SR_INVALID) {
1171 kvmppc_mmu_map_segment(vcpu, kvmppc_get_pc(vcpu));
1172 r = RESUME_GUEST;
1173 break;
1174 }
1175 }
1176 #endif
1177
1178 /* only care about PTEG not found errors, but leave NX alone */
1179 if (shadow_srr1 & 0x40000000) {
1180 int idx = srcu_read_lock(&vcpu->kvm->srcu);
1181 r = kvmppc_handle_pagefault(vcpu, kvmppc_get_pc(vcpu), exit_nr);
1182 srcu_read_unlock(&vcpu->kvm->srcu, idx);
1183 vcpu->stat.sp_instruc++;
1184 } else if (vcpu->arch.mmu.is_dcbz32(vcpu) &&
1185 (!(vcpu->arch.hflags & BOOK3S_HFLAG_DCBZ32))) {
1186 /*
1187 * XXX If we do the dcbz hack we use the NX bit to flush&patch the page,
1188 * so we can't use the NX bit inside the guest. Let's cross our fingers,
1189 * that no guest that needs the dcbz hack does NX.
1190 */
1191 kvmppc_mmu_pte_flush(vcpu, kvmppc_get_pc(vcpu), ~0xFFFUL);
1192 r = RESUME_GUEST;
1193 } else {
1194 kvmppc_core_queue_inst_storage(vcpu,
1195 shadow_srr1 & 0x58000000);
1196 r = RESUME_GUEST;
1197 }
1198 break;
1199 }
1200 case BOOK3S_INTERRUPT_DATA_STORAGE:
1201 {
1202 ulong dar = kvmppc_get_fault_dar(vcpu);
1203 u32 fault_dsisr = vcpu->arch.fault_dsisr;
1204 vcpu->stat.pf_storage++;
1205
1206 #ifdef CONFIG_PPC_BOOK3S_32
1207 /* We set segments as unused segments when invalidating them. So
1208 * treat the respective fault as segment fault. */
1209 {
1210 struct kvmppc_book3s_shadow_vcpu *svcpu;
1211 u32 sr;
1212
1213 svcpu = svcpu_get(vcpu);
1214 sr = svcpu->sr[dar >> SID_SHIFT];
1215 svcpu_put(svcpu);
1216 if (sr == SR_INVALID) {
1217 kvmppc_mmu_map_segment(vcpu, dar);
1218 r = RESUME_GUEST;
1219 break;
1220 }
1221 }
1222 #endif
1223
1224 /*
1225 * We need to handle missing shadow PTEs, and
1226 * protection faults due to us mapping a page read-only
1227 * when the guest thinks it is writable.
1228 */
1229 if (fault_dsisr & (DSISR_NOHPTE | DSISR_PROTFAULT)) {
1230 int idx = srcu_read_lock(&vcpu->kvm->srcu);
1231 r = kvmppc_handle_pagefault(vcpu, dar, exit_nr);
1232 srcu_read_unlock(&vcpu->kvm->srcu, idx);
1233 } else {
1234 kvmppc_core_queue_data_storage(vcpu, 0, dar, fault_dsisr);
1235 r = RESUME_GUEST;
1236 }
1237 break;
1238 }
1239 case BOOK3S_INTERRUPT_DATA_SEGMENT:
1240 if (kvmppc_mmu_map_segment(vcpu, kvmppc_get_fault_dar(vcpu)) < 0) {
1241 kvmppc_set_dar(vcpu, kvmppc_get_fault_dar(vcpu));
1242 kvmppc_book3s_queue_irqprio(vcpu,
1243 BOOK3S_INTERRUPT_DATA_SEGMENT);
1244 }
1245 r = RESUME_GUEST;
1246 break;
1247 case BOOK3S_INTERRUPT_INST_SEGMENT:
1248 if (kvmppc_mmu_map_segment(vcpu, kvmppc_get_pc(vcpu)) < 0) {
1249 kvmppc_book3s_queue_irqprio(vcpu,
1250 BOOK3S_INTERRUPT_INST_SEGMENT);
1251 }
1252 r = RESUME_GUEST;
1253 break;
1254 /* We're good on these - the host merely wanted to get our attention */
1255 case BOOK3S_INTERRUPT_DECREMENTER:
1256 case BOOK3S_INTERRUPT_HV_DECREMENTER:
1257 case BOOK3S_INTERRUPT_DOORBELL:
1258 case BOOK3S_INTERRUPT_H_DOORBELL:
1259 vcpu->stat.dec_exits++;
1260 r = RESUME_GUEST;
1261 break;
1262 case BOOK3S_INTERRUPT_EXTERNAL:
1263 case BOOK3S_INTERRUPT_EXTERNAL_HV:
1264 case BOOK3S_INTERRUPT_H_VIRT:
1265 vcpu->stat.ext_intr_exits++;
1266 r = RESUME_GUEST;
1267 break;
1268 case BOOK3S_INTERRUPT_HMI:
1269 case BOOK3S_INTERRUPT_PERFMON:
1270 case BOOK3S_INTERRUPT_SYSTEM_RESET:
1271 r = RESUME_GUEST;
1272 break;
1273 case BOOK3S_INTERRUPT_PROGRAM:
1274 case BOOK3S_INTERRUPT_H_EMUL_ASSIST:
1275 r = kvmppc_exit_pr_progint(vcpu, exit_nr);
1276 break;
1277 case BOOK3S_INTERRUPT_SYSCALL:
1278 {
1279 ppc_inst_t last_sc;
1280 int emul;
1281
1282 /* Get last sc for papr */
1283 if (vcpu->arch.papr_enabled) {
1284 /* The sc instruction points SRR0 to the next inst */
1285 emul = kvmppc_get_last_inst(vcpu, INST_SC, &last_sc);
1286 if (emul != EMULATE_DONE) {
1287 kvmppc_set_pc(vcpu, kvmppc_get_pc(vcpu) - 4);
1288 r = RESUME_GUEST;
1289 break;
1290 }
1291 }
1292
1293 if (vcpu->arch.papr_enabled &&
1294 (ppc_inst_val(last_sc) == 0x44000022) &&
1295 !(kvmppc_get_msr(vcpu) & MSR_PR)) {
1296 /* SC 1 papr hypercalls */
1297 ulong cmd = kvmppc_get_gpr(vcpu, 3);
1298 int i;
1299
1300 #ifdef CONFIG_PPC_BOOK3S_64
1301 if (kvmppc_h_pr(vcpu, cmd) == EMULATE_DONE) {
1302 r = RESUME_GUEST;
1303 break;
1304 }
1305 #endif
1306
1307 run->papr_hcall.nr = cmd;
1308 for (i = 0; i < 9; ++i) {
1309 ulong gpr = kvmppc_get_gpr(vcpu, 4 + i);
1310 run->papr_hcall.args[i] = gpr;
1311 }
1312 run->exit_reason = KVM_EXIT_PAPR_HCALL;
1313 vcpu->arch.hcall_needed = 1;
1314 r = RESUME_HOST;
1315 } else if (vcpu->arch.osi_enabled &&
1316 (((u32)kvmppc_get_gpr(vcpu, 3)) == OSI_SC_MAGIC_R3) &&
1317 (((u32)kvmppc_get_gpr(vcpu, 4)) == OSI_SC_MAGIC_R4)) {
1318 /* MOL hypercalls */
1319 u64 *gprs = run->osi.gprs;
1320 int i;
1321
1322 run->exit_reason = KVM_EXIT_OSI;
1323 for (i = 0; i < 32; i++)
1324 gprs[i] = kvmppc_get_gpr(vcpu, i);
1325 vcpu->arch.osi_needed = 1;
1326 r = RESUME_HOST_NV;
1327 } else if (!(kvmppc_get_msr(vcpu) & MSR_PR) &&
1328 (((u32)kvmppc_get_gpr(vcpu, 0)) == KVM_SC_MAGIC_R0)) {
1329 /* KVM PV hypercalls */
1330 kvmppc_set_gpr(vcpu, 3, kvmppc_kvm_pv(vcpu));
1331 r = RESUME_GUEST;
1332 } else {
1333 /* Guest syscalls */
1334 vcpu->stat.syscall_exits++;
1335 kvmppc_book3s_queue_irqprio(vcpu, exit_nr);
1336 r = RESUME_GUEST;
1337 }
1338 break;
1339 }
1340 case BOOK3S_INTERRUPT_FP_UNAVAIL:
1341 case BOOK3S_INTERRUPT_ALTIVEC:
1342 case BOOK3S_INTERRUPT_VSX:
1343 {
1344 int ext_msr = 0;
1345 int emul;
1346 ppc_inst_t last_inst;
1347
1348 if (vcpu->arch.hflags & BOOK3S_HFLAG_PAIRED_SINGLE) {
1349 /* Do paired single instruction emulation */
1350 emul = kvmppc_get_last_inst(vcpu, INST_GENERIC,
1351 &last_inst);
1352 if (emul == EMULATE_DONE)
1353 r = kvmppc_exit_pr_progint(vcpu, exit_nr);
1354 else
1355 r = RESUME_GUEST;
1356
1357 break;
1358 }
1359
1360 /* Enable external provider */
1361 switch (exit_nr) {
1362 case BOOK3S_INTERRUPT_FP_UNAVAIL:
1363 ext_msr = MSR_FP;
1364 break;
1365
1366 case BOOK3S_INTERRUPT_ALTIVEC:
1367 ext_msr = MSR_VEC;
1368 break;
1369
1370 case BOOK3S_INTERRUPT_VSX:
1371 ext_msr = MSR_VSX;
1372 break;
1373 }
1374
1375 r = kvmppc_handle_ext(vcpu, exit_nr, ext_msr);
1376 break;
1377 }
1378 case BOOK3S_INTERRUPT_ALIGNMENT:
1379 {
1380 ppc_inst_t last_inst;
1381 int emul = kvmppc_get_last_inst(vcpu, INST_GENERIC, &last_inst);
1382
1383 if (emul == EMULATE_DONE) {
1384 u32 dsisr;
1385 u64 dar;
1386
1387 dsisr = kvmppc_alignment_dsisr(vcpu, ppc_inst_val(last_inst));
1388 dar = kvmppc_alignment_dar(vcpu, ppc_inst_val(last_inst));
1389
1390 kvmppc_set_dsisr(vcpu, dsisr);
1391 kvmppc_set_dar(vcpu, dar);
1392
1393 kvmppc_book3s_queue_irqprio(vcpu, exit_nr);
1394 }
1395 r = RESUME_GUEST;
1396 break;
1397 }
1398 #ifdef CONFIG_PPC_BOOK3S_64
1399 case BOOK3S_INTERRUPT_FAC_UNAVAIL:
1400 r = kvmppc_handle_fac(vcpu, vcpu->arch.shadow_fscr >> 56);
1401 break;
1402 #endif
1403 case BOOK3S_INTERRUPT_MACHINE_CHECK:
1404 kvmppc_book3s_queue_irqprio(vcpu, exit_nr);
1405 r = RESUME_GUEST;
1406 break;
1407 case BOOK3S_INTERRUPT_TRACE:
1408 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) {
1409 run->exit_reason = KVM_EXIT_DEBUG;
1410 r = RESUME_HOST;
1411 } else {
1412 kvmppc_book3s_queue_irqprio(vcpu, exit_nr);
1413 r = RESUME_GUEST;
1414 }
1415 break;
1416 default:
1417 {
1418 ulong shadow_srr1 = vcpu->arch.shadow_srr1;
1419 /* Ugh - bork here! What did we get? */
1420 printk(KERN_EMERG "exit_nr=0x%x | pc=0x%lx | msr=0x%lx\n",
1421 exit_nr, kvmppc_get_pc(vcpu), shadow_srr1);
1422 r = RESUME_HOST;
1423 BUG();
1424 break;
1425 }
1426 }
1427
1428 if (!(r & RESUME_HOST)) {
1429 /* To avoid clobbering exit_reason, only check for signals if
1430 * we aren't already exiting to userspace for some other
1431 * reason. */
1432
1433 /*
1434 * Interrupts could be timers for the guest which we have to
1435 * inject again, so let's postpone them until we're in the guest
1436 * and if we really did time things so badly, then we just exit
1437 * again due to a host external interrupt.
1438 */
1439 s = kvmppc_prepare_to_enter(vcpu);
1440 if (s <= 0)
1441 r = s;
1442 else {
1443 /* interrupts now hard-disabled */
1444 kvmppc_fix_ee_before_entry();
1445 }
1446
1447 kvmppc_handle_lost_ext(vcpu);
1448 }
1449
1450 trace_kvm_book3s_reenter(r, vcpu);
1451
1452 return r;
1453 }
1454
kvm_arch_vcpu_ioctl_get_sregs_pr(struct kvm_vcpu * vcpu,struct kvm_sregs * sregs)1455 static int kvm_arch_vcpu_ioctl_get_sregs_pr(struct kvm_vcpu *vcpu,
1456 struct kvm_sregs *sregs)
1457 {
1458 struct kvmppc_vcpu_book3s *vcpu3s = to_book3s(vcpu);
1459 int i;
1460
1461 sregs->pvr = vcpu->arch.pvr;
1462
1463 sregs->u.s.sdr1 = to_book3s(vcpu)->sdr1;
1464 if (vcpu->arch.hflags & BOOK3S_HFLAG_SLB) {
1465 for (i = 0; i < 64; i++) {
1466 sregs->u.s.ppc64.slb[i].slbe = vcpu->arch.slb[i].orige | i;
1467 sregs->u.s.ppc64.slb[i].slbv = vcpu->arch.slb[i].origv;
1468 }
1469 } else {
1470 for (i = 0; i < 16; i++)
1471 sregs->u.s.ppc32.sr[i] = kvmppc_get_sr(vcpu, i);
1472
1473 for (i = 0; i < 8; i++) {
1474 sregs->u.s.ppc32.ibat[i] = vcpu3s->ibat[i].raw;
1475 sregs->u.s.ppc32.dbat[i] = vcpu3s->dbat[i].raw;
1476 }
1477 }
1478
1479 return 0;
1480 }
1481
kvm_arch_vcpu_ioctl_set_sregs_pr(struct kvm_vcpu * vcpu,struct kvm_sregs * sregs)1482 static int kvm_arch_vcpu_ioctl_set_sregs_pr(struct kvm_vcpu *vcpu,
1483 struct kvm_sregs *sregs)
1484 {
1485 struct kvmppc_vcpu_book3s *vcpu3s = to_book3s(vcpu);
1486 int i;
1487
1488 kvmppc_set_pvr_pr(vcpu, sregs->pvr);
1489
1490 vcpu3s->sdr1 = sregs->u.s.sdr1;
1491 #ifdef CONFIG_PPC_BOOK3S_64
1492 if (vcpu->arch.hflags & BOOK3S_HFLAG_SLB) {
1493 /* Flush all SLB entries */
1494 vcpu->arch.mmu.slbmte(vcpu, 0, 0);
1495 vcpu->arch.mmu.slbia(vcpu);
1496
1497 for (i = 0; i < 64; i++) {
1498 u64 rb = sregs->u.s.ppc64.slb[i].slbe;
1499 u64 rs = sregs->u.s.ppc64.slb[i].slbv;
1500
1501 if (rb & SLB_ESID_V)
1502 vcpu->arch.mmu.slbmte(vcpu, rs, rb);
1503 }
1504 } else
1505 #endif
1506 {
1507 for (i = 0; i < 16; i++) {
1508 vcpu->arch.mmu.mtsrin(vcpu, i, sregs->u.s.ppc32.sr[i]);
1509 }
1510 for (i = 0; i < 8; i++) {
1511 kvmppc_set_bat(vcpu, &(vcpu3s->ibat[i]), false,
1512 (u32)sregs->u.s.ppc32.ibat[i]);
1513 kvmppc_set_bat(vcpu, &(vcpu3s->ibat[i]), true,
1514 (u32)(sregs->u.s.ppc32.ibat[i] >> 32));
1515 kvmppc_set_bat(vcpu, &(vcpu3s->dbat[i]), false,
1516 (u32)sregs->u.s.ppc32.dbat[i]);
1517 kvmppc_set_bat(vcpu, &(vcpu3s->dbat[i]), true,
1518 (u32)(sregs->u.s.ppc32.dbat[i] >> 32));
1519 }
1520 }
1521
1522 /* Flush the MMU after messing with the segments */
1523 kvmppc_mmu_pte_flush(vcpu, 0, 0);
1524
1525 return 0;
1526 }
1527
kvmppc_get_one_reg_pr(struct kvm_vcpu * vcpu,u64 id,union kvmppc_one_reg * val)1528 static int kvmppc_get_one_reg_pr(struct kvm_vcpu *vcpu, u64 id,
1529 union kvmppc_one_reg *val)
1530 {
1531 int r = 0;
1532
1533 switch (id) {
1534 case KVM_REG_PPC_DEBUG_INST:
1535 *val = get_reg_val(id, KVMPPC_INST_SW_BREAKPOINT);
1536 break;
1537 case KVM_REG_PPC_HIOR:
1538 *val = get_reg_val(id, to_book3s(vcpu)->hior);
1539 break;
1540 case KVM_REG_PPC_VTB:
1541 *val = get_reg_val(id, to_book3s(vcpu)->vtb);
1542 break;
1543 case KVM_REG_PPC_LPCR:
1544 case KVM_REG_PPC_LPCR_64:
1545 /*
1546 * We are only interested in the LPCR_ILE bit
1547 */
1548 if (vcpu->arch.intr_msr & MSR_LE)
1549 *val = get_reg_val(id, LPCR_ILE);
1550 else
1551 *val = get_reg_val(id, 0);
1552 break;
1553 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1554 case KVM_REG_PPC_TFHAR:
1555 *val = get_reg_val(id, vcpu->arch.tfhar);
1556 break;
1557 case KVM_REG_PPC_TFIAR:
1558 *val = get_reg_val(id, vcpu->arch.tfiar);
1559 break;
1560 case KVM_REG_PPC_TEXASR:
1561 *val = get_reg_val(id, vcpu->arch.texasr);
1562 break;
1563 case KVM_REG_PPC_TM_GPR0 ... KVM_REG_PPC_TM_GPR31:
1564 *val = get_reg_val(id,
1565 vcpu->arch.gpr_tm[id-KVM_REG_PPC_TM_GPR0]);
1566 break;
1567 case KVM_REG_PPC_TM_VSR0 ... KVM_REG_PPC_TM_VSR63:
1568 {
1569 int i, j;
1570
1571 i = id - KVM_REG_PPC_TM_VSR0;
1572 if (i < 32)
1573 for (j = 0; j < TS_FPRWIDTH; j++)
1574 val->vsxval[j] = vcpu->arch.fp_tm.fpr[i][j];
1575 else {
1576 if (cpu_has_feature(CPU_FTR_ALTIVEC))
1577 val->vval = vcpu->arch.vr_tm.vr[i-32];
1578 else
1579 r = -ENXIO;
1580 }
1581 break;
1582 }
1583 case KVM_REG_PPC_TM_CR:
1584 *val = get_reg_val(id, vcpu->arch.cr_tm);
1585 break;
1586 case KVM_REG_PPC_TM_XER:
1587 *val = get_reg_val(id, vcpu->arch.xer_tm);
1588 break;
1589 case KVM_REG_PPC_TM_LR:
1590 *val = get_reg_val(id, vcpu->arch.lr_tm);
1591 break;
1592 case KVM_REG_PPC_TM_CTR:
1593 *val = get_reg_val(id, vcpu->arch.ctr_tm);
1594 break;
1595 case KVM_REG_PPC_TM_FPSCR:
1596 *val = get_reg_val(id, vcpu->arch.fp_tm.fpscr);
1597 break;
1598 case KVM_REG_PPC_TM_AMR:
1599 *val = get_reg_val(id, vcpu->arch.amr_tm);
1600 break;
1601 case KVM_REG_PPC_TM_PPR:
1602 *val = get_reg_val(id, vcpu->arch.ppr_tm);
1603 break;
1604 case KVM_REG_PPC_TM_VRSAVE:
1605 *val = get_reg_val(id, vcpu->arch.vrsave_tm);
1606 break;
1607 case KVM_REG_PPC_TM_VSCR:
1608 if (cpu_has_feature(CPU_FTR_ALTIVEC))
1609 *val = get_reg_val(id, vcpu->arch.vr_tm.vscr.u[3]);
1610 else
1611 r = -ENXIO;
1612 break;
1613 case KVM_REG_PPC_TM_DSCR:
1614 *val = get_reg_val(id, vcpu->arch.dscr_tm);
1615 break;
1616 case KVM_REG_PPC_TM_TAR:
1617 *val = get_reg_val(id, vcpu->arch.tar_tm);
1618 break;
1619 #endif
1620 default:
1621 r = -EINVAL;
1622 break;
1623 }
1624
1625 return r;
1626 }
1627
kvmppc_set_lpcr_pr(struct kvm_vcpu * vcpu,u64 new_lpcr)1628 static void kvmppc_set_lpcr_pr(struct kvm_vcpu *vcpu, u64 new_lpcr)
1629 {
1630 if (new_lpcr & LPCR_ILE)
1631 vcpu->arch.intr_msr |= MSR_LE;
1632 else
1633 vcpu->arch.intr_msr &= ~MSR_LE;
1634 }
1635
kvmppc_set_one_reg_pr(struct kvm_vcpu * vcpu,u64 id,union kvmppc_one_reg * val)1636 static int kvmppc_set_one_reg_pr(struct kvm_vcpu *vcpu, u64 id,
1637 union kvmppc_one_reg *val)
1638 {
1639 int r = 0;
1640
1641 switch (id) {
1642 case KVM_REG_PPC_HIOR:
1643 to_book3s(vcpu)->hior = set_reg_val(id, *val);
1644 to_book3s(vcpu)->hior_explicit = true;
1645 break;
1646 case KVM_REG_PPC_VTB:
1647 to_book3s(vcpu)->vtb = set_reg_val(id, *val);
1648 break;
1649 case KVM_REG_PPC_LPCR:
1650 case KVM_REG_PPC_LPCR_64:
1651 kvmppc_set_lpcr_pr(vcpu, set_reg_val(id, *val));
1652 break;
1653 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1654 case KVM_REG_PPC_TFHAR:
1655 vcpu->arch.tfhar = set_reg_val(id, *val);
1656 break;
1657 case KVM_REG_PPC_TFIAR:
1658 vcpu->arch.tfiar = set_reg_val(id, *val);
1659 break;
1660 case KVM_REG_PPC_TEXASR:
1661 vcpu->arch.texasr = set_reg_val(id, *val);
1662 break;
1663 case KVM_REG_PPC_TM_GPR0 ... KVM_REG_PPC_TM_GPR31:
1664 vcpu->arch.gpr_tm[id - KVM_REG_PPC_TM_GPR0] =
1665 set_reg_val(id, *val);
1666 break;
1667 case KVM_REG_PPC_TM_VSR0 ... KVM_REG_PPC_TM_VSR63:
1668 {
1669 int i, j;
1670
1671 i = id - KVM_REG_PPC_TM_VSR0;
1672 if (i < 32)
1673 for (j = 0; j < TS_FPRWIDTH; j++)
1674 vcpu->arch.fp_tm.fpr[i][j] = val->vsxval[j];
1675 else
1676 if (cpu_has_feature(CPU_FTR_ALTIVEC))
1677 vcpu->arch.vr_tm.vr[i-32] = val->vval;
1678 else
1679 r = -ENXIO;
1680 break;
1681 }
1682 case KVM_REG_PPC_TM_CR:
1683 vcpu->arch.cr_tm = set_reg_val(id, *val);
1684 break;
1685 case KVM_REG_PPC_TM_XER:
1686 vcpu->arch.xer_tm = set_reg_val(id, *val);
1687 break;
1688 case KVM_REG_PPC_TM_LR:
1689 vcpu->arch.lr_tm = set_reg_val(id, *val);
1690 break;
1691 case KVM_REG_PPC_TM_CTR:
1692 vcpu->arch.ctr_tm = set_reg_val(id, *val);
1693 break;
1694 case KVM_REG_PPC_TM_FPSCR:
1695 vcpu->arch.fp_tm.fpscr = set_reg_val(id, *val);
1696 break;
1697 case KVM_REG_PPC_TM_AMR:
1698 vcpu->arch.amr_tm = set_reg_val(id, *val);
1699 break;
1700 case KVM_REG_PPC_TM_PPR:
1701 vcpu->arch.ppr_tm = set_reg_val(id, *val);
1702 break;
1703 case KVM_REG_PPC_TM_VRSAVE:
1704 vcpu->arch.vrsave_tm = set_reg_val(id, *val);
1705 break;
1706 case KVM_REG_PPC_TM_VSCR:
1707 if (cpu_has_feature(CPU_FTR_ALTIVEC))
1708 vcpu->arch.vr.vscr.u[3] = set_reg_val(id, *val);
1709 else
1710 r = -ENXIO;
1711 break;
1712 case KVM_REG_PPC_TM_DSCR:
1713 vcpu->arch.dscr_tm = set_reg_val(id, *val);
1714 break;
1715 case KVM_REG_PPC_TM_TAR:
1716 vcpu->arch.tar_tm = set_reg_val(id, *val);
1717 break;
1718 #endif
1719 default:
1720 r = -EINVAL;
1721 break;
1722 }
1723
1724 return r;
1725 }
1726
kvmppc_core_vcpu_create_pr(struct kvm_vcpu * vcpu)1727 static int kvmppc_core_vcpu_create_pr(struct kvm_vcpu *vcpu)
1728 {
1729 struct kvmppc_vcpu_book3s *vcpu_book3s;
1730 unsigned long p;
1731 int err;
1732
1733 err = -ENOMEM;
1734
1735 vcpu_book3s = vzalloc(sizeof(struct kvmppc_vcpu_book3s));
1736 if (!vcpu_book3s)
1737 goto out;
1738 vcpu->arch.book3s = vcpu_book3s;
1739
1740 #ifdef CONFIG_KVM_BOOK3S_32_HANDLER
1741 vcpu->arch.shadow_vcpu =
1742 kzalloc(sizeof(*vcpu->arch.shadow_vcpu), GFP_KERNEL);
1743 if (!vcpu->arch.shadow_vcpu)
1744 goto free_vcpu3s;
1745 #endif
1746
1747 p = __get_free_page(GFP_KERNEL|__GFP_ZERO);
1748 if (!p)
1749 goto free_shadow_vcpu;
1750 vcpu->arch.shared = (void *)p;
1751 #ifdef CONFIG_PPC_BOOK3S_64
1752 /* Always start the shared struct in native endian mode */
1753 #ifdef __BIG_ENDIAN__
1754 vcpu->arch.shared_big_endian = true;
1755 #else
1756 vcpu->arch.shared_big_endian = false;
1757 #endif
1758
1759 /*
1760 * Default to the same as the host if we're on sufficiently
1761 * recent machine that we have 1TB segments;
1762 * otherwise default to PPC970FX.
1763 */
1764 vcpu->arch.pvr = 0x3C0301;
1765 if (mmu_has_feature(MMU_FTR_1T_SEGMENT))
1766 vcpu->arch.pvr = mfspr(SPRN_PVR);
1767 vcpu->arch.intr_msr = MSR_SF;
1768 #else
1769 /* default to book3s_32 (750) */
1770 vcpu->arch.pvr = 0x84202;
1771 vcpu->arch.intr_msr = 0;
1772 #endif
1773 kvmppc_set_pvr_pr(vcpu, vcpu->arch.pvr);
1774 vcpu->arch.slb_nr = 64;
1775
1776 vcpu->arch.shadow_msr = MSR_USER64 & ~MSR_LE;
1777
1778 err = kvmppc_mmu_init_pr(vcpu);
1779 if (err < 0)
1780 goto free_shared_page;
1781
1782 return 0;
1783
1784 free_shared_page:
1785 free_page((unsigned long)vcpu->arch.shared);
1786 free_shadow_vcpu:
1787 #ifdef CONFIG_KVM_BOOK3S_32_HANDLER
1788 kfree(vcpu->arch.shadow_vcpu);
1789 free_vcpu3s:
1790 #endif
1791 vfree(vcpu_book3s);
1792 out:
1793 return err;
1794 }
1795
kvmppc_core_vcpu_free_pr(struct kvm_vcpu * vcpu)1796 static void kvmppc_core_vcpu_free_pr(struct kvm_vcpu *vcpu)
1797 {
1798 struct kvmppc_vcpu_book3s *vcpu_book3s = to_book3s(vcpu);
1799
1800 kvmppc_mmu_destroy_pr(vcpu);
1801 free_page((unsigned long)vcpu->arch.shared & PAGE_MASK);
1802 #ifdef CONFIG_KVM_BOOK3S_32_HANDLER
1803 kfree(vcpu->arch.shadow_vcpu);
1804 #endif
1805 vfree(vcpu_book3s);
1806 }
1807
kvmppc_vcpu_run_pr(struct kvm_vcpu * vcpu)1808 static int kvmppc_vcpu_run_pr(struct kvm_vcpu *vcpu)
1809 {
1810 int ret;
1811
1812 /* Check if we can run the vcpu at all */
1813 if (!vcpu->arch.sane) {
1814 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
1815 ret = -EINVAL;
1816 goto out;
1817 }
1818
1819 kvmppc_setup_debug(vcpu);
1820
1821 /*
1822 * Interrupts could be timers for the guest which we have to inject
1823 * again, so let's postpone them until we're in the guest and if we
1824 * really did time things so badly, then we just exit again due to
1825 * a host external interrupt.
1826 */
1827 ret = kvmppc_prepare_to_enter(vcpu);
1828 if (ret <= 0)
1829 goto out;
1830 /* interrupts now hard-disabled */
1831
1832 /* Save FPU, Altivec and VSX state */
1833 giveup_all(current);
1834
1835 /* Preload FPU if it's enabled */
1836 if (kvmppc_get_msr(vcpu) & MSR_FP)
1837 kvmppc_handle_ext(vcpu, BOOK3S_INTERRUPT_FP_UNAVAIL, MSR_FP);
1838
1839 kvmppc_fix_ee_before_entry();
1840
1841 ret = __kvmppc_vcpu_run(vcpu);
1842
1843 kvmppc_clear_debug(vcpu);
1844
1845 /* No need for guest_exit. It's done in handle_exit.
1846 We also get here with interrupts enabled. */
1847
1848 /* Make sure we save the guest FPU/Altivec/VSX state */
1849 kvmppc_giveup_ext(vcpu, MSR_FP | MSR_VEC | MSR_VSX);
1850
1851 /* Make sure we save the guest TAR/EBB/DSCR state */
1852 kvmppc_giveup_fac(vcpu, FSCR_TAR_LG);
1853
1854 srr_regs_clobbered();
1855 out:
1856 vcpu->mode = OUTSIDE_GUEST_MODE;
1857 return ret;
1858 }
1859
1860 /*
1861 * Get (and clear) the dirty memory log for a memory slot.
1862 */
kvm_vm_ioctl_get_dirty_log_pr(struct kvm * kvm,struct kvm_dirty_log * log)1863 static int kvm_vm_ioctl_get_dirty_log_pr(struct kvm *kvm,
1864 struct kvm_dirty_log *log)
1865 {
1866 struct kvm_memory_slot *memslot;
1867 struct kvm_vcpu *vcpu;
1868 ulong ga, ga_end;
1869 int is_dirty = 0;
1870 int r;
1871 unsigned long n;
1872
1873 mutex_lock(&kvm->slots_lock);
1874
1875 r = kvm_get_dirty_log(kvm, log, &is_dirty, &memslot);
1876 if (r)
1877 goto out;
1878
1879 /* If nothing is dirty, don't bother messing with page tables. */
1880 if (is_dirty) {
1881 ga = memslot->base_gfn << PAGE_SHIFT;
1882 ga_end = ga + (memslot->npages << PAGE_SHIFT);
1883
1884 kvm_for_each_vcpu(n, vcpu, kvm)
1885 kvmppc_mmu_pte_pflush(vcpu, ga, ga_end);
1886
1887 n = kvm_dirty_bitmap_bytes(memslot);
1888 memset(memslot->dirty_bitmap, 0, n);
1889 }
1890
1891 r = 0;
1892 out:
1893 mutex_unlock(&kvm->slots_lock);
1894 return r;
1895 }
1896
kvmppc_core_flush_memslot_pr(struct kvm * kvm,struct kvm_memory_slot * memslot)1897 static void kvmppc_core_flush_memslot_pr(struct kvm *kvm,
1898 struct kvm_memory_slot *memslot)
1899 {
1900 return;
1901 }
1902
kvmppc_core_prepare_memory_region_pr(struct kvm * kvm,const struct kvm_memory_slot * old,struct kvm_memory_slot * new,enum kvm_mr_change change)1903 static int kvmppc_core_prepare_memory_region_pr(struct kvm *kvm,
1904 const struct kvm_memory_slot *old,
1905 struct kvm_memory_slot *new,
1906 enum kvm_mr_change change)
1907 {
1908 return 0;
1909 }
1910
kvmppc_core_commit_memory_region_pr(struct kvm * kvm,struct kvm_memory_slot * old,const struct kvm_memory_slot * new,enum kvm_mr_change change)1911 static void kvmppc_core_commit_memory_region_pr(struct kvm *kvm,
1912 struct kvm_memory_slot *old,
1913 const struct kvm_memory_slot *new,
1914 enum kvm_mr_change change)
1915 {
1916 return;
1917 }
1918
kvmppc_core_free_memslot_pr(struct kvm_memory_slot * slot)1919 static void kvmppc_core_free_memslot_pr(struct kvm_memory_slot *slot)
1920 {
1921 return;
1922 }
1923
1924 #ifdef CONFIG_PPC64
kvm_vm_ioctl_get_smmu_info_pr(struct kvm * kvm,struct kvm_ppc_smmu_info * info)1925 static int kvm_vm_ioctl_get_smmu_info_pr(struct kvm *kvm,
1926 struct kvm_ppc_smmu_info *info)
1927 {
1928 long int i;
1929 struct kvm_vcpu *vcpu;
1930
1931 info->flags = 0;
1932
1933 /* SLB is always 64 entries */
1934 info->slb_size = 64;
1935
1936 /* Standard 4k base page size segment */
1937 info->sps[0].page_shift = 12;
1938 info->sps[0].slb_enc = 0;
1939 info->sps[0].enc[0].page_shift = 12;
1940 info->sps[0].enc[0].pte_enc = 0;
1941
1942 /*
1943 * 64k large page size.
1944 * We only want to put this in if the CPUs we're emulating
1945 * support it, but unfortunately we don't have a vcpu easily
1946 * to hand here to test. Just pick the first vcpu, and if
1947 * that doesn't exist yet, report the minimum capability,
1948 * i.e., no 64k pages.
1949 * 1T segment support goes along with 64k pages.
1950 */
1951 i = 1;
1952 vcpu = kvm_get_vcpu(kvm, 0);
1953 if (vcpu && (vcpu->arch.hflags & BOOK3S_HFLAG_MULTI_PGSIZE)) {
1954 info->flags = KVM_PPC_1T_SEGMENTS;
1955 info->sps[i].page_shift = 16;
1956 info->sps[i].slb_enc = SLB_VSID_L | SLB_VSID_LP_01;
1957 info->sps[i].enc[0].page_shift = 16;
1958 info->sps[i].enc[0].pte_enc = 1;
1959 ++i;
1960 }
1961
1962 /* Standard 16M large page size segment */
1963 info->sps[i].page_shift = 24;
1964 info->sps[i].slb_enc = SLB_VSID_L;
1965 info->sps[i].enc[0].page_shift = 24;
1966 info->sps[i].enc[0].pte_enc = 0;
1967
1968 return 0;
1969 }
1970
kvm_configure_mmu_pr(struct kvm * kvm,struct kvm_ppc_mmuv3_cfg * cfg)1971 static int kvm_configure_mmu_pr(struct kvm *kvm, struct kvm_ppc_mmuv3_cfg *cfg)
1972 {
1973 if (!cpu_has_feature(CPU_FTR_ARCH_300))
1974 return -ENODEV;
1975 /* Require flags and process table base and size to all be zero. */
1976 if (cfg->flags || cfg->process_table)
1977 return -EINVAL;
1978 return 0;
1979 }
1980
1981 #else
kvm_vm_ioctl_get_smmu_info_pr(struct kvm * kvm,struct kvm_ppc_smmu_info * info)1982 static int kvm_vm_ioctl_get_smmu_info_pr(struct kvm *kvm,
1983 struct kvm_ppc_smmu_info *info)
1984 {
1985 /* We should not get called */
1986 BUG();
1987 return 0;
1988 }
1989 #endif /* CONFIG_PPC64 */
1990
1991 static unsigned int kvm_global_user_count = 0;
1992 static DEFINE_SPINLOCK(kvm_global_user_count_lock);
1993
kvmppc_core_init_vm_pr(struct kvm * kvm)1994 static int kvmppc_core_init_vm_pr(struct kvm *kvm)
1995 {
1996 mutex_init(&kvm->arch.hpt_mutex);
1997
1998 #ifdef CONFIG_PPC_BOOK3S_64
1999 /* Start out with the default set of hcalls enabled */
2000 kvmppc_pr_init_default_hcalls(kvm);
2001 #endif
2002
2003 if (firmware_has_feature(FW_FEATURE_SET_MODE)) {
2004 spin_lock(&kvm_global_user_count_lock);
2005 if (++kvm_global_user_count == 1)
2006 pseries_disable_reloc_on_exc();
2007 spin_unlock(&kvm_global_user_count_lock);
2008 }
2009 return 0;
2010 }
2011
kvmppc_core_destroy_vm_pr(struct kvm * kvm)2012 static void kvmppc_core_destroy_vm_pr(struct kvm *kvm)
2013 {
2014 #ifdef CONFIG_PPC64
2015 WARN_ON(!list_empty(&kvm->arch.spapr_tce_tables));
2016 #endif
2017
2018 if (firmware_has_feature(FW_FEATURE_SET_MODE)) {
2019 spin_lock(&kvm_global_user_count_lock);
2020 BUG_ON(kvm_global_user_count == 0);
2021 if (--kvm_global_user_count == 0)
2022 pseries_enable_reloc_on_exc();
2023 spin_unlock(&kvm_global_user_count_lock);
2024 }
2025 }
2026
kvmppc_core_check_processor_compat_pr(void)2027 static int kvmppc_core_check_processor_compat_pr(void)
2028 {
2029 /*
2030 * PR KVM can work on POWER9 inside a guest partition
2031 * running in HPT mode. It can't work if we are using
2032 * radix translation (because radix provides no way for
2033 * a process to have unique translations in quadrant 3).
2034 */
2035 if (cpu_has_feature(CPU_FTR_ARCH_300) && radix_enabled())
2036 return -EIO;
2037 return 0;
2038 }
2039
kvm_arch_vm_ioctl_pr(struct file * filp,unsigned int ioctl,unsigned long arg)2040 static int kvm_arch_vm_ioctl_pr(struct file *filp,
2041 unsigned int ioctl, unsigned long arg)
2042 {
2043 return -ENOTTY;
2044 }
2045
2046 static struct kvmppc_ops kvm_ops_pr = {
2047 .get_sregs = kvm_arch_vcpu_ioctl_get_sregs_pr,
2048 .set_sregs = kvm_arch_vcpu_ioctl_set_sregs_pr,
2049 .get_one_reg = kvmppc_get_one_reg_pr,
2050 .set_one_reg = kvmppc_set_one_reg_pr,
2051 .vcpu_load = kvmppc_core_vcpu_load_pr,
2052 .vcpu_put = kvmppc_core_vcpu_put_pr,
2053 .inject_interrupt = kvmppc_inject_interrupt_pr,
2054 .set_msr = kvmppc_set_msr_pr,
2055 .vcpu_run = kvmppc_vcpu_run_pr,
2056 .vcpu_create = kvmppc_core_vcpu_create_pr,
2057 .vcpu_free = kvmppc_core_vcpu_free_pr,
2058 .check_requests = kvmppc_core_check_requests_pr,
2059 .get_dirty_log = kvm_vm_ioctl_get_dirty_log_pr,
2060 .flush_memslot = kvmppc_core_flush_memslot_pr,
2061 .prepare_memory_region = kvmppc_core_prepare_memory_region_pr,
2062 .commit_memory_region = kvmppc_core_commit_memory_region_pr,
2063 .unmap_gfn_range = kvm_unmap_gfn_range_pr,
2064 .age_gfn = kvm_age_gfn_pr,
2065 .test_age_gfn = kvm_test_age_gfn_pr,
2066 .free_memslot = kvmppc_core_free_memslot_pr,
2067 .init_vm = kvmppc_core_init_vm_pr,
2068 .destroy_vm = kvmppc_core_destroy_vm_pr,
2069 .get_smmu_info = kvm_vm_ioctl_get_smmu_info_pr,
2070 .emulate_op = kvmppc_core_emulate_op_pr,
2071 .emulate_mtspr = kvmppc_core_emulate_mtspr_pr,
2072 .emulate_mfspr = kvmppc_core_emulate_mfspr_pr,
2073 .fast_vcpu_kick = kvm_vcpu_kick,
2074 .arch_vm_ioctl = kvm_arch_vm_ioctl_pr,
2075 #ifdef CONFIG_PPC_BOOK3S_64
2076 .hcall_implemented = kvmppc_hcall_impl_pr,
2077 .configure_mmu = kvm_configure_mmu_pr,
2078 #endif
2079 .giveup_ext = kvmppc_giveup_ext,
2080 };
2081
2082
kvmppc_book3s_init_pr(void)2083 int kvmppc_book3s_init_pr(void)
2084 {
2085 int r;
2086
2087 r = kvmppc_core_check_processor_compat_pr();
2088 if (r < 0)
2089 return r;
2090
2091 kvm_ops_pr.owner = THIS_MODULE;
2092 kvmppc_pr_ops = &kvm_ops_pr;
2093
2094 r = kvmppc_mmu_hpte_sysinit();
2095 return r;
2096 }
2097
kvmppc_book3s_exit_pr(void)2098 void kvmppc_book3s_exit_pr(void)
2099 {
2100 kvmppc_pr_ops = NULL;
2101 kvmppc_mmu_hpte_sysexit();
2102 }
2103
2104 /*
2105 * We only support separate modules for book3s 64
2106 */
2107 #ifdef CONFIG_PPC_BOOK3S_64
2108
2109 module_init(kvmppc_book3s_init_pr);
2110 module_exit(kvmppc_book3s_exit_pr);
2111
2112 MODULE_DESCRIPTION("KVM on Book3S without using hypervisor mode");
2113 MODULE_LICENSE("GPL");
2114 MODULE_ALIAS_MISCDEV(KVM_MINOR);
2115 MODULE_ALIAS("devname:kvm");
2116 #endif
2117