1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * S390 kdump implementation
4  *
5  * Copyright IBM Corp. 2011
6  * Author(s): Michael Holzheu <[email protected]>
7  */
8 
9 #include <linux/crash_dump.h>
10 #include <asm/lowcore.h>
11 #include <linux/kernel.h>
12 #include <linux/init.h>
13 #include <linux/mm.h>
14 #include <linux/gfp.h>
15 #include <linux/slab.h>
16 #include <linux/memblock.h>
17 #include <linux/elf.h>
18 #include <linux/uio.h>
19 #include <asm/asm-offsets.h>
20 #include <asm/os_info.h>
21 #include <asm/elf.h>
22 #include <asm/ipl.h>
23 #include <asm/sclp.h>
24 #include <asm/maccess.h>
25 #include <asm/fpu.h>
26 
27 #define PTR_ADD(x, y) (((char *) (x)) + ((unsigned long) (y)))
28 #define PTR_SUB(x, y) (((char *) (x)) - ((unsigned long) (y)))
29 #define PTR_DIFF(x, y) ((unsigned long)(((char *) (x)) - ((unsigned long) (y))))
30 
31 static struct memblock_region oldmem_region;
32 
33 static struct memblock_type oldmem_type = {
34 	.cnt = 1,
35 	.max = 1,
36 	.total_size = 0,
37 	.regions = &oldmem_region,
38 	.name = "oldmem",
39 };
40 
41 struct save_area {
42 	struct list_head list;
43 	u64 psw[2];
44 	u64 ctrs[16];
45 	u64 gprs[16];
46 	u32 acrs[16];
47 	u64 fprs[16];
48 	u32 fpc;
49 	u32 prefix;
50 	u32 todpreg;
51 	u64 timer;
52 	u64 todcmp;
53 	u64 vxrs_low[16];
54 	__vector128 vxrs_high[16];
55 };
56 
57 static LIST_HEAD(dump_save_areas);
58 
59 /*
60  * Allocate a save area
61  */
save_area_alloc(bool is_boot_cpu)62 struct save_area * __init save_area_alloc(bool is_boot_cpu)
63 {
64 	struct save_area *sa;
65 
66 	sa = memblock_alloc_or_panic(sizeof(*sa), 8);
67 
68 	if (is_boot_cpu)
69 		list_add(&sa->list, &dump_save_areas);
70 	else
71 		list_add_tail(&sa->list, &dump_save_areas);
72 	return sa;
73 }
74 
75 /*
76  * Return the address of the save area for the boot CPU
77  */
save_area_boot_cpu(void)78 struct save_area * __init save_area_boot_cpu(void)
79 {
80 	return list_first_entry_or_null(&dump_save_areas, struct save_area, list);
81 }
82 
83 /*
84  * Copy CPU registers into the save area
85  */
save_area_add_regs(struct save_area * sa,void * regs)86 void __init save_area_add_regs(struct save_area *sa, void *regs)
87 {
88 	struct lowcore *lc;
89 
90 	lc = (struct lowcore *)(regs - __LC_FPREGS_SAVE_AREA);
91 	memcpy(&sa->psw, &lc->psw_save_area, sizeof(sa->psw));
92 	memcpy(&sa->ctrs, &lc->cregs_save_area, sizeof(sa->ctrs));
93 	memcpy(&sa->gprs, &lc->gpregs_save_area, sizeof(sa->gprs));
94 	memcpy(&sa->acrs, &lc->access_regs_save_area, sizeof(sa->acrs));
95 	memcpy(&sa->fprs, &lc->floating_pt_save_area, sizeof(sa->fprs));
96 	memcpy(&sa->fpc, &lc->fpt_creg_save_area, sizeof(sa->fpc));
97 	memcpy(&sa->prefix, &lc->prefixreg_save_area, sizeof(sa->prefix));
98 	memcpy(&sa->todpreg, &lc->tod_progreg_save_area, sizeof(sa->todpreg));
99 	memcpy(&sa->timer, &lc->cpu_timer_save_area, sizeof(sa->timer));
100 	memcpy(&sa->todcmp, &lc->clock_comp_save_area, sizeof(sa->todcmp));
101 }
102 
103 /*
104  * Copy vector registers into the save area
105  */
save_area_add_vxrs(struct save_area * sa,__vector128 * vxrs)106 void __init save_area_add_vxrs(struct save_area *sa, __vector128 *vxrs)
107 {
108 	int i;
109 
110 	/* Copy lower halves of vector registers 0-15 */
111 	for (i = 0; i < 16; i++)
112 		sa->vxrs_low[i] = vxrs[i].low;
113 	/* Copy vector registers 16-31 */
114 	memcpy(sa->vxrs_high, vxrs + 16, 16 * sizeof(__vector128));
115 }
116 
copy_oldmem_iter(struct iov_iter * iter,unsigned long src,size_t count)117 static size_t copy_oldmem_iter(struct iov_iter *iter, unsigned long src, size_t count)
118 {
119 	size_t len, copied, res = 0;
120 
121 	while (count) {
122 		if (!oldmem_data.start && src < sclp.hsa_size) {
123 			/* Copy from zfcp/nvme dump HSA area */
124 			len = min(count, sclp.hsa_size - src);
125 			copied = memcpy_hsa_iter(iter, src, len);
126 		} else {
127 			/* Check for swapped kdump oldmem areas */
128 			if (oldmem_data.start && src - oldmem_data.start < oldmem_data.size) {
129 				src -= oldmem_data.start;
130 				len = min(count, oldmem_data.size - src);
131 			} else if (oldmem_data.start && src < oldmem_data.size) {
132 				len = min(count, oldmem_data.size - src);
133 				src += oldmem_data.start;
134 			} else {
135 				len = count;
136 			}
137 			copied = memcpy_real_iter(iter, src, len);
138 		}
139 		count -= copied;
140 		src += copied;
141 		res += copied;
142 		if (copied < len)
143 			break;
144 	}
145 	return res;
146 }
147 
copy_oldmem_kernel(void * dst,unsigned long src,size_t count)148 int copy_oldmem_kernel(void *dst, unsigned long src, size_t count)
149 {
150 	struct iov_iter iter;
151 	struct kvec kvec;
152 
153 	kvec.iov_base = dst;
154 	kvec.iov_len = count;
155 	iov_iter_kvec(&iter, ITER_DEST, &kvec, 1, count);
156 	if (copy_oldmem_iter(&iter, src, count) < count)
157 		return -EFAULT;
158 	return 0;
159 }
160 
161 /*
162  * Copy one page from "oldmem"
163  */
copy_oldmem_page(struct iov_iter * iter,unsigned long pfn,size_t csize,unsigned long offset)164 ssize_t copy_oldmem_page(struct iov_iter *iter, unsigned long pfn, size_t csize,
165 			 unsigned long offset)
166 {
167 	unsigned long src;
168 
169 	src = pfn_to_phys(pfn) + offset;
170 	return copy_oldmem_iter(iter, src, csize);
171 }
172 
173 /*
174  * Remap "oldmem" for kdump
175  *
176  * For the kdump reserved memory this functions performs a swap operation:
177  * [0 - OLDMEM_SIZE] is mapped to [OLDMEM_BASE - OLDMEM_BASE + OLDMEM_SIZE]
178  */
remap_oldmem_pfn_range_kdump(struct vm_area_struct * vma,unsigned long from,unsigned long pfn,unsigned long size,pgprot_t prot)179 static int remap_oldmem_pfn_range_kdump(struct vm_area_struct *vma,
180 					unsigned long from, unsigned long pfn,
181 					unsigned long size, pgprot_t prot)
182 {
183 	unsigned long size_old;
184 	int rc;
185 
186 	if (pfn < oldmem_data.size >> PAGE_SHIFT) {
187 		size_old = min(size, oldmem_data.size - (pfn << PAGE_SHIFT));
188 		rc = remap_pfn_range(vma, from,
189 				     pfn + (oldmem_data.start >> PAGE_SHIFT),
190 				     size_old, prot);
191 		if (rc || size == size_old)
192 			return rc;
193 		size -= size_old;
194 		from += size_old;
195 		pfn += size_old >> PAGE_SHIFT;
196 	}
197 	return remap_pfn_range(vma, from, pfn, size, prot);
198 }
199 
200 /*
201  * Remap "oldmem" for zfcp/nvme dump
202  *
203  * We only map available memory above HSA size. Memory below HSA size
204  * is read on demand using the copy_oldmem_page() function.
205  */
remap_oldmem_pfn_range_zfcpdump(struct vm_area_struct * vma,unsigned long from,unsigned long pfn,unsigned long size,pgprot_t prot)206 static int remap_oldmem_pfn_range_zfcpdump(struct vm_area_struct *vma,
207 					   unsigned long from,
208 					   unsigned long pfn,
209 					   unsigned long size, pgprot_t prot)
210 {
211 	unsigned long hsa_end = sclp.hsa_size;
212 	unsigned long size_hsa;
213 
214 	if (pfn < hsa_end >> PAGE_SHIFT) {
215 		size_hsa = min(size, hsa_end - (pfn << PAGE_SHIFT));
216 		if (size == size_hsa)
217 			return 0;
218 		size -= size_hsa;
219 		from += size_hsa;
220 		pfn += size_hsa >> PAGE_SHIFT;
221 	}
222 	return remap_pfn_range(vma, from, pfn, size, prot);
223 }
224 
225 /*
226  * Remap "oldmem" for kdump or zfcp/nvme dump
227  */
remap_oldmem_pfn_range(struct vm_area_struct * vma,unsigned long from,unsigned long pfn,unsigned long size,pgprot_t prot)228 int remap_oldmem_pfn_range(struct vm_area_struct *vma, unsigned long from,
229 			   unsigned long pfn, unsigned long size, pgprot_t prot)
230 {
231 	if (oldmem_data.start)
232 		return remap_oldmem_pfn_range_kdump(vma, from, pfn, size, prot);
233 	else
234 		return remap_oldmem_pfn_range_zfcpdump(vma, from, pfn, size,
235 						       prot);
236 }
237 
238 /*
239  * Return true only when in a kdump or stand-alone kdump environment.
240  * Note that /proc/vmcore might also be available in "standard zfcp/nvme dump"
241  * environments, where this function returns false; see dump_available().
242  */
is_kdump_kernel(void)243 bool is_kdump_kernel(void)
244 {
245 	return oldmem_data.start;
246 }
247 EXPORT_SYMBOL_GPL(is_kdump_kernel);
248 
nt_name(Elf64_Word type)249 static const char *nt_name(Elf64_Word type)
250 {
251 	const char *name = "LINUX";
252 
253 	if (type == NT_PRPSINFO || type == NT_PRSTATUS || type == NT_PRFPREG)
254 		name = KEXEC_CORE_NOTE_NAME;
255 	return name;
256 }
257 
258 /*
259  * Initialize ELF note
260  */
nt_init_name(void * buf,Elf64_Word type,void * desc,int d_len,const char * name)261 static void *nt_init_name(void *buf, Elf64_Word type, void *desc, int d_len,
262 			  const char *name)
263 {
264 	Elf64_Nhdr *note;
265 	u64 len;
266 
267 	note = (Elf64_Nhdr *)buf;
268 	note->n_namesz = strlen(name) + 1;
269 	note->n_descsz = d_len;
270 	note->n_type = type;
271 	len = sizeof(Elf64_Nhdr);
272 
273 	memcpy(buf + len, name, note->n_namesz);
274 	len = roundup(len + note->n_namesz, 4);
275 
276 	memcpy(buf + len, desc, note->n_descsz);
277 	len = roundup(len + note->n_descsz, 4);
278 
279 	return PTR_ADD(buf, len);
280 }
281 
nt_init(void * buf,Elf64_Word type,void * desc,int d_len)282 static inline void *nt_init(void *buf, Elf64_Word type, void *desc, int d_len)
283 {
284 	return nt_init_name(buf, type, desc, d_len, nt_name(type));
285 }
286 
287 /*
288  * Calculate the size of ELF note
289  */
nt_size_name(int d_len,const char * name)290 static size_t nt_size_name(int d_len, const char *name)
291 {
292 	size_t size;
293 
294 	size = sizeof(Elf64_Nhdr);
295 	size += roundup(strlen(name) + 1, 4);
296 	size += roundup(d_len, 4);
297 
298 	return size;
299 }
300 
nt_size(Elf64_Word type,int d_len)301 static inline size_t nt_size(Elf64_Word type, int d_len)
302 {
303 	return nt_size_name(d_len, nt_name(type));
304 }
305 
306 /*
307  * Fill ELF notes for one CPU with save area registers
308  */
fill_cpu_elf_notes(void * ptr,int cpu,struct save_area * sa)309 static void *fill_cpu_elf_notes(void *ptr, int cpu, struct save_area *sa)
310 {
311 	struct elf_prstatus nt_prstatus;
312 	elf_fpregset_t nt_fpregset;
313 
314 	/* Prepare prstatus note */
315 	memset(&nt_prstatus, 0, sizeof(nt_prstatus));
316 	memcpy(&nt_prstatus.pr_reg.gprs, sa->gprs, sizeof(sa->gprs));
317 	memcpy(&nt_prstatus.pr_reg.psw, sa->psw, sizeof(sa->psw));
318 	memcpy(&nt_prstatus.pr_reg.acrs, sa->acrs, sizeof(sa->acrs));
319 	nt_prstatus.common.pr_pid = cpu;
320 	/* Prepare fpregset (floating point) note */
321 	memset(&nt_fpregset, 0, sizeof(nt_fpregset));
322 	memcpy(&nt_fpregset.fpc, &sa->fpc, sizeof(sa->fpc));
323 	memcpy(&nt_fpregset.fprs, &sa->fprs, sizeof(sa->fprs));
324 	/* Create ELF notes for the CPU */
325 	ptr = nt_init(ptr, NT_PRSTATUS, &nt_prstatus, sizeof(nt_prstatus));
326 	ptr = nt_init(ptr, NT_PRFPREG, &nt_fpregset, sizeof(nt_fpregset));
327 	ptr = nt_init(ptr, NT_S390_TIMER, &sa->timer, sizeof(sa->timer));
328 	ptr = nt_init(ptr, NT_S390_TODCMP, &sa->todcmp, sizeof(sa->todcmp));
329 	ptr = nt_init(ptr, NT_S390_TODPREG, &sa->todpreg, sizeof(sa->todpreg));
330 	ptr = nt_init(ptr, NT_S390_CTRS, &sa->ctrs, sizeof(sa->ctrs));
331 	ptr = nt_init(ptr, NT_S390_PREFIX, &sa->prefix, sizeof(sa->prefix));
332 	if (cpu_has_vx()) {
333 		ptr = nt_init(ptr, NT_S390_VXRS_HIGH,
334 			      &sa->vxrs_high, sizeof(sa->vxrs_high));
335 		ptr = nt_init(ptr, NT_S390_VXRS_LOW,
336 			      &sa->vxrs_low, sizeof(sa->vxrs_low));
337 	}
338 	return ptr;
339 }
340 
341 /*
342  * Calculate size of ELF notes per cpu
343  */
get_cpu_elf_notes_size(void)344 static size_t get_cpu_elf_notes_size(void)
345 {
346 	struct save_area *sa = NULL;
347 	size_t size;
348 
349 	size =	nt_size(NT_PRSTATUS, sizeof(struct elf_prstatus));
350 	size +=  nt_size(NT_PRFPREG, sizeof(elf_fpregset_t));
351 	size +=  nt_size(NT_S390_TIMER, sizeof(sa->timer));
352 	size +=  nt_size(NT_S390_TODCMP, sizeof(sa->todcmp));
353 	size +=  nt_size(NT_S390_TODPREG, sizeof(sa->todpreg));
354 	size +=  nt_size(NT_S390_CTRS, sizeof(sa->ctrs));
355 	size +=  nt_size(NT_S390_PREFIX, sizeof(sa->prefix));
356 	if (cpu_has_vx()) {
357 		size += nt_size(NT_S390_VXRS_HIGH, sizeof(sa->vxrs_high));
358 		size += nt_size(NT_S390_VXRS_LOW, sizeof(sa->vxrs_low));
359 	}
360 
361 	return size;
362 }
363 
364 /*
365  * Initialize prpsinfo note (new kernel)
366  */
nt_prpsinfo(void * ptr)367 static void *nt_prpsinfo(void *ptr)
368 {
369 	struct elf_prpsinfo prpsinfo;
370 
371 	memset(&prpsinfo, 0, sizeof(prpsinfo));
372 	prpsinfo.pr_sname = 'R';
373 	strcpy(prpsinfo.pr_fname, "vmlinux");
374 	return nt_init(ptr, NT_PRPSINFO, &prpsinfo, sizeof(prpsinfo));
375 }
376 
377 /*
378  * Get vmcoreinfo using lowcore->vmcore_info (new kernel)
379  */
get_vmcoreinfo_old(unsigned long * size)380 static void *get_vmcoreinfo_old(unsigned long *size)
381 {
382 	char nt_name[11], *vmcoreinfo;
383 	unsigned long addr;
384 	Elf64_Nhdr note;
385 
386 	if (copy_oldmem_kernel(&addr, __LC_VMCORE_INFO, sizeof(addr)))
387 		return NULL;
388 	memset(nt_name, 0, sizeof(nt_name));
389 	if (copy_oldmem_kernel(&note, addr, sizeof(note)))
390 		return NULL;
391 	if (copy_oldmem_kernel(nt_name, addr + sizeof(note),
392 			       sizeof(nt_name) - 1))
393 		return NULL;
394 	if (strcmp(nt_name, VMCOREINFO_NOTE_NAME) != 0)
395 		return NULL;
396 	vmcoreinfo = kzalloc(note.n_descsz, GFP_KERNEL);
397 	if (!vmcoreinfo)
398 		return NULL;
399 	if (copy_oldmem_kernel(vmcoreinfo, addr + 24, note.n_descsz)) {
400 		kfree(vmcoreinfo);
401 		return NULL;
402 	}
403 	*size = note.n_descsz;
404 	return vmcoreinfo;
405 }
406 
407 /*
408  * Initialize vmcoreinfo note (new kernel)
409  */
nt_vmcoreinfo(void * ptr)410 static void *nt_vmcoreinfo(void *ptr)
411 {
412 	const char *name = VMCOREINFO_NOTE_NAME;
413 	unsigned long size;
414 	void *vmcoreinfo;
415 
416 	vmcoreinfo = os_info_old_entry(OS_INFO_VMCOREINFO, &size);
417 	if (vmcoreinfo)
418 		return nt_init_name(ptr, 0, vmcoreinfo, size, name);
419 
420 	vmcoreinfo = get_vmcoreinfo_old(&size);
421 	if (!vmcoreinfo)
422 		return ptr;
423 	ptr = nt_init_name(ptr, 0, vmcoreinfo, size, name);
424 	kfree(vmcoreinfo);
425 	return ptr;
426 }
427 
nt_vmcoreinfo_size(void)428 static size_t nt_vmcoreinfo_size(void)
429 {
430 	const char *name = VMCOREINFO_NOTE_NAME;
431 	unsigned long size;
432 	void *vmcoreinfo;
433 
434 	vmcoreinfo = os_info_old_entry(OS_INFO_VMCOREINFO, &size);
435 	if (vmcoreinfo)
436 		return nt_size_name(size, name);
437 
438 	vmcoreinfo = get_vmcoreinfo_old(&size);
439 	if (!vmcoreinfo)
440 		return 0;
441 
442 	kfree(vmcoreinfo);
443 	return nt_size_name(size, name);
444 }
445 
446 /*
447  * Initialize final note (needed for /proc/vmcore code)
448  */
nt_final(void * ptr)449 static void *nt_final(void *ptr)
450 {
451 	Elf64_Nhdr *note;
452 
453 	note = (Elf64_Nhdr *) ptr;
454 	note->n_namesz = 0;
455 	note->n_descsz = 0;
456 	note->n_type = 0;
457 	return PTR_ADD(ptr, sizeof(Elf64_Nhdr));
458 }
459 
460 /*
461  * Initialize ELF header (new kernel)
462  */
ehdr_init(Elf64_Ehdr * ehdr,int phdr_count)463 static void *ehdr_init(Elf64_Ehdr *ehdr, int phdr_count)
464 {
465 	memset(ehdr, 0, sizeof(*ehdr));
466 	memcpy(ehdr->e_ident, ELFMAG, SELFMAG);
467 	ehdr->e_ident[EI_CLASS] = ELFCLASS64;
468 	ehdr->e_ident[EI_DATA] = ELFDATA2MSB;
469 	ehdr->e_ident[EI_VERSION] = EV_CURRENT;
470 	memset(ehdr->e_ident + EI_PAD, 0, EI_NIDENT - EI_PAD);
471 	ehdr->e_type = ET_CORE;
472 	ehdr->e_machine = EM_S390;
473 	ehdr->e_version = EV_CURRENT;
474 	ehdr->e_phoff = sizeof(Elf64_Ehdr);
475 	ehdr->e_ehsize = sizeof(Elf64_Ehdr);
476 	ehdr->e_phentsize = sizeof(Elf64_Phdr);
477 	/* Number of PT_LOAD program headers plus PT_NOTE program header */
478 	ehdr->e_phnum = phdr_count + 1;
479 	return ehdr + 1;
480 }
481 
482 /*
483  * Return CPU count for ELF header (new kernel)
484  */
get_cpu_cnt(void)485 static int get_cpu_cnt(void)
486 {
487 	struct save_area *sa;
488 	int cpus = 0;
489 
490 	list_for_each_entry(sa, &dump_save_areas, list)
491 		if (sa->prefix != 0)
492 			cpus++;
493 	return cpus;
494 }
495 
496 /*
497  * Return memory chunk count for ELF header (new kernel)
498  */
get_mem_chunk_cnt(void)499 static int get_mem_chunk_cnt(void)
500 {
501 	int cnt = 0;
502 	u64 idx;
503 
504 	for_each_physmem_range(idx, &oldmem_type, NULL, NULL)
505 		cnt++;
506 	return cnt;
507 }
508 
fill_ptload(Elf64_Phdr * phdr,unsigned long paddr,unsigned long vaddr,unsigned long size)509 static void fill_ptload(Elf64_Phdr *phdr, unsigned long paddr,
510 		unsigned long vaddr, unsigned long size)
511 {
512 	phdr->p_type = PT_LOAD;
513 	phdr->p_vaddr = vaddr;
514 	phdr->p_offset = paddr;
515 	phdr->p_paddr = paddr;
516 	phdr->p_filesz = size;
517 	phdr->p_memsz = size;
518 	phdr->p_flags = PF_R | PF_W | PF_X;
519 	phdr->p_align = PAGE_SIZE;
520 }
521 
522 /*
523  * Initialize ELF loads (new kernel)
524  */
loads_init(Elf64_Phdr * phdr,bool os_info_has_vm)525 static void loads_init(Elf64_Phdr *phdr, bool os_info_has_vm)
526 {
527 	unsigned long old_identity_base = 0;
528 	phys_addr_t start, end;
529 	u64 idx;
530 
531 	if (os_info_has_vm)
532 		old_identity_base = os_info_old_value(OS_INFO_IDENTITY_BASE);
533 	for_each_physmem_range(idx, &oldmem_type, &start, &end) {
534 		fill_ptload(phdr, start, old_identity_base + start,
535 			    end - start);
536 		phdr++;
537 	}
538 }
539 
os_info_has_vm(void)540 static bool os_info_has_vm(void)
541 {
542 	return os_info_old_value(OS_INFO_KASLR_OFFSET);
543 }
544 
545 #ifdef CONFIG_PROC_VMCORE_DEVICE_RAM
546 /*
547  * Fill PT_LOAD for a physical memory range owned by a device and detected by
548  * its device driver.
549  */
elfcorehdr_fill_device_ram_ptload_elf64(Elf64_Phdr * phdr,unsigned long long paddr,unsigned long long size)550 void elfcorehdr_fill_device_ram_ptload_elf64(Elf64_Phdr *phdr,
551 		unsigned long long paddr, unsigned long long size)
552 {
553 	unsigned long old_identity_base = 0;
554 
555 	if (os_info_has_vm())
556 		old_identity_base = os_info_old_value(OS_INFO_IDENTITY_BASE);
557 	fill_ptload(phdr, paddr, old_identity_base + paddr, size);
558 }
559 #endif
560 
561 /*
562  * Prepare PT_LOAD type program header for kernel image region
563  */
text_init(Elf64_Phdr * phdr)564 static void text_init(Elf64_Phdr *phdr)
565 {
566 	unsigned long start_phys = os_info_old_value(OS_INFO_IMAGE_PHYS);
567 	unsigned long start = os_info_old_value(OS_INFO_IMAGE_START);
568 	unsigned long end = os_info_old_value(OS_INFO_IMAGE_END);
569 
570 	phdr->p_type = PT_LOAD;
571 	phdr->p_vaddr = start;
572 	phdr->p_filesz = end - start;
573 	phdr->p_memsz = end - start;
574 	phdr->p_offset = start_phys;
575 	phdr->p_paddr = start_phys;
576 	phdr->p_flags = PF_R | PF_W | PF_X;
577 	phdr->p_align = PAGE_SIZE;
578 }
579 
580 /*
581  * Initialize notes (new kernel)
582  */
notes_init(Elf64_Phdr * phdr,void * ptr,u64 notes_offset)583 static void *notes_init(Elf64_Phdr *phdr, void *ptr, u64 notes_offset)
584 {
585 	struct save_area *sa;
586 	void *ptr_start = ptr;
587 	int cpu;
588 
589 	ptr = nt_prpsinfo(ptr);
590 
591 	cpu = 1;
592 	list_for_each_entry(sa, &dump_save_areas, list)
593 		if (sa->prefix != 0)
594 			ptr = fill_cpu_elf_notes(ptr, cpu++, sa);
595 	ptr = nt_vmcoreinfo(ptr);
596 	ptr = nt_final(ptr);
597 	memset(phdr, 0, sizeof(*phdr));
598 	phdr->p_type = PT_NOTE;
599 	phdr->p_offset = notes_offset;
600 	phdr->p_filesz = (unsigned long) PTR_SUB(ptr, ptr_start);
601 	phdr->p_memsz = phdr->p_filesz;
602 	return ptr;
603 }
604 
get_elfcorehdr_size(int phdr_count)605 static size_t get_elfcorehdr_size(int phdr_count)
606 {
607 	size_t size;
608 
609 	size = sizeof(Elf64_Ehdr);
610 	/* PT_NOTES */
611 	size += sizeof(Elf64_Phdr);
612 	/* nt_prpsinfo */
613 	size += nt_size(NT_PRPSINFO, sizeof(struct elf_prpsinfo));
614 	/* regsets */
615 	size += get_cpu_cnt() * get_cpu_elf_notes_size();
616 	/* nt_vmcoreinfo */
617 	size += nt_vmcoreinfo_size();
618 	/* nt_final */
619 	size += sizeof(Elf64_Nhdr);
620 	/* PT_LOADS */
621 	size += phdr_count * sizeof(Elf64_Phdr);
622 
623 	return size;
624 }
625 
626 /*
627  * Create ELF core header (new kernel)
628  */
elfcorehdr_alloc(unsigned long long * addr,unsigned long long * size)629 int elfcorehdr_alloc(unsigned long long *addr, unsigned long long *size)
630 {
631 	Elf64_Phdr *phdr_notes, *phdr_loads, *phdr_text;
632 	int mem_chunk_cnt, phdr_text_cnt;
633 	size_t alloc_size;
634 	void *ptr, *hdr;
635 	u64 hdr_off;
636 
637 	/* If we are not in kdump or zfcp/nvme dump mode return */
638 	if (!oldmem_data.start && !is_ipl_type_dump())
639 		return 0;
640 	/* If we cannot get HSA size for zfcp/nvme dump return error */
641 	if (is_ipl_type_dump() && !sclp.hsa_size)
642 		return -ENODEV;
643 
644 	/* For kdump, exclude previous crashkernel memory */
645 	if (oldmem_data.start) {
646 		oldmem_region.base = oldmem_data.start;
647 		oldmem_region.size = oldmem_data.size;
648 		oldmem_type.total_size = oldmem_data.size;
649 	}
650 
651 	mem_chunk_cnt = get_mem_chunk_cnt();
652 	phdr_text_cnt = os_info_has_vm() ? 1 : 0;
653 
654 	alloc_size = get_elfcorehdr_size(mem_chunk_cnt + phdr_text_cnt);
655 
656 	hdr = kzalloc(alloc_size, GFP_KERNEL);
657 
658 	/*
659 	 * Without elfcorehdr /proc/vmcore cannot be created. Thus creating
660 	 * a dump with this crash kernel will fail. Panic now to allow other
661 	 * dump mechanisms to take over.
662 	 */
663 	if (!hdr)
664 		panic("s390 kdump allocating elfcorehdr failed");
665 
666 	/* Init elf header */
667 	phdr_notes = ehdr_init(hdr, mem_chunk_cnt + phdr_text_cnt);
668 	/* Init program headers */
669 	if (phdr_text_cnt) {
670 		phdr_text = phdr_notes + 1;
671 		phdr_loads = phdr_text + 1;
672 	} else {
673 		phdr_loads = phdr_notes + 1;
674 	}
675 	ptr = PTR_ADD(phdr_loads, sizeof(Elf64_Phdr) * mem_chunk_cnt);
676 	/* Init notes */
677 	hdr_off = PTR_DIFF(ptr, hdr);
678 	ptr = notes_init(phdr_notes, ptr, ((unsigned long) hdr) + hdr_off);
679 	/* Init kernel text program header */
680 	if (phdr_text_cnt)
681 		text_init(phdr_text);
682 	/* Init loads */
683 	loads_init(phdr_loads, phdr_text_cnt);
684 	/* Finalize program headers */
685 	hdr_off = PTR_DIFF(ptr, hdr);
686 	*addr = (unsigned long long) hdr;
687 	*size = (unsigned long long) hdr_off;
688 	BUG_ON(elfcorehdr_size > alloc_size);
689 	return 0;
690 }
691 
692 /*
693  * Free ELF core header (new kernel)
694  */
elfcorehdr_free(unsigned long long addr)695 void elfcorehdr_free(unsigned long long addr)
696 {
697 	kfree((void *)(unsigned long)addr);
698 }
699 
700 /*
701  * Read from ELF header
702  */
elfcorehdr_read(char * buf,size_t count,u64 * ppos)703 ssize_t elfcorehdr_read(char *buf, size_t count, u64 *ppos)
704 {
705 	void *src = (void *)(unsigned long)*ppos;
706 
707 	memcpy(buf, src, count);
708 	*ppos += count;
709 	return count;
710 }
711 
712 /*
713  * Read from ELF notes data
714  */
elfcorehdr_read_notes(char * buf,size_t count,u64 * ppos)715 ssize_t elfcorehdr_read_notes(char *buf, size_t count, u64 *ppos)
716 {
717 	void *src = (void *)(unsigned long)*ppos;
718 
719 	memcpy(buf, src, count);
720 	*ppos += count;
721 	return count;
722 }
723