1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * S390 kdump implementation
4 *
5 * Copyright IBM Corp. 2011
6 * Author(s): Michael Holzheu <[email protected]>
7 */
8
9 #include <linux/crash_dump.h>
10 #include <asm/lowcore.h>
11 #include <linux/kernel.h>
12 #include <linux/init.h>
13 #include <linux/mm.h>
14 #include <linux/gfp.h>
15 #include <linux/slab.h>
16 #include <linux/memblock.h>
17 #include <linux/elf.h>
18 #include <linux/uio.h>
19 #include <asm/asm-offsets.h>
20 #include <asm/os_info.h>
21 #include <asm/elf.h>
22 #include <asm/ipl.h>
23 #include <asm/sclp.h>
24 #include <asm/maccess.h>
25 #include <asm/fpu.h>
26
27 #define PTR_ADD(x, y) (((char *) (x)) + ((unsigned long) (y)))
28 #define PTR_SUB(x, y) (((char *) (x)) - ((unsigned long) (y)))
29 #define PTR_DIFF(x, y) ((unsigned long)(((char *) (x)) - ((unsigned long) (y))))
30
31 static struct memblock_region oldmem_region;
32
33 static struct memblock_type oldmem_type = {
34 .cnt = 1,
35 .max = 1,
36 .total_size = 0,
37 .regions = &oldmem_region,
38 .name = "oldmem",
39 };
40
41 struct save_area {
42 struct list_head list;
43 u64 psw[2];
44 u64 ctrs[16];
45 u64 gprs[16];
46 u32 acrs[16];
47 u64 fprs[16];
48 u32 fpc;
49 u32 prefix;
50 u32 todpreg;
51 u64 timer;
52 u64 todcmp;
53 u64 vxrs_low[16];
54 __vector128 vxrs_high[16];
55 };
56
57 static LIST_HEAD(dump_save_areas);
58
59 /*
60 * Allocate a save area
61 */
save_area_alloc(bool is_boot_cpu)62 struct save_area * __init save_area_alloc(bool is_boot_cpu)
63 {
64 struct save_area *sa;
65
66 sa = memblock_alloc_or_panic(sizeof(*sa), 8);
67
68 if (is_boot_cpu)
69 list_add(&sa->list, &dump_save_areas);
70 else
71 list_add_tail(&sa->list, &dump_save_areas);
72 return sa;
73 }
74
75 /*
76 * Return the address of the save area for the boot CPU
77 */
save_area_boot_cpu(void)78 struct save_area * __init save_area_boot_cpu(void)
79 {
80 return list_first_entry_or_null(&dump_save_areas, struct save_area, list);
81 }
82
83 /*
84 * Copy CPU registers into the save area
85 */
save_area_add_regs(struct save_area * sa,void * regs)86 void __init save_area_add_regs(struct save_area *sa, void *regs)
87 {
88 struct lowcore *lc;
89
90 lc = (struct lowcore *)(regs - __LC_FPREGS_SAVE_AREA);
91 memcpy(&sa->psw, &lc->psw_save_area, sizeof(sa->psw));
92 memcpy(&sa->ctrs, &lc->cregs_save_area, sizeof(sa->ctrs));
93 memcpy(&sa->gprs, &lc->gpregs_save_area, sizeof(sa->gprs));
94 memcpy(&sa->acrs, &lc->access_regs_save_area, sizeof(sa->acrs));
95 memcpy(&sa->fprs, &lc->floating_pt_save_area, sizeof(sa->fprs));
96 memcpy(&sa->fpc, &lc->fpt_creg_save_area, sizeof(sa->fpc));
97 memcpy(&sa->prefix, &lc->prefixreg_save_area, sizeof(sa->prefix));
98 memcpy(&sa->todpreg, &lc->tod_progreg_save_area, sizeof(sa->todpreg));
99 memcpy(&sa->timer, &lc->cpu_timer_save_area, sizeof(sa->timer));
100 memcpy(&sa->todcmp, &lc->clock_comp_save_area, sizeof(sa->todcmp));
101 }
102
103 /*
104 * Copy vector registers into the save area
105 */
save_area_add_vxrs(struct save_area * sa,__vector128 * vxrs)106 void __init save_area_add_vxrs(struct save_area *sa, __vector128 *vxrs)
107 {
108 int i;
109
110 /* Copy lower halves of vector registers 0-15 */
111 for (i = 0; i < 16; i++)
112 sa->vxrs_low[i] = vxrs[i].low;
113 /* Copy vector registers 16-31 */
114 memcpy(sa->vxrs_high, vxrs + 16, 16 * sizeof(__vector128));
115 }
116
copy_oldmem_iter(struct iov_iter * iter,unsigned long src,size_t count)117 static size_t copy_oldmem_iter(struct iov_iter *iter, unsigned long src, size_t count)
118 {
119 size_t len, copied, res = 0;
120
121 while (count) {
122 if (!oldmem_data.start && src < sclp.hsa_size) {
123 /* Copy from zfcp/nvme dump HSA area */
124 len = min(count, sclp.hsa_size - src);
125 copied = memcpy_hsa_iter(iter, src, len);
126 } else {
127 /* Check for swapped kdump oldmem areas */
128 if (oldmem_data.start && src - oldmem_data.start < oldmem_data.size) {
129 src -= oldmem_data.start;
130 len = min(count, oldmem_data.size - src);
131 } else if (oldmem_data.start && src < oldmem_data.size) {
132 len = min(count, oldmem_data.size - src);
133 src += oldmem_data.start;
134 } else {
135 len = count;
136 }
137 copied = memcpy_real_iter(iter, src, len);
138 }
139 count -= copied;
140 src += copied;
141 res += copied;
142 if (copied < len)
143 break;
144 }
145 return res;
146 }
147
copy_oldmem_kernel(void * dst,unsigned long src,size_t count)148 int copy_oldmem_kernel(void *dst, unsigned long src, size_t count)
149 {
150 struct iov_iter iter;
151 struct kvec kvec;
152
153 kvec.iov_base = dst;
154 kvec.iov_len = count;
155 iov_iter_kvec(&iter, ITER_DEST, &kvec, 1, count);
156 if (copy_oldmem_iter(&iter, src, count) < count)
157 return -EFAULT;
158 return 0;
159 }
160
161 /*
162 * Copy one page from "oldmem"
163 */
copy_oldmem_page(struct iov_iter * iter,unsigned long pfn,size_t csize,unsigned long offset)164 ssize_t copy_oldmem_page(struct iov_iter *iter, unsigned long pfn, size_t csize,
165 unsigned long offset)
166 {
167 unsigned long src;
168
169 src = pfn_to_phys(pfn) + offset;
170 return copy_oldmem_iter(iter, src, csize);
171 }
172
173 /*
174 * Remap "oldmem" for kdump
175 *
176 * For the kdump reserved memory this functions performs a swap operation:
177 * [0 - OLDMEM_SIZE] is mapped to [OLDMEM_BASE - OLDMEM_BASE + OLDMEM_SIZE]
178 */
remap_oldmem_pfn_range_kdump(struct vm_area_struct * vma,unsigned long from,unsigned long pfn,unsigned long size,pgprot_t prot)179 static int remap_oldmem_pfn_range_kdump(struct vm_area_struct *vma,
180 unsigned long from, unsigned long pfn,
181 unsigned long size, pgprot_t prot)
182 {
183 unsigned long size_old;
184 int rc;
185
186 if (pfn < oldmem_data.size >> PAGE_SHIFT) {
187 size_old = min(size, oldmem_data.size - (pfn << PAGE_SHIFT));
188 rc = remap_pfn_range(vma, from,
189 pfn + (oldmem_data.start >> PAGE_SHIFT),
190 size_old, prot);
191 if (rc || size == size_old)
192 return rc;
193 size -= size_old;
194 from += size_old;
195 pfn += size_old >> PAGE_SHIFT;
196 }
197 return remap_pfn_range(vma, from, pfn, size, prot);
198 }
199
200 /*
201 * Remap "oldmem" for zfcp/nvme dump
202 *
203 * We only map available memory above HSA size. Memory below HSA size
204 * is read on demand using the copy_oldmem_page() function.
205 */
remap_oldmem_pfn_range_zfcpdump(struct vm_area_struct * vma,unsigned long from,unsigned long pfn,unsigned long size,pgprot_t prot)206 static int remap_oldmem_pfn_range_zfcpdump(struct vm_area_struct *vma,
207 unsigned long from,
208 unsigned long pfn,
209 unsigned long size, pgprot_t prot)
210 {
211 unsigned long hsa_end = sclp.hsa_size;
212 unsigned long size_hsa;
213
214 if (pfn < hsa_end >> PAGE_SHIFT) {
215 size_hsa = min(size, hsa_end - (pfn << PAGE_SHIFT));
216 if (size == size_hsa)
217 return 0;
218 size -= size_hsa;
219 from += size_hsa;
220 pfn += size_hsa >> PAGE_SHIFT;
221 }
222 return remap_pfn_range(vma, from, pfn, size, prot);
223 }
224
225 /*
226 * Remap "oldmem" for kdump or zfcp/nvme dump
227 */
remap_oldmem_pfn_range(struct vm_area_struct * vma,unsigned long from,unsigned long pfn,unsigned long size,pgprot_t prot)228 int remap_oldmem_pfn_range(struct vm_area_struct *vma, unsigned long from,
229 unsigned long pfn, unsigned long size, pgprot_t prot)
230 {
231 if (oldmem_data.start)
232 return remap_oldmem_pfn_range_kdump(vma, from, pfn, size, prot);
233 else
234 return remap_oldmem_pfn_range_zfcpdump(vma, from, pfn, size,
235 prot);
236 }
237
238 /*
239 * Return true only when in a kdump or stand-alone kdump environment.
240 * Note that /proc/vmcore might also be available in "standard zfcp/nvme dump"
241 * environments, where this function returns false; see dump_available().
242 */
is_kdump_kernel(void)243 bool is_kdump_kernel(void)
244 {
245 return oldmem_data.start;
246 }
247 EXPORT_SYMBOL_GPL(is_kdump_kernel);
248
nt_name(Elf64_Word type)249 static const char *nt_name(Elf64_Word type)
250 {
251 const char *name = "LINUX";
252
253 if (type == NT_PRPSINFO || type == NT_PRSTATUS || type == NT_PRFPREG)
254 name = KEXEC_CORE_NOTE_NAME;
255 return name;
256 }
257
258 /*
259 * Initialize ELF note
260 */
nt_init_name(void * buf,Elf64_Word type,void * desc,int d_len,const char * name)261 static void *nt_init_name(void *buf, Elf64_Word type, void *desc, int d_len,
262 const char *name)
263 {
264 Elf64_Nhdr *note;
265 u64 len;
266
267 note = (Elf64_Nhdr *)buf;
268 note->n_namesz = strlen(name) + 1;
269 note->n_descsz = d_len;
270 note->n_type = type;
271 len = sizeof(Elf64_Nhdr);
272
273 memcpy(buf + len, name, note->n_namesz);
274 len = roundup(len + note->n_namesz, 4);
275
276 memcpy(buf + len, desc, note->n_descsz);
277 len = roundup(len + note->n_descsz, 4);
278
279 return PTR_ADD(buf, len);
280 }
281
nt_init(void * buf,Elf64_Word type,void * desc,int d_len)282 static inline void *nt_init(void *buf, Elf64_Word type, void *desc, int d_len)
283 {
284 return nt_init_name(buf, type, desc, d_len, nt_name(type));
285 }
286
287 /*
288 * Calculate the size of ELF note
289 */
nt_size_name(int d_len,const char * name)290 static size_t nt_size_name(int d_len, const char *name)
291 {
292 size_t size;
293
294 size = sizeof(Elf64_Nhdr);
295 size += roundup(strlen(name) + 1, 4);
296 size += roundup(d_len, 4);
297
298 return size;
299 }
300
nt_size(Elf64_Word type,int d_len)301 static inline size_t nt_size(Elf64_Word type, int d_len)
302 {
303 return nt_size_name(d_len, nt_name(type));
304 }
305
306 /*
307 * Fill ELF notes for one CPU with save area registers
308 */
fill_cpu_elf_notes(void * ptr,int cpu,struct save_area * sa)309 static void *fill_cpu_elf_notes(void *ptr, int cpu, struct save_area *sa)
310 {
311 struct elf_prstatus nt_prstatus;
312 elf_fpregset_t nt_fpregset;
313
314 /* Prepare prstatus note */
315 memset(&nt_prstatus, 0, sizeof(nt_prstatus));
316 memcpy(&nt_prstatus.pr_reg.gprs, sa->gprs, sizeof(sa->gprs));
317 memcpy(&nt_prstatus.pr_reg.psw, sa->psw, sizeof(sa->psw));
318 memcpy(&nt_prstatus.pr_reg.acrs, sa->acrs, sizeof(sa->acrs));
319 nt_prstatus.common.pr_pid = cpu;
320 /* Prepare fpregset (floating point) note */
321 memset(&nt_fpregset, 0, sizeof(nt_fpregset));
322 memcpy(&nt_fpregset.fpc, &sa->fpc, sizeof(sa->fpc));
323 memcpy(&nt_fpregset.fprs, &sa->fprs, sizeof(sa->fprs));
324 /* Create ELF notes for the CPU */
325 ptr = nt_init(ptr, NT_PRSTATUS, &nt_prstatus, sizeof(nt_prstatus));
326 ptr = nt_init(ptr, NT_PRFPREG, &nt_fpregset, sizeof(nt_fpregset));
327 ptr = nt_init(ptr, NT_S390_TIMER, &sa->timer, sizeof(sa->timer));
328 ptr = nt_init(ptr, NT_S390_TODCMP, &sa->todcmp, sizeof(sa->todcmp));
329 ptr = nt_init(ptr, NT_S390_TODPREG, &sa->todpreg, sizeof(sa->todpreg));
330 ptr = nt_init(ptr, NT_S390_CTRS, &sa->ctrs, sizeof(sa->ctrs));
331 ptr = nt_init(ptr, NT_S390_PREFIX, &sa->prefix, sizeof(sa->prefix));
332 if (cpu_has_vx()) {
333 ptr = nt_init(ptr, NT_S390_VXRS_HIGH,
334 &sa->vxrs_high, sizeof(sa->vxrs_high));
335 ptr = nt_init(ptr, NT_S390_VXRS_LOW,
336 &sa->vxrs_low, sizeof(sa->vxrs_low));
337 }
338 return ptr;
339 }
340
341 /*
342 * Calculate size of ELF notes per cpu
343 */
get_cpu_elf_notes_size(void)344 static size_t get_cpu_elf_notes_size(void)
345 {
346 struct save_area *sa = NULL;
347 size_t size;
348
349 size = nt_size(NT_PRSTATUS, sizeof(struct elf_prstatus));
350 size += nt_size(NT_PRFPREG, sizeof(elf_fpregset_t));
351 size += nt_size(NT_S390_TIMER, sizeof(sa->timer));
352 size += nt_size(NT_S390_TODCMP, sizeof(sa->todcmp));
353 size += nt_size(NT_S390_TODPREG, sizeof(sa->todpreg));
354 size += nt_size(NT_S390_CTRS, sizeof(sa->ctrs));
355 size += nt_size(NT_S390_PREFIX, sizeof(sa->prefix));
356 if (cpu_has_vx()) {
357 size += nt_size(NT_S390_VXRS_HIGH, sizeof(sa->vxrs_high));
358 size += nt_size(NT_S390_VXRS_LOW, sizeof(sa->vxrs_low));
359 }
360
361 return size;
362 }
363
364 /*
365 * Initialize prpsinfo note (new kernel)
366 */
nt_prpsinfo(void * ptr)367 static void *nt_prpsinfo(void *ptr)
368 {
369 struct elf_prpsinfo prpsinfo;
370
371 memset(&prpsinfo, 0, sizeof(prpsinfo));
372 prpsinfo.pr_sname = 'R';
373 strcpy(prpsinfo.pr_fname, "vmlinux");
374 return nt_init(ptr, NT_PRPSINFO, &prpsinfo, sizeof(prpsinfo));
375 }
376
377 /*
378 * Get vmcoreinfo using lowcore->vmcore_info (new kernel)
379 */
get_vmcoreinfo_old(unsigned long * size)380 static void *get_vmcoreinfo_old(unsigned long *size)
381 {
382 char nt_name[11], *vmcoreinfo;
383 unsigned long addr;
384 Elf64_Nhdr note;
385
386 if (copy_oldmem_kernel(&addr, __LC_VMCORE_INFO, sizeof(addr)))
387 return NULL;
388 memset(nt_name, 0, sizeof(nt_name));
389 if (copy_oldmem_kernel(¬e, addr, sizeof(note)))
390 return NULL;
391 if (copy_oldmem_kernel(nt_name, addr + sizeof(note),
392 sizeof(nt_name) - 1))
393 return NULL;
394 if (strcmp(nt_name, VMCOREINFO_NOTE_NAME) != 0)
395 return NULL;
396 vmcoreinfo = kzalloc(note.n_descsz, GFP_KERNEL);
397 if (!vmcoreinfo)
398 return NULL;
399 if (copy_oldmem_kernel(vmcoreinfo, addr + 24, note.n_descsz)) {
400 kfree(vmcoreinfo);
401 return NULL;
402 }
403 *size = note.n_descsz;
404 return vmcoreinfo;
405 }
406
407 /*
408 * Initialize vmcoreinfo note (new kernel)
409 */
nt_vmcoreinfo(void * ptr)410 static void *nt_vmcoreinfo(void *ptr)
411 {
412 const char *name = VMCOREINFO_NOTE_NAME;
413 unsigned long size;
414 void *vmcoreinfo;
415
416 vmcoreinfo = os_info_old_entry(OS_INFO_VMCOREINFO, &size);
417 if (vmcoreinfo)
418 return nt_init_name(ptr, 0, vmcoreinfo, size, name);
419
420 vmcoreinfo = get_vmcoreinfo_old(&size);
421 if (!vmcoreinfo)
422 return ptr;
423 ptr = nt_init_name(ptr, 0, vmcoreinfo, size, name);
424 kfree(vmcoreinfo);
425 return ptr;
426 }
427
nt_vmcoreinfo_size(void)428 static size_t nt_vmcoreinfo_size(void)
429 {
430 const char *name = VMCOREINFO_NOTE_NAME;
431 unsigned long size;
432 void *vmcoreinfo;
433
434 vmcoreinfo = os_info_old_entry(OS_INFO_VMCOREINFO, &size);
435 if (vmcoreinfo)
436 return nt_size_name(size, name);
437
438 vmcoreinfo = get_vmcoreinfo_old(&size);
439 if (!vmcoreinfo)
440 return 0;
441
442 kfree(vmcoreinfo);
443 return nt_size_name(size, name);
444 }
445
446 /*
447 * Initialize final note (needed for /proc/vmcore code)
448 */
nt_final(void * ptr)449 static void *nt_final(void *ptr)
450 {
451 Elf64_Nhdr *note;
452
453 note = (Elf64_Nhdr *) ptr;
454 note->n_namesz = 0;
455 note->n_descsz = 0;
456 note->n_type = 0;
457 return PTR_ADD(ptr, sizeof(Elf64_Nhdr));
458 }
459
460 /*
461 * Initialize ELF header (new kernel)
462 */
ehdr_init(Elf64_Ehdr * ehdr,int phdr_count)463 static void *ehdr_init(Elf64_Ehdr *ehdr, int phdr_count)
464 {
465 memset(ehdr, 0, sizeof(*ehdr));
466 memcpy(ehdr->e_ident, ELFMAG, SELFMAG);
467 ehdr->e_ident[EI_CLASS] = ELFCLASS64;
468 ehdr->e_ident[EI_DATA] = ELFDATA2MSB;
469 ehdr->e_ident[EI_VERSION] = EV_CURRENT;
470 memset(ehdr->e_ident + EI_PAD, 0, EI_NIDENT - EI_PAD);
471 ehdr->e_type = ET_CORE;
472 ehdr->e_machine = EM_S390;
473 ehdr->e_version = EV_CURRENT;
474 ehdr->e_phoff = sizeof(Elf64_Ehdr);
475 ehdr->e_ehsize = sizeof(Elf64_Ehdr);
476 ehdr->e_phentsize = sizeof(Elf64_Phdr);
477 /* Number of PT_LOAD program headers plus PT_NOTE program header */
478 ehdr->e_phnum = phdr_count + 1;
479 return ehdr + 1;
480 }
481
482 /*
483 * Return CPU count for ELF header (new kernel)
484 */
get_cpu_cnt(void)485 static int get_cpu_cnt(void)
486 {
487 struct save_area *sa;
488 int cpus = 0;
489
490 list_for_each_entry(sa, &dump_save_areas, list)
491 if (sa->prefix != 0)
492 cpus++;
493 return cpus;
494 }
495
496 /*
497 * Return memory chunk count for ELF header (new kernel)
498 */
get_mem_chunk_cnt(void)499 static int get_mem_chunk_cnt(void)
500 {
501 int cnt = 0;
502 u64 idx;
503
504 for_each_physmem_range(idx, &oldmem_type, NULL, NULL)
505 cnt++;
506 return cnt;
507 }
508
fill_ptload(Elf64_Phdr * phdr,unsigned long paddr,unsigned long vaddr,unsigned long size)509 static void fill_ptload(Elf64_Phdr *phdr, unsigned long paddr,
510 unsigned long vaddr, unsigned long size)
511 {
512 phdr->p_type = PT_LOAD;
513 phdr->p_vaddr = vaddr;
514 phdr->p_offset = paddr;
515 phdr->p_paddr = paddr;
516 phdr->p_filesz = size;
517 phdr->p_memsz = size;
518 phdr->p_flags = PF_R | PF_W | PF_X;
519 phdr->p_align = PAGE_SIZE;
520 }
521
522 /*
523 * Initialize ELF loads (new kernel)
524 */
loads_init(Elf64_Phdr * phdr,bool os_info_has_vm)525 static void loads_init(Elf64_Phdr *phdr, bool os_info_has_vm)
526 {
527 unsigned long old_identity_base = 0;
528 phys_addr_t start, end;
529 u64 idx;
530
531 if (os_info_has_vm)
532 old_identity_base = os_info_old_value(OS_INFO_IDENTITY_BASE);
533 for_each_physmem_range(idx, &oldmem_type, &start, &end) {
534 fill_ptload(phdr, start, old_identity_base + start,
535 end - start);
536 phdr++;
537 }
538 }
539
os_info_has_vm(void)540 static bool os_info_has_vm(void)
541 {
542 return os_info_old_value(OS_INFO_KASLR_OFFSET);
543 }
544
545 #ifdef CONFIG_PROC_VMCORE_DEVICE_RAM
546 /*
547 * Fill PT_LOAD for a physical memory range owned by a device and detected by
548 * its device driver.
549 */
elfcorehdr_fill_device_ram_ptload_elf64(Elf64_Phdr * phdr,unsigned long long paddr,unsigned long long size)550 void elfcorehdr_fill_device_ram_ptload_elf64(Elf64_Phdr *phdr,
551 unsigned long long paddr, unsigned long long size)
552 {
553 unsigned long old_identity_base = 0;
554
555 if (os_info_has_vm())
556 old_identity_base = os_info_old_value(OS_INFO_IDENTITY_BASE);
557 fill_ptload(phdr, paddr, old_identity_base + paddr, size);
558 }
559 #endif
560
561 /*
562 * Prepare PT_LOAD type program header for kernel image region
563 */
text_init(Elf64_Phdr * phdr)564 static void text_init(Elf64_Phdr *phdr)
565 {
566 unsigned long start_phys = os_info_old_value(OS_INFO_IMAGE_PHYS);
567 unsigned long start = os_info_old_value(OS_INFO_IMAGE_START);
568 unsigned long end = os_info_old_value(OS_INFO_IMAGE_END);
569
570 phdr->p_type = PT_LOAD;
571 phdr->p_vaddr = start;
572 phdr->p_filesz = end - start;
573 phdr->p_memsz = end - start;
574 phdr->p_offset = start_phys;
575 phdr->p_paddr = start_phys;
576 phdr->p_flags = PF_R | PF_W | PF_X;
577 phdr->p_align = PAGE_SIZE;
578 }
579
580 /*
581 * Initialize notes (new kernel)
582 */
notes_init(Elf64_Phdr * phdr,void * ptr,u64 notes_offset)583 static void *notes_init(Elf64_Phdr *phdr, void *ptr, u64 notes_offset)
584 {
585 struct save_area *sa;
586 void *ptr_start = ptr;
587 int cpu;
588
589 ptr = nt_prpsinfo(ptr);
590
591 cpu = 1;
592 list_for_each_entry(sa, &dump_save_areas, list)
593 if (sa->prefix != 0)
594 ptr = fill_cpu_elf_notes(ptr, cpu++, sa);
595 ptr = nt_vmcoreinfo(ptr);
596 ptr = nt_final(ptr);
597 memset(phdr, 0, sizeof(*phdr));
598 phdr->p_type = PT_NOTE;
599 phdr->p_offset = notes_offset;
600 phdr->p_filesz = (unsigned long) PTR_SUB(ptr, ptr_start);
601 phdr->p_memsz = phdr->p_filesz;
602 return ptr;
603 }
604
get_elfcorehdr_size(int phdr_count)605 static size_t get_elfcorehdr_size(int phdr_count)
606 {
607 size_t size;
608
609 size = sizeof(Elf64_Ehdr);
610 /* PT_NOTES */
611 size += sizeof(Elf64_Phdr);
612 /* nt_prpsinfo */
613 size += nt_size(NT_PRPSINFO, sizeof(struct elf_prpsinfo));
614 /* regsets */
615 size += get_cpu_cnt() * get_cpu_elf_notes_size();
616 /* nt_vmcoreinfo */
617 size += nt_vmcoreinfo_size();
618 /* nt_final */
619 size += sizeof(Elf64_Nhdr);
620 /* PT_LOADS */
621 size += phdr_count * sizeof(Elf64_Phdr);
622
623 return size;
624 }
625
626 /*
627 * Create ELF core header (new kernel)
628 */
elfcorehdr_alloc(unsigned long long * addr,unsigned long long * size)629 int elfcorehdr_alloc(unsigned long long *addr, unsigned long long *size)
630 {
631 Elf64_Phdr *phdr_notes, *phdr_loads, *phdr_text;
632 int mem_chunk_cnt, phdr_text_cnt;
633 size_t alloc_size;
634 void *ptr, *hdr;
635 u64 hdr_off;
636
637 /* If we are not in kdump or zfcp/nvme dump mode return */
638 if (!oldmem_data.start && !is_ipl_type_dump())
639 return 0;
640 /* If we cannot get HSA size for zfcp/nvme dump return error */
641 if (is_ipl_type_dump() && !sclp.hsa_size)
642 return -ENODEV;
643
644 /* For kdump, exclude previous crashkernel memory */
645 if (oldmem_data.start) {
646 oldmem_region.base = oldmem_data.start;
647 oldmem_region.size = oldmem_data.size;
648 oldmem_type.total_size = oldmem_data.size;
649 }
650
651 mem_chunk_cnt = get_mem_chunk_cnt();
652 phdr_text_cnt = os_info_has_vm() ? 1 : 0;
653
654 alloc_size = get_elfcorehdr_size(mem_chunk_cnt + phdr_text_cnt);
655
656 hdr = kzalloc(alloc_size, GFP_KERNEL);
657
658 /*
659 * Without elfcorehdr /proc/vmcore cannot be created. Thus creating
660 * a dump with this crash kernel will fail. Panic now to allow other
661 * dump mechanisms to take over.
662 */
663 if (!hdr)
664 panic("s390 kdump allocating elfcorehdr failed");
665
666 /* Init elf header */
667 phdr_notes = ehdr_init(hdr, mem_chunk_cnt + phdr_text_cnt);
668 /* Init program headers */
669 if (phdr_text_cnt) {
670 phdr_text = phdr_notes + 1;
671 phdr_loads = phdr_text + 1;
672 } else {
673 phdr_loads = phdr_notes + 1;
674 }
675 ptr = PTR_ADD(phdr_loads, sizeof(Elf64_Phdr) * mem_chunk_cnt);
676 /* Init notes */
677 hdr_off = PTR_DIFF(ptr, hdr);
678 ptr = notes_init(phdr_notes, ptr, ((unsigned long) hdr) + hdr_off);
679 /* Init kernel text program header */
680 if (phdr_text_cnt)
681 text_init(phdr_text);
682 /* Init loads */
683 loads_init(phdr_loads, phdr_text_cnt);
684 /* Finalize program headers */
685 hdr_off = PTR_DIFF(ptr, hdr);
686 *addr = (unsigned long long) hdr;
687 *size = (unsigned long long) hdr_off;
688 BUG_ON(elfcorehdr_size > alloc_size);
689 return 0;
690 }
691
692 /*
693 * Free ELF core header (new kernel)
694 */
elfcorehdr_free(unsigned long long addr)695 void elfcorehdr_free(unsigned long long addr)
696 {
697 kfree((void *)(unsigned long)addr);
698 }
699
700 /*
701 * Read from ELF header
702 */
elfcorehdr_read(char * buf,size_t count,u64 * ppos)703 ssize_t elfcorehdr_read(char *buf, size_t count, u64 *ppos)
704 {
705 void *src = (void *)(unsigned long)*ppos;
706
707 memcpy(buf, src, count);
708 *ppos += count;
709 return count;
710 }
711
712 /*
713 * Read from ELF notes data
714 */
elfcorehdr_read_notes(char * buf,size_t count,u64 * ppos)715 ssize_t elfcorehdr_read_notes(char *buf, size_t count, u64 *ppos)
716 {
717 void *src = (void *)(unsigned long)*ppos;
718
719 memcpy(buf, src, count);
720 *ppos += count;
721 return count;
722 }
723