1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright (C) 2021-2022 Intel Corporation */
3
4 #undef pr_fmt
5 #define pr_fmt(fmt) "tdx: " fmt
6
7 #include <linux/cpufeature.h>
8 #include <linux/export.h>
9 #include <linux/io.h>
10 #include <linux/kexec.h>
11 #include <asm/coco.h>
12 #include <asm/tdx.h>
13 #include <asm/vmx.h>
14 #include <asm/ia32.h>
15 #include <asm/insn.h>
16 #include <asm/insn-eval.h>
17 #include <asm/paravirt_types.h>
18 #include <asm/pgtable.h>
19 #include <asm/set_memory.h>
20 #include <asm/traps.h>
21
22 /* MMIO direction */
23 #define EPT_READ 0
24 #define EPT_WRITE 1
25
26 /* Port I/O direction */
27 #define PORT_READ 0
28 #define PORT_WRITE 1
29
30 /* See Exit Qualification for I/O Instructions in VMX documentation */
31 #define VE_IS_IO_IN(e) ((e) & BIT(3))
32 #define VE_GET_IO_SIZE(e) (((e) & GENMASK(2, 0)) + 1)
33 #define VE_GET_PORT_NUM(e) ((e) >> 16)
34 #define VE_IS_IO_STRING(e) ((e) & BIT(4))
35
36 /* TDX Module call error codes */
37 #define TDCALL_RETURN_CODE(a) ((a) >> 32)
38 #define TDCALL_INVALID_OPERAND 0xc0000100
39
40 #define TDREPORT_SUBTYPE_0 0
41
42 static atomic_long_t nr_shared;
43
44 /* Called from __tdx_hypercall() for unrecoverable failure */
__tdx_hypercall_failed(void)45 noinstr void __noreturn __tdx_hypercall_failed(void)
46 {
47 instrumentation_begin();
48 panic("TDVMCALL failed. TDX module bug?");
49 }
50
51 #ifdef CONFIG_KVM_GUEST
tdx_kvm_hypercall(unsigned int nr,unsigned long p1,unsigned long p2,unsigned long p3,unsigned long p4)52 long tdx_kvm_hypercall(unsigned int nr, unsigned long p1, unsigned long p2,
53 unsigned long p3, unsigned long p4)
54 {
55 struct tdx_module_args args = {
56 .r10 = nr,
57 .r11 = p1,
58 .r12 = p2,
59 .r13 = p3,
60 .r14 = p4,
61 };
62
63 return __tdx_hypercall(&args);
64 }
65 EXPORT_SYMBOL_GPL(tdx_kvm_hypercall);
66 #endif
67
68 /*
69 * Used for TDX guests to make calls directly to the TD module. This
70 * should only be used for calls that have no legitimate reason to fail
71 * or where the kernel can not survive the call failing.
72 */
tdcall(u64 fn,struct tdx_module_args * args)73 static inline void tdcall(u64 fn, struct tdx_module_args *args)
74 {
75 if (__tdcall_ret(fn, args))
76 panic("TDCALL %lld failed (Buggy TDX module!)\n", fn);
77 }
78
79 /* Read TD-scoped metadata */
tdg_vm_rd(u64 field,u64 * value)80 static inline u64 tdg_vm_rd(u64 field, u64 *value)
81 {
82 struct tdx_module_args args = {
83 .rdx = field,
84 };
85 u64 ret;
86
87 ret = __tdcall_ret(TDG_VM_RD, &args);
88 *value = args.r8;
89
90 return ret;
91 }
92
93 /* Write TD-scoped metadata */
tdg_vm_wr(u64 field,u64 value,u64 mask)94 static inline u64 tdg_vm_wr(u64 field, u64 value, u64 mask)
95 {
96 struct tdx_module_args args = {
97 .rdx = field,
98 .r8 = value,
99 .r9 = mask,
100 };
101
102 return __tdcall(TDG_VM_WR, &args);
103 }
104
105 /**
106 * tdx_mcall_get_report0() - Wrapper to get TDREPORT0 (a.k.a. TDREPORT
107 * subtype 0) using TDG.MR.REPORT TDCALL.
108 * @reportdata: Address of the input buffer which contains user-defined
109 * REPORTDATA to be included into TDREPORT.
110 * @tdreport: Address of the output buffer to store TDREPORT.
111 *
112 * Refer to section titled "TDG.MR.REPORT leaf" in the TDX Module
113 * v1.0 specification for more information on TDG.MR.REPORT TDCALL.
114 * It is used in the TDX guest driver module to get the TDREPORT0.
115 *
116 * Return 0 on success, -EINVAL for invalid operands, or -EIO on
117 * other TDCALL failures.
118 */
tdx_mcall_get_report0(u8 * reportdata,u8 * tdreport)119 int tdx_mcall_get_report0(u8 *reportdata, u8 *tdreport)
120 {
121 struct tdx_module_args args = {
122 .rcx = virt_to_phys(tdreport),
123 .rdx = virt_to_phys(reportdata),
124 .r8 = TDREPORT_SUBTYPE_0,
125 };
126 u64 ret;
127
128 ret = __tdcall(TDG_MR_REPORT, &args);
129 if (ret) {
130 if (TDCALL_RETURN_CODE(ret) == TDCALL_INVALID_OPERAND)
131 return -EINVAL;
132 return -EIO;
133 }
134
135 return 0;
136 }
137 EXPORT_SYMBOL_GPL(tdx_mcall_get_report0);
138
139 /**
140 * tdx_hcall_get_quote() - Wrapper to request TD Quote using GetQuote
141 * hypercall.
142 * @buf: Address of the directly mapped shared kernel buffer which
143 * contains TDREPORT. The same buffer will be used by VMM to
144 * store the generated TD Quote output.
145 * @size: size of the tdquote buffer (4KB-aligned).
146 *
147 * Refer to section titled "TDG.VP.VMCALL<GetQuote>" in the TDX GHCI
148 * v1.0 specification for more information on GetQuote hypercall.
149 * It is used in the TDX guest driver module to get the TD Quote.
150 *
151 * Return 0 on success or error code on failure.
152 */
tdx_hcall_get_quote(u8 * buf,size_t size)153 u64 tdx_hcall_get_quote(u8 *buf, size_t size)
154 {
155 /* Since buf is a shared memory, set the shared (decrypted) bits */
156 return _tdx_hypercall(TDVMCALL_GET_QUOTE, cc_mkdec(virt_to_phys(buf)), size, 0, 0);
157 }
158 EXPORT_SYMBOL_GPL(tdx_hcall_get_quote);
159
tdx_panic(const char * msg)160 static void __noreturn tdx_panic(const char *msg)
161 {
162 struct tdx_module_args args = {
163 .r10 = TDX_HYPERCALL_STANDARD,
164 .r11 = TDVMCALL_REPORT_FATAL_ERROR,
165 .r12 = 0, /* Error code: 0 is Panic */
166 };
167 union {
168 /* Define register order according to the GHCI */
169 struct { u64 r14, r15, rbx, rdi, rsi, r8, r9, rdx; };
170
171 char str[64];
172 } message;
173
174 /* VMM assumes '\0' in byte 65, if the message took all 64 bytes */
175 strtomem_pad(message.str, msg, '\0');
176
177 args.r8 = message.r8;
178 args.r9 = message.r9;
179 args.r14 = message.r14;
180 args.r15 = message.r15;
181 args.rdi = message.rdi;
182 args.rsi = message.rsi;
183 args.rbx = message.rbx;
184 args.rdx = message.rdx;
185
186 /*
187 * This hypercall should never return and it is not safe
188 * to keep the guest running. Call it forever if it
189 * happens to return.
190 */
191 while (1)
192 __tdx_hypercall(&args);
193 }
194
195 /*
196 * The kernel cannot handle #VEs when accessing normal kernel memory. Ensure
197 * that no #VE will be delivered for accesses to TD-private memory.
198 *
199 * TDX 1.0 does not allow the guest to disable SEPT #VE on its own. The VMM
200 * controls if the guest will receive such #VE with TD attribute
201 * TDX_ATTR_SEPT_VE_DISABLE.
202 *
203 * Newer TDX modules allow the guest to control if it wants to receive SEPT
204 * violation #VEs.
205 *
206 * Check if the feature is available and disable SEPT #VE if possible.
207 *
208 * If the TD is allowed to disable/enable SEPT #VEs, the TDX_ATTR_SEPT_VE_DISABLE
209 * attribute is no longer reliable. It reflects the initial state of the
210 * control for the TD, but it will not be updated if someone (e.g. bootloader)
211 * changes it before the kernel starts. Kernel must check TDCS_TD_CTLS bit to
212 * determine if SEPT #VEs are enabled or disabled.
213 */
disable_sept_ve(u64 td_attr)214 static void disable_sept_ve(u64 td_attr)
215 {
216 const char *msg = "TD misconfiguration: SEPT #VE has to be disabled";
217 bool debug = td_attr & TDX_ATTR_DEBUG;
218 u64 config, controls;
219
220 /* Is this TD allowed to disable SEPT #VE */
221 tdg_vm_rd(TDCS_CONFIG_FLAGS, &config);
222 if (!(config & TDCS_CONFIG_FLEXIBLE_PENDING_VE)) {
223 /* No SEPT #VE controls for the guest: check the attribute */
224 if (td_attr & TDX_ATTR_SEPT_VE_DISABLE)
225 return;
226
227 /* Relax SEPT_VE_DISABLE check for debug TD for backtraces */
228 if (debug)
229 pr_warn("%s\n", msg);
230 else
231 tdx_panic(msg);
232 return;
233 }
234
235 /* Check if SEPT #VE has been disabled before us */
236 tdg_vm_rd(TDCS_TD_CTLS, &controls);
237 if (controls & TD_CTLS_PENDING_VE_DISABLE)
238 return;
239
240 /* Keep #VEs enabled for splats in debugging environments */
241 if (debug)
242 return;
243
244 /* Disable SEPT #VEs */
245 tdg_vm_wr(TDCS_TD_CTLS, TD_CTLS_PENDING_VE_DISABLE,
246 TD_CTLS_PENDING_VE_DISABLE);
247 }
248
249 /*
250 * TDX 1.0 generates a #VE when accessing topology-related CPUID leafs (0xB and
251 * 0x1F) and the X2APIC_APICID MSR. The kernel returns all zeros on CPUID #VEs.
252 * In practice, this means that the kernel can only boot with a plain topology.
253 * Any complications will cause problems.
254 *
255 * The ENUM_TOPOLOGY feature allows the VMM to provide topology information.
256 * Enabling the feature eliminates topology-related #VEs: the TDX module
257 * virtualizes accesses to the CPUID leafs and the MSR.
258 *
259 * Enable ENUM_TOPOLOGY if it is available.
260 */
enable_cpu_topology_enumeration(void)261 static void enable_cpu_topology_enumeration(void)
262 {
263 u64 configured;
264
265 /* Has the VMM provided a valid topology configuration? */
266 tdg_vm_rd(TDCS_TOPOLOGY_ENUM_CONFIGURED, &configured);
267 if (!configured) {
268 pr_err("VMM did not configure X2APIC_IDs properly\n");
269 return;
270 }
271
272 tdg_vm_wr(TDCS_TD_CTLS, TD_CTLS_ENUM_TOPOLOGY, TD_CTLS_ENUM_TOPOLOGY);
273 }
274
reduce_unnecessary_ve(void)275 static void reduce_unnecessary_ve(void)
276 {
277 u64 err = tdg_vm_wr(TDCS_TD_CTLS, TD_CTLS_REDUCE_VE, TD_CTLS_REDUCE_VE);
278
279 if (err == TDX_SUCCESS)
280 return;
281
282 /*
283 * Enabling REDUCE_VE includes ENUM_TOPOLOGY. Only try to
284 * enable ENUM_TOPOLOGY if REDUCE_VE was not successful.
285 */
286 enable_cpu_topology_enumeration();
287 }
288
tdx_setup(u64 * cc_mask)289 static void tdx_setup(u64 *cc_mask)
290 {
291 struct tdx_module_args args = {};
292 unsigned int gpa_width;
293 u64 td_attr;
294
295 /*
296 * TDINFO TDX module call is used to get the TD execution environment
297 * information like GPA width, number of available vcpus, debug mode
298 * information, etc. More details about the ABI can be found in TDX
299 * Guest-Host-Communication Interface (GHCI), section 2.4.2 TDCALL
300 * [TDG.VP.INFO].
301 */
302 tdcall(TDG_VP_INFO, &args);
303
304 /*
305 * The highest bit of a guest physical address is the "sharing" bit.
306 * Set it for shared pages and clear it for private pages.
307 *
308 * The GPA width that comes out of this call is critical. TDX guests
309 * can not meaningfully run without it.
310 */
311 gpa_width = args.rcx & GENMASK(5, 0);
312 *cc_mask = BIT_ULL(gpa_width - 1);
313
314 td_attr = args.rdx;
315
316 /* Kernel does not use NOTIFY_ENABLES and does not need random #VEs */
317 tdg_vm_wr(TDCS_NOTIFY_ENABLES, 0, -1ULL);
318
319 disable_sept_ve(td_attr);
320
321 reduce_unnecessary_ve();
322 }
323
324 /*
325 * The TDX module spec states that #VE may be injected for a limited set of
326 * reasons:
327 *
328 * - Emulation of the architectural #VE injection on EPT violation;
329 *
330 * - As a result of guest TD execution of a disallowed instruction,
331 * a disallowed MSR access, or CPUID virtualization;
332 *
333 * - A notification to the guest TD about anomalous behavior;
334 *
335 * The last one is opt-in and is not used by the kernel.
336 *
337 * The Intel Software Developer's Manual describes cases when instruction
338 * length field can be used in section "Information for VM Exits Due to
339 * Instruction Execution".
340 *
341 * For TDX, it ultimately means GET_VEINFO provides reliable instruction length
342 * information if #VE occurred due to instruction execution, but not for EPT
343 * violations.
344 */
ve_instr_len(struct ve_info * ve)345 static int ve_instr_len(struct ve_info *ve)
346 {
347 switch (ve->exit_reason) {
348 case EXIT_REASON_HLT:
349 case EXIT_REASON_MSR_READ:
350 case EXIT_REASON_MSR_WRITE:
351 case EXIT_REASON_CPUID:
352 case EXIT_REASON_IO_INSTRUCTION:
353 /* It is safe to use ve->instr_len for #VE due instructions */
354 return ve->instr_len;
355 case EXIT_REASON_EPT_VIOLATION:
356 /*
357 * For EPT violations, ve->insn_len is not defined. For those,
358 * the kernel must decode instructions manually and should not
359 * be using this function.
360 */
361 WARN_ONCE(1, "ve->instr_len is not defined for EPT violations");
362 return 0;
363 default:
364 WARN_ONCE(1, "Unexpected #VE-type: %lld\n", ve->exit_reason);
365 return ve->instr_len;
366 }
367 }
368
__halt(const bool irq_disabled)369 static u64 __cpuidle __halt(const bool irq_disabled)
370 {
371 struct tdx_module_args args = {
372 .r10 = TDX_HYPERCALL_STANDARD,
373 .r11 = hcall_func(EXIT_REASON_HLT),
374 .r12 = irq_disabled,
375 };
376
377 /*
378 * Emulate HLT operation via hypercall. More info about ABI
379 * can be found in TDX Guest-Host-Communication Interface
380 * (GHCI), section 3.8 TDG.VP.VMCALL<Instruction.HLT>.
381 *
382 * The VMM uses the "IRQ disabled" param to understand IRQ
383 * enabled status (RFLAGS.IF) of the TD guest and to determine
384 * whether or not it should schedule the halted vCPU if an
385 * IRQ becomes pending. E.g. if IRQs are disabled, the VMM
386 * can keep the vCPU in virtual HLT, even if an IRQ is
387 * pending, without hanging/breaking the guest.
388 */
389 return __tdx_hypercall(&args);
390 }
391
handle_halt(struct ve_info * ve)392 static int handle_halt(struct ve_info *ve)
393 {
394 const bool irq_disabled = irqs_disabled();
395
396 if (__halt(irq_disabled))
397 return -EIO;
398
399 return ve_instr_len(ve);
400 }
401
tdx_halt(void)402 void __cpuidle tdx_halt(void)
403 {
404 const bool irq_disabled = false;
405
406 /*
407 * Use WARN_ONCE() to report the failure.
408 */
409 if (__halt(irq_disabled))
410 WARN_ONCE(1, "HLT instruction emulation failed\n");
411 }
412
tdx_safe_halt(void)413 static void __cpuidle tdx_safe_halt(void)
414 {
415 tdx_halt();
416 /*
417 * "__cpuidle" section doesn't support instrumentation, so stick
418 * with raw_* variant that avoids tracing hooks.
419 */
420 raw_local_irq_enable();
421 }
422
read_msr(struct pt_regs * regs,struct ve_info * ve)423 static int read_msr(struct pt_regs *regs, struct ve_info *ve)
424 {
425 struct tdx_module_args args = {
426 .r10 = TDX_HYPERCALL_STANDARD,
427 .r11 = hcall_func(EXIT_REASON_MSR_READ),
428 .r12 = regs->cx,
429 };
430
431 /*
432 * Emulate the MSR read via hypercall. More info about ABI
433 * can be found in TDX Guest-Host-Communication Interface
434 * (GHCI), section titled "TDG.VP.VMCALL<Instruction.RDMSR>".
435 */
436 if (__tdx_hypercall(&args))
437 return -EIO;
438
439 regs->ax = lower_32_bits(args.r11);
440 regs->dx = upper_32_bits(args.r11);
441 return ve_instr_len(ve);
442 }
443
write_msr(struct pt_regs * regs,struct ve_info * ve)444 static int write_msr(struct pt_regs *regs, struct ve_info *ve)
445 {
446 struct tdx_module_args args = {
447 .r10 = TDX_HYPERCALL_STANDARD,
448 .r11 = hcall_func(EXIT_REASON_MSR_WRITE),
449 .r12 = regs->cx,
450 .r13 = (u64)regs->dx << 32 | regs->ax,
451 };
452
453 /*
454 * Emulate the MSR write via hypercall. More info about ABI
455 * can be found in TDX Guest-Host-Communication Interface
456 * (GHCI) section titled "TDG.VP.VMCALL<Instruction.WRMSR>".
457 */
458 if (__tdx_hypercall(&args))
459 return -EIO;
460
461 return ve_instr_len(ve);
462 }
463
handle_cpuid(struct pt_regs * regs,struct ve_info * ve)464 static int handle_cpuid(struct pt_regs *regs, struct ve_info *ve)
465 {
466 struct tdx_module_args args = {
467 .r10 = TDX_HYPERCALL_STANDARD,
468 .r11 = hcall_func(EXIT_REASON_CPUID),
469 .r12 = regs->ax,
470 .r13 = regs->cx,
471 };
472
473 /*
474 * Only allow VMM to control range reserved for hypervisor
475 * communication.
476 *
477 * Return all-zeros for any CPUID outside the range. It matches CPU
478 * behaviour for non-supported leaf.
479 */
480 if (regs->ax < 0x40000000 || regs->ax > 0x4FFFFFFF) {
481 regs->ax = regs->bx = regs->cx = regs->dx = 0;
482 return ve_instr_len(ve);
483 }
484
485 /*
486 * Emulate the CPUID instruction via a hypercall. More info about
487 * ABI can be found in TDX Guest-Host-Communication Interface
488 * (GHCI), section titled "VP.VMCALL<Instruction.CPUID>".
489 */
490 if (__tdx_hypercall(&args))
491 return -EIO;
492
493 /*
494 * As per TDX GHCI CPUID ABI, r12-r15 registers contain contents of
495 * EAX, EBX, ECX, EDX registers after the CPUID instruction execution.
496 * So copy the register contents back to pt_regs.
497 */
498 regs->ax = args.r12;
499 regs->bx = args.r13;
500 regs->cx = args.r14;
501 regs->dx = args.r15;
502
503 return ve_instr_len(ve);
504 }
505
mmio_read(int size,unsigned long addr,unsigned long * val)506 static bool mmio_read(int size, unsigned long addr, unsigned long *val)
507 {
508 struct tdx_module_args args = {
509 .r10 = TDX_HYPERCALL_STANDARD,
510 .r11 = hcall_func(EXIT_REASON_EPT_VIOLATION),
511 .r12 = size,
512 .r13 = EPT_READ,
513 .r14 = addr,
514 };
515
516 if (__tdx_hypercall(&args))
517 return false;
518
519 *val = args.r11;
520 return true;
521 }
522
mmio_write(int size,unsigned long addr,unsigned long val)523 static bool mmio_write(int size, unsigned long addr, unsigned long val)
524 {
525 return !_tdx_hypercall(hcall_func(EXIT_REASON_EPT_VIOLATION), size,
526 EPT_WRITE, addr, val);
527 }
528
handle_mmio(struct pt_regs * regs,struct ve_info * ve)529 static int handle_mmio(struct pt_regs *regs, struct ve_info *ve)
530 {
531 unsigned long *reg, val, vaddr;
532 char buffer[MAX_INSN_SIZE];
533 enum insn_mmio_type mmio;
534 struct insn insn = {};
535 int size, extend_size;
536 u8 extend_val = 0;
537
538 /* Only in-kernel MMIO is supported */
539 if (WARN_ON_ONCE(user_mode(regs)))
540 return -EFAULT;
541
542 if (copy_from_kernel_nofault(buffer, (void *)regs->ip, MAX_INSN_SIZE))
543 return -EFAULT;
544
545 if (insn_decode(&insn, buffer, MAX_INSN_SIZE, INSN_MODE_64))
546 return -EINVAL;
547
548 mmio = insn_decode_mmio(&insn, &size);
549 if (WARN_ON_ONCE(mmio == INSN_MMIO_DECODE_FAILED))
550 return -EINVAL;
551
552 if (mmio != INSN_MMIO_WRITE_IMM && mmio != INSN_MMIO_MOVS) {
553 reg = insn_get_modrm_reg_ptr(&insn, regs);
554 if (!reg)
555 return -EINVAL;
556 }
557
558 if (!fault_in_kernel_space(ve->gla)) {
559 WARN_ONCE(1, "Access to userspace address is not supported");
560 return -EINVAL;
561 }
562
563 /*
564 * Reject EPT violation #VEs that split pages.
565 *
566 * MMIO accesses are supposed to be naturally aligned and therefore
567 * never cross page boundaries. Seeing split page accesses indicates
568 * a bug or a load_unaligned_zeropad() that stepped into an MMIO page.
569 *
570 * load_unaligned_zeropad() will recover using exception fixups.
571 */
572 vaddr = (unsigned long)insn_get_addr_ref(&insn, regs);
573 if (vaddr / PAGE_SIZE != (vaddr + size - 1) / PAGE_SIZE)
574 return -EFAULT;
575
576 /* Handle writes first */
577 switch (mmio) {
578 case INSN_MMIO_WRITE:
579 memcpy(&val, reg, size);
580 if (!mmio_write(size, ve->gpa, val))
581 return -EIO;
582 return insn.length;
583 case INSN_MMIO_WRITE_IMM:
584 val = insn.immediate.value;
585 if (!mmio_write(size, ve->gpa, val))
586 return -EIO;
587 return insn.length;
588 case INSN_MMIO_READ:
589 case INSN_MMIO_READ_ZERO_EXTEND:
590 case INSN_MMIO_READ_SIGN_EXTEND:
591 /* Reads are handled below */
592 break;
593 case INSN_MMIO_MOVS:
594 case INSN_MMIO_DECODE_FAILED:
595 /*
596 * MMIO was accessed with an instruction that could not be
597 * decoded or handled properly. It was likely not using io.h
598 * helpers or accessed MMIO accidentally.
599 */
600 return -EINVAL;
601 default:
602 WARN_ONCE(1, "Unknown insn_decode_mmio() decode value?");
603 return -EINVAL;
604 }
605
606 /* Handle reads */
607 if (!mmio_read(size, ve->gpa, &val))
608 return -EIO;
609
610 switch (mmio) {
611 case INSN_MMIO_READ:
612 /* Zero-extend for 32-bit operation */
613 extend_size = size == 4 ? sizeof(*reg) : 0;
614 break;
615 case INSN_MMIO_READ_ZERO_EXTEND:
616 /* Zero extend based on operand size */
617 extend_size = insn.opnd_bytes;
618 break;
619 case INSN_MMIO_READ_SIGN_EXTEND:
620 /* Sign extend based on operand size */
621 extend_size = insn.opnd_bytes;
622 if (size == 1 && val & BIT(7))
623 extend_val = 0xFF;
624 else if (size > 1 && val & BIT(15))
625 extend_val = 0xFF;
626 break;
627 default:
628 /* All other cases has to be covered with the first switch() */
629 WARN_ON_ONCE(1);
630 return -EINVAL;
631 }
632
633 if (extend_size)
634 memset(reg, extend_val, extend_size);
635 memcpy(reg, &val, size);
636 return insn.length;
637 }
638
handle_in(struct pt_regs * regs,int size,int port)639 static bool handle_in(struct pt_regs *regs, int size, int port)
640 {
641 struct tdx_module_args args = {
642 .r10 = TDX_HYPERCALL_STANDARD,
643 .r11 = hcall_func(EXIT_REASON_IO_INSTRUCTION),
644 .r12 = size,
645 .r13 = PORT_READ,
646 .r14 = port,
647 };
648 u64 mask = GENMASK(BITS_PER_BYTE * size, 0);
649 bool success;
650
651 /*
652 * Emulate the I/O read via hypercall. More info about ABI can be found
653 * in TDX Guest-Host-Communication Interface (GHCI) section titled
654 * "TDG.VP.VMCALL<Instruction.IO>".
655 */
656 success = !__tdx_hypercall(&args);
657
658 /* Update part of the register affected by the emulated instruction */
659 regs->ax &= ~mask;
660 if (success)
661 regs->ax |= args.r11 & mask;
662
663 return success;
664 }
665
handle_out(struct pt_regs * regs,int size,int port)666 static bool handle_out(struct pt_regs *regs, int size, int port)
667 {
668 u64 mask = GENMASK(BITS_PER_BYTE * size, 0);
669
670 /*
671 * Emulate the I/O write via hypercall. More info about ABI can be found
672 * in TDX Guest-Host-Communication Interface (GHCI) section titled
673 * "TDG.VP.VMCALL<Instruction.IO>".
674 */
675 return !_tdx_hypercall(hcall_func(EXIT_REASON_IO_INSTRUCTION), size,
676 PORT_WRITE, port, regs->ax & mask);
677 }
678
679 /*
680 * Emulate I/O using hypercall.
681 *
682 * Assumes the IO instruction was using ax, which is enforced
683 * by the standard io.h macros.
684 *
685 * Return True on success or False on failure.
686 */
handle_io(struct pt_regs * regs,struct ve_info * ve)687 static int handle_io(struct pt_regs *regs, struct ve_info *ve)
688 {
689 u32 exit_qual = ve->exit_qual;
690 int size, port;
691 bool in, ret;
692
693 if (VE_IS_IO_STRING(exit_qual))
694 return -EIO;
695
696 in = VE_IS_IO_IN(exit_qual);
697 size = VE_GET_IO_SIZE(exit_qual);
698 port = VE_GET_PORT_NUM(exit_qual);
699
700
701 if (in)
702 ret = handle_in(regs, size, port);
703 else
704 ret = handle_out(regs, size, port);
705 if (!ret)
706 return -EIO;
707
708 return ve_instr_len(ve);
709 }
710
711 /*
712 * Early #VE exception handler. Only handles a subset of port I/O.
713 * Intended only for earlyprintk. If failed, return false.
714 */
tdx_early_handle_ve(struct pt_regs * regs)715 __init bool tdx_early_handle_ve(struct pt_regs *regs)
716 {
717 struct ve_info ve;
718 int insn_len;
719
720 tdx_get_ve_info(&ve);
721
722 if (ve.exit_reason != EXIT_REASON_IO_INSTRUCTION)
723 return false;
724
725 insn_len = handle_io(regs, &ve);
726 if (insn_len < 0)
727 return false;
728
729 regs->ip += insn_len;
730 return true;
731 }
732
tdx_get_ve_info(struct ve_info * ve)733 void tdx_get_ve_info(struct ve_info *ve)
734 {
735 struct tdx_module_args args = {};
736
737 /*
738 * Called during #VE handling to retrieve the #VE info from the
739 * TDX module.
740 *
741 * This has to be called early in #VE handling. A "nested" #VE which
742 * occurs before this will raise a #DF and is not recoverable.
743 *
744 * The call retrieves the #VE info from the TDX module, which also
745 * clears the "#VE valid" flag. This must be done before anything else
746 * because any #VE that occurs while the valid flag is set will lead to
747 * #DF.
748 *
749 * Note, the TDX module treats virtual NMIs as inhibited if the #VE
750 * valid flag is set. It means that NMI=>#VE will not result in a #DF.
751 */
752 tdcall(TDG_VP_VEINFO_GET, &args);
753
754 /* Transfer the output parameters */
755 ve->exit_reason = args.rcx;
756 ve->exit_qual = args.rdx;
757 ve->gla = args.r8;
758 ve->gpa = args.r9;
759 ve->instr_len = lower_32_bits(args.r10);
760 ve->instr_info = upper_32_bits(args.r10);
761 }
762
763 /*
764 * Handle the user initiated #VE.
765 *
766 * On success, returns the number of bytes RIP should be incremented (>=0)
767 * or -errno on error.
768 */
virt_exception_user(struct pt_regs * regs,struct ve_info * ve)769 static int virt_exception_user(struct pt_regs *regs, struct ve_info *ve)
770 {
771 switch (ve->exit_reason) {
772 case EXIT_REASON_CPUID:
773 return handle_cpuid(regs, ve);
774 default:
775 pr_warn("Unexpected #VE: %lld\n", ve->exit_reason);
776 return -EIO;
777 }
778 }
779
is_private_gpa(u64 gpa)780 static inline bool is_private_gpa(u64 gpa)
781 {
782 return gpa == cc_mkenc(gpa);
783 }
784
785 /*
786 * Handle the kernel #VE.
787 *
788 * On success, returns the number of bytes RIP should be incremented (>=0)
789 * or -errno on error.
790 */
virt_exception_kernel(struct pt_regs * regs,struct ve_info * ve)791 static int virt_exception_kernel(struct pt_regs *regs, struct ve_info *ve)
792 {
793 switch (ve->exit_reason) {
794 case EXIT_REASON_HLT:
795 return handle_halt(ve);
796 case EXIT_REASON_MSR_READ:
797 return read_msr(regs, ve);
798 case EXIT_REASON_MSR_WRITE:
799 return write_msr(regs, ve);
800 case EXIT_REASON_CPUID:
801 return handle_cpuid(regs, ve);
802 case EXIT_REASON_EPT_VIOLATION:
803 if (is_private_gpa(ve->gpa))
804 panic("Unexpected EPT-violation on private memory.");
805 return handle_mmio(regs, ve);
806 case EXIT_REASON_IO_INSTRUCTION:
807 return handle_io(regs, ve);
808 default:
809 pr_warn("Unexpected #VE: %lld\n", ve->exit_reason);
810 return -EIO;
811 }
812 }
813
tdx_handle_virt_exception(struct pt_regs * regs,struct ve_info * ve)814 bool tdx_handle_virt_exception(struct pt_regs *regs, struct ve_info *ve)
815 {
816 int insn_len;
817
818 if (user_mode(regs))
819 insn_len = virt_exception_user(regs, ve);
820 else
821 insn_len = virt_exception_kernel(regs, ve);
822 if (insn_len < 0)
823 return false;
824
825 /* After successful #VE handling, move the IP */
826 regs->ip += insn_len;
827
828 return true;
829 }
830
tdx_tlb_flush_required(bool private)831 static bool tdx_tlb_flush_required(bool private)
832 {
833 /*
834 * TDX guest is responsible for flushing TLB on private->shared
835 * transition. VMM is responsible for flushing on shared->private.
836 *
837 * The VMM _can't_ flush private addresses as it can't generate PAs
838 * with the guest's HKID. Shared memory isn't subject to integrity
839 * checking, i.e. the VMM doesn't need to flush for its own protection.
840 *
841 * There's no need to flush when converting from shared to private,
842 * as flushing is the VMM's responsibility in this case, e.g. it must
843 * flush to avoid integrity failures in the face of a buggy or
844 * malicious guest.
845 */
846 return !private;
847 }
848
tdx_cache_flush_required(void)849 static bool tdx_cache_flush_required(void)
850 {
851 /*
852 * AMD SME/SEV can avoid cache flushing if HW enforces cache coherence.
853 * TDX doesn't have such capability.
854 *
855 * Flush cache unconditionally.
856 */
857 return true;
858 }
859
860 /*
861 * Notify the VMM about page mapping conversion. More info about ABI
862 * can be found in TDX Guest-Host-Communication Interface (GHCI),
863 * section "TDG.VP.VMCALL<MapGPA>".
864 */
tdx_map_gpa(phys_addr_t start,phys_addr_t end,bool enc)865 static bool tdx_map_gpa(phys_addr_t start, phys_addr_t end, bool enc)
866 {
867 /* Retrying the hypercall a second time should succeed; use 3 just in case */
868 const int max_retries_per_page = 3;
869 int retry_count = 0;
870
871 if (!enc) {
872 /* Set the shared (decrypted) bits: */
873 start |= cc_mkdec(0);
874 end |= cc_mkdec(0);
875 }
876
877 while (retry_count < max_retries_per_page) {
878 struct tdx_module_args args = {
879 .r10 = TDX_HYPERCALL_STANDARD,
880 .r11 = TDVMCALL_MAP_GPA,
881 .r12 = start,
882 .r13 = end - start };
883
884 u64 map_fail_paddr;
885 u64 ret = __tdx_hypercall(&args);
886
887 if (ret != TDVMCALL_STATUS_RETRY)
888 return !ret;
889 /*
890 * The guest must retry the operation for the pages in the
891 * region starting at the GPA specified in R11. R11 comes
892 * from the untrusted VMM. Sanity check it.
893 */
894 map_fail_paddr = args.r11;
895 if (map_fail_paddr < start || map_fail_paddr >= end)
896 return false;
897
898 /* "Consume" a retry without forward progress */
899 if (map_fail_paddr == start) {
900 retry_count++;
901 continue;
902 }
903
904 start = map_fail_paddr;
905 retry_count = 0;
906 }
907
908 return false;
909 }
910
911 /*
912 * Inform the VMM of the guest's intent for this physical page: shared with
913 * the VMM or private to the guest. The VMM is expected to change its mapping
914 * of the page in response.
915 */
tdx_enc_status_changed(unsigned long vaddr,int numpages,bool enc)916 static bool tdx_enc_status_changed(unsigned long vaddr, int numpages, bool enc)
917 {
918 phys_addr_t start = __pa(vaddr);
919 phys_addr_t end = __pa(vaddr + numpages * PAGE_SIZE);
920
921 if (!tdx_map_gpa(start, end, enc))
922 return false;
923
924 /* shared->private conversion requires memory to be accepted before use */
925 if (enc)
926 return tdx_accept_memory(start, end);
927
928 return true;
929 }
930
tdx_enc_status_change_prepare(unsigned long vaddr,int numpages,bool enc)931 static int tdx_enc_status_change_prepare(unsigned long vaddr, int numpages,
932 bool enc)
933 {
934 /*
935 * Only handle shared->private conversion here.
936 * See the comment in tdx_early_init().
937 */
938 if (enc && !tdx_enc_status_changed(vaddr, numpages, enc))
939 return -EIO;
940
941 return 0;
942 }
943
tdx_enc_status_change_finish(unsigned long vaddr,int numpages,bool enc)944 static int tdx_enc_status_change_finish(unsigned long vaddr, int numpages,
945 bool enc)
946 {
947 /*
948 * Only handle private->shared conversion here.
949 * See the comment in tdx_early_init().
950 */
951 if (!enc && !tdx_enc_status_changed(vaddr, numpages, enc))
952 return -EIO;
953
954 if (enc)
955 atomic_long_sub(numpages, &nr_shared);
956 else
957 atomic_long_add(numpages, &nr_shared);
958
959 return 0;
960 }
961
962 /* Stop new private<->shared conversions */
tdx_kexec_begin(void)963 static void tdx_kexec_begin(void)
964 {
965 if (!IS_ENABLED(CONFIG_KEXEC_CORE))
966 return;
967
968 /*
969 * Crash kernel reaches here with interrupts disabled: can't wait for
970 * conversions to finish.
971 *
972 * If race happened, just report and proceed.
973 */
974 if (!set_memory_enc_stop_conversion())
975 pr_warn("Failed to stop shared<->private conversions\n");
976 }
977
978 /* Walk direct mapping and convert all shared memory back to private */
tdx_kexec_finish(void)979 static void tdx_kexec_finish(void)
980 {
981 unsigned long addr, end;
982 long found = 0, shared;
983
984 if (!IS_ENABLED(CONFIG_KEXEC_CORE))
985 return;
986
987 lockdep_assert_irqs_disabled();
988
989 addr = PAGE_OFFSET;
990 end = PAGE_OFFSET + get_max_mapped();
991
992 while (addr < end) {
993 unsigned long size;
994 unsigned int level;
995 pte_t *pte;
996
997 pte = lookup_address(addr, &level);
998 size = page_level_size(level);
999
1000 if (pte && pte_decrypted(*pte)) {
1001 int pages = size / PAGE_SIZE;
1002
1003 /*
1004 * Touching memory with shared bit set triggers implicit
1005 * conversion to shared.
1006 *
1007 * Make sure nobody touches the shared range from
1008 * now on.
1009 */
1010 set_pte(pte, __pte(0));
1011
1012 /*
1013 * Memory encryption state persists across kexec.
1014 * If tdx_enc_status_changed() fails in the first
1015 * kernel, it leaves memory in an unknown state.
1016 *
1017 * If that memory remains shared, accessing it in the
1018 * *next* kernel through a private mapping will result
1019 * in an unrecoverable guest shutdown.
1020 *
1021 * The kdump kernel boot is not impacted as it uses
1022 * a pre-reserved memory range that is always private.
1023 * However, gathering crash information could lead to
1024 * a crash if it accesses unconverted memory through
1025 * a private mapping which is possible when accessing
1026 * that memory through /proc/vmcore, for example.
1027 *
1028 * In all cases, print error info in order to leave
1029 * enough bread crumbs for debugging.
1030 */
1031 if (!tdx_enc_status_changed(addr, pages, true)) {
1032 pr_err("Failed to unshare range %#lx-%#lx\n",
1033 addr, addr + size);
1034 }
1035
1036 found += pages;
1037 }
1038
1039 addr += size;
1040 }
1041
1042 __flush_tlb_all();
1043
1044 shared = atomic_long_read(&nr_shared);
1045 if (shared != found) {
1046 pr_err("shared page accounting is off\n");
1047 pr_err("nr_shared = %ld, nr_found = %ld\n", shared, found);
1048 }
1049 }
1050
tdx_announce(void)1051 static __init void tdx_announce(void)
1052 {
1053 struct tdx_module_args args = {};
1054 u64 controls;
1055
1056 pr_info("Guest detected\n");
1057
1058 tdcall(TDG_VP_INFO, &args);
1059 tdx_dump_attributes(args.rdx);
1060
1061 tdg_vm_rd(TDCS_TD_CTLS, &controls);
1062 tdx_dump_td_ctls(controls);
1063 }
1064
tdx_early_init(void)1065 void __init tdx_early_init(void)
1066 {
1067 u64 cc_mask;
1068 u32 eax, sig[3];
1069
1070 cpuid_count(TDX_CPUID_LEAF_ID, 0, &eax, &sig[0], &sig[2], &sig[1]);
1071
1072 if (memcmp(TDX_IDENT, sig, sizeof(sig)))
1073 return;
1074
1075 setup_force_cpu_cap(X86_FEATURE_TDX_GUEST);
1076
1077 /* TSC is the only reliable clock in TDX guest */
1078 setup_force_cpu_cap(X86_FEATURE_TSC_RELIABLE);
1079
1080 cc_vendor = CC_VENDOR_INTEL;
1081
1082 /* Configure the TD */
1083 tdx_setup(&cc_mask);
1084
1085 cc_set_mask(cc_mask);
1086
1087 /*
1088 * All bits above GPA width are reserved and kernel treats shared bit
1089 * as flag, not as part of physical address.
1090 *
1091 * Adjust physical mask to only cover valid GPA bits.
1092 */
1093 physical_mask &= cc_mask - 1;
1094
1095 /*
1096 * The kernel mapping should match the TDX metadata for the page.
1097 * load_unaligned_zeropad() can touch memory *adjacent* to that which is
1098 * owned by the caller and can catch even _momentary_ mismatches. Bad
1099 * things happen on mismatch:
1100 *
1101 * - Private mapping => Shared Page == Guest shutdown
1102 * - Shared mapping => Private Page == Recoverable #VE
1103 *
1104 * guest.enc_status_change_prepare() converts the page from
1105 * shared=>private before the mapping becomes private.
1106 *
1107 * guest.enc_status_change_finish() converts the page from
1108 * private=>shared after the mapping becomes private.
1109 *
1110 * In both cases there is a temporary shared mapping to a private page,
1111 * which can result in a #VE. But, there is never a private mapping to
1112 * a shared page.
1113 */
1114 x86_platform.guest.enc_status_change_prepare = tdx_enc_status_change_prepare;
1115 x86_platform.guest.enc_status_change_finish = tdx_enc_status_change_finish;
1116
1117 x86_platform.guest.enc_cache_flush_required = tdx_cache_flush_required;
1118 x86_platform.guest.enc_tlb_flush_required = tdx_tlb_flush_required;
1119
1120 x86_platform.guest.enc_kexec_begin = tdx_kexec_begin;
1121 x86_platform.guest.enc_kexec_finish = tdx_kexec_finish;
1122
1123 /*
1124 * Avoid "sti;hlt" execution in TDX guests as HLT induces a #VE that
1125 * will enable interrupts before HLT TDCALL invocation if executed
1126 * in STI-shadow, possibly resulting in missed wakeup events.
1127 *
1128 * Modify all possible HLT execution paths to use TDX specific routines
1129 * that directly execute TDCALL and toggle the interrupt state as
1130 * needed after TDCALL completion. This also reduces HLT related #VEs
1131 * in addition to having a reliable halt logic execution.
1132 */
1133 pv_ops.irq.safe_halt = tdx_safe_halt;
1134 pv_ops.irq.halt = tdx_halt;
1135
1136 /*
1137 * TDX intercepts the RDMSR to read the X2APIC ID in the parallel
1138 * bringup low level code. That raises #VE which cannot be handled
1139 * there.
1140 *
1141 * Intel-TDX has a secure RDMSR hypercall, but that needs to be
1142 * implemented separately in the low level startup ASM code.
1143 * Until that is in place, disable parallel bringup for TDX.
1144 */
1145 x86_cpuinit.parallel_bringup = false;
1146
1147 tdx_announce();
1148 }
1149