1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef _ASM_X86_MMU_CONTEXT_H
3 #define _ASM_X86_MMU_CONTEXT_H
4 
5 #include <asm/desc.h>
6 #include <linux/atomic.h>
7 #include <linux/mm_types.h>
8 #include <linux/pkeys.h>
9 
10 #include <trace/events/tlb.h>
11 
12 #include <asm/tlbflush.h>
13 #include <asm/paravirt.h>
14 #include <asm/debugreg.h>
15 #include <asm/gsseg.h>
16 
17 extern atomic64_t last_mm_ctx_id;
18 
19 #ifdef CONFIG_PERF_EVENTS
20 DECLARE_STATIC_KEY_FALSE(rdpmc_never_available_key);
21 DECLARE_STATIC_KEY_FALSE(rdpmc_always_available_key);
22 void cr4_update_pce(void *ignored);
23 #endif
24 
25 #ifdef CONFIG_MODIFY_LDT_SYSCALL
26 /*
27  * ldt_structs can be allocated, used, and freed, but they are never
28  * modified while live.
29  */
30 struct ldt_struct {
31 	/*
32 	 * Xen requires page-aligned LDTs with special permissions.  This is
33 	 * needed to prevent us from installing evil descriptors such as
34 	 * call gates.  On native, we could merge the ldt_struct and LDT
35 	 * allocations, but it's not worth trying to optimize.
36 	 */
37 	struct desc_struct	*entries;
38 	unsigned int		nr_entries;
39 
40 	/*
41 	 * If PTI is in use, then the entries array is not mapped while we're
42 	 * in user mode.  The whole array will be aliased at the addressed
43 	 * given by ldt_slot_va(slot).  We use two slots so that we can allocate
44 	 * and map, and enable a new LDT without invalidating the mapping
45 	 * of an older, still-in-use LDT.
46 	 *
47 	 * slot will be -1 if this LDT doesn't have an alias mapping.
48 	 */
49 	int			slot;
50 };
51 
52 /*
53  * Used for LDT copy/destruction.
54  */
init_new_context_ldt(struct mm_struct * mm)55 static inline void init_new_context_ldt(struct mm_struct *mm)
56 {
57 	mm->context.ldt = NULL;
58 	init_rwsem(&mm->context.ldt_usr_sem);
59 }
60 int ldt_dup_context(struct mm_struct *oldmm, struct mm_struct *mm);
61 void destroy_context_ldt(struct mm_struct *mm);
62 void ldt_arch_exit_mmap(struct mm_struct *mm);
63 #else	/* CONFIG_MODIFY_LDT_SYSCALL */
init_new_context_ldt(struct mm_struct * mm)64 static inline void init_new_context_ldt(struct mm_struct *mm) { }
ldt_dup_context(struct mm_struct * oldmm,struct mm_struct * mm)65 static inline int ldt_dup_context(struct mm_struct *oldmm,
66 				  struct mm_struct *mm)
67 {
68 	return 0;
69 }
destroy_context_ldt(struct mm_struct * mm)70 static inline void destroy_context_ldt(struct mm_struct *mm) { }
ldt_arch_exit_mmap(struct mm_struct * mm)71 static inline void ldt_arch_exit_mmap(struct mm_struct *mm) { }
72 #endif
73 
74 #ifdef CONFIG_MODIFY_LDT_SYSCALL
75 extern void load_mm_ldt(struct mm_struct *mm);
76 extern void switch_ldt(struct mm_struct *prev, struct mm_struct *next);
77 #else
load_mm_ldt(struct mm_struct * mm)78 static inline void load_mm_ldt(struct mm_struct *mm)
79 {
80 	clear_LDT();
81 }
switch_ldt(struct mm_struct * prev,struct mm_struct * next)82 static inline void switch_ldt(struct mm_struct *prev, struct mm_struct *next)
83 {
84 	DEBUG_LOCKS_WARN_ON(preemptible());
85 }
86 #endif
87 
88 #ifdef CONFIG_ADDRESS_MASKING
mm_lam_cr3_mask(struct mm_struct * mm)89 static inline unsigned long mm_lam_cr3_mask(struct mm_struct *mm)
90 {
91 	/*
92 	 * When switch_mm_irqs_off() is called for a kthread, it may race with
93 	 * LAM enablement. switch_mm_irqs_off() uses the LAM mask to do two
94 	 * things: populate CR3 and populate 'cpu_tlbstate.lam'. Make sure it
95 	 * reads a single value for both.
96 	 */
97 	return READ_ONCE(mm->context.lam_cr3_mask);
98 }
99 
dup_lam(struct mm_struct * oldmm,struct mm_struct * mm)100 static inline void dup_lam(struct mm_struct *oldmm, struct mm_struct *mm)
101 {
102 	mm->context.lam_cr3_mask = oldmm->context.lam_cr3_mask;
103 	mm->context.untag_mask = oldmm->context.untag_mask;
104 }
105 
106 #define mm_untag_mask mm_untag_mask
mm_untag_mask(struct mm_struct * mm)107 static inline unsigned long mm_untag_mask(struct mm_struct *mm)
108 {
109 	return mm->context.untag_mask;
110 }
111 
mm_reset_untag_mask(struct mm_struct * mm)112 static inline void mm_reset_untag_mask(struct mm_struct *mm)
113 {
114 	mm->context.untag_mask = -1UL;
115 }
116 
117 #define arch_pgtable_dma_compat arch_pgtable_dma_compat
arch_pgtable_dma_compat(struct mm_struct * mm)118 static inline bool arch_pgtable_dma_compat(struct mm_struct *mm)
119 {
120 	return !mm_lam_cr3_mask(mm) ||
121 		test_bit(MM_CONTEXT_FORCE_TAGGED_SVA, &mm->context.flags);
122 }
123 #else
124 
mm_lam_cr3_mask(struct mm_struct * mm)125 static inline unsigned long mm_lam_cr3_mask(struct mm_struct *mm)
126 {
127 	return 0;
128 }
129 
dup_lam(struct mm_struct * oldmm,struct mm_struct * mm)130 static inline void dup_lam(struct mm_struct *oldmm, struct mm_struct *mm)
131 {
132 }
133 
mm_reset_untag_mask(struct mm_struct * mm)134 static inline void mm_reset_untag_mask(struct mm_struct *mm)
135 {
136 }
137 #endif
138 
139 #define enter_lazy_tlb enter_lazy_tlb
140 extern void enter_lazy_tlb(struct mm_struct *mm, struct task_struct *tsk);
141 
142 /*
143  * Init a new mm.  Used on mm copies, like at fork()
144  * and on mm's that are brand-new, like at execve().
145  */
146 #define init_new_context init_new_context
init_new_context(struct task_struct * tsk,struct mm_struct * mm)147 static inline int init_new_context(struct task_struct *tsk,
148 				   struct mm_struct *mm)
149 {
150 	mutex_init(&mm->context.lock);
151 
152 	mm->context.ctx_id = atomic64_inc_return(&last_mm_ctx_id);
153 	atomic64_set(&mm->context.tlb_gen, 0);
154 	mm->context.next_trim_cpumask = jiffies + HZ;
155 
156 #ifdef CONFIG_X86_INTEL_MEMORY_PROTECTION_KEYS
157 	if (cpu_feature_enabled(X86_FEATURE_OSPKE)) {
158 		/* pkey 0 is the default and allocated implicitly */
159 		mm->context.pkey_allocation_map = 0x1;
160 		/* -1 means unallocated or invalid */
161 		mm->context.execute_only_pkey = -1;
162 	}
163 #endif
164 	mm_reset_untag_mask(mm);
165 	init_new_context_ldt(mm);
166 	return 0;
167 }
168 
169 #define destroy_context destroy_context
destroy_context(struct mm_struct * mm)170 static inline void destroy_context(struct mm_struct *mm)
171 {
172 	destroy_context_ldt(mm);
173 }
174 
175 extern void switch_mm(struct mm_struct *prev, struct mm_struct *next,
176 		      struct task_struct *tsk);
177 
178 extern void switch_mm_irqs_off(struct mm_struct *prev, struct mm_struct *next,
179 			       struct task_struct *tsk);
180 #define switch_mm_irqs_off switch_mm_irqs_off
181 
182 #define activate_mm(prev, next)			\
183 do {						\
184 	paravirt_enter_mmap(next);		\
185 	switch_mm((prev), (next), NULL);	\
186 } while (0);
187 
188 #ifdef CONFIG_X86_32
189 #define deactivate_mm(tsk, mm)			\
190 do {						\
191 	loadsegment(gs, 0);			\
192 } while (0)
193 #else
194 #define deactivate_mm(tsk, mm)			\
195 do {						\
196 	shstk_free(tsk);			\
197 	load_gs_index(0);			\
198 	loadsegment(fs, 0);			\
199 } while (0)
200 #endif
201 
arch_dup_pkeys(struct mm_struct * oldmm,struct mm_struct * mm)202 static inline void arch_dup_pkeys(struct mm_struct *oldmm,
203 				  struct mm_struct *mm)
204 {
205 #ifdef CONFIG_X86_INTEL_MEMORY_PROTECTION_KEYS
206 	if (!cpu_feature_enabled(X86_FEATURE_OSPKE))
207 		return;
208 
209 	/* Duplicate the oldmm pkey state in mm: */
210 	mm->context.pkey_allocation_map = oldmm->context.pkey_allocation_map;
211 	mm->context.execute_only_pkey   = oldmm->context.execute_only_pkey;
212 #endif
213 }
214 
arch_dup_mmap(struct mm_struct * oldmm,struct mm_struct * mm)215 static inline int arch_dup_mmap(struct mm_struct *oldmm, struct mm_struct *mm)
216 {
217 	arch_dup_pkeys(oldmm, mm);
218 	paravirt_enter_mmap(mm);
219 	dup_lam(oldmm, mm);
220 	return ldt_dup_context(oldmm, mm);
221 }
222 
arch_exit_mmap(struct mm_struct * mm)223 static inline void arch_exit_mmap(struct mm_struct *mm)
224 {
225 	paravirt_arch_exit_mmap(mm);
226 	ldt_arch_exit_mmap(mm);
227 }
228 
229 #ifdef CONFIG_X86_64
is_64bit_mm(struct mm_struct * mm)230 static inline bool is_64bit_mm(struct mm_struct *mm)
231 {
232 	return	!IS_ENABLED(CONFIG_IA32_EMULATION) ||
233 		!test_bit(MM_CONTEXT_UPROBE_IA32, &mm->context.flags);
234 }
235 #else
is_64bit_mm(struct mm_struct * mm)236 static inline bool is_64bit_mm(struct mm_struct *mm)
237 {
238 	return false;
239 }
240 #endif
241 
242 /*
243  * We only want to enforce protection keys on the current process
244  * because we effectively have no access to PKRU for other
245  * processes or any way to tell *which * PKRU in a threaded
246  * process we could use.
247  *
248  * So do not enforce things if the VMA is not from the current
249  * mm, or if we are in a kernel thread.
250  */
arch_vma_access_permitted(struct vm_area_struct * vma,bool write,bool execute,bool foreign)251 static inline bool arch_vma_access_permitted(struct vm_area_struct *vma,
252 		bool write, bool execute, bool foreign)
253 {
254 	/* pkeys never affect instruction fetches */
255 	if (execute)
256 		return true;
257 	/* allow access if the VMA is not one from this process */
258 	if (foreign || vma_is_foreign(vma))
259 		return true;
260 	return __pkru_allows_pkey(vma_pkey(vma), write);
261 }
262 
263 unsigned long __get_current_cr3_fast(void);
264 
265 #include <asm-generic/mmu_context.h>
266 
267 #endif /* _ASM_X86_MMU_CONTEXT_H */
268