1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * handle transition of Linux booting another kernel
4  * Copyright (C) 2002-2005 Eric Biederman  <[email protected]>
5  */
6 
7 #define pr_fmt(fmt)	"kexec: " fmt
8 
9 #include <linux/mm.h>
10 #include <linux/kexec.h>
11 #include <linux/string.h>
12 #include <linux/gfp.h>
13 #include <linux/reboot.h>
14 #include <linux/numa.h>
15 #include <linux/ftrace.h>
16 #include <linux/io.h>
17 #include <linux/suspend.h>
18 #include <linux/vmalloc.h>
19 #include <linux/efi.h>
20 #include <linux/cc_platform.h>
21 
22 #include <asm/init.h>
23 #include <asm/tlbflush.h>
24 #include <asm/mmu_context.h>
25 #include <asm/io_apic.h>
26 #include <asm/debugreg.h>
27 #include <asm/kexec-bzimage64.h>
28 #include <asm/setup.h>
29 #include <asm/set_memory.h>
30 #include <asm/cpu.h>
31 #include <asm/efi.h>
32 
33 #ifdef CONFIG_ACPI
34 /*
35  * Used while adding mapping for ACPI tables.
36  * Can be reused when other iomem regions need be mapped
37  */
38 struct init_pgtable_data {
39 	struct x86_mapping_info *info;
40 	pgd_t *level4p;
41 };
42 
mem_region_callback(struct resource * res,void * arg)43 static int mem_region_callback(struct resource *res, void *arg)
44 {
45 	struct init_pgtable_data *data = arg;
46 
47 	return kernel_ident_mapping_init(data->info, data->level4p,
48 					 res->start, res->end + 1);
49 }
50 
51 static int
map_acpi_tables(struct x86_mapping_info * info,pgd_t * level4p)52 map_acpi_tables(struct x86_mapping_info *info, pgd_t *level4p)
53 {
54 	struct init_pgtable_data data;
55 	unsigned long flags;
56 	int ret;
57 
58 	data.info = info;
59 	data.level4p = level4p;
60 	flags = IORESOURCE_MEM | IORESOURCE_BUSY;
61 
62 	ret = walk_iomem_res_desc(IORES_DESC_ACPI_TABLES, flags, 0, -1,
63 				  &data, mem_region_callback);
64 	if (ret && ret != -EINVAL)
65 		return ret;
66 
67 	/* ACPI tables could be located in ACPI Non-volatile Storage region */
68 	ret = walk_iomem_res_desc(IORES_DESC_ACPI_NV_STORAGE, flags, 0, -1,
69 				  &data, mem_region_callback);
70 	if (ret && ret != -EINVAL)
71 		return ret;
72 
73 	return 0;
74 }
75 #else
map_acpi_tables(struct x86_mapping_info * info,pgd_t * level4p)76 static int map_acpi_tables(struct x86_mapping_info *info, pgd_t *level4p) { return 0; }
77 #endif
78 
79 #ifdef CONFIG_KEXEC_FILE
80 const struct kexec_file_ops * const kexec_file_loaders[] = {
81 		&kexec_bzImage64_ops,
82 		NULL
83 };
84 #endif
85 
86 static int
map_efi_systab(struct x86_mapping_info * info,pgd_t * level4p)87 map_efi_systab(struct x86_mapping_info *info, pgd_t *level4p)
88 {
89 #ifdef CONFIG_EFI
90 	unsigned long mstart, mend;
91 	void *kaddr;
92 	int ret;
93 
94 	if (!efi_enabled(EFI_BOOT))
95 		return 0;
96 
97 	mstart = (boot_params.efi_info.efi_systab |
98 			((u64)boot_params.efi_info.efi_systab_hi<<32));
99 
100 	if (efi_enabled(EFI_64BIT))
101 		mend = mstart + sizeof(efi_system_table_64_t);
102 	else
103 		mend = mstart + sizeof(efi_system_table_32_t);
104 
105 	if (!mstart)
106 		return 0;
107 
108 	ret = kernel_ident_mapping_init(info, level4p, mstart, mend);
109 	if (ret)
110 		return ret;
111 
112 	kaddr = memremap(mstart, mend - mstart, MEMREMAP_WB);
113 	if (!kaddr) {
114 		pr_err("Could not map UEFI system table\n");
115 		return -ENOMEM;
116 	}
117 
118 	mstart = efi_config_table;
119 
120 	if (efi_enabled(EFI_64BIT)) {
121 		efi_system_table_64_t *stbl = (efi_system_table_64_t *)kaddr;
122 
123 		mend = mstart + sizeof(efi_config_table_64_t) * stbl->nr_tables;
124 	} else {
125 		efi_system_table_32_t *stbl = (efi_system_table_32_t *)kaddr;
126 
127 		mend = mstart + sizeof(efi_config_table_32_t) * stbl->nr_tables;
128 	}
129 
130 	memunmap(kaddr);
131 
132 	return kernel_ident_mapping_init(info, level4p, mstart, mend);
133 #endif
134 	return 0;
135 }
136 
free_transition_pgtable(struct kimage * image)137 static void free_transition_pgtable(struct kimage *image)
138 {
139 	free_page((unsigned long)image->arch.p4d);
140 	image->arch.p4d = NULL;
141 	free_page((unsigned long)image->arch.pud);
142 	image->arch.pud = NULL;
143 	free_page((unsigned long)image->arch.pmd);
144 	image->arch.pmd = NULL;
145 	free_page((unsigned long)image->arch.pte);
146 	image->arch.pte = NULL;
147 }
148 
init_transition_pgtable(struct kimage * image,pgd_t * pgd,unsigned long control_page)149 static int init_transition_pgtable(struct kimage *image, pgd_t *pgd,
150 				   unsigned long control_page)
151 {
152 	pgprot_t prot = PAGE_KERNEL_EXEC_NOENC;
153 	unsigned long vaddr, paddr;
154 	int result = -ENOMEM;
155 	p4d_t *p4d;
156 	pud_t *pud;
157 	pmd_t *pmd;
158 	pte_t *pte;
159 
160 	/*
161 	 * For the transition to the identity mapped page tables, the control
162 	 * code page also needs to be mapped at the virtual address it starts
163 	 * off running from.
164 	 */
165 	vaddr = (unsigned long)__va(control_page);
166 	paddr = control_page;
167 	pgd += pgd_index(vaddr);
168 	if (!pgd_present(*pgd)) {
169 		p4d = (p4d_t *)get_zeroed_page(GFP_KERNEL);
170 		if (!p4d)
171 			goto err;
172 		image->arch.p4d = p4d;
173 		set_pgd(pgd, __pgd(__pa(p4d) | _KERNPG_TABLE));
174 	}
175 	p4d = p4d_offset(pgd, vaddr);
176 	if (!p4d_present(*p4d)) {
177 		pud = (pud_t *)get_zeroed_page(GFP_KERNEL);
178 		if (!pud)
179 			goto err;
180 		image->arch.pud = pud;
181 		set_p4d(p4d, __p4d(__pa(pud) | _KERNPG_TABLE));
182 	}
183 	pud = pud_offset(p4d, vaddr);
184 	if (!pud_present(*pud)) {
185 		pmd = (pmd_t *)get_zeroed_page(GFP_KERNEL);
186 		if (!pmd)
187 			goto err;
188 		image->arch.pmd = pmd;
189 		set_pud(pud, __pud(__pa(pmd) | _KERNPG_TABLE));
190 	}
191 	pmd = pmd_offset(pud, vaddr);
192 	if (!pmd_present(*pmd)) {
193 		pte = (pte_t *)get_zeroed_page(GFP_KERNEL);
194 		if (!pte)
195 			goto err;
196 		image->arch.pte = pte;
197 		set_pmd(pmd, __pmd(__pa(pte) | _KERNPG_TABLE));
198 	}
199 	pte = pte_offset_kernel(pmd, vaddr);
200 
201 	if (cc_platform_has(CC_ATTR_GUEST_MEM_ENCRYPT))
202 		prot = PAGE_KERNEL_EXEC;
203 
204 	set_pte(pte, pfn_pte(paddr >> PAGE_SHIFT, prot));
205 	return 0;
206 err:
207 	return result;
208 }
209 
alloc_pgt_page(void * data)210 static void *alloc_pgt_page(void *data)
211 {
212 	struct kimage *image = (struct kimage *)data;
213 	struct page *page;
214 	void *p = NULL;
215 
216 	page = kimage_alloc_control_pages(image, 0);
217 	if (page) {
218 		p = page_address(page);
219 		clear_page(p);
220 	}
221 
222 	return p;
223 }
224 
init_pgtable(struct kimage * image,unsigned long control_page)225 static int init_pgtable(struct kimage *image, unsigned long control_page)
226 {
227 	struct x86_mapping_info info = {
228 		.alloc_pgt_page	= alloc_pgt_page,
229 		.context	= image,
230 		.page_flag	= __PAGE_KERNEL_LARGE_EXEC,
231 		.kernpg_flag	= _KERNPG_TABLE_NOENC,
232 	};
233 	unsigned long mstart, mend;
234 	int result;
235 	int i;
236 
237 	image->arch.pgd = alloc_pgt_page(image);
238 	if (!image->arch.pgd)
239 		return -ENOMEM;
240 
241 	if (cc_platform_has(CC_ATTR_GUEST_MEM_ENCRYPT)) {
242 		info.page_flag   |= _PAGE_ENC;
243 		info.kernpg_flag |= _PAGE_ENC;
244 	}
245 
246 	if (direct_gbpages)
247 		info.direct_gbpages = true;
248 
249 	for (i = 0; i < nr_pfn_mapped; i++) {
250 		mstart = pfn_mapped[i].start << PAGE_SHIFT;
251 		mend   = pfn_mapped[i].end << PAGE_SHIFT;
252 
253 		result = kernel_ident_mapping_init(&info, image->arch.pgd,
254 						   mstart, mend);
255 		if (result)
256 			return result;
257 	}
258 
259 	/*
260 	 * segments's mem ranges could be outside 0 ~ max_pfn,
261 	 * for example when jump back to original kernel from kexeced kernel.
262 	 * or first kernel is booted with user mem map, and second kernel
263 	 * could be loaded out of that range.
264 	 */
265 	for (i = 0; i < image->nr_segments; i++) {
266 		mstart = image->segment[i].mem;
267 		mend   = mstart + image->segment[i].memsz;
268 
269 		result = kernel_ident_mapping_init(&info, image->arch.pgd,
270 						   mstart, mend);
271 
272 		if (result)
273 			return result;
274 	}
275 
276 	/*
277 	 * Prepare EFI systab and ACPI tables for kexec kernel since they are
278 	 * not covered by pfn_mapped.
279 	 */
280 	result = map_efi_systab(&info, image->arch.pgd);
281 	if (result)
282 		return result;
283 
284 	result = map_acpi_tables(&info, image->arch.pgd);
285 	if (result)
286 		return result;
287 
288 	/*
289 	 * This must be last because the intermediate page table pages it
290 	 * allocates will not be control pages and may overlap the image.
291 	 */
292 	return init_transition_pgtable(image, image->arch.pgd, control_page);
293 }
294 
load_segments(void)295 static void load_segments(void)
296 {
297 	__asm__ __volatile__ (
298 		"\tmovl %0,%%ds\n"
299 		"\tmovl %0,%%es\n"
300 		"\tmovl %0,%%ss\n"
301 		"\tmovl %0,%%fs\n"
302 		"\tmovl %0,%%gs\n"
303 		: : "a" (__KERNEL_DS) : "memory"
304 		);
305 }
306 
machine_kexec_prepare(struct kimage * image)307 int machine_kexec_prepare(struct kimage *image)
308 {
309 	void *control_page = page_address(image->control_code_page);
310 	unsigned long reloc_start = (unsigned long)__relocate_kernel_start;
311 	unsigned long reloc_end = (unsigned long)__relocate_kernel_end;
312 	int result;
313 
314 	/* Setup the identity mapped 64bit page table */
315 	result = init_pgtable(image, __pa(control_page));
316 	if (result)
317 		return result;
318 	kexec_va_control_page = (unsigned long)control_page;
319 	kexec_pa_table_page = (unsigned long)__pa(image->arch.pgd);
320 
321 	if (image->type == KEXEC_TYPE_DEFAULT)
322 		kexec_pa_swap_page = page_to_pfn(image->swap_page) << PAGE_SHIFT;
323 
324 	__memcpy(control_page, __relocate_kernel_start, reloc_end - reloc_start);
325 
326 	set_memory_rox((unsigned long)control_page, 1);
327 
328 	return 0;
329 }
330 
machine_kexec_cleanup(struct kimage * image)331 void machine_kexec_cleanup(struct kimage *image)
332 {
333 	void *control_page = page_address(image->control_code_page);
334 
335 	set_memory_nx((unsigned long)control_page, 1);
336 	set_memory_rw((unsigned long)control_page, 1);
337 
338 	free_transition_pgtable(image);
339 }
340 
341 /*
342  * Do not allocate memory (or fail in any way) in machine_kexec().
343  * We are past the point of no return, committed to rebooting now.
344  */
machine_kexec(struct kimage * image)345 void __nocfi machine_kexec(struct kimage *image)
346 {
347 	unsigned long reloc_start = (unsigned long)__relocate_kernel_start;
348 	relocate_kernel_fn *relocate_kernel_ptr;
349 	unsigned int host_mem_enc_active;
350 	int save_ftrace_enabled;
351 	void *control_page;
352 
353 	/*
354 	 * This must be done before load_segments() since if call depth tracking
355 	 * is used then GS must be valid to make any function calls.
356 	 */
357 	host_mem_enc_active = cc_platform_has(CC_ATTR_HOST_MEM_ENCRYPT);
358 
359 #ifdef CONFIG_KEXEC_JUMP
360 	if (image->preserve_context)
361 		save_processor_state();
362 #endif
363 
364 	save_ftrace_enabled = __ftrace_enabled_save();
365 
366 	/* Interrupts aren't acceptable while we reboot */
367 	local_irq_disable();
368 	hw_breakpoint_disable();
369 	cet_disable();
370 
371 	if (image->preserve_context) {
372 #ifdef CONFIG_X86_IO_APIC
373 		/*
374 		 * We need to put APICs in legacy mode so that we can
375 		 * get timer interrupts in second kernel. kexec/kdump
376 		 * paths already have calls to restore_boot_irq_mode()
377 		 * in one form or other. kexec jump path also need one.
378 		 */
379 		clear_IO_APIC();
380 		restore_boot_irq_mode();
381 #endif
382 	}
383 
384 	control_page = page_address(image->control_code_page);
385 
386 	/*
387 	 * Allow for the possibility that relocate_kernel might not be at
388 	 * the very start of the page.
389 	 */
390 	relocate_kernel_ptr = control_page + (unsigned long)relocate_kernel - reloc_start;
391 
392 	/*
393 	 * The segment registers are funny things, they have both a
394 	 * visible and an invisible part.  Whenever the visible part is
395 	 * set to a specific selector, the invisible part is loaded
396 	 * with from a table in memory.  At no other time is the
397 	 * descriptor table in memory accessed.
398 	 *
399 	 * I take advantage of this here by force loading the
400 	 * segments, before I zap the gdt with an invalid value.
401 	 */
402 	load_segments();
403 	/*
404 	 * The gdt & idt are now invalid.
405 	 * If you want to load them you must set up your own idt & gdt.
406 	 */
407 	native_idt_invalidate();
408 	native_gdt_invalidate();
409 
410 	/* now call it */
411 	image->start = relocate_kernel_ptr((unsigned long)image->head,
412 					   virt_to_phys(control_page),
413 					   image->start,
414 					   image->preserve_context,
415 					   host_mem_enc_active);
416 
417 #ifdef CONFIG_KEXEC_JUMP
418 	if (image->preserve_context)
419 		restore_processor_state();
420 #endif
421 
422 	__ftrace_enabled_restore(save_ftrace_enabled);
423 }
424 
425 /* arch-dependent functionality related to kexec file-based syscall */
426 
427 #ifdef CONFIG_KEXEC_FILE
428 /*
429  * Apply purgatory relocations.
430  *
431  * @pi:		Purgatory to be relocated.
432  * @section:	Section relocations applying to.
433  * @relsec:	Section containing RELAs.
434  * @symtabsec:	Corresponding symtab.
435  *
436  * TODO: Some of the code belongs to generic code. Move that in kexec.c.
437  */
arch_kexec_apply_relocations_add(struct purgatory_info * pi,Elf_Shdr * section,const Elf_Shdr * relsec,const Elf_Shdr * symtabsec)438 int arch_kexec_apply_relocations_add(struct purgatory_info *pi,
439 				     Elf_Shdr *section, const Elf_Shdr *relsec,
440 				     const Elf_Shdr *symtabsec)
441 {
442 	unsigned int i;
443 	Elf64_Rela *rel;
444 	Elf64_Sym *sym;
445 	void *location;
446 	unsigned long address, sec_base, value;
447 	const char *strtab, *name, *shstrtab;
448 	const Elf_Shdr *sechdrs;
449 
450 	/* String & section header string table */
451 	sechdrs = (void *)pi->ehdr + pi->ehdr->e_shoff;
452 	strtab = (char *)pi->ehdr + sechdrs[symtabsec->sh_link].sh_offset;
453 	shstrtab = (char *)pi->ehdr + sechdrs[pi->ehdr->e_shstrndx].sh_offset;
454 
455 	rel = (void *)pi->ehdr + relsec->sh_offset;
456 
457 	pr_debug("Applying relocate section %s to %u\n",
458 		 shstrtab + relsec->sh_name, relsec->sh_info);
459 
460 	for (i = 0; i < relsec->sh_size / sizeof(*rel); i++) {
461 
462 		/*
463 		 * rel[i].r_offset contains byte offset from beginning
464 		 * of section to the storage unit affected.
465 		 *
466 		 * This is location to update. This is temporary buffer
467 		 * where section is currently loaded. This will finally be
468 		 * loaded to a different address later, pointed to by
469 		 * ->sh_addr. kexec takes care of moving it
470 		 *  (kexec_load_segment()).
471 		 */
472 		location = pi->purgatory_buf;
473 		location += section->sh_offset;
474 		location += rel[i].r_offset;
475 
476 		/* Final address of the location */
477 		address = section->sh_addr + rel[i].r_offset;
478 
479 		/*
480 		 * rel[i].r_info contains information about symbol table index
481 		 * w.r.t which relocation must be made and type of relocation
482 		 * to apply. ELF64_R_SYM() and ELF64_R_TYPE() macros get
483 		 * these respectively.
484 		 */
485 		sym = (void *)pi->ehdr + symtabsec->sh_offset;
486 		sym += ELF64_R_SYM(rel[i].r_info);
487 
488 		if (sym->st_name)
489 			name = strtab + sym->st_name;
490 		else
491 			name = shstrtab + sechdrs[sym->st_shndx].sh_name;
492 
493 		pr_debug("Symbol: %s info: %02x shndx: %02x value=%llx size: %llx\n",
494 			 name, sym->st_info, sym->st_shndx, sym->st_value,
495 			 sym->st_size);
496 
497 		if (sym->st_shndx == SHN_UNDEF) {
498 			pr_err("Undefined symbol: %s\n", name);
499 			return -ENOEXEC;
500 		}
501 
502 		if (sym->st_shndx == SHN_COMMON) {
503 			pr_err("symbol '%s' in common section\n", name);
504 			return -ENOEXEC;
505 		}
506 
507 		if (sym->st_shndx == SHN_ABS)
508 			sec_base = 0;
509 		else if (sym->st_shndx >= pi->ehdr->e_shnum) {
510 			pr_err("Invalid section %d for symbol %s\n",
511 			       sym->st_shndx, name);
512 			return -ENOEXEC;
513 		} else
514 			sec_base = pi->sechdrs[sym->st_shndx].sh_addr;
515 
516 		value = sym->st_value;
517 		value += sec_base;
518 		value += rel[i].r_addend;
519 
520 		switch (ELF64_R_TYPE(rel[i].r_info)) {
521 		case R_X86_64_NONE:
522 			break;
523 		case R_X86_64_64:
524 			*(u64 *)location = value;
525 			break;
526 		case R_X86_64_32:
527 			*(u32 *)location = value;
528 			if (value != *(u32 *)location)
529 				goto overflow;
530 			break;
531 		case R_X86_64_32S:
532 			*(s32 *)location = value;
533 			if ((s64)value != *(s32 *)location)
534 				goto overflow;
535 			break;
536 		case R_X86_64_PC32:
537 		case R_X86_64_PLT32:
538 			value -= (u64)address;
539 			*(u32 *)location = value;
540 			break;
541 		default:
542 			pr_err("Unknown rela relocation: %llu\n",
543 			       ELF64_R_TYPE(rel[i].r_info));
544 			return -ENOEXEC;
545 		}
546 	}
547 	return 0;
548 
549 overflow:
550 	pr_err("Overflow in relocation type %d value 0x%lx\n",
551 	       (int)ELF64_R_TYPE(rel[i].r_info), value);
552 	return -ENOEXEC;
553 }
554 
arch_kimage_file_post_load_cleanup(struct kimage * image)555 int arch_kimage_file_post_load_cleanup(struct kimage *image)
556 {
557 	vfree(image->elf_headers);
558 	image->elf_headers = NULL;
559 	image->elf_headers_sz = 0;
560 
561 	return kexec_image_post_load_cleanup_default(image);
562 }
563 #endif /* CONFIG_KEXEC_FILE */
564 
565 #ifdef CONFIG_CRASH_DUMP
566 
567 static int
kexec_mark_range(unsigned long start,unsigned long end,bool protect)568 kexec_mark_range(unsigned long start, unsigned long end, bool protect)
569 {
570 	struct page *page;
571 	unsigned int nr_pages;
572 
573 	/*
574 	 * For physical range: [start, end]. We must skip the unassigned
575 	 * crashk resource with zero-valued "end" member.
576 	 */
577 	if (!end || start > end)
578 		return 0;
579 
580 	page = pfn_to_page(start >> PAGE_SHIFT);
581 	nr_pages = (end >> PAGE_SHIFT) - (start >> PAGE_SHIFT) + 1;
582 	if (protect)
583 		return set_pages_ro(page, nr_pages);
584 	else
585 		return set_pages_rw(page, nr_pages);
586 }
587 
kexec_mark_crashkres(bool protect)588 static void kexec_mark_crashkres(bool protect)
589 {
590 	unsigned long control;
591 
592 	kexec_mark_range(crashk_low_res.start, crashk_low_res.end, protect);
593 
594 	/* Don't touch the control code page used in crash_kexec().*/
595 	control = PFN_PHYS(page_to_pfn(kexec_crash_image->control_code_page));
596 	kexec_mark_range(crashk_res.start, control - 1, protect);
597 	control += KEXEC_CONTROL_PAGE_SIZE;
598 	kexec_mark_range(control, crashk_res.end, protect);
599 }
600 
arch_kexec_protect_crashkres(void)601 void arch_kexec_protect_crashkres(void)
602 {
603 	kexec_mark_crashkres(true);
604 }
605 
arch_kexec_unprotect_crashkres(void)606 void arch_kexec_unprotect_crashkres(void)
607 {
608 	kexec_mark_crashkres(false);
609 }
610 #endif
611 
612 /*
613  * During a traditional boot under SME, SME will encrypt the kernel,
614  * so the SME kexec kernel also needs to be un-encrypted in order to
615  * replicate a normal SME boot.
616  *
617  * During a traditional boot under SEV, the kernel has already been
618  * loaded encrypted, so the SEV kexec kernel needs to be encrypted in
619  * order to replicate a normal SEV boot.
620  */
arch_kexec_post_alloc_pages(void * vaddr,unsigned int pages,gfp_t gfp)621 int arch_kexec_post_alloc_pages(void *vaddr, unsigned int pages, gfp_t gfp)
622 {
623 	if (!cc_platform_has(CC_ATTR_HOST_MEM_ENCRYPT))
624 		return 0;
625 
626 	/*
627 	 * If host memory encryption is active we need to be sure that kexec
628 	 * pages are not encrypted because when we boot to the new kernel the
629 	 * pages won't be accessed encrypted (initially).
630 	 */
631 	return set_memory_decrypted((unsigned long)vaddr, pages);
632 }
633 
arch_kexec_pre_free_pages(void * vaddr,unsigned int pages)634 void arch_kexec_pre_free_pages(void *vaddr, unsigned int pages)
635 {
636 	if (!cc_platform_has(CC_ATTR_HOST_MEM_ENCRYPT))
637 		return;
638 
639 	/*
640 	 * If host memory encryption is active we need to reset the pages back
641 	 * to being an encrypted mapping before freeing them.
642 	 */
643 	set_memory_encrypted((unsigned long)vaddr, pages);
644 }
645