1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * handle transition of Linux booting another kernel
4 * Copyright (C) 2002-2005 Eric Biederman <[email protected]>
5 */
6
7 #define pr_fmt(fmt) "kexec: " fmt
8
9 #include <linux/mm.h>
10 #include <linux/kexec.h>
11 #include <linux/string.h>
12 #include <linux/gfp.h>
13 #include <linux/reboot.h>
14 #include <linux/numa.h>
15 #include <linux/ftrace.h>
16 #include <linux/io.h>
17 #include <linux/suspend.h>
18 #include <linux/vmalloc.h>
19 #include <linux/efi.h>
20 #include <linux/cc_platform.h>
21
22 #include <asm/init.h>
23 #include <asm/tlbflush.h>
24 #include <asm/mmu_context.h>
25 #include <asm/io_apic.h>
26 #include <asm/debugreg.h>
27 #include <asm/kexec-bzimage64.h>
28 #include <asm/setup.h>
29 #include <asm/set_memory.h>
30 #include <asm/cpu.h>
31 #include <asm/efi.h>
32
33 #ifdef CONFIG_ACPI
34 /*
35 * Used while adding mapping for ACPI tables.
36 * Can be reused when other iomem regions need be mapped
37 */
38 struct init_pgtable_data {
39 struct x86_mapping_info *info;
40 pgd_t *level4p;
41 };
42
mem_region_callback(struct resource * res,void * arg)43 static int mem_region_callback(struct resource *res, void *arg)
44 {
45 struct init_pgtable_data *data = arg;
46
47 return kernel_ident_mapping_init(data->info, data->level4p,
48 res->start, res->end + 1);
49 }
50
51 static int
map_acpi_tables(struct x86_mapping_info * info,pgd_t * level4p)52 map_acpi_tables(struct x86_mapping_info *info, pgd_t *level4p)
53 {
54 struct init_pgtable_data data;
55 unsigned long flags;
56 int ret;
57
58 data.info = info;
59 data.level4p = level4p;
60 flags = IORESOURCE_MEM | IORESOURCE_BUSY;
61
62 ret = walk_iomem_res_desc(IORES_DESC_ACPI_TABLES, flags, 0, -1,
63 &data, mem_region_callback);
64 if (ret && ret != -EINVAL)
65 return ret;
66
67 /* ACPI tables could be located in ACPI Non-volatile Storage region */
68 ret = walk_iomem_res_desc(IORES_DESC_ACPI_NV_STORAGE, flags, 0, -1,
69 &data, mem_region_callback);
70 if (ret && ret != -EINVAL)
71 return ret;
72
73 return 0;
74 }
75 #else
map_acpi_tables(struct x86_mapping_info * info,pgd_t * level4p)76 static int map_acpi_tables(struct x86_mapping_info *info, pgd_t *level4p) { return 0; }
77 #endif
78
79 #ifdef CONFIG_KEXEC_FILE
80 const struct kexec_file_ops * const kexec_file_loaders[] = {
81 &kexec_bzImage64_ops,
82 NULL
83 };
84 #endif
85
86 static int
map_efi_systab(struct x86_mapping_info * info,pgd_t * level4p)87 map_efi_systab(struct x86_mapping_info *info, pgd_t *level4p)
88 {
89 #ifdef CONFIG_EFI
90 unsigned long mstart, mend;
91 void *kaddr;
92 int ret;
93
94 if (!efi_enabled(EFI_BOOT))
95 return 0;
96
97 mstart = (boot_params.efi_info.efi_systab |
98 ((u64)boot_params.efi_info.efi_systab_hi<<32));
99
100 if (efi_enabled(EFI_64BIT))
101 mend = mstart + sizeof(efi_system_table_64_t);
102 else
103 mend = mstart + sizeof(efi_system_table_32_t);
104
105 if (!mstart)
106 return 0;
107
108 ret = kernel_ident_mapping_init(info, level4p, mstart, mend);
109 if (ret)
110 return ret;
111
112 kaddr = memremap(mstart, mend - mstart, MEMREMAP_WB);
113 if (!kaddr) {
114 pr_err("Could not map UEFI system table\n");
115 return -ENOMEM;
116 }
117
118 mstart = efi_config_table;
119
120 if (efi_enabled(EFI_64BIT)) {
121 efi_system_table_64_t *stbl = (efi_system_table_64_t *)kaddr;
122
123 mend = mstart + sizeof(efi_config_table_64_t) * stbl->nr_tables;
124 } else {
125 efi_system_table_32_t *stbl = (efi_system_table_32_t *)kaddr;
126
127 mend = mstart + sizeof(efi_config_table_32_t) * stbl->nr_tables;
128 }
129
130 memunmap(kaddr);
131
132 return kernel_ident_mapping_init(info, level4p, mstart, mend);
133 #endif
134 return 0;
135 }
136
free_transition_pgtable(struct kimage * image)137 static void free_transition_pgtable(struct kimage *image)
138 {
139 free_page((unsigned long)image->arch.p4d);
140 image->arch.p4d = NULL;
141 free_page((unsigned long)image->arch.pud);
142 image->arch.pud = NULL;
143 free_page((unsigned long)image->arch.pmd);
144 image->arch.pmd = NULL;
145 free_page((unsigned long)image->arch.pte);
146 image->arch.pte = NULL;
147 }
148
init_transition_pgtable(struct kimage * image,pgd_t * pgd,unsigned long control_page)149 static int init_transition_pgtable(struct kimage *image, pgd_t *pgd,
150 unsigned long control_page)
151 {
152 pgprot_t prot = PAGE_KERNEL_EXEC_NOENC;
153 unsigned long vaddr, paddr;
154 int result = -ENOMEM;
155 p4d_t *p4d;
156 pud_t *pud;
157 pmd_t *pmd;
158 pte_t *pte;
159
160 /*
161 * For the transition to the identity mapped page tables, the control
162 * code page also needs to be mapped at the virtual address it starts
163 * off running from.
164 */
165 vaddr = (unsigned long)__va(control_page);
166 paddr = control_page;
167 pgd += pgd_index(vaddr);
168 if (!pgd_present(*pgd)) {
169 p4d = (p4d_t *)get_zeroed_page(GFP_KERNEL);
170 if (!p4d)
171 goto err;
172 image->arch.p4d = p4d;
173 set_pgd(pgd, __pgd(__pa(p4d) | _KERNPG_TABLE));
174 }
175 p4d = p4d_offset(pgd, vaddr);
176 if (!p4d_present(*p4d)) {
177 pud = (pud_t *)get_zeroed_page(GFP_KERNEL);
178 if (!pud)
179 goto err;
180 image->arch.pud = pud;
181 set_p4d(p4d, __p4d(__pa(pud) | _KERNPG_TABLE));
182 }
183 pud = pud_offset(p4d, vaddr);
184 if (!pud_present(*pud)) {
185 pmd = (pmd_t *)get_zeroed_page(GFP_KERNEL);
186 if (!pmd)
187 goto err;
188 image->arch.pmd = pmd;
189 set_pud(pud, __pud(__pa(pmd) | _KERNPG_TABLE));
190 }
191 pmd = pmd_offset(pud, vaddr);
192 if (!pmd_present(*pmd)) {
193 pte = (pte_t *)get_zeroed_page(GFP_KERNEL);
194 if (!pte)
195 goto err;
196 image->arch.pte = pte;
197 set_pmd(pmd, __pmd(__pa(pte) | _KERNPG_TABLE));
198 }
199 pte = pte_offset_kernel(pmd, vaddr);
200
201 if (cc_platform_has(CC_ATTR_GUEST_MEM_ENCRYPT))
202 prot = PAGE_KERNEL_EXEC;
203
204 set_pte(pte, pfn_pte(paddr >> PAGE_SHIFT, prot));
205 return 0;
206 err:
207 return result;
208 }
209
alloc_pgt_page(void * data)210 static void *alloc_pgt_page(void *data)
211 {
212 struct kimage *image = (struct kimage *)data;
213 struct page *page;
214 void *p = NULL;
215
216 page = kimage_alloc_control_pages(image, 0);
217 if (page) {
218 p = page_address(page);
219 clear_page(p);
220 }
221
222 return p;
223 }
224
init_pgtable(struct kimage * image,unsigned long control_page)225 static int init_pgtable(struct kimage *image, unsigned long control_page)
226 {
227 struct x86_mapping_info info = {
228 .alloc_pgt_page = alloc_pgt_page,
229 .context = image,
230 .page_flag = __PAGE_KERNEL_LARGE_EXEC,
231 .kernpg_flag = _KERNPG_TABLE_NOENC,
232 };
233 unsigned long mstart, mend;
234 int result;
235 int i;
236
237 image->arch.pgd = alloc_pgt_page(image);
238 if (!image->arch.pgd)
239 return -ENOMEM;
240
241 if (cc_platform_has(CC_ATTR_GUEST_MEM_ENCRYPT)) {
242 info.page_flag |= _PAGE_ENC;
243 info.kernpg_flag |= _PAGE_ENC;
244 }
245
246 if (direct_gbpages)
247 info.direct_gbpages = true;
248
249 for (i = 0; i < nr_pfn_mapped; i++) {
250 mstart = pfn_mapped[i].start << PAGE_SHIFT;
251 mend = pfn_mapped[i].end << PAGE_SHIFT;
252
253 result = kernel_ident_mapping_init(&info, image->arch.pgd,
254 mstart, mend);
255 if (result)
256 return result;
257 }
258
259 /*
260 * segments's mem ranges could be outside 0 ~ max_pfn,
261 * for example when jump back to original kernel from kexeced kernel.
262 * or first kernel is booted with user mem map, and second kernel
263 * could be loaded out of that range.
264 */
265 for (i = 0; i < image->nr_segments; i++) {
266 mstart = image->segment[i].mem;
267 mend = mstart + image->segment[i].memsz;
268
269 result = kernel_ident_mapping_init(&info, image->arch.pgd,
270 mstart, mend);
271
272 if (result)
273 return result;
274 }
275
276 /*
277 * Prepare EFI systab and ACPI tables for kexec kernel since they are
278 * not covered by pfn_mapped.
279 */
280 result = map_efi_systab(&info, image->arch.pgd);
281 if (result)
282 return result;
283
284 result = map_acpi_tables(&info, image->arch.pgd);
285 if (result)
286 return result;
287
288 /*
289 * This must be last because the intermediate page table pages it
290 * allocates will not be control pages and may overlap the image.
291 */
292 return init_transition_pgtable(image, image->arch.pgd, control_page);
293 }
294
load_segments(void)295 static void load_segments(void)
296 {
297 __asm__ __volatile__ (
298 "\tmovl %0,%%ds\n"
299 "\tmovl %0,%%es\n"
300 "\tmovl %0,%%ss\n"
301 "\tmovl %0,%%fs\n"
302 "\tmovl %0,%%gs\n"
303 : : "a" (__KERNEL_DS) : "memory"
304 );
305 }
306
machine_kexec_prepare(struct kimage * image)307 int machine_kexec_prepare(struct kimage *image)
308 {
309 void *control_page = page_address(image->control_code_page);
310 unsigned long reloc_start = (unsigned long)__relocate_kernel_start;
311 unsigned long reloc_end = (unsigned long)__relocate_kernel_end;
312 int result;
313
314 /* Setup the identity mapped 64bit page table */
315 result = init_pgtable(image, __pa(control_page));
316 if (result)
317 return result;
318 kexec_va_control_page = (unsigned long)control_page;
319 kexec_pa_table_page = (unsigned long)__pa(image->arch.pgd);
320
321 if (image->type == KEXEC_TYPE_DEFAULT)
322 kexec_pa_swap_page = page_to_pfn(image->swap_page) << PAGE_SHIFT;
323
324 __memcpy(control_page, __relocate_kernel_start, reloc_end - reloc_start);
325
326 set_memory_rox((unsigned long)control_page, 1);
327
328 return 0;
329 }
330
machine_kexec_cleanup(struct kimage * image)331 void machine_kexec_cleanup(struct kimage *image)
332 {
333 void *control_page = page_address(image->control_code_page);
334
335 set_memory_nx((unsigned long)control_page, 1);
336 set_memory_rw((unsigned long)control_page, 1);
337
338 free_transition_pgtable(image);
339 }
340
341 /*
342 * Do not allocate memory (or fail in any way) in machine_kexec().
343 * We are past the point of no return, committed to rebooting now.
344 */
machine_kexec(struct kimage * image)345 void __nocfi machine_kexec(struct kimage *image)
346 {
347 unsigned long reloc_start = (unsigned long)__relocate_kernel_start;
348 relocate_kernel_fn *relocate_kernel_ptr;
349 unsigned int host_mem_enc_active;
350 int save_ftrace_enabled;
351 void *control_page;
352
353 /*
354 * This must be done before load_segments() since if call depth tracking
355 * is used then GS must be valid to make any function calls.
356 */
357 host_mem_enc_active = cc_platform_has(CC_ATTR_HOST_MEM_ENCRYPT);
358
359 #ifdef CONFIG_KEXEC_JUMP
360 if (image->preserve_context)
361 save_processor_state();
362 #endif
363
364 save_ftrace_enabled = __ftrace_enabled_save();
365
366 /* Interrupts aren't acceptable while we reboot */
367 local_irq_disable();
368 hw_breakpoint_disable();
369 cet_disable();
370
371 if (image->preserve_context) {
372 #ifdef CONFIG_X86_IO_APIC
373 /*
374 * We need to put APICs in legacy mode so that we can
375 * get timer interrupts in second kernel. kexec/kdump
376 * paths already have calls to restore_boot_irq_mode()
377 * in one form or other. kexec jump path also need one.
378 */
379 clear_IO_APIC();
380 restore_boot_irq_mode();
381 #endif
382 }
383
384 control_page = page_address(image->control_code_page);
385
386 /*
387 * Allow for the possibility that relocate_kernel might not be at
388 * the very start of the page.
389 */
390 relocate_kernel_ptr = control_page + (unsigned long)relocate_kernel - reloc_start;
391
392 /*
393 * The segment registers are funny things, they have both a
394 * visible and an invisible part. Whenever the visible part is
395 * set to a specific selector, the invisible part is loaded
396 * with from a table in memory. At no other time is the
397 * descriptor table in memory accessed.
398 *
399 * I take advantage of this here by force loading the
400 * segments, before I zap the gdt with an invalid value.
401 */
402 load_segments();
403 /*
404 * The gdt & idt are now invalid.
405 * If you want to load them you must set up your own idt & gdt.
406 */
407 native_idt_invalidate();
408 native_gdt_invalidate();
409
410 /* now call it */
411 image->start = relocate_kernel_ptr((unsigned long)image->head,
412 virt_to_phys(control_page),
413 image->start,
414 image->preserve_context,
415 host_mem_enc_active);
416
417 #ifdef CONFIG_KEXEC_JUMP
418 if (image->preserve_context)
419 restore_processor_state();
420 #endif
421
422 __ftrace_enabled_restore(save_ftrace_enabled);
423 }
424
425 /* arch-dependent functionality related to kexec file-based syscall */
426
427 #ifdef CONFIG_KEXEC_FILE
428 /*
429 * Apply purgatory relocations.
430 *
431 * @pi: Purgatory to be relocated.
432 * @section: Section relocations applying to.
433 * @relsec: Section containing RELAs.
434 * @symtabsec: Corresponding symtab.
435 *
436 * TODO: Some of the code belongs to generic code. Move that in kexec.c.
437 */
arch_kexec_apply_relocations_add(struct purgatory_info * pi,Elf_Shdr * section,const Elf_Shdr * relsec,const Elf_Shdr * symtabsec)438 int arch_kexec_apply_relocations_add(struct purgatory_info *pi,
439 Elf_Shdr *section, const Elf_Shdr *relsec,
440 const Elf_Shdr *symtabsec)
441 {
442 unsigned int i;
443 Elf64_Rela *rel;
444 Elf64_Sym *sym;
445 void *location;
446 unsigned long address, sec_base, value;
447 const char *strtab, *name, *shstrtab;
448 const Elf_Shdr *sechdrs;
449
450 /* String & section header string table */
451 sechdrs = (void *)pi->ehdr + pi->ehdr->e_shoff;
452 strtab = (char *)pi->ehdr + sechdrs[symtabsec->sh_link].sh_offset;
453 shstrtab = (char *)pi->ehdr + sechdrs[pi->ehdr->e_shstrndx].sh_offset;
454
455 rel = (void *)pi->ehdr + relsec->sh_offset;
456
457 pr_debug("Applying relocate section %s to %u\n",
458 shstrtab + relsec->sh_name, relsec->sh_info);
459
460 for (i = 0; i < relsec->sh_size / sizeof(*rel); i++) {
461
462 /*
463 * rel[i].r_offset contains byte offset from beginning
464 * of section to the storage unit affected.
465 *
466 * This is location to update. This is temporary buffer
467 * where section is currently loaded. This will finally be
468 * loaded to a different address later, pointed to by
469 * ->sh_addr. kexec takes care of moving it
470 * (kexec_load_segment()).
471 */
472 location = pi->purgatory_buf;
473 location += section->sh_offset;
474 location += rel[i].r_offset;
475
476 /* Final address of the location */
477 address = section->sh_addr + rel[i].r_offset;
478
479 /*
480 * rel[i].r_info contains information about symbol table index
481 * w.r.t which relocation must be made and type of relocation
482 * to apply. ELF64_R_SYM() and ELF64_R_TYPE() macros get
483 * these respectively.
484 */
485 sym = (void *)pi->ehdr + symtabsec->sh_offset;
486 sym += ELF64_R_SYM(rel[i].r_info);
487
488 if (sym->st_name)
489 name = strtab + sym->st_name;
490 else
491 name = shstrtab + sechdrs[sym->st_shndx].sh_name;
492
493 pr_debug("Symbol: %s info: %02x shndx: %02x value=%llx size: %llx\n",
494 name, sym->st_info, sym->st_shndx, sym->st_value,
495 sym->st_size);
496
497 if (sym->st_shndx == SHN_UNDEF) {
498 pr_err("Undefined symbol: %s\n", name);
499 return -ENOEXEC;
500 }
501
502 if (sym->st_shndx == SHN_COMMON) {
503 pr_err("symbol '%s' in common section\n", name);
504 return -ENOEXEC;
505 }
506
507 if (sym->st_shndx == SHN_ABS)
508 sec_base = 0;
509 else if (sym->st_shndx >= pi->ehdr->e_shnum) {
510 pr_err("Invalid section %d for symbol %s\n",
511 sym->st_shndx, name);
512 return -ENOEXEC;
513 } else
514 sec_base = pi->sechdrs[sym->st_shndx].sh_addr;
515
516 value = sym->st_value;
517 value += sec_base;
518 value += rel[i].r_addend;
519
520 switch (ELF64_R_TYPE(rel[i].r_info)) {
521 case R_X86_64_NONE:
522 break;
523 case R_X86_64_64:
524 *(u64 *)location = value;
525 break;
526 case R_X86_64_32:
527 *(u32 *)location = value;
528 if (value != *(u32 *)location)
529 goto overflow;
530 break;
531 case R_X86_64_32S:
532 *(s32 *)location = value;
533 if ((s64)value != *(s32 *)location)
534 goto overflow;
535 break;
536 case R_X86_64_PC32:
537 case R_X86_64_PLT32:
538 value -= (u64)address;
539 *(u32 *)location = value;
540 break;
541 default:
542 pr_err("Unknown rela relocation: %llu\n",
543 ELF64_R_TYPE(rel[i].r_info));
544 return -ENOEXEC;
545 }
546 }
547 return 0;
548
549 overflow:
550 pr_err("Overflow in relocation type %d value 0x%lx\n",
551 (int)ELF64_R_TYPE(rel[i].r_info), value);
552 return -ENOEXEC;
553 }
554
arch_kimage_file_post_load_cleanup(struct kimage * image)555 int arch_kimage_file_post_load_cleanup(struct kimage *image)
556 {
557 vfree(image->elf_headers);
558 image->elf_headers = NULL;
559 image->elf_headers_sz = 0;
560
561 return kexec_image_post_load_cleanup_default(image);
562 }
563 #endif /* CONFIG_KEXEC_FILE */
564
565 #ifdef CONFIG_CRASH_DUMP
566
567 static int
kexec_mark_range(unsigned long start,unsigned long end,bool protect)568 kexec_mark_range(unsigned long start, unsigned long end, bool protect)
569 {
570 struct page *page;
571 unsigned int nr_pages;
572
573 /*
574 * For physical range: [start, end]. We must skip the unassigned
575 * crashk resource with zero-valued "end" member.
576 */
577 if (!end || start > end)
578 return 0;
579
580 page = pfn_to_page(start >> PAGE_SHIFT);
581 nr_pages = (end >> PAGE_SHIFT) - (start >> PAGE_SHIFT) + 1;
582 if (protect)
583 return set_pages_ro(page, nr_pages);
584 else
585 return set_pages_rw(page, nr_pages);
586 }
587
kexec_mark_crashkres(bool protect)588 static void kexec_mark_crashkres(bool protect)
589 {
590 unsigned long control;
591
592 kexec_mark_range(crashk_low_res.start, crashk_low_res.end, protect);
593
594 /* Don't touch the control code page used in crash_kexec().*/
595 control = PFN_PHYS(page_to_pfn(kexec_crash_image->control_code_page));
596 kexec_mark_range(crashk_res.start, control - 1, protect);
597 control += KEXEC_CONTROL_PAGE_SIZE;
598 kexec_mark_range(control, crashk_res.end, protect);
599 }
600
arch_kexec_protect_crashkres(void)601 void arch_kexec_protect_crashkres(void)
602 {
603 kexec_mark_crashkres(true);
604 }
605
arch_kexec_unprotect_crashkres(void)606 void arch_kexec_unprotect_crashkres(void)
607 {
608 kexec_mark_crashkres(false);
609 }
610 #endif
611
612 /*
613 * During a traditional boot under SME, SME will encrypt the kernel,
614 * so the SME kexec kernel also needs to be un-encrypted in order to
615 * replicate a normal SME boot.
616 *
617 * During a traditional boot under SEV, the kernel has already been
618 * loaded encrypted, so the SEV kexec kernel needs to be encrypted in
619 * order to replicate a normal SEV boot.
620 */
arch_kexec_post_alloc_pages(void * vaddr,unsigned int pages,gfp_t gfp)621 int arch_kexec_post_alloc_pages(void *vaddr, unsigned int pages, gfp_t gfp)
622 {
623 if (!cc_platform_has(CC_ATTR_HOST_MEM_ENCRYPT))
624 return 0;
625
626 /*
627 * If host memory encryption is active we need to be sure that kexec
628 * pages are not encrypted because when we boot to the new kernel the
629 * pages won't be accessed encrypted (initially).
630 */
631 return set_memory_decrypted((unsigned long)vaddr, pages);
632 }
633
arch_kexec_pre_free_pages(void * vaddr,unsigned int pages)634 void arch_kexec_pre_free_pages(void *vaddr, unsigned int pages)
635 {
636 if (!cc_platform_has(CC_ATTR_HOST_MEM_ENCRYPT))
637 return;
638
639 /*
640 * If host memory encryption is active we need to reset the pages back
641 * to being an encrypted mapping before freeing them.
642 */
643 set_memory_encrypted((unsigned long)vaddr, pages);
644 }
645