1 // SPDX-License-Identifier: GPL-2.0
2 #define pr_fmt(fmt) "kasan: " fmt
3
4 /* cpu_feature_enabled() cannot be used this early */
5 #define USE_EARLY_PGTABLE_L5
6
7 #include <linux/memblock.h>
8 #include <linux/kasan.h>
9 #include <linux/kdebug.h>
10 #include <linux/mm.h>
11 #include <linux/sched.h>
12 #include <linux/sched/task.h>
13 #include <linux/vmalloc.h>
14
15 #include <asm/e820/types.h>
16 #include <asm/pgalloc.h>
17 #include <asm/tlbflush.h>
18 #include <asm/sections.h>
19 #include <asm/cpu_entry_area.h>
20
21 extern struct range pfn_mapped[E820_MAX_ENTRIES];
22
23 static p4d_t tmp_p4d_table[MAX_PTRS_PER_P4D] __initdata __aligned(PAGE_SIZE);
24
early_alloc(size_t size,int nid,bool should_panic)25 static __init void *early_alloc(size_t size, int nid, bool should_panic)
26 {
27 void *ptr = memblock_alloc_try_nid(size, size,
28 __pa(MAX_DMA_ADDRESS), MEMBLOCK_ALLOC_ACCESSIBLE, nid);
29
30 if (!ptr && should_panic)
31 panic("%pS: Failed to allocate page, nid=%d from=%lx\n",
32 (void *)_RET_IP_, nid, __pa(MAX_DMA_ADDRESS));
33
34 return ptr;
35 }
36
kasan_populate_pmd(pmd_t * pmd,unsigned long addr,unsigned long end,int nid)37 static void __init kasan_populate_pmd(pmd_t *pmd, unsigned long addr,
38 unsigned long end, int nid)
39 {
40 pte_t *pte;
41
42 if (pmd_none(*pmd)) {
43 void *p;
44
45 if (boot_cpu_has(X86_FEATURE_PSE) &&
46 ((end - addr) == PMD_SIZE) &&
47 IS_ALIGNED(addr, PMD_SIZE)) {
48 p = early_alloc(PMD_SIZE, nid, false);
49 if (p && pmd_set_huge(pmd, __pa(p), PAGE_KERNEL))
50 return;
51 memblock_free(p, PMD_SIZE);
52 }
53
54 p = early_alloc(PAGE_SIZE, nid, true);
55 pmd_populate_kernel(&init_mm, pmd, p);
56 }
57
58 pte = pte_offset_kernel(pmd, addr);
59 do {
60 pte_t entry;
61 void *p;
62
63 if (!pte_none(*pte))
64 continue;
65
66 p = early_alloc(PAGE_SIZE, nid, true);
67 entry = pfn_pte(PFN_DOWN(__pa(p)), PAGE_KERNEL);
68 set_pte_at(&init_mm, addr, pte, entry);
69 } while (pte++, addr += PAGE_SIZE, addr != end);
70 }
71
kasan_populate_pud(pud_t * pud,unsigned long addr,unsigned long end,int nid)72 static void __init kasan_populate_pud(pud_t *pud, unsigned long addr,
73 unsigned long end, int nid)
74 {
75 pmd_t *pmd;
76 unsigned long next;
77
78 if (pud_none(*pud)) {
79 void *p;
80
81 if (boot_cpu_has(X86_FEATURE_GBPAGES) &&
82 ((end - addr) == PUD_SIZE) &&
83 IS_ALIGNED(addr, PUD_SIZE)) {
84 p = early_alloc(PUD_SIZE, nid, false);
85 if (p && pud_set_huge(pud, __pa(p), PAGE_KERNEL))
86 return;
87 memblock_free(p, PUD_SIZE);
88 }
89
90 p = early_alloc(PAGE_SIZE, nid, true);
91 pud_populate(&init_mm, pud, p);
92 }
93
94 pmd = pmd_offset(pud, addr);
95 do {
96 next = pmd_addr_end(addr, end);
97 if (!pmd_leaf(*pmd))
98 kasan_populate_pmd(pmd, addr, next, nid);
99 } while (pmd++, addr = next, addr != end);
100 }
101
kasan_populate_p4d(p4d_t * p4d,unsigned long addr,unsigned long end,int nid)102 static void __init kasan_populate_p4d(p4d_t *p4d, unsigned long addr,
103 unsigned long end, int nid)
104 {
105 pud_t *pud;
106 unsigned long next;
107
108 if (p4d_none(*p4d)) {
109 void *p = early_alloc(PAGE_SIZE, nid, true);
110
111 p4d_populate(&init_mm, p4d, p);
112 }
113
114 pud = pud_offset(p4d, addr);
115 do {
116 next = pud_addr_end(addr, end);
117 if (!pud_leaf(*pud))
118 kasan_populate_pud(pud, addr, next, nid);
119 } while (pud++, addr = next, addr != end);
120 }
121
kasan_populate_pgd(pgd_t * pgd,unsigned long addr,unsigned long end,int nid)122 static void __init kasan_populate_pgd(pgd_t *pgd, unsigned long addr,
123 unsigned long end, int nid)
124 {
125 void *p;
126 p4d_t *p4d;
127 unsigned long next;
128
129 if (pgd_none(*pgd)) {
130 p = early_alloc(PAGE_SIZE, nid, true);
131 pgd_populate(&init_mm, pgd, p);
132 }
133
134 p4d = p4d_offset(pgd, addr);
135 do {
136 next = p4d_addr_end(addr, end);
137 kasan_populate_p4d(p4d, addr, next, nid);
138 } while (p4d++, addr = next, addr != end);
139 }
140
kasan_populate_shadow(unsigned long addr,unsigned long end,int nid)141 static void __init kasan_populate_shadow(unsigned long addr, unsigned long end,
142 int nid)
143 {
144 pgd_t *pgd;
145 unsigned long next;
146
147 addr = addr & PAGE_MASK;
148 end = round_up(end, PAGE_SIZE);
149 pgd = pgd_offset_k(addr);
150 do {
151 next = pgd_addr_end(addr, end);
152 kasan_populate_pgd(pgd, addr, next, nid);
153 } while (pgd++, addr = next, addr != end);
154 }
155
map_range(struct range * range)156 static void __init map_range(struct range *range)
157 {
158 unsigned long start;
159 unsigned long end;
160
161 start = (unsigned long)kasan_mem_to_shadow(pfn_to_kaddr(range->start));
162 end = (unsigned long)kasan_mem_to_shadow(pfn_to_kaddr(range->end));
163
164 kasan_populate_shadow(start, end, early_pfn_to_nid(range->start));
165 }
166
clear_pgds(unsigned long start,unsigned long end)167 static void __init clear_pgds(unsigned long start,
168 unsigned long end)
169 {
170 pgd_t *pgd;
171 /* See comment in kasan_init() */
172 unsigned long pgd_end = end & PGDIR_MASK;
173
174 for (; start < pgd_end; start += PGDIR_SIZE) {
175 pgd = pgd_offset_k(start);
176 /*
177 * With folded p4d, pgd_clear() is nop, use p4d_clear()
178 * instead.
179 */
180 if (pgtable_l5_enabled())
181 pgd_clear(pgd);
182 else
183 p4d_clear(p4d_offset(pgd, start));
184 }
185
186 pgd = pgd_offset_k(start);
187 for (; start < end; start += P4D_SIZE)
188 p4d_clear(p4d_offset(pgd, start));
189 }
190
early_p4d_offset(pgd_t * pgd,unsigned long addr)191 static inline p4d_t *early_p4d_offset(pgd_t *pgd, unsigned long addr)
192 {
193 unsigned long p4d;
194
195 if (!pgtable_l5_enabled())
196 return (p4d_t *)pgd;
197
198 p4d = pgd_val(*pgd) & PTE_PFN_MASK;
199 p4d += __START_KERNEL_map - phys_base;
200 return (p4d_t *)p4d + p4d_index(addr);
201 }
202
kasan_early_p4d_populate(pgd_t * pgd,unsigned long addr,unsigned long end)203 static void __init kasan_early_p4d_populate(pgd_t *pgd,
204 unsigned long addr,
205 unsigned long end)
206 {
207 pgd_t pgd_entry;
208 p4d_t *p4d, p4d_entry;
209 unsigned long next;
210
211 if (pgd_none(*pgd)) {
212 pgd_entry = __pgd(_KERNPG_TABLE |
213 __pa_nodebug(kasan_early_shadow_p4d));
214 set_pgd(pgd, pgd_entry);
215 }
216
217 p4d = early_p4d_offset(pgd, addr);
218 do {
219 next = p4d_addr_end(addr, end);
220
221 if (!p4d_none(*p4d))
222 continue;
223
224 p4d_entry = __p4d(_KERNPG_TABLE |
225 __pa_nodebug(kasan_early_shadow_pud));
226 set_p4d(p4d, p4d_entry);
227 } while (p4d++, addr = next, addr != end && p4d_none(*p4d));
228 }
229
kasan_map_early_shadow(pgd_t * pgd)230 static void __init kasan_map_early_shadow(pgd_t *pgd)
231 {
232 /* See comment in kasan_init() */
233 unsigned long addr = KASAN_SHADOW_START & PGDIR_MASK;
234 unsigned long end = KASAN_SHADOW_END;
235 unsigned long next;
236
237 pgd += pgd_index(addr);
238 do {
239 next = pgd_addr_end(addr, end);
240 kasan_early_p4d_populate(pgd, addr, next);
241 } while (pgd++, addr = next, addr != end);
242 }
243
kasan_shallow_populate_p4ds(pgd_t * pgd,unsigned long addr,unsigned long end)244 static void __init kasan_shallow_populate_p4ds(pgd_t *pgd,
245 unsigned long addr,
246 unsigned long end)
247 {
248 p4d_t *p4d;
249 unsigned long next;
250 void *p;
251
252 p4d = p4d_offset(pgd, addr);
253 do {
254 next = p4d_addr_end(addr, end);
255
256 if (p4d_none(*p4d)) {
257 p = early_alloc(PAGE_SIZE, NUMA_NO_NODE, true);
258 p4d_populate(&init_mm, p4d, p);
259 }
260 } while (p4d++, addr = next, addr != end);
261 }
262
kasan_shallow_populate_pgds(void * start,void * end)263 static void __init kasan_shallow_populate_pgds(void *start, void *end)
264 {
265 unsigned long addr, next;
266 pgd_t *pgd;
267 void *p;
268
269 addr = (unsigned long)start;
270 pgd = pgd_offset_k(addr);
271 do {
272 next = pgd_addr_end(addr, (unsigned long)end);
273
274 if (pgd_none(*pgd)) {
275 p = early_alloc(PAGE_SIZE, NUMA_NO_NODE, true);
276 pgd_populate(&init_mm, pgd, p);
277 }
278
279 /*
280 * we need to populate p4ds to be synced when running in
281 * four level mode - see sync_global_pgds_l4()
282 */
283 kasan_shallow_populate_p4ds(pgd, addr, next);
284 } while (pgd++, addr = next, addr != (unsigned long)end);
285 }
286
kasan_early_init(void)287 void __init kasan_early_init(void)
288 {
289 int i;
290 pteval_t pte_val = __pa_nodebug(kasan_early_shadow_page) |
291 __PAGE_KERNEL | _PAGE_ENC;
292 pmdval_t pmd_val = __pa_nodebug(kasan_early_shadow_pte) | _KERNPG_TABLE;
293 pudval_t pud_val = __pa_nodebug(kasan_early_shadow_pmd) | _KERNPG_TABLE;
294 p4dval_t p4d_val = __pa_nodebug(kasan_early_shadow_pud) | _KERNPG_TABLE;
295
296 /* Mask out unsupported __PAGE_KERNEL bits: */
297 pte_val &= __default_kernel_pte_mask;
298 pmd_val &= __default_kernel_pte_mask;
299 pud_val &= __default_kernel_pte_mask;
300 p4d_val &= __default_kernel_pte_mask;
301
302 for (i = 0; i < PTRS_PER_PTE; i++)
303 kasan_early_shadow_pte[i] = __pte(pte_val);
304
305 for (i = 0; i < PTRS_PER_PMD; i++)
306 kasan_early_shadow_pmd[i] = __pmd(pmd_val);
307
308 for (i = 0; i < PTRS_PER_PUD; i++)
309 kasan_early_shadow_pud[i] = __pud(pud_val);
310
311 for (i = 0; pgtable_l5_enabled() && i < PTRS_PER_P4D; i++)
312 kasan_early_shadow_p4d[i] = __p4d(p4d_val);
313
314 kasan_map_early_shadow(early_top_pgt);
315 kasan_map_early_shadow(init_top_pgt);
316 }
317
kasan_mem_to_shadow_align_down(unsigned long va)318 static unsigned long kasan_mem_to_shadow_align_down(unsigned long va)
319 {
320 unsigned long shadow = (unsigned long)kasan_mem_to_shadow((void *)va);
321
322 return round_down(shadow, PAGE_SIZE);
323 }
324
kasan_mem_to_shadow_align_up(unsigned long va)325 static unsigned long kasan_mem_to_shadow_align_up(unsigned long va)
326 {
327 unsigned long shadow = (unsigned long)kasan_mem_to_shadow((void *)va);
328
329 return round_up(shadow, PAGE_SIZE);
330 }
331
kasan_populate_shadow_for_vaddr(void * va,size_t size,int nid)332 void __init kasan_populate_shadow_for_vaddr(void *va, size_t size, int nid)
333 {
334 unsigned long shadow_start, shadow_end;
335
336 shadow_start = kasan_mem_to_shadow_align_down((unsigned long)va);
337 shadow_end = kasan_mem_to_shadow_align_up((unsigned long)va + size);
338 kasan_populate_shadow(shadow_start, shadow_end, nid);
339 }
340
kasan_init(void)341 void __init kasan_init(void)
342 {
343 unsigned long shadow_cea_begin, shadow_cea_per_cpu_begin, shadow_cea_end;
344 int i;
345
346 memcpy(early_top_pgt, init_top_pgt, sizeof(early_top_pgt));
347
348 /*
349 * We use the same shadow offset for 4- and 5-level paging to
350 * facilitate boot-time switching between paging modes.
351 * As result in 5-level paging mode KASAN_SHADOW_START and
352 * KASAN_SHADOW_END are not aligned to PGD boundary.
353 *
354 * KASAN_SHADOW_START doesn't share PGD with anything else.
355 * We claim whole PGD entry to make things easier.
356 *
357 * KASAN_SHADOW_END lands in the last PGD entry and it collides with
358 * bunch of things like kernel code, modules, EFI mapping, etc.
359 * We need to take extra steps to not overwrite them.
360 */
361 if (pgtable_l5_enabled()) {
362 void *ptr;
363
364 ptr = (void *)pgd_page_vaddr(*pgd_offset_k(KASAN_SHADOW_END));
365 memcpy(tmp_p4d_table, (void *)ptr, sizeof(tmp_p4d_table));
366 set_pgd(&early_top_pgt[pgd_index(KASAN_SHADOW_END)],
367 __pgd(__pa(tmp_p4d_table) | _KERNPG_TABLE));
368 }
369
370 load_cr3(early_top_pgt);
371 __flush_tlb_all();
372
373 clear_pgds(KASAN_SHADOW_START & PGDIR_MASK, KASAN_SHADOW_END);
374
375 kasan_populate_early_shadow((void *)(KASAN_SHADOW_START & PGDIR_MASK),
376 kasan_mem_to_shadow((void *)PAGE_OFFSET));
377
378 for (i = 0; i < E820_MAX_ENTRIES; i++) {
379 if (pfn_mapped[i].end == 0)
380 break;
381
382 map_range(&pfn_mapped[i]);
383 }
384
385 shadow_cea_begin = kasan_mem_to_shadow_align_down(CPU_ENTRY_AREA_BASE);
386 shadow_cea_per_cpu_begin = kasan_mem_to_shadow_align_up(CPU_ENTRY_AREA_PER_CPU);
387 shadow_cea_end = kasan_mem_to_shadow_align_up(CPU_ENTRY_AREA_BASE +
388 CPU_ENTRY_AREA_MAP_SIZE);
389
390 kasan_populate_early_shadow(
391 kasan_mem_to_shadow((void *)PAGE_OFFSET + MAXMEM),
392 kasan_mem_to_shadow((void *)VMALLOC_START));
393
394 /*
395 * If we're in full vmalloc mode, don't back vmalloc space with early
396 * shadow pages. Instead, prepopulate pgds/p4ds so they are synced to
397 * the global table and we can populate the lower levels on demand.
398 */
399 if (IS_ENABLED(CONFIG_KASAN_VMALLOC))
400 kasan_shallow_populate_pgds(
401 kasan_mem_to_shadow((void *)VMALLOC_START),
402 kasan_mem_to_shadow((void *)VMALLOC_END));
403 else
404 kasan_populate_early_shadow(
405 kasan_mem_to_shadow((void *)VMALLOC_START),
406 kasan_mem_to_shadow((void *)VMALLOC_END));
407
408 kasan_populate_early_shadow(
409 kasan_mem_to_shadow((void *)VMALLOC_END + 1),
410 (void *)shadow_cea_begin);
411
412 /*
413 * Populate the shadow for the shared portion of the CPU entry area.
414 * Shadows for the per-CPU areas are mapped on-demand, as each CPU's
415 * area is randomly placed somewhere in the 512GiB range and mapping
416 * the entire 512GiB range is prohibitively expensive.
417 */
418 kasan_populate_shadow(shadow_cea_begin,
419 shadow_cea_per_cpu_begin, 0);
420
421 kasan_populate_early_shadow((void *)shadow_cea_end,
422 kasan_mem_to_shadow((void *)__START_KERNEL_map));
423
424 kasan_populate_shadow((unsigned long)kasan_mem_to_shadow(_stext),
425 (unsigned long)kasan_mem_to_shadow(_end),
426 early_pfn_to_nid(__pa(_stext)));
427
428 kasan_populate_early_shadow(kasan_mem_to_shadow((void *)MODULES_END),
429 (void *)KASAN_SHADOW_END);
430
431 load_cr3(init_top_pgt);
432 __flush_tlb_all();
433
434 /*
435 * kasan_early_shadow_page has been used as early shadow memory, thus
436 * it may contain some garbage. Now we can clear and write protect it,
437 * since after the TLB flush no one should write to it.
438 */
439 memset(kasan_early_shadow_page, 0, PAGE_SIZE);
440 for (i = 0; i < PTRS_PER_PTE; i++) {
441 pte_t pte;
442 pgprot_t prot;
443
444 prot = __pgprot(__PAGE_KERNEL_RO | _PAGE_ENC);
445 pgprot_val(prot) &= __default_kernel_pte_mask;
446
447 pte = __pte(__pa(kasan_early_shadow_page) | pgprot_val(prot));
448 set_pte(&kasan_early_shadow_pte[i], pte);
449 }
450 /* Flush TLBs again to be sure that write protection applied. */
451 __flush_tlb_all();
452
453 init_task.kasan_depth = 0;
454 pr_info("KernelAddressSanitizer initialized\n");
455 }
456