1 // SPDX-License-Identifier: GPL-2.0-only
2 /* binder_alloc.c
3 *
4 * Android IPC Subsystem
5 *
6 * Copyright (C) 2007-2017 Google, Inc.
7 */
8
9 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
10
11 #include <linux/list.h>
12 #include <linux/sched/mm.h>
13 #include <linux/module.h>
14 #include <linux/rtmutex.h>
15 #include <linux/rbtree.h>
16 #include <linux/seq_file.h>
17 #include <linux/vmalloc.h>
18 #include <linux/slab.h>
19 #include <linux/sched.h>
20 #include <linux/list_lru.h>
21 #include <linux/ratelimit.h>
22 #include <asm/cacheflush.h>
23 #include <linux/uaccess.h>
24 #include <linux/highmem.h>
25 #include <linux/sizes.h>
26 #include "binder_alloc.h"
27 #include "binder_trace.h"
28
29 struct list_lru binder_freelist;
30
31 static DEFINE_MUTEX(binder_alloc_mmap_lock);
32
33 enum {
34 BINDER_DEBUG_USER_ERROR = 1U << 0,
35 BINDER_DEBUG_OPEN_CLOSE = 1U << 1,
36 BINDER_DEBUG_BUFFER_ALLOC = 1U << 2,
37 BINDER_DEBUG_BUFFER_ALLOC_ASYNC = 1U << 3,
38 };
39 static uint32_t binder_alloc_debug_mask = BINDER_DEBUG_USER_ERROR;
40
41 module_param_named(debug_mask, binder_alloc_debug_mask,
42 uint, 0644);
43
44 #define binder_alloc_debug(mask, x...) \
45 do { \
46 if (binder_alloc_debug_mask & mask) \
47 pr_info_ratelimited(x); \
48 } while (0)
49
binder_buffer_next(struct binder_buffer * buffer)50 static struct binder_buffer *binder_buffer_next(struct binder_buffer *buffer)
51 {
52 return list_entry(buffer->entry.next, struct binder_buffer, entry);
53 }
54
binder_buffer_prev(struct binder_buffer * buffer)55 static struct binder_buffer *binder_buffer_prev(struct binder_buffer *buffer)
56 {
57 return list_entry(buffer->entry.prev, struct binder_buffer, entry);
58 }
59
binder_alloc_buffer_size(struct binder_alloc * alloc,struct binder_buffer * buffer)60 static size_t binder_alloc_buffer_size(struct binder_alloc *alloc,
61 struct binder_buffer *buffer)
62 {
63 if (list_is_last(&buffer->entry, &alloc->buffers))
64 return alloc->vm_start + alloc->buffer_size - buffer->user_data;
65 return binder_buffer_next(buffer)->user_data - buffer->user_data;
66 }
67
binder_insert_free_buffer(struct binder_alloc * alloc,struct binder_buffer * new_buffer)68 static void binder_insert_free_buffer(struct binder_alloc *alloc,
69 struct binder_buffer *new_buffer)
70 {
71 struct rb_node **p = &alloc->free_buffers.rb_node;
72 struct rb_node *parent = NULL;
73 struct binder_buffer *buffer;
74 size_t buffer_size;
75 size_t new_buffer_size;
76
77 BUG_ON(!new_buffer->free);
78
79 new_buffer_size = binder_alloc_buffer_size(alloc, new_buffer);
80
81 binder_alloc_debug(BINDER_DEBUG_BUFFER_ALLOC,
82 "%d: add free buffer, size %zd, at %pK\n",
83 alloc->pid, new_buffer_size, new_buffer);
84
85 while (*p) {
86 parent = *p;
87 buffer = rb_entry(parent, struct binder_buffer, rb_node);
88 BUG_ON(!buffer->free);
89
90 buffer_size = binder_alloc_buffer_size(alloc, buffer);
91
92 if (new_buffer_size < buffer_size)
93 p = &parent->rb_left;
94 else
95 p = &parent->rb_right;
96 }
97 rb_link_node(&new_buffer->rb_node, parent, p);
98 rb_insert_color(&new_buffer->rb_node, &alloc->free_buffers);
99 }
100
binder_insert_allocated_buffer_locked(struct binder_alloc * alloc,struct binder_buffer * new_buffer)101 static void binder_insert_allocated_buffer_locked(
102 struct binder_alloc *alloc, struct binder_buffer *new_buffer)
103 {
104 struct rb_node **p = &alloc->allocated_buffers.rb_node;
105 struct rb_node *parent = NULL;
106 struct binder_buffer *buffer;
107
108 BUG_ON(new_buffer->free);
109
110 while (*p) {
111 parent = *p;
112 buffer = rb_entry(parent, struct binder_buffer, rb_node);
113 BUG_ON(buffer->free);
114
115 if (new_buffer->user_data < buffer->user_data)
116 p = &parent->rb_left;
117 else if (new_buffer->user_data > buffer->user_data)
118 p = &parent->rb_right;
119 else
120 BUG();
121 }
122 rb_link_node(&new_buffer->rb_node, parent, p);
123 rb_insert_color(&new_buffer->rb_node, &alloc->allocated_buffers);
124 }
125
binder_alloc_prepare_to_free_locked(struct binder_alloc * alloc,unsigned long user_ptr)126 static struct binder_buffer *binder_alloc_prepare_to_free_locked(
127 struct binder_alloc *alloc,
128 unsigned long user_ptr)
129 {
130 struct rb_node *n = alloc->allocated_buffers.rb_node;
131 struct binder_buffer *buffer;
132
133 while (n) {
134 buffer = rb_entry(n, struct binder_buffer, rb_node);
135 BUG_ON(buffer->free);
136
137 if (user_ptr < buffer->user_data) {
138 n = n->rb_left;
139 } else if (user_ptr > buffer->user_data) {
140 n = n->rb_right;
141 } else {
142 /*
143 * Guard against user threads attempting to
144 * free the buffer when in use by kernel or
145 * after it's already been freed.
146 */
147 if (!buffer->allow_user_free)
148 return ERR_PTR(-EPERM);
149 buffer->allow_user_free = 0;
150 return buffer;
151 }
152 }
153 return NULL;
154 }
155
156 /**
157 * binder_alloc_prepare_to_free() - get buffer given user ptr
158 * @alloc: binder_alloc for this proc
159 * @user_ptr: User pointer to buffer data
160 *
161 * Validate userspace pointer to buffer data and return buffer corresponding to
162 * that user pointer. Search the rb tree for buffer that matches user data
163 * pointer.
164 *
165 * Return: Pointer to buffer or NULL
166 */
binder_alloc_prepare_to_free(struct binder_alloc * alloc,unsigned long user_ptr)167 struct binder_buffer *binder_alloc_prepare_to_free(struct binder_alloc *alloc,
168 unsigned long user_ptr)
169 {
170 struct binder_buffer *buffer;
171
172 mutex_lock(&alloc->mutex);
173 buffer = binder_alloc_prepare_to_free_locked(alloc, user_ptr);
174 mutex_unlock(&alloc->mutex);
175 return buffer;
176 }
177
178 static inline void
binder_set_installed_page(struct binder_alloc * alloc,unsigned long index,struct page * page)179 binder_set_installed_page(struct binder_alloc *alloc,
180 unsigned long index,
181 struct page *page)
182 {
183 /* Pairs with acquire in binder_get_installed_page() */
184 smp_store_release(&alloc->pages[index], page);
185 }
186
187 static inline struct page *
binder_get_installed_page(struct binder_alloc * alloc,unsigned long index)188 binder_get_installed_page(struct binder_alloc *alloc, unsigned long index)
189 {
190 /* Pairs with release in binder_set_installed_page() */
191 return smp_load_acquire(&alloc->pages[index]);
192 }
193
binder_lru_freelist_add(struct binder_alloc * alloc,unsigned long start,unsigned long end)194 static void binder_lru_freelist_add(struct binder_alloc *alloc,
195 unsigned long start, unsigned long end)
196 {
197 unsigned long page_addr;
198 struct page *page;
199
200 trace_binder_update_page_range(alloc, false, start, end);
201
202 for (page_addr = start; page_addr < end; page_addr += PAGE_SIZE) {
203 size_t index;
204 int ret;
205
206 index = (page_addr - alloc->vm_start) / PAGE_SIZE;
207 page = binder_get_installed_page(alloc, index);
208 if (!page)
209 continue;
210
211 trace_binder_free_lru_start(alloc, index);
212
213 ret = list_lru_add(&binder_freelist,
214 page_to_lru(page),
215 page_to_nid(page),
216 NULL);
217 WARN_ON(!ret);
218
219 trace_binder_free_lru_end(alloc, index);
220 }
221 }
222
223 static inline
binder_alloc_set_mapped(struct binder_alloc * alloc,bool state)224 void binder_alloc_set_mapped(struct binder_alloc *alloc, bool state)
225 {
226 /* pairs with smp_load_acquire in binder_alloc_is_mapped() */
227 smp_store_release(&alloc->mapped, state);
228 }
229
binder_alloc_is_mapped(struct binder_alloc * alloc)230 static inline bool binder_alloc_is_mapped(struct binder_alloc *alloc)
231 {
232 /* pairs with smp_store_release in binder_alloc_set_mapped() */
233 return smp_load_acquire(&alloc->mapped);
234 }
235
binder_page_lookup(struct binder_alloc * alloc,unsigned long addr)236 static struct page *binder_page_lookup(struct binder_alloc *alloc,
237 unsigned long addr)
238 {
239 struct mm_struct *mm = alloc->mm;
240 struct page *page;
241 long npages = 0;
242
243 /*
244 * Find an existing page in the remote mm. If missing,
245 * don't attempt to fault-in just propagate an error.
246 */
247 mmap_read_lock(mm);
248 if (binder_alloc_is_mapped(alloc))
249 npages = get_user_pages_remote(mm, addr, 1, FOLL_NOFAULT,
250 &page, NULL);
251 mmap_read_unlock(mm);
252
253 return npages > 0 ? page : NULL;
254 }
255
binder_page_insert(struct binder_alloc * alloc,unsigned long addr,struct page * page)256 static int binder_page_insert(struct binder_alloc *alloc,
257 unsigned long addr,
258 struct page *page)
259 {
260 struct mm_struct *mm = alloc->mm;
261 struct vm_area_struct *vma;
262 int ret = -ESRCH;
263
264 /* attempt per-vma lock first */
265 vma = lock_vma_under_rcu(mm, addr);
266 if (vma) {
267 if (binder_alloc_is_mapped(alloc))
268 ret = vm_insert_page(vma, addr, page);
269 vma_end_read(vma);
270 return ret;
271 }
272
273 /* fall back to mmap_lock */
274 mmap_read_lock(mm);
275 vma = vma_lookup(mm, addr);
276 if (vma && binder_alloc_is_mapped(alloc))
277 ret = vm_insert_page(vma, addr, page);
278 mmap_read_unlock(mm);
279
280 return ret;
281 }
282
binder_page_alloc(struct binder_alloc * alloc,unsigned long index)283 static struct page *binder_page_alloc(struct binder_alloc *alloc,
284 unsigned long index)
285 {
286 struct binder_shrinker_mdata *mdata;
287 struct page *page;
288
289 page = alloc_page(GFP_KERNEL | __GFP_HIGHMEM | __GFP_ZERO);
290 if (!page)
291 return NULL;
292
293 /* allocate and install shrinker metadata under page->private */
294 mdata = kzalloc(sizeof(*mdata), GFP_KERNEL);
295 if (!mdata) {
296 __free_page(page);
297 return NULL;
298 }
299
300 mdata->alloc = alloc;
301 mdata->page_index = index;
302 INIT_LIST_HEAD(&mdata->lru);
303 set_page_private(page, (unsigned long)mdata);
304
305 return page;
306 }
307
binder_free_page(struct page * page)308 static void binder_free_page(struct page *page)
309 {
310 kfree((struct binder_shrinker_mdata *)page_private(page));
311 __free_page(page);
312 }
313
binder_install_single_page(struct binder_alloc * alloc,unsigned long index,unsigned long addr)314 static int binder_install_single_page(struct binder_alloc *alloc,
315 unsigned long index,
316 unsigned long addr)
317 {
318 struct page *page;
319 int ret;
320
321 if (!mmget_not_zero(alloc->mm))
322 return -ESRCH;
323
324 page = binder_page_alloc(alloc, index);
325 if (!page) {
326 ret = -ENOMEM;
327 goto out;
328 }
329
330 ret = binder_page_insert(alloc, addr, page);
331 switch (ret) {
332 case -EBUSY:
333 /*
334 * EBUSY is ok. Someone installed the pte first but the
335 * alloc->pages[index] has not been updated yet. Discard
336 * our page and look up the one already installed.
337 */
338 ret = 0;
339 binder_free_page(page);
340 page = binder_page_lookup(alloc, addr);
341 if (!page) {
342 pr_err("%d: failed to find page at offset %lx\n",
343 alloc->pid, addr - alloc->vm_start);
344 ret = -ESRCH;
345 break;
346 }
347 fallthrough;
348 case 0:
349 /* Mark page installation complete and safe to use */
350 binder_set_installed_page(alloc, index, page);
351 break;
352 default:
353 binder_free_page(page);
354 pr_err("%d: %s failed to insert page at offset %lx with %d\n",
355 alloc->pid, __func__, addr - alloc->vm_start, ret);
356 break;
357 }
358 out:
359 mmput_async(alloc->mm);
360 return ret;
361 }
362
binder_install_buffer_pages(struct binder_alloc * alloc,struct binder_buffer * buffer,size_t size)363 static int binder_install_buffer_pages(struct binder_alloc *alloc,
364 struct binder_buffer *buffer,
365 size_t size)
366 {
367 unsigned long start, final;
368 unsigned long page_addr;
369
370 start = buffer->user_data & PAGE_MASK;
371 final = PAGE_ALIGN(buffer->user_data + size);
372
373 for (page_addr = start; page_addr < final; page_addr += PAGE_SIZE) {
374 unsigned long index;
375 int ret;
376
377 index = (page_addr - alloc->vm_start) / PAGE_SIZE;
378 if (binder_get_installed_page(alloc, index))
379 continue;
380
381 trace_binder_alloc_page_start(alloc, index);
382
383 ret = binder_install_single_page(alloc, index, page_addr);
384 if (ret)
385 return ret;
386
387 trace_binder_alloc_page_end(alloc, index);
388 }
389
390 return 0;
391 }
392
393 /* The range of pages should exclude those shared with other buffers */
binder_lru_freelist_del(struct binder_alloc * alloc,unsigned long start,unsigned long end)394 static void binder_lru_freelist_del(struct binder_alloc *alloc,
395 unsigned long start, unsigned long end)
396 {
397 unsigned long page_addr;
398 struct page *page;
399
400 trace_binder_update_page_range(alloc, true, start, end);
401
402 for (page_addr = start; page_addr < end; page_addr += PAGE_SIZE) {
403 unsigned long index;
404 bool on_lru;
405
406 index = (page_addr - alloc->vm_start) / PAGE_SIZE;
407 page = binder_get_installed_page(alloc, index);
408
409 if (page) {
410 trace_binder_alloc_lru_start(alloc, index);
411
412 on_lru = list_lru_del(&binder_freelist,
413 page_to_lru(page),
414 page_to_nid(page),
415 NULL);
416 WARN_ON(!on_lru);
417
418 trace_binder_alloc_lru_end(alloc, index);
419 continue;
420 }
421
422 if (index + 1 > alloc->pages_high)
423 alloc->pages_high = index + 1;
424 }
425 }
426
debug_no_space_locked(struct binder_alloc * alloc)427 static void debug_no_space_locked(struct binder_alloc *alloc)
428 {
429 size_t largest_alloc_size = 0;
430 struct binder_buffer *buffer;
431 size_t allocated_buffers = 0;
432 size_t largest_free_size = 0;
433 size_t total_alloc_size = 0;
434 size_t total_free_size = 0;
435 size_t free_buffers = 0;
436 size_t buffer_size;
437 struct rb_node *n;
438
439 for (n = rb_first(&alloc->allocated_buffers); n; n = rb_next(n)) {
440 buffer = rb_entry(n, struct binder_buffer, rb_node);
441 buffer_size = binder_alloc_buffer_size(alloc, buffer);
442 allocated_buffers++;
443 total_alloc_size += buffer_size;
444 if (buffer_size > largest_alloc_size)
445 largest_alloc_size = buffer_size;
446 }
447
448 for (n = rb_first(&alloc->free_buffers); n; n = rb_next(n)) {
449 buffer = rb_entry(n, struct binder_buffer, rb_node);
450 buffer_size = binder_alloc_buffer_size(alloc, buffer);
451 free_buffers++;
452 total_free_size += buffer_size;
453 if (buffer_size > largest_free_size)
454 largest_free_size = buffer_size;
455 }
456
457 binder_alloc_debug(BINDER_DEBUG_USER_ERROR,
458 "allocated: %zd (num: %zd largest: %zd), free: %zd (num: %zd largest: %zd)\n",
459 total_alloc_size, allocated_buffers,
460 largest_alloc_size, total_free_size,
461 free_buffers, largest_free_size);
462 }
463
debug_low_async_space_locked(struct binder_alloc * alloc)464 static bool debug_low_async_space_locked(struct binder_alloc *alloc)
465 {
466 /*
467 * Find the amount and size of buffers allocated by the current caller;
468 * The idea is that once we cross the threshold, whoever is responsible
469 * for the low async space is likely to try to send another async txn,
470 * and at some point we'll catch them in the act. This is more efficient
471 * than keeping a map per pid.
472 */
473 struct binder_buffer *buffer;
474 size_t total_alloc_size = 0;
475 int pid = current->tgid;
476 size_t num_buffers = 0;
477 struct rb_node *n;
478
479 /*
480 * Only start detecting spammers once we have less than 20% of async
481 * space left (which is less than 10% of total buffer size).
482 */
483 if (alloc->free_async_space >= alloc->buffer_size / 10) {
484 alloc->oneway_spam_detected = false;
485 return false;
486 }
487
488 for (n = rb_first(&alloc->allocated_buffers); n != NULL;
489 n = rb_next(n)) {
490 buffer = rb_entry(n, struct binder_buffer, rb_node);
491 if (buffer->pid != pid)
492 continue;
493 if (!buffer->async_transaction)
494 continue;
495 total_alloc_size += binder_alloc_buffer_size(alloc, buffer);
496 num_buffers++;
497 }
498
499 /*
500 * Warn if this pid has more than 50 transactions, or more than 50% of
501 * async space (which is 25% of total buffer size). Oneway spam is only
502 * detected when the threshold is exceeded.
503 */
504 if (num_buffers > 50 || total_alloc_size > alloc->buffer_size / 4) {
505 binder_alloc_debug(BINDER_DEBUG_USER_ERROR,
506 "%d: pid %d spamming oneway? %zd buffers allocated for a total size of %zd\n",
507 alloc->pid, pid, num_buffers, total_alloc_size);
508 if (!alloc->oneway_spam_detected) {
509 alloc->oneway_spam_detected = true;
510 return true;
511 }
512 }
513 return false;
514 }
515
516 /* Callers preallocate @new_buffer, it is freed by this function if unused */
binder_alloc_new_buf_locked(struct binder_alloc * alloc,struct binder_buffer * new_buffer,size_t size,int is_async)517 static struct binder_buffer *binder_alloc_new_buf_locked(
518 struct binder_alloc *alloc,
519 struct binder_buffer *new_buffer,
520 size_t size,
521 int is_async)
522 {
523 struct rb_node *n = alloc->free_buffers.rb_node;
524 struct rb_node *best_fit = NULL;
525 struct binder_buffer *buffer;
526 unsigned long next_used_page;
527 unsigned long curr_last_page;
528 size_t buffer_size;
529
530 if (is_async && alloc->free_async_space < size) {
531 binder_alloc_debug(BINDER_DEBUG_BUFFER_ALLOC,
532 "%d: binder_alloc_buf size %zd failed, no async space left\n",
533 alloc->pid, size);
534 buffer = ERR_PTR(-ENOSPC);
535 goto out;
536 }
537
538 while (n) {
539 buffer = rb_entry(n, struct binder_buffer, rb_node);
540 BUG_ON(!buffer->free);
541 buffer_size = binder_alloc_buffer_size(alloc, buffer);
542
543 if (size < buffer_size) {
544 best_fit = n;
545 n = n->rb_left;
546 } else if (size > buffer_size) {
547 n = n->rb_right;
548 } else {
549 best_fit = n;
550 break;
551 }
552 }
553
554 if (unlikely(!best_fit)) {
555 binder_alloc_debug(BINDER_DEBUG_USER_ERROR,
556 "%d: binder_alloc_buf size %zd failed, no address space\n",
557 alloc->pid, size);
558 debug_no_space_locked(alloc);
559 buffer = ERR_PTR(-ENOSPC);
560 goto out;
561 }
562
563 if (buffer_size != size) {
564 /* Found an oversized buffer and needs to be split */
565 buffer = rb_entry(best_fit, struct binder_buffer, rb_node);
566 buffer_size = binder_alloc_buffer_size(alloc, buffer);
567
568 WARN_ON(n || buffer_size == size);
569 new_buffer->user_data = buffer->user_data + size;
570 list_add(&new_buffer->entry, &buffer->entry);
571 new_buffer->free = 1;
572 binder_insert_free_buffer(alloc, new_buffer);
573 new_buffer = NULL;
574 }
575
576 binder_alloc_debug(BINDER_DEBUG_BUFFER_ALLOC,
577 "%d: binder_alloc_buf size %zd got buffer %pK size %zd\n",
578 alloc->pid, size, buffer, buffer_size);
579
580 /*
581 * Now we remove the pages from the freelist. A clever calculation
582 * with buffer_size determines if the last page is shared with an
583 * adjacent in-use buffer. In such case, the page has been already
584 * removed from the freelist so we trim our range short.
585 */
586 next_used_page = (buffer->user_data + buffer_size) & PAGE_MASK;
587 curr_last_page = PAGE_ALIGN(buffer->user_data + size);
588 binder_lru_freelist_del(alloc, PAGE_ALIGN(buffer->user_data),
589 min(next_used_page, curr_last_page));
590
591 rb_erase(&buffer->rb_node, &alloc->free_buffers);
592 buffer->free = 0;
593 buffer->allow_user_free = 0;
594 binder_insert_allocated_buffer_locked(alloc, buffer);
595 buffer->async_transaction = is_async;
596 buffer->oneway_spam_suspect = false;
597 if (is_async) {
598 alloc->free_async_space -= size;
599 binder_alloc_debug(BINDER_DEBUG_BUFFER_ALLOC_ASYNC,
600 "%d: binder_alloc_buf size %zd async free %zd\n",
601 alloc->pid, size, alloc->free_async_space);
602 if (debug_low_async_space_locked(alloc))
603 buffer->oneway_spam_suspect = true;
604 }
605
606 out:
607 /* Discard possibly unused new_buffer */
608 kfree(new_buffer);
609 return buffer;
610 }
611
612 /* Calculate the sanitized total size, returns 0 for invalid request */
sanitized_size(size_t data_size,size_t offsets_size,size_t extra_buffers_size)613 static inline size_t sanitized_size(size_t data_size,
614 size_t offsets_size,
615 size_t extra_buffers_size)
616 {
617 size_t total, tmp;
618
619 /* Align to pointer size and check for overflows */
620 tmp = ALIGN(data_size, sizeof(void *)) +
621 ALIGN(offsets_size, sizeof(void *));
622 if (tmp < data_size || tmp < offsets_size)
623 return 0;
624 total = tmp + ALIGN(extra_buffers_size, sizeof(void *));
625 if (total < tmp || total < extra_buffers_size)
626 return 0;
627
628 /* Pad 0-sized buffers so they get a unique address */
629 total = max(total, sizeof(void *));
630
631 return total;
632 }
633
634 /**
635 * binder_alloc_new_buf() - Allocate a new binder buffer
636 * @alloc: binder_alloc for this proc
637 * @data_size: size of user data buffer
638 * @offsets_size: user specified buffer offset
639 * @extra_buffers_size: size of extra space for meta-data (eg, security context)
640 * @is_async: buffer for async transaction
641 *
642 * Allocate a new buffer given the requested sizes. Returns
643 * the kernel version of the buffer pointer. The size allocated
644 * is the sum of the three given sizes (each rounded up to
645 * pointer-sized boundary)
646 *
647 * Return: The allocated buffer or %ERR_PTR(-errno) if error
648 */
binder_alloc_new_buf(struct binder_alloc * alloc,size_t data_size,size_t offsets_size,size_t extra_buffers_size,int is_async)649 struct binder_buffer *binder_alloc_new_buf(struct binder_alloc *alloc,
650 size_t data_size,
651 size_t offsets_size,
652 size_t extra_buffers_size,
653 int is_async)
654 {
655 struct binder_buffer *buffer, *next;
656 size_t size;
657 int ret;
658
659 /* Check binder_alloc is fully initialized */
660 if (!binder_alloc_is_mapped(alloc)) {
661 binder_alloc_debug(BINDER_DEBUG_USER_ERROR,
662 "%d: binder_alloc_buf, no vma\n",
663 alloc->pid);
664 return ERR_PTR(-ESRCH);
665 }
666
667 size = sanitized_size(data_size, offsets_size, extra_buffers_size);
668 if (unlikely(!size)) {
669 binder_alloc_debug(BINDER_DEBUG_BUFFER_ALLOC,
670 "%d: got transaction with invalid size %zd-%zd-%zd\n",
671 alloc->pid, data_size, offsets_size,
672 extra_buffers_size);
673 return ERR_PTR(-EINVAL);
674 }
675
676 /* Preallocate the next buffer */
677 next = kzalloc(sizeof(*next), GFP_KERNEL);
678 if (!next)
679 return ERR_PTR(-ENOMEM);
680
681 mutex_lock(&alloc->mutex);
682 buffer = binder_alloc_new_buf_locked(alloc, next, size, is_async);
683 if (IS_ERR(buffer)) {
684 mutex_unlock(&alloc->mutex);
685 goto out;
686 }
687
688 buffer->data_size = data_size;
689 buffer->offsets_size = offsets_size;
690 buffer->extra_buffers_size = extra_buffers_size;
691 buffer->pid = current->tgid;
692 mutex_unlock(&alloc->mutex);
693
694 ret = binder_install_buffer_pages(alloc, buffer, size);
695 if (ret) {
696 binder_alloc_free_buf(alloc, buffer);
697 buffer = ERR_PTR(ret);
698 }
699 out:
700 return buffer;
701 }
702
buffer_start_page(struct binder_buffer * buffer)703 static unsigned long buffer_start_page(struct binder_buffer *buffer)
704 {
705 return buffer->user_data & PAGE_MASK;
706 }
707
prev_buffer_end_page(struct binder_buffer * buffer)708 static unsigned long prev_buffer_end_page(struct binder_buffer *buffer)
709 {
710 return (buffer->user_data - 1) & PAGE_MASK;
711 }
712
binder_delete_free_buffer(struct binder_alloc * alloc,struct binder_buffer * buffer)713 static void binder_delete_free_buffer(struct binder_alloc *alloc,
714 struct binder_buffer *buffer)
715 {
716 struct binder_buffer *prev, *next;
717
718 if (PAGE_ALIGNED(buffer->user_data))
719 goto skip_freelist;
720
721 BUG_ON(alloc->buffers.next == &buffer->entry);
722 prev = binder_buffer_prev(buffer);
723 BUG_ON(!prev->free);
724 if (prev_buffer_end_page(prev) == buffer_start_page(buffer))
725 goto skip_freelist;
726
727 if (!list_is_last(&buffer->entry, &alloc->buffers)) {
728 next = binder_buffer_next(buffer);
729 if (buffer_start_page(next) == buffer_start_page(buffer))
730 goto skip_freelist;
731 }
732
733 binder_lru_freelist_add(alloc, buffer_start_page(buffer),
734 buffer_start_page(buffer) + PAGE_SIZE);
735 skip_freelist:
736 list_del(&buffer->entry);
737 kfree(buffer);
738 }
739
binder_free_buf_locked(struct binder_alloc * alloc,struct binder_buffer * buffer)740 static void binder_free_buf_locked(struct binder_alloc *alloc,
741 struct binder_buffer *buffer)
742 {
743 size_t size, buffer_size;
744
745 buffer_size = binder_alloc_buffer_size(alloc, buffer);
746
747 size = ALIGN(buffer->data_size, sizeof(void *)) +
748 ALIGN(buffer->offsets_size, sizeof(void *)) +
749 ALIGN(buffer->extra_buffers_size, sizeof(void *));
750
751 binder_alloc_debug(BINDER_DEBUG_BUFFER_ALLOC,
752 "%d: binder_free_buf %pK size %zd buffer_size %zd\n",
753 alloc->pid, buffer, size, buffer_size);
754
755 BUG_ON(buffer->free);
756 BUG_ON(size > buffer_size);
757 BUG_ON(buffer->transaction != NULL);
758 BUG_ON(buffer->user_data < alloc->vm_start);
759 BUG_ON(buffer->user_data > alloc->vm_start + alloc->buffer_size);
760
761 if (buffer->async_transaction) {
762 alloc->free_async_space += buffer_size;
763 binder_alloc_debug(BINDER_DEBUG_BUFFER_ALLOC_ASYNC,
764 "%d: binder_free_buf size %zd async free %zd\n",
765 alloc->pid, size, alloc->free_async_space);
766 }
767
768 binder_lru_freelist_add(alloc, PAGE_ALIGN(buffer->user_data),
769 (buffer->user_data + buffer_size) & PAGE_MASK);
770
771 rb_erase(&buffer->rb_node, &alloc->allocated_buffers);
772 buffer->free = 1;
773 if (!list_is_last(&buffer->entry, &alloc->buffers)) {
774 struct binder_buffer *next = binder_buffer_next(buffer);
775
776 if (next->free) {
777 rb_erase(&next->rb_node, &alloc->free_buffers);
778 binder_delete_free_buffer(alloc, next);
779 }
780 }
781 if (alloc->buffers.next != &buffer->entry) {
782 struct binder_buffer *prev = binder_buffer_prev(buffer);
783
784 if (prev->free) {
785 binder_delete_free_buffer(alloc, buffer);
786 rb_erase(&prev->rb_node, &alloc->free_buffers);
787 buffer = prev;
788 }
789 }
790 binder_insert_free_buffer(alloc, buffer);
791 }
792
793 /**
794 * binder_alloc_get_page() - get kernel pointer for given buffer offset
795 * @alloc: binder_alloc for this proc
796 * @buffer: binder buffer to be accessed
797 * @buffer_offset: offset into @buffer data
798 * @pgoffp: address to copy final page offset to
799 *
800 * Lookup the struct page corresponding to the address
801 * at @buffer_offset into @buffer->user_data. If @pgoffp is not
802 * NULL, the byte-offset into the page is written there.
803 *
804 * The caller is responsible to ensure that the offset points
805 * to a valid address within the @buffer and that @buffer is
806 * not freeable by the user. Since it can't be freed, we are
807 * guaranteed that the corresponding elements of @alloc->pages[]
808 * cannot change.
809 *
810 * Return: struct page
811 */
binder_alloc_get_page(struct binder_alloc * alloc,struct binder_buffer * buffer,binder_size_t buffer_offset,pgoff_t * pgoffp)812 static struct page *binder_alloc_get_page(struct binder_alloc *alloc,
813 struct binder_buffer *buffer,
814 binder_size_t buffer_offset,
815 pgoff_t *pgoffp)
816 {
817 binder_size_t buffer_space_offset = buffer_offset +
818 (buffer->user_data - alloc->vm_start);
819 pgoff_t pgoff = buffer_space_offset & ~PAGE_MASK;
820 size_t index = buffer_space_offset >> PAGE_SHIFT;
821
822 *pgoffp = pgoff;
823
824 return alloc->pages[index];
825 }
826
827 /**
828 * binder_alloc_clear_buf() - zero out buffer
829 * @alloc: binder_alloc for this proc
830 * @buffer: binder buffer to be cleared
831 *
832 * memset the given buffer to 0
833 */
binder_alloc_clear_buf(struct binder_alloc * alloc,struct binder_buffer * buffer)834 static void binder_alloc_clear_buf(struct binder_alloc *alloc,
835 struct binder_buffer *buffer)
836 {
837 size_t bytes = binder_alloc_buffer_size(alloc, buffer);
838 binder_size_t buffer_offset = 0;
839
840 while (bytes) {
841 unsigned long size;
842 struct page *page;
843 pgoff_t pgoff;
844
845 page = binder_alloc_get_page(alloc, buffer,
846 buffer_offset, &pgoff);
847 size = min_t(size_t, bytes, PAGE_SIZE - pgoff);
848 memset_page(page, pgoff, 0, size);
849 bytes -= size;
850 buffer_offset += size;
851 }
852 }
853
854 /**
855 * binder_alloc_free_buf() - free a binder buffer
856 * @alloc: binder_alloc for this proc
857 * @buffer: kernel pointer to buffer
858 *
859 * Free the buffer allocated via binder_alloc_new_buf()
860 */
binder_alloc_free_buf(struct binder_alloc * alloc,struct binder_buffer * buffer)861 void binder_alloc_free_buf(struct binder_alloc *alloc,
862 struct binder_buffer *buffer)
863 {
864 /*
865 * We could eliminate the call to binder_alloc_clear_buf()
866 * from binder_alloc_deferred_release() by moving this to
867 * binder_free_buf_locked(). However, that could
868 * increase contention for the alloc mutex if clear_on_free
869 * is used frequently for large buffers. The mutex is not
870 * needed for correctness here.
871 */
872 if (buffer->clear_on_free) {
873 binder_alloc_clear_buf(alloc, buffer);
874 buffer->clear_on_free = false;
875 }
876 mutex_lock(&alloc->mutex);
877 binder_free_buf_locked(alloc, buffer);
878 mutex_unlock(&alloc->mutex);
879 }
880
881 /**
882 * binder_alloc_mmap_handler() - map virtual address space for proc
883 * @alloc: alloc structure for this proc
884 * @vma: vma passed to mmap()
885 *
886 * Called by binder_mmap() to initialize the space specified in
887 * vma for allocating binder buffers
888 *
889 * Return:
890 * 0 = success
891 * -EBUSY = address space already mapped
892 * -ENOMEM = failed to map memory to given address space
893 */
binder_alloc_mmap_handler(struct binder_alloc * alloc,struct vm_area_struct * vma)894 int binder_alloc_mmap_handler(struct binder_alloc *alloc,
895 struct vm_area_struct *vma)
896 {
897 struct binder_buffer *buffer;
898 const char *failure_string;
899 int ret;
900
901 if (unlikely(vma->vm_mm != alloc->mm)) {
902 ret = -EINVAL;
903 failure_string = "invalid vma->vm_mm";
904 goto err_invalid_mm;
905 }
906
907 mutex_lock(&binder_alloc_mmap_lock);
908 if (alloc->buffer_size) {
909 ret = -EBUSY;
910 failure_string = "already mapped";
911 goto err_already_mapped;
912 }
913 alloc->buffer_size = min_t(unsigned long, vma->vm_end - vma->vm_start,
914 SZ_4M);
915 mutex_unlock(&binder_alloc_mmap_lock);
916
917 alloc->vm_start = vma->vm_start;
918
919 alloc->pages = kvcalloc(alloc->buffer_size / PAGE_SIZE,
920 sizeof(alloc->pages[0]),
921 GFP_KERNEL);
922 if (!alloc->pages) {
923 ret = -ENOMEM;
924 failure_string = "alloc page array";
925 goto err_alloc_pages_failed;
926 }
927
928 buffer = kzalloc(sizeof(*buffer), GFP_KERNEL);
929 if (!buffer) {
930 ret = -ENOMEM;
931 failure_string = "alloc buffer struct";
932 goto err_alloc_buf_struct_failed;
933 }
934
935 buffer->user_data = alloc->vm_start;
936 list_add(&buffer->entry, &alloc->buffers);
937 buffer->free = 1;
938 binder_insert_free_buffer(alloc, buffer);
939 alloc->free_async_space = alloc->buffer_size / 2;
940
941 /* Signal binder_alloc is fully initialized */
942 binder_alloc_set_mapped(alloc, true);
943
944 return 0;
945
946 err_alloc_buf_struct_failed:
947 kvfree(alloc->pages);
948 alloc->pages = NULL;
949 err_alloc_pages_failed:
950 alloc->vm_start = 0;
951 mutex_lock(&binder_alloc_mmap_lock);
952 alloc->buffer_size = 0;
953 err_already_mapped:
954 mutex_unlock(&binder_alloc_mmap_lock);
955 err_invalid_mm:
956 binder_alloc_debug(BINDER_DEBUG_USER_ERROR,
957 "%s: %d %lx-%lx %s failed %d\n", __func__,
958 alloc->pid, vma->vm_start, vma->vm_end,
959 failure_string, ret);
960 return ret;
961 }
962
963
binder_alloc_deferred_release(struct binder_alloc * alloc)964 void binder_alloc_deferred_release(struct binder_alloc *alloc)
965 {
966 struct rb_node *n;
967 int buffers, page_count;
968 struct binder_buffer *buffer;
969
970 buffers = 0;
971 mutex_lock(&alloc->mutex);
972 BUG_ON(alloc->mapped);
973
974 while ((n = rb_first(&alloc->allocated_buffers))) {
975 buffer = rb_entry(n, struct binder_buffer, rb_node);
976
977 /* Transaction should already have been freed */
978 BUG_ON(buffer->transaction);
979
980 if (buffer->clear_on_free) {
981 binder_alloc_clear_buf(alloc, buffer);
982 buffer->clear_on_free = false;
983 }
984 binder_free_buf_locked(alloc, buffer);
985 buffers++;
986 }
987
988 while (!list_empty(&alloc->buffers)) {
989 buffer = list_first_entry(&alloc->buffers,
990 struct binder_buffer, entry);
991 WARN_ON(!buffer->free);
992
993 list_del(&buffer->entry);
994 WARN_ON_ONCE(!list_empty(&alloc->buffers));
995 kfree(buffer);
996 }
997
998 page_count = 0;
999 if (alloc->pages) {
1000 int i;
1001
1002 for (i = 0; i < alloc->buffer_size / PAGE_SIZE; i++) {
1003 struct page *page;
1004 bool on_lru;
1005
1006 page = binder_get_installed_page(alloc, i);
1007 if (!page)
1008 continue;
1009
1010 on_lru = list_lru_del(&binder_freelist,
1011 page_to_lru(page),
1012 page_to_nid(page),
1013 NULL);
1014 binder_alloc_debug(BINDER_DEBUG_BUFFER_ALLOC,
1015 "%s: %d: page %d %s\n",
1016 __func__, alloc->pid, i,
1017 on_lru ? "on lru" : "active");
1018 binder_free_page(page);
1019 page_count++;
1020 }
1021 }
1022 mutex_unlock(&alloc->mutex);
1023 kvfree(alloc->pages);
1024 if (alloc->mm)
1025 mmdrop(alloc->mm);
1026
1027 binder_alloc_debug(BINDER_DEBUG_OPEN_CLOSE,
1028 "%s: %d buffers %d, pages %d\n",
1029 __func__, alloc->pid, buffers, page_count);
1030 }
1031
1032 /**
1033 * binder_alloc_print_allocated() - print buffer info
1034 * @m: seq_file for output via seq_printf()
1035 * @alloc: binder_alloc for this proc
1036 *
1037 * Prints information about every buffer associated with
1038 * the binder_alloc state to the given seq_file
1039 */
binder_alloc_print_allocated(struct seq_file * m,struct binder_alloc * alloc)1040 void binder_alloc_print_allocated(struct seq_file *m,
1041 struct binder_alloc *alloc)
1042 {
1043 struct binder_buffer *buffer;
1044 struct rb_node *n;
1045
1046 mutex_lock(&alloc->mutex);
1047 for (n = rb_first(&alloc->allocated_buffers); n; n = rb_next(n)) {
1048 buffer = rb_entry(n, struct binder_buffer, rb_node);
1049 seq_printf(m, " buffer %d: %lx size %zd:%zd:%zd %s\n",
1050 buffer->debug_id,
1051 buffer->user_data - alloc->vm_start,
1052 buffer->data_size, buffer->offsets_size,
1053 buffer->extra_buffers_size,
1054 buffer->transaction ? "active" : "delivered");
1055 }
1056 mutex_unlock(&alloc->mutex);
1057 }
1058
1059 /**
1060 * binder_alloc_print_pages() - print page usage
1061 * @m: seq_file for output via seq_printf()
1062 * @alloc: binder_alloc for this proc
1063 */
binder_alloc_print_pages(struct seq_file * m,struct binder_alloc * alloc)1064 void binder_alloc_print_pages(struct seq_file *m,
1065 struct binder_alloc *alloc)
1066 {
1067 struct page *page;
1068 int i;
1069 int active = 0;
1070 int lru = 0;
1071 int free = 0;
1072
1073 mutex_lock(&alloc->mutex);
1074 /*
1075 * Make sure the binder_alloc is fully initialized, otherwise we might
1076 * read inconsistent state.
1077 */
1078 if (binder_alloc_is_mapped(alloc)) {
1079 for (i = 0; i < alloc->buffer_size / PAGE_SIZE; i++) {
1080 page = binder_get_installed_page(alloc, i);
1081 if (!page)
1082 free++;
1083 else if (list_empty(page_to_lru(page)))
1084 active++;
1085 else
1086 lru++;
1087 }
1088 }
1089 mutex_unlock(&alloc->mutex);
1090 seq_printf(m, " pages: %d:%d:%d\n", active, lru, free);
1091 seq_printf(m, " pages high watermark: %zu\n", alloc->pages_high);
1092 }
1093
1094 /**
1095 * binder_alloc_get_allocated_count() - return count of buffers
1096 * @alloc: binder_alloc for this proc
1097 *
1098 * Return: count of allocated buffers
1099 */
binder_alloc_get_allocated_count(struct binder_alloc * alloc)1100 int binder_alloc_get_allocated_count(struct binder_alloc *alloc)
1101 {
1102 struct rb_node *n;
1103 int count = 0;
1104
1105 mutex_lock(&alloc->mutex);
1106 for (n = rb_first(&alloc->allocated_buffers); n != NULL; n = rb_next(n))
1107 count++;
1108 mutex_unlock(&alloc->mutex);
1109 return count;
1110 }
1111
1112
1113 /**
1114 * binder_alloc_vma_close() - invalidate address space
1115 * @alloc: binder_alloc for this proc
1116 *
1117 * Called from binder_vma_close() when releasing address space.
1118 * Clears alloc->mapped to prevent new incoming transactions from
1119 * allocating more buffers.
1120 */
binder_alloc_vma_close(struct binder_alloc * alloc)1121 void binder_alloc_vma_close(struct binder_alloc *alloc)
1122 {
1123 binder_alloc_set_mapped(alloc, false);
1124 }
1125
1126 /**
1127 * binder_alloc_free_page() - shrinker callback to free pages
1128 * @item: item to free
1129 * @lru: list_lru instance of the item
1130 * @cb_arg: callback argument
1131 *
1132 * Called from list_lru_walk() in binder_shrink_scan() to free
1133 * up pages when the system is under memory pressure.
1134 */
binder_alloc_free_page(struct list_head * item,struct list_lru_one * lru,void * cb_arg)1135 enum lru_status binder_alloc_free_page(struct list_head *item,
1136 struct list_lru_one *lru,
1137 void *cb_arg)
1138 __must_hold(&lru->lock)
1139 {
1140 struct binder_shrinker_mdata *mdata = container_of(item, typeof(*mdata), lru);
1141 struct binder_alloc *alloc = mdata->alloc;
1142 struct mm_struct *mm = alloc->mm;
1143 struct vm_area_struct *vma;
1144 struct page *page_to_free;
1145 unsigned long page_addr;
1146 int mm_locked = 0;
1147 size_t index;
1148
1149 if (!mmget_not_zero(mm))
1150 goto err_mmget;
1151
1152 index = mdata->page_index;
1153 page_addr = alloc->vm_start + index * PAGE_SIZE;
1154
1155 /* attempt per-vma lock first */
1156 vma = lock_vma_under_rcu(mm, page_addr);
1157 if (!vma) {
1158 /* fall back to mmap_lock */
1159 if (!mmap_read_trylock(mm))
1160 goto err_mmap_read_lock_failed;
1161 mm_locked = 1;
1162 vma = vma_lookup(mm, page_addr);
1163 }
1164
1165 if (!mutex_trylock(&alloc->mutex))
1166 goto err_get_alloc_mutex_failed;
1167
1168 /*
1169 * Since a binder_alloc can only be mapped once, we ensure
1170 * the vma corresponds to this mapping by checking whether
1171 * the binder_alloc is still mapped.
1172 */
1173 if (vma && !binder_alloc_is_mapped(alloc))
1174 goto err_invalid_vma;
1175
1176 trace_binder_unmap_kernel_start(alloc, index);
1177
1178 page_to_free = alloc->pages[index];
1179 binder_set_installed_page(alloc, index, NULL);
1180
1181 trace_binder_unmap_kernel_end(alloc, index);
1182
1183 list_lru_isolate(lru, item);
1184 spin_unlock(&lru->lock);
1185
1186 if (vma) {
1187 trace_binder_unmap_user_start(alloc, index);
1188
1189 zap_page_range_single(vma, page_addr, PAGE_SIZE, NULL);
1190
1191 trace_binder_unmap_user_end(alloc, index);
1192 }
1193
1194 mutex_unlock(&alloc->mutex);
1195 if (mm_locked)
1196 mmap_read_unlock(mm);
1197 else
1198 vma_end_read(vma);
1199 mmput_async(mm);
1200 binder_free_page(page_to_free);
1201
1202 return LRU_REMOVED_RETRY;
1203
1204 err_invalid_vma:
1205 mutex_unlock(&alloc->mutex);
1206 err_get_alloc_mutex_failed:
1207 if (mm_locked)
1208 mmap_read_unlock(mm);
1209 else
1210 vma_end_read(vma);
1211 err_mmap_read_lock_failed:
1212 mmput_async(mm);
1213 err_mmget:
1214 return LRU_SKIP;
1215 }
1216
1217 static unsigned long
binder_shrink_count(struct shrinker * shrink,struct shrink_control * sc)1218 binder_shrink_count(struct shrinker *shrink, struct shrink_control *sc)
1219 {
1220 return list_lru_count(&binder_freelist);
1221 }
1222
1223 static unsigned long
binder_shrink_scan(struct shrinker * shrink,struct shrink_control * sc)1224 binder_shrink_scan(struct shrinker *shrink, struct shrink_control *sc)
1225 {
1226 return list_lru_walk(&binder_freelist, binder_alloc_free_page,
1227 NULL, sc->nr_to_scan);
1228 }
1229
1230 static struct shrinker *binder_shrinker;
1231
1232 /**
1233 * binder_alloc_init() - called by binder_open() for per-proc initialization
1234 * @alloc: binder_alloc for this proc
1235 *
1236 * Called from binder_open() to initialize binder_alloc fields for
1237 * new binder proc
1238 */
binder_alloc_init(struct binder_alloc * alloc)1239 void binder_alloc_init(struct binder_alloc *alloc)
1240 {
1241 alloc->pid = current->group_leader->pid;
1242 alloc->mm = current->mm;
1243 mmgrab(alloc->mm);
1244 mutex_init(&alloc->mutex);
1245 INIT_LIST_HEAD(&alloc->buffers);
1246 }
1247
binder_alloc_shrinker_init(void)1248 int binder_alloc_shrinker_init(void)
1249 {
1250 int ret;
1251
1252 ret = list_lru_init(&binder_freelist);
1253 if (ret)
1254 return ret;
1255
1256 binder_shrinker = shrinker_alloc(0, "android-binder");
1257 if (!binder_shrinker) {
1258 list_lru_destroy(&binder_freelist);
1259 return -ENOMEM;
1260 }
1261
1262 binder_shrinker->count_objects = binder_shrink_count;
1263 binder_shrinker->scan_objects = binder_shrink_scan;
1264
1265 shrinker_register(binder_shrinker);
1266
1267 return 0;
1268 }
1269
binder_alloc_shrinker_exit(void)1270 void binder_alloc_shrinker_exit(void)
1271 {
1272 shrinker_free(binder_shrinker);
1273 list_lru_destroy(&binder_freelist);
1274 }
1275
1276 /**
1277 * check_buffer() - verify that buffer/offset is safe to access
1278 * @alloc: binder_alloc for this proc
1279 * @buffer: binder buffer to be accessed
1280 * @offset: offset into @buffer data
1281 * @bytes: bytes to access from offset
1282 *
1283 * Check that the @offset/@bytes are within the size of the given
1284 * @buffer and that the buffer is currently active and not freeable.
1285 * Offsets must also be multiples of sizeof(u32). The kernel is
1286 * allowed to touch the buffer in two cases:
1287 *
1288 * 1) when the buffer is being created:
1289 * (buffer->free == 0 && buffer->allow_user_free == 0)
1290 * 2) when the buffer is being torn down:
1291 * (buffer->free == 0 && buffer->transaction == NULL).
1292 *
1293 * Return: true if the buffer is safe to access
1294 */
check_buffer(struct binder_alloc * alloc,struct binder_buffer * buffer,binder_size_t offset,size_t bytes)1295 static inline bool check_buffer(struct binder_alloc *alloc,
1296 struct binder_buffer *buffer,
1297 binder_size_t offset, size_t bytes)
1298 {
1299 size_t buffer_size = binder_alloc_buffer_size(alloc, buffer);
1300
1301 return buffer_size >= bytes &&
1302 offset <= buffer_size - bytes &&
1303 IS_ALIGNED(offset, sizeof(u32)) &&
1304 !buffer->free &&
1305 (!buffer->allow_user_free || !buffer->transaction);
1306 }
1307
1308 /**
1309 * binder_alloc_copy_user_to_buffer() - copy src user to tgt user
1310 * @alloc: binder_alloc for this proc
1311 * @buffer: binder buffer to be accessed
1312 * @buffer_offset: offset into @buffer data
1313 * @from: userspace pointer to source buffer
1314 * @bytes: bytes to copy
1315 *
1316 * Copy bytes from source userspace to target buffer.
1317 *
1318 * Return: bytes remaining to be copied
1319 */
1320 unsigned long
binder_alloc_copy_user_to_buffer(struct binder_alloc * alloc,struct binder_buffer * buffer,binder_size_t buffer_offset,const void __user * from,size_t bytes)1321 binder_alloc_copy_user_to_buffer(struct binder_alloc *alloc,
1322 struct binder_buffer *buffer,
1323 binder_size_t buffer_offset,
1324 const void __user *from,
1325 size_t bytes)
1326 {
1327 if (!check_buffer(alloc, buffer, buffer_offset, bytes))
1328 return bytes;
1329
1330 while (bytes) {
1331 unsigned long size;
1332 unsigned long ret;
1333 struct page *page;
1334 pgoff_t pgoff;
1335 void *kptr;
1336
1337 page = binder_alloc_get_page(alloc, buffer,
1338 buffer_offset, &pgoff);
1339 size = min_t(size_t, bytes, PAGE_SIZE - pgoff);
1340 kptr = kmap_local_page(page) + pgoff;
1341 ret = copy_from_user(kptr, from, size);
1342 kunmap_local(kptr);
1343 if (ret)
1344 return bytes - size + ret;
1345 bytes -= size;
1346 from += size;
1347 buffer_offset += size;
1348 }
1349 return 0;
1350 }
1351
binder_alloc_do_buffer_copy(struct binder_alloc * alloc,bool to_buffer,struct binder_buffer * buffer,binder_size_t buffer_offset,void * ptr,size_t bytes)1352 static int binder_alloc_do_buffer_copy(struct binder_alloc *alloc,
1353 bool to_buffer,
1354 struct binder_buffer *buffer,
1355 binder_size_t buffer_offset,
1356 void *ptr,
1357 size_t bytes)
1358 {
1359 /* All copies must be 32-bit aligned and 32-bit size */
1360 if (!check_buffer(alloc, buffer, buffer_offset, bytes))
1361 return -EINVAL;
1362
1363 while (bytes) {
1364 unsigned long size;
1365 struct page *page;
1366 pgoff_t pgoff;
1367
1368 page = binder_alloc_get_page(alloc, buffer,
1369 buffer_offset, &pgoff);
1370 size = min_t(size_t, bytes, PAGE_SIZE - pgoff);
1371 if (to_buffer)
1372 memcpy_to_page(page, pgoff, ptr, size);
1373 else
1374 memcpy_from_page(ptr, page, pgoff, size);
1375 bytes -= size;
1376 pgoff = 0;
1377 ptr = ptr + size;
1378 buffer_offset += size;
1379 }
1380 return 0;
1381 }
1382
binder_alloc_copy_to_buffer(struct binder_alloc * alloc,struct binder_buffer * buffer,binder_size_t buffer_offset,void * src,size_t bytes)1383 int binder_alloc_copy_to_buffer(struct binder_alloc *alloc,
1384 struct binder_buffer *buffer,
1385 binder_size_t buffer_offset,
1386 void *src,
1387 size_t bytes)
1388 {
1389 return binder_alloc_do_buffer_copy(alloc, true, buffer, buffer_offset,
1390 src, bytes);
1391 }
1392
binder_alloc_copy_from_buffer(struct binder_alloc * alloc,void * dest,struct binder_buffer * buffer,binder_size_t buffer_offset,size_t bytes)1393 int binder_alloc_copy_from_buffer(struct binder_alloc *alloc,
1394 void *dest,
1395 struct binder_buffer *buffer,
1396 binder_size_t buffer_offset,
1397 size_t bytes)
1398 {
1399 return binder_alloc_do_buffer_copy(alloc, false, buffer, buffer_offset,
1400 dest, bytes);
1401 }
1402