1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 *
4 * Bluetooth HCI UART driver
5 *
6 * Copyright (C) 2000-2001 Qualcomm Incorporated
7 * Copyright (C) 2002-2003 Maxim Krasnyansky <[email protected]>
8 * Copyright (C) 2004-2005 Marcel Holtmann <[email protected]>
9 */
10
11 #include <linux/module.h>
12
13 #include <linux/kernel.h>
14 #include <linux/init.h>
15 #include <linux/types.h>
16 #include <linux/fcntl.h>
17 #include <linux/interrupt.h>
18 #include <linux/ptrace.h>
19 #include <linux/poll.h>
20
21 #include <linux/slab.h>
22 #include <linux/tty.h>
23 #include <linux/errno.h>
24 #include <linux/string.h>
25 #include <linux/signal.h>
26 #include <linux/ioctl.h>
27 #include <linux/skbuff.h>
28 #include <linux/firmware.h>
29 #include <linux/serdev.h>
30
31 #include <net/bluetooth/bluetooth.h>
32 #include <net/bluetooth/hci_core.h>
33
34 #include "btintel.h"
35 #include "btbcm.h"
36 #include "hci_uart.h"
37
38 #define VERSION "2.3"
39
40 static const struct hci_uart_proto *hup[HCI_UART_MAX_PROTO];
41
hci_uart_register_proto(const struct hci_uart_proto * p)42 int hci_uart_register_proto(const struct hci_uart_proto *p)
43 {
44 if (p->id >= HCI_UART_MAX_PROTO)
45 return -EINVAL;
46
47 if (hup[p->id])
48 return -EEXIST;
49
50 hup[p->id] = p;
51
52 BT_INFO("HCI UART protocol %s registered", p->name);
53
54 return 0;
55 }
56
hci_uart_unregister_proto(const struct hci_uart_proto * p)57 int hci_uart_unregister_proto(const struct hci_uart_proto *p)
58 {
59 if (p->id >= HCI_UART_MAX_PROTO)
60 return -EINVAL;
61
62 if (!hup[p->id])
63 return -EINVAL;
64
65 hup[p->id] = NULL;
66
67 return 0;
68 }
69
hci_uart_get_proto(unsigned int id)70 static const struct hci_uart_proto *hci_uart_get_proto(unsigned int id)
71 {
72 if (id >= HCI_UART_MAX_PROTO)
73 return NULL;
74
75 return hup[id];
76 }
77
hci_uart_tx_complete(struct hci_uart * hu,int pkt_type)78 static inline void hci_uart_tx_complete(struct hci_uart *hu, int pkt_type)
79 {
80 struct hci_dev *hdev = hu->hdev;
81
82 /* Update HCI stat counters */
83 switch (pkt_type) {
84 case HCI_COMMAND_PKT:
85 hdev->stat.cmd_tx++;
86 break;
87
88 case HCI_ACLDATA_PKT:
89 hdev->stat.acl_tx++;
90 break;
91
92 case HCI_SCODATA_PKT:
93 hdev->stat.sco_tx++;
94 break;
95 }
96 }
97
hci_uart_dequeue(struct hci_uart * hu)98 static inline struct sk_buff *hci_uart_dequeue(struct hci_uart *hu)
99 {
100 struct sk_buff *skb = hu->tx_skb;
101
102 if (!skb) {
103 percpu_down_read(&hu->proto_lock);
104
105 if (test_bit(HCI_UART_PROTO_READY, &hu->flags) ||
106 test_bit(HCI_UART_PROTO_INIT, &hu->flags))
107 skb = hu->proto->dequeue(hu);
108
109 percpu_up_read(&hu->proto_lock);
110 } else {
111 hu->tx_skb = NULL;
112 }
113
114 return skb;
115 }
116
hci_uart_tx_wakeup(struct hci_uart * hu)117 int hci_uart_tx_wakeup(struct hci_uart *hu)
118 {
119 /* This may be called in an IRQ context, so we can't sleep. Therefore
120 * we try to acquire the lock only, and if that fails we assume the
121 * tty is being closed because that is the only time the write lock is
122 * acquired. If, however, at some point in the future the write lock
123 * is also acquired in other situations, then this must be revisited.
124 */
125 if (!percpu_down_read_trylock(&hu->proto_lock))
126 return 0;
127
128 if (!test_bit(HCI_UART_PROTO_READY, &hu->flags) &&
129 !test_bit(HCI_UART_PROTO_INIT, &hu->flags))
130 goto no_schedule;
131
132 set_bit(HCI_UART_TX_WAKEUP, &hu->tx_state);
133 if (test_and_set_bit(HCI_UART_SENDING, &hu->tx_state))
134 goto no_schedule;
135
136 BT_DBG("");
137
138 schedule_work(&hu->write_work);
139
140 no_schedule:
141 percpu_up_read(&hu->proto_lock);
142
143 return 0;
144 }
145 EXPORT_SYMBOL_GPL(hci_uart_tx_wakeup);
146
hci_uart_write_work(struct work_struct * work)147 static void hci_uart_write_work(struct work_struct *work)
148 {
149 struct hci_uart *hu = container_of(work, struct hci_uart, write_work);
150 struct tty_struct *tty = hu->tty;
151 struct hci_dev *hdev = hu->hdev;
152 struct sk_buff *skb;
153
154 /* REVISIT: should we cope with bad skbs or ->write() returning
155 * and error value ?
156 */
157
158 restart:
159 clear_bit(HCI_UART_TX_WAKEUP, &hu->tx_state);
160
161 while ((skb = hci_uart_dequeue(hu))) {
162 int len;
163
164 set_bit(TTY_DO_WRITE_WAKEUP, &tty->flags);
165 len = tty->ops->write(tty, skb->data, skb->len);
166 hdev->stat.byte_tx += len;
167
168 skb_pull(skb, len);
169 if (skb->len) {
170 hu->tx_skb = skb;
171 break;
172 }
173
174 hci_uart_tx_complete(hu, hci_skb_pkt_type(skb));
175 kfree_skb(skb);
176 }
177
178 clear_bit(HCI_UART_SENDING, &hu->tx_state);
179 if (test_bit(HCI_UART_TX_WAKEUP, &hu->tx_state))
180 goto restart;
181
182 wake_up_bit(&hu->tx_state, HCI_UART_SENDING);
183 }
184
hci_uart_init_work(struct work_struct * work)185 void hci_uart_init_work(struct work_struct *work)
186 {
187 struct hci_uart *hu = container_of(work, struct hci_uart, init_ready);
188 int err;
189 struct hci_dev *hdev;
190
191 if (!test_and_clear_bit(HCI_UART_INIT_PENDING, &hu->hdev_flags))
192 return;
193
194 err = hci_register_dev(hu->hdev);
195 if (err < 0) {
196 BT_ERR("Can't register HCI device");
197 clear_bit(HCI_UART_PROTO_READY, &hu->flags);
198 hu->proto->close(hu);
199 hdev = hu->hdev;
200 hu->hdev = NULL;
201 hci_free_dev(hdev);
202 return;
203 }
204
205 set_bit(HCI_UART_REGISTERED, &hu->flags);
206 }
207
hci_uart_init_ready(struct hci_uart * hu)208 int hci_uart_init_ready(struct hci_uart *hu)
209 {
210 if (!test_bit(HCI_UART_INIT_PENDING, &hu->hdev_flags))
211 return -EALREADY;
212
213 schedule_work(&hu->init_ready);
214
215 return 0;
216 }
217
hci_uart_wait_until_sent(struct hci_uart * hu)218 int hci_uart_wait_until_sent(struct hci_uart *hu)
219 {
220 return wait_on_bit_timeout(&hu->tx_state, HCI_UART_SENDING,
221 TASK_INTERRUPTIBLE,
222 msecs_to_jiffies(2000));
223 }
224
225 /* ------- Interface to HCI layer ------ */
226 /* Reset device */
hci_uart_flush(struct hci_dev * hdev)227 static int hci_uart_flush(struct hci_dev *hdev)
228 {
229 struct hci_uart *hu = hci_get_drvdata(hdev);
230 struct tty_struct *tty = hu->tty;
231
232 BT_DBG("hdev %p tty %p", hdev, tty);
233
234 if (hu->tx_skb) {
235 kfree_skb(hu->tx_skb); hu->tx_skb = NULL;
236 }
237
238 /* Flush any pending characters in the driver and discipline. */
239 tty_ldisc_flush(tty);
240 tty_driver_flush_buffer(tty);
241
242 percpu_down_read(&hu->proto_lock);
243
244 if (test_bit(HCI_UART_PROTO_READY, &hu->flags))
245 hu->proto->flush(hu);
246
247 percpu_up_read(&hu->proto_lock);
248
249 return 0;
250 }
251
252 /* Initialize device */
hci_uart_open(struct hci_dev * hdev)253 static int hci_uart_open(struct hci_dev *hdev)
254 {
255 BT_DBG("%s %p", hdev->name, hdev);
256
257 /* Undo clearing this from hci_uart_close() */
258 hdev->flush = hci_uart_flush;
259
260 return 0;
261 }
262
263 /* Close device */
hci_uart_close(struct hci_dev * hdev)264 static int hci_uart_close(struct hci_dev *hdev)
265 {
266 BT_DBG("hdev %p", hdev);
267
268 hci_uart_flush(hdev);
269 hdev->flush = NULL;
270 return 0;
271 }
272
273 /* Send frames from HCI layer */
hci_uart_send_frame(struct hci_dev * hdev,struct sk_buff * skb)274 static int hci_uart_send_frame(struct hci_dev *hdev, struct sk_buff *skb)
275 {
276 struct hci_uart *hu = hci_get_drvdata(hdev);
277
278 BT_DBG("%s: type %d len %d", hdev->name, hci_skb_pkt_type(skb),
279 skb->len);
280
281 percpu_down_read(&hu->proto_lock);
282
283 if (!test_bit(HCI_UART_PROTO_READY, &hu->flags) &&
284 !test_bit(HCI_UART_PROTO_INIT, &hu->flags)) {
285 percpu_up_read(&hu->proto_lock);
286 return -EUNATCH;
287 }
288
289 hu->proto->enqueue(hu, skb);
290 percpu_up_read(&hu->proto_lock);
291
292 hci_uart_tx_wakeup(hu);
293
294 return 0;
295 }
296
297 /* Check the underlying device or tty has flow control support */
hci_uart_has_flow_control(struct hci_uart * hu)298 bool hci_uart_has_flow_control(struct hci_uart *hu)
299 {
300 /* serdev nodes check if the needed operations are present */
301 if (hu->serdev)
302 return true;
303
304 if (hu->tty->driver->ops->tiocmget && hu->tty->driver->ops->tiocmset)
305 return true;
306
307 return false;
308 }
309
310 /* Flow control or un-flow control the device */
hci_uart_set_flow_control(struct hci_uart * hu,bool enable)311 void hci_uart_set_flow_control(struct hci_uart *hu, bool enable)
312 {
313 struct tty_struct *tty = hu->tty;
314 struct ktermios ktermios;
315 int status;
316 unsigned int set = 0;
317 unsigned int clear = 0;
318
319 if (hu->serdev) {
320 serdev_device_set_flow_control(hu->serdev, !enable);
321 serdev_device_set_rts(hu->serdev, !enable);
322 return;
323 }
324
325 if (enable) {
326 /* Disable hardware flow control */
327 ktermios = tty->termios;
328 ktermios.c_cflag &= ~CRTSCTS;
329 tty_set_termios(tty, &ktermios);
330 BT_DBG("Disabling hardware flow control: %s",
331 (tty->termios.c_cflag & CRTSCTS) ? "failed" : "success");
332
333 /* Clear RTS to prevent the device from sending */
334 /* Most UARTs need OUT2 to enable interrupts */
335 status = tty->driver->ops->tiocmget(tty);
336 BT_DBG("Current tiocm 0x%x", status);
337
338 set &= ~(TIOCM_OUT2 | TIOCM_RTS);
339 clear = ~set;
340 set &= TIOCM_DTR | TIOCM_RTS | TIOCM_OUT1 |
341 TIOCM_OUT2 | TIOCM_LOOP;
342 clear &= TIOCM_DTR | TIOCM_RTS | TIOCM_OUT1 |
343 TIOCM_OUT2 | TIOCM_LOOP;
344 status = tty->driver->ops->tiocmset(tty, set, clear);
345 BT_DBG("Clearing RTS: %s", status ? "failed" : "success");
346 } else {
347 /* Set RTS to allow the device to send again */
348 status = tty->driver->ops->tiocmget(tty);
349 BT_DBG("Current tiocm 0x%x", status);
350
351 set |= (TIOCM_OUT2 | TIOCM_RTS);
352 clear = ~set;
353 set &= TIOCM_DTR | TIOCM_RTS | TIOCM_OUT1 |
354 TIOCM_OUT2 | TIOCM_LOOP;
355 clear &= TIOCM_DTR | TIOCM_RTS | TIOCM_OUT1 |
356 TIOCM_OUT2 | TIOCM_LOOP;
357 status = tty->driver->ops->tiocmset(tty, set, clear);
358 BT_DBG("Setting RTS: %s", status ? "failed" : "success");
359
360 /* Re-enable hardware flow control */
361 ktermios = tty->termios;
362 ktermios.c_cflag |= CRTSCTS;
363 tty_set_termios(tty, &ktermios);
364 BT_DBG("Enabling hardware flow control: %s",
365 !(tty->termios.c_cflag & CRTSCTS) ? "failed" : "success");
366 }
367 }
368
hci_uart_set_speeds(struct hci_uart * hu,unsigned int init_speed,unsigned int oper_speed)369 void hci_uart_set_speeds(struct hci_uart *hu, unsigned int init_speed,
370 unsigned int oper_speed)
371 {
372 hu->init_speed = init_speed;
373 hu->oper_speed = oper_speed;
374 }
375
hci_uart_set_baudrate(struct hci_uart * hu,unsigned int speed)376 void hci_uart_set_baudrate(struct hci_uart *hu, unsigned int speed)
377 {
378 struct tty_struct *tty = hu->tty;
379 struct ktermios ktermios;
380
381 ktermios = tty->termios;
382 ktermios.c_cflag &= ~CBAUD;
383 tty_termios_encode_baud_rate(&ktermios, speed, speed);
384
385 /* tty_set_termios() return not checked as it is always 0 */
386 tty_set_termios(tty, &ktermios);
387
388 BT_DBG("%s: New tty speeds: %d/%d", hu->hdev->name,
389 tty->termios.c_ispeed, tty->termios.c_ospeed);
390 }
391
hci_uart_setup(struct hci_dev * hdev)392 static int hci_uart_setup(struct hci_dev *hdev)
393 {
394 struct hci_uart *hu = hci_get_drvdata(hdev);
395 struct hci_rp_read_local_version *ver;
396 struct sk_buff *skb;
397 unsigned int speed;
398 int err;
399
400 /* Init speed if any */
401 if (hu->init_speed)
402 speed = hu->init_speed;
403 else if (hu->proto->init_speed)
404 speed = hu->proto->init_speed;
405 else
406 speed = 0;
407
408 if (speed)
409 hci_uart_set_baudrate(hu, speed);
410
411 /* Operational speed if any */
412 if (hu->oper_speed)
413 speed = hu->oper_speed;
414 else if (hu->proto->oper_speed)
415 speed = hu->proto->oper_speed;
416 else
417 speed = 0;
418
419 if (hu->proto->set_baudrate && speed) {
420 err = hu->proto->set_baudrate(hu, speed);
421 if (!err)
422 hci_uart_set_baudrate(hu, speed);
423 }
424
425 if (hu->proto->setup)
426 return hu->proto->setup(hu);
427
428 if (!test_bit(HCI_UART_VND_DETECT, &hu->hdev_flags))
429 return 0;
430
431 skb = __hci_cmd_sync(hdev, HCI_OP_READ_LOCAL_VERSION, 0, NULL,
432 HCI_INIT_TIMEOUT);
433 if (IS_ERR(skb)) {
434 BT_ERR("%s: Reading local version information failed (%ld)",
435 hdev->name, PTR_ERR(skb));
436 return 0;
437 }
438
439 if (skb->len != sizeof(*ver)) {
440 BT_ERR("%s: Event length mismatch for version information",
441 hdev->name);
442 goto done;
443 }
444
445 ver = (struct hci_rp_read_local_version *)skb->data;
446
447 switch (le16_to_cpu(ver->manufacturer)) {
448 #ifdef CONFIG_BT_HCIUART_INTEL
449 case 2:
450 hdev->set_bdaddr = btintel_set_bdaddr;
451 btintel_check_bdaddr(hdev);
452 break;
453 #endif
454 #ifdef CONFIG_BT_HCIUART_BCM
455 case 15:
456 hdev->set_bdaddr = btbcm_set_bdaddr;
457 btbcm_check_bdaddr(hdev);
458 break;
459 #endif
460 default:
461 break;
462 }
463
464 done:
465 kfree_skb(skb);
466 return 0;
467 }
468
469 /* ------ LDISC part ------ */
470 /* hci_uart_tty_open
471 *
472 * Called when line discipline changed to HCI_UART.
473 *
474 * Arguments:
475 * tty pointer to tty info structure
476 * Return Value:
477 * 0 if success, otherwise error code
478 */
hci_uart_tty_open(struct tty_struct * tty)479 static int hci_uart_tty_open(struct tty_struct *tty)
480 {
481 struct hci_uart *hu;
482
483 BT_DBG("tty %p", tty);
484
485 if (!capable(CAP_NET_ADMIN))
486 return -EPERM;
487
488 /* Error if the tty has no write op instead of leaving an exploitable
489 * hole
490 */
491 if (tty->ops->write == NULL)
492 return -EOPNOTSUPP;
493
494 hu = kzalloc(sizeof(*hu), GFP_KERNEL);
495 if (!hu) {
496 BT_ERR("Can't allocate control structure");
497 return -ENFILE;
498 }
499 if (percpu_init_rwsem(&hu->proto_lock)) {
500 BT_ERR("Can't allocate semaphore structure");
501 kfree(hu);
502 return -ENOMEM;
503 }
504
505 tty->disc_data = hu;
506 hu->tty = tty;
507 tty->receive_room = 65536;
508
509 /* disable alignment support by default */
510 hu->alignment = 1;
511 hu->padding = 0;
512
513 /* Use serial port speed as oper_speed */
514 hu->oper_speed = tty->termios.c_ospeed;
515
516 INIT_WORK(&hu->init_ready, hci_uart_init_work);
517 INIT_WORK(&hu->write_work, hci_uart_write_work);
518
519 /* Flush any pending characters in the driver */
520 tty_driver_flush_buffer(tty);
521
522 return 0;
523 }
524
525 /* hci_uart_tty_close()
526 *
527 * Called when the line discipline is changed to something
528 * else, the tty is closed, or the tty detects a hangup.
529 */
hci_uart_tty_close(struct tty_struct * tty)530 static void hci_uart_tty_close(struct tty_struct *tty)
531 {
532 struct hci_uart *hu = tty->disc_data;
533 struct hci_dev *hdev;
534
535 BT_DBG("tty %p", tty);
536
537 /* Detach from the tty */
538 tty->disc_data = NULL;
539
540 if (!hu)
541 return;
542
543 hdev = hu->hdev;
544 if (hdev)
545 hci_uart_close(hdev);
546
547 if (test_bit(HCI_UART_PROTO_READY, &hu->flags)) {
548 percpu_down_write(&hu->proto_lock);
549 clear_bit(HCI_UART_PROTO_READY, &hu->flags);
550 percpu_up_write(&hu->proto_lock);
551
552 cancel_work_sync(&hu->init_ready);
553 cancel_work_sync(&hu->write_work);
554
555 if (hdev) {
556 if (test_bit(HCI_UART_REGISTERED, &hu->flags))
557 hci_unregister_dev(hdev);
558 hci_free_dev(hdev);
559 }
560 hu->proto->close(hu);
561 }
562 clear_bit(HCI_UART_PROTO_SET, &hu->flags);
563
564 percpu_free_rwsem(&hu->proto_lock);
565
566 kfree(hu);
567 }
568
569 /* hci_uart_tty_wakeup()
570 *
571 * Callback for transmit wakeup. Called when low level
572 * device driver can accept more send data.
573 *
574 * Arguments: tty pointer to associated tty instance data
575 * Return Value: None
576 */
hci_uart_tty_wakeup(struct tty_struct * tty)577 static void hci_uart_tty_wakeup(struct tty_struct *tty)
578 {
579 struct hci_uart *hu = tty->disc_data;
580
581 BT_DBG("");
582
583 if (!hu)
584 return;
585
586 clear_bit(TTY_DO_WRITE_WAKEUP, &tty->flags);
587
588 if (tty != hu->tty)
589 return;
590
591 if (test_bit(HCI_UART_PROTO_READY, &hu->flags) ||
592 test_bit(HCI_UART_PROTO_INIT, &hu->flags))
593 hci_uart_tx_wakeup(hu);
594 }
595
596 /* hci_uart_tty_receive()
597 *
598 * Called by tty low level driver when receive data is
599 * available.
600 *
601 * Arguments: tty pointer to tty instance data
602 * data pointer to received data
603 * flags pointer to flags for data
604 * count count of received data in bytes
605 *
606 * Return Value: None
607 */
hci_uart_tty_receive(struct tty_struct * tty,const u8 * data,const u8 * flags,size_t count)608 static void hci_uart_tty_receive(struct tty_struct *tty, const u8 *data,
609 const u8 *flags, size_t count)
610 {
611 struct hci_uart *hu = tty->disc_data;
612
613 if (!hu || tty != hu->tty)
614 return;
615
616 percpu_down_read(&hu->proto_lock);
617
618 if (!test_bit(HCI_UART_PROTO_READY, &hu->flags) &&
619 !test_bit(HCI_UART_PROTO_INIT, &hu->flags)) {
620 percpu_up_read(&hu->proto_lock);
621 return;
622 }
623
624 /* It does not need a lock here as it is already protected by a mutex in
625 * tty caller
626 */
627 hu->proto->recv(hu, data, count);
628 percpu_up_read(&hu->proto_lock);
629
630 if (hu->hdev)
631 hu->hdev->stat.byte_rx += count;
632
633 tty_unthrottle(tty);
634 }
635
hci_uart_register_dev(struct hci_uart * hu)636 static int hci_uart_register_dev(struct hci_uart *hu)
637 {
638 struct hci_dev *hdev;
639 int err;
640
641 BT_DBG("");
642
643 /* Initialize and register HCI device */
644 hdev = hci_alloc_dev();
645 if (!hdev) {
646 BT_ERR("Can't allocate HCI device");
647 return -ENOMEM;
648 }
649
650 hu->hdev = hdev;
651
652 hdev->bus = HCI_UART;
653 hci_set_drvdata(hdev, hu);
654
655 /* Only when vendor specific setup callback is provided, consider
656 * the manufacturer information valid. This avoids filling in the
657 * value for Ericsson when nothing is specified.
658 */
659 if (hu->proto->setup)
660 hdev->manufacturer = hu->proto->manufacturer;
661
662 hdev->open = hci_uart_open;
663 hdev->close = hci_uart_close;
664 hdev->flush = hci_uart_flush;
665 hdev->send = hci_uart_send_frame;
666 hdev->setup = hci_uart_setup;
667 SET_HCIDEV_DEV(hdev, hu->tty->dev);
668
669 if (test_bit(HCI_UART_RAW_DEVICE, &hu->hdev_flags))
670 set_bit(HCI_QUIRK_RAW_DEVICE, &hdev->quirks);
671
672 if (test_bit(HCI_UART_EXT_CONFIG, &hu->hdev_flags))
673 set_bit(HCI_QUIRK_EXTERNAL_CONFIG, &hdev->quirks);
674
675 if (!test_bit(HCI_UART_RESET_ON_INIT, &hu->hdev_flags))
676 set_bit(HCI_QUIRK_RESET_ON_CLOSE, &hdev->quirks);
677
678 /* Only call open() for the protocol after hdev is fully initialized as
679 * open() (or a timer/workqueue it starts) may attempt to reference it.
680 */
681 err = hu->proto->open(hu);
682 if (err) {
683 hu->hdev = NULL;
684 hci_free_dev(hdev);
685 return err;
686 }
687
688 if (test_bit(HCI_UART_INIT_PENDING, &hu->hdev_flags))
689 return 0;
690
691 if (hci_register_dev(hdev) < 0) {
692 BT_ERR("Can't register HCI device");
693 hu->proto->close(hu);
694 hu->hdev = NULL;
695 hci_free_dev(hdev);
696 return -ENODEV;
697 }
698
699 set_bit(HCI_UART_REGISTERED, &hu->flags);
700
701 return 0;
702 }
703
hci_uart_set_proto(struct hci_uart * hu,int id)704 static int hci_uart_set_proto(struct hci_uart *hu, int id)
705 {
706 const struct hci_uart_proto *p;
707 int err;
708
709 p = hci_uart_get_proto(id);
710 if (!p)
711 return -EPROTONOSUPPORT;
712
713 hu->proto = p;
714
715 set_bit(HCI_UART_PROTO_INIT, &hu->flags);
716
717 err = hci_uart_register_dev(hu);
718 if (err) {
719 return err;
720 }
721
722 set_bit(HCI_UART_PROTO_READY, &hu->flags);
723 clear_bit(HCI_UART_PROTO_INIT, &hu->flags);
724
725 return 0;
726 }
727
hci_uart_set_flags(struct hci_uart * hu,unsigned long flags)728 static int hci_uart_set_flags(struct hci_uart *hu, unsigned long flags)
729 {
730 unsigned long valid_flags = BIT(HCI_UART_RAW_DEVICE) |
731 BIT(HCI_UART_RESET_ON_INIT) |
732 BIT(HCI_UART_INIT_PENDING) |
733 BIT(HCI_UART_EXT_CONFIG) |
734 BIT(HCI_UART_VND_DETECT);
735
736 if (flags & ~valid_flags)
737 return -EINVAL;
738
739 hu->hdev_flags = flags;
740
741 return 0;
742 }
743
744 /* hci_uart_tty_ioctl()
745 *
746 * Process IOCTL system call for the tty device.
747 *
748 * Arguments:
749 *
750 * tty pointer to tty instance data
751 * cmd IOCTL command code
752 * arg argument for IOCTL call (cmd dependent)
753 *
754 * Return Value: Command dependent
755 */
hci_uart_tty_ioctl(struct tty_struct * tty,unsigned int cmd,unsigned long arg)756 static int hci_uart_tty_ioctl(struct tty_struct *tty, unsigned int cmd,
757 unsigned long arg)
758 {
759 struct hci_uart *hu = tty->disc_data;
760 int err = 0;
761
762 BT_DBG("");
763
764 /* Verify the status of the device */
765 if (!hu)
766 return -EBADF;
767
768 switch (cmd) {
769 case HCIUARTSETPROTO:
770 if (!test_and_set_bit(HCI_UART_PROTO_SET, &hu->flags)) {
771 err = hci_uart_set_proto(hu, arg);
772 if (err)
773 clear_bit(HCI_UART_PROTO_SET, &hu->flags);
774 } else
775 err = -EBUSY;
776 break;
777
778 case HCIUARTGETPROTO:
779 if (test_bit(HCI_UART_PROTO_SET, &hu->flags) &&
780 test_bit(HCI_UART_PROTO_READY, &hu->flags))
781 err = hu->proto->id;
782 else
783 err = -EUNATCH;
784 break;
785
786 case HCIUARTGETDEVICE:
787 if (test_bit(HCI_UART_REGISTERED, &hu->flags))
788 err = hu->hdev->id;
789 else
790 err = -EUNATCH;
791 break;
792
793 case HCIUARTSETFLAGS:
794 if (test_bit(HCI_UART_PROTO_SET, &hu->flags))
795 err = -EBUSY;
796 else
797 err = hci_uart_set_flags(hu, arg);
798 break;
799
800 case HCIUARTGETFLAGS:
801 err = hu->hdev_flags;
802 break;
803
804 default:
805 err = n_tty_ioctl_helper(tty, cmd, arg);
806 break;
807 }
808
809 return err;
810 }
811
812 /*
813 * We don't provide read/write/poll interface for user space.
814 */
hci_uart_tty_read(struct tty_struct * tty,struct file * file,u8 * buf,size_t nr,void ** cookie,unsigned long offset)815 static ssize_t hci_uart_tty_read(struct tty_struct *tty, struct file *file,
816 u8 *buf, size_t nr, void **cookie,
817 unsigned long offset)
818 {
819 return 0;
820 }
821
hci_uart_tty_write(struct tty_struct * tty,struct file * file,const u8 * data,size_t count)822 static ssize_t hci_uart_tty_write(struct tty_struct *tty, struct file *file,
823 const u8 *data, size_t count)
824 {
825 return 0;
826 }
827
828 static struct tty_ldisc_ops hci_uart_ldisc = {
829 .owner = THIS_MODULE,
830 .num = N_HCI,
831 .name = "n_hci",
832 .open = hci_uart_tty_open,
833 .close = hci_uart_tty_close,
834 .read = hci_uart_tty_read,
835 .write = hci_uart_tty_write,
836 .ioctl = hci_uart_tty_ioctl,
837 .compat_ioctl = hci_uart_tty_ioctl,
838 .receive_buf = hci_uart_tty_receive,
839 .write_wakeup = hci_uart_tty_wakeup,
840 };
841
hci_uart_init(void)842 static int __init hci_uart_init(void)
843 {
844 int err;
845
846 BT_INFO("HCI UART driver ver %s", VERSION);
847
848 /* Register the tty discipline */
849 err = tty_register_ldisc(&hci_uart_ldisc);
850 if (err) {
851 BT_ERR("HCI line discipline registration failed. (%d)", err);
852 return err;
853 }
854
855 #ifdef CONFIG_BT_HCIUART_H4
856 h4_init();
857 #endif
858 #ifdef CONFIG_BT_HCIUART_BCSP
859 bcsp_init();
860 #endif
861 #ifdef CONFIG_BT_HCIUART_LL
862 ll_init();
863 #endif
864 #ifdef CONFIG_BT_HCIUART_ATH3K
865 ath_init();
866 #endif
867 #ifdef CONFIG_BT_HCIUART_3WIRE
868 h5_init();
869 #endif
870 #ifdef CONFIG_BT_HCIUART_INTEL
871 intel_init();
872 #endif
873 #ifdef CONFIG_BT_HCIUART_BCM
874 bcm_init();
875 #endif
876 #ifdef CONFIG_BT_HCIUART_QCA
877 qca_init();
878 #endif
879 #ifdef CONFIG_BT_HCIUART_AG6XX
880 ag6xx_init();
881 #endif
882 #ifdef CONFIG_BT_HCIUART_MRVL
883 mrvl_init();
884 #endif
885 #ifdef CONFIG_BT_HCIUART_AML
886 aml_init();
887 #endif
888 return 0;
889 }
890
hci_uart_exit(void)891 static void __exit hci_uart_exit(void)
892 {
893 #ifdef CONFIG_BT_HCIUART_H4
894 h4_deinit();
895 #endif
896 #ifdef CONFIG_BT_HCIUART_BCSP
897 bcsp_deinit();
898 #endif
899 #ifdef CONFIG_BT_HCIUART_LL
900 ll_deinit();
901 #endif
902 #ifdef CONFIG_BT_HCIUART_ATH3K
903 ath_deinit();
904 #endif
905 #ifdef CONFIG_BT_HCIUART_3WIRE
906 h5_deinit();
907 #endif
908 #ifdef CONFIG_BT_HCIUART_INTEL
909 intel_deinit();
910 #endif
911 #ifdef CONFIG_BT_HCIUART_BCM
912 bcm_deinit();
913 #endif
914 #ifdef CONFIG_BT_HCIUART_QCA
915 qca_deinit();
916 #endif
917 #ifdef CONFIG_BT_HCIUART_AG6XX
918 ag6xx_deinit();
919 #endif
920 #ifdef CONFIG_BT_HCIUART_MRVL
921 mrvl_deinit();
922 #endif
923 #ifdef CONFIG_BT_HCIUART_AML
924 aml_deinit();
925 #endif
926 tty_unregister_ldisc(&hci_uart_ldisc);
927 }
928
929 module_init(hci_uart_init);
930 module_exit(hci_uart_exit);
931
932 MODULE_AUTHOR("Marcel Holtmann <[email protected]>");
933 MODULE_DESCRIPTION("Bluetooth HCI UART driver ver " VERSION);
934 MODULE_VERSION(VERSION);
935 MODULE_LICENSE("GPL");
936 MODULE_ALIAS_LDISC(N_HCI);
937