1 // SPDX-License-Identifier: GPL-2.0 or MIT
2 /* Copyright 2023 Collabora ltd. */
3 
4 #include <drm/drm_drv.h>
5 #include <drm/drm_exec.h>
6 #include <drm/drm_gem_shmem_helper.h>
7 #include <drm/drm_managed.h>
8 #include <drm/gpu_scheduler.h>
9 #include <drm/panthor_drm.h>
10 
11 #include <linux/build_bug.h>
12 #include <linux/cleanup.h>
13 #include <linux/clk.h>
14 #include <linux/delay.h>
15 #include <linux/dma-mapping.h>
16 #include <linux/dma-resv.h>
17 #include <linux/firmware.h>
18 #include <linux/interrupt.h>
19 #include <linux/io.h>
20 #include <linux/iopoll.h>
21 #include <linux/iosys-map.h>
22 #include <linux/module.h>
23 #include <linux/platform_device.h>
24 #include <linux/pm_runtime.h>
25 
26 #include "panthor_devfreq.h"
27 #include "panthor_device.h"
28 #include "panthor_fw.h"
29 #include "panthor_gem.h"
30 #include "panthor_gpu.h"
31 #include "panthor_heap.h"
32 #include "panthor_mmu.h"
33 #include "panthor_regs.h"
34 #include "panthor_sched.h"
35 
36 /**
37  * DOC: Scheduler
38  *
39  * Mali CSF hardware adopts a firmware-assisted scheduling model, where
40  * the firmware takes care of scheduling aspects, to some extent.
41  *
42  * The scheduling happens at the scheduling group level, each group
43  * contains 1 to N queues (N is FW/hardware dependent, and exposed
44  * through the firmware interface). Each queue is assigned a command
45  * stream ring buffer, which serves as a way to get jobs submitted to
46  * the GPU, among other things.
47  *
48  * The firmware can schedule a maximum of M groups (M is FW/hardware
49  * dependent, and exposed through the firmware interface). Passed
50  * this maximum number of groups, the kernel must take care of
51  * rotating the groups passed to the firmware so every group gets
52  * a chance to have his queues scheduled for execution.
53  *
54  * The current implementation only supports with kernel-mode queues.
55  * In other terms, userspace doesn't have access to the ring-buffer.
56  * Instead, userspace passes indirect command stream buffers that are
57  * called from the queue ring-buffer by the kernel using a pre-defined
58  * sequence of command stream instructions to ensure the userspace driver
59  * always gets consistent results (cache maintenance,
60  * synchronization, ...).
61  *
62  * We rely on the drm_gpu_scheduler framework to deal with job
63  * dependencies and submission. As any other driver dealing with a
64  * FW-scheduler, we use the 1:1 entity:scheduler mode, such that each
65  * entity has its own job scheduler. When a job is ready to be executed
66  * (all its dependencies are met), it is pushed to the appropriate
67  * queue ring-buffer, and the group is scheduled for execution if it
68  * wasn't already active.
69  *
70  * Kernel-side group scheduling is timeslice-based. When we have less
71  * groups than there are slots, the periodic tick is disabled and we
72  * just let the FW schedule the active groups. When there are more
73  * groups than slots, we let each group a chance to execute stuff for
74  * a given amount of time, and then re-evaluate and pick new groups
75  * to schedule. The group selection algorithm is based on
76  * priority+round-robin.
77  *
78  * Even though user-mode queues is out of the scope right now, the
79  * current design takes them into account by avoiding any guess on the
80  * group/queue state that would be based on information we wouldn't have
81  * if userspace was in charge of the ring-buffer. That's also one of the
82  * reason we don't do 'cooperative' scheduling (encoding FW group slot
83  * reservation as dma_fence that would be returned from the
84  * drm_gpu_scheduler::prepare_job() hook, and treating group rotation as
85  * a queue of waiters, ordered by job submission order). This approach
86  * would work for kernel-mode queues, but would make user-mode queues a
87  * lot more complicated to retrofit.
88  */
89 
90 #define JOB_TIMEOUT_MS				5000
91 
92 #define MIN_CS_PER_CSG				8
93 
94 #define MIN_CSGS				3
95 #define MAX_CSG_PRIO				0xf
96 
97 #define NUM_INSTRS_PER_CACHE_LINE		(64 / sizeof(u64))
98 #define MAX_INSTRS_PER_JOB			24
99 
100 struct panthor_group;
101 
102 /**
103  * struct panthor_csg_slot - Command stream group slot
104  *
105  * This represents a FW slot for a scheduling group.
106  */
107 struct panthor_csg_slot {
108 	/** @group: Scheduling group bound to this slot. */
109 	struct panthor_group *group;
110 
111 	/** @priority: Group priority. */
112 	u8 priority;
113 
114 	/**
115 	 * @idle: True if the group bound to this slot is idle.
116 	 *
117 	 * A group is idle when it has nothing waiting for execution on
118 	 * all its queues, or when queues are blocked waiting for something
119 	 * to happen (synchronization object).
120 	 */
121 	bool idle;
122 };
123 
124 /**
125  * enum panthor_csg_priority - Group priority
126  */
127 enum panthor_csg_priority {
128 	/** @PANTHOR_CSG_PRIORITY_LOW: Low priority group. */
129 	PANTHOR_CSG_PRIORITY_LOW = 0,
130 
131 	/** @PANTHOR_CSG_PRIORITY_MEDIUM: Medium priority group. */
132 	PANTHOR_CSG_PRIORITY_MEDIUM,
133 
134 	/** @PANTHOR_CSG_PRIORITY_HIGH: High priority group. */
135 	PANTHOR_CSG_PRIORITY_HIGH,
136 
137 	/**
138 	 * @PANTHOR_CSG_PRIORITY_RT: Real-time priority group.
139 	 *
140 	 * Real-time priority allows one to preempt scheduling of other
141 	 * non-real-time groups. When such a group becomes executable,
142 	 * it will evict the group with the lowest non-rt priority if
143 	 * there's no free group slot available.
144 	 */
145 	PANTHOR_CSG_PRIORITY_RT,
146 
147 	/** @PANTHOR_CSG_PRIORITY_COUNT: Number of priority levels. */
148 	PANTHOR_CSG_PRIORITY_COUNT,
149 };
150 
151 /**
152  * struct panthor_scheduler - Object used to manage the scheduler
153  */
154 struct panthor_scheduler {
155 	/** @ptdev: Device. */
156 	struct panthor_device *ptdev;
157 
158 	/**
159 	 * @wq: Workqueue used by our internal scheduler logic and
160 	 * drm_gpu_scheduler.
161 	 *
162 	 * Used for the scheduler tick, group update or other kind of FW
163 	 * event processing that can't be handled in the threaded interrupt
164 	 * path. Also passed to the drm_gpu_scheduler instances embedded
165 	 * in panthor_queue.
166 	 */
167 	struct workqueue_struct *wq;
168 
169 	/**
170 	 * @heap_alloc_wq: Workqueue used to schedule tiler_oom works.
171 	 *
172 	 * We have a queue dedicated to heap chunk allocation works to avoid
173 	 * blocking the rest of the scheduler if the allocation tries to
174 	 * reclaim memory.
175 	 */
176 	struct workqueue_struct *heap_alloc_wq;
177 
178 	/** @tick_work: Work executed on a scheduling tick. */
179 	struct delayed_work tick_work;
180 
181 	/**
182 	 * @sync_upd_work: Work used to process synchronization object updates.
183 	 *
184 	 * We use this work to unblock queues/groups that were waiting on a
185 	 * synchronization object.
186 	 */
187 	struct work_struct sync_upd_work;
188 
189 	/**
190 	 * @fw_events_work: Work used to process FW events outside the interrupt path.
191 	 *
192 	 * Even if the interrupt is threaded, we need any event processing
193 	 * that require taking the panthor_scheduler::lock to be processed
194 	 * outside the interrupt path so we don't block the tick logic when
195 	 * it calls panthor_fw_{csg,wait}_wait_acks(). Since most of the
196 	 * event processing requires taking this lock, we just delegate all
197 	 * FW event processing to the scheduler workqueue.
198 	 */
199 	struct work_struct fw_events_work;
200 
201 	/**
202 	 * @fw_events: Bitmask encoding pending FW events.
203 	 */
204 	atomic_t fw_events;
205 
206 	/**
207 	 * @resched_target: When the next tick should occur.
208 	 *
209 	 * Expressed in jiffies.
210 	 */
211 	u64 resched_target;
212 
213 	/**
214 	 * @last_tick: When the last tick occurred.
215 	 *
216 	 * Expressed in jiffies.
217 	 */
218 	u64 last_tick;
219 
220 	/** @tick_period: Tick period in jiffies. */
221 	u64 tick_period;
222 
223 	/**
224 	 * @lock: Lock protecting access to all the scheduler fields.
225 	 *
226 	 * Should be taken in the tick work, the irq handler, and anywhere the @groups
227 	 * fields are touched.
228 	 */
229 	struct mutex lock;
230 
231 	/** @groups: Various lists used to classify groups. */
232 	struct {
233 		/**
234 		 * @runnable: Runnable group lists.
235 		 *
236 		 * When a group has queues that want to execute something,
237 		 * its panthor_group::run_node should be inserted here.
238 		 *
239 		 * One list per-priority.
240 		 */
241 		struct list_head runnable[PANTHOR_CSG_PRIORITY_COUNT];
242 
243 		/**
244 		 * @idle: Idle group lists.
245 		 *
246 		 * When all queues of a group are idle (either because they
247 		 * have nothing to execute, or because they are blocked), the
248 		 * panthor_group::run_node field should be inserted here.
249 		 *
250 		 * One list per-priority.
251 		 */
252 		struct list_head idle[PANTHOR_CSG_PRIORITY_COUNT];
253 
254 		/**
255 		 * @waiting: List of groups whose queues are blocked on a
256 		 * synchronization object.
257 		 *
258 		 * Insert panthor_group::wait_node here when a group is waiting
259 		 * for synchronization objects to be signaled.
260 		 *
261 		 * This list is evaluated in the @sync_upd_work work.
262 		 */
263 		struct list_head waiting;
264 	} groups;
265 
266 	/**
267 	 * @csg_slots: FW command stream group slots.
268 	 */
269 	struct panthor_csg_slot csg_slots[MAX_CSGS];
270 
271 	/** @csg_slot_count: Number of command stream group slots exposed by the FW. */
272 	u32 csg_slot_count;
273 
274 	/** @cs_slot_count: Number of command stream slot per group slot exposed by the FW. */
275 	u32 cs_slot_count;
276 
277 	/** @as_slot_count: Number of address space slots supported by the MMU. */
278 	u32 as_slot_count;
279 
280 	/** @used_csg_slot_count: Number of command stream group slot currently used. */
281 	u32 used_csg_slot_count;
282 
283 	/** @sb_slot_count: Number of scoreboard slots. */
284 	u32 sb_slot_count;
285 
286 	/**
287 	 * @might_have_idle_groups: True if an active group might have become idle.
288 	 *
289 	 * This will force a tick, so other runnable groups can be scheduled if one
290 	 * or more active groups became idle.
291 	 */
292 	bool might_have_idle_groups;
293 
294 	/** @pm: Power management related fields. */
295 	struct {
296 		/** @has_ref: True if the scheduler owns a runtime PM reference. */
297 		bool has_ref;
298 	} pm;
299 
300 	/** @reset: Reset related fields. */
301 	struct {
302 		/** @lock: Lock protecting the other reset fields. */
303 		struct mutex lock;
304 
305 		/**
306 		 * @in_progress: True if a reset is in progress.
307 		 *
308 		 * Set to true in panthor_sched_pre_reset() and back to false in
309 		 * panthor_sched_post_reset().
310 		 */
311 		atomic_t in_progress;
312 
313 		/**
314 		 * @stopped_groups: List containing all groups that were stopped
315 		 * before a reset.
316 		 *
317 		 * Insert panthor_group::run_node in the pre_reset path.
318 		 */
319 		struct list_head stopped_groups;
320 	} reset;
321 };
322 
323 /**
324  * struct panthor_syncobj_32b - 32-bit FW synchronization object
325  */
326 struct panthor_syncobj_32b {
327 	/** @seqno: Sequence number. */
328 	u32 seqno;
329 
330 	/**
331 	 * @status: Status.
332 	 *
333 	 * Not zero on failure.
334 	 */
335 	u32 status;
336 };
337 
338 /**
339  * struct panthor_syncobj_64b - 64-bit FW synchronization object
340  */
341 struct panthor_syncobj_64b {
342 	/** @seqno: Sequence number. */
343 	u64 seqno;
344 
345 	/**
346 	 * @status: Status.
347 	 *
348 	 * Not zero on failure.
349 	 */
350 	u32 status;
351 
352 	/** @pad: MBZ. */
353 	u32 pad;
354 };
355 
356 /**
357  * struct panthor_queue - Execution queue
358  */
359 struct panthor_queue {
360 	/** @scheduler: DRM scheduler used for this queue. */
361 	struct drm_gpu_scheduler scheduler;
362 
363 	/** @entity: DRM scheduling entity used for this queue. */
364 	struct drm_sched_entity entity;
365 
366 	/**
367 	 * @remaining_time: Time remaining before the job timeout expires.
368 	 *
369 	 * The job timeout is suspended when the queue is not scheduled by the
370 	 * FW. Every time we suspend the timer, we need to save the remaining
371 	 * time so we can restore it later on.
372 	 */
373 	unsigned long remaining_time;
374 
375 	/** @timeout_suspended: True if the job timeout was suspended. */
376 	bool timeout_suspended;
377 
378 	/**
379 	 * @doorbell_id: Doorbell assigned to this queue.
380 	 *
381 	 * Right now, all groups share the same doorbell, and the doorbell ID
382 	 * is assigned to group_slot + 1 when the group is assigned a slot. But
383 	 * we might decide to provide fine grained doorbell assignment at some
384 	 * point, so don't have to wake up all queues in a group every time one
385 	 * of them is updated.
386 	 */
387 	u8 doorbell_id;
388 
389 	/**
390 	 * @priority: Priority of the queue inside the group.
391 	 *
392 	 * Must be less than 16 (Only 4 bits available).
393 	 */
394 	u8 priority;
395 #define CSF_MAX_QUEUE_PRIO	GENMASK(3, 0)
396 
397 	/** @ringbuf: Command stream ring-buffer. */
398 	struct panthor_kernel_bo *ringbuf;
399 
400 	/** @iface: Firmware interface. */
401 	struct {
402 		/** @mem: FW memory allocated for this interface. */
403 		struct panthor_kernel_bo *mem;
404 
405 		/** @input: Input interface. */
406 		struct panthor_fw_ringbuf_input_iface *input;
407 
408 		/** @output: Output interface. */
409 		const struct panthor_fw_ringbuf_output_iface *output;
410 
411 		/** @input_fw_va: FW virtual address of the input interface buffer. */
412 		u32 input_fw_va;
413 
414 		/** @output_fw_va: FW virtual address of the output interface buffer. */
415 		u32 output_fw_va;
416 	} iface;
417 
418 	/**
419 	 * @syncwait: Stores information about the synchronization object this
420 	 * queue is waiting on.
421 	 */
422 	struct {
423 		/** @gpu_va: GPU address of the synchronization object. */
424 		u64 gpu_va;
425 
426 		/** @ref: Reference value to compare against. */
427 		u64 ref;
428 
429 		/** @gt: True if this is a greater-than test. */
430 		bool gt;
431 
432 		/** @sync64: True if this is a 64-bit sync object. */
433 		bool sync64;
434 
435 		/** @bo: Buffer object holding the synchronization object. */
436 		struct drm_gem_object *obj;
437 
438 		/** @offset: Offset of the synchronization object inside @bo. */
439 		u64 offset;
440 
441 		/**
442 		 * @kmap: Kernel mapping of the buffer object holding the
443 		 * synchronization object.
444 		 */
445 		void *kmap;
446 	} syncwait;
447 
448 	/** @fence_ctx: Fence context fields. */
449 	struct {
450 		/** @lock: Used to protect access to all fences allocated by this context. */
451 		spinlock_t lock;
452 
453 		/**
454 		 * @id: Fence context ID.
455 		 *
456 		 * Allocated with dma_fence_context_alloc().
457 		 */
458 		u64 id;
459 
460 		/** @seqno: Sequence number of the last initialized fence. */
461 		atomic64_t seqno;
462 
463 		/**
464 		 * @last_fence: Fence of the last submitted job.
465 		 *
466 		 * We return this fence when we get an empty command stream.
467 		 * This way, we are guaranteed that all earlier jobs have completed
468 		 * when drm_sched_job::s_fence::finished without having to feed
469 		 * the CS ring buffer with a dummy job that only signals the fence.
470 		 */
471 		struct dma_fence *last_fence;
472 
473 		/**
474 		 * @in_flight_jobs: List containing all in-flight jobs.
475 		 *
476 		 * Used to keep track and signal panthor_job::done_fence when the
477 		 * synchronization object attached to the queue is signaled.
478 		 */
479 		struct list_head in_flight_jobs;
480 	} fence_ctx;
481 
482 	/** @profiling: Job profiling data slots and access information. */
483 	struct {
484 		/** @slots: Kernel BO holding the slots. */
485 		struct panthor_kernel_bo *slots;
486 
487 		/** @slot_count: Number of jobs ringbuffer can hold at once. */
488 		u32 slot_count;
489 
490 		/** @seqno: Index of the next available profiling information slot. */
491 		u32 seqno;
492 	} profiling;
493 };
494 
495 /**
496  * enum panthor_group_state - Scheduling group state.
497  */
498 enum panthor_group_state {
499 	/** @PANTHOR_CS_GROUP_CREATED: Group was created, but not scheduled yet. */
500 	PANTHOR_CS_GROUP_CREATED,
501 
502 	/** @PANTHOR_CS_GROUP_ACTIVE: Group is currently scheduled. */
503 	PANTHOR_CS_GROUP_ACTIVE,
504 
505 	/**
506 	 * @PANTHOR_CS_GROUP_SUSPENDED: Group was scheduled at least once, but is
507 	 * inactive/suspended right now.
508 	 */
509 	PANTHOR_CS_GROUP_SUSPENDED,
510 
511 	/**
512 	 * @PANTHOR_CS_GROUP_TERMINATED: Group was terminated.
513 	 *
514 	 * Can no longer be scheduled. The only allowed action is a destruction.
515 	 */
516 	PANTHOR_CS_GROUP_TERMINATED,
517 
518 	/**
519 	 * @PANTHOR_CS_GROUP_UNKNOWN_STATE: Group is an unknown state.
520 	 *
521 	 * The FW returned an inconsistent state. The group is flagged unusable
522 	 * and can no longer be scheduled. The only allowed action is a
523 	 * destruction.
524 	 *
525 	 * When that happens, we also schedule a FW reset, to start from a fresh
526 	 * state.
527 	 */
528 	PANTHOR_CS_GROUP_UNKNOWN_STATE,
529 };
530 
531 /**
532  * struct panthor_group - Scheduling group object
533  */
534 struct panthor_group {
535 	/** @refcount: Reference count */
536 	struct kref refcount;
537 
538 	/** @ptdev: Device. */
539 	struct panthor_device *ptdev;
540 
541 	/** @vm: VM bound to the group. */
542 	struct panthor_vm *vm;
543 
544 	/** @compute_core_mask: Mask of shader cores that can be used for compute jobs. */
545 	u64 compute_core_mask;
546 
547 	/** @fragment_core_mask: Mask of shader cores that can be used for fragment jobs. */
548 	u64 fragment_core_mask;
549 
550 	/** @tiler_core_mask: Mask of tiler cores that can be used for tiler jobs. */
551 	u64 tiler_core_mask;
552 
553 	/** @max_compute_cores: Maximum number of shader cores used for compute jobs. */
554 	u8 max_compute_cores;
555 
556 	/** @max_fragment_cores: Maximum number of shader cores used for fragment jobs. */
557 	u8 max_fragment_cores;
558 
559 	/** @max_tiler_cores: Maximum number of tiler cores used for tiler jobs. */
560 	u8 max_tiler_cores;
561 
562 	/** @priority: Group priority (check panthor_csg_priority). */
563 	u8 priority;
564 
565 	/** @blocked_queues: Bitmask reflecting the blocked queues. */
566 	u32 blocked_queues;
567 
568 	/** @idle_queues: Bitmask reflecting the idle queues. */
569 	u32 idle_queues;
570 
571 	/** @fatal_lock: Lock used to protect access to fatal fields. */
572 	spinlock_t fatal_lock;
573 
574 	/** @fatal_queues: Bitmask reflecting the queues that hit a fatal exception. */
575 	u32 fatal_queues;
576 
577 	/** @tiler_oom: Mask of queues that have a tiler OOM event to process. */
578 	atomic_t tiler_oom;
579 
580 	/** @queue_count: Number of queues in this group. */
581 	u32 queue_count;
582 
583 	/** @queues: Queues owned by this group. */
584 	struct panthor_queue *queues[MAX_CS_PER_CSG];
585 
586 	/**
587 	 * @csg_id: ID of the FW group slot.
588 	 *
589 	 * -1 when the group is not scheduled/active.
590 	 */
591 	int csg_id;
592 
593 	/**
594 	 * @destroyed: True when the group has been destroyed.
595 	 *
596 	 * If a group is destroyed it becomes useless: no further jobs can be submitted
597 	 * to its queues. We simply wait for all references to be dropped so we can
598 	 * release the group object.
599 	 */
600 	bool destroyed;
601 
602 	/**
603 	 * @timedout: True when a timeout occurred on any of the queues owned by
604 	 * this group.
605 	 *
606 	 * Timeouts can be reported by drm_sched or by the FW. If a reset is required,
607 	 * and the group can't be suspended, this also leads to a timeout. In any case,
608 	 * any timeout situation is unrecoverable, and the group becomes useless. We
609 	 * simply wait for all references to be dropped so we can release the group
610 	 * object.
611 	 */
612 	bool timedout;
613 
614 	/**
615 	 * @innocent: True when the group becomes unusable because the group suspension
616 	 * failed during a reset.
617 	 *
618 	 * Sometimes the FW was put in a bad state by other groups, causing the group
619 	 * suspension happening in the reset path to fail. In that case, we consider the
620 	 * group innocent.
621 	 */
622 	bool innocent;
623 
624 	/**
625 	 * @syncobjs: Pool of per-queue synchronization objects.
626 	 *
627 	 * One sync object per queue. The position of the sync object is
628 	 * determined by the queue index.
629 	 */
630 	struct panthor_kernel_bo *syncobjs;
631 
632 	/** @fdinfo: Per-file info exposed through /proc/<process>/fdinfo */
633 	struct {
634 		/** @data: Total sampled values for jobs in queues from this group. */
635 		struct panthor_gpu_usage data;
636 
637 		/**
638 		 * @fdinfo.lock: Spinlock to govern concurrent access from drm file's fdinfo
639 		 * callback and job post-completion processing function
640 		 */
641 		spinlock_t lock;
642 
643 		/** @fdinfo.kbo_sizes: Aggregate size of private kernel BO's held by the group. */
644 		size_t kbo_sizes;
645 	} fdinfo;
646 
647 	/** @state: Group state. */
648 	enum panthor_group_state state;
649 
650 	/**
651 	 * @suspend_buf: Suspend buffer.
652 	 *
653 	 * Stores the state of the group and its queues when a group is suspended.
654 	 * Used at resume time to restore the group in its previous state.
655 	 *
656 	 * The size of the suspend buffer is exposed through the FW interface.
657 	 */
658 	struct panthor_kernel_bo *suspend_buf;
659 
660 	/**
661 	 * @protm_suspend_buf: Protection mode suspend buffer.
662 	 *
663 	 * Stores the state of the group and its queues when a group that's in
664 	 * protection mode is suspended.
665 	 *
666 	 * Used at resume time to restore the group in its previous state.
667 	 *
668 	 * The size of the protection mode suspend buffer is exposed through the
669 	 * FW interface.
670 	 */
671 	struct panthor_kernel_bo *protm_suspend_buf;
672 
673 	/** @sync_upd_work: Work used to check/signal job fences. */
674 	struct work_struct sync_upd_work;
675 
676 	/** @tiler_oom_work: Work used to process tiler OOM events happening on this group. */
677 	struct work_struct tiler_oom_work;
678 
679 	/** @term_work: Work used to finish the group termination procedure. */
680 	struct work_struct term_work;
681 
682 	/**
683 	 * @release_work: Work used to release group resources.
684 	 *
685 	 * We need to postpone the group release to avoid a deadlock when
686 	 * the last ref is released in the tick work.
687 	 */
688 	struct work_struct release_work;
689 
690 	/**
691 	 * @run_node: Node used to insert the group in the
692 	 * panthor_group::groups::{runnable,idle} and
693 	 * panthor_group::reset.stopped_groups lists.
694 	 */
695 	struct list_head run_node;
696 
697 	/**
698 	 * @wait_node: Node used to insert the group in the
699 	 * panthor_group::groups::waiting list.
700 	 */
701 	struct list_head wait_node;
702 };
703 
704 struct panthor_job_profiling_data {
705 	struct {
706 		u64 before;
707 		u64 after;
708 	} cycles;
709 
710 	struct {
711 		u64 before;
712 		u64 after;
713 	} time;
714 };
715 
716 /**
717  * group_queue_work() - Queue a group work
718  * @group: Group to queue the work for.
719  * @wname: Work name.
720  *
721  * Grabs a ref and queue a work item to the scheduler workqueue. If
722  * the work was already queued, we release the reference we grabbed.
723  *
724  * Work callbacks must release the reference we grabbed here.
725  */
726 #define group_queue_work(group, wname) \
727 	do { \
728 		group_get(group); \
729 		if (!queue_work((group)->ptdev->scheduler->wq, &(group)->wname ## _work)) \
730 			group_put(group); \
731 	} while (0)
732 
733 /**
734  * sched_queue_work() - Queue a scheduler work.
735  * @sched: Scheduler object.
736  * @wname: Work name.
737  *
738  * Conditionally queues a scheduler work if no reset is pending/in-progress.
739  */
740 #define sched_queue_work(sched, wname) \
741 	do { \
742 		if (!atomic_read(&(sched)->reset.in_progress) && \
743 		    !panthor_device_reset_is_pending((sched)->ptdev)) \
744 			queue_work((sched)->wq, &(sched)->wname ## _work); \
745 	} while (0)
746 
747 /**
748  * sched_queue_delayed_work() - Queue a scheduler delayed work.
749  * @sched: Scheduler object.
750  * @wname: Work name.
751  * @delay: Work delay in jiffies.
752  *
753  * Conditionally queues a scheduler delayed work if no reset is
754  * pending/in-progress.
755  */
756 #define sched_queue_delayed_work(sched, wname, delay) \
757 	do { \
758 		if (!atomic_read(&sched->reset.in_progress) && \
759 		    !panthor_device_reset_is_pending((sched)->ptdev)) \
760 			mod_delayed_work((sched)->wq, &(sched)->wname ## _work, delay); \
761 	} while (0)
762 
763 /*
764  * We currently set the maximum of groups per file to an arbitrary low value.
765  * But this can be updated if we need more.
766  */
767 #define MAX_GROUPS_PER_POOL 128
768 
769 /**
770  * struct panthor_group_pool - Group pool
771  *
772  * Each file get assigned a group pool.
773  */
774 struct panthor_group_pool {
775 	/** @xa: Xarray used to manage group handles. */
776 	struct xarray xa;
777 };
778 
779 /**
780  * struct panthor_job - Used to manage GPU job
781  */
782 struct panthor_job {
783 	/** @base: Inherit from drm_sched_job. */
784 	struct drm_sched_job base;
785 
786 	/** @refcount: Reference count. */
787 	struct kref refcount;
788 
789 	/** @group: Group of the queue this job will be pushed to. */
790 	struct panthor_group *group;
791 
792 	/** @queue_idx: Index of the queue inside @group. */
793 	u32 queue_idx;
794 
795 	/** @call_info: Information about the userspace command stream call. */
796 	struct {
797 		/** @start: GPU address of the userspace command stream. */
798 		u64 start;
799 
800 		/** @size: Size of the userspace command stream. */
801 		u32 size;
802 
803 		/**
804 		 * @latest_flush: Flush ID at the time the userspace command
805 		 * stream was built.
806 		 *
807 		 * Needed for the flush reduction mechanism.
808 		 */
809 		u32 latest_flush;
810 	} call_info;
811 
812 	/** @ringbuf: Position of this job is in the ring buffer. */
813 	struct {
814 		/** @start: Start offset. */
815 		u64 start;
816 
817 		/** @end: End offset. */
818 		u64 end;
819 	} ringbuf;
820 
821 	/**
822 	 * @node: Used to insert the job in the panthor_queue::fence_ctx::in_flight_jobs
823 	 * list.
824 	 */
825 	struct list_head node;
826 
827 	/** @done_fence: Fence signaled when the job is finished or cancelled. */
828 	struct dma_fence *done_fence;
829 
830 	/** @profiling: Job profiling information. */
831 	struct {
832 		/** @mask: Current device job profiling enablement bitmask. */
833 		u32 mask;
834 
835 		/** @slot: Job index in the profiling slots BO. */
836 		u32 slot;
837 	} profiling;
838 };
839 
840 static void
panthor_queue_put_syncwait_obj(struct panthor_queue * queue)841 panthor_queue_put_syncwait_obj(struct panthor_queue *queue)
842 {
843 	if (queue->syncwait.kmap) {
844 		struct iosys_map map = IOSYS_MAP_INIT_VADDR(queue->syncwait.kmap);
845 
846 		drm_gem_vunmap_unlocked(queue->syncwait.obj, &map);
847 		queue->syncwait.kmap = NULL;
848 	}
849 
850 	drm_gem_object_put(queue->syncwait.obj);
851 	queue->syncwait.obj = NULL;
852 }
853 
854 static void *
panthor_queue_get_syncwait_obj(struct panthor_group * group,struct panthor_queue * queue)855 panthor_queue_get_syncwait_obj(struct panthor_group *group, struct panthor_queue *queue)
856 {
857 	struct panthor_device *ptdev = group->ptdev;
858 	struct panthor_gem_object *bo;
859 	struct iosys_map map;
860 	int ret;
861 
862 	if (queue->syncwait.kmap)
863 		return queue->syncwait.kmap + queue->syncwait.offset;
864 
865 	bo = panthor_vm_get_bo_for_va(group->vm,
866 				      queue->syncwait.gpu_va,
867 				      &queue->syncwait.offset);
868 	if (drm_WARN_ON(&ptdev->base, IS_ERR_OR_NULL(bo)))
869 		goto err_put_syncwait_obj;
870 
871 	queue->syncwait.obj = &bo->base.base;
872 	ret = drm_gem_vmap_unlocked(queue->syncwait.obj, &map);
873 	if (drm_WARN_ON(&ptdev->base, ret))
874 		goto err_put_syncwait_obj;
875 
876 	queue->syncwait.kmap = map.vaddr;
877 	if (drm_WARN_ON(&ptdev->base, !queue->syncwait.kmap))
878 		goto err_put_syncwait_obj;
879 
880 	return queue->syncwait.kmap + queue->syncwait.offset;
881 
882 err_put_syncwait_obj:
883 	panthor_queue_put_syncwait_obj(queue);
884 	return NULL;
885 }
886 
group_free_queue(struct panthor_group * group,struct panthor_queue * queue)887 static void group_free_queue(struct panthor_group *group, struct panthor_queue *queue)
888 {
889 	if (IS_ERR_OR_NULL(queue))
890 		return;
891 
892 	if (queue->entity.fence_context)
893 		drm_sched_entity_destroy(&queue->entity);
894 
895 	if (queue->scheduler.ops)
896 		drm_sched_fini(&queue->scheduler);
897 
898 	panthor_queue_put_syncwait_obj(queue);
899 
900 	panthor_kernel_bo_destroy(queue->ringbuf);
901 	panthor_kernel_bo_destroy(queue->iface.mem);
902 	panthor_kernel_bo_destroy(queue->profiling.slots);
903 
904 	/* Release the last_fence we were holding, if any. */
905 	dma_fence_put(queue->fence_ctx.last_fence);
906 
907 	kfree(queue);
908 }
909 
group_release_work(struct work_struct * work)910 static void group_release_work(struct work_struct *work)
911 {
912 	struct panthor_group *group = container_of(work,
913 						   struct panthor_group,
914 						   release_work);
915 	u32 i;
916 
917 	for (i = 0; i < group->queue_count; i++)
918 		group_free_queue(group, group->queues[i]);
919 
920 	panthor_kernel_bo_destroy(group->suspend_buf);
921 	panthor_kernel_bo_destroy(group->protm_suspend_buf);
922 	panthor_kernel_bo_destroy(group->syncobjs);
923 
924 	panthor_vm_put(group->vm);
925 	kfree(group);
926 }
927 
group_release(struct kref * kref)928 static void group_release(struct kref *kref)
929 {
930 	struct panthor_group *group = container_of(kref,
931 						   struct panthor_group,
932 						   refcount);
933 	struct panthor_device *ptdev = group->ptdev;
934 
935 	drm_WARN_ON(&ptdev->base, group->csg_id >= 0);
936 	drm_WARN_ON(&ptdev->base, !list_empty(&group->run_node));
937 	drm_WARN_ON(&ptdev->base, !list_empty(&group->wait_node));
938 
939 	queue_work(panthor_cleanup_wq, &group->release_work);
940 }
941 
group_put(struct panthor_group * group)942 static void group_put(struct panthor_group *group)
943 {
944 	if (group)
945 		kref_put(&group->refcount, group_release);
946 }
947 
948 static struct panthor_group *
group_get(struct panthor_group * group)949 group_get(struct panthor_group *group)
950 {
951 	if (group)
952 		kref_get(&group->refcount);
953 
954 	return group;
955 }
956 
957 /**
958  * group_bind_locked() - Bind a group to a group slot
959  * @group: Group.
960  * @csg_id: Slot.
961  *
962  * Return: 0 on success, a negative error code otherwise.
963  */
964 static int
group_bind_locked(struct panthor_group * group,u32 csg_id)965 group_bind_locked(struct panthor_group *group, u32 csg_id)
966 {
967 	struct panthor_device *ptdev = group->ptdev;
968 	struct panthor_csg_slot *csg_slot;
969 	int ret;
970 
971 	lockdep_assert_held(&ptdev->scheduler->lock);
972 
973 	if (drm_WARN_ON(&ptdev->base, group->csg_id != -1 || csg_id >= MAX_CSGS ||
974 			ptdev->scheduler->csg_slots[csg_id].group))
975 		return -EINVAL;
976 
977 	ret = panthor_vm_active(group->vm);
978 	if (ret)
979 		return ret;
980 
981 	csg_slot = &ptdev->scheduler->csg_slots[csg_id];
982 	group_get(group);
983 	group->csg_id = csg_id;
984 
985 	/* Dummy doorbell allocation: doorbell is assigned to the group and
986 	 * all queues use the same doorbell.
987 	 *
988 	 * TODO: Implement LRU-based doorbell assignment, so the most often
989 	 * updated queues get their own doorbell, thus avoiding useless checks
990 	 * on queues belonging to the same group that are rarely updated.
991 	 */
992 	for (u32 i = 0; i < group->queue_count; i++)
993 		group->queues[i]->doorbell_id = csg_id + 1;
994 
995 	csg_slot->group = group;
996 
997 	return 0;
998 }
999 
1000 /**
1001  * group_unbind_locked() - Unbind a group from a slot.
1002  * @group: Group to unbind.
1003  *
1004  * Return: 0 on success, a negative error code otherwise.
1005  */
1006 static int
group_unbind_locked(struct panthor_group * group)1007 group_unbind_locked(struct panthor_group *group)
1008 {
1009 	struct panthor_device *ptdev = group->ptdev;
1010 	struct panthor_csg_slot *slot;
1011 
1012 	lockdep_assert_held(&ptdev->scheduler->lock);
1013 
1014 	if (drm_WARN_ON(&ptdev->base, group->csg_id < 0 || group->csg_id >= MAX_CSGS))
1015 		return -EINVAL;
1016 
1017 	if (drm_WARN_ON(&ptdev->base, group->state == PANTHOR_CS_GROUP_ACTIVE))
1018 		return -EINVAL;
1019 
1020 	slot = &ptdev->scheduler->csg_slots[group->csg_id];
1021 	panthor_vm_idle(group->vm);
1022 	group->csg_id = -1;
1023 
1024 	/* Tiler OOM events will be re-issued next time the group is scheduled. */
1025 	atomic_set(&group->tiler_oom, 0);
1026 	cancel_work(&group->tiler_oom_work);
1027 
1028 	for (u32 i = 0; i < group->queue_count; i++)
1029 		group->queues[i]->doorbell_id = -1;
1030 
1031 	slot->group = NULL;
1032 
1033 	group_put(group);
1034 	return 0;
1035 }
1036 
1037 /**
1038  * cs_slot_prog_locked() - Program a queue slot
1039  * @ptdev: Device.
1040  * @csg_id: Group slot ID.
1041  * @cs_id: Queue slot ID.
1042  *
1043  * Program a queue slot with the queue information so things can start being
1044  * executed on this queue.
1045  *
1046  * The group slot must have a group bound to it already (group_bind_locked()).
1047  */
1048 static void
cs_slot_prog_locked(struct panthor_device * ptdev,u32 csg_id,u32 cs_id)1049 cs_slot_prog_locked(struct panthor_device *ptdev, u32 csg_id, u32 cs_id)
1050 {
1051 	struct panthor_queue *queue = ptdev->scheduler->csg_slots[csg_id].group->queues[cs_id];
1052 	struct panthor_fw_cs_iface *cs_iface = panthor_fw_get_cs_iface(ptdev, csg_id, cs_id);
1053 
1054 	lockdep_assert_held(&ptdev->scheduler->lock);
1055 
1056 	queue->iface.input->extract = queue->iface.output->extract;
1057 	drm_WARN_ON(&ptdev->base, queue->iface.input->insert < queue->iface.input->extract);
1058 
1059 	cs_iface->input->ringbuf_base = panthor_kernel_bo_gpuva(queue->ringbuf);
1060 	cs_iface->input->ringbuf_size = panthor_kernel_bo_size(queue->ringbuf);
1061 	cs_iface->input->ringbuf_input = queue->iface.input_fw_va;
1062 	cs_iface->input->ringbuf_output = queue->iface.output_fw_va;
1063 	cs_iface->input->config = CS_CONFIG_PRIORITY(queue->priority) |
1064 				  CS_CONFIG_DOORBELL(queue->doorbell_id);
1065 	cs_iface->input->ack_irq_mask = ~0;
1066 	panthor_fw_update_reqs(cs_iface, req,
1067 			       CS_IDLE_SYNC_WAIT |
1068 			       CS_IDLE_EMPTY |
1069 			       CS_STATE_START |
1070 			       CS_EXTRACT_EVENT,
1071 			       CS_IDLE_SYNC_WAIT |
1072 			       CS_IDLE_EMPTY |
1073 			       CS_STATE_MASK |
1074 			       CS_EXTRACT_EVENT);
1075 	if (queue->iface.input->insert != queue->iface.input->extract && queue->timeout_suspended) {
1076 		drm_sched_resume_timeout(&queue->scheduler, queue->remaining_time);
1077 		queue->timeout_suspended = false;
1078 	}
1079 }
1080 
1081 /**
1082  * cs_slot_reset_locked() - Reset a queue slot
1083  * @ptdev: Device.
1084  * @csg_id: Group slot.
1085  * @cs_id: Queue slot.
1086  *
1087  * Change the queue slot state to STOP and suspend the queue timeout if
1088  * the queue is not blocked.
1089  *
1090  * The group slot must have a group bound to it (group_bind_locked()).
1091  */
1092 static int
cs_slot_reset_locked(struct panthor_device * ptdev,u32 csg_id,u32 cs_id)1093 cs_slot_reset_locked(struct panthor_device *ptdev, u32 csg_id, u32 cs_id)
1094 {
1095 	struct panthor_fw_cs_iface *cs_iface = panthor_fw_get_cs_iface(ptdev, csg_id, cs_id);
1096 	struct panthor_group *group = ptdev->scheduler->csg_slots[csg_id].group;
1097 	struct panthor_queue *queue = group->queues[cs_id];
1098 
1099 	lockdep_assert_held(&ptdev->scheduler->lock);
1100 
1101 	panthor_fw_update_reqs(cs_iface, req,
1102 			       CS_STATE_STOP,
1103 			       CS_STATE_MASK);
1104 
1105 	/* If the queue is blocked, we want to keep the timeout running, so
1106 	 * we can detect unbounded waits and kill the group when that happens.
1107 	 */
1108 	if (!(group->blocked_queues & BIT(cs_id)) && !queue->timeout_suspended) {
1109 		queue->remaining_time = drm_sched_suspend_timeout(&queue->scheduler);
1110 		queue->timeout_suspended = true;
1111 		WARN_ON(queue->remaining_time > msecs_to_jiffies(JOB_TIMEOUT_MS));
1112 	}
1113 
1114 	return 0;
1115 }
1116 
1117 /**
1118  * csg_slot_sync_priority_locked() - Synchronize the group slot priority
1119  * @ptdev: Device.
1120  * @csg_id: Group slot ID.
1121  *
1122  * Group slot priority update happens asynchronously. When we receive a
1123  * %CSG_ENDPOINT_CONFIG, we know the update is effective, and can
1124  * reflect it to our panthor_csg_slot object.
1125  */
1126 static void
csg_slot_sync_priority_locked(struct panthor_device * ptdev,u32 csg_id)1127 csg_slot_sync_priority_locked(struct panthor_device *ptdev, u32 csg_id)
1128 {
1129 	struct panthor_csg_slot *csg_slot = &ptdev->scheduler->csg_slots[csg_id];
1130 	struct panthor_fw_csg_iface *csg_iface;
1131 
1132 	lockdep_assert_held(&ptdev->scheduler->lock);
1133 
1134 	csg_iface = panthor_fw_get_csg_iface(ptdev, csg_id);
1135 	csg_slot->priority = (csg_iface->input->endpoint_req & CSG_EP_REQ_PRIORITY_MASK) >> 28;
1136 }
1137 
1138 /**
1139  * cs_slot_sync_queue_state_locked() - Synchronize the queue slot priority
1140  * @ptdev: Device.
1141  * @csg_id: Group slot.
1142  * @cs_id: Queue slot.
1143  *
1144  * Queue state is updated on group suspend or STATUS_UPDATE event.
1145  */
1146 static void
cs_slot_sync_queue_state_locked(struct panthor_device * ptdev,u32 csg_id,u32 cs_id)1147 cs_slot_sync_queue_state_locked(struct panthor_device *ptdev, u32 csg_id, u32 cs_id)
1148 {
1149 	struct panthor_group *group = ptdev->scheduler->csg_slots[csg_id].group;
1150 	struct panthor_queue *queue = group->queues[cs_id];
1151 	struct panthor_fw_cs_iface *cs_iface =
1152 		panthor_fw_get_cs_iface(group->ptdev, csg_id, cs_id);
1153 
1154 	u32 status_wait_cond;
1155 
1156 	switch (cs_iface->output->status_blocked_reason) {
1157 	case CS_STATUS_BLOCKED_REASON_UNBLOCKED:
1158 		if (queue->iface.input->insert == queue->iface.output->extract &&
1159 		    cs_iface->output->status_scoreboards == 0)
1160 			group->idle_queues |= BIT(cs_id);
1161 		break;
1162 
1163 	case CS_STATUS_BLOCKED_REASON_SYNC_WAIT:
1164 		if (list_empty(&group->wait_node)) {
1165 			list_move_tail(&group->wait_node,
1166 				       &group->ptdev->scheduler->groups.waiting);
1167 		}
1168 
1169 		/* The queue is only blocked if there's no deferred operation
1170 		 * pending, which can be checked through the scoreboard status.
1171 		 */
1172 		if (!cs_iface->output->status_scoreboards)
1173 			group->blocked_queues |= BIT(cs_id);
1174 
1175 		queue->syncwait.gpu_va = cs_iface->output->status_wait_sync_ptr;
1176 		queue->syncwait.ref = cs_iface->output->status_wait_sync_value;
1177 		status_wait_cond = cs_iface->output->status_wait & CS_STATUS_WAIT_SYNC_COND_MASK;
1178 		queue->syncwait.gt = status_wait_cond == CS_STATUS_WAIT_SYNC_COND_GT;
1179 		if (cs_iface->output->status_wait & CS_STATUS_WAIT_SYNC_64B) {
1180 			u64 sync_val_hi = cs_iface->output->status_wait_sync_value_hi;
1181 
1182 			queue->syncwait.sync64 = true;
1183 			queue->syncwait.ref |= sync_val_hi << 32;
1184 		} else {
1185 			queue->syncwait.sync64 = false;
1186 		}
1187 		break;
1188 
1189 	default:
1190 		/* Other reasons are not blocking. Consider the queue as runnable
1191 		 * in those cases.
1192 		 */
1193 		break;
1194 	}
1195 }
1196 
1197 static void
csg_slot_sync_queues_state_locked(struct panthor_device * ptdev,u32 csg_id)1198 csg_slot_sync_queues_state_locked(struct panthor_device *ptdev, u32 csg_id)
1199 {
1200 	struct panthor_csg_slot *csg_slot = &ptdev->scheduler->csg_slots[csg_id];
1201 	struct panthor_group *group = csg_slot->group;
1202 	u32 i;
1203 
1204 	lockdep_assert_held(&ptdev->scheduler->lock);
1205 
1206 	group->idle_queues = 0;
1207 	group->blocked_queues = 0;
1208 
1209 	for (i = 0; i < group->queue_count; i++) {
1210 		if (group->queues[i])
1211 			cs_slot_sync_queue_state_locked(ptdev, csg_id, i);
1212 	}
1213 }
1214 
1215 static void
csg_slot_sync_state_locked(struct panthor_device * ptdev,u32 csg_id)1216 csg_slot_sync_state_locked(struct panthor_device *ptdev, u32 csg_id)
1217 {
1218 	struct panthor_csg_slot *csg_slot = &ptdev->scheduler->csg_slots[csg_id];
1219 	struct panthor_fw_csg_iface *csg_iface;
1220 	struct panthor_group *group;
1221 	enum panthor_group_state new_state, old_state;
1222 	u32 csg_state;
1223 
1224 	lockdep_assert_held(&ptdev->scheduler->lock);
1225 
1226 	csg_iface = panthor_fw_get_csg_iface(ptdev, csg_id);
1227 	group = csg_slot->group;
1228 
1229 	if (!group)
1230 		return;
1231 
1232 	old_state = group->state;
1233 	csg_state = csg_iface->output->ack & CSG_STATE_MASK;
1234 	switch (csg_state) {
1235 	case CSG_STATE_START:
1236 	case CSG_STATE_RESUME:
1237 		new_state = PANTHOR_CS_GROUP_ACTIVE;
1238 		break;
1239 	case CSG_STATE_TERMINATE:
1240 		new_state = PANTHOR_CS_GROUP_TERMINATED;
1241 		break;
1242 	case CSG_STATE_SUSPEND:
1243 		new_state = PANTHOR_CS_GROUP_SUSPENDED;
1244 		break;
1245 	default:
1246 		/* The unknown state might be caused by a FW state corruption,
1247 		 * which means the group metadata can't be trusted anymore, and
1248 		 * the SUSPEND operation might propagate the corruption to the
1249 		 * suspend buffers. Flag the group state as unknown to make
1250 		 * sure it's unusable after that point.
1251 		 */
1252 		drm_err(&ptdev->base, "Invalid state on CSG %d (state=%d)",
1253 			csg_id, csg_state);
1254 		new_state = PANTHOR_CS_GROUP_UNKNOWN_STATE;
1255 		break;
1256 	}
1257 
1258 	if (old_state == new_state)
1259 		return;
1260 
1261 	/* The unknown state might be caused by a FW issue, reset the FW to
1262 	 * take a fresh start.
1263 	 */
1264 	if (new_state == PANTHOR_CS_GROUP_UNKNOWN_STATE)
1265 		panthor_device_schedule_reset(ptdev);
1266 
1267 	if (new_state == PANTHOR_CS_GROUP_SUSPENDED)
1268 		csg_slot_sync_queues_state_locked(ptdev, csg_id);
1269 
1270 	if (old_state == PANTHOR_CS_GROUP_ACTIVE) {
1271 		u32 i;
1272 
1273 		/* Reset the queue slots so we start from a clean
1274 		 * state when starting/resuming a new group on this
1275 		 * CSG slot. No wait needed here, and no ringbell
1276 		 * either, since the CS slot will only be re-used
1277 		 * on the next CSG start operation.
1278 		 */
1279 		for (i = 0; i < group->queue_count; i++) {
1280 			if (group->queues[i])
1281 				cs_slot_reset_locked(ptdev, csg_id, i);
1282 		}
1283 	}
1284 
1285 	group->state = new_state;
1286 }
1287 
1288 static int
csg_slot_prog_locked(struct panthor_device * ptdev,u32 csg_id,u32 priority)1289 csg_slot_prog_locked(struct panthor_device *ptdev, u32 csg_id, u32 priority)
1290 {
1291 	struct panthor_fw_csg_iface *csg_iface;
1292 	struct panthor_csg_slot *csg_slot;
1293 	struct panthor_group *group;
1294 	u32 queue_mask = 0, i;
1295 
1296 	lockdep_assert_held(&ptdev->scheduler->lock);
1297 
1298 	if (priority > MAX_CSG_PRIO)
1299 		return -EINVAL;
1300 
1301 	if (drm_WARN_ON(&ptdev->base, csg_id >= MAX_CSGS))
1302 		return -EINVAL;
1303 
1304 	csg_slot = &ptdev->scheduler->csg_slots[csg_id];
1305 	group = csg_slot->group;
1306 	if (!group || group->state == PANTHOR_CS_GROUP_ACTIVE)
1307 		return 0;
1308 
1309 	csg_iface = panthor_fw_get_csg_iface(group->ptdev, csg_id);
1310 
1311 	for (i = 0; i < group->queue_count; i++) {
1312 		if (group->queues[i]) {
1313 			cs_slot_prog_locked(ptdev, csg_id, i);
1314 			queue_mask |= BIT(i);
1315 		}
1316 	}
1317 
1318 	csg_iface->input->allow_compute = group->compute_core_mask;
1319 	csg_iface->input->allow_fragment = group->fragment_core_mask;
1320 	csg_iface->input->allow_other = group->tiler_core_mask;
1321 	csg_iface->input->endpoint_req = CSG_EP_REQ_COMPUTE(group->max_compute_cores) |
1322 					 CSG_EP_REQ_FRAGMENT(group->max_fragment_cores) |
1323 					 CSG_EP_REQ_TILER(group->max_tiler_cores) |
1324 					 CSG_EP_REQ_PRIORITY(priority);
1325 	csg_iface->input->config = panthor_vm_as(group->vm);
1326 
1327 	if (group->suspend_buf)
1328 		csg_iface->input->suspend_buf = panthor_kernel_bo_gpuva(group->suspend_buf);
1329 	else
1330 		csg_iface->input->suspend_buf = 0;
1331 
1332 	if (group->protm_suspend_buf) {
1333 		csg_iface->input->protm_suspend_buf =
1334 			panthor_kernel_bo_gpuva(group->protm_suspend_buf);
1335 	} else {
1336 		csg_iface->input->protm_suspend_buf = 0;
1337 	}
1338 
1339 	csg_iface->input->ack_irq_mask = ~0;
1340 	panthor_fw_toggle_reqs(csg_iface, doorbell_req, doorbell_ack, queue_mask);
1341 	return 0;
1342 }
1343 
1344 static void
cs_slot_process_fatal_event_locked(struct panthor_device * ptdev,u32 csg_id,u32 cs_id)1345 cs_slot_process_fatal_event_locked(struct panthor_device *ptdev,
1346 				   u32 csg_id, u32 cs_id)
1347 {
1348 	struct panthor_scheduler *sched = ptdev->scheduler;
1349 	struct panthor_csg_slot *csg_slot = &sched->csg_slots[csg_id];
1350 	struct panthor_group *group = csg_slot->group;
1351 	struct panthor_fw_cs_iface *cs_iface;
1352 	u32 fatal;
1353 	u64 info;
1354 
1355 	lockdep_assert_held(&sched->lock);
1356 
1357 	cs_iface = panthor_fw_get_cs_iface(ptdev, csg_id, cs_id);
1358 	fatal = cs_iface->output->fatal;
1359 	info = cs_iface->output->fatal_info;
1360 
1361 	if (group)
1362 		group->fatal_queues |= BIT(cs_id);
1363 
1364 	if (CS_EXCEPTION_TYPE(fatal) == DRM_PANTHOR_EXCEPTION_CS_UNRECOVERABLE) {
1365 		/* If this exception is unrecoverable, queue a reset, and make
1366 		 * sure we stop scheduling groups until the reset has happened.
1367 		 */
1368 		panthor_device_schedule_reset(ptdev);
1369 		cancel_delayed_work(&sched->tick_work);
1370 	} else {
1371 		sched_queue_delayed_work(sched, tick, 0);
1372 	}
1373 
1374 	drm_warn(&ptdev->base,
1375 		 "CSG slot %d CS slot: %d\n"
1376 		 "CS_FATAL.EXCEPTION_TYPE: 0x%x (%s)\n"
1377 		 "CS_FATAL.EXCEPTION_DATA: 0x%x\n"
1378 		 "CS_FATAL_INFO.EXCEPTION_DATA: 0x%llx\n",
1379 		 csg_id, cs_id,
1380 		 (unsigned int)CS_EXCEPTION_TYPE(fatal),
1381 		 panthor_exception_name(ptdev, CS_EXCEPTION_TYPE(fatal)),
1382 		 (unsigned int)CS_EXCEPTION_DATA(fatal),
1383 		 info);
1384 }
1385 
1386 static void
cs_slot_process_fault_event_locked(struct panthor_device * ptdev,u32 csg_id,u32 cs_id)1387 cs_slot_process_fault_event_locked(struct panthor_device *ptdev,
1388 				   u32 csg_id, u32 cs_id)
1389 {
1390 	struct panthor_scheduler *sched = ptdev->scheduler;
1391 	struct panthor_csg_slot *csg_slot = &sched->csg_slots[csg_id];
1392 	struct panthor_group *group = csg_slot->group;
1393 	struct panthor_queue *queue = group && cs_id < group->queue_count ?
1394 				      group->queues[cs_id] : NULL;
1395 	struct panthor_fw_cs_iface *cs_iface;
1396 	u32 fault;
1397 	u64 info;
1398 
1399 	lockdep_assert_held(&sched->lock);
1400 
1401 	cs_iface = panthor_fw_get_cs_iface(ptdev, csg_id, cs_id);
1402 	fault = cs_iface->output->fault;
1403 	info = cs_iface->output->fault_info;
1404 
1405 	if (queue && CS_EXCEPTION_TYPE(fault) == DRM_PANTHOR_EXCEPTION_CS_INHERIT_FAULT) {
1406 		u64 cs_extract = queue->iface.output->extract;
1407 		struct panthor_job *job;
1408 
1409 		spin_lock(&queue->fence_ctx.lock);
1410 		list_for_each_entry(job, &queue->fence_ctx.in_flight_jobs, node) {
1411 			if (cs_extract >= job->ringbuf.end)
1412 				continue;
1413 
1414 			if (cs_extract < job->ringbuf.start)
1415 				break;
1416 
1417 			dma_fence_set_error(job->done_fence, -EINVAL);
1418 		}
1419 		spin_unlock(&queue->fence_ctx.lock);
1420 	}
1421 
1422 	drm_warn(&ptdev->base,
1423 		 "CSG slot %d CS slot: %d\n"
1424 		 "CS_FAULT.EXCEPTION_TYPE: 0x%x (%s)\n"
1425 		 "CS_FAULT.EXCEPTION_DATA: 0x%x\n"
1426 		 "CS_FAULT_INFO.EXCEPTION_DATA: 0x%llx\n",
1427 		 csg_id, cs_id,
1428 		 (unsigned int)CS_EXCEPTION_TYPE(fault),
1429 		 panthor_exception_name(ptdev, CS_EXCEPTION_TYPE(fault)),
1430 		 (unsigned int)CS_EXCEPTION_DATA(fault),
1431 		 info);
1432 }
1433 
group_process_tiler_oom(struct panthor_group * group,u32 cs_id)1434 static int group_process_tiler_oom(struct panthor_group *group, u32 cs_id)
1435 {
1436 	struct panthor_device *ptdev = group->ptdev;
1437 	struct panthor_scheduler *sched = ptdev->scheduler;
1438 	u32 renderpasses_in_flight, pending_frag_count;
1439 	struct panthor_heap_pool *heaps = NULL;
1440 	u64 heap_address, new_chunk_va = 0;
1441 	u32 vt_start, vt_end, frag_end;
1442 	int ret, csg_id;
1443 
1444 	mutex_lock(&sched->lock);
1445 	csg_id = group->csg_id;
1446 	if (csg_id >= 0) {
1447 		struct panthor_fw_cs_iface *cs_iface;
1448 
1449 		cs_iface = panthor_fw_get_cs_iface(ptdev, csg_id, cs_id);
1450 		heaps = panthor_vm_get_heap_pool(group->vm, false);
1451 		heap_address = cs_iface->output->heap_address;
1452 		vt_start = cs_iface->output->heap_vt_start;
1453 		vt_end = cs_iface->output->heap_vt_end;
1454 		frag_end = cs_iface->output->heap_frag_end;
1455 		renderpasses_in_flight = vt_start - frag_end;
1456 		pending_frag_count = vt_end - frag_end;
1457 	}
1458 	mutex_unlock(&sched->lock);
1459 
1460 	/* The group got scheduled out, we stop here. We will get a new tiler OOM event
1461 	 * when it's scheduled again.
1462 	 */
1463 	if (unlikely(csg_id < 0))
1464 		return 0;
1465 
1466 	if (IS_ERR(heaps) || frag_end > vt_end || vt_end >= vt_start) {
1467 		ret = -EINVAL;
1468 	} else {
1469 		/* We do the allocation without holding the scheduler lock to avoid
1470 		 * blocking the scheduling.
1471 		 */
1472 		ret = panthor_heap_grow(heaps, heap_address,
1473 					renderpasses_in_flight,
1474 					pending_frag_count, &new_chunk_va);
1475 	}
1476 
1477 	/* If the heap context doesn't have memory for us, we want to let the
1478 	 * FW try to reclaim memory by waiting for fragment jobs to land or by
1479 	 * executing the tiler OOM exception handler, which is supposed to
1480 	 * implement incremental rendering.
1481 	 */
1482 	if (ret && ret != -ENOMEM) {
1483 		drm_warn(&ptdev->base, "Failed to extend the tiler heap\n");
1484 		group->fatal_queues |= BIT(cs_id);
1485 		sched_queue_delayed_work(sched, tick, 0);
1486 		goto out_put_heap_pool;
1487 	}
1488 
1489 	mutex_lock(&sched->lock);
1490 	csg_id = group->csg_id;
1491 	if (csg_id >= 0) {
1492 		struct panthor_fw_csg_iface *csg_iface;
1493 		struct panthor_fw_cs_iface *cs_iface;
1494 
1495 		csg_iface = panthor_fw_get_csg_iface(ptdev, csg_id);
1496 		cs_iface = panthor_fw_get_cs_iface(ptdev, csg_id, cs_id);
1497 
1498 		cs_iface->input->heap_start = new_chunk_va;
1499 		cs_iface->input->heap_end = new_chunk_va;
1500 		panthor_fw_update_reqs(cs_iface, req, cs_iface->output->ack, CS_TILER_OOM);
1501 		panthor_fw_toggle_reqs(csg_iface, doorbell_req, doorbell_ack, BIT(cs_id));
1502 		panthor_fw_ring_csg_doorbells(ptdev, BIT(csg_id));
1503 	}
1504 	mutex_unlock(&sched->lock);
1505 
1506 	/* We allocated a chunck, but couldn't link it to the heap
1507 	 * context because the group was scheduled out while we were
1508 	 * allocating memory. We need to return this chunk to the heap.
1509 	 */
1510 	if (unlikely(csg_id < 0 && new_chunk_va))
1511 		panthor_heap_return_chunk(heaps, heap_address, new_chunk_va);
1512 
1513 	ret = 0;
1514 
1515 out_put_heap_pool:
1516 	panthor_heap_pool_put(heaps);
1517 	return ret;
1518 }
1519 
group_tiler_oom_work(struct work_struct * work)1520 static void group_tiler_oom_work(struct work_struct *work)
1521 {
1522 	struct panthor_group *group =
1523 		container_of(work, struct panthor_group, tiler_oom_work);
1524 	u32 tiler_oom = atomic_xchg(&group->tiler_oom, 0);
1525 
1526 	while (tiler_oom) {
1527 		u32 cs_id = ffs(tiler_oom) - 1;
1528 
1529 		group_process_tiler_oom(group, cs_id);
1530 		tiler_oom &= ~BIT(cs_id);
1531 	}
1532 
1533 	group_put(group);
1534 }
1535 
1536 static void
cs_slot_process_tiler_oom_event_locked(struct panthor_device * ptdev,u32 csg_id,u32 cs_id)1537 cs_slot_process_tiler_oom_event_locked(struct panthor_device *ptdev,
1538 				       u32 csg_id, u32 cs_id)
1539 {
1540 	struct panthor_scheduler *sched = ptdev->scheduler;
1541 	struct panthor_csg_slot *csg_slot = &sched->csg_slots[csg_id];
1542 	struct panthor_group *group = csg_slot->group;
1543 
1544 	lockdep_assert_held(&sched->lock);
1545 
1546 	if (drm_WARN_ON(&ptdev->base, !group))
1547 		return;
1548 
1549 	atomic_or(BIT(cs_id), &group->tiler_oom);
1550 
1551 	/* We don't use group_queue_work() here because we want to queue the
1552 	 * work item to the heap_alloc_wq.
1553 	 */
1554 	group_get(group);
1555 	if (!queue_work(sched->heap_alloc_wq, &group->tiler_oom_work))
1556 		group_put(group);
1557 }
1558 
cs_slot_process_irq_locked(struct panthor_device * ptdev,u32 csg_id,u32 cs_id)1559 static bool cs_slot_process_irq_locked(struct panthor_device *ptdev,
1560 				       u32 csg_id, u32 cs_id)
1561 {
1562 	struct panthor_fw_cs_iface *cs_iface;
1563 	u32 req, ack, events;
1564 
1565 	lockdep_assert_held(&ptdev->scheduler->lock);
1566 
1567 	cs_iface = panthor_fw_get_cs_iface(ptdev, csg_id, cs_id);
1568 	req = cs_iface->input->req;
1569 	ack = cs_iface->output->ack;
1570 	events = (req ^ ack) & CS_EVT_MASK;
1571 
1572 	if (events & CS_FATAL)
1573 		cs_slot_process_fatal_event_locked(ptdev, csg_id, cs_id);
1574 
1575 	if (events & CS_FAULT)
1576 		cs_slot_process_fault_event_locked(ptdev, csg_id, cs_id);
1577 
1578 	if (events & CS_TILER_OOM)
1579 		cs_slot_process_tiler_oom_event_locked(ptdev, csg_id, cs_id);
1580 
1581 	/* We don't acknowledge the TILER_OOM event since its handling is
1582 	 * deferred to a separate work.
1583 	 */
1584 	panthor_fw_update_reqs(cs_iface, req, ack, CS_FATAL | CS_FAULT);
1585 
1586 	return (events & (CS_FAULT | CS_TILER_OOM)) != 0;
1587 }
1588 
csg_slot_sync_idle_state_locked(struct panthor_device * ptdev,u32 csg_id)1589 static void csg_slot_sync_idle_state_locked(struct panthor_device *ptdev, u32 csg_id)
1590 {
1591 	struct panthor_csg_slot *csg_slot = &ptdev->scheduler->csg_slots[csg_id];
1592 	struct panthor_fw_csg_iface *csg_iface;
1593 
1594 	lockdep_assert_held(&ptdev->scheduler->lock);
1595 
1596 	csg_iface = panthor_fw_get_csg_iface(ptdev, csg_id);
1597 	csg_slot->idle = csg_iface->output->status_state & CSG_STATUS_STATE_IS_IDLE;
1598 }
1599 
csg_slot_process_idle_event_locked(struct panthor_device * ptdev,u32 csg_id)1600 static void csg_slot_process_idle_event_locked(struct panthor_device *ptdev, u32 csg_id)
1601 {
1602 	struct panthor_scheduler *sched = ptdev->scheduler;
1603 
1604 	lockdep_assert_held(&sched->lock);
1605 
1606 	sched->might_have_idle_groups = true;
1607 
1608 	/* Schedule a tick so we can evict idle groups and schedule non-idle
1609 	 * ones. This will also update runtime PM and devfreq busy/idle states,
1610 	 * so the device can lower its frequency or get suspended.
1611 	 */
1612 	sched_queue_delayed_work(sched, tick, 0);
1613 }
1614 
csg_slot_sync_update_locked(struct panthor_device * ptdev,u32 csg_id)1615 static void csg_slot_sync_update_locked(struct panthor_device *ptdev,
1616 					u32 csg_id)
1617 {
1618 	struct panthor_csg_slot *csg_slot = &ptdev->scheduler->csg_slots[csg_id];
1619 	struct panthor_group *group = csg_slot->group;
1620 
1621 	lockdep_assert_held(&ptdev->scheduler->lock);
1622 
1623 	if (group)
1624 		group_queue_work(group, sync_upd);
1625 
1626 	sched_queue_work(ptdev->scheduler, sync_upd);
1627 }
1628 
1629 static void
csg_slot_process_progress_timer_event_locked(struct panthor_device * ptdev,u32 csg_id)1630 csg_slot_process_progress_timer_event_locked(struct panthor_device *ptdev, u32 csg_id)
1631 {
1632 	struct panthor_scheduler *sched = ptdev->scheduler;
1633 	struct panthor_csg_slot *csg_slot = &sched->csg_slots[csg_id];
1634 	struct panthor_group *group = csg_slot->group;
1635 
1636 	lockdep_assert_held(&sched->lock);
1637 
1638 	drm_warn(&ptdev->base, "CSG slot %d progress timeout\n", csg_id);
1639 
1640 	group = csg_slot->group;
1641 	if (!drm_WARN_ON(&ptdev->base, !group))
1642 		group->timedout = true;
1643 
1644 	sched_queue_delayed_work(sched, tick, 0);
1645 }
1646 
sched_process_csg_irq_locked(struct panthor_device * ptdev,u32 csg_id)1647 static void sched_process_csg_irq_locked(struct panthor_device *ptdev, u32 csg_id)
1648 {
1649 	u32 req, ack, cs_irq_req, cs_irq_ack, cs_irqs, csg_events;
1650 	struct panthor_fw_csg_iface *csg_iface;
1651 	u32 ring_cs_db_mask = 0;
1652 
1653 	lockdep_assert_held(&ptdev->scheduler->lock);
1654 
1655 	if (drm_WARN_ON(&ptdev->base, csg_id >= ptdev->scheduler->csg_slot_count))
1656 		return;
1657 
1658 	csg_iface = panthor_fw_get_csg_iface(ptdev, csg_id);
1659 	req = READ_ONCE(csg_iface->input->req);
1660 	ack = READ_ONCE(csg_iface->output->ack);
1661 	cs_irq_req = READ_ONCE(csg_iface->output->cs_irq_req);
1662 	cs_irq_ack = READ_ONCE(csg_iface->input->cs_irq_ack);
1663 	csg_events = (req ^ ack) & CSG_EVT_MASK;
1664 
1665 	/* There may not be any pending CSG/CS interrupts to process */
1666 	if (req == ack && cs_irq_req == cs_irq_ack)
1667 		return;
1668 
1669 	/* Immediately set IRQ_ACK bits to be same as the IRQ_REQ bits before
1670 	 * examining the CS_ACK & CS_REQ bits. This would ensure that Host
1671 	 * doesn't miss an interrupt for the CS in the race scenario where
1672 	 * whilst Host is servicing an interrupt for the CS, firmware sends
1673 	 * another interrupt for that CS.
1674 	 */
1675 	csg_iface->input->cs_irq_ack = cs_irq_req;
1676 
1677 	panthor_fw_update_reqs(csg_iface, req, ack,
1678 			       CSG_SYNC_UPDATE |
1679 			       CSG_IDLE |
1680 			       CSG_PROGRESS_TIMER_EVENT);
1681 
1682 	if (csg_events & CSG_IDLE)
1683 		csg_slot_process_idle_event_locked(ptdev, csg_id);
1684 
1685 	if (csg_events & CSG_PROGRESS_TIMER_EVENT)
1686 		csg_slot_process_progress_timer_event_locked(ptdev, csg_id);
1687 
1688 	cs_irqs = cs_irq_req ^ cs_irq_ack;
1689 	while (cs_irqs) {
1690 		u32 cs_id = ffs(cs_irqs) - 1;
1691 
1692 		if (cs_slot_process_irq_locked(ptdev, csg_id, cs_id))
1693 			ring_cs_db_mask |= BIT(cs_id);
1694 
1695 		cs_irqs &= ~BIT(cs_id);
1696 	}
1697 
1698 	if (csg_events & CSG_SYNC_UPDATE)
1699 		csg_slot_sync_update_locked(ptdev, csg_id);
1700 
1701 	if (ring_cs_db_mask)
1702 		panthor_fw_toggle_reqs(csg_iface, doorbell_req, doorbell_ack, ring_cs_db_mask);
1703 
1704 	panthor_fw_ring_csg_doorbells(ptdev, BIT(csg_id));
1705 }
1706 
sched_process_idle_event_locked(struct panthor_device * ptdev)1707 static void sched_process_idle_event_locked(struct panthor_device *ptdev)
1708 {
1709 	struct panthor_fw_global_iface *glb_iface = panthor_fw_get_glb_iface(ptdev);
1710 
1711 	lockdep_assert_held(&ptdev->scheduler->lock);
1712 
1713 	/* Acknowledge the idle event and schedule a tick. */
1714 	panthor_fw_update_reqs(glb_iface, req, glb_iface->output->ack, GLB_IDLE);
1715 	sched_queue_delayed_work(ptdev->scheduler, tick, 0);
1716 }
1717 
1718 /**
1719  * sched_process_global_irq_locked() - Process the scheduling part of a global IRQ
1720  * @ptdev: Device.
1721  */
sched_process_global_irq_locked(struct panthor_device * ptdev)1722 static void sched_process_global_irq_locked(struct panthor_device *ptdev)
1723 {
1724 	struct panthor_fw_global_iface *glb_iface = panthor_fw_get_glb_iface(ptdev);
1725 	u32 req, ack, evts;
1726 
1727 	lockdep_assert_held(&ptdev->scheduler->lock);
1728 
1729 	req = READ_ONCE(glb_iface->input->req);
1730 	ack = READ_ONCE(glb_iface->output->ack);
1731 	evts = (req ^ ack) & GLB_EVT_MASK;
1732 
1733 	if (evts & GLB_IDLE)
1734 		sched_process_idle_event_locked(ptdev);
1735 }
1736 
process_fw_events_work(struct work_struct * work)1737 static void process_fw_events_work(struct work_struct *work)
1738 {
1739 	struct panthor_scheduler *sched = container_of(work, struct panthor_scheduler,
1740 						      fw_events_work);
1741 	u32 events = atomic_xchg(&sched->fw_events, 0);
1742 	struct panthor_device *ptdev = sched->ptdev;
1743 
1744 	mutex_lock(&sched->lock);
1745 
1746 	if (events & JOB_INT_GLOBAL_IF) {
1747 		sched_process_global_irq_locked(ptdev);
1748 		events &= ~JOB_INT_GLOBAL_IF;
1749 	}
1750 
1751 	while (events) {
1752 		u32 csg_id = ffs(events) - 1;
1753 
1754 		sched_process_csg_irq_locked(ptdev, csg_id);
1755 		events &= ~BIT(csg_id);
1756 	}
1757 
1758 	mutex_unlock(&sched->lock);
1759 }
1760 
1761 /**
1762  * panthor_sched_report_fw_events() - Report FW events to the scheduler.
1763  */
panthor_sched_report_fw_events(struct panthor_device * ptdev,u32 events)1764 void panthor_sched_report_fw_events(struct panthor_device *ptdev, u32 events)
1765 {
1766 	if (!ptdev->scheduler)
1767 		return;
1768 
1769 	atomic_or(events, &ptdev->scheduler->fw_events);
1770 	sched_queue_work(ptdev->scheduler, fw_events);
1771 }
1772 
fence_get_driver_name(struct dma_fence * fence)1773 static const char *fence_get_driver_name(struct dma_fence *fence)
1774 {
1775 	return "panthor";
1776 }
1777 
queue_fence_get_timeline_name(struct dma_fence * fence)1778 static const char *queue_fence_get_timeline_name(struct dma_fence *fence)
1779 {
1780 	return "queue-fence";
1781 }
1782 
1783 static const struct dma_fence_ops panthor_queue_fence_ops = {
1784 	.get_driver_name = fence_get_driver_name,
1785 	.get_timeline_name = queue_fence_get_timeline_name,
1786 };
1787 
1788 struct panthor_csg_slots_upd_ctx {
1789 	u32 update_mask;
1790 	u32 timedout_mask;
1791 	struct {
1792 		u32 value;
1793 		u32 mask;
1794 	} requests[MAX_CSGS];
1795 };
1796 
csgs_upd_ctx_init(struct panthor_csg_slots_upd_ctx * ctx)1797 static void csgs_upd_ctx_init(struct panthor_csg_slots_upd_ctx *ctx)
1798 {
1799 	memset(ctx, 0, sizeof(*ctx));
1800 }
1801 
csgs_upd_ctx_queue_reqs(struct panthor_device * ptdev,struct panthor_csg_slots_upd_ctx * ctx,u32 csg_id,u32 value,u32 mask)1802 static void csgs_upd_ctx_queue_reqs(struct panthor_device *ptdev,
1803 				    struct panthor_csg_slots_upd_ctx *ctx,
1804 				    u32 csg_id, u32 value, u32 mask)
1805 {
1806 	if (drm_WARN_ON(&ptdev->base, !mask) ||
1807 	    drm_WARN_ON(&ptdev->base, csg_id >= ptdev->scheduler->csg_slot_count))
1808 		return;
1809 
1810 	ctx->requests[csg_id].value = (ctx->requests[csg_id].value & ~mask) | (value & mask);
1811 	ctx->requests[csg_id].mask |= mask;
1812 	ctx->update_mask |= BIT(csg_id);
1813 }
1814 
csgs_upd_ctx_apply_locked(struct panthor_device * ptdev,struct panthor_csg_slots_upd_ctx * ctx)1815 static int csgs_upd_ctx_apply_locked(struct panthor_device *ptdev,
1816 				     struct panthor_csg_slots_upd_ctx *ctx)
1817 {
1818 	struct panthor_scheduler *sched = ptdev->scheduler;
1819 	u32 update_slots = ctx->update_mask;
1820 
1821 	lockdep_assert_held(&sched->lock);
1822 
1823 	if (!ctx->update_mask)
1824 		return 0;
1825 
1826 	while (update_slots) {
1827 		struct panthor_fw_csg_iface *csg_iface;
1828 		u32 csg_id = ffs(update_slots) - 1;
1829 
1830 		update_slots &= ~BIT(csg_id);
1831 		csg_iface = panthor_fw_get_csg_iface(ptdev, csg_id);
1832 		panthor_fw_update_reqs(csg_iface, req,
1833 				       ctx->requests[csg_id].value,
1834 				       ctx->requests[csg_id].mask);
1835 	}
1836 
1837 	panthor_fw_ring_csg_doorbells(ptdev, ctx->update_mask);
1838 
1839 	update_slots = ctx->update_mask;
1840 	while (update_slots) {
1841 		struct panthor_fw_csg_iface *csg_iface;
1842 		u32 csg_id = ffs(update_slots) - 1;
1843 		u32 req_mask = ctx->requests[csg_id].mask, acked;
1844 		int ret;
1845 
1846 		update_slots &= ~BIT(csg_id);
1847 		csg_iface = panthor_fw_get_csg_iface(ptdev, csg_id);
1848 
1849 		ret = panthor_fw_csg_wait_acks(ptdev, csg_id, req_mask, &acked, 100);
1850 
1851 		if (acked & CSG_ENDPOINT_CONFIG)
1852 			csg_slot_sync_priority_locked(ptdev, csg_id);
1853 
1854 		if (acked & CSG_STATE_MASK)
1855 			csg_slot_sync_state_locked(ptdev, csg_id);
1856 
1857 		if (acked & CSG_STATUS_UPDATE) {
1858 			csg_slot_sync_queues_state_locked(ptdev, csg_id);
1859 			csg_slot_sync_idle_state_locked(ptdev, csg_id);
1860 		}
1861 
1862 		if (ret && acked != req_mask &&
1863 		    ((csg_iface->input->req ^ csg_iface->output->ack) & req_mask) != 0) {
1864 			drm_err(&ptdev->base, "CSG %d update request timedout", csg_id);
1865 			ctx->timedout_mask |= BIT(csg_id);
1866 		}
1867 	}
1868 
1869 	if (ctx->timedout_mask)
1870 		return -ETIMEDOUT;
1871 
1872 	return 0;
1873 }
1874 
1875 struct panthor_sched_tick_ctx {
1876 	struct list_head old_groups[PANTHOR_CSG_PRIORITY_COUNT];
1877 	struct list_head groups[PANTHOR_CSG_PRIORITY_COUNT];
1878 	u32 idle_group_count;
1879 	u32 group_count;
1880 	enum panthor_csg_priority min_priority;
1881 	struct panthor_vm *vms[MAX_CS_PER_CSG];
1882 	u32 as_count;
1883 	bool immediate_tick;
1884 	u32 csg_upd_failed_mask;
1885 };
1886 
1887 static bool
tick_ctx_is_full(const struct panthor_scheduler * sched,const struct panthor_sched_tick_ctx * ctx)1888 tick_ctx_is_full(const struct panthor_scheduler *sched,
1889 		 const struct panthor_sched_tick_ctx *ctx)
1890 {
1891 	return ctx->group_count == sched->csg_slot_count;
1892 }
1893 
1894 static bool
group_is_idle(struct panthor_group * group)1895 group_is_idle(struct panthor_group *group)
1896 {
1897 	struct panthor_device *ptdev = group->ptdev;
1898 	u32 inactive_queues;
1899 
1900 	if (group->csg_id >= 0)
1901 		return ptdev->scheduler->csg_slots[group->csg_id].idle;
1902 
1903 	inactive_queues = group->idle_queues | group->blocked_queues;
1904 	return hweight32(inactive_queues) == group->queue_count;
1905 }
1906 
1907 static bool
group_can_run(struct panthor_group * group)1908 group_can_run(struct panthor_group *group)
1909 {
1910 	return group->state != PANTHOR_CS_GROUP_TERMINATED &&
1911 	       group->state != PANTHOR_CS_GROUP_UNKNOWN_STATE &&
1912 	       !group->destroyed && group->fatal_queues == 0 &&
1913 	       !group->timedout;
1914 }
1915 
1916 static void
tick_ctx_pick_groups_from_list(const struct panthor_scheduler * sched,struct panthor_sched_tick_ctx * ctx,struct list_head * queue,bool skip_idle_groups,bool owned_by_tick_ctx)1917 tick_ctx_pick_groups_from_list(const struct panthor_scheduler *sched,
1918 			       struct panthor_sched_tick_ctx *ctx,
1919 			       struct list_head *queue,
1920 			       bool skip_idle_groups,
1921 			       bool owned_by_tick_ctx)
1922 {
1923 	struct panthor_group *group, *tmp;
1924 
1925 	if (tick_ctx_is_full(sched, ctx))
1926 		return;
1927 
1928 	list_for_each_entry_safe(group, tmp, queue, run_node) {
1929 		u32 i;
1930 
1931 		if (!group_can_run(group))
1932 			continue;
1933 
1934 		if (skip_idle_groups && group_is_idle(group))
1935 			continue;
1936 
1937 		for (i = 0; i < ctx->as_count; i++) {
1938 			if (ctx->vms[i] == group->vm)
1939 				break;
1940 		}
1941 
1942 		if (i == ctx->as_count && ctx->as_count == sched->as_slot_count)
1943 			continue;
1944 
1945 		if (!owned_by_tick_ctx)
1946 			group_get(group);
1947 
1948 		list_move_tail(&group->run_node, &ctx->groups[group->priority]);
1949 		ctx->group_count++;
1950 		if (group_is_idle(group))
1951 			ctx->idle_group_count++;
1952 
1953 		if (i == ctx->as_count)
1954 			ctx->vms[ctx->as_count++] = group->vm;
1955 
1956 		if (ctx->min_priority > group->priority)
1957 			ctx->min_priority = group->priority;
1958 
1959 		if (tick_ctx_is_full(sched, ctx))
1960 			return;
1961 	}
1962 }
1963 
1964 static void
tick_ctx_insert_old_group(struct panthor_scheduler * sched,struct panthor_sched_tick_ctx * ctx,struct panthor_group * group,bool full_tick)1965 tick_ctx_insert_old_group(struct panthor_scheduler *sched,
1966 			  struct panthor_sched_tick_ctx *ctx,
1967 			  struct panthor_group *group,
1968 			  bool full_tick)
1969 {
1970 	struct panthor_csg_slot *csg_slot = &sched->csg_slots[group->csg_id];
1971 	struct panthor_group *other_group;
1972 
1973 	if (!full_tick) {
1974 		list_add_tail(&group->run_node, &ctx->old_groups[group->priority]);
1975 		return;
1976 	}
1977 
1978 	/* Rotate to make sure groups with lower CSG slot
1979 	 * priorities have a chance to get a higher CSG slot
1980 	 * priority next time they get picked. This priority
1981 	 * has an impact on resource request ordering, so it's
1982 	 * important to make sure we don't let one group starve
1983 	 * all other groups with the same group priority.
1984 	 */
1985 	list_for_each_entry(other_group,
1986 			    &ctx->old_groups[csg_slot->group->priority],
1987 			    run_node) {
1988 		struct panthor_csg_slot *other_csg_slot = &sched->csg_slots[other_group->csg_id];
1989 
1990 		if (other_csg_slot->priority > csg_slot->priority) {
1991 			list_add_tail(&csg_slot->group->run_node, &other_group->run_node);
1992 			return;
1993 		}
1994 	}
1995 
1996 	list_add_tail(&group->run_node, &ctx->old_groups[group->priority]);
1997 }
1998 
1999 static void
tick_ctx_init(struct panthor_scheduler * sched,struct panthor_sched_tick_ctx * ctx,bool full_tick)2000 tick_ctx_init(struct panthor_scheduler *sched,
2001 	      struct panthor_sched_tick_ctx *ctx,
2002 	      bool full_tick)
2003 {
2004 	struct panthor_device *ptdev = sched->ptdev;
2005 	struct panthor_csg_slots_upd_ctx upd_ctx;
2006 	int ret;
2007 	u32 i;
2008 
2009 	memset(ctx, 0, sizeof(*ctx));
2010 	csgs_upd_ctx_init(&upd_ctx);
2011 
2012 	ctx->min_priority = PANTHOR_CSG_PRIORITY_COUNT;
2013 	for (i = 0; i < ARRAY_SIZE(ctx->groups); i++) {
2014 		INIT_LIST_HEAD(&ctx->groups[i]);
2015 		INIT_LIST_HEAD(&ctx->old_groups[i]);
2016 	}
2017 
2018 	for (i = 0; i < sched->csg_slot_count; i++) {
2019 		struct panthor_csg_slot *csg_slot = &sched->csg_slots[i];
2020 		struct panthor_group *group = csg_slot->group;
2021 		struct panthor_fw_csg_iface *csg_iface;
2022 
2023 		if (!group)
2024 			continue;
2025 
2026 		csg_iface = panthor_fw_get_csg_iface(ptdev, i);
2027 		group_get(group);
2028 
2029 		/* If there was unhandled faults on the VM, force processing of
2030 		 * CSG IRQs, so we can flag the faulty queue.
2031 		 */
2032 		if (panthor_vm_has_unhandled_faults(group->vm)) {
2033 			sched_process_csg_irq_locked(ptdev, i);
2034 
2035 			/* No fatal fault reported, flag all queues as faulty. */
2036 			if (!group->fatal_queues)
2037 				group->fatal_queues |= GENMASK(group->queue_count - 1, 0);
2038 		}
2039 
2040 		tick_ctx_insert_old_group(sched, ctx, group, full_tick);
2041 		csgs_upd_ctx_queue_reqs(ptdev, &upd_ctx, i,
2042 					csg_iface->output->ack ^ CSG_STATUS_UPDATE,
2043 					CSG_STATUS_UPDATE);
2044 	}
2045 
2046 	ret = csgs_upd_ctx_apply_locked(ptdev, &upd_ctx);
2047 	if (ret) {
2048 		panthor_device_schedule_reset(ptdev);
2049 		ctx->csg_upd_failed_mask |= upd_ctx.timedout_mask;
2050 	}
2051 }
2052 
2053 static void
group_term_post_processing(struct panthor_group * group)2054 group_term_post_processing(struct panthor_group *group)
2055 {
2056 	struct panthor_job *job, *tmp;
2057 	LIST_HEAD(faulty_jobs);
2058 	bool cookie;
2059 	u32 i = 0;
2060 
2061 	if (drm_WARN_ON(&group->ptdev->base, group_can_run(group)))
2062 		return;
2063 
2064 	cookie = dma_fence_begin_signalling();
2065 	for (i = 0; i < group->queue_count; i++) {
2066 		struct panthor_queue *queue = group->queues[i];
2067 		struct panthor_syncobj_64b *syncobj;
2068 		int err;
2069 
2070 		if (group->fatal_queues & BIT(i))
2071 			err = -EINVAL;
2072 		else if (group->timedout)
2073 			err = -ETIMEDOUT;
2074 		else
2075 			err = -ECANCELED;
2076 
2077 		if (!queue)
2078 			continue;
2079 
2080 		spin_lock(&queue->fence_ctx.lock);
2081 		list_for_each_entry_safe(job, tmp, &queue->fence_ctx.in_flight_jobs, node) {
2082 			list_move_tail(&job->node, &faulty_jobs);
2083 			dma_fence_set_error(job->done_fence, err);
2084 			dma_fence_signal_locked(job->done_fence);
2085 		}
2086 		spin_unlock(&queue->fence_ctx.lock);
2087 
2088 		/* Manually update the syncobj seqno to unblock waiters. */
2089 		syncobj = group->syncobjs->kmap + (i * sizeof(*syncobj));
2090 		syncobj->status = ~0;
2091 		syncobj->seqno = atomic64_read(&queue->fence_ctx.seqno);
2092 		sched_queue_work(group->ptdev->scheduler, sync_upd);
2093 	}
2094 	dma_fence_end_signalling(cookie);
2095 
2096 	list_for_each_entry_safe(job, tmp, &faulty_jobs, node) {
2097 		list_del_init(&job->node);
2098 		panthor_job_put(&job->base);
2099 	}
2100 }
2101 
group_term_work(struct work_struct * work)2102 static void group_term_work(struct work_struct *work)
2103 {
2104 	struct panthor_group *group =
2105 		container_of(work, struct panthor_group, term_work);
2106 
2107 	group_term_post_processing(group);
2108 	group_put(group);
2109 }
2110 
2111 static void
tick_ctx_cleanup(struct panthor_scheduler * sched,struct panthor_sched_tick_ctx * ctx)2112 tick_ctx_cleanup(struct panthor_scheduler *sched,
2113 		 struct panthor_sched_tick_ctx *ctx)
2114 {
2115 	struct panthor_device *ptdev = sched->ptdev;
2116 	struct panthor_group *group, *tmp;
2117 	u32 i;
2118 
2119 	for (i = 0; i < ARRAY_SIZE(ctx->old_groups); i++) {
2120 		list_for_each_entry_safe(group, tmp, &ctx->old_groups[i], run_node) {
2121 			/* If everything went fine, we should only have groups
2122 			 * to be terminated in the old_groups lists.
2123 			 */
2124 			drm_WARN_ON(&ptdev->base, !ctx->csg_upd_failed_mask &&
2125 				    group_can_run(group));
2126 
2127 			if (!group_can_run(group)) {
2128 				list_del_init(&group->run_node);
2129 				list_del_init(&group->wait_node);
2130 				group_queue_work(group, term);
2131 			} else if (group->csg_id >= 0) {
2132 				list_del_init(&group->run_node);
2133 			} else {
2134 				list_move(&group->run_node,
2135 					  group_is_idle(group) ?
2136 					  &sched->groups.idle[group->priority] :
2137 					  &sched->groups.runnable[group->priority]);
2138 			}
2139 			group_put(group);
2140 		}
2141 	}
2142 
2143 	for (i = 0; i < ARRAY_SIZE(ctx->groups); i++) {
2144 		/* If everything went fine, the groups to schedule lists should
2145 		 * be empty.
2146 		 */
2147 		drm_WARN_ON(&ptdev->base,
2148 			    !ctx->csg_upd_failed_mask && !list_empty(&ctx->groups[i]));
2149 
2150 		list_for_each_entry_safe(group, tmp, &ctx->groups[i], run_node) {
2151 			if (group->csg_id >= 0) {
2152 				list_del_init(&group->run_node);
2153 			} else {
2154 				list_move(&group->run_node,
2155 					  group_is_idle(group) ?
2156 					  &sched->groups.idle[group->priority] :
2157 					  &sched->groups.runnable[group->priority]);
2158 			}
2159 			group_put(group);
2160 		}
2161 	}
2162 }
2163 
2164 static void
tick_ctx_apply(struct panthor_scheduler * sched,struct panthor_sched_tick_ctx * ctx)2165 tick_ctx_apply(struct panthor_scheduler *sched, struct panthor_sched_tick_ctx *ctx)
2166 {
2167 	struct panthor_group *group, *tmp;
2168 	struct panthor_device *ptdev = sched->ptdev;
2169 	struct panthor_csg_slot *csg_slot;
2170 	int prio, new_csg_prio = MAX_CSG_PRIO, i;
2171 	u32 free_csg_slots = 0;
2172 	struct panthor_csg_slots_upd_ctx upd_ctx;
2173 	int ret;
2174 
2175 	csgs_upd_ctx_init(&upd_ctx);
2176 
2177 	for (prio = PANTHOR_CSG_PRIORITY_COUNT - 1; prio >= 0; prio--) {
2178 		/* Suspend or terminate evicted groups. */
2179 		list_for_each_entry(group, &ctx->old_groups[prio], run_node) {
2180 			bool term = !group_can_run(group);
2181 			int csg_id = group->csg_id;
2182 
2183 			if (drm_WARN_ON(&ptdev->base, csg_id < 0))
2184 				continue;
2185 
2186 			csg_slot = &sched->csg_slots[csg_id];
2187 			csgs_upd_ctx_queue_reqs(ptdev, &upd_ctx, csg_id,
2188 						term ? CSG_STATE_TERMINATE : CSG_STATE_SUSPEND,
2189 						CSG_STATE_MASK);
2190 		}
2191 
2192 		/* Update priorities on already running groups. */
2193 		list_for_each_entry(group, &ctx->groups[prio], run_node) {
2194 			struct panthor_fw_csg_iface *csg_iface;
2195 			int csg_id = group->csg_id;
2196 
2197 			if (csg_id < 0) {
2198 				new_csg_prio--;
2199 				continue;
2200 			}
2201 
2202 			csg_slot = &sched->csg_slots[csg_id];
2203 			csg_iface = panthor_fw_get_csg_iface(ptdev, csg_id);
2204 			if (csg_slot->priority == new_csg_prio) {
2205 				new_csg_prio--;
2206 				continue;
2207 			}
2208 
2209 			panthor_fw_update_reqs(csg_iface, endpoint_req,
2210 					       CSG_EP_REQ_PRIORITY(new_csg_prio),
2211 					       CSG_EP_REQ_PRIORITY_MASK);
2212 			csgs_upd_ctx_queue_reqs(ptdev, &upd_ctx, csg_id,
2213 						csg_iface->output->ack ^ CSG_ENDPOINT_CONFIG,
2214 						CSG_ENDPOINT_CONFIG);
2215 			new_csg_prio--;
2216 		}
2217 	}
2218 
2219 	ret = csgs_upd_ctx_apply_locked(ptdev, &upd_ctx);
2220 	if (ret) {
2221 		panthor_device_schedule_reset(ptdev);
2222 		ctx->csg_upd_failed_mask |= upd_ctx.timedout_mask;
2223 		return;
2224 	}
2225 
2226 	/* Unbind evicted groups. */
2227 	for (prio = PANTHOR_CSG_PRIORITY_COUNT - 1; prio >= 0; prio--) {
2228 		list_for_each_entry(group, &ctx->old_groups[prio], run_node) {
2229 			/* This group is gone. Process interrupts to clear
2230 			 * any pending interrupts before we start the new
2231 			 * group.
2232 			 */
2233 			if (group->csg_id >= 0)
2234 				sched_process_csg_irq_locked(ptdev, group->csg_id);
2235 
2236 			group_unbind_locked(group);
2237 		}
2238 	}
2239 
2240 	for (i = 0; i < sched->csg_slot_count; i++) {
2241 		if (!sched->csg_slots[i].group)
2242 			free_csg_slots |= BIT(i);
2243 	}
2244 
2245 	csgs_upd_ctx_init(&upd_ctx);
2246 	new_csg_prio = MAX_CSG_PRIO;
2247 
2248 	/* Start new groups. */
2249 	for (prio = PANTHOR_CSG_PRIORITY_COUNT - 1; prio >= 0; prio--) {
2250 		list_for_each_entry(group, &ctx->groups[prio], run_node) {
2251 			int csg_id = group->csg_id;
2252 			struct panthor_fw_csg_iface *csg_iface;
2253 
2254 			if (csg_id >= 0) {
2255 				new_csg_prio--;
2256 				continue;
2257 			}
2258 
2259 			csg_id = ffs(free_csg_slots) - 1;
2260 			if (drm_WARN_ON(&ptdev->base, csg_id < 0))
2261 				break;
2262 
2263 			csg_iface = panthor_fw_get_csg_iface(ptdev, csg_id);
2264 			csg_slot = &sched->csg_slots[csg_id];
2265 			group_bind_locked(group, csg_id);
2266 			csg_slot_prog_locked(ptdev, csg_id, new_csg_prio--);
2267 			csgs_upd_ctx_queue_reqs(ptdev, &upd_ctx, csg_id,
2268 						group->state == PANTHOR_CS_GROUP_SUSPENDED ?
2269 						CSG_STATE_RESUME : CSG_STATE_START,
2270 						CSG_STATE_MASK);
2271 			csgs_upd_ctx_queue_reqs(ptdev, &upd_ctx, csg_id,
2272 						csg_iface->output->ack ^ CSG_ENDPOINT_CONFIG,
2273 						CSG_ENDPOINT_CONFIG);
2274 			free_csg_slots &= ~BIT(csg_id);
2275 		}
2276 	}
2277 
2278 	ret = csgs_upd_ctx_apply_locked(ptdev, &upd_ctx);
2279 	if (ret) {
2280 		panthor_device_schedule_reset(ptdev);
2281 		ctx->csg_upd_failed_mask |= upd_ctx.timedout_mask;
2282 		return;
2283 	}
2284 
2285 	for (prio = PANTHOR_CSG_PRIORITY_COUNT - 1; prio >= 0; prio--) {
2286 		list_for_each_entry_safe(group, tmp, &ctx->groups[prio], run_node) {
2287 			list_del_init(&group->run_node);
2288 
2289 			/* If the group has been destroyed while we were
2290 			 * scheduling, ask for an immediate tick to
2291 			 * re-evaluate as soon as possible and get rid of
2292 			 * this dangling group.
2293 			 */
2294 			if (group->destroyed)
2295 				ctx->immediate_tick = true;
2296 			group_put(group);
2297 		}
2298 
2299 		/* Return evicted groups to the idle or run queues. Groups
2300 		 * that can no longer be run (because they've been destroyed
2301 		 * or experienced an unrecoverable error) will be scheduled
2302 		 * for destruction in tick_ctx_cleanup().
2303 		 */
2304 		list_for_each_entry_safe(group, tmp, &ctx->old_groups[prio], run_node) {
2305 			if (!group_can_run(group))
2306 				continue;
2307 
2308 			if (group_is_idle(group))
2309 				list_move_tail(&group->run_node, &sched->groups.idle[prio]);
2310 			else
2311 				list_move_tail(&group->run_node, &sched->groups.runnable[prio]);
2312 			group_put(group);
2313 		}
2314 	}
2315 
2316 	sched->used_csg_slot_count = ctx->group_count;
2317 	sched->might_have_idle_groups = ctx->idle_group_count > 0;
2318 }
2319 
2320 static u64
tick_ctx_update_resched_target(struct panthor_scheduler * sched,const struct panthor_sched_tick_ctx * ctx)2321 tick_ctx_update_resched_target(struct panthor_scheduler *sched,
2322 			       const struct panthor_sched_tick_ctx *ctx)
2323 {
2324 	/* We had space left, no need to reschedule until some external event happens. */
2325 	if (!tick_ctx_is_full(sched, ctx))
2326 		goto no_tick;
2327 
2328 	/* If idle groups were scheduled, no need to wake up until some external
2329 	 * event happens (group unblocked, new job submitted, ...).
2330 	 */
2331 	if (ctx->idle_group_count)
2332 		goto no_tick;
2333 
2334 	if (drm_WARN_ON(&sched->ptdev->base, ctx->min_priority >= PANTHOR_CSG_PRIORITY_COUNT))
2335 		goto no_tick;
2336 
2337 	/* If there are groups of the same priority waiting, we need to
2338 	 * keep the scheduler ticking, otherwise, we'll just wait for
2339 	 * new groups with higher priority to be queued.
2340 	 */
2341 	if (!list_empty(&sched->groups.runnable[ctx->min_priority])) {
2342 		u64 resched_target = sched->last_tick + sched->tick_period;
2343 
2344 		if (time_before64(sched->resched_target, sched->last_tick) ||
2345 		    time_before64(resched_target, sched->resched_target))
2346 			sched->resched_target = resched_target;
2347 
2348 		return sched->resched_target - sched->last_tick;
2349 	}
2350 
2351 no_tick:
2352 	sched->resched_target = U64_MAX;
2353 	return U64_MAX;
2354 }
2355 
tick_work(struct work_struct * work)2356 static void tick_work(struct work_struct *work)
2357 {
2358 	struct panthor_scheduler *sched = container_of(work, struct panthor_scheduler,
2359 						      tick_work.work);
2360 	struct panthor_device *ptdev = sched->ptdev;
2361 	struct panthor_sched_tick_ctx ctx;
2362 	u64 remaining_jiffies = 0, resched_delay;
2363 	u64 now = get_jiffies_64();
2364 	int prio, ret, cookie;
2365 
2366 	if (!drm_dev_enter(&ptdev->base, &cookie))
2367 		return;
2368 
2369 	ret = panthor_device_resume_and_get(ptdev);
2370 	if (drm_WARN_ON(&ptdev->base, ret))
2371 		goto out_dev_exit;
2372 
2373 	if (time_before64(now, sched->resched_target))
2374 		remaining_jiffies = sched->resched_target - now;
2375 
2376 	mutex_lock(&sched->lock);
2377 	if (panthor_device_reset_is_pending(sched->ptdev))
2378 		goto out_unlock;
2379 
2380 	tick_ctx_init(sched, &ctx, remaining_jiffies != 0);
2381 	if (ctx.csg_upd_failed_mask)
2382 		goto out_cleanup_ctx;
2383 
2384 	if (remaining_jiffies) {
2385 		/* Scheduling forced in the middle of a tick. Only RT groups
2386 		 * can preempt non-RT ones. Currently running RT groups can't be
2387 		 * preempted.
2388 		 */
2389 		for (prio = PANTHOR_CSG_PRIORITY_COUNT - 1;
2390 		     prio >= 0 && !tick_ctx_is_full(sched, &ctx);
2391 		     prio--) {
2392 			tick_ctx_pick_groups_from_list(sched, &ctx, &ctx.old_groups[prio],
2393 						       true, true);
2394 			if (prio == PANTHOR_CSG_PRIORITY_RT) {
2395 				tick_ctx_pick_groups_from_list(sched, &ctx,
2396 							       &sched->groups.runnable[prio],
2397 							       true, false);
2398 			}
2399 		}
2400 	}
2401 
2402 	/* First pick non-idle groups */
2403 	for (prio = PANTHOR_CSG_PRIORITY_COUNT - 1;
2404 	     prio >= 0 && !tick_ctx_is_full(sched, &ctx);
2405 	     prio--) {
2406 		tick_ctx_pick_groups_from_list(sched, &ctx, &sched->groups.runnable[prio],
2407 					       true, false);
2408 		tick_ctx_pick_groups_from_list(sched, &ctx, &ctx.old_groups[prio], true, true);
2409 	}
2410 
2411 	/* If we have free CSG slots left, pick idle groups */
2412 	for (prio = PANTHOR_CSG_PRIORITY_COUNT - 1;
2413 	     prio >= 0 && !tick_ctx_is_full(sched, &ctx);
2414 	     prio--) {
2415 		/* Check the old_group queue first to avoid reprogramming the slots */
2416 		tick_ctx_pick_groups_from_list(sched, &ctx, &ctx.old_groups[prio], false, true);
2417 		tick_ctx_pick_groups_from_list(sched, &ctx, &sched->groups.idle[prio],
2418 					       false, false);
2419 	}
2420 
2421 	tick_ctx_apply(sched, &ctx);
2422 	if (ctx.csg_upd_failed_mask)
2423 		goto out_cleanup_ctx;
2424 
2425 	if (ctx.idle_group_count == ctx.group_count) {
2426 		panthor_devfreq_record_idle(sched->ptdev);
2427 		if (sched->pm.has_ref) {
2428 			pm_runtime_put_autosuspend(ptdev->base.dev);
2429 			sched->pm.has_ref = false;
2430 		}
2431 	} else {
2432 		panthor_devfreq_record_busy(sched->ptdev);
2433 		if (!sched->pm.has_ref) {
2434 			pm_runtime_get(ptdev->base.dev);
2435 			sched->pm.has_ref = true;
2436 		}
2437 	}
2438 
2439 	sched->last_tick = now;
2440 	resched_delay = tick_ctx_update_resched_target(sched, &ctx);
2441 	if (ctx.immediate_tick)
2442 		resched_delay = 0;
2443 
2444 	if (resched_delay != U64_MAX)
2445 		sched_queue_delayed_work(sched, tick, resched_delay);
2446 
2447 out_cleanup_ctx:
2448 	tick_ctx_cleanup(sched, &ctx);
2449 
2450 out_unlock:
2451 	mutex_unlock(&sched->lock);
2452 	pm_runtime_mark_last_busy(ptdev->base.dev);
2453 	pm_runtime_put_autosuspend(ptdev->base.dev);
2454 
2455 out_dev_exit:
2456 	drm_dev_exit(cookie);
2457 }
2458 
panthor_queue_eval_syncwait(struct panthor_group * group,u8 queue_idx)2459 static int panthor_queue_eval_syncwait(struct panthor_group *group, u8 queue_idx)
2460 {
2461 	struct panthor_queue *queue = group->queues[queue_idx];
2462 	union {
2463 		struct panthor_syncobj_64b sync64;
2464 		struct panthor_syncobj_32b sync32;
2465 	} *syncobj;
2466 	bool result;
2467 	u64 value;
2468 
2469 	syncobj = panthor_queue_get_syncwait_obj(group, queue);
2470 	if (!syncobj)
2471 		return -EINVAL;
2472 
2473 	value = queue->syncwait.sync64 ?
2474 		syncobj->sync64.seqno :
2475 		syncobj->sync32.seqno;
2476 
2477 	if (queue->syncwait.gt)
2478 		result = value > queue->syncwait.ref;
2479 	else
2480 		result = value <= queue->syncwait.ref;
2481 
2482 	if (result)
2483 		panthor_queue_put_syncwait_obj(queue);
2484 
2485 	return result;
2486 }
2487 
sync_upd_work(struct work_struct * work)2488 static void sync_upd_work(struct work_struct *work)
2489 {
2490 	struct panthor_scheduler *sched = container_of(work,
2491 						      struct panthor_scheduler,
2492 						      sync_upd_work);
2493 	struct panthor_group *group, *tmp;
2494 	bool immediate_tick = false;
2495 
2496 	mutex_lock(&sched->lock);
2497 	list_for_each_entry_safe(group, tmp, &sched->groups.waiting, wait_node) {
2498 		u32 tested_queues = group->blocked_queues;
2499 		u32 unblocked_queues = 0;
2500 
2501 		while (tested_queues) {
2502 			u32 cs_id = ffs(tested_queues) - 1;
2503 			int ret;
2504 
2505 			ret = panthor_queue_eval_syncwait(group, cs_id);
2506 			drm_WARN_ON(&group->ptdev->base, ret < 0);
2507 			if (ret)
2508 				unblocked_queues |= BIT(cs_id);
2509 
2510 			tested_queues &= ~BIT(cs_id);
2511 		}
2512 
2513 		if (unblocked_queues) {
2514 			group->blocked_queues &= ~unblocked_queues;
2515 
2516 			if (group->csg_id < 0) {
2517 				list_move(&group->run_node,
2518 					  &sched->groups.runnable[group->priority]);
2519 				if (group->priority == PANTHOR_CSG_PRIORITY_RT)
2520 					immediate_tick = true;
2521 			}
2522 		}
2523 
2524 		if (!group->blocked_queues)
2525 			list_del_init(&group->wait_node);
2526 	}
2527 	mutex_unlock(&sched->lock);
2528 
2529 	if (immediate_tick)
2530 		sched_queue_delayed_work(sched, tick, 0);
2531 }
2532 
group_schedule_locked(struct panthor_group * group,u32 queue_mask)2533 static void group_schedule_locked(struct panthor_group *group, u32 queue_mask)
2534 {
2535 	struct panthor_device *ptdev = group->ptdev;
2536 	struct panthor_scheduler *sched = ptdev->scheduler;
2537 	struct list_head *queue = &sched->groups.runnable[group->priority];
2538 	u64 delay_jiffies = 0;
2539 	bool was_idle;
2540 	u64 now;
2541 
2542 	if (!group_can_run(group))
2543 		return;
2544 
2545 	/* All updated queues are blocked, no need to wake up the scheduler. */
2546 	if ((queue_mask & group->blocked_queues) == queue_mask)
2547 		return;
2548 
2549 	was_idle = group_is_idle(group);
2550 	group->idle_queues &= ~queue_mask;
2551 
2552 	/* Don't mess up with the lists if we're in a middle of a reset. */
2553 	if (atomic_read(&sched->reset.in_progress))
2554 		return;
2555 
2556 	if (was_idle && !group_is_idle(group))
2557 		list_move_tail(&group->run_node, queue);
2558 
2559 	/* RT groups are preemptive. */
2560 	if (group->priority == PANTHOR_CSG_PRIORITY_RT) {
2561 		sched_queue_delayed_work(sched, tick, 0);
2562 		return;
2563 	}
2564 
2565 	/* Some groups might be idle, force an immediate tick to
2566 	 * re-evaluate.
2567 	 */
2568 	if (sched->might_have_idle_groups) {
2569 		sched_queue_delayed_work(sched, tick, 0);
2570 		return;
2571 	}
2572 
2573 	/* Scheduler is ticking, nothing to do. */
2574 	if (sched->resched_target != U64_MAX) {
2575 		/* If there are free slots, force immediating ticking. */
2576 		if (sched->used_csg_slot_count < sched->csg_slot_count)
2577 			sched_queue_delayed_work(sched, tick, 0);
2578 
2579 		return;
2580 	}
2581 
2582 	/* Scheduler tick was off, recalculate the resched_target based on the
2583 	 * last tick event, and queue the scheduler work.
2584 	 */
2585 	now = get_jiffies_64();
2586 	sched->resched_target = sched->last_tick + sched->tick_period;
2587 	if (sched->used_csg_slot_count == sched->csg_slot_count &&
2588 	    time_before64(now, sched->resched_target))
2589 		delay_jiffies = min_t(unsigned long, sched->resched_target - now, ULONG_MAX);
2590 
2591 	sched_queue_delayed_work(sched, tick, delay_jiffies);
2592 }
2593 
queue_stop(struct panthor_queue * queue,struct panthor_job * bad_job)2594 static void queue_stop(struct panthor_queue *queue,
2595 		       struct panthor_job *bad_job)
2596 {
2597 	drm_sched_stop(&queue->scheduler, bad_job ? &bad_job->base : NULL);
2598 }
2599 
queue_start(struct panthor_queue * queue)2600 static void queue_start(struct panthor_queue *queue)
2601 {
2602 	struct panthor_job *job;
2603 
2604 	/* Re-assign the parent fences. */
2605 	list_for_each_entry(job, &queue->scheduler.pending_list, base.list)
2606 		job->base.s_fence->parent = dma_fence_get(job->done_fence);
2607 
2608 	drm_sched_start(&queue->scheduler, 0);
2609 }
2610 
panthor_group_stop(struct panthor_group * group)2611 static void panthor_group_stop(struct panthor_group *group)
2612 {
2613 	struct panthor_scheduler *sched = group->ptdev->scheduler;
2614 
2615 	lockdep_assert_held(&sched->reset.lock);
2616 
2617 	for (u32 i = 0; i < group->queue_count; i++)
2618 		queue_stop(group->queues[i], NULL);
2619 
2620 	group_get(group);
2621 	list_move_tail(&group->run_node, &sched->reset.stopped_groups);
2622 }
2623 
panthor_group_start(struct panthor_group * group)2624 static void panthor_group_start(struct panthor_group *group)
2625 {
2626 	struct panthor_scheduler *sched = group->ptdev->scheduler;
2627 
2628 	lockdep_assert_held(&group->ptdev->scheduler->reset.lock);
2629 
2630 	for (u32 i = 0; i < group->queue_count; i++)
2631 		queue_start(group->queues[i]);
2632 
2633 	if (group_can_run(group)) {
2634 		list_move_tail(&group->run_node,
2635 			       group_is_idle(group) ?
2636 			       &sched->groups.idle[group->priority] :
2637 			       &sched->groups.runnable[group->priority]);
2638 	} else {
2639 		list_del_init(&group->run_node);
2640 		list_del_init(&group->wait_node);
2641 		group_queue_work(group, term);
2642 	}
2643 
2644 	group_put(group);
2645 }
2646 
panthor_sched_immediate_tick(struct panthor_device * ptdev)2647 static void panthor_sched_immediate_tick(struct panthor_device *ptdev)
2648 {
2649 	struct panthor_scheduler *sched = ptdev->scheduler;
2650 
2651 	sched_queue_delayed_work(sched, tick, 0);
2652 }
2653 
2654 /**
2655  * panthor_sched_report_mmu_fault() - Report MMU faults to the scheduler.
2656  */
panthor_sched_report_mmu_fault(struct panthor_device * ptdev)2657 void panthor_sched_report_mmu_fault(struct panthor_device *ptdev)
2658 {
2659 	/* Force a tick to immediately kill faulty groups. */
2660 	if (ptdev->scheduler)
2661 		panthor_sched_immediate_tick(ptdev);
2662 }
2663 
panthor_sched_resume(struct panthor_device * ptdev)2664 void panthor_sched_resume(struct panthor_device *ptdev)
2665 {
2666 	/* Force a tick to re-evaluate after a resume. */
2667 	panthor_sched_immediate_tick(ptdev);
2668 }
2669 
panthor_sched_suspend(struct panthor_device * ptdev)2670 void panthor_sched_suspend(struct panthor_device *ptdev)
2671 {
2672 	struct panthor_scheduler *sched = ptdev->scheduler;
2673 	struct panthor_csg_slots_upd_ctx upd_ctx;
2674 	struct panthor_group *group;
2675 	u32 suspended_slots;
2676 	u32 i;
2677 
2678 	mutex_lock(&sched->lock);
2679 	csgs_upd_ctx_init(&upd_ctx);
2680 	for (i = 0; i < sched->csg_slot_count; i++) {
2681 		struct panthor_csg_slot *csg_slot = &sched->csg_slots[i];
2682 
2683 		if (csg_slot->group) {
2684 			csgs_upd_ctx_queue_reqs(ptdev, &upd_ctx, i,
2685 						group_can_run(csg_slot->group) ?
2686 						CSG_STATE_SUSPEND : CSG_STATE_TERMINATE,
2687 						CSG_STATE_MASK);
2688 		}
2689 	}
2690 
2691 	suspended_slots = upd_ctx.update_mask;
2692 
2693 	csgs_upd_ctx_apply_locked(ptdev, &upd_ctx);
2694 	suspended_slots &= ~upd_ctx.timedout_mask;
2695 
2696 	if (upd_ctx.timedout_mask) {
2697 		u32 slot_mask = upd_ctx.timedout_mask;
2698 
2699 		drm_err(&ptdev->base, "CSG suspend failed, escalating to termination");
2700 		csgs_upd_ctx_init(&upd_ctx);
2701 		while (slot_mask) {
2702 			u32 csg_id = ffs(slot_mask) - 1;
2703 			struct panthor_csg_slot *csg_slot = &sched->csg_slots[csg_id];
2704 
2705 			/* If the group was still usable before that point, we consider
2706 			 * it innocent.
2707 			 */
2708 			if (group_can_run(csg_slot->group))
2709 				csg_slot->group->innocent = true;
2710 
2711 			/* We consider group suspension failures as fatal and flag the
2712 			 * group as unusable by setting timedout=true.
2713 			 */
2714 			csg_slot->group->timedout = true;
2715 
2716 			csgs_upd_ctx_queue_reqs(ptdev, &upd_ctx, csg_id,
2717 						CSG_STATE_TERMINATE,
2718 						CSG_STATE_MASK);
2719 			slot_mask &= ~BIT(csg_id);
2720 		}
2721 
2722 		csgs_upd_ctx_apply_locked(ptdev, &upd_ctx);
2723 
2724 		slot_mask = upd_ctx.timedout_mask;
2725 		while (slot_mask) {
2726 			u32 csg_id = ffs(slot_mask) - 1;
2727 			struct panthor_csg_slot *csg_slot = &sched->csg_slots[csg_id];
2728 
2729 			/* Terminate command timedout, but the soft-reset will
2730 			 * automatically terminate all active groups, so let's
2731 			 * force the state to halted here.
2732 			 */
2733 			if (csg_slot->group->state != PANTHOR_CS_GROUP_TERMINATED)
2734 				csg_slot->group->state = PANTHOR_CS_GROUP_TERMINATED;
2735 			slot_mask &= ~BIT(csg_id);
2736 		}
2737 	}
2738 
2739 	/* Flush L2 and LSC caches to make sure suspend state is up-to-date.
2740 	 * If the flush fails, flag all queues for termination.
2741 	 */
2742 	if (suspended_slots) {
2743 		bool flush_caches_failed = false;
2744 		u32 slot_mask = suspended_slots;
2745 
2746 		if (panthor_gpu_flush_caches(ptdev, CACHE_CLEAN, CACHE_CLEAN, 0))
2747 			flush_caches_failed = true;
2748 
2749 		while (slot_mask) {
2750 			u32 csg_id = ffs(slot_mask) - 1;
2751 			struct panthor_csg_slot *csg_slot = &sched->csg_slots[csg_id];
2752 
2753 			if (flush_caches_failed)
2754 				csg_slot->group->state = PANTHOR_CS_GROUP_TERMINATED;
2755 			else
2756 				csg_slot_sync_update_locked(ptdev, csg_id);
2757 
2758 			slot_mask &= ~BIT(csg_id);
2759 		}
2760 	}
2761 
2762 	for (i = 0; i < sched->csg_slot_count; i++) {
2763 		struct panthor_csg_slot *csg_slot = &sched->csg_slots[i];
2764 
2765 		group = csg_slot->group;
2766 		if (!group)
2767 			continue;
2768 
2769 		group_get(group);
2770 
2771 		if (group->csg_id >= 0)
2772 			sched_process_csg_irq_locked(ptdev, group->csg_id);
2773 
2774 		group_unbind_locked(group);
2775 
2776 		drm_WARN_ON(&group->ptdev->base, !list_empty(&group->run_node));
2777 
2778 		if (group_can_run(group)) {
2779 			list_add(&group->run_node,
2780 				 &sched->groups.idle[group->priority]);
2781 		} else {
2782 			/* We don't bother stopping the scheduler if the group is
2783 			 * faulty, the group termination work will finish the job.
2784 			 */
2785 			list_del_init(&group->wait_node);
2786 			group_queue_work(group, term);
2787 		}
2788 		group_put(group);
2789 	}
2790 	mutex_unlock(&sched->lock);
2791 }
2792 
panthor_sched_pre_reset(struct panthor_device * ptdev)2793 void panthor_sched_pre_reset(struct panthor_device *ptdev)
2794 {
2795 	struct panthor_scheduler *sched = ptdev->scheduler;
2796 	struct panthor_group *group, *group_tmp;
2797 	u32 i;
2798 
2799 	mutex_lock(&sched->reset.lock);
2800 	atomic_set(&sched->reset.in_progress, true);
2801 
2802 	/* Cancel all scheduler works. Once this is done, these works can't be
2803 	 * scheduled again until the reset operation is complete.
2804 	 */
2805 	cancel_work_sync(&sched->sync_upd_work);
2806 	cancel_delayed_work_sync(&sched->tick_work);
2807 
2808 	panthor_sched_suspend(ptdev);
2809 
2810 	/* Stop all groups that might still accept jobs, so we don't get passed
2811 	 * new jobs while we're resetting.
2812 	 */
2813 	for (i = 0; i < ARRAY_SIZE(sched->groups.runnable); i++) {
2814 		/* All groups should be in the idle lists. */
2815 		drm_WARN_ON(&ptdev->base, !list_empty(&sched->groups.runnable[i]));
2816 		list_for_each_entry_safe(group, group_tmp, &sched->groups.runnable[i], run_node)
2817 			panthor_group_stop(group);
2818 	}
2819 
2820 	for (i = 0; i < ARRAY_SIZE(sched->groups.idle); i++) {
2821 		list_for_each_entry_safe(group, group_tmp, &sched->groups.idle[i], run_node)
2822 			panthor_group_stop(group);
2823 	}
2824 
2825 	mutex_unlock(&sched->reset.lock);
2826 }
2827 
panthor_sched_post_reset(struct panthor_device * ptdev,bool reset_failed)2828 void panthor_sched_post_reset(struct panthor_device *ptdev, bool reset_failed)
2829 {
2830 	struct panthor_scheduler *sched = ptdev->scheduler;
2831 	struct panthor_group *group, *group_tmp;
2832 
2833 	mutex_lock(&sched->reset.lock);
2834 
2835 	list_for_each_entry_safe(group, group_tmp, &sched->reset.stopped_groups, run_node) {
2836 		/* Consider all previously running group as terminated if the
2837 		 * reset failed.
2838 		 */
2839 		if (reset_failed)
2840 			group->state = PANTHOR_CS_GROUP_TERMINATED;
2841 
2842 		panthor_group_start(group);
2843 	}
2844 
2845 	/* We're done resetting the GPU, clear the reset.in_progress bit so we can
2846 	 * kick the scheduler.
2847 	 */
2848 	atomic_set(&sched->reset.in_progress, false);
2849 	mutex_unlock(&sched->reset.lock);
2850 
2851 	/* No need to queue a tick and update syncs if the reset failed. */
2852 	if (!reset_failed) {
2853 		sched_queue_delayed_work(sched, tick, 0);
2854 		sched_queue_work(sched, sync_upd);
2855 	}
2856 }
2857 
update_fdinfo_stats(struct panthor_job * job)2858 static void update_fdinfo_stats(struct panthor_job *job)
2859 {
2860 	struct panthor_group *group = job->group;
2861 	struct panthor_queue *queue = group->queues[job->queue_idx];
2862 	struct panthor_gpu_usage *fdinfo = &group->fdinfo.data;
2863 	struct panthor_job_profiling_data *slots = queue->profiling.slots->kmap;
2864 	struct panthor_job_profiling_data *data = &slots[job->profiling.slot];
2865 
2866 	scoped_guard(spinlock, &group->fdinfo.lock) {
2867 		if (job->profiling.mask & PANTHOR_DEVICE_PROFILING_CYCLES)
2868 			fdinfo->cycles += data->cycles.after - data->cycles.before;
2869 		if (job->profiling.mask & PANTHOR_DEVICE_PROFILING_TIMESTAMP)
2870 			fdinfo->time += data->time.after - data->time.before;
2871 	}
2872 }
2873 
panthor_fdinfo_gather_group_samples(struct panthor_file * pfile)2874 void panthor_fdinfo_gather_group_samples(struct panthor_file *pfile)
2875 {
2876 	struct panthor_group_pool *gpool = pfile->groups;
2877 	struct panthor_group *group;
2878 	unsigned long i;
2879 
2880 	if (IS_ERR_OR_NULL(gpool))
2881 		return;
2882 
2883 	xa_lock(&gpool->xa);
2884 	xa_for_each(&gpool->xa, i, group) {
2885 		guard(spinlock)(&group->fdinfo.lock);
2886 		pfile->stats.cycles += group->fdinfo.data.cycles;
2887 		pfile->stats.time += group->fdinfo.data.time;
2888 		group->fdinfo.data.cycles = 0;
2889 		group->fdinfo.data.time = 0;
2890 	}
2891 	xa_unlock(&gpool->xa);
2892 }
2893 
group_sync_upd_work(struct work_struct * work)2894 static void group_sync_upd_work(struct work_struct *work)
2895 {
2896 	struct panthor_group *group =
2897 		container_of(work, struct panthor_group, sync_upd_work);
2898 	struct panthor_job *job, *job_tmp;
2899 	LIST_HEAD(done_jobs);
2900 	u32 queue_idx;
2901 	bool cookie;
2902 
2903 	cookie = dma_fence_begin_signalling();
2904 	for (queue_idx = 0; queue_idx < group->queue_count; queue_idx++) {
2905 		struct panthor_queue *queue = group->queues[queue_idx];
2906 		struct panthor_syncobj_64b *syncobj;
2907 
2908 		if (!queue)
2909 			continue;
2910 
2911 		syncobj = group->syncobjs->kmap + (queue_idx * sizeof(*syncobj));
2912 
2913 		spin_lock(&queue->fence_ctx.lock);
2914 		list_for_each_entry_safe(job, job_tmp, &queue->fence_ctx.in_flight_jobs, node) {
2915 			if (syncobj->seqno < job->done_fence->seqno)
2916 				break;
2917 
2918 			list_move_tail(&job->node, &done_jobs);
2919 			dma_fence_signal_locked(job->done_fence);
2920 		}
2921 		spin_unlock(&queue->fence_ctx.lock);
2922 	}
2923 	dma_fence_end_signalling(cookie);
2924 
2925 	list_for_each_entry_safe(job, job_tmp, &done_jobs, node) {
2926 		if (job->profiling.mask)
2927 			update_fdinfo_stats(job);
2928 		list_del_init(&job->node);
2929 		panthor_job_put(&job->base);
2930 	}
2931 
2932 	group_put(group);
2933 }
2934 
2935 struct panthor_job_ringbuf_instrs {
2936 	u64 buffer[MAX_INSTRS_PER_JOB];
2937 	u32 count;
2938 };
2939 
2940 struct panthor_job_instr {
2941 	u32 profile_mask;
2942 	u64 instr;
2943 };
2944 
2945 #define JOB_INSTR(__prof, __instr) \
2946 	{ \
2947 		.profile_mask = __prof, \
2948 		.instr = __instr, \
2949 	}
2950 
2951 static void
copy_instrs_to_ringbuf(struct panthor_queue * queue,struct panthor_job * job,struct panthor_job_ringbuf_instrs * instrs)2952 copy_instrs_to_ringbuf(struct panthor_queue *queue,
2953 		       struct panthor_job *job,
2954 		       struct panthor_job_ringbuf_instrs *instrs)
2955 {
2956 	u64 ringbuf_size = panthor_kernel_bo_size(queue->ringbuf);
2957 	u64 start = job->ringbuf.start & (ringbuf_size - 1);
2958 	u64 size, written;
2959 
2960 	/*
2961 	 * We need to write a whole slot, including any trailing zeroes
2962 	 * that may come at the end of it. Also, because instrs.buffer has
2963 	 * been zero-initialised, there's no need to pad it with 0's
2964 	 */
2965 	instrs->count = ALIGN(instrs->count, NUM_INSTRS_PER_CACHE_LINE);
2966 	size = instrs->count * sizeof(u64);
2967 	WARN_ON(size > ringbuf_size);
2968 	written = min(ringbuf_size - start, size);
2969 
2970 	memcpy(queue->ringbuf->kmap + start, instrs->buffer, written);
2971 
2972 	if (written < size)
2973 		memcpy(queue->ringbuf->kmap,
2974 		       &instrs->buffer[written / sizeof(u64)],
2975 		       size - written);
2976 }
2977 
2978 struct panthor_job_cs_params {
2979 	u32 profile_mask;
2980 	u64 addr_reg; u64 val_reg;
2981 	u64 cycle_reg; u64 time_reg;
2982 	u64 sync_addr; u64 times_addr;
2983 	u64 cs_start; u64 cs_size;
2984 	u32 last_flush; u32 waitall_mask;
2985 };
2986 
2987 static void
get_job_cs_params(struct panthor_job * job,struct panthor_job_cs_params * params)2988 get_job_cs_params(struct panthor_job *job, struct panthor_job_cs_params *params)
2989 {
2990 	struct panthor_group *group = job->group;
2991 	struct panthor_queue *queue = group->queues[job->queue_idx];
2992 	struct panthor_device *ptdev = group->ptdev;
2993 	struct panthor_scheduler *sched = ptdev->scheduler;
2994 
2995 	params->addr_reg = ptdev->csif_info.cs_reg_count -
2996 			   ptdev->csif_info.unpreserved_cs_reg_count;
2997 	params->val_reg = params->addr_reg + 2;
2998 	params->cycle_reg = params->addr_reg;
2999 	params->time_reg = params->val_reg;
3000 
3001 	params->sync_addr = panthor_kernel_bo_gpuva(group->syncobjs) +
3002 			    job->queue_idx * sizeof(struct panthor_syncobj_64b);
3003 	params->times_addr = panthor_kernel_bo_gpuva(queue->profiling.slots) +
3004 			     (job->profiling.slot * sizeof(struct panthor_job_profiling_data));
3005 	params->waitall_mask = GENMASK(sched->sb_slot_count - 1, 0);
3006 
3007 	params->cs_start = job->call_info.start;
3008 	params->cs_size = job->call_info.size;
3009 	params->last_flush = job->call_info.latest_flush;
3010 
3011 	params->profile_mask = job->profiling.mask;
3012 }
3013 
3014 #define JOB_INSTR_ALWAYS(instr) \
3015 	JOB_INSTR(PANTHOR_DEVICE_PROFILING_DISABLED, (instr))
3016 #define JOB_INSTR_TIMESTAMP(instr) \
3017 	JOB_INSTR(PANTHOR_DEVICE_PROFILING_TIMESTAMP, (instr))
3018 #define JOB_INSTR_CYCLES(instr) \
3019 	JOB_INSTR(PANTHOR_DEVICE_PROFILING_CYCLES, (instr))
3020 
3021 static void
prepare_job_instrs(const struct panthor_job_cs_params * params,struct panthor_job_ringbuf_instrs * instrs)3022 prepare_job_instrs(const struct panthor_job_cs_params *params,
3023 		   struct panthor_job_ringbuf_instrs *instrs)
3024 {
3025 	const struct panthor_job_instr instr_seq[] = {
3026 		/* MOV32 rX+2, cs.latest_flush */
3027 		JOB_INSTR_ALWAYS((2ull << 56) | (params->val_reg << 48) | params->last_flush),
3028 		/* FLUSH_CACHE2.clean_inv_all.no_wait.signal(0) rX+2 */
3029 		JOB_INSTR_ALWAYS((36ull << 56) | (0ull << 48) | (params->val_reg << 40) |
3030 				 (0 << 16) | 0x233),
3031 		/* MOV48 rX:rX+1, cycles_offset */
3032 		JOB_INSTR_CYCLES((1ull << 56) | (params->cycle_reg << 48) |
3033 				 (params->times_addr +
3034 				  offsetof(struct panthor_job_profiling_data, cycles.before))),
3035 		/* STORE_STATE cycles */
3036 		JOB_INSTR_CYCLES((40ull << 56) | (params->cycle_reg << 40) | (1ll << 32)),
3037 		/* MOV48 rX:rX+1, time_offset */
3038 		JOB_INSTR_TIMESTAMP((1ull << 56) | (params->time_reg << 48) |
3039 				    (params->times_addr +
3040 				     offsetof(struct panthor_job_profiling_data, time.before))),
3041 		/* STORE_STATE timer */
3042 		JOB_INSTR_TIMESTAMP((40ull << 56) | (params->time_reg << 40) | (0ll << 32)),
3043 		/* MOV48 rX:rX+1, cs.start */
3044 		JOB_INSTR_ALWAYS((1ull << 56) | (params->addr_reg << 48) | params->cs_start),
3045 		/* MOV32 rX+2, cs.size */
3046 		JOB_INSTR_ALWAYS((2ull << 56) | (params->val_reg << 48) | params->cs_size),
3047 		/* WAIT(0) => waits for FLUSH_CACHE2 instruction */
3048 		JOB_INSTR_ALWAYS((3ull << 56) | (1 << 16)),
3049 		/* CALL rX:rX+1, rX+2 */
3050 		JOB_INSTR_ALWAYS((32ull << 56) | (params->addr_reg << 40) |
3051 				 (params->val_reg << 32)),
3052 		/* MOV48 rX:rX+1, cycles_offset */
3053 		JOB_INSTR_CYCLES((1ull << 56) | (params->cycle_reg << 48) |
3054 				 (params->times_addr +
3055 				  offsetof(struct panthor_job_profiling_data, cycles.after))),
3056 		/* STORE_STATE cycles */
3057 		JOB_INSTR_CYCLES((40ull << 56) | (params->cycle_reg << 40) | (1ll << 32)),
3058 		/* MOV48 rX:rX+1, time_offset */
3059 		JOB_INSTR_TIMESTAMP((1ull << 56) | (params->time_reg << 48) |
3060 			  (params->times_addr +
3061 			   offsetof(struct panthor_job_profiling_data, time.after))),
3062 		/* STORE_STATE timer */
3063 		JOB_INSTR_TIMESTAMP((40ull << 56) | (params->time_reg << 40) | (0ll << 32)),
3064 		/* MOV48 rX:rX+1, sync_addr */
3065 		JOB_INSTR_ALWAYS((1ull << 56) | (params->addr_reg << 48) | params->sync_addr),
3066 		/* MOV48 rX+2, #1 */
3067 		JOB_INSTR_ALWAYS((1ull << 56) | (params->val_reg << 48) | 1),
3068 		/* WAIT(all) */
3069 		JOB_INSTR_ALWAYS((3ull << 56) | (params->waitall_mask << 16)),
3070 		/* SYNC_ADD64.system_scope.propage_err.nowait rX:rX+1, rX+2*/
3071 		JOB_INSTR_ALWAYS((51ull << 56) | (0ull << 48) | (params->addr_reg << 40) |
3072 				 (params->val_reg << 32) | (0 << 16) | 1),
3073 		/* ERROR_BARRIER, so we can recover from faults at job boundaries. */
3074 		JOB_INSTR_ALWAYS((47ull << 56)),
3075 	};
3076 	u32 pad;
3077 
3078 	instrs->count = 0;
3079 
3080 	/* NEED to be cacheline aligned to please the prefetcher. */
3081 	static_assert(sizeof(instrs->buffer) % 64 == 0,
3082 		      "panthor_job_ringbuf_instrs::buffer is not aligned on a cacheline");
3083 
3084 	/* Make sure we have enough storage to store the whole sequence. */
3085 	static_assert(ALIGN(ARRAY_SIZE(instr_seq), NUM_INSTRS_PER_CACHE_LINE) ==
3086 		      ARRAY_SIZE(instrs->buffer),
3087 		      "instr_seq vs panthor_job_ringbuf_instrs::buffer size mismatch");
3088 
3089 	for (u32 i = 0; i < ARRAY_SIZE(instr_seq); i++) {
3090 		/* If the profile mask of this instruction is not enabled, skip it. */
3091 		if (instr_seq[i].profile_mask &&
3092 		    !(instr_seq[i].profile_mask & params->profile_mask))
3093 			continue;
3094 
3095 		instrs->buffer[instrs->count++] = instr_seq[i].instr;
3096 	}
3097 
3098 	pad = ALIGN(instrs->count, NUM_INSTRS_PER_CACHE_LINE);
3099 	memset(&instrs->buffer[instrs->count], 0,
3100 	       (pad - instrs->count) * sizeof(instrs->buffer[0]));
3101 	instrs->count = pad;
3102 }
3103 
calc_job_credits(u32 profile_mask)3104 static u32 calc_job_credits(u32 profile_mask)
3105 {
3106 	struct panthor_job_ringbuf_instrs instrs;
3107 	struct panthor_job_cs_params params = {
3108 		.profile_mask = profile_mask,
3109 	};
3110 
3111 	prepare_job_instrs(&params, &instrs);
3112 	return instrs.count;
3113 }
3114 
3115 static struct dma_fence *
queue_run_job(struct drm_sched_job * sched_job)3116 queue_run_job(struct drm_sched_job *sched_job)
3117 {
3118 	struct panthor_job *job = container_of(sched_job, struct panthor_job, base);
3119 	struct panthor_group *group = job->group;
3120 	struct panthor_queue *queue = group->queues[job->queue_idx];
3121 	struct panthor_device *ptdev = group->ptdev;
3122 	struct panthor_scheduler *sched = ptdev->scheduler;
3123 	struct panthor_job_ringbuf_instrs instrs;
3124 	struct panthor_job_cs_params cs_params;
3125 	struct dma_fence *done_fence;
3126 	int ret;
3127 
3128 	/* Stream size is zero, nothing to do except making sure all previously
3129 	 * submitted jobs are done before we signal the
3130 	 * drm_sched_job::s_fence::finished fence.
3131 	 */
3132 	if (!job->call_info.size) {
3133 		job->done_fence = dma_fence_get(queue->fence_ctx.last_fence);
3134 		return dma_fence_get(job->done_fence);
3135 	}
3136 
3137 	ret = panthor_device_resume_and_get(ptdev);
3138 	if (drm_WARN_ON(&ptdev->base, ret))
3139 		return ERR_PTR(ret);
3140 
3141 	mutex_lock(&sched->lock);
3142 	if (!group_can_run(group)) {
3143 		done_fence = ERR_PTR(-ECANCELED);
3144 		goto out_unlock;
3145 	}
3146 
3147 	dma_fence_init(job->done_fence,
3148 		       &panthor_queue_fence_ops,
3149 		       &queue->fence_ctx.lock,
3150 		       queue->fence_ctx.id,
3151 		       atomic64_inc_return(&queue->fence_ctx.seqno));
3152 
3153 	job->profiling.slot = queue->profiling.seqno++;
3154 	if (queue->profiling.seqno == queue->profiling.slot_count)
3155 		queue->profiling.seqno = 0;
3156 
3157 	job->ringbuf.start = queue->iface.input->insert;
3158 
3159 	get_job_cs_params(job, &cs_params);
3160 	prepare_job_instrs(&cs_params, &instrs);
3161 	copy_instrs_to_ringbuf(queue, job, &instrs);
3162 
3163 	job->ringbuf.end = job->ringbuf.start + (instrs.count * sizeof(u64));
3164 
3165 	panthor_job_get(&job->base);
3166 	spin_lock(&queue->fence_ctx.lock);
3167 	list_add_tail(&job->node, &queue->fence_ctx.in_flight_jobs);
3168 	spin_unlock(&queue->fence_ctx.lock);
3169 
3170 	/* Make sure the ring buffer is updated before the INSERT
3171 	 * register.
3172 	 */
3173 	wmb();
3174 
3175 	queue->iface.input->extract = queue->iface.output->extract;
3176 	queue->iface.input->insert = job->ringbuf.end;
3177 
3178 	if (group->csg_id < 0) {
3179 		/* If the queue is blocked, we want to keep the timeout running, so we
3180 		 * can detect unbounded waits and kill the group when that happens.
3181 		 * Otherwise, we suspend the timeout so the time we spend waiting for
3182 		 * a CSG slot is not counted.
3183 		 */
3184 		if (!(group->blocked_queues & BIT(job->queue_idx)) &&
3185 		    !queue->timeout_suspended) {
3186 			queue->remaining_time = drm_sched_suspend_timeout(&queue->scheduler);
3187 			queue->timeout_suspended = true;
3188 		}
3189 
3190 		group_schedule_locked(group, BIT(job->queue_idx));
3191 	} else {
3192 		gpu_write(ptdev, CSF_DOORBELL(queue->doorbell_id), 1);
3193 		if (!sched->pm.has_ref &&
3194 		    !(group->blocked_queues & BIT(job->queue_idx))) {
3195 			pm_runtime_get(ptdev->base.dev);
3196 			sched->pm.has_ref = true;
3197 		}
3198 		panthor_devfreq_record_busy(sched->ptdev);
3199 	}
3200 
3201 	/* Update the last fence. */
3202 	dma_fence_put(queue->fence_ctx.last_fence);
3203 	queue->fence_ctx.last_fence = dma_fence_get(job->done_fence);
3204 
3205 	done_fence = dma_fence_get(job->done_fence);
3206 
3207 out_unlock:
3208 	mutex_unlock(&sched->lock);
3209 	pm_runtime_mark_last_busy(ptdev->base.dev);
3210 	pm_runtime_put_autosuspend(ptdev->base.dev);
3211 
3212 	return done_fence;
3213 }
3214 
3215 static enum drm_gpu_sched_stat
queue_timedout_job(struct drm_sched_job * sched_job)3216 queue_timedout_job(struct drm_sched_job *sched_job)
3217 {
3218 	struct panthor_job *job = container_of(sched_job, struct panthor_job, base);
3219 	struct panthor_group *group = job->group;
3220 	struct panthor_device *ptdev = group->ptdev;
3221 	struct panthor_scheduler *sched = ptdev->scheduler;
3222 	struct panthor_queue *queue = group->queues[job->queue_idx];
3223 
3224 	drm_warn(&ptdev->base, "job timeout\n");
3225 
3226 	drm_WARN_ON(&ptdev->base, atomic_read(&sched->reset.in_progress));
3227 
3228 	queue_stop(queue, job);
3229 
3230 	mutex_lock(&sched->lock);
3231 	group->timedout = true;
3232 	if (group->csg_id >= 0) {
3233 		sched_queue_delayed_work(ptdev->scheduler, tick, 0);
3234 	} else {
3235 		/* Remove from the run queues, so the scheduler can't
3236 		 * pick the group on the next tick.
3237 		 */
3238 		list_del_init(&group->run_node);
3239 		list_del_init(&group->wait_node);
3240 
3241 		group_queue_work(group, term);
3242 	}
3243 	mutex_unlock(&sched->lock);
3244 
3245 	queue_start(queue);
3246 
3247 	return DRM_GPU_SCHED_STAT_NOMINAL;
3248 }
3249 
queue_free_job(struct drm_sched_job * sched_job)3250 static void queue_free_job(struct drm_sched_job *sched_job)
3251 {
3252 	drm_sched_job_cleanup(sched_job);
3253 	panthor_job_put(sched_job);
3254 }
3255 
3256 static const struct drm_sched_backend_ops panthor_queue_sched_ops = {
3257 	.run_job = queue_run_job,
3258 	.timedout_job = queue_timedout_job,
3259 	.free_job = queue_free_job,
3260 };
3261 
calc_profiling_ringbuf_num_slots(struct panthor_device * ptdev,u32 cs_ringbuf_size)3262 static u32 calc_profiling_ringbuf_num_slots(struct panthor_device *ptdev,
3263 					    u32 cs_ringbuf_size)
3264 {
3265 	u32 min_profiled_job_instrs = U32_MAX;
3266 	u32 last_flag = fls(PANTHOR_DEVICE_PROFILING_ALL);
3267 
3268 	/*
3269 	 * We want to calculate the minimum size of a profiled job's CS,
3270 	 * because since they need additional instructions for the sampling
3271 	 * of performance metrics, they might take up further slots in
3272 	 * the queue's ringbuffer. This means we might not need as many job
3273 	 * slots for keeping track of their profiling information. What we
3274 	 * need is the maximum number of slots we should allocate to this end,
3275 	 * which matches the maximum number of profiled jobs we can place
3276 	 * simultaneously in the queue's ring buffer.
3277 	 * That has to be calculated separately for every single job profiling
3278 	 * flag, but not in the case job profiling is disabled, since unprofiled
3279 	 * jobs don't need to keep track of this at all.
3280 	 */
3281 	for (u32 i = 0; i < last_flag; i++) {
3282 		min_profiled_job_instrs =
3283 			min(min_profiled_job_instrs, calc_job_credits(BIT(i)));
3284 	}
3285 
3286 	return DIV_ROUND_UP(cs_ringbuf_size, min_profiled_job_instrs * sizeof(u64));
3287 }
3288 
3289 static struct panthor_queue *
group_create_queue(struct panthor_group * group,const struct drm_panthor_queue_create * args)3290 group_create_queue(struct panthor_group *group,
3291 		   const struct drm_panthor_queue_create *args)
3292 {
3293 	struct drm_gpu_scheduler *drm_sched;
3294 	struct panthor_queue *queue;
3295 	int ret;
3296 
3297 	if (args->pad[0] || args->pad[1] || args->pad[2])
3298 		return ERR_PTR(-EINVAL);
3299 
3300 	if (args->ringbuf_size < SZ_4K || args->ringbuf_size > SZ_64K ||
3301 	    !is_power_of_2(args->ringbuf_size))
3302 		return ERR_PTR(-EINVAL);
3303 
3304 	if (args->priority > CSF_MAX_QUEUE_PRIO)
3305 		return ERR_PTR(-EINVAL);
3306 
3307 	queue = kzalloc(sizeof(*queue), GFP_KERNEL);
3308 	if (!queue)
3309 		return ERR_PTR(-ENOMEM);
3310 
3311 	queue->fence_ctx.id = dma_fence_context_alloc(1);
3312 	spin_lock_init(&queue->fence_ctx.lock);
3313 	INIT_LIST_HEAD(&queue->fence_ctx.in_flight_jobs);
3314 
3315 	queue->priority = args->priority;
3316 
3317 	queue->ringbuf = panthor_kernel_bo_create(group->ptdev, group->vm,
3318 						  args->ringbuf_size,
3319 						  DRM_PANTHOR_BO_NO_MMAP,
3320 						  DRM_PANTHOR_VM_BIND_OP_MAP_NOEXEC |
3321 						  DRM_PANTHOR_VM_BIND_OP_MAP_UNCACHED,
3322 						  PANTHOR_VM_KERNEL_AUTO_VA);
3323 	if (IS_ERR(queue->ringbuf)) {
3324 		ret = PTR_ERR(queue->ringbuf);
3325 		goto err_free_queue;
3326 	}
3327 
3328 	ret = panthor_kernel_bo_vmap(queue->ringbuf);
3329 	if (ret)
3330 		goto err_free_queue;
3331 
3332 	queue->iface.mem = panthor_fw_alloc_queue_iface_mem(group->ptdev,
3333 							    &queue->iface.input,
3334 							    &queue->iface.output,
3335 							    &queue->iface.input_fw_va,
3336 							    &queue->iface.output_fw_va);
3337 	if (IS_ERR(queue->iface.mem)) {
3338 		ret = PTR_ERR(queue->iface.mem);
3339 		goto err_free_queue;
3340 	}
3341 
3342 	queue->profiling.slot_count =
3343 		calc_profiling_ringbuf_num_slots(group->ptdev, args->ringbuf_size);
3344 
3345 	queue->profiling.slots =
3346 		panthor_kernel_bo_create(group->ptdev, group->vm,
3347 					 queue->profiling.slot_count *
3348 					 sizeof(struct panthor_job_profiling_data),
3349 					 DRM_PANTHOR_BO_NO_MMAP,
3350 					 DRM_PANTHOR_VM_BIND_OP_MAP_NOEXEC |
3351 					 DRM_PANTHOR_VM_BIND_OP_MAP_UNCACHED,
3352 					 PANTHOR_VM_KERNEL_AUTO_VA);
3353 
3354 	if (IS_ERR(queue->profiling.slots)) {
3355 		ret = PTR_ERR(queue->profiling.slots);
3356 		goto err_free_queue;
3357 	}
3358 
3359 	ret = panthor_kernel_bo_vmap(queue->profiling.slots);
3360 	if (ret)
3361 		goto err_free_queue;
3362 
3363 	/*
3364 	 * Credit limit argument tells us the total number of instructions
3365 	 * across all CS slots in the ringbuffer, with some jobs requiring
3366 	 * twice as many as others, depending on their profiling status.
3367 	 */
3368 	ret = drm_sched_init(&queue->scheduler, &panthor_queue_sched_ops,
3369 			     group->ptdev->scheduler->wq, 1,
3370 			     args->ringbuf_size / sizeof(u64),
3371 			     0, msecs_to_jiffies(JOB_TIMEOUT_MS),
3372 			     group->ptdev->reset.wq,
3373 			     NULL, "panthor-queue", group->ptdev->base.dev);
3374 	if (ret)
3375 		goto err_free_queue;
3376 
3377 	drm_sched = &queue->scheduler;
3378 	ret = drm_sched_entity_init(&queue->entity, 0, &drm_sched, 1, NULL);
3379 
3380 	return queue;
3381 
3382 err_free_queue:
3383 	group_free_queue(group, queue);
3384 	return ERR_PTR(ret);
3385 }
3386 
add_group_kbo_sizes(struct panthor_device * ptdev,struct panthor_group * group)3387 static void add_group_kbo_sizes(struct panthor_device *ptdev,
3388 				struct panthor_group *group)
3389 {
3390 	struct panthor_queue *queue;
3391 	int i;
3392 
3393 	if (drm_WARN_ON(&ptdev->base, IS_ERR_OR_NULL(group)))
3394 		return;
3395 	if (drm_WARN_ON(&ptdev->base, ptdev != group->ptdev))
3396 		return;
3397 
3398 	group->fdinfo.kbo_sizes += group->suspend_buf->obj->size;
3399 	group->fdinfo.kbo_sizes += group->protm_suspend_buf->obj->size;
3400 	group->fdinfo.kbo_sizes += group->syncobjs->obj->size;
3401 
3402 	for (i = 0; i < group->queue_count; i++) {
3403 		queue =	group->queues[i];
3404 		group->fdinfo.kbo_sizes += queue->ringbuf->obj->size;
3405 		group->fdinfo.kbo_sizes += queue->iface.mem->obj->size;
3406 		group->fdinfo.kbo_sizes += queue->profiling.slots->obj->size;
3407 	}
3408 }
3409 
3410 #define MAX_GROUPS_PER_POOL		128
3411 
panthor_group_create(struct panthor_file * pfile,const struct drm_panthor_group_create * group_args,const struct drm_panthor_queue_create * queue_args)3412 int panthor_group_create(struct panthor_file *pfile,
3413 			 const struct drm_panthor_group_create *group_args,
3414 			 const struct drm_panthor_queue_create *queue_args)
3415 {
3416 	struct panthor_device *ptdev = pfile->ptdev;
3417 	struct panthor_group_pool *gpool = pfile->groups;
3418 	struct panthor_scheduler *sched = ptdev->scheduler;
3419 	struct panthor_fw_csg_iface *csg_iface = panthor_fw_get_csg_iface(ptdev, 0);
3420 	struct panthor_group *group = NULL;
3421 	u32 gid, i, suspend_size;
3422 	int ret;
3423 
3424 	if (group_args->pad)
3425 		return -EINVAL;
3426 
3427 	if (group_args->priority >= PANTHOR_CSG_PRIORITY_COUNT)
3428 		return -EINVAL;
3429 
3430 	if ((group_args->compute_core_mask & ~ptdev->gpu_info.shader_present) ||
3431 	    (group_args->fragment_core_mask & ~ptdev->gpu_info.shader_present) ||
3432 	    (group_args->tiler_core_mask & ~ptdev->gpu_info.tiler_present))
3433 		return -EINVAL;
3434 
3435 	if (hweight64(group_args->compute_core_mask) < group_args->max_compute_cores ||
3436 	    hweight64(group_args->fragment_core_mask) < group_args->max_fragment_cores ||
3437 	    hweight64(group_args->tiler_core_mask) < group_args->max_tiler_cores)
3438 		return -EINVAL;
3439 
3440 	group = kzalloc(sizeof(*group), GFP_KERNEL);
3441 	if (!group)
3442 		return -ENOMEM;
3443 
3444 	spin_lock_init(&group->fatal_lock);
3445 	kref_init(&group->refcount);
3446 	group->state = PANTHOR_CS_GROUP_CREATED;
3447 	group->csg_id = -1;
3448 
3449 	group->ptdev = ptdev;
3450 	group->max_compute_cores = group_args->max_compute_cores;
3451 	group->compute_core_mask = group_args->compute_core_mask;
3452 	group->max_fragment_cores = group_args->max_fragment_cores;
3453 	group->fragment_core_mask = group_args->fragment_core_mask;
3454 	group->max_tiler_cores = group_args->max_tiler_cores;
3455 	group->tiler_core_mask = group_args->tiler_core_mask;
3456 	group->priority = group_args->priority;
3457 
3458 	INIT_LIST_HEAD(&group->wait_node);
3459 	INIT_LIST_HEAD(&group->run_node);
3460 	INIT_WORK(&group->term_work, group_term_work);
3461 	INIT_WORK(&group->sync_upd_work, group_sync_upd_work);
3462 	INIT_WORK(&group->tiler_oom_work, group_tiler_oom_work);
3463 	INIT_WORK(&group->release_work, group_release_work);
3464 
3465 	group->vm = panthor_vm_pool_get_vm(pfile->vms, group_args->vm_id);
3466 	if (!group->vm) {
3467 		ret = -EINVAL;
3468 		goto err_put_group;
3469 	}
3470 
3471 	suspend_size = csg_iface->control->suspend_size;
3472 	group->suspend_buf = panthor_fw_alloc_suspend_buf_mem(ptdev, suspend_size);
3473 	if (IS_ERR(group->suspend_buf)) {
3474 		ret = PTR_ERR(group->suspend_buf);
3475 		group->suspend_buf = NULL;
3476 		goto err_put_group;
3477 	}
3478 
3479 	suspend_size = csg_iface->control->protm_suspend_size;
3480 	group->protm_suspend_buf = panthor_fw_alloc_suspend_buf_mem(ptdev, suspend_size);
3481 	if (IS_ERR(group->protm_suspend_buf)) {
3482 		ret = PTR_ERR(group->protm_suspend_buf);
3483 		group->protm_suspend_buf = NULL;
3484 		goto err_put_group;
3485 	}
3486 
3487 	group->syncobjs = panthor_kernel_bo_create(ptdev, group->vm,
3488 						   group_args->queues.count *
3489 						   sizeof(struct panthor_syncobj_64b),
3490 						   DRM_PANTHOR_BO_NO_MMAP,
3491 						   DRM_PANTHOR_VM_BIND_OP_MAP_NOEXEC |
3492 						   DRM_PANTHOR_VM_BIND_OP_MAP_UNCACHED,
3493 						   PANTHOR_VM_KERNEL_AUTO_VA);
3494 	if (IS_ERR(group->syncobjs)) {
3495 		ret = PTR_ERR(group->syncobjs);
3496 		goto err_put_group;
3497 	}
3498 
3499 	ret = panthor_kernel_bo_vmap(group->syncobjs);
3500 	if (ret)
3501 		goto err_put_group;
3502 
3503 	memset(group->syncobjs->kmap, 0,
3504 	       group_args->queues.count * sizeof(struct panthor_syncobj_64b));
3505 
3506 	for (i = 0; i < group_args->queues.count; i++) {
3507 		group->queues[i] = group_create_queue(group, &queue_args[i]);
3508 		if (IS_ERR(group->queues[i])) {
3509 			ret = PTR_ERR(group->queues[i]);
3510 			group->queues[i] = NULL;
3511 			goto err_put_group;
3512 		}
3513 
3514 		group->queue_count++;
3515 	}
3516 
3517 	group->idle_queues = GENMASK(group->queue_count - 1, 0);
3518 
3519 	ret = xa_alloc(&gpool->xa, &gid, group, XA_LIMIT(1, MAX_GROUPS_PER_POOL), GFP_KERNEL);
3520 	if (ret)
3521 		goto err_put_group;
3522 
3523 	mutex_lock(&sched->reset.lock);
3524 	if (atomic_read(&sched->reset.in_progress)) {
3525 		panthor_group_stop(group);
3526 	} else {
3527 		mutex_lock(&sched->lock);
3528 		list_add_tail(&group->run_node,
3529 			      &sched->groups.idle[group->priority]);
3530 		mutex_unlock(&sched->lock);
3531 	}
3532 	mutex_unlock(&sched->reset.lock);
3533 
3534 	add_group_kbo_sizes(group->ptdev, group);
3535 	spin_lock_init(&group->fdinfo.lock);
3536 
3537 	return gid;
3538 
3539 err_put_group:
3540 	group_put(group);
3541 	return ret;
3542 }
3543 
panthor_group_destroy(struct panthor_file * pfile,u32 group_handle)3544 int panthor_group_destroy(struct panthor_file *pfile, u32 group_handle)
3545 {
3546 	struct panthor_group_pool *gpool = pfile->groups;
3547 	struct panthor_device *ptdev = pfile->ptdev;
3548 	struct panthor_scheduler *sched = ptdev->scheduler;
3549 	struct panthor_group *group;
3550 
3551 	group = xa_erase(&gpool->xa, group_handle);
3552 	if (!group)
3553 		return -EINVAL;
3554 
3555 	for (u32 i = 0; i < group->queue_count; i++) {
3556 		if (group->queues[i])
3557 			drm_sched_entity_destroy(&group->queues[i]->entity);
3558 	}
3559 
3560 	mutex_lock(&sched->reset.lock);
3561 	mutex_lock(&sched->lock);
3562 	group->destroyed = true;
3563 	if (group->csg_id >= 0) {
3564 		sched_queue_delayed_work(sched, tick, 0);
3565 	} else if (!atomic_read(&sched->reset.in_progress)) {
3566 		/* Remove from the run queues, so the scheduler can't
3567 		 * pick the group on the next tick.
3568 		 */
3569 		list_del_init(&group->run_node);
3570 		list_del_init(&group->wait_node);
3571 		group_queue_work(group, term);
3572 	}
3573 	mutex_unlock(&sched->lock);
3574 	mutex_unlock(&sched->reset.lock);
3575 
3576 	group_put(group);
3577 	return 0;
3578 }
3579 
group_from_handle(struct panthor_group_pool * pool,u32 group_handle)3580 static struct panthor_group *group_from_handle(struct panthor_group_pool *pool,
3581 					       u32 group_handle)
3582 {
3583 	struct panthor_group *group;
3584 
3585 	xa_lock(&pool->xa);
3586 	group = group_get(xa_load(&pool->xa, group_handle));
3587 	xa_unlock(&pool->xa);
3588 
3589 	return group;
3590 }
3591 
panthor_group_get_state(struct panthor_file * pfile,struct drm_panthor_group_get_state * get_state)3592 int panthor_group_get_state(struct panthor_file *pfile,
3593 			    struct drm_panthor_group_get_state *get_state)
3594 {
3595 	struct panthor_group_pool *gpool = pfile->groups;
3596 	struct panthor_device *ptdev = pfile->ptdev;
3597 	struct panthor_scheduler *sched = ptdev->scheduler;
3598 	struct panthor_group *group;
3599 
3600 	if (get_state->pad)
3601 		return -EINVAL;
3602 
3603 	group = group_from_handle(gpool, get_state->group_handle);
3604 	if (!group)
3605 		return -EINVAL;
3606 
3607 	memset(get_state, 0, sizeof(*get_state));
3608 
3609 	mutex_lock(&sched->lock);
3610 	if (group->timedout)
3611 		get_state->state |= DRM_PANTHOR_GROUP_STATE_TIMEDOUT;
3612 	if (group->fatal_queues) {
3613 		get_state->state |= DRM_PANTHOR_GROUP_STATE_FATAL_FAULT;
3614 		get_state->fatal_queues = group->fatal_queues;
3615 	}
3616 	if (group->innocent)
3617 		get_state->state |= DRM_PANTHOR_GROUP_STATE_INNOCENT;
3618 	mutex_unlock(&sched->lock);
3619 
3620 	group_put(group);
3621 	return 0;
3622 }
3623 
panthor_group_pool_create(struct panthor_file * pfile)3624 int panthor_group_pool_create(struct panthor_file *pfile)
3625 {
3626 	struct panthor_group_pool *gpool;
3627 
3628 	gpool = kzalloc(sizeof(*gpool), GFP_KERNEL);
3629 	if (!gpool)
3630 		return -ENOMEM;
3631 
3632 	xa_init_flags(&gpool->xa, XA_FLAGS_ALLOC1);
3633 	pfile->groups = gpool;
3634 	return 0;
3635 }
3636 
panthor_group_pool_destroy(struct panthor_file * pfile)3637 void panthor_group_pool_destroy(struct panthor_file *pfile)
3638 {
3639 	struct panthor_group_pool *gpool = pfile->groups;
3640 	struct panthor_group *group;
3641 	unsigned long i;
3642 
3643 	if (IS_ERR_OR_NULL(gpool))
3644 		return;
3645 
3646 	xa_for_each(&gpool->xa, i, group)
3647 		panthor_group_destroy(pfile, i);
3648 
3649 	xa_destroy(&gpool->xa);
3650 	kfree(gpool);
3651 	pfile->groups = NULL;
3652 }
3653 
3654 /**
3655  * panthor_fdinfo_gather_group_mem_info() - Retrieve aggregate size of all private kernel BO's
3656  * belonging to all the groups owned by an open Panthor file
3657  * @pfile: File.
3658  * @stats: Memory statistics to be updated.
3659  *
3660  */
3661 void
panthor_fdinfo_gather_group_mem_info(struct panthor_file * pfile,struct drm_memory_stats * stats)3662 panthor_fdinfo_gather_group_mem_info(struct panthor_file *pfile,
3663 				     struct drm_memory_stats *stats)
3664 {
3665 	struct panthor_group_pool *gpool = pfile->groups;
3666 	struct panthor_group *group;
3667 	unsigned long i;
3668 
3669 	if (IS_ERR_OR_NULL(gpool))
3670 		return;
3671 
3672 	xa_lock(&gpool->xa);
3673 	xa_for_each(&gpool->xa, i, group) {
3674 		stats->resident += group->fdinfo.kbo_sizes;
3675 		if (group->csg_id >= 0)
3676 			stats->active += group->fdinfo.kbo_sizes;
3677 	}
3678 	xa_unlock(&gpool->xa);
3679 }
3680 
job_release(struct kref * ref)3681 static void job_release(struct kref *ref)
3682 {
3683 	struct panthor_job *job = container_of(ref, struct panthor_job, refcount);
3684 
3685 	drm_WARN_ON(&job->group->ptdev->base, !list_empty(&job->node));
3686 
3687 	if (job->base.s_fence)
3688 		drm_sched_job_cleanup(&job->base);
3689 
3690 	if (job->done_fence && job->done_fence->ops)
3691 		dma_fence_put(job->done_fence);
3692 	else
3693 		dma_fence_free(job->done_fence);
3694 
3695 	group_put(job->group);
3696 
3697 	kfree(job);
3698 }
3699 
panthor_job_get(struct drm_sched_job * sched_job)3700 struct drm_sched_job *panthor_job_get(struct drm_sched_job *sched_job)
3701 {
3702 	if (sched_job) {
3703 		struct panthor_job *job = container_of(sched_job, struct panthor_job, base);
3704 
3705 		kref_get(&job->refcount);
3706 	}
3707 
3708 	return sched_job;
3709 }
3710 
panthor_job_put(struct drm_sched_job * sched_job)3711 void panthor_job_put(struct drm_sched_job *sched_job)
3712 {
3713 	struct panthor_job *job = container_of(sched_job, struct panthor_job, base);
3714 
3715 	if (sched_job)
3716 		kref_put(&job->refcount, job_release);
3717 }
3718 
panthor_job_vm(struct drm_sched_job * sched_job)3719 struct panthor_vm *panthor_job_vm(struct drm_sched_job *sched_job)
3720 {
3721 	struct panthor_job *job = container_of(sched_job, struct panthor_job, base);
3722 
3723 	return job->group->vm;
3724 }
3725 
3726 struct drm_sched_job *
panthor_job_create(struct panthor_file * pfile,u16 group_handle,const struct drm_panthor_queue_submit * qsubmit)3727 panthor_job_create(struct panthor_file *pfile,
3728 		   u16 group_handle,
3729 		   const struct drm_panthor_queue_submit *qsubmit)
3730 {
3731 	struct panthor_group_pool *gpool = pfile->groups;
3732 	struct panthor_job *job;
3733 	u32 credits;
3734 	int ret;
3735 
3736 	if (qsubmit->pad)
3737 		return ERR_PTR(-EINVAL);
3738 
3739 	/* If stream_addr is zero, so stream_size should be. */
3740 	if ((qsubmit->stream_size == 0) != (qsubmit->stream_addr == 0))
3741 		return ERR_PTR(-EINVAL);
3742 
3743 	/* Make sure the address is aligned on 64-byte (cacheline) and the size is
3744 	 * aligned on 8-byte (instruction size).
3745 	 */
3746 	if ((qsubmit->stream_addr & 63) || (qsubmit->stream_size & 7))
3747 		return ERR_PTR(-EINVAL);
3748 
3749 	/* bits 24:30 must be zero. */
3750 	if (qsubmit->latest_flush & GENMASK(30, 24))
3751 		return ERR_PTR(-EINVAL);
3752 
3753 	job = kzalloc(sizeof(*job), GFP_KERNEL);
3754 	if (!job)
3755 		return ERR_PTR(-ENOMEM);
3756 
3757 	kref_init(&job->refcount);
3758 	job->queue_idx = qsubmit->queue_index;
3759 	job->call_info.size = qsubmit->stream_size;
3760 	job->call_info.start = qsubmit->stream_addr;
3761 	job->call_info.latest_flush = qsubmit->latest_flush;
3762 	INIT_LIST_HEAD(&job->node);
3763 
3764 	job->group = group_from_handle(gpool, group_handle);
3765 	if (!job->group) {
3766 		ret = -EINVAL;
3767 		goto err_put_job;
3768 	}
3769 
3770 	if (!group_can_run(job->group)) {
3771 		ret = -EINVAL;
3772 		goto err_put_job;
3773 	}
3774 
3775 	if (job->queue_idx >= job->group->queue_count ||
3776 	    !job->group->queues[job->queue_idx]) {
3777 		ret = -EINVAL;
3778 		goto err_put_job;
3779 	}
3780 
3781 	/* Empty command streams don't need a fence, they'll pick the one from
3782 	 * the previously submitted job.
3783 	 */
3784 	if (job->call_info.size) {
3785 		job->done_fence = kzalloc(sizeof(*job->done_fence), GFP_KERNEL);
3786 		if (!job->done_fence) {
3787 			ret = -ENOMEM;
3788 			goto err_put_job;
3789 		}
3790 	}
3791 
3792 	job->profiling.mask = pfile->ptdev->profile_mask;
3793 	credits = calc_job_credits(job->profiling.mask);
3794 	if (credits == 0) {
3795 		ret = -EINVAL;
3796 		goto err_put_job;
3797 	}
3798 
3799 	ret = drm_sched_job_init(&job->base,
3800 				 &job->group->queues[job->queue_idx]->entity,
3801 				 credits, job->group);
3802 	if (ret)
3803 		goto err_put_job;
3804 
3805 	return &job->base;
3806 
3807 err_put_job:
3808 	panthor_job_put(&job->base);
3809 	return ERR_PTR(ret);
3810 }
3811 
panthor_job_update_resvs(struct drm_exec * exec,struct drm_sched_job * sched_job)3812 void panthor_job_update_resvs(struct drm_exec *exec, struct drm_sched_job *sched_job)
3813 {
3814 	struct panthor_job *job = container_of(sched_job, struct panthor_job, base);
3815 
3816 	panthor_vm_update_resvs(job->group->vm, exec, &sched_job->s_fence->finished,
3817 				DMA_RESV_USAGE_BOOKKEEP, DMA_RESV_USAGE_BOOKKEEP);
3818 }
3819 
panthor_sched_unplug(struct panthor_device * ptdev)3820 void panthor_sched_unplug(struct panthor_device *ptdev)
3821 {
3822 	struct panthor_scheduler *sched = ptdev->scheduler;
3823 
3824 	cancel_delayed_work_sync(&sched->tick_work);
3825 
3826 	mutex_lock(&sched->lock);
3827 	if (sched->pm.has_ref) {
3828 		pm_runtime_put(ptdev->base.dev);
3829 		sched->pm.has_ref = false;
3830 	}
3831 	mutex_unlock(&sched->lock);
3832 }
3833 
panthor_sched_fini(struct drm_device * ddev,void * res)3834 static void panthor_sched_fini(struct drm_device *ddev, void *res)
3835 {
3836 	struct panthor_scheduler *sched = res;
3837 	int prio;
3838 
3839 	if (!sched || !sched->csg_slot_count)
3840 		return;
3841 
3842 	cancel_delayed_work_sync(&sched->tick_work);
3843 
3844 	if (sched->wq)
3845 		destroy_workqueue(sched->wq);
3846 
3847 	if (sched->heap_alloc_wq)
3848 		destroy_workqueue(sched->heap_alloc_wq);
3849 
3850 	for (prio = PANTHOR_CSG_PRIORITY_COUNT - 1; prio >= 0; prio--) {
3851 		drm_WARN_ON(ddev, !list_empty(&sched->groups.runnable[prio]));
3852 		drm_WARN_ON(ddev, !list_empty(&sched->groups.idle[prio]));
3853 	}
3854 
3855 	drm_WARN_ON(ddev, !list_empty(&sched->groups.waiting));
3856 }
3857 
panthor_sched_init(struct panthor_device * ptdev)3858 int panthor_sched_init(struct panthor_device *ptdev)
3859 {
3860 	struct panthor_fw_global_iface *glb_iface = panthor_fw_get_glb_iface(ptdev);
3861 	struct panthor_fw_csg_iface *csg_iface = panthor_fw_get_csg_iface(ptdev, 0);
3862 	struct panthor_fw_cs_iface *cs_iface = panthor_fw_get_cs_iface(ptdev, 0, 0);
3863 	struct panthor_scheduler *sched;
3864 	u32 gpu_as_count, num_groups;
3865 	int prio, ret;
3866 
3867 	sched = drmm_kzalloc(&ptdev->base, sizeof(*sched), GFP_KERNEL);
3868 	if (!sched)
3869 		return -ENOMEM;
3870 
3871 	/* The highest bit in JOB_INT_* is reserved for globabl IRQs. That
3872 	 * leaves 31 bits for CSG IRQs, hence the MAX_CSGS clamp here.
3873 	 */
3874 	num_groups = min_t(u32, MAX_CSGS, glb_iface->control->group_num);
3875 
3876 	/* The FW-side scheduler might deadlock if two groups with the same
3877 	 * priority try to access a set of resources that overlaps, with part
3878 	 * of the resources being allocated to one group and the other part to
3879 	 * the other group, both groups waiting for the remaining resources to
3880 	 * be allocated. To avoid that, it is recommended to assign each CSG a
3881 	 * different priority. In theory we could allow several groups to have
3882 	 * the same CSG priority if they don't request the same resources, but
3883 	 * that makes the scheduling logic more complicated, so let's clamp
3884 	 * the number of CSG slots to MAX_CSG_PRIO + 1 for now.
3885 	 */
3886 	num_groups = min_t(u32, MAX_CSG_PRIO + 1, num_groups);
3887 
3888 	/* We need at least one AS for the MCU and one for the GPU contexts. */
3889 	gpu_as_count = hweight32(ptdev->gpu_info.as_present & GENMASK(31, 1));
3890 	if (!gpu_as_count) {
3891 		drm_err(&ptdev->base, "Not enough AS (%d, expected at least 2)",
3892 			gpu_as_count + 1);
3893 		return -EINVAL;
3894 	}
3895 
3896 	sched->ptdev = ptdev;
3897 	sched->sb_slot_count = CS_FEATURES_SCOREBOARDS(cs_iface->control->features);
3898 	sched->csg_slot_count = num_groups;
3899 	sched->cs_slot_count = csg_iface->control->stream_num;
3900 	sched->as_slot_count = gpu_as_count;
3901 	ptdev->csif_info.csg_slot_count = sched->csg_slot_count;
3902 	ptdev->csif_info.cs_slot_count = sched->cs_slot_count;
3903 	ptdev->csif_info.scoreboard_slot_count = sched->sb_slot_count;
3904 
3905 	sched->last_tick = 0;
3906 	sched->resched_target = U64_MAX;
3907 	sched->tick_period = msecs_to_jiffies(10);
3908 	INIT_DELAYED_WORK(&sched->tick_work, tick_work);
3909 	INIT_WORK(&sched->sync_upd_work, sync_upd_work);
3910 	INIT_WORK(&sched->fw_events_work, process_fw_events_work);
3911 
3912 	ret = drmm_mutex_init(&ptdev->base, &sched->lock);
3913 	if (ret)
3914 		return ret;
3915 
3916 	for (prio = PANTHOR_CSG_PRIORITY_COUNT - 1; prio >= 0; prio--) {
3917 		INIT_LIST_HEAD(&sched->groups.runnable[prio]);
3918 		INIT_LIST_HEAD(&sched->groups.idle[prio]);
3919 	}
3920 	INIT_LIST_HEAD(&sched->groups.waiting);
3921 
3922 	ret = drmm_mutex_init(&ptdev->base, &sched->reset.lock);
3923 	if (ret)
3924 		return ret;
3925 
3926 	INIT_LIST_HEAD(&sched->reset.stopped_groups);
3927 
3928 	/* sched->heap_alloc_wq will be used for heap chunk allocation on
3929 	 * tiler OOM events, which means we can't use the same workqueue for
3930 	 * the scheduler because works queued by the scheduler are in
3931 	 * the dma-signalling path. Allocate a dedicated heap_alloc_wq to
3932 	 * work around this limitation.
3933 	 *
3934 	 * FIXME: Ultimately, what we need is a failable/non-blocking GEM
3935 	 * allocation path that we can call when a heap OOM is reported. The
3936 	 * FW is smart enough to fall back on other methods if the kernel can't
3937 	 * allocate memory, and fail the tiling job if none of these
3938 	 * countermeasures worked.
3939 	 *
3940 	 * Set WQ_MEM_RECLAIM on sched->wq to unblock the situation when the
3941 	 * system is running out of memory.
3942 	 */
3943 	sched->heap_alloc_wq = alloc_workqueue("panthor-heap-alloc", WQ_UNBOUND, 0);
3944 	sched->wq = alloc_workqueue("panthor-csf-sched", WQ_MEM_RECLAIM | WQ_UNBOUND, 0);
3945 	if (!sched->wq || !sched->heap_alloc_wq) {
3946 		panthor_sched_fini(&ptdev->base, sched);
3947 		drm_err(&ptdev->base, "Failed to allocate the workqueues");
3948 		return -ENOMEM;
3949 	}
3950 
3951 	ret = drmm_add_action_or_reset(&ptdev->base, panthor_sched_fini, sched);
3952 	if (ret)
3953 		return ret;
3954 
3955 	ptdev->scheduler = sched;
3956 	return 0;
3957 }
3958