1 // SPDX-License-Identifier: MIT
2 /*
3  * Copyright © 2024 Intel Corporation
4  */
5 
6 #include <linux/scatterlist.h>
7 #include <linux/mmu_notifier.h>
8 #include <linux/dma-mapping.h>
9 #include <linux/memremap.h>
10 #include <linux/swap.h>
11 #include <linux/hmm.h>
12 #include <linux/mm.h>
13 #include "xe_hmm.h"
14 #include "xe_vm.h"
15 #include "xe_bo.h"
16 
xe_npages_in_range(unsigned long start,unsigned long end)17 static u64 xe_npages_in_range(unsigned long start, unsigned long end)
18 {
19 	return (end - start) >> PAGE_SHIFT;
20 }
21 
xe_alloc_sg(struct xe_device * xe,struct sg_table * st,struct hmm_range * range,struct rw_semaphore * notifier_sem)22 static int xe_alloc_sg(struct xe_device *xe, struct sg_table *st,
23 		       struct hmm_range *range, struct rw_semaphore *notifier_sem)
24 {
25 	unsigned long i, npages, hmm_pfn;
26 	unsigned long num_chunks = 0;
27 	int ret;
28 
29 	/* HMM docs says this is needed. */
30 	ret = down_read_interruptible(notifier_sem);
31 	if (ret)
32 		return ret;
33 
34 	if (mmu_interval_read_retry(range->notifier, range->notifier_seq)) {
35 		up_read(notifier_sem);
36 		return -EAGAIN;
37 	}
38 
39 	npages = xe_npages_in_range(range->start, range->end);
40 	for (i = 0; i < npages;) {
41 		unsigned long len;
42 
43 		hmm_pfn = range->hmm_pfns[i];
44 		xe_assert(xe, hmm_pfn & HMM_PFN_VALID);
45 
46 		len = 1UL << hmm_pfn_to_map_order(hmm_pfn);
47 
48 		/* If order > 0 the page may extend beyond range->start */
49 		len -= (hmm_pfn & ~HMM_PFN_FLAGS) & (len - 1);
50 		i += len;
51 		num_chunks++;
52 	}
53 	up_read(notifier_sem);
54 
55 	return sg_alloc_table(st, num_chunks, GFP_KERNEL);
56 }
57 
58 /**
59  * xe_build_sg() - build a scatter gather table for all the physical pages/pfn
60  * in a hmm_range. dma-map pages if necessary. dma-address is save in sg table
61  * and will be used to program GPU page table later.
62  * @xe: the xe device who will access the dma-address in sg table
63  * @range: the hmm range that we build the sg table from. range->hmm_pfns[]
64  * has the pfn numbers of pages that back up this hmm address range.
65  * @st: pointer to the sg table.
66  * @notifier_sem: The xe notifier lock.
67  * @write: whether we write to this range. This decides dma map direction
68  * for system pages. If write we map it bi-diretional; otherwise
69  * DMA_TO_DEVICE
70  *
71  * All the contiguous pfns will be collapsed into one entry in
72  * the scatter gather table. This is for the purpose of efficiently
73  * programming GPU page table.
74  *
75  * The dma_address in the sg table will later be used by GPU to
76  * access memory. So if the memory is system memory, we need to
77  * do a dma-mapping so it can be accessed by GPU/DMA.
78  *
79  * FIXME: This function currently only support pages in system
80  * memory. If the memory is GPU local memory (of the GPU who
81  * is going to access memory), we need gpu dpa (device physical
82  * address), and there is no need of dma-mapping. This is TBD.
83  *
84  * FIXME: dma-mapping for peer gpu device to access remote gpu's
85  * memory. Add this when you support p2p
86  *
87  * This function allocates the storage of the sg table. It is
88  * caller's responsibility to free it calling sg_free_table.
89  *
90  * Returns 0 if successful; -ENOMEM if fails to allocate memory
91  */
xe_build_sg(struct xe_device * xe,struct hmm_range * range,struct sg_table * st,struct rw_semaphore * notifier_sem,bool write)92 static int xe_build_sg(struct xe_device *xe, struct hmm_range *range,
93 		       struct sg_table *st,
94 		       struct rw_semaphore *notifier_sem,
95 		       bool write)
96 {
97 	unsigned long npages = xe_npages_in_range(range->start, range->end);
98 	struct device *dev = xe->drm.dev;
99 	struct scatterlist *sgl;
100 	struct page *page;
101 	unsigned long i, j;
102 
103 	lockdep_assert_held(notifier_sem);
104 
105 	i = 0;
106 	for_each_sg(st->sgl, sgl, st->nents, j) {
107 		unsigned long hmm_pfn, size;
108 
109 		hmm_pfn = range->hmm_pfns[i];
110 		page = hmm_pfn_to_page(hmm_pfn);
111 		xe_assert(xe, !is_device_private_page(page));
112 
113 		size = 1UL << hmm_pfn_to_map_order(hmm_pfn);
114 		size -= page_to_pfn(page) & (size - 1);
115 		i += size;
116 
117 		if (unlikely(j == st->nents - 1)) {
118 			xe_assert(xe, i >= npages);
119 			if (i > npages)
120 				size -= (i - npages);
121 
122 			sg_mark_end(sgl);
123 		} else {
124 			xe_assert(xe, i < npages);
125 		}
126 
127 		sg_set_page(sgl, page, size << PAGE_SHIFT, 0);
128 	}
129 
130 	return dma_map_sgtable(dev, st, write ? DMA_BIDIRECTIONAL : DMA_TO_DEVICE,
131 			       DMA_ATTR_SKIP_CPU_SYNC | DMA_ATTR_NO_KERNEL_MAPPING);
132 }
133 
xe_hmm_userptr_set_mapped(struct xe_userptr_vma * uvma)134 static void xe_hmm_userptr_set_mapped(struct xe_userptr_vma *uvma)
135 {
136 	struct xe_userptr *userptr = &uvma->userptr;
137 	struct xe_vm *vm = xe_vma_vm(&uvma->vma);
138 
139 	lockdep_assert_held_write(&vm->lock);
140 	lockdep_assert_held(&vm->userptr.notifier_lock);
141 
142 	mutex_lock(&userptr->unmap_mutex);
143 	xe_assert(vm->xe, !userptr->mapped);
144 	userptr->mapped = true;
145 	mutex_unlock(&userptr->unmap_mutex);
146 }
147 
xe_hmm_userptr_unmap(struct xe_userptr_vma * uvma)148 void xe_hmm_userptr_unmap(struct xe_userptr_vma *uvma)
149 {
150 	struct xe_userptr *userptr = &uvma->userptr;
151 	struct xe_vma *vma = &uvma->vma;
152 	bool write = !xe_vma_read_only(vma);
153 	struct xe_vm *vm = xe_vma_vm(vma);
154 	struct xe_device *xe = vm->xe;
155 
156 	if (!lockdep_is_held_type(&vm->userptr.notifier_lock, 0) &&
157 	    !lockdep_is_held_type(&vm->lock, 0) &&
158 	    !(vma->gpuva.flags & XE_VMA_DESTROYED)) {
159 		/* Don't unmap in exec critical section. */
160 		xe_vm_assert_held(vm);
161 		/* Don't unmap while mapping the sg. */
162 		lockdep_assert_held(&vm->lock);
163 	}
164 
165 	mutex_lock(&userptr->unmap_mutex);
166 	if (userptr->sg && userptr->mapped)
167 		dma_unmap_sgtable(xe->drm.dev, userptr->sg,
168 				  write ? DMA_BIDIRECTIONAL : DMA_TO_DEVICE, 0);
169 	userptr->mapped = false;
170 	mutex_unlock(&userptr->unmap_mutex);
171 }
172 
173 /**
174  * xe_hmm_userptr_free_sg() - Free the scatter gather table of userptr
175  * @uvma: the userptr vma which hold the scatter gather table
176  *
177  * With function xe_userptr_populate_range, we allocate storage of
178  * the userptr sg table. This is a helper function to free this
179  * sg table, and dma unmap the address in the table.
180  */
xe_hmm_userptr_free_sg(struct xe_userptr_vma * uvma)181 void xe_hmm_userptr_free_sg(struct xe_userptr_vma *uvma)
182 {
183 	struct xe_userptr *userptr = &uvma->userptr;
184 
185 	xe_assert(xe_vma_vm(&uvma->vma)->xe, userptr->sg);
186 	xe_hmm_userptr_unmap(uvma);
187 	sg_free_table(userptr->sg);
188 	userptr->sg = NULL;
189 }
190 
191 /**
192  * xe_hmm_userptr_populate_range() - Populate physical pages of a virtual
193  * address range
194  *
195  * @uvma: userptr vma which has information of the range to populate.
196  * @is_mm_mmap_locked: True if mmap_read_lock is already acquired by caller.
197  *
198  * This function populate the physical pages of a virtual
199  * address range. The populated physical pages is saved in
200  * userptr's sg table. It is similar to get_user_pages but call
201  * hmm_range_fault.
202  *
203  * This function also read mmu notifier sequence # (
204  * mmu_interval_read_begin), for the purpose of later
205  * comparison (through mmu_interval_read_retry).
206  *
207  * This must be called with mmap read or write lock held.
208  *
209  * This function allocates the storage of the userptr sg table.
210  * It is caller's responsibility to free it calling sg_free_table.
211  *
212  * returns: 0 for success; negative error no on failure
213  */
xe_hmm_userptr_populate_range(struct xe_userptr_vma * uvma,bool is_mm_mmap_locked)214 int xe_hmm_userptr_populate_range(struct xe_userptr_vma *uvma,
215 				  bool is_mm_mmap_locked)
216 {
217 	unsigned long timeout =
218 		jiffies + msecs_to_jiffies(HMM_RANGE_DEFAULT_TIMEOUT);
219 	unsigned long *pfns;
220 	struct xe_userptr *userptr;
221 	struct xe_vma *vma = &uvma->vma;
222 	u64 userptr_start = xe_vma_userptr(vma);
223 	u64 userptr_end = userptr_start + xe_vma_size(vma);
224 	struct xe_vm *vm = xe_vma_vm(vma);
225 	struct hmm_range hmm_range = {
226 		.pfn_flags_mask = 0, /* ignore pfns */
227 		.default_flags = HMM_PFN_REQ_FAULT,
228 		.start = userptr_start,
229 		.end = userptr_end,
230 		.notifier = &uvma->userptr.notifier,
231 		.dev_private_owner = vm->xe,
232 	};
233 	bool write = !xe_vma_read_only(vma);
234 	unsigned long notifier_seq;
235 	u64 npages;
236 	int ret;
237 
238 	userptr = &uvma->userptr;
239 
240 	if (is_mm_mmap_locked)
241 		mmap_assert_locked(userptr->notifier.mm);
242 
243 	if (vma->gpuva.flags & XE_VMA_DESTROYED)
244 		return 0;
245 
246 	notifier_seq = mmu_interval_read_begin(&userptr->notifier);
247 	if (notifier_seq == userptr->notifier_seq)
248 		return 0;
249 
250 	if (userptr->sg)
251 		xe_hmm_userptr_free_sg(uvma);
252 
253 	npages = xe_npages_in_range(userptr_start, userptr_end);
254 	pfns = kvmalloc_array(npages, sizeof(*pfns), GFP_KERNEL);
255 	if (unlikely(!pfns))
256 		return -ENOMEM;
257 
258 	if (write)
259 		hmm_range.default_flags |= HMM_PFN_REQ_WRITE;
260 
261 	if (!mmget_not_zero(userptr->notifier.mm)) {
262 		ret = -EFAULT;
263 		goto free_pfns;
264 	}
265 
266 	hmm_range.hmm_pfns = pfns;
267 
268 	while (true) {
269 		hmm_range.notifier_seq = mmu_interval_read_begin(&userptr->notifier);
270 
271 		if (!is_mm_mmap_locked)
272 			mmap_read_lock(userptr->notifier.mm);
273 
274 		ret = hmm_range_fault(&hmm_range);
275 
276 		if (!is_mm_mmap_locked)
277 			mmap_read_unlock(userptr->notifier.mm);
278 
279 		if (ret == -EBUSY) {
280 			if (time_after(jiffies, timeout))
281 				break;
282 
283 			continue;
284 		}
285 		break;
286 	}
287 
288 	mmput(userptr->notifier.mm);
289 
290 	if (ret)
291 		goto free_pfns;
292 
293 	ret = xe_alloc_sg(vm->xe, &userptr->sgt, &hmm_range, &vm->userptr.notifier_lock);
294 	if (ret)
295 		goto free_pfns;
296 
297 	ret = down_read_interruptible(&vm->userptr.notifier_lock);
298 	if (ret)
299 		goto free_st;
300 
301 	if (mmu_interval_read_retry(hmm_range.notifier, hmm_range.notifier_seq)) {
302 		ret = -EAGAIN;
303 		goto out_unlock;
304 	}
305 
306 	ret = xe_build_sg(vm->xe, &hmm_range, &userptr->sgt,
307 			  &vm->userptr.notifier_lock, write);
308 	if (ret)
309 		goto out_unlock;
310 
311 	userptr->sg = &userptr->sgt;
312 	xe_hmm_userptr_set_mapped(uvma);
313 	userptr->notifier_seq = hmm_range.notifier_seq;
314 	up_read(&vm->userptr.notifier_lock);
315 	kvfree(pfns);
316 	return 0;
317 
318 out_unlock:
319 	up_read(&vm->userptr.notifier_lock);
320 free_st:
321 	sg_free_table(&userptr->sgt);
322 free_pfns:
323 	kvfree(pfns);
324 	return ret;
325 }
326