1 // SPDX-License-Identifier: GPL-2.0
2 
3 /*
4  * Architecture neutral utility routines for interacting with
5  * Hyper-V. This file is specifically for code that must be
6  * built-in to the kernel image when CONFIG_HYPERV is set
7  * (vs. being in a module) because it is called from architecture
8  * specific code under arch/.
9  *
10  * Copyright (C) 2021, Microsoft, Inc.
11  *
12  * Author : Michael Kelley <[email protected]>
13  */
14 
15 #include <linux/types.h>
16 #include <linux/acpi.h>
17 #include <linux/export.h>
18 #include <linux/bitfield.h>
19 #include <linux/cpumask.h>
20 #include <linux/sched/task_stack.h>
21 #include <linux/panic_notifier.h>
22 #include <linux/ptrace.h>
23 #include <linux/random.h>
24 #include <linux/efi.h>
25 #include <linux/kdebug.h>
26 #include <linux/kmsg_dump.h>
27 #include <linux/sizes.h>
28 #include <linux/slab.h>
29 #include <linux/dma-map-ops.h>
30 #include <linux/set_memory.h>
31 #include <hyperv/hvhdk.h>
32 #include <asm/mshyperv.h>
33 
34 /*
35  * hv_root_partition, ms_hyperv and hv_nested are defined here with other
36  * Hyper-V specific globals so they are shared across all architectures and are
37  * built only when CONFIG_HYPERV is defined.  But on x86,
38  * ms_hyperv_init_platform() is built even when CONFIG_HYPERV is not
39  * defined, and it uses these three variables.  So mark them as __weak
40  * here, allowing for an overriding definition in the module containing
41  * ms_hyperv_init_platform().
42  */
43 bool __weak hv_root_partition;
44 EXPORT_SYMBOL_GPL(hv_root_partition);
45 
46 bool __weak hv_nested;
47 EXPORT_SYMBOL_GPL(hv_nested);
48 
49 struct ms_hyperv_info __weak ms_hyperv;
50 EXPORT_SYMBOL_GPL(ms_hyperv);
51 
52 u32 *hv_vp_index;
53 EXPORT_SYMBOL_GPL(hv_vp_index);
54 
55 u32 hv_max_vp_index;
56 EXPORT_SYMBOL_GPL(hv_max_vp_index);
57 
58 void * __percpu *hyperv_pcpu_input_arg;
59 EXPORT_SYMBOL_GPL(hyperv_pcpu_input_arg);
60 
61 void * __percpu *hyperv_pcpu_output_arg;
62 EXPORT_SYMBOL_GPL(hyperv_pcpu_output_arg);
63 
64 static void hv_kmsg_dump_unregister(void);
65 
66 static struct ctl_table_header *hv_ctl_table_hdr;
67 
68 /*
69  * Hyper-V specific initialization and shutdown code that is
70  * common across all architectures.  Called from architecture
71  * specific initialization functions.
72  */
73 
hv_common_free(void)74 void __init hv_common_free(void)
75 {
76 	unregister_sysctl_table(hv_ctl_table_hdr);
77 	hv_ctl_table_hdr = NULL;
78 
79 	if (ms_hyperv.misc_features & HV_FEATURE_GUEST_CRASH_MSR_AVAILABLE)
80 		hv_kmsg_dump_unregister();
81 
82 	kfree(hv_vp_index);
83 	hv_vp_index = NULL;
84 
85 	free_percpu(hyperv_pcpu_output_arg);
86 	hyperv_pcpu_output_arg = NULL;
87 
88 	free_percpu(hyperv_pcpu_input_arg);
89 	hyperv_pcpu_input_arg = NULL;
90 }
91 
92 /*
93  * Functions for allocating and freeing memory with size and
94  * alignment HV_HYP_PAGE_SIZE. These functions are needed because
95  * the guest page size may not be the same as the Hyper-V page
96  * size. We depend upon kmalloc() aligning power-of-two size
97  * allocations to the allocation size boundary, so that the
98  * allocated memory appears to Hyper-V as a page of the size
99  * it expects.
100  */
101 
hv_alloc_hyperv_page(void)102 void *hv_alloc_hyperv_page(void)
103 {
104 	BUILD_BUG_ON(PAGE_SIZE <  HV_HYP_PAGE_SIZE);
105 
106 	if (PAGE_SIZE == HV_HYP_PAGE_SIZE)
107 		return (void *)__get_free_page(GFP_KERNEL);
108 	else
109 		return kmalloc(HV_HYP_PAGE_SIZE, GFP_KERNEL);
110 }
111 EXPORT_SYMBOL_GPL(hv_alloc_hyperv_page);
112 
hv_alloc_hyperv_zeroed_page(void)113 void *hv_alloc_hyperv_zeroed_page(void)
114 {
115 	if (PAGE_SIZE == HV_HYP_PAGE_SIZE)
116 		return (void *)__get_free_page(GFP_KERNEL | __GFP_ZERO);
117 	else
118 		return kzalloc(HV_HYP_PAGE_SIZE, GFP_KERNEL);
119 }
120 EXPORT_SYMBOL_GPL(hv_alloc_hyperv_zeroed_page);
121 
hv_free_hyperv_page(void * addr)122 void hv_free_hyperv_page(void *addr)
123 {
124 	if (PAGE_SIZE == HV_HYP_PAGE_SIZE)
125 		free_page((unsigned long)addr);
126 	else
127 		kfree(addr);
128 }
129 EXPORT_SYMBOL_GPL(hv_free_hyperv_page);
130 
131 static void *hv_panic_page;
132 
133 /*
134  * Boolean to control whether to report panic messages over Hyper-V.
135  *
136  * It can be set via /proc/sys/kernel/hyperv_record_panic_msg
137  */
138 static int sysctl_record_panic_msg = 1;
139 
140 /*
141  * sysctl option to allow the user to control whether kmsg data should be
142  * reported to Hyper-V on panic.
143  */
144 static const struct ctl_table hv_ctl_table[] = {
145 	{
146 		.procname	= "hyperv_record_panic_msg",
147 		.data		= &sysctl_record_panic_msg,
148 		.maxlen		= sizeof(int),
149 		.mode		= 0644,
150 		.proc_handler	= proc_dointvec_minmax,
151 		.extra1		= SYSCTL_ZERO,
152 		.extra2		= SYSCTL_ONE
153 	},
154 };
155 
156 static int hv_die_panic_notify_crash(struct notifier_block *self,
157 				     unsigned long val, void *args);
158 
159 static struct notifier_block hyperv_die_report_block = {
160 	.notifier_call = hv_die_panic_notify_crash,
161 };
162 
163 static struct notifier_block hyperv_panic_report_block = {
164 	.notifier_call = hv_die_panic_notify_crash,
165 };
166 
167 /*
168  * The following callback works both as die and panic notifier; its
169  * goal is to provide panic information to the hypervisor unless the
170  * kmsg dumper is used [see hv_kmsg_dump()], which provides more
171  * information but isn't always available.
172  *
173  * Notice that both the panic/die report notifiers are registered only
174  * if we have the capability HV_FEATURE_GUEST_CRASH_MSR_AVAILABLE set.
175  */
hv_die_panic_notify_crash(struct notifier_block * self,unsigned long val,void * args)176 static int hv_die_panic_notify_crash(struct notifier_block *self,
177 				     unsigned long val, void *args)
178 {
179 	struct pt_regs *regs;
180 	bool is_die;
181 
182 	/* Don't notify Hyper-V unless we have a die oops event or panic. */
183 	if (self == &hyperv_panic_report_block) {
184 		is_die = false;
185 		regs = current_pt_regs();
186 	} else { /* die event */
187 		if (val != DIE_OOPS)
188 			return NOTIFY_DONE;
189 
190 		is_die = true;
191 		regs = ((struct die_args *)args)->regs;
192 	}
193 
194 	/*
195 	 * Hyper-V should be notified only once about a panic/die. If we will
196 	 * be calling hv_kmsg_dump() later with kmsg data, don't do the
197 	 * notification here.
198 	 */
199 	if (!sysctl_record_panic_msg || !hv_panic_page)
200 		hyperv_report_panic(regs, val, is_die);
201 
202 	return NOTIFY_DONE;
203 }
204 
205 /*
206  * Callback from kmsg_dump. Grab as much as possible from the end of the kmsg
207  * buffer and call into Hyper-V to transfer the data.
208  */
hv_kmsg_dump(struct kmsg_dumper * dumper,struct kmsg_dump_detail * detail)209 static void hv_kmsg_dump(struct kmsg_dumper *dumper,
210 			 struct kmsg_dump_detail *detail)
211 {
212 	struct kmsg_dump_iter iter;
213 	size_t bytes_written;
214 
215 	/* We are only interested in panics. */
216 	if (detail->reason != KMSG_DUMP_PANIC || !sysctl_record_panic_msg)
217 		return;
218 
219 	/*
220 	 * Write dump contents to the page. No need to synchronize; panic should
221 	 * be single-threaded.
222 	 */
223 	kmsg_dump_rewind(&iter);
224 	kmsg_dump_get_buffer(&iter, false, hv_panic_page, HV_HYP_PAGE_SIZE,
225 			     &bytes_written);
226 	if (!bytes_written)
227 		return;
228 	/*
229 	 * P3 to contain the physical address of the panic page & P4 to
230 	 * contain the size of the panic data in that page. Rest of the
231 	 * registers are no-op when the NOTIFY_MSG flag is set.
232 	 */
233 	hv_set_msr(HV_MSR_CRASH_P0, 0);
234 	hv_set_msr(HV_MSR_CRASH_P1, 0);
235 	hv_set_msr(HV_MSR_CRASH_P2, 0);
236 	hv_set_msr(HV_MSR_CRASH_P3, virt_to_phys(hv_panic_page));
237 	hv_set_msr(HV_MSR_CRASH_P4, bytes_written);
238 
239 	/*
240 	 * Let Hyper-V know there is crash data available along with
241 	 * the panic message.
242 	 */
243 	hv_set_msr(HV_MSR_CRASH_CTL,
244 		   (HV_CRASH_CTL_CRASH_NOTIFY |
245 		    HV_CRASH_CTL_CRASH_NOTIFY_MSG));
246 }
247 
248 static struct kmsg_dumper hv_kmsg_dumper = {
249 	.dump = hv_kmsg_dump,
250 };
251 
hv_kmsg_dump_unregister(void)252 static void hv_kmsg_dump_unregister(void)
253 {
254 	kmsg_dump_unregister(&hv_kmsg_dumper);
255 	unregister_die_notifier(&hyperv_die_report_block);
256 	atomic_notifier_chain_unregister(&panic_notifier_list,
257 					 &hyperv_panic_report_block);
258 
259 	hv_free_hyperv_page(hv_panic_page);
260 	hv_panic_page = NULL;
261 }
262 
hv_kmsg_dump_register(void)263 static void hv_kmsg_dump_register(void)
264 {
265 	int ret;
266 
267 	hv_panic_page = hv_alloc_hyperv_zeroed_page();
268 	if (!hv_panic_page) {
269 		pr_err("Hyper-V: panic message page memory allocation failed\n");
270 		return;
271 	}
272 
273 	ret = kmsg_dump_register(&hv_kmsg_dumper);
274 	if (ret) {
275 		pr_err("Hyper-V: kmsg dump register error 0x%x\n", ret);
276 		hv_free_hyperv_page(hv_panic_page);
277 		hv_panic_page = NULL;
278 	}
279 }
280 
hv_output_page_exists(void)281 static inline bool hv_output_page_exists(void)
282 {
283 	return hv_root_partition || IS_ENABLED(CONFIG_HYPERV_VTL_MODE);
284 }
285 
hv_common_init(void)286 int __init hv_common_init(void)
287 {
288 	int i;
289 	union hv_hypervisor_version_info version;
290 
291 	/* Get information about the Hyper-V host version */
292 	if (!hv_get_hypervisor_version(&version))
293 		pr_info("Hyper-V: Host Build %d.%d.%d.%d-%d-%d\n",
294 			version.major_version, version.minor_version,
295 			version.build_number, version.service_number,
296 			version.service_pack, version.service_branch);
297 
298 	if (hv_is_isolation_supported())
299 		sysctl_record_panic_msg = 0;
300 
301 	/*
302 	 * Hyper-V expects to get crash register data or kmsg when
303 	 * crash enlightment is available and system crashes. Set
304 	 * crash_kexec_post_notifiers to be true to make sure that
305 	 * calling crash enlightment interface before running kdump
306 	 * kernel.
307 	 */
308 	if (ms_hyperv.misc_features & HV_FEATURE_GUEST_CRASH_MSR_AVAILABLE) {
309 		u64 hyperv_crash_ctl;
310 
311 		crash_kexec_post_notifiers = true;
312 		pr_info("Hyper-V: enabling crash_kexec_post_notifiers\n");
313 
314 		/*
315 		 * Panic message recording (sysctl_record_panic_msg)
316 		 * is enabled by default in non-isolated guests and
317 		 * disabled by default in isolated guests; the panic
318 		 * message recording won't be available in isolated
319 		 * guests should the following registration fail.
320 		 */
321 		hv_ctl_table_hdr = register_sysctl("kernel", hv_ctl_table);
322 		if (!hv_ctl_table_hdr)
323 			pr_err("Hyper-V: sysctl table register error");
324 
325 		/*
326 		 * Register for panic kmsg callback only if the right
327 		 * capability is supported by the hypervisor.
328 		 */
329 		hyperv_crash_ctl = hv_get_msr(HV_MSR_CRASH_CTL);
330 		if (hyperv_crash_ctl & HV_CRASH_CTL_CRASH_NOTIFY_MSG)
331 			hv_kmsg_dump_register();
332 
333 		register_die_notifier(&hyperv_die_report_block);
334 		atomic_notifier_chain_register(&panic_notifier_list,
335 					       &hyperv_panic_report_block);
336 	}
337 
338 	/*
339 	 * Allocate the per-CPU state for the hypercall input arg.
340 	 * If this allocation fails, we will not be able to setup
341 	 * (per-CPU) hypercall input page and thus this failure is
342 	 * fatal on Hyper-V.
343 	 */
344 	hyperv_pcpu_input_arg = alloc_percpu(void  *);
345 	BUG_ON(!hyperv_pcpu_input_arg);
346 
347 	/* Allocate the per-CPU state for output arg for root */
348 	if (hv_output_page_exists()) {
349 		hyperv_pcpu_output_arg = alloc_percpu(void *);
350 		BUG_ON(!hyperv_pcpu_output_arg);
351 	}
352 
353 	hv_vp_index = kmalloc_array(nr_cpu_ids, sizeof(*hv_vp_index),
354 				    GFP_KERNEL);
355 	if (!hv_vp_index) {
356 		hv_common_free();
357 		return -ENOMEM;
358 	}
359 
360 	for (i = 0; i < nr_cpu_ids; i++)
361 		hv_vp_index[i] = VP_INVAL;
362 
363 	return 0;
364 }
365 
ms_hyperv_late_init(void)366 void __init ms_hyperv_late_init(void)
367 {
368 	struct acpi_table_header *header;
369 	acpi_status status;
370 	u8 *randomdata;
371 	u32 length, i;
372 
373 	/*
374 	 * Seed the Linux random number generator with entropy provided by
375 	 * the Hyper-V host in ACPI table OEM0.
376 	 */
377 	if (!IS_ENABLED(CONFIG_ACPI))
378 		return;
379 
380 	status = acpi_get_table("OEM0", 0, &header);
381 	if (ACPI_FAILURE(status) || !header)
382 		return;
383 
384 	/*
385 	 * Since the "OEM0" table name is for OEM specific usage, verify
386 	 * that what we're seeing purports to be from Microsoft.
387 	 */
388 	if (strncmp(header->oem_table_id, "MICROSFT", 8))
389 		goto error;
390 
391 	/*
392 	 * Ensure the length is reasonable. Requiring at least 8 bytes and
393 	 * no more than 4K bytes is somewhat arbitrary and just protects
394 	 * against a malformed table. Hyper-V currently provides 64 bytes,
395 	 * but allow for a change in a later version.
396 	 */
397 	if (header->length < sizeof(*header) + 8 ||
398 	    header->length > sizeof(*header) + SZ_4K)
399 		goto error;
400 
401 	length = header->length - sizeof(*header);
402 	randomdata = (u8 *)(header + 1);
403 
404 	pr_debug("Hyper-V: Seeding rng with %d random bytes from ACPI table OEM0\n",
405 			length);
406 
407 	add_bootloader_randomness(randomdata, length);
408 
409 	/*
410 	 * To prevent the seed data from being visible in /sys/firmware/acpi,
411 	 * zero out the random data in the ACPI table and fixup the checksum.
412 	 * The zero'ing is done out of an abundance of caution in avoiding
413 	 * potential security risks to the rng. Similarly, reset the table
414 	 * length to just the header size so that a subsequent kexec doesn't
415 	 * try to use the zero'ed out random data.
416 	 */
417 	for (i = 0; i < length; i++) {
418 		header->checksum += randomdata[i];
419 		randomdata[i] = 0;
420 	}
421 
422 	for (i = 0; i < sizeof(header->length); i++)
423 		header->checksum += ((u8 *)&header->length)[i];
424 	header->length = sizeof(*header);
425 	for (i = 0; i < sizeof(header->length); i++)
426 		header->checksum -= ((u8 *)&header->length)[i];
427 
428 error:
429 	acpi_put_table(header);
430 }
431 
432 /*
433  * Hyper-V specific initialization and die code for
434  * individual CPUs that is common across all architectures.
435  * Called by the CPU hotplug mechanism.
436  */
437 
hv_common_cpu_init(unsigned int cpu)438 int hv_common_cpu_init(unsigned int cpu)
439 {
440 	void **inputarg, **outputarg;
441 	u64 msr_vp_index;
442 	gfp_t flags;
443 	const int pgcount = hv_output_page_exists() ? 2 : 1;
444 	void *mem;
445 	int ret;
446 
447 	/* hv_cpu_init() can be called with IRQs disabled from hv_resume() */
448 	flags = irqs_disabled() ? GFP_ATOMIC : GFP_KERNEL;
449 
450 	inputarg = (void **)this_cpu_ptr(hyperv_pcpu_input_arg);
451 
452 	/*
453 	 * hyperv_pcpu_input_arg and hyperv_pcpu_output_arg memory is already
454 	 * allocated if this CPU was previously online and then taken offline
455 	 */
456 	if (!*inputarg) {
457 		mem = kmalloc(pgcount * HV_HYP_PAGE_SIZE, flags);
458 		if (!mem)
459 			return -ENOMEM;
460 
461 		if (hv_output_page_exists()) {
462 			outputarg = (void **)this_cpu_ptr(hyperv_pcpu_output_arg);
463 			*outputarg = (char *)mem + HV_HYP_PAGE_SIZE;
464 		}
465 
466 		if (!ms_hyperv.paravisor_present &&
467 		    (hv_isolation_type_snp() || hv_isolation_type_tdx())) {
468 			ret = set_memory_decrypted((unsigned long)mem, pgcount);
469 			if (ret) {
470 				/* It may be unsafe to free 'mem' */
471 				return ret;
472 			}
473 
474 			memset(mem, 0x00, pgcount * HV_HYP_PAGE_SIZE);
475 		}
476 
477 		/*
478 		 * In a fully enlightened TDX/SNP VM with more than 64 VPs, if
479 		 * hyperv_pcpu_input_arg is not NULL, set_memory_decrypted() ->
480 		 * ... -> cpa_flush()-> ... -> __send_ipi_mask_ex() tries to
481 		 * use hyperv_pcpu_input_arg as the hypercall input page, which
482 		 * must be a decrypted page in such a VM, but the page is still
483 		 * encrypted before set_memory_decrypted() returns. Fix this by
484 		 * setting *inputarg after the above set_memory_decrypted(): if
485 		 * hyperv_pcpu_input_arg is NULL, __send_ipi_mask_ex() returns
486 		 * HV_STATUS_INVALID_PARAMETER immediately, and the function
487 		 * hv_send_ipi_mask() falls back to orig_apic.send_IPI_mask(),
488 		 * which may be slightly slower than the hypercall, but still
489 		 * works correctly in such a VM.
490 		 */
491 		*inputarg = mem;
492 	}
493 
494 	msr_vp_index = hv_get_msr(HV_MSR_VP_INDEX);
495 
496 	hv_vp_index[cpu] = msr_vp_index;
497 
498 	if (msr_vp_index > hv_max_vp_index)
499 		hv_max_vp_index = msr_vp_index;
500 
501 	return 0;
502 }
503 
hv_common_cpu_die(unsigned int cpu)504 int hv_common_cpu_die(unsigned int cpu)
505 {
506 	/*
507 	 * The hyperv_pcpu_input_arg and hyperv_pcpu_output_arg memory
508 	 * is not freed when the CPU goes offline as the hyperv_pcpu_input_arg
509 	 * may be used by the Hyper-V vPCI driver in reassigning interrupts
510 	 * as part of the offlining process.  The interrupt reassignment
511 	 * happens *after* the CPUHP_AP_HYPERV_ONLINE state has run and
512 	 * called this function.
513 	 *
514 	 * If a previously offlined CPU is brought back online again, the
515 	 * originally allocated memory is reused in hv_common_cpu_init().
516 	 */
517 
518 	return 0;
519 }
520 
521 /* Bit mask of the extended capability to query: see HV_EXT_CAPABILITY_xxx */
hv_query_ext_cap(u64 cap_query)522 bool hv_query_ext_cap(u64 cap_query)
523 {
524 	/*
525 	 * The address of the 'hv_extended_cap' variable will be used as an
526 	 * output parameter to the hypercall below and so it should be
527 	 * compatible with 'virt_to_phys'. Which means, it's address should be
528 	 * directly mapped. Use 'static' to keep it compatible; stack variables
529 	 * can be virtually mapped, making them incompatible with
530 	 * 'virt_to_phys'.
531 	 * Hypercall input/output addresses should also be 8-byte aligned.
532 	 */
533 	static u64 hv_extended_cap __aligned(8);
534 	static bool hv_extended_cap_queried;
535 	u64 status;
536 
537 	/*
538 	 * Querying extended capabilities is an extended hypercall. Check if the
539 	 * partition supports extended hypercall, first.
540 	 */
541 	if (!(ms_hyperv.priv_high & HV_ENABLE_EXTENDED_HYPERCALLS))
542 		return false;
543 
544 	/* Extended capabilities do not change at runtime. */
545 	if (hv_extended_cap_queried)
546 		return hv_extended_cap & cap_query;
547 
548 	status = hv_do_hypercall(HV_EXT_CALL_QUERY_CAPABILITIES, NULL,
549 				 &hv_extended_cap);
550 
551 	/*
552 	 * The query extended capabilities hypercall should not fail under
553 	 * any normal circumstances. Avoid repeatedly making the hypercall, on
554 	 * error.
555 	 */
556 	hv_extended_cap_queried = true;
557 	if (!hv_result_success(status)) {
558 		pr_err("Hyper-V: Extended query capabilities hypercall failed 0x%llx\n",
559 		       status);
560 		return false;
561 	}
562 
563 	return hv_extended_cap & cap_query;
564 }
565 EXPORT_SYMBOL_GPL(hv_query_ext_cap);
566 
hv_setup_dma_ops(struct device * dev,bool coherent)567 void hv_setup_dma_ops(struct device *dev, bool coherent)
568 {
569 	arch_setup_dma_ops(dev, coherent);
570 }
571 EXPORT_SYMBOL_GPL(hv_setup_dma_ops);
572 
hv_is_hibernation_supported(void)573 bool hv_is_hibernation_supported(void)
574 {
575 	return !hv_root_partition && acpi_sleep_state_supported(ACPI_STATE_S4);
576 }
577 EXPORT_SYMBOL_GPL(hv_is_hibernation_supported);
578 
579 /*
580  * Default function to read the Hyper-V reference counter, independent
581  * of whether Hyper-V enlightened clocks/timers are being used. But on
582  * architectures where it is used, Hyper-V enlightenment code in
583  * hyperv_timer.c may override this function.
584  */
__hv_read_ref_counter(void)585 static u64 __hv_read_ref_counter(void)
586 {
587 	return hv_get_msr(HV_MSR_TIME_REF_COUNT);
588 }
589 
590 u64 (*hv_read_reference_counter)(void) = __hv_read_ref_counter;
591 EXPORT_SYMBOL_GPL(hv_read_reference_counter);
592 
593 /* These __weak functions provide default "no-op" behavior and
594  * may be overridden by architecture specific versions. Architectures
595  * for which the default "no-op" behavior is sufficient can leave
596  * them unimplemented and not be cluttered with a bunch of stub
597  * functions in arch-specific code.
598  */
599 
hv_is_isolation_supported(void)600 bool __weak hv_is_isolation_supported(void)
601 {
602 	return false;
603 }
604 EXPORT_SYMBOL_GPL(hv_is_isolation_supported);
605 
hv_isolation_type_snp(void)606 bool __weak hv_isolation_type_snp(void)
607 {
608 	return false;
609 }
610 EXPORT_SYMBOL_GPL(hv_isolation_type_snp);
611 
hv_isolation_type_tdx(void)612 bool __weak hv_isolation_type_tdx(void)
613 {
614 	return false;
615 }
616 EXPORT_SYMBOL_GPL(hv_isolation_type_tdx);
617 
hv_setup_vmbus_handler(void (* handler)(void))618 void __weak hv_setup_vmbus_handler(void (*handler)(void))
619 {
620 }
621 EXPORT_SYMBOL_GPL(hv_setup_vmbus_handler);
622 
hv_remove_vmbus_handler(void)623 void __weak hv_remove_vmbus_handler(void)
624 {
625 }
626 EXPORT_SYMBOL_GPL(hv_remove_vmbus_handler);
627 
hv_setup_kexec_handler(void (* handler)(void))628 void __weak hv_setup_kexec_handler(void (*handler)(void))
629 {
630 }
631 EXPORT_SYMBOL_GPL(hv_setup_kexec_handler);
632 
hv_remove_kexec_handler(void)633 void __weak hv_remove_kexec_handler(void)
634 {
635 }
636 EXPORT_SYMBOL_GPL(hv_remove_kexec_handler);
637 
hv_setup_crash_handler(void (* handler)(struct pt_regs * regs))638 void __weak hv_setup_crash_handler(void (*handler)(struct pt_regs *regs))
639 {
640 }
641 EXPORT_SYMBOL_GPL(hv_setup_crash_handler);
642 
hv_remove_crash_handler(void)643 void __weak hv_remove_crash_handler(void)
644 {
645 }
646 EXPORT_SYMBOL_GPL(hv_remove_crash_handler);
647 
hyperv_cleanup(void)648 void __weak hyperv_cleanup(void)
649 {
650 }
651 EXPORT_SYMBOL_GPL(hyperv_cleanup);
652 
hv_ghcb_hypercall(u64 control,void * input,void * output,u32 input_size)653 u64 __weak hv_ghcb_hypercall(u64 control, void *input, void *output, u32 input_size)
654 {
655 	return HV_STATUS_INVALID_PARAMETER;
656 }
657 EXPORT_SYMBOL_GPL(hv_ghcb_hypercall);
658 
hv_tdx_hypercall(u64 control,u64 param1,u64 param2)659 u64 __weak hv_tdx_hypercall(u64 control, u64 param1, u64 param2)
660 {
661 	return HV_STATUS_INVALID_PARAMETER;
662 }
663 EXPORT_SYMBOL_GPL(hv_tdx_hypercall);
664