1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * lm75.c - Part of lm_sensors, Linux kernel modules for hardware
4 * monitoring
5 * Copyright (c) 1998, 1999 Frodo Looijaard <[email protected]>
6 */
7
8 #include <linux/module.h>
9 #include <linux/init.h>
10 #include <linux/interrupt.h>
11 #include <linux/slab.h>
12 #include <linux/jiffies.h>
13 #include <linux/i2c.h>
14 #include <linux/i3c/device.h>
15 #include <linux/hwmon.h>
16 #include <linux/err.h>
17 #include <linux/of.h>
18 #include <linux/regmap.h>
19 #include <linux/util_macros.h>
20 #include <linux/regulator/consumer.h>
21 #include "lm75.h"
22
23 /*
24 * This driver handles the LM75 and compatible digital temperature sensors.
25 */
26
27 enum lm75_type { /* keep sorted in alphabetical order */
28 adt75,
29 as6200,
30 at30ts74,
31 ds1775,
32 ds75,
33 ds7505,
34 g751,
35 lm75,
36 lm75a,
37 lm75b,
38 max6625,
39 max6626,
40 max31725,
41 mcp980x,
42 p3t1755,
43 pct2075,
44 stds75,
45 stlm75,
46 tcn75,
47 tmp100,
48 tmp101,
49 tmp105,
50 tmp112,
51 tmp175,
52 tmp275,
53 tmp75,
54 tmp75b,
55 tmp75c,
56 tmp1075,
57 };
58
59 /**
60 * struct lm75_params - lm75 configuration parameters.
61 * @config_reg_16bits: Configure register size is 2 bytes.
62 * @set_mask: Bits to set in configuration register when configuring
63 * the chip.
64 * @clr_mask: Bits to clear in configuration register when configuring
65 * the chip.
66 * @default_resolution: Default number of bits to represent the temperature
67 * value.
68 * @resolution_limits: Limit register resolution. Optional. Should be set if
69 * the resolution of limit registers does not match the
70 * resolution of the temperature register.
71 * @resolutions: List of resolutions associated with sample times.
72 * Optional. Should be set if num_sample_times is larger
73 * than 1, and if the resolution changes with sample times.
74 * If set, number of entries must match num_sample_times.
75 * @default_sample_time:Sample time to be set by default.
76 * @num_sample_times: Number of possible sample times to be set. Optional.
77 * Should be set if the number of sample times is larger
78 * than one.
79 * @sample_times: All the possible sample times to be set. Mandatory if
80 * num_sample_times is larger than 1. If set, number of
81 * entries must match num_sample_times.
82 * @alarm: Alarm bit is supported.
83 */
84
85 struct lm75_params {
86 bool config_reg_16bits;
87 u16 set_mask;
88 u16 clr_mask;
89 u8 default_resolution;
90 u8 resolution_limits;
91 const u8 *resolutions;
92 unsigned int default_sample_time;
93 u8 num_sample_times;
94 const unsigned int *sample_times;
95 bool alarm;
96 };
97
98 /* Addresses scanned */
99 static const unsigned short normal_i2c[] = { 0x48, 0x49, 0x4a, 0x4b, 0x4c,
100 0x4d, 0x4e, 0x4f, I2C_CLIENT_END };
101
102 /* The LM75 registers */
103 #define LM75_REG_TEMP 0x00
104 #define LM75_REG_CONF 0x01
105 #define LM75_REG_HYST 0x02
106 #define LM75_REG_MAX 0x03
107 #define PCT2075_REG_IDLE 0x04
108
109 struct lm75_data {
110 struct regmap *regmap;
111 u16 orig_conf;
112 u8 resolution; /* In bits, 9 to 16 */
113 unsigned int sample_time; /* In ms */
114 enum lm75_type kind;
115 const struct lm75_params *params;
116 u8 reg_buf[1];
117 u8 val_buf[3];
118 };
119
120 /*-----------------------------------------------------------------------*/
121
122 static const u8 lm75_sample_set_masks[] = { 0 << 5, 1 << 5, 2 << 5, 3 << 5 };
123
124 #define LM75_SAMPLE_CLEAR_MASK (3 << 5)
125
126 /* The structure below stores the configuration values of the supported devices.
127 * In case of being supported multiple configurations, the default one must
128 * always be the first element of the array
129 */
130 static const struct lm75_params device_params[] = {
131 [adt75] = {
132 .clr_mask = 1 << 5, /* not one-shot mode */
133 .default_resolution = 12,
134 .default_sample_time = MSEC_PER_SEC / 10,
135 },
136 [as6200] = {
137 .config_reg_16bits = true,
138 .set_mask = 0x94C0, /* 8 sample/s, 4 CF, positive polarity */
139 .default_resolution = 12,
140 .default_sample_time = 125,
141 .num_sample_times = 4,
142 .sample_times = (unsigned int []){ 125, 250, 1000, 4000 },
143 .alarm = true,
144 },
145 [at30ts74] = {
146 .set_mask = 3 << 5, /* 12-bit mode*/
147 .default_resolution = 12,
148 .default_sample_time = 200,
149 .num_sample_times = 4,
150 .sample_times = (unsigned int []){ 25, 50, 100, 200 },
151 .resolutions = (u8 []) {9, 10, 11, 12 },
152 },
153 [ds1775] = {
154 .clr_mask = 3 << 5,
155 .set_mask = 2 << 5, /* 11-bit mode */
156 .default_resolution = 11,
157 .default_sample_time = 500,
158 .num_sample_times = 4,
159 .sample_times = (unsigned int []){ 125, 250, 500, 1000 },
160 .resolutions = (u8 []) {9, 10, 11, 12 },
161 },
162 [ds75] = {
163 .clr_mask = 3 << 5,
164 .set_mask = 2 << 5, /* 11-bit mode */
165 .default_resolution = 11,
166 .default_sample_time = 600,
167 .num_sample_times = 4,
168 .sample_times = (unsigned int []){ 150, 300, 600, 1200 },
169 .resolutions = (u8 []) {9, 10, 11, 12 },
170 },
171 [stds75] = {
172 .clr_mask = 3 << 5,
173 .set_mask = 2 << 5, /* 11-bit mode */
174 .default_resolution = 11,
175 .default_sample_time = 600,
176 .num_sample_times = 4,
177 .sample_times = (unsigned int []){ 150, 300, 600, 1200 },
178 .resolutions = (u8 []) {9, 10, 11, 12 },
179 },
180 [stlm75] = {
181 .default_resolution = 9,
182 .default_sample_time = MSEC_PER_SEC / 6,
183 },
184 [ds7505] = {
185 .set_mask = 3 << 5, /* 12-bit mode*/
186 .default_resolution = 12,
187 .default_sample_time = 200,
188 .num_sample_times = 4,
189 .sample_times = (unsigned int []){ 25, 50, 100, 200 },
190 .resolutions = (u8 []) {9, 10, 11, 12 },
191 },
192 [g751] = {
193 .default_resolution = 9,
194 .default_sample_time = MSEC_PER_SEC / 10,
195 },
196 [lm75] = {
197 .default_resolution = 9,
198 .default_sample_time = MSEC_PER_SEC / 10,
199 },
200 [lm75a] = {
201 .default_resolution = 9,
202 .default_sample_time = MSEC_PER_SEC / 10,
203 },
204 [lm75b] = {
205 .default_resolution = 11,
206 .default_sample_time = MSEC_PER_SEC / 10,
207 },
208 [max6625] = {
209 .default_resolution = 9,
210 .default_sample_time = MSEC_PER_SEC / 7,
211 },
212 [max6626] = {
213 .default_resolution = 12,
214 .default_sample_time = MSEC_PER_SEC / 7,
215 .resolution_limits = 9,
216 },
217 [max31725] = {
218 .default_resolution = 16,
219 .default_sample_time = MSEC_PER_SEC / 20,
220 },
221 [tcn75] = {
222 .default_resolution = 9,
223 .default_sample_time = MSEC_PER_SEC / 18,
224 },
225 [p3t1755] = {
226 .clr_mask = 1 << 1 | 1 << 7, /* disable SMBAlert and one-shot */
227 .default_resolution = 12,
228 .default_sample_time = 55,
229 .num_sample_times = 4,
230 .sample_times = (unsigned int []){ 28, 55, 110, 220 },
231 },
232 [pct2075] = {
233 .default_resolution = 11,
234 .default_sample_time = MSEC_PER_SEC / 10,
235 .num_sample_times = 31,
236 .sample_times = (unsigned int []){ 100, 200, 300, 400, 500, 600,
237 700, 800, 900, 1000, 1100, 1200, 1300, 1400, 1500, 1600, 1700,
238 1800, 1900, 2000, 2100, 2200, 2300, 2400, 2500, 2600, 2700,
239 2800, 2900, 3000, 3100 },
240 },
241 [mcp980x] = {
242 .set_mask = 3 << 5, /* 12-bit mode */
243 .clr_mask = 1 << 7, /* not one-shot mode */
244 .default_resolution = 12,
245 .resolution_limits = 9,
246 .default_sample_time = 240,
247 .num_sample_times = 4,
248 .sample_times = (unsigned int []){ 30, 60, 120, 240 },
249 .resolutions = (u8 []) {9, 10, 11, 12 },
250 },
251 [tmp100] = {
252 .set_mask = 3 << 5, /* 12-bit mode */
253 .clr_mask = 1 << 7, /* not one-shot mode */
254 .default_resolution = 12,
255 .default_sample_time = 320,
256 .num_sample_times = 4,
257 .sample_times = (unsigned int []){ 40, 80, 160, 320 },
258 .resolutions = (u8 []) {9, 10, 11, 12 },
259 },
260 [tmp101] = {
261 .set_mask = 3 << 5, /* 12-bit mode */
262 .clr_mask = 1 << 7, /* not one-shot mode */
263 .default_resolution = 12,
264 .default_sample_time = 320,
265 .num_sample_times = 4,
266 .sample_times = (unsigned int []){ 40, 80, 160, 320 },
267 .resolutions = (u8 []) {9, 10, 11, 12 },
268 },
269 [tmp105] = {
270 .set_mask = 3 << 5, /* 12-bit mode */
271 .clr_mask = 1 << 7, /* not one-shot mode*/
272 .default_resolution = 12,
273 .default_sample_time = 220,
274 .num_sample_times = 4,
275 .sample_times = (unsigned int []){ 28, 55, 110, 220 },
276 .resolutions = (u8 []) {9, 10, 11, 12 },
277 },
278 [tmp112] = {
279 .config_reg_16bits = true,
280 .set_mask = 0x60C0, /* 12-bit mode, 8 samples / second */
281 .clr_mask = 1 << 15, /* no one-shot mode*/
282 .default_resolution = 12,
283 .default_sample_time = 125,
284 .num_sample_times = 4,
285 .sample_times = (unsigned int []){ 125, 250, 1000, 4000 },
286 .alarm = true,
287 },
288 [tmp175] = {
289 .set_mask = 3 << 5, /* 12-bit mode */
290 .clr_mask = 1 << 7, /* not one-shot mode*/
291 .default_resolution = 12,
292 .default_sample_time = 220,
293 .num_sample_times = 4,
294 .sample_times = (unsigned int []){ 28, 55, 110, 220 },
295 .resolutions = (u8 []) {9, 10, 11, 12 },
296 },
297 [tmp275] = {
298 .set_mask = 3 << 5, /* 12-bit mode */
299 .clr_mask = 1 << 7, /* not one-shot mode*/
300 .default_resolution = 12,
301 .default_sample_time = 220,
302 .num_sample_times = 4,
303 .sample_times = (unsigned int []){ 28, 55, 110, 220 },
304 .resolutions = (u8 []) {9, 10, 11, 12 },
305 },
306 [tmp75] = {
307 .set_mask = 3 << 5, /* 12-bit mode */
308 .clr_mask = 1 << 7, /* not one-shot mode*/
309 .default_resolution = 12,
310 .default_sample_time = 220,
311 .num_sample_times = 4,
312 .sample_times = (unsigned int []){ 28, 55, 110, 220 },
313 .resolutions = (u8 []) {9, 10, 11, 12 },
314 },
315 [tmp75b] = { /* not one-shot mode, Conversion rate 37Hz */
316 .clr_mask = 1 << 7 | 3 << 5,
317 .default_resolution = 12,
318 .default_sample_time = MSEC_PER_SEC / 37,
319 .sample_times = (unsigned int []){ MSEC_PER_SEC / 37,
320 MSEC_PER_SEC / 18,
321 MSEC_PER_SEC / 9, MSEC_PER_SEC / 4 },
322 .num_sample_times = 4,
323 },
324 [tmp75c] = {
325 .clr_mask = 1 << 5, /*not one-shot mode*/
326 .default_resolution = 12,
327 .default_sample_time = MSEC_PER_SEC / 12,
328 },
329 [tmp1075] = { /* not one-shot mode, 27.5 ms sample rate */
330 .clr_mask = 1 << 5 | 1 << 6 | 1 << 7,
331 .default_resolution = 12,
332 .default_sample_time = 28,
333 .num_sample_times = 4,
334 .sample_times = (unsigned int []){ 28, 55, 110, 220 },
335 }
336 };
337
lm75_reg_to_mc(s16 temp,u8 resolution)338 static inline long lm75_reg_to_mc(s16 temp, u8 resolution)
339 {
340 return ((temp >> (16 - resolution)) * 1000) >> (resolution - 8);
341 }
342
lm75_write_config(struct lm75_data * data,u16 set_mask,u16 clr_mask)343 static inline int lm75_write_config(struct lm75_data *data, u16 set_mask,
344 u16 clr_mask)
345 {
346 return regmap_update_bits(data->regmap, LM75_REG_CONF,
347 clr_mask | LM75_SHUTDOWN, set_mask);
348 }
349
lm75_alarm_handler(int irq,void * private)350 static irqreturn_t lm75_alarm_handler(int irq, void *private)
351 {
352 struct device *hwmon_dev = private;
353
354 hwmon_notify_event(hwmon_dev, hwmon_temp, hwmon_temp_alarm, 0);
355 return IRQ_HANDLED;
356 }
357
lm75_read(struct device * dev,enum hwmon_sensor_types type,u32 attr,int channel,long * val)358 static int lm75_read(struct device *dev, enum hwmon_sensor_types type,
359 u32 attr, int channel, long *val)
360 {
361 struct lm75_data *data = dev_get_drvdata(dev);
362 unsigned int regval;
363 int err, reg;
364
365 switch (type) {
366 case hwmon_chip:
367 switch (attr) {
368 case hwmon_chip_update_interval:
369 *val = data->sample_time;
370 break;
371 default:
372 return -EINVAL;
373 }
374 break;
375 case hwmon_temp:
376 switch (attr) {
377 case hwmon_temp_input:
378 reg = LM75_REG_TEMP;
379 break;
380 case hwmon_temp_max:
381 reg = LM75_REG_MAX;
382 break;
383 case hwmon_temp_max_hyst:
384 reg = LM75_REG_HYST;
385 break;
386 case hwmon_temp_alarm:
387 reg = LM75_REG_CONF;
388 break;
389 default:
390 return -EINVAL;
391 }
392 err = regmap_read(data->regmap, reg, ®val);
393 if (err < 0)
394 return err;
395
396 if (attr == hwmon_temp_alarm) {
397 switch (data->kind) {
398 case as6200:
399 case tmp112:
400 *val = (regval >> 13) & 0x1;
401 break;
402 default:
403 return -EINVAL;
404 }
405 } else {
406 *val = lm75_reg_to_mc(regval, data->resolution);
407 }
408 break;
409 default:
410 return -EINVAL;
411 }
412 return 0;
413 }
414
lm75_write_temp(struct device * dev,u32 attr,long temp)415 static int lm75_write_temp(struct device *dev, u32 attr, long temp)
416 {
417 struct lm75_data *data = dev_get_drvdata(dev);
418 u8 resolution;
419 int reg;
420
421 switch (attr) {
422 case hwmon_temp_max:
423 reg = LM75_REG_MAX;
424 break;
425 case hwmon_temp_max_hyst:
426 reg = LM75_REG_HYST;
427 break;
428 default:
429 return -EINVAL;
430 }
431
432 /*
433 * Resolution of limit registers is assumed to be the same as the
434 * temperature input register resolution unless given explicitly.
435 */
436 if (data->params->resolution_limits)
437 resolution = data->params->resolution_limits;
438 else
439 resolution = data->resolution;
440
441 temp = clamp_val(temp, LM75_TEMP_MIN, LM75_TEMP_MAX);
442 temp = DIV_ROUND_CLOSEST(temp << (resolution - 8),
443 1000) << (16 - resolution);
444
445 return regmap_write(data->regmap, reg, (u16)temp);
446 }
447
lm75_update_interval(struct device * dev,long val)448 static int lm75_update_interval(struct device *dev, long val)
449 {
450 struct lm75_data *data = dev_get_drvdata(dev);
451 u8 index;
452 s32 err;
453
454 index = find_closest(val, data->params->sample_times,
455 (int)data->params->num_sample_times);
456
457 switch (data->kind) {
458 default:
459 err = lm75_write_config(data, lm75_sample_set_masks[index],
460 LM75_SAMPLE_CLEAR_MASK);
461 if (err)
462 return err;
463
464 data->sample_time = data->params->sample_times[index];
465 if (data->params->resolutions)
466 data->resolution = data->params->resolutions[index];
467 break;
468 case tmp112:
469 case as6200:
470 err = regmap_update_bits(data->regmap, LM75_REG_CONF,
471 0xc000, (3 - index) << 14);
472 if (err < 0)
473 return err;
474 data->sample_time = data->params->sample_times[index];
475 break;
476 case pct2075:
477 err = regmap_write(data->regmap, PCT2075_REG_IDLE, index + 1);
478 if (err)
479 return err;
480 data->sample_time = data->params->sample_times[index];
481 break;
482 }
483 return 0;
484 }
485
lm75_write_chip(struct device * dev,u32 attr,long val)486 static int lm75_write_chip(struct device *dev, u32 attr, long val)
487 {
488 switch (attr) {
489 case hwmon_chip_update_interval:
490 return lm75_update_interval(dev, val);
491 default:
492 return -EINVAL;
493 }
494 return 0;
495 }
496
lm75_write(struct device * dev,enum hwmon_sensor_types type,u32 attr,int channel,long val)497 static int lm75_write(struct device *dev, enum hwmon_sensor_types type,
498 u32 attr, int channel, long val)
499 {
500 switch (type) {
501 case hwmon_chip:
502 return lm75_write_chip(dev, attr, val);
503 case hwmon_temp:
504 return lm75_write_temp(dev, attr, val);
505 default:
506 return -EINVAL;
507 }
508 return 0;
509 }
510
lm75_is_visible(const void * data,enum hwmon_sensor_types type,u32 attr,int channel)511 static umode_t lm75_is_visible(const void *data, enum hwmon_sensor_types type,
512 u32 attr, int channel)
513 {
514 const struct lm75_data *config_data = data;
515
516 switch (type) {
517 case hwmon_chip:
518 switch (attr) {
519 case hwmon_chip_update_interval:
520 if (config_data->params->num_sample_times > 1)
521 return 0644;
522 return 0444;
523 }
524 break;
525 case hwmon_temp:
526 switch (attr) {
527 case hwmon_temp_input:
528 return 0444;
529 case hwmon_temp_max:
530 case hwmon_temp_max_hyst:
531 return 0644;
532 case hwmon_temp_alarm:
533 if (config_data->params->alarm)
534 return 0444;
535 break;
536 }
537 break;
538 default:
539 break;
540 }
541 return 0;
542 }
543
544 static const struct hwmon_channel_info * const lm75_info[] = {
545 HWMON_CHANNEL_INFO(chip,
546 HWMON_C_REGISTER_TZ | HWMON_C_UPDATE_INTERVAL),
547 HWMON_CHANNEL_INFO(temp,
548 HWMON_T_INPUT | HWMON_T_MAX | HWMON_T_MAX_HYST |
549 HWMON_T_ALARM),
550 NULL
551 };
552
553 static const struct hwmon_ops lm75_hwmon_ops = {
554 .is_visible = lm75_is_visible,
555 .read = lm75_read,
556 .write = lm75_write,
557 };
558
559 static const struct hwmon_chip_info lm75_chip_info = {
560 .ops = &lm75_hwmon_ops,
561 .info = lm75_info,
562 };
563
lm75_is_writeable_reg(struct device * dev,unsigned int reg)564 static bool lm75_is_writeable_reg(struct device *dev, unsigned int reg)
565 {
566 return reg != LM75_REG_TEMP;
567 }
568
lm75_is_volatile_reg(struct device * dev,unsigned int reg)569 static bool lm75_is_volatile_reg(struct device *dev, unsigned int reg)
570 {
571 return reg == LM75_REG_TEMP || reg == LM75_REG_CONF;
572 }
573
lm75_i2c_reg_read(void * context,unsigned int reg,unsigned int * val)574 static int lm75_i2c_reg_read(void *context, unsigned int reg, unsigned int *val)
575 {
576 struct i2c_client *client = context;
577 struct lm75_data *data = i2c_get_clientdata(client);
578 int ret;
579
580 if (reg == LM75_REG_CONF) {
581 if (!data->params->config_reg_16bits)
582 ret = i2c_smbus_read_byte_data(client, LM75_REG_CONF);
583 else
584 ret = i2c_smbus_read_word_data(client, LM75_REG_CONF);
585 } else {
586 ret = i2c_smbus_read_word_swapped(client, reg);
587 }
588 if (ret < 0)
589 return ret;
590 *val = ret;
591 return 0;
592 }
593
lm75_i2c_reg_write(void * context,unsigned int reg,unsigned int val)594 static int lm75_i2c_reg_write(void *context, unsigned int reg, unsigned int val)
595 {
596 struct i2c_client *client = context;
597 struct lm75_data *data = i2c_get_clientdata(client);
598
599 if (reg == PCT2075_REG_IDLE ||
600 (reg == LM75_REG_CONF && !data->params->config_reg_16bits))
601 return i2c_smbus_write_byte_data(client, reg, val);
602 else if (reg == LM75_REG_CONF)
603 return i2c_smbus_write_word_data(client, reg, val);
604 return i2c_smbus_write_word_swapped(client, reg, val);
605 }
606
607 static const struct regmap_bus lm75_i2c_regmap_bus = {
608 .reg_read = lm75_i2c_reg_read,
609 .reg_write = lm75_i2c_reg_write,
610 };
611
lm75_i3c_reg_read(void * context,unsigned int reg,unsigned int * val)612 static int lm75_i3c_reg_read(void *context, unsigned int reg, unsigned int *val)
613 {
614 struct i3c_device *i3cdev = context;
615 struct lm75_data *data = i3cdev_get_drvdata(i3cdev);
616 struct i3c_priv_xfer xfers[] = {
617 {
618 .rnw = false,
619 .len = 1,
620 .data.out = data->reg_buf,
621 },
622 {
623 .rnw = true,
624 .len = 2,
625 .data.out = data->val_buf,
626 },
627 };
628 int ret;
629
630 data->reg_buf[0] = reg;
631
632 if (reg == LM75_REG_CONF && !data->params->config_reg_16bits)
633 xfers[1].len--;
634
635 ret = i3c_device_do_priv_xfers(i3cdev, xfers, 2);
636 if (ret < 0)
637 return ret;
638
639 if (reg == LM75_REG_CONF && !data->params->config_reg_16bits)
640 *val = data->val_buf[0];
641 else if (reg == LM75_REG_CONF)
642 *val = data->val_buf[0] | (data->val_buf[1] << 8);
643 else
644 *val = data->val_buf[1] | (data->val_buf[0] << 8);
645
646 return 0;
647 }
648
lm75_i3c_reg_write(void * context,unsigned int reg,unsigned int val)649 static int lm75_i3c_reg_write(void *context, unsigned int reg, unsigned int val)
650 {
651 struct i3c_device *i3cdev = context;
652 struct lm75_data *data = i3cdev_get_drvdata(i3cdev);
653 struct i3c_priv_xfer xfers[] = {
654 {
655 .rnw = false,
656 .len = 3,
657 .data.out = data->val_buf,
658 },
659 };
660
661 data->val_buf[0] = reg;
662
663 if (reg == PCT2075_REG_IDLE ||
664 (reg == LM75_REG_CONF && !data->params->config_reg_16bits)) {
665 xfers[0].len--;
666 data->val_buf[1] = val & 0xff;
667 } else if (reg == LM75_REG_CONF) {
668 data->val_buf[1] = val & 0xff;
669 data->val_buf[2] = (val >> 8) & 0xff;
670 } else {
671 data->val_buf[1] = (val >> 8) & 0xff;
672 data->val_buf[2] = val & 0xff;
673 }
674
675 return i3c_device_do_priv_xfers(i3cdev, xfers, 1);
676 }
677
678 static const struct regmap_bus lm75_i3c_regmap_bus = {
679 .reg_read = lm75_i3c_reg_read,
680 .reg_write = lm75_i3c_reg_write,
681 };
682
683 static const struct regmap_config lm75_regmap_config = {
684 .reg_bits = 8,
685 .val_bits = 16,
686 .max_register = PCT2075_REG_IDLE,
687 .writeable_reg = lm75_is_writeable_reg,
688 .volatile_reg = lm75_is_volatile_reg,
689 .val_format_endian = REGMAP_ENDIAN_BIG,
690 .cache_type = REGCACHE_MAPLE,
691 .use_single_read = true,
692 .use_single_write = true,
693 };
694
lm75_remove(void * data)695 static void lm75_remove(void *data)
696 {
697 struct lm75_data *lm75 = data;
698
699 regmap_write(lm75->regmap, LM75_REG_CONF, lm75->orig_conf);
700 }
701
lm75_generic_probe(struct device * dev,const char * name,enum lm75_type kind,int irq,struct regmap * regmap)702 static int lm75_generic_probe(struct device *dev, const char *name,
703 enum lm75_type kind, int irq, struct regmap *regmap)
704 {
705 struct device *hwmon_dev;
706 struct lm75_data *data;
707 int status, err;
708
709 data = devm_kzalloc(dev, sizeof(struct lm75_data), GFP_KERNEL);
710 if (!data)
711 return -ENOMEM;
712
713 /* needed by custom regmap callbacks */
714 dev_set_drvdata(dev, data);
715
716 data->kind = kind;
717 data->regmap = regmap;
718
719 err = devm_regulator_get_enable(dev, "vs");
720 if (err)
721 return err;
722
723 /* Set to LM75 resolution (9 bits, 1/2 degree C) and range.
724 * Then tweak to be more precise when appropriate.
725 */
726
727 data->params = &device_params[data->kind];
728
729 /* Save default sample time and resolution*/
730 data->sample_time = data->params->default_sample_time;
731 data->resolution = data->params->default_resolution;
732
733 /* Cache original configuration */
734 err = regmap_read(data->regmap, LM75_REG_CONF, &status);
735 if (err)
736 return err;
737 data->orig_conf = status;
738
739 err = lm75_write_config(data, data->params->set_mask,
740 data->params->clr_mask);
741 if (err)
742 return err;
743
744 err = devm_add_action_or_reset(dev, lm75_remove, data);
745 if (err)
746 return err;
747
748 hwmon_dev = devm_hwmon_device_register_with_info(dev, name, data,
749 &lm75_chip_info, NULL);
750 if (IS_ERR(hwmon_dev))
751 return PTR_ERR(hwmon_dev);
752
753 if (irq) {
754 if (data->params->alarm) {
755 err = devm_request_threaded_irq(dev,
756 irq,
757 NULL,
758 &lm75_alarm_handler,
759 IRQF_ONESHOT,
760 name,
761 hwmon_dev);
762 if (err)
763 return err;
764 } else {
765 /* alarm is only supported for chips with alarm bit */
766 dev_err(dev, "alarm interrupt is not supported\n");
767 }
768 }
769
770 dev_info(dev, "%s: sensor '%s'\n", dev_name(hwmon_dev), name);
771
772 return 0;
773 }
774
lm75_i2c_probe(struct i2c_client * client)775 static int lm75_i2c_probe(struct i2c_client *client)
776 {
777 struct device *dev = &client->dev;
778 struct regmap *regmap;
779
780 if (!i2c_check_functionality(client->adapter,
781 I2C_FUNC_SMBUS_BYTE_DATA | I2C_FUNC_SMBUS_WORD_DATA))
782 return -EOPNOTSUPP;
783
784 regmap = devm_regmap_init(dev, &lm75_i2c_regmap_bus, client, &lm75_regmap_config);
785 if (IS_ERR(regmap))
786 return PTR_ERR(regmap);
787
788 return lm75_generic_probe(dev, client->name, (uintptr_t)i2c_get_match_data(client),
789 client->irq, regmap);
790 }
791
792 static const struct i2c_device_id lm75_i2c_ids[] = {
793 { "adt75", adt75, },
794 { "as6200", as6200, },
795 { "at30ts74", at30ts74, },
796 { "ds1775", ds1775, },
797 { "ds75", ds75, },
798 { "ds7505", ds7505, },
799 { "g751", g751, },
800 { "lm75", lm75, },
801 { "lm75a", lm75a, },
802 { "lm75b", lm75b, },
803 { "max6625", max6625, },
804 { "max6626", max6626, },
805 { "max31725", max31725, },
806 { "max31726", max31725, },
807 { "mcp980x", mcp980x, },
808 { "p3t1755", p3t1755, },
809 { "pct2075", pct2075, },
810 { "stds75", stds75, },
811 { "stlm75", stlm75, },
812 { "tcn75", tcn75, },
813 { "tmp100", tmp100, },
814 { "tmp101", tmp101, },
815 { "tmp105", tmp105, },
816 { "tmp112", tmp112, },
817 { "tmp175", tmp175, },
818 { "tmp275", tmp275, },
819 { "tmp75", tmp75, },
820 { "tmp75b", tmp75b, },
821 { "tmp75c", tmp75c, },
822 { "tmp1075", tmp1075, },
823 { /* LIST END */ }
824 };
825 MODULE_DEVICE_TABLE(i2c, lm75_i2c_ids);
826
827 struct lm75_i3c_device {
828 enum lm75_type type;
829 const char *name;
830 };
831
832 static const struct lm75_i3c_device lm75_i3c_p3t1755 = {
833 .name = "p3t1755",
834 .type = p3t1755,
835 };
836
837 static const struct i3c_device_id lm75_i3c_ids[] = {
838 I3C_DEVICE(0x011b, 0x152a, &lm75_i3c_p3t1755),
839 { /* LIST END */ }
840 };
841 MODULE_DEVICE_TABLE(i3c, lm75_i3c_ids);
842
lm75_i3c_probe(struct i3c_device * i3cdev)843 static int lm75_i3c_probe(struct i3c_device *i3cdev)
844 {
845 struct device *dev = i3cdev_to_dev(i3cdev);
846 const struct lm75_i3c_device *id_data;
847 struct regmap *regmap;
848
849 regmap = devm_regmap_init(dev, &lm75_i3c_regmap_bus, i3cdev, &lm75_regmap_config);
850 if (IS_ERR(regmap))
851 return PTR_ERR(regmap);
852
853 id_data = i3c_device_match_id(i3cdev, lm75_i3c_ids)->data;
854
855 return lm75_generic_probe(dev, id_data->name, id_data->type, 0, regmap);
856 }
857
858 static const struct of_device_id __maybe_unused lm75_of_match[] = {
859 {
860 .compatible = "adi,adt75",
861 .data = (void *)adt75
862 },
863 {
864 .compatible = "ams,as6200",
865 .data = (void *)as6200
866 },
867 {
868 .compatible = "atmel,at30ts74",
869 .data = (void *)at30ts74
870 },
871 {
872 .compatible = "dallas,ds1775",
873 .data = (void *)ds1775
874 },
875 {
876 .compatible = "dallas,ds75",
877 .data = (void *)ds75
878 },
879 {
880 .compatible = "dallas,ds7505",
881 .data = (void *)ds7505
882 },
883 {
884 .compatible = "gmt,g751",
885 .data = (void *)g751
886 },
887 {
888 .compatible = "national,lm75",
889 .data = (void *)lm75
890 },
891 {
892 .compatible = "national,lm75a",
893 .data = (void *)lm75a
894 },
895 {
896 .compatible = "national,lm75b",
897 .data = (void *)lm75b
898 },
899 {
900 .compatible = "maxim,max6625",
901 .data = (void *)max6625
902 },
903 {
904 .compatible = "maxim,max6626",
905 .data = (void *)max6626
906 },
907 {
908 .compatible = "maxim,max31725",
909 .data = (void *)max31725
910 },
911 {
912 .compatible = "maxim,max31726",
913 .data = (void *)max31725
914 },
915 {
916 .compatible = "maxim,mcp980x",
917 .data = (void *)mcp980x
918 },
919 {
920 .compatible = "nxp,p3t1755",
921 .data = (void *)p3t1755
922 },
923 {
924 .compatible = "nxp,pct2075",
925 .data = (void *)pct2075
926 },
927 {
928 .compatible = "st,stds75",
929 .data = (void *)stds75
930 },
931 {
932 .compatible = "st,stlm75",
933 .data = (void *)stlm75
934 },
935 {
936 .compatible = "microchip,tcn75",
937 .data = (void *)tcn75
938 },
939 {
940 .compatible = "ti,tmp100",
941 .data = (void *)tmp100
942 },
943 {
944 .compatible = "ti,tmp101",
945 .data = (void *)tmp101
946 },
947 {
948 .compatible = "ti,tmp105",
949 .data = (void *)tmp105
950 },
951 {
952 .compatible = "ti,tmp112",
953 .data = (void *)tmp112
954 },
955 {
956 .compatible = "ti,tmp175",
957 .data = (void *)tmp175
958 },
959 {
960 .compatible = "ti,tmp275",
961 .data = (void *)tmp275
962 },
963 {
964 .compatible = "ti,tmp75",
965 .data = (void *)tmp75
966 },
967 {
968 .compatible = "ti,tmp75b",
969 .data = (void *)tmp75b
970 },
971 {
972 .compatible = "ti,tmp75c",
973 .data = (void *)tmp75c
974 },
975 {
976 .compatible = "ti,tmp1075",
977 .data = (void *)tmp1075
978 },
979 { },
980 };
981 MODULE_DEVICE_TABLE(of, lm75_of_match);
982
983 #define LM75A_ID 0xA1
984
985 /* Return 0 if detection is successful, -ENODEV otherwise */
lm75_detect(struct i2c_client * new_client,struct i2c_board_info * info)986 static int lm75_detect(struct i2c_client *new_client,
987 struct i2c_board_info *info)
988 {
989 struct i2c_adapter *adapter = new_client->adapter;
990 int i;
991 int conf, hyst, os;
992 bool is_lm75a = 0;
993
994 if (!i2c_check_functionality(adapter, I2C_FUNC_SMBUS_BYTE_DATA |
995 I2C_FUNC_SMBUS_WORD_DATA))
996 return -ENODEV;
997
998 /*
999 * Now, we do the remaining detection. There is no identification-
1000 * dedicated register so we have to rely on several tricks:
1001 * unused bits, registers cycling over 8-address boundaries,
1002 * addresses 0x04-0x07 returning the last read value.
1003 * The cycling+unused addresses combination is not tested,
1004 * since it would significantly slow the detection down and would
1005 * hardly add any value.
1006 *
1007 * The National Semiconductor LM75A is different than earlier
1008 * LM75s. It has an ID byte of 0xaX (where X is the chip
1009 * revision, with 1 being the only revision in existence) in
1010 * register 7, and unused registers return 0xff rather than the
1011 * last read value.
1012 *
1013 * Note that this function only detects the original National
1014 * Semiconductor LM75 and the LM75A. Clones from other vendors
1015 * aren't detected, on purpose, because they are typically never
1016 * found on PC hardware. They are found on embedded designs where
1017 * they can be instantiated explicitly so detection is not needed.
1018 * The absence of identification registers on all these clones
1019 * would make their exhaustive detection very difficult and weak,
1020 * and odds are that the driver would bind to unsupported devices.
1021 */
1022
1023 /* Unused bits */
1024 conf = i2c_smbus_read_byte_data(new_client, 1);
1025 if (conf & 0xe0)
1026 return -ENODEV;
1027
1028 /* First check for LM75A */
1029 if (i2c_smbus_read_byte_data(new_client, 7) == LM75A_ID) {
1030 /*
1031 * LM75A returns 0xff on unused registers so
1032 * just to be sure we check for that too.
1033 */
1034 if (i2c_smbus_read_byte_data(new_client, 4) != 0xff
1035 || i2c_smbus_read_byte_data(new_client, 5) != 0xff
1036 || i2c_smbus_read_byte_data(new_client, 6) != 0xff)
1037 return -ENODEV;
1038 is_lm75a = 1;
1039 hyst = i2c_smbus_read_byte_data(new_client, 2);
1040 os = i2c_smbus_read_byte_data(new_client, 3);
1041 } else { /* Traditional style LM75 detection */
1042 /* Unused addresses */
1043 hyst = i2c_smbus_read_byte_data(new_client, 2);
1044 if (i2c_smbus_read_byte_data(new_client, 4) != hyst
1045 || i2c_smbus_read_byte_data(new_client, 5) != hyst
1046 || i2c_smbus_read_byte_data(new_client, 6) != hyst
1047 || i2c_smbus_read_byte_data(new_client, 7) != hyst)
1048 return -ENODEV;
1049 os = i2c_smbus_read_byte_data(new_client, 3);
1050 if (i2c_smbus_read_byte_data(new_client, 4) != os
1051 || i2c_smbus_read_byte_data(new_client, 5) != os
1052 || i2c_smbus_read_byte_data(new_client, 6) != os
1053 || i2c_smbus_read_byte_data(new_client, 7) != os)
1054 return -ENODEV;
1055 }
1056 /*
1057 * It is very unlikely that this is a LM75 if both
1058 * hysteresis and temperature limit registers are 0.
1059 */
1060 if (hyst == 0 && os == 0)
1061 return -ENODEV;
1062
1063 /* Addresses cycling */
1064 for (i = 8; i <= 248; i += 40) {
1065 if (i2c_smbus_read_byte_data(new_client, i + 1) != conf
1066 || i2c_smbus_read_byte_data(new_client, i + 2) != hyst
1067 || i2c_smbus_read_byte_data(new_client, i + 3) != os)
1068 return -ENODEV;
1069 if (is_lm75a && i2c_smbus_read_byte_data(new_client, i + 7)
1070 != LM75A_ID)
1071 return -ENODEV;
1072 }
1073
1074 strscpy(info->type, is_lm75a ? "lm75a" : "lm75", I2C_NAME_SIZE);
1075
1076 return 0;
1077 }
1078
1079 #ifdef CONFIG_PM
lm75_suspend(struct device * dev)1080 static int lm75_suspend(struct device *dev)
1081 {
1082 struct lm75_data *data = dev_get_drvdata(dev);
1083
1084 return regmap_update_bits(data->regmap, LM75_REG_CONF, LM75_SHUTDOWN, LM75_SHUTDOWN);
1085 }
1086
lm75_resume(struct device * dev)1087 static int lm75_resume(struct device *dev)
1088 {
1089 struct lm75_data *data = dev_get_drvdata(dev);
1090
1091 return regmap_update_bits(data->regmap, LM75_REG_CONF, LM75_SHUTDOWN, 0);
1092 }
1093
1094 static const struct dev_pm_ops lm75_dev_pm_ops = {
1095 .suspend = lm75_suspend,
1096 .resume = lm75_resume,
1097 };
1098 #define LM75_DEV_PM_OPS (&lm75_dev_pm_ops)
1099 #else
1100 #define LM75_DEV_PM_OPS NULL
1101 #endif /* CONFIG_PM */
1102
1103 static struct i2c_driver lm75_i2c_driver = {
1104 .class = I2C_CLASS_HWMON,
1105 .driver = {
1106 .name = "lm75",
1107 .of_match_table = of_match_ptr(lm75_of_match),
1108 .pm = LM75_DEV_PM_OPS,
1109 },
1110 .probe = lm75_i2c_probe,
1111 .id_table = lm75_i2c_ids,
1112 .detect = lm75_detect,
1113 .address_list = normal_i2c,
1114 };
1115
1116 static struct i3c_driver lm75_i3c_driver = {
1117 .driver = {
1118 .name = "lm75_i3c",
1119 },
1120 .probe = lm75_i3c_probe,
1121 .id_table = lm75_i3c_ids,
1122 };
1123
1124 module_i3c_i2c_driver(lm75_i3c_driver, &lm75_i2c_driver)
1125
1126 MODULE_AUTHOR("Frodo Looijaard <[email protected]>");
1127 MODULE_DESCRIPTION("LM75 driver");
1128 MODULE_LICENSE("GPL");
1129