1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * PowerMac G5 SMU driver
4 *
5 * Copyright 2004 J. Mayer <[email protected]>
6 * Copyright 2005 Benjamin Herrenschmidt, IBM Corp.
7 */
8
9 /*
10 * TODO:
11 * - maybe add timeout to commands ?
12 * - blocking version of time functions
13 * - polling version of i2c commands (including timer that works with
14 * interrupts off)
15 * - maybe avoid some data copies with i2c by directly using the smu cmd
16 * buffer and a lower level internal interface
17 * - understand SMU -> CPU events and implement reception of them via
18 * the userland interface
19 */
20
21 #include <linux/types.h>
22 #include <linux/kernel.h>
23 #include <linux/device.h>
24 #include <linux/dmapool.h>
25 #include <linux/memblock.h>
26 #include <linux/vmalloc.h>
27 #include <linux/highmem.h>
28 #include <linux/jiffies.h>
29 #include <linux/interrupt.h>
30 #include <linux/rtc.h>
31 #include <linux/completion.h>
32 #include <linux/miscdevice.h>
33 #include <linux/delay.h>
34 #include <linux/poll.h>
35 #include <linux/mutex.h>
36 #include <linux/of.h>
37 #include <linux/of_address.h>
38 #include <linux/of_irq.h>
39 #include <linux/of_platform.h>
40 #include <linux/platform_device.h>
41 #include <linux/slab.h>
42 #include <linux/sched/signal.h>
43
44 #include <asm/byteorder.h>
45 #include <asm/io.h>
46 #include <asm/machdep.h>
47 #include <asm/pmac_feature.h>
48 #include <asm/smu.h>
49 #include <asm/sections.h>
50 #include <linux/uaccess.h>
51
52 #define VERSION "0.7"
53 #define AUTHOR "(c) 2005 Benjamin Herrenschmidt, IBM Corp."
54
55 #undef DEBUG_SMU
56
57 #ifdef DEBUG_SMU
58 #define DPRINTK(fmt, args...) do { printk(KERN_DEBUG fmt , ##args); } while (0)
59 #else
60 #define DPRINTK(fmt, args...) do { } while (0)
61 #endif
62
63 /*
64 * This is the command buffer passed to the SMU hardware
65 */
66 #define SMU_MAX_DATA 254
67
68 struct smu_cmd_buf {
69 u8 cmd;
70 u8 length;
71 u8 data[SMU_MAX_DATA];
72 };
73
74 struct smu_device {
75 spinlock_t lock;
76 struct device_node *of_node;
77 struct platform_device *of_dev;
78 int doorbell; /* doorbell gpio */
79 u32 __iomem *db_buf; /* doorbell buffer */
80 struct device_node *db_node;
81 unsigned int db_irq;
82 int msg;
83 struct device_node *msg_node;
84 unsigned int msg_irq;
85 struct smu_cmd_buf *cmd_buf; /* command buffer virtual */
86 u32 cmd_buf_abs; /* command buffer absolute */
87 struct list_head cmd_list;
88 struct smu_cmd *cmd_cur; /* pending command */
89 int broken_nap;
90 struct list_head cmd_i2c_list;
91 struct smu_i2c_cmd *cmd_i2c_cur; /* pending i2c command */
92 struct timer_list i2c_timer;
93 };
94
95 /*
96 * I don't think there will ever be more than one SMU, so
97 * for now, just hard code that
98 */
99 static DEFINE_MUTEX(smu_mutex);
100 static struct smu_device *smu;
101 static DEFINE_MUTEX(smu_part_access);
102 static int smu_irq_inited;
103 static unsigned long smu_cmdbuf_abs;
104
105 static void smu_i2c_retry(struct timer_list *t);
106
107 /*
108 * SMU driver low level stuff
109 */
110
smu_start_cmd(void)111 static void smu_start_cmd(void)
112 {
113 unsigned long faddr, fend;
114 struct smu_cmd *cmd;
115
116 if (list_empty(&smu->cmd_list))
117 return;
118
119 /* Fetch first command in queue */
120 cmd = list_entry(smu->cmd_list.next, struct smu_cmd, link);
121 smu->cmd_cur = cmd;
122 list_del(&cmd->link);
123
124 DPRINTK("SMU: starting cmd %x, %d bytes data\n", cmd->cmd,
125 cmd->data_len);
126 DPRINTK("SMU: data buffer: %8ph\n", cmd->data_buf);
127
128 /* Fill the SMU command buffer */
129 smu->cmd_buf->cmd = cmd->cmd;
130 smu->cmd_buf->length = cmd->data_len;
131 memcpy(smu->cmd_buf->data, cmd->data_buf, cmd->data_len);
132
133 /* Flush command and data to RAM */
134 faddr = (unsigned long)smu->cmd_buf;
135 fend = faddr + smu->cmd_buf->length + 2;
136 flush_dcache_range(faddr, fend);
137
138
139 /* We also disable NAP mode for the duration of the command
140 * on U3 based machines.
141 * This is slightly racy as it can be written back to 1 by a sysctl
142 * but that never happens in practice. There seem to be an issue with
143 * U3 based machines such as the iMac G5 where napping for the
144 * whole duration of the command prevents the SMU from fetching it
145 * from memory. This might be related to the strange i2c based
146 * mechanism the SMU uses to access memory.
147 */
148 if (smu->broken_nap)
149 powersave_nap = 0;
150
151 /* This isn't exactly a DMA mapping here, I suspect
152 * the SMU is actually communicating with us via i2c to the
153 * northbridge or the CPU to access RAM.
154 */
155 writel(smu->cmd_buf_abs, smu->db_buf);
156
157 /* Ring the SMU doorbell */
158 pmac_do_feature_call(PMAC_FTR_WRITE_GPIO, NULL, smu->doorbell, 4);
159 }
160
161
smu_db_intr(int irq,void * arg)162 static irqreturn_t smu_db_intr(int irq, void *arg)
163 {
164 unsigned long flags;
165 struct smu_cmd *cmd;
166 void (*done)(struct smu_cmd *cmd, void *misc) = NULL;
167 void *misc = NULL;
168 u8 gpio;
169 int rc = 0;
170
171 /* SMU completed the command, well, we hope, let's make sure
172 * of it
173 */
174 spin_lock_irqsave(&smu->lock, flags);
175
176 gpio = pmac_do_feature_call(PMAC_FTR_READ_GPIO, NULL, smu->doorbell);
177 if ((gpio & 7) != 7) {
178 spin_unlock_irqrestore(&smu->lock, flags);
179 return IRQ_HANDLED;
180 }
181
182 cmd = smu->cmd_cur;
183 smu->cmd_cur = NULL;
184 if (cmd == NULL)
185 goto bail;
186
187 if (rc == 0) {
188 unsigned long faddr;
189 int reply_len;
190 u8 ack;
191
192 /* CPU might have brought back the cache line, so we need
193 * to flush again before peeking at the SMU response. We
194 * flush the entire buffer for now as we haven't read the
195 * reply length (it's only 2 cache lines anyway)
196 */
197 faddr = (unsigned long)smu->cmd_buf;
198 flush_dcache_range(faddr, faddr + 256);
199
200 /* Now check ack */
201 ack = (~cmd->cmd) & 0xff;
202 if (ack != smu->cmd_buf->cmd) {
203 DPRINTK("SMU: incorrect ack, want %x got %x\n",
204 ack, smu->cmd_buf->cmd);
205 rc = -EIO;
206 }
207 reply_len = rc == 0 ? smu->cmd_buf->length : 0;
208 DPRINTK("SMU: reply len: %d\n", reply_len);
209 if (reply_len > cmd->reply_len) {
210 printk(KERN_WARNING "SMU: reply buffer too small,"
211 "got %d bytes for a %d bytes buffer\n",
212 reply_len, cmd->reply_len);
213 reply_len = cmd->reply_len;
214 }
215 cmd->reply_len = reply_len;
216 if (cmd->reply_buf && reply_len)
217 memcpy(cmd->reply_buf, smu->cmd_buf->data, reply_len);
218 }
219
220 /* Now complete the command. Write status last in order as we lost
221 * ownership of the command structure as soon as it's no longer -1
222 */
223 done = cmd->done;
224 misc = cmd->misc;
225 mb();
226 cmd->status = rc;
227
228 /* Re-enable NAP mode */
229 if (smu->broken_nap)
230 powersave_nap = 1;
231 bail:
232 /* Start next command if any */
233 smu_start_cmd();
234 spin_unlock_irqrestore(&smu->lock, flags);
235
236 /* Call command completion handler if any */
237 if (done)
238 done(cmd, misc);
239
240 /* It's an edge interrupt, nothing to do */
241 return IRQ_HANDLED;
242 }
243
244
smu_msg_intr(int irq,void * arg)245 static irqreturn_t smu_msg_intr(int irq, void *arg)
246 {
247 /* I don't quite know what to do with this one, we seem to never
248 * receive it, so I suspect we have to arm it someway in the SMU
249 * to start getting events that way.
250 */
251
252 printk(KERN_INFO "SMU: message interrupt !\n");
253
254 /* It's an edge interrupt, nothing to do */
255 return IRQ_HANDLED;
256 }
257
258
259 /*
260 * Queued command management.
261 *
262 */
263
smu_queue_cmd(struct smu_cmd * cmd)264 int smu_queue_cmd(struct smu_cmd *cmd)
265 {
266 unsigned long flags;
267
268 if (smu == NULL)
269 return -ENODEV;
270 if (cmd->data_len > SMU_MAX_DATA ||
271 cmd->reply_len > SMU_MAX_DATA)
272 return -EINVAL;
273
274 cmd->status = 1;
275 spin_lock_irqsave(&smu->lock, flags);
276 list_add_tail(&cmd->link, &smu->cmd_list);
277 if (smu->cmd_cur == NULL)
278 smu_start_cmd();
279 spin_unlock_irqrestore(&smu->lock, flags);
280
281 /* Workaround for early calls when irq isn't available */
282 if (!smu_irq_inited || !smu->db_irq)
283 smu_spinwait_cmd(cmd);
284
285 return 0;
286 }
287 EXPORT_SYMBOL(smu_queue_cmd);
288
289
smu_queue_simple(struct smu_simple_cmd * scmd,u8 command,unsigned int data_len,void (* done)(struct smu_cmd * cmd,void * misc),void * misc,...)290 int smu_queue_simple(struct smu_simple_cmd *scmd, u8 command,
291 unsigned int data_len,
292 void (*done)(struct smu_cmd *cmd, void *misc),
293 void *misc, ...)
294 {
295 struct smu_cmd *cmd = &scmd->cmd;
296 va_list list;
297 int i;
298
299 if (data_len > sizeof(scmd->buffer))
300 return -EINVAL;
301
302 memset(scmd, 0, sizeof(*scmd));
303 cmd->cmd = command;
304 cmd->data_len = data_len;
305 cmd->data_buf = scmd->buffer;
306 cmd->reply_len = sizeof(scmd->buffer);
307 cmd->reply_buf = scmd->buffer;
308 cmd->done = done;
309 cmd->misc = misc;
310
311 va_start(list, misc);
312 for (i = 0; i < data_len; ++i)
313 scmd->buffer[i] = (u8)va_arg(list, int);
314 va_end(list);
315
316 return smu_queue_cmd(cmd);
317 }
318 EXPORT_SYMBOL(smu_queue_simple);
319
320
smu_poll(void)321 void smu_poll(void)
322 {
323 u8 gpio;
324
325 if (smu == NULL)
326 return;
327
328 gpio = pmac_do_feature_call(PMAC_FTR_READ_GPIO, NULL, smu->doorbell);
329 if ((gpio & 7) == 7)
330 smu_db_intr(smu->db_irq, smu);
331 }
332 EXPORT_SYMBOL(smu_poll);
333
334
smu_done_complete(struct smu_cmd * cmd,void * misc)335 void smu_done_complete(struct smu_cmd *cmd, void *misc)
336 {
337 struct completion *comp = misc;
338
339 complete(comp);
340 }
341 EXPORT_SYMBOL(smu_done_complete);
342
343
smu_spinwait_cmd(struct smu_cmd * cmd)344 void smu_spinwait_cmd(struct smu_cmd *cmd)
345 {
346 while(cmd->status == 1)
347 smu_poll();
348 }
349 EXPORT_SYMBOL(smu_spinwait_cmd);
350
351
352 /* RTC low level commands */
bcd2hex(int n)353 static inline int bcd2hex (int n)
354 {
355 return (((n & 0xf0) >> 4) * 10) + (n & 0xf);
356 }
357
358
hex2bcd(int n)359 static inline int hex2bcd (int n)
360 {
361 return ((n / 10) << 4) + (n % 10);
362 }
363
364
smu_fill_set_rtc_cmd(struct smu_cmd_buf * cmd_buf,struct rtc_time * time)365 static inline void smu_fill_set_rtc_cmd(struct smu_cmd_buf *cmd_buf,
366 struct rtc_time *time)
367 {
368 cmd_buf->cmd = 0x8e;
369 cmd_buf->length = 8;
370 cmd_buf->data[0] = 0x80;
371 cmd_buf->data[1] = hex2bcd(time->tm_sec);
372 cmd_buf->data[2] = hex2bcd(time->tm_min);
373 cmd_buf->data[3] = hex2bcd(time->tm_hour);
374 cmd_buf->data[4] = time->tm_wday;
375 cmd_buf->data[5] = hex2bcd(time->tm_mday);
376 cmd_buf->data[6] = hex2bcd(time->tm_mon) + 1;
377 cmd_buf->data[7] = hex2bcd(time->tm_year - 100);
378 }
379
380
smu_get_rtc_time(struct rtc_time * time,int spinwait)381 int smu_get_rtc_time(struct rtc_time *time, int spinwait)
382 {
383 struct smu_simple_cmd cmd;
384 int rc;
385
386 if (smu == NULL)
387 return -ENODEV;
388
389 memset(time, 0, sizeof(struct rtc_time));
390 rc = smu_queue_simple(&cmd, SMU_CMD_RTC_COMMAND, 1, NULL, NULL,
391 SMU_CMD_RTC_GET_DATETIME);
392 if (rc)
393 return rc;
394 smu_spinwait_simple(&cmd);
395
396 time->tm_sec = bcd2hex(cmd.buffer[0]);
397 time->tm_min = bcd2hex(cmd.buffer[1]);
398 time->tm_hour = bcd2hex(cmd.buffer[2]);
399 time->tm_wday = bcd2hex(cmd.buffer[3]);
400 time->tm_mday = bcd2hex(cmd.buffer[4]);
401 time->tm_mon = bcd2hex(cmd.buffer[5]) - 1;
402 time->tm_year = bcd2hex(cmd.buffer[6]) + 100;
403
404 return 0;
405 }
406
407
smu_set_rtc_time(struct rtc_time * time,int spinwait)408 int smu_set_rtc_time(struct rtc_time *time, int spinwait)
409 {
410 struct smu_simple_cmd cmd;
411 int rc;
412
413 if (smu == NULL)
414 return -ENODEV;
415
416 rc = smu_queue_simple(&cmd, SMU_CMD_RTC_COMMAND, 8, NULL, NULL,
417 SMU_CMD_RTC_SET_DATETIME,
418 hex2bcd(time->tm_sec),
419 hex2bcd(time->tm_min),
420 hex2bcd(time->tm_hour),
421 time->tm_wday,
422 hex2bcd(time->tm_mday),
423 hex2bcd(time->tm_mon) + 1,
424 hex2bcd(time->tm_year - 100));
425 if (rc)
426 return rc;
427 smu_spinwait_simple(&cmd);
428
429 return 0;
430 }
431
432
smu_shutdown(void)433 void smu_shutdown(void)
434 {
435 struct smu_simple_cmd cmd;
436
437 if (smu == NULL)
438 return;
439
440 if (smu_queue_simple(&cmd, SMU_CMD_POWER_COMMAND, 9, NULL, NULL,
441 'S', 'H', 'U', 'T', 'D', 'O', 'W', 'N', 0))
442 return;
443 smu_spinwait_simple(&cmd);
444 for (;;)
445 ;
446 }
447
448
smu_restart(void)449 void smu_restart(void)
450 {
451 struct smu_simple_cmd cmd;
452
453 if (smu == NULL)
454 return;
455
456 if (smu_queue_simple(&cmd, SMU_CMD_POWER_COMMAND, 8, NULL, NULL,
457 'R', 'E', 'S', 'T', 'A', 'R', 'T', 0))
458 return;
459 smu_spinwait_simple(&cmd);
460 for (;;)
461 ;
462 }
463
464
smu_present(void)465 int smu_present(void)
466 {
467 return smu != NULL;
468 }
469 EXPORT_SYMBOL(smu_present);
470
471
smu_init(void)472 int __init smu_init (void)
473 {
474 struct device_node *np;
475 u64 data;
476 int ret = 0;
477
478 np = of_find_node_by_type(NULL, "smu");
479 if (np == NULL)
480 return -ENODEV;
481
482 printk(KERN_INFO "SMU: Driver %s %s\n", VERSION, AUTHOR);
483
484 /*
485 * SMU based G5s need some memory below 2Gb. Thankfully this is
486 * called at a time where memblock is still available.
487 */
488 smu_cmdbuf_abs = memblock_phys_alloc_range(4096, 4096, 0, 0x80000000UL);
489 if (smu_cmdbuf_abs == 0) {
490 printk(KERN_ERR "SMU: Command buffer allocation failed !\n");
491 ret = -EINVAL;
492 goto fail_np;
493 }
494
495 smu = memblock_alloc_or_panic(sizeof(struct smu_device), SMP_CACHE_BYTES);
496 spin_lock_init(&smu->lock);
497 INIT_LIST_HEAD(&smu->cmd_list);
498 INIT_LIST_HEAD(&smu->cmd_i2c_list);
499 smu->of_node = np;
500 smu->db_irq = 0;
501 smu->msg_irq = 0;
502
503 /* smu_cmdbuf_abs is in the low 2G of RAM, can be converted to a
504 * 32 bits value safely
505 */
506 smu->cmd_buf_abs = (u32)smu_cmdbuf_abs;
507 smu->cmd_buf = __va(smu_cmdbuf_abs);
508
509 smu->db_node = of_find_node_by_name(NULL, "smu-doorbell");
510 if (smu->db_node == NULL) {
511 printk(KERN_ERR "SMU: Can't find doorbell GPIO !\n");
512 ret = -ENXIO;
513 goto fail_bootmem;
514 }
515 if (of_property_read_reg(smu->db_node, 0, &data, NULL)) {
516 printk(KERN_ERR "SMU: Can't find doorbell GPIO address !\n");
517 ret = -ENXIO;
518 goto fail_db_node;
519 }
520
521 /* Current setup has one doorbell GPIO that does both doorbell
522 * and ack. GPIOs are at 0x50, best would be to find that out
523 * in the device-tree though.
524 */
525 smu->doorbell = data;
526 if (smu->doorbell < 0x50)
527 smu->doorbell += 0x50;
528
529 /* Now look for the smu-interrupt GPIO */
530 do {
531 smu->msg_node = of_find_node_by_name(NULL, "smu-interrupt");
532 if (smu->msg_node == NULL)
533 break;
534 if (of_property_read_reg(smu->msg_node, 0, &data, NULL)) {
535 of_node_put(smu->msg_node);
536 smu->msg_node = NULL;
537 break;
538 }
539 smu->msg = data;
540 if (smu->msg < 0x50)
541 smu->msg += 0x50;
542 } while(0);
543
544 /* Doorbell buffer is currently hard-coded, I didn't find a proper
545 * device-tree entry giving the address. Best would probably to use
546 * an offset for K2 base though, but let's do it that way for now.
547 */
548 smu->db_buf = ioremap(0x8000860c, 0x1000);
549 if (smu->db_buf == NULL) {
550 printk(KERN_ERR "SMU: Can't map doorbell buffer pointer !\n");
551 ret = -ENXIO;
552 goto fail_msg_node;
553 }
554
555 /* U3 has an issue with NAP mode when issuing SMU commands */
556 smu->broken_nap = pmac_get_uninorth_variant() < 4;
557 if (smu->broken_nap)
558 printk(KERN_INFO "SMU: using NAP mode workaround\n");
559
560 sys_ctrler = SYS_CTRLER_SMU;
561 return 0;
562
563 fail_msg_node:
564 of_node_put(smu->msg_node);
565 fail_db_node:
566 of_node_put(smu->db_node);
567 fail_bootmem:
568 memblock_free(smu, sizeof(struct smu_device));
569 smu = NULL;
570 fail_np:
571 of_node_put(np);
572 return ret;
573 }
574
575
smu_late_init(void)576 static int smu_late_init(void)
577 {
578 if (!smu)
579 return 0;
580
581 timer_setup(&smu->i2c_timer, smu_i2c_retry, 0);
582
583 if (smu->db_node) {
584 smu->db_irq = irq_of_parse_and_map(smu->db_node, 0);
585 if (!smu->db_irq)
586 printk(KERN_ERR "smu: failed to map irq for node %pOF\n",
587 smu->db_node);
588 }
589 if (smu->msg_node) {
590 smu->msg_irq = irq_of_parse_and_map(smu->msg_node, 0);
591 if (!smu->msg_irq)
592 printk(KERN_ERR "smu: failed to map irq for node %pOF\n",
593 smu->msg_node);
594 }
595
596 /*
597 * Try to request the interrupts
598 */
599
600 if (smu->db_irq) {
601 if (request_irq(smu->db_irq, smu_db_intr,
602 IRQF_SHARED, "SMU doorbell", smu) < 0) {
603 printk(KERN_WARNING "SMU: can't "
604 "request interrupt %d\n",
605 smu->db_irq);
606 smu->db_irq = 0;
607 }
608 }
609
610 if (smu->msg_irq) {
611 if (request_irq(smu->msg_irq, smu_msg_intr,
612 IRQF_SHARED, "SMU message", smu) < 0) {
613 printk(KERN_WARNING "SMU: can't "
614 "request interrupt %d\n",
615 smu->msg_irq);
616 smu->msg_irq = 0;
617 }
618 }
619
620 smu_irq_inited = 1;
621 return 0;
622 }
623 /* This has to be before arch_initcall as the low i2c stuff relies on the
624 * above having been done before we reach arch_initcalls
625 */
626 core_initcall(smu_late_init);
627
628 /*
629 * sysfs visibility
630 */
631
smu_expose_childs(struct work_struct * unused)632 static void smu_expose_childs(struct work_struct *unused)
633 {
634 struct device_node *np;
635
636 for_each_child_of_node(smu->of_node, np)
637 if (of_device_is_compatible(np, "smu-sensors"))
638 of_platform_device_create(np, "smu-sensors",
639 &smu->of_dev->dev);
640 }
641
642 static DECLARE_WORK(smu_expose_childs_work, smu_expose_childs);
643
smu_platform_probe(struct platform_device * dev)644 static int smu_platform_probe(struct platform_device* dev)
645 {
646 if (!smu)
647 return -ENODEV;
648 smu->of_dev = dev;
649
650 /*
651 * Ok, we are matched, now expose all i2c busses. We have to defer
652 * that unfortunately or it would deadlock inside the device model
653 */
654 schedule_work(&smu_expose_childs_work);
655
656 return 0;
657 }
658
659 static const struct of_device_id smu_platform_match[] =
660 {
661 {
662 .type = "smu",
663 },
664 {},
665 };
666
667 static struct platform_driver smu_of_platform_driver =
668 {
669 .driver = {
670 .name = "smu",
671 .of_match_table = smu_platform_match,
672 },
673 .probe = smu_platform_probe,
674 };
675
smu_init_sysfs(void)676 static int __init smu_init_sysfs(void)
677 {
678 /*
679 * For now, we don't power manage machines with an SMU chip,
680 * I'm a bit too far from figuring out how that works with those
681 * new chipsets, but that will come back and bite us
682 */
683 platform_driver_register(&smu_of_platform_driver);
684 return 0;
685 }
686
687 device_initcall(smu_init_sysfs);
688
smu_get_ofdev(void)689 struct platform_device *smu_get_ofdev(void)
690 {
691 if (!smu)
692 return NULL;
693 return smu->of_dev;
694 }
695
696 EXPORT_SYMBOL_GPL(smu_get_ofdev);
697
698 /*
699 * i2c interface
700 */
701
smu_i2c_complete_command(struct smu_i2c_cmd * cmd,int fail)702 static void smu_i2c_complete_command(struct smu_i2c_cmd *cmd, int fail)
703 {
704 void (*done)(struct smu_i2c_cmd *cmd, void *misc) = cmd->done;
705 void *misc = cmd->misc;
706 unsigned long flags;
707
708 /* Check for read case */
709 if (!fail && cmd->read) {
710 if (cmd->pdata[0] < 1)
711 fail = 1;
712 else
713 memcpy(cmd->info.data, &cmd->pdata[1],
714 cmd->info.datalen);
715 }
716
717 DPRINTK("SMU: completing, success: %d\n", !fail);
718
719 /* Update status and mark no pending i2c command with lock
720 * held so nobody comes in while we dequeue an eventual
721 * pending next i2c command
722 */
723 spin_lock_irqsave(&smu->lock, flags);
724 smu->cmd_i2c_cur = NULL;
725 wmb();
726 cmd->status = fail ? -EIO : 0;
727
728 /* Is there another i2c command waiting ? */
729 if (!list_empty(&smu->cmd_i2c_list)) {
730 struct smu_i2c_cmd *newcmd;
731
732 /* Fetch it, new current, remove from list */
733 newcmd = list_entry(smu->cmd_i2c_list.next,
734 struct smu_i2c_cmd, link);
735 smu->cmd_i2c_cur = newcmd;
736 list_del(&cmd->link);
737
738 /* Queue with low level smu */
739 list_add_tail(&cmd->scmd.link, &smu->cmd_list);
740 if (smu->cmd_cur == NULL)
741 smu_start_cmd();
742 }
743 spin_unlock_irqrestore(&smu->lock, flags);
744
745 /* Call command completion handler if any */
746 if (done)
747 done(cmd, misc);
748
749 }
750
751
smu_i2c_retry(struct timer_list * unused)752 static void smu_i2c_retry(struct timer_list *unused)
753 {
754 struct smu_i2c_cmd *cmd = smu->cmd_i2c_cur;
755
756 DPRINTK("SMU: i2c failure, requeuing...\n");
757
758 /* requeue command simply by resetting reply_len */
759 cmd->pdata[0] = 0xff;
760 cmd->scmd.reply_len = sizeof(cmd->pdata);
761 smu_queue_cmd(&cmd->scmd);
762 }
763
764
smu_i2c_low_completion(struct smu_cmd * scmd,void * misc)765 static void smu_i2c_low_completion(struct smu_cmd *scmd, void *misc)
766 {
767 struct smu_i2c_cmd *cmd = misc;
768 int fail = 0;
769
770 DPRINTK("SMU: i2c compl. stage=%d status=%x pdata[0]=%x rlen: %x\n",
771 cmd->stage, scmd->status, cmd->pdata[0], scmd->reply_len);
772
773 /* Check for possible status */
774 if (scmd->status < 0)
775 fail = 1;
776 else if (cmd->read) {
777 if (cmd->stage == 0)
778 fail = cmd->pdata[0] != 0;
779 else
780 fail = cmd->pdata[0] >= 0x80;
781 } else {
782 fail = cmd->pdata[0] != 0;
783 }
784
785 /* Handle failures by requeuing command, after 5ms interval
786 */
787 if (fail && --cmd->retries > 0) {
788 DPRINTK("SMU: i2c failure, starting timer...\n");
789 BUG_ON(cmd != smu->cmd_i2c_cur);
790 if (!smu_irq_inited) {
791 mdelay(5);
792 smu_i2c_retry(NULL);
793 return;
794 }
795 mod_timer(&smu->i2c_timer, jiffies + msecs_to_jiffies(5));
796 return;
797 }
798
799 /* If failure or stage 1, command is complete */
800 if (fail || cmd->stage != 0) {
801 smu_i2c_complete_command(cmd, fail);
802 return;
803 }
804
805 DPRINTK("SMU: going to stage 1\n");
806
807 /* Ok, initial command complete, now poll status */
808 scmd->reply_buf = cmd->pdata;
809 scmd->reply_len = sizeof(cmd->pdata);
810 scmd->data_buf = cmd->pdata;
811 scmd->data_len = 1;
812 cmd->pdata[0] = 0;
813 cmd->stage = 1;
814 cmd->retries = 20;
815 smu_queue_cmd(scmd);
816 }
817
818
smu_queue_i2c(struct smu_i2c_cmd * cmd)819 int smu_queue_i2c(struct smu_i2c_cmd *cmd)
820 {
821 unsigned long flags;
822
823 if (smu == NULL)
824 return -ENODEV;
825
826 /* Fill most fields of scmd */
827 cmd->scmd.cmd = SMU_CMD_I2C_COMMAND;
828 cmd->scmd.done = smu_i2c_low_completion;
829 cmd->scmd.misc = cmd;
830 cmd->scmd.reply_buf = cmd->pdata;
831 cmd->scmd.reply_len = sizeof(cmd->pdata);
832 cmd->scmd.data_buf = (u8 *)(char *)&cmd->info;
833 cmd->scmd.status = 1;
834 cmd->stage = 0;
835 cmd->pdata[0] = 0xff;
836 cmd->retries = 20;
837 cmd->status = 1;
838
839 /* Check transfer type, sanitize some "info" fields
840 * based on transfer type and do more checking
841 */
842 cmd->info.caddr = cmd->info.devaddr;
843 cmd->read = cmd->info.devaddr & 0x01;
844 switch(cmd->info.type) {
845 case SMU_I2C_TRANSFER_SIMPLE:
846 cmd->info.sublen = 0;
847 memset(cmd->info.subaddr, 0, sizeof(cmd->info.subaddr));
848 break;
849 case SMU_I2C_TRANSFER_COMBINED:
850 cmd->info.devaddr &= 0xfe;
851 fallthrough;
852 case SMU_I2C_TRANSFER_STDSUB:
853 if (cmd->info.sublen > 3)
854 return -EINVAL;
855 break;
856 default:
857 return -EINVAL;
858 }
859
860 /* Finish setting up command based on transfer direction
861 */
862 if (cmd->read) {
863 if (cmd->info.datalen > SMU_I2C_READ_MAX)
864 return -EINVAL;
865 memset(cmd->info.data, 0xff, cmd->info.datalen);
866 cmd->scmd.data_len = 9;
867 } else {
868 if (cmd->info.datalen > SMU_I2C_WRITE_MAX)
869 return -EINVAL;
870 cmd->scmd.data_len = 9 + cmd->info.datalen;
871 }
872
873 DPRINTK("SMU: i2c enqueuing command\n");
874 DPRINTK("SMU: %s, len=%d bus=%x addr=%x sub0=%x type=%x\n",
875 cmd->read ? "read" : "write", cmd->info.datalen,
876 cmd->info.bus, cmd->info.caddr,
877 cmd->info.subaddr[0], cmd->info.type);
878
879
880 /* Enqueue command in i2c list, and if empty, enqueue also in
881 * main command list
882 */
883 spin_lock_irqsave(&smu->lock, flags);
884 if (smu->cmd_i2c_cur == NULL) {
885 smu->cmd_i2c_cur = cmd;
886 list_add_tail(&cmd->scmd.link, &smu->cmd_list);
887 if (smu->cmd_cur == NULL)
888 smu_start_cmd();
889 } else
890 list_add_tail(&cmd->link, &smu->cmd_i2c_list);
891 spin_unlock_irqrestore(&smu->lock, flags);
892
893 return 0;
894 }
895
896 /*
897 * Handling of "partitions"
898 */
899
smu_read_datablock(u8 * dest,unsigned int addr,unsigned int len)900 static int smu_read_datablock(u8 *dest, unsigned int addr, unsigned int len)
901 {
902 DECLARE_COMPLETION_ONSTACK(comp);
903 unsigned int chunk;
904 struct smu_cmd cmd;
905 int rc;
906 u8 params[8];
907
908 /* We currently use a chunk size of 0xe. We could check the
909 * SMU firmware version and use bigger sizes though
910 */
911 chunk = 0xe;
912
913 while (len) {
914 unsigned int clen = min(len, chunk);
915
916 cmd.cmd = SMU_CMD_MISC_ee_COMMAND;
917 cmd.data_len = 7;
918 cmd.data_buf = params;
919 cmd.reply_len = chunk;
920 cmd.reply_buf = dest;
921 cmd.done = smu_done_complete;
922 cmd.misc = ∁
923 params[0] = SMU_CMD_MISC_ee_GET_DATABLOCK_REC;
924 params[1] = 0x4;
925 *((u32 *)¶ms[2]) = addr;
926 params[6] = clen;
927
928 rc = smu_queue_cmd(&cmd);
929 if (rc)
930 return rc;
931 wait_for_completion(&comp);
932 if (cmd.status != 0)
933 return rc;
934 if (cmd.reply_len != clen) {
935 printk(KERN_DEBUG "SMU: short read in "
936 "smu_read_datablock, got: %d, want: %d\n",
937 cmd.reply_len, clen);
938 return -EIO;
939 }
940 len -= clen;
941 addr += clen;
942 dest += clen;
943 }
944 return 0;
945 }
946
smu_create_sdb_partition(int id)947 static struct smu_sdbp_header *smu_create_sdb_partition(int id)
948 {
949 DECLARE_COMPLETION_ONSTACK(comp);
950 struct smu_simple_cmd cmd;
951 unsigned int addr, len, tlen;
952 struct smu_sdbp_header *hdr;
953 struct property *prop;
954
955 /* First query the partition info */
956 DPRINTK("SMU: Query partition infos ... (irq=%d)\n", smu->db_irq);
957 smu_queue_simple(&cmd, SMU_CMD_PARTITION_COMMAND, 2,
958 smu_done_complete, &comp,
959 SMU_CMD_PARTITION_LATEST, id);
960 wait_for_completion(&comp);
961 DPRINTK("SMU: done, status: %d, reply_len: %d\n",
962 cmd.cmd.status, cmd.cmd.reply_len);
963
964 /* Partition doesn't exist (or other error) */
965 if (cmd.cmd.status != 0 || cmd.cmd.reply_len != 6)
966 return NULL;
967
968 /* Fetch address and length from reply */
969 addr = *((u16 *)cmd.buffer);
970 len = cmd.buffer[3] << 2;
971 /* Calucluate total length to allocate, including the 17 bytes
972 * for "sdb-partition-XX" that we append at the end of the buffer
973 */
974 tlen = sizeof(struct property) + len + 18;
975
976 prop = kzalloc(tlen, GFP_KERNEL);
977 if (prop == NULL)
978 return NULL;
979 hdr = (struct smu_sdbp_header *)(prop + 1);
980 prop->name = ((char *)prop) + tlen - 18;
981 sprintf(prop->name, "sdb-partition-%02x", id);
982 prop->length = len;
983 prop->value = hdr;
984 prop->next = NULL;
985
986 /* Read the datablock */
987 if (smu_read_datablock((u8 *)hdr, addr, len)) {
988 printk(KERN_DEBUG "SMU: datablock read failed while reading "
989 "partition %02x !\n", id);
990 goto failure;
991 }
992
993 /* Got it, check a few things and create the property */
994 if (hdr->id != id) {
995 printk(KERN_DEBUG "SMU: Reading partition %02x and got "
996 "%02x !\n", id, hdr->id);
997 goto failure;
998 }
999 if (of_add_property(smu->of_node, prop)) {
1000 printk(KERN_DEBUG "SMU: Failed creating sdb-partition-%02x "
1001 "property !\n", id);
1002 goto failure;
1003 }
1004
1005 return hdr;
1006 failure:
1007 kfree(prop);
1008 return NULL;
1009 }
1010
1011 /* Note: Only allowed to return error code in pointers (using ERR_PTR)
1012 * when interruptible is 1
1013 */
__smu_get_sdb_partition(int id,unsigned int * size,int interruptible)1014 static const struct smu_sdbp_header *__smu_get_sdb_partition(int id,
1015 unsigned int *size, int interruptible)
1016 {
1017 char pname[32];
1018 const struct smu_sdbp_header *part;
1019
1020 if (!smu)
1021 return NULL;
1022
1023 sprintf(pname, "sdb-partition-%02x", id);
1024
1025 DPRINTK("smu_get_sdb_partition(%02x)\n", id);
1026
1027 if (interruptible) {
1028 int rc;
1029 rc = mutex_lock_interruptible(&smu_part_access);
1030 if (rc)
1031 return ERR_PTR(rc);
1032 } else
1033 mutex_lock(&smu_part_access);
1034
1035 part = of_get_property(smu->of_node, pname, size);
1036 if (part == NULL) {
1037 DPRINTK("trying to extract from SMU ...\n");
1038 part = smu_create_sdb_partition(id);
1039 if (part != NULL && size)
1040 *size = part->len << 2;
1041 }
1042 mutex_unlock(&smu_part_access);
1043 return part;
1044 }
1045
smu_get_sdb_partition(int id,unsigned int * size)1046 const struct smu_sdbp_header *smu_get_sdb_partition(int id, unsigned int *size)
1047 {
1048 return __smu_get_sdb_partition(id, size, 0);
1049 }
1050 EXPORT_SYMBOL(smu_get_sdb_partition);
1051
1052
1053 /*
1054 * Userland driver interface
1055 */
1056
1057
1058 static LIST_HEAD(smu_clist);
1059 static DEFINE_SPINLOCK(smu_clist_lock);
1060
1061 enum smu_file_mode {
1062 smu_file_commands,
1063 smu_file_events,
1064 smu_file_closing
1065 };
1066
1067 struct smu_private
1068 {
1069 struct list_head list;
1070 enum smu_file_mode mode;
1071 int busy;
1072 struct smu_cmd cmd;
1073 spinlock_t lock;
1074 wait_queue_head_t wait;
1075 u8 buffer[SMU_MAX_DATA];
1076 };
1077
1078
smu_open(struct inode * inode,struct file * file)1079 static int smu_open(struct inode *inode, struct file *file)
1080 {
1081 struct smu_private *pp;
1082 unsigned long flags;
1083
1084 pp = kzalloc(sizeof(struct smu_private), GFP_KERNEL);
1085 if (!pp)
1086 return -ENOMEM;
1087 spin_lock_init(&pp->lock);
1088 pp->mode = smu_file_commands;
1089 init_waitqueue_head(&pp->wait);
1090
1091 mutex_lock(&smu_mutex);
1092 spin_lock_irqsave(&smu_clist_lock, flags);
1093 list_add(&pp->list, &smu_clist);
1094 spin_unlock_irqrestore(&smu_clist_lock, flags);
1095 file->private_data = pp;
1096 mutex_unlock(&smu_mutex);
1097
1098 return 0;
1099 }
1100
1101
smu_user_cmd_done(struct smu_cmd * cmd,void * misc)1102 static void smu_user_cmd_done(struct smu_cmd *cmd, void *misc)
1103 {
1104 struct smu_private *pp = misc;
1105
1106 wake_up_all(&pp->wait);
1107 }
1108
1109
smu_write(struct file * file,const char __user * buf,size_t count,loff_t * ppos)1110 static ssize_t smu_write(struct file *file, const char __user *buf,
1111 size_t count, loff_t *ppos)
1112 {
1113 struct smu_private *pp = file->private_data;
1114 unsigned long flags;
1115 struct smu_user_cmd_hdr hdr;
1116 int rc = 0;
1117
1118 if (pp->busy)
1119 return -EBUSY;
1120 else if (copy_from_user(&hdr, buf, sizeof(hdr)))
1121 return -EFAULT;
1122 else if (hdr.cmdtype == SMU_CMDTYPE_WANTS_EVENTS) {
1123 pp->mode = smu_file_events;
1124 return 0;
1125 } else if (hdr.cmdtype == SMU_CMDTYPE_GET_PARTITION) {
1126 const struct smu_sdbp_header *part;
1127 part = __smu_get_sdb_partition(hdr.cmd, NULL, 1);
1128 if (part == NULL)
1129 return -EINVAL;
1130 else if (IS_ERR(part))
1131 return PTR_ERR(part);
1132 return 0;
1133 } else if (hdr.cmdtype != SMU_CMDTYPE_SMU)
1134 return -EINVAL;
1135 else if (pp->mode != smu_file_commands)
1136 return -EBADFD;
1137 else if (hdr.data_len > SMU_MAX_DATA)
1138 return -EINVAL;
1139
1140 spin_lock_irqsave(&pp->lock, flags);
1141 if (pp->busy) {
1142 spin_unlock_irqrestore(&pp->lock, flags);
1143 return -EBUSY;
1144 }
1145 pp->busy = 1;
1146 pp->cmd.status = 1;
1147 spin_unlock_irqrestore(&pp->lock, flags);
1148
1149 if (copy_from_user(pp->buffer, buf + sizeof(hdr), hdr.data_len)) {
1150 pp->busy = 0;
1151 return -EFAULT;
1152 }
1153
1154 pp->cmd.cmd = hdr.cmd;
1155 pp->cmd.data_len = hdr.data_len;
1156 pp->cmd.reply_len = SMU_MAX_DATA;
1157 pp->cmd.data_buf = pp->buffer;
1158 pp->cmd.reply_buf = pp->buffer;
1159 pp->cmd.done = smu_user_cmd_done;
1160 pp->cmd.misc = pp;
1161 rc = smu_queue_cmd(&pp->cmd);
1162 if (rc < 0)
1163 return rc;
1164 return count;
1165 }
1166
1167
smu_read_command(struct file * file,struct smu_private * pp,char __user * buf,size_t count)1168 static ssize_t smu_read_command(struct file *file, struct smu_private *pp,
1169 char __user *buf, size_t count)
1170 {
1171 DECLARE_WAITQUEUE(wait, current);
1172 struct smu_user_reply_hdr hdr;
1173 unsigned long flags;
1174 int size, rc = 0;
1175
1176 if (!pp->busy)
1177 return 0;
1178 if (count < sizeof(struct smu_user_reply_hdr))
1179 return -EOVERFLOW;
1180 spin_lock_irqsave(&pp->lock, flags);
1181 if (pp->cmd.status == 1) {
1182 if (file->f_flags & O_NONBLOCK) {
1183 spin_unlock_irqrestore(&pp->lock, flags);
1184 return -EAGAIN;
1185 }
1186 add_wait_queue(&pp->wait, &wait);
1187 for (;;) {
1188 set_current_state(TASK_INTERRUPTIBLE);
1189 rc = 0;
1190 if (pp->cmd.status != 1)
1191 break;
1192 rc = -ERESTARTSYS;
1193 if (signal_pending(current))
1194 break;
1195 spin_unlock_irqrestore(&pp->lock, flags);
1196 schedule();
1197 spin_lock_irqsave(&pp->lock, flags);
1198 }
1199 set_current_state(TASK_RUNNING);
1200 remove_wait_queue(&pp->wait, &wait);
1201 }
1202 spin_unlock_irqrestore(&pp->lock, flags);
1203 if (rc)
1204 return rc;
1205 if (pp->cmd.status != 0)
1206 pp->cmd.reply_len = 0;
1207 size = sizeof(hdr) + pp->cmd.reply_len;
1208 if (count < size)
1209 size = count;
1210 rc = size;
1211 hdr.status = pp->cmd.status;
1212 hdr.reply_len = pp->cmd.reply_len;
1213 if (copy_to_user(buf, &hdr, sizeof(hdr)))
1214 return -EFAULT;
1215 size -= sizeof(hdr);
1216 if (size && copy_to_user(buf + sizeof(hdr), pp->buffer, size))
1217 return -EFAULT;
1218 pp->busy = 0;
1219
1220 return rc;
1221 }
1222
1223
smu_read_events(struct file * file,struct smu_private * pp,char __user * buf,size_t count)1224 static ssize_t smu_read_events(struct file *file, struct smu_private *pp,
1225 char __user *buf, size_t count)
1226 {
1227 /* Not implemented */
1228 msleep_interruptible(1000);
1229 return 0;
1230 }
1231
1232
smu_read(struct file * file,char __user * buf,size_t count,loff_t * ppos)1233 static ssize_t smu_read(struct file *file, char __user *buf,
1234 size_t count, loff_t *ppos)
1235 {
1236 struct smu_private *pp = file->private_data;
1237
1238 if (pp->mode == smu_file_commands)
1239 return smu_read_command(file, pp, buf, count);
1240 if (pp->mode == smu_file_events)
1241 return smu_read_events(file, pp, buf, count);
1242
1243 return -EBADFD;
1244 }
1245
smu_fpoll(struct file * file,poll_table * wait)1246 static __poll_t smu_fpoll(struct file *file, poll_table *wait)
1247 {
1248 struct smu_private *pp = file->private_data;
1249 __poll_t mask = 0;
1250 unsigned long flags;
1251
1252 if (!pp)
1253 return 0;
1254
1255 if (pp->mode == smu_file_commands) {
1256 poll_wait(file, &pp->wait, wait);
1257
1258 spin_lock_irqsave(&pp->lock, flags);
1259 if (pp->busy && pp->cmd.status != 1)
1260 mask |= EPOLLIN;
1261 spin_unlock_irqrestore(&pp->lock, flags);
1262 }
1263 if (pp->mode == smu_file_events) {
1264 /* Not yet implemented */
1265 }
1266 return mask;
1267 }
1268
smu_release(struct inode * inode,struct file * file)1269 static int smu_release(struct inode *inode, struct file *file)
1270 {
1271 struct smu_private *pp = file->private_data;
1272 unsigned long flags;
1273 unsigned int busy;
1274
1275 if (!pp)
1276 return 0;
1277
1278 file->private_data = NULL;
1279
1280 /* Mark file as closing to avoid races with new request */
1281 spin_lock_irqsave(&pp->lock, flags);
1282 pp->mode = smu_file_closing;
1283 busy = pp->busy;
1284
1285 /* Wait for any pending request to complete */
1286 if (busy && pp->cmd.status == 1) {
1287 DECLARE_WAITQUEUE(wait, current);
1288
1289 add_wait_queue(&pp->wait, &wait);
1290 for (;;) {
1291 set_current_state(TASK_UNINTERRUPTIBLE);
1292 if (pp->cmd.status != 1)
1293 break;
1294 spin_unlock_irqrestore(&pp->lock, flags);
1295 schedule();
1296 spin_lock_irqsave(&pp->lock, flags);
1297 }
1298 set_current_state(TASK_RUNNING);
1299 remove_wait_queue(&pp->wait, &wait);
1300 }
1301 spin_unlock_irqrestore(&pp->lock, flags);
1302
1303 spin_lock_irqsave(&smu_clist_lock, flags);
1304 list_del(&pp->list);
1305 spin_unlock_irqrestore(&smu_clist_lock, flags);
1306 kfree(pp);
1307
1308 return 0;
1309 }
1310
1311
1312 static const struct file_operations smu_device_fops = {
1313 .read = smu_read,
1314 .write = smu_write,
1315 .poll = smu_fpoll,
1316 .open = smu_open,
1317 .release = smu_release,
1318 };
1319
1320 static struct miscdevice pmu_device = {
1321 MISC_DYNAMIC_MINOR, "smu", &smu_device_fops
1322 };
1323
smu_device_init(void)1324 static int smu_device_init(void)
1325 {
1326 if (!smu)
1327 return -ENODEV;
1328 if (misc_register(&pmu_device) < 0)
1329 printk(KERN_ERR "via-pmu: cannot register misc device.\n");
1330 return 0;
1331 }
1332 device_initcall(smu_device_init);
1333