1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Copyright (C) 2003 Jana Saout <[email protected]>
4 * Copyright (C) 2004 Clemens Fruhwirth <[email protected]>
5 * Copyright (C) 2006-2020 Red Hat, Inc. All rights reserved.
6 * Copyright (C) 2013-2020 Milan Broz <[email protected]>
7 *
8 * This file is released under the GPL.
9 */
10
11 #include <linux/completion.h>
12 #include <linux/err.h>
13 #include <linux/module.h>
14 #include <linux/init.h>
15 #include <linux/kernel.h>
16 #include <linux/key.h>
17 #include <linux/bio.h>
18 #include <linux/blkdev.h>
19 #include <linux/blk-integrity.h>
20 #include <linux/mempool.h>
21 #include <linux/slab.h>
22 #include <linux/crypto.h>
23 #include <linux/workqueue.h>
24 #include <linux/kthread.h>
25 #include <linux/backing-dev.h>
26 #include <linux/atomic.h>
27 #include <linux/scatterlist.h>
28 #include <linux/rbtree.h>
29 #include <linux/ctype.h>
30 #include <asm/page.h>
31 #include <linux/unaligned.h>
32 #include <crypto/hash.h>
33 #include <crypto/md5.h>
34 #include <crypto/skcipher.h>
35 #include <crypto/aead.h>
36 #include <crypto/authenc.h>
37 #include <crypto/utils.h>
38 #include <linux/rtnetlink.h> /* for struct rtattr and RTA macros only */
39 #include <linux/key-type.h>
40 #include <keys/user-type.h>
41 #include <keys/encrypted-type.h>
42 #include <keys/trusted-type.h>
43
44 #include <linux/device-mapper.h>
45
46 #include "dm-audit.h"
47
48 #define DM_MSG_PREFIX "crypt"
49
50 static DEFINE_IDA(workqueue_ida);
51
52 /*
53 * context holding the current state of a multi-part conversion
54 */
55 struct convert_context {
56 struct completion restart;
57 struct bio *bio_in;
58 struct bvec_iter iter_in;
59 struct bio *bio_out;
60 struct bvec_iter iter_out;
61 atomic_t cc_pending;
62 unsigned int tag_offset;
63 u64 cc_sector;
64 union {
65 struct skcipher_request *req;
66 struct aead_request *req_aead;
67 } r;
68 bool aead_recheck;
69 bool aead_failed;
70
71 };
72
73 /*
74 * per bio private data
75 */
76 struct dm_crypt_io {
77 struct crypt_config *cc;
78 struct bio *base_bio;
79 u8 *integrity_metadata;
80 bool integrity_metadata_from_pool:1;
81
82 struct work_struct work;
83
84 struct convert_context ctx;
85
86 atomic_t io_pending;
87 blk_status_t error;
88 sector_t sector;
89
90 struct bvec_iter saved_bi_iter;
91
92 struct rb_node rb_node;
93 } CRYPTO_MINALIGN_ATTR;
94
95 struct dm_crypt_request {
96 struct convert_context *ctx;
97 struct scatterlist sg_in[4];
98 struct scatterlist sg_out[4];
99 u64 iv_sector;
100 };
101
102 struct crypt_config;
103
104 struct crypt_iv_operations {
105 int (*ctr)(struct crypt_config *cc, struct dm_target *ti,
106 const char *opts);
107 void (*dtr)(struct crypt_config *cc);
108 int (*init)(struct crypt_config *cc);
109 int (*wipe)(struct crypt_config *cc);
110 int (*generator)(struct crypt_config *cc, u8 *iv,
111 struct dm_crypt_request *dmreq);
112 int (*post)(struct crypt_config *cc, u8 *iv,
113 struct dm_crypt_request *dmreq);
114 };
115
116 struct iv_benbi_private {
117 int shift;
118 };
119
120 #define LMK_SEED_SIZE 64 /* hash + 0 */
121 struct iv_lmk_private {
122 struct crypto_shash *hash_tfm;
123 u8 *seed;
124 };
125
126 #define TCW_WHITENING_SIZE 16
127 struct iv_tcw_private {
128 struct crypto_shash *crc32_tfm;
129 u8 *iv_seed;
130 u8 *whitening;
131 };
132
133 #define ELEPHANT_MAX_KEY_SIZE 32
134 struct iv_elephant_private {
135 struct crypto_skcipher *tfm;
136 };
137
138 /*
139 * Crypt: maps a linear range of a block device
140 * and encrypts / decrypts at the same time.
141 */
142 enum flags { DM_CRYPT_SUSPENDED, DM_CRYPT_KEY_VALID,
143 DM_CRYPT_SAME_CPU, DM_CRYPT_HIGH_PRIORITY,
144 DM_CRYPT_NO_OFFLOAD, DM_CRYPT_NO_READ_WORKQUEUE,
145 DM_CRYPT_NO_WRITE_WORKQUEUE, DM_CRYPT_WRITE_INLINE };
146
147 enum cipher_flags {
148 CRYPT_MODE_INTEGRITY_AEAD, /* Use authenticated mode for cipher */
149 CRYPT_IV_LARGE_SECTORS, /* Calculate IV from sector_size, not 512B sectors */
150 CRYPT_ENCRYPT_PREPROCESS, /* Must preprocess data for encryption (elephant) */
151 CRYPT_KEY_MAC_SIZE_SET, /* The integrity_key_size option was used */
152 };
153
154 /*
155 * The fields in here must be read only after initialization.
156 */
157 struct crypt_config {
158 struct dm_dev *dev;
159 sector_t start;
160
161 struct percpu_counter n_allocated_pages;
162
163 struct workqueue_struct *io_queue;
164 struct workqueue_struct *crypt_queue;
165
166 spinlock_t write_thread_lock;
167 struct task_struct *write_thread;
168 struct rb_root write_tree;
169
170 char *cipher_string;
171 char *cipher_auth;
172 char *key_string;
173
174 const struct crypt_iv_operations *iv_gen_ops;
175 union {
176 struct iv_benbi_private benbi;
177 struct iv_lmk_private lmk;
178 struct iv_tcw_private tcw;
179 struct iv_elephant_private elephant;
180 } iv_gen_private;
181 u64 iv_offset;
182 unsigned int iv_size;
183 unsigned short sector_size;
184 unsigned char sector_shift;
185
186 union {
187 struct crypto_skcipher **tfms;
188 struct crypto_aead **tfms_aead;
189 } cipher_tfm;
190 unsigned int tfms_count;
191 int workqueue_id;
192 unsigned long cipher_flags;
193
194 /*
195 * Layout of each crypto request:
196 *
197 * struct skcipher_request
198 * context
199 * padding
200 * struct dm_crypt_request
201 * padding
202 * IV
203 *
204 * The padding is added so that dm_crypt_request and the IV are
205 * correctly aligned.
206 */
207 unsigned int dmreq_start;
208
209 unsigned int per_bio_data_size;
210
211 unsigned long flags;
212 unsigned int key_size;
213 unsigned int key_parts; /* independent parts in key buffer */
214 unsigned int key_extra_size; /* additional keys length */
215 unsigned int key_mac_size; /* MAC key size for authenc(...) */
216
217 unsigned int integrity_tag_size;
218 unsigned int integrity_iv_size;
219 unsigned int used_tag_size;
220 unsigned int tuple_size;
221
222 /*
223 * pool for per bio private data, crypto requests,
224 * encryption requeusts/buffer pages and integrity tags
225 */
226 unsigned int tag_pool_max_sectors;
227 mempool_t tag_pool;
228 mempool_t req_pool;
229 mempool_t page_pool;
230
231 struct bio_set bs;
232 struct mutex bio_alloc_lock;
233
234 u8 *authenc_key; /* space for keys in authenc() format (if used) */
235 u8 key[] __counted_by(key_size);
236 };
237
238 #define MIN_IOS 64
239 #define MAX_TAG_SIZE 480
240 #define POOL_ENTRY_SIZE 512
241
242 static DEFINE_SPINLOCK(dm_crypt_clients_lock);
243 static unsigned int dm_crypt_clients_n;
244 static volatile unsigned long dm_crypt_pages_per_client;
245 #define DM_CRYPT_MEMORY_PERCENT 2
246 #define DM_CRYPT_MIN_PAGES_PER_CLIENT (BIO_MAX_VECS * 16)
247 #define DM_CRYPT_DEFAULT_MAX_READ_SIZE 131072
248 #define DM_CRYPT_DEFAULT_MAX_WRITE_SIZE 131072
249
250 static unsigned int max_read_size = 0;
251 module_param(max_read_size, uint, 0644);
252 MODULE_PARM_DESC(max_read_size, "Maximum size of a read request");
253 static unsigned int max_write_size = 0;
254 module_param(max_write_size, uint, 0644);
255 MODULE_PARM_DESC(max_write_size, "Maximum size of a write request");
get_max_request_size(struct crypt_config * cc,bool wrt)256 static unsigned get_max_request_size(struct crypt_config *cc, bool wrt)
257 {
258 unsigned val, sector_align;
259 val = !wrt ? READ_ONCE(max_read_size) : READ_ONCE(max_write_size);
260 if (likely(!val))
261 val = !wrt ? DM_CRYPT_DEFAULT_MAX_READ_SIZE : DM_CRYPT_DEFAULT_MAX_WRITE_SIZE;
262 if (wrt || cc->used_tag_size) {
263 if (unlikely(val > BIO_MAX_VECS << PAGE_SHIFT))
264 val = BIO_MAX_VECS << PAGE_SHIFT;
265 }
266 sector_align = max(bdev_logical_block_size(cc->dev->bdev), (unsigned)cc->sector_size);
267 val = round_down(val, sector_align);
268 if (unlikely(!val))
269 val = sector_align;
270 return val >> SECTOR_SHIFT;
271 }
272
273 static void crypt_endio(struct bio *clone);
274 static void kcryptd_queue_crypt(struct dm_crypt_io *io);
275 static struct scatterlist *crypt_get_sg_data(struct crypt_config *cc,
276 struct scatterlist *sg);
277
278 static bool crypt_integrity_aead(struct crypt_config *cc);
279
280 /*
281 * Use this to access cipher attributes that are independent of the key.
282 */
any_tfm(struct crypt_config * cc)283 static struct crypto_skcipher *any_tfm(struct crypt_config *cc)
284 {
285 return cc->cipher_tfm.tfms[0];
286 }
287
any_tfm_aead(struct crypt_config * cc)288 static struct crypto_aead *any_tfm_aead(struct crypt_config *cc)
289 {
290 return cc->cipher_tfm.tfms_aead[0];
291 }
292
293 /*
294 * Different IV generation algorithms:
295 *
296 * plain: the initial vector is the 32-bit little-endian version of the sector
297 * number, padded with zeros if necessary.
298 *
299 * plain64: the initial vector is the 64-bit little-endian version of the sector
300 * number, padded with zeros if necessary.
301 *
302 * plain64be: the initial vector is the 64-bit big-endian version of the sector
303 * number, padded with zeros if necessary.
304 *
305 * essiv: "encrypted sector|salt initial vector", the sector number is
306 * encrypted with the bulk cipher using a salt as key. The salt
307 * should be derived from the bulk cipher's key via hashing.
308 *
309 * benbi: the 64-bit "big-endian 'narrow block'-count", starting at 1
310 * (needed for LRW-32-AES and possible other narrow block modes)
311 *
312 * null: the initial vector is always zero. Provides compatibility with
313 * obsolete loop_fish2 devices. Do not use for new devices.
314 *
315 * lmk: Compatible implementation of the block chaining mode used
316 * by the Loop-AES block device encryption system
317 * designed by Jari Ruusu. See http://loop-aes.sourceforge.net/
318 * It operates on full 512 byte sectors and uses CBC
319 * with an IV derived from the sector number, the data and
320 * optionally extra IV seed.
321 * This means that after decryption the first block
322 * of sector must be tweaked according to decrypted data.
323 * Loop-AES can use three encryption schemes:
324 * version 1: is plain aes-cbc mode
325 * version 2: uses 64 multikey scheme with lmk IV generator
326 * version 3: the same as version 2 with additional IV seed
327 * (it uses 65 keys, last key is used as IV seed)
328 *
329 * tcw: Compatible implementation of the block chaining mode used
330 * by the TrueCrypt device encryption system (prior to version 4.1).
331 * For more info see: https://gitlab.com/cryptsetup/cryptsetup/wikis/TrueCryptOnDiskFormat
332 * It operates on full 512 byte sectors and uses CBC
333 * with an IV derived from initial key and the sector number.
334 * In addition, whitening value is applied on every sector, whitening
335 * is calculated from initial key, sector number and mixed using CRC32.
336 * Note that this encryption scheme is vulnerable to watermarking attacks
337 * and should be used for old compatible containers access only.
338 *
339 * eboiv: Encrypted byte-offset IV (used in Bitlocker in CBC mode)
340 * The IV is encrypted little-endian byte-offset (with the same key
341 * and cipher as the volume).
342 *
343 * elephant: The extended version of eboiv with additional Elephant diffuser
344 * used with Bitlocker CBC mode.
345 * This mode was used in older Windows systems
346 * https://download.microsoft.com/download/0/2/3/0238acaf-d3bf-4a6d-b3d6-0a0be4bbb36e/bitlockercipher200608.pdf
347 */
348
crypt_iv_plain_gen(struct crypt_config * cc,u8 * iv,struct dm_crypt_request * dmreq)349 static int crypt_iv_plain_gen(struct crypt_config *cc, u8 *iv,
350 struct dm_crypt_request *dmreq)
351 {
352 memset(iv, 0, cc->iv_size);
353 *(__le32 *)iv = cpu_to_le32(dmreq->iv_sector & 0xffffffff);
354
355 return 0;
356 }
357
crypt_iv_plain64_gen(struct crypt_config * cc,u8 * iv,struct dm_crypt_request * dmreq)358 static int crypt_iv_plain64_gen(struct crypt_config *cc, u8 *iv,
359 struct dm_crypt_request *dmreq)
360 {
361 memset(iv, 0, cc->iv_size);
362 *(__le64 *)iv = cpu_to_le64(dmreq->iv_sector);
363
364 return 0;
365 }
366
crypt_iv_plain64be_gen(struct crypt_config * cc,u8 * iv,struct dm_crypt_request * dmreq)367 static int crypt_iv_plain64be_gen(struct crypt_config *cc, u8 *iv,
368 struct dm_crypt_request *dmreq)
369 {
370 memset(iv, 0, cc->iv_size);
371 /* iv_size is at least of size u64; usually it is 16 bytes */
372 *(__be64 *)&iv[cc->iv_size - sizeof(u64)] = cpu_to_be64(dmreq->iv_sector);
373
374 return 0;
375 }
376
crypt_iv_essiv_gen(struct crypt_config * cc,u8 * iv,struct dm_crypt_request * dmreq)377 static int crypt_iv_essiv_gen(struct crypt_config *cc, u8 *iv,
378 struct dm_crypt_request *dmreq)
379 {
380 /*
381 * ESSIV encryption of the IV is now handled by the crypto API,
382 * so just pass the plain sector number here.
383 */
384 memset(iv, 0, cc->iv_size);
385 *(__le64 *)iv = cpu_to_le64(dmreq->iv_sector);
386
387 return 0;
388 }
389
crypt_iv_benbi_ctr(struct crypt_config * cc,struct dm_target * ti,const char * opts)390 static int crypt_iv_benbi_ctr(struct crypt_config *cc, struct dm_target *ti,
391 const char *opts)
392 {
393 unsigned int bs;
394 int log;
395
396 if (crypt_integrity_aead(cc))
397 bs = crypto_aead_blocksize(any_tfm_aead(cc));
398 else
399 bs = crypto_skcipher_blocksize(any_tfm(cc));
400 log = ilog2(bs);
401
402 /*
403 * We need to calculate how far we must shift the sector count
404 * to get the cipher block count, we use this shift in _gen.
405 */
406 if (1 << log != bs) {
407 ti->error = "cypher blocksize is not a power of 2";
408 return -EINVAL;
409 }
410
411 if (log > 9) {
412 ti->error = "cypher blocksize is > 512";
413 return -EINVAL;
414 }
415
416 cc->iv_gen_private.benbi.shift = 9 - log;
417
418 return 0;
419 }
420
crypt_iv_benbi_dtr(struct crypt_config * cc)421 static void crypt_iv_benbi_dtr(struct crypt_config *cc)
422 {
423 }
424
crypt_iv_benbi_gen(struct crypt_config * cc,u8 * iv,struct dm_crypt_request * dmreq)425 static int crypt_iv_benbi_gen(struct crypt_config *cc, u8 *iv,
426 struct dm_crypt_request *dmreq)
427 {
428 __be64 val;
429
430 memset(iv, 0, cc->iv_size - sizeof(u64)); /* rest is cleared below */
431
432 val = cpu_to_be64(((u64)dmreq->iv_sector << cc->iv_gen_private.benbi.shift) + 1);
433 put_unaligned(val, (__be64 *)(iv + cc->iv_size - sizeof(u64)));
434
435 return 0;
436 }
437
crypt_iv_null_gen(struct crypt_config * cc,u8 * iv,struct dm_crypt_request * dmreq)438 static int crypt_iv_null_gen(struct crypt_config *cc, u8 *iv,
439 struct dm_crypt_request *dmreq)
440 {
441 memset(iv, 0, cc->iv_size);
442
443 return 0;
444 }
445
crypt_iv_lmk_dtr(struct crypt_config * cc)446 static void crypt_iv_lmk_dtr(struct crypt_config *cc)
447 {
448 struct iv_lmk_private *lmk = &cc->iv_gen_private.lmk;
449
450 if (lmk->hash_tfm && !IS_ERR(lmk->hash_tfm))
451 crypto_free_shash(lmk->hash_tfm);
452 lmk->hash_tfm = NULL;
453
454 kfree_sensitive(lmk->seed);
455 lmk->seed = NULL;
456 }
457
crypt_iv_lmk_ctr(struct crypt_config * cc,struct dm_target * ti,const char * opts)458 static int crypt_iv_lmk_ctr(struct crypt_config *cc, struct dm_target *ti,
459 const char *opts)
460 {
461 struct iv_lmk_private *lmk = &cc->iv_gen_private.lmk;
462
463 if (cc->sector_size != (1 << SECTOR_SHIFT)) {
464 ti->error = "Unsupported sector size for LMK";
465 return -EINVAL;
466 }
467
468 lmk->hash_tfm = crypto_alloc_shash("md5", 0,
469 CRYPTO_ALG_ALLOCATES_MEMORY);
470 if (IS_ERR(lmk->hash_tfm)) {
471 ti->error = "Error initializing LMK hash";
472 return PTR_ERR(lmk->hash_tfm);
473 }
474
475 /* No seed in LMK version 2 */
476 if (cc->key_parts == cc->tfms_count) {
477 lmk->seed = NULL;
478 return 0;
479 }
480
481 lmk->seed = kzalloc(LMK_SEED_SIZE, GFP_KERNEL);
482 if (!lmk->seed) {
483 crypt_iv_lmk_dtr(cc);
484 ti->error = "Error kmallocing seed storage in LMK";
485 return -ENOMEM;
486 }
487
488 return 0;
489 }
490
crypt_iv_lmk_init(struct crypt_config * cc)491 static int crypt_iv_lmk_init(struct crypt_config *cc)
492 {
493 struct iv_lmk_private *lmk = &cc->iv_gen_private.lmk;
494 int subkey_size = cc->key_size / cc->key_parts;
495
496 /* LMK seed is on the position of LMK_KEYS + 1 key */
497 if (lmk->seed)
498 memcpy(lmk->seed, cc->key + (cc->tfms_count * subkey_size),
499 crypto_shash_digestsize(lmk->hash_tfm));
500
501 return 0;
502 }
503
crypt_iv_lmk_wipe(struct crypt_config * cc)504 static int crypt_iv_lmk_wipe(struct crypt_config *cc)
505 {
506 struct iv_lmk_private *lmk = &cc->iv_gen_private.lmk;
507
508 if (lmk->seed)
509 memset(lmk->seed, 0, LMK_SEED_SIZE);
510
511 return 0;
512 }
513
crypt_iv_lmk_one(struct crypt_config * cc,u8 * iv,struct dm_crypt_request * dmreq,u8 * data)514 static int crypt_iv_lmk_one(struct crypt_config *cc, u8 *iv,
515 struct dm_crypt_request *dmreq,
516 u8 *data)
517 {
518 struct iv_lmk_private *lmk = &cc->iv_gen_private.lmk;
519 SHASH_DESC_ON_STACK(desc, lmk->hash_tfm);
520 struct md5_state md5state;
521 __le32 buf[4];
522 int i, r;
523
524 desc->tfm = lmk->hash_tfm;
525
526 r = crypto_shash_init(desc);
527 if (r)
528 return r;
529
530 if (lmk->seed) {
531 r = crypto_shash_update(desc, lmk->seed, LMK_SEED_SIZE);
532 if (r)
533 return r;
534 }
535
536 /* Sector is always 512B, block size 16, add data of blocks 1-31 */
537 r = crypto_shash_update(desc, data + 16, 16 * 31);
538 if (r)
539 return r;
540
541 /* Sector is cropped to 56 bits here */
542 buf[0] = cpu_to_le32(dmreq->iv_sector & 0xFFFFFFFF);
543 buf[1] = cpu_to_le32((((u64)dmreq->iv_sector >> 32) & 0x00FFFFFF) | 0x80000000);
544 buf[2] = cpu_to_le32(4024);
545 buf[3] = 0;
546 r = crypto_shash_update(desc, (u8 *)buf, sizeof(buf));
547 if (r)
548 return r;
549
550 /* No MD5 padding here */
551 r = crypto_shash_export(desc, &md5state);
552 if (r)
553 return r;
554
555 for (i = 0; i < MD5_HASH_WORDS; i++)
556 __cpu_to_le32s(&md5state.hash[i]);
557 memcpy(iv, &md5state.hash, cc->iv_size);
558
559 return 0;
560 }
561
crypt_iv_lmk_gen(struct crypt_config * cc,u8 * iv,struct dm_crypt_request * dmreq)562 static int crypt_iv_lmk_gen(struct crypt_config *cc, u8 *iv,
563 struct dm_crypt_request *dmreq)
564 {
565 struct scatterlist *sg;
566 u8 *src;
567 int r = 0;
568
569 if (bio_data_dir(dmreq->ctx->bio_in) == WRITE) {
570 sg = crypt_get_sg_data(cc, dmreq->sg_in);
571 src = kmap_local_page(sg_page(sg));
572 r = crypt_iv_lmk_one(cc, iv, dmreq, src + sg->offset);
573 kunmap_local(src);
574 } else
575 memset(iv, 0, cc->iv_size);
576
577 return r;
578 }
579
crypt_iv_lmk_post(struct crypt_config * cc,u8 * iv,struct dm_crypt_request * dmreq)580 static int crypt_iv_lmk_post(struct crypt_config *cc, u8 *iv,
581 struct dm_crypt_request *dmreq)
582 {
583 struct scatterlist *sg;
584 u8 *dst;
585 int r;
586
587 if (bio_data_dir(dmreq->ctx->bio_in) == WRITE)
588 return 0;
589
590 sg = crypt_get_sg_data(cc, dmreq->sg_out);
591 dst = kmap_local_page(sg_page(sg));
592 r = crypt_iv_lmk_one(cc, iv, dmreq, dst + sg->offset);
593
594 /* Tweak the first block of plaintext sector */
595 if (!r)
596 crypto_xor(dst + sg->offset, iv, cc->iv_size);
597
598 kunmap_local(dst);
599 return r;
600 }
601
crypt_iv_tcw_dtr(struct crypt_config * cc)602 static void crypt_iv_tcw_dtr(struct crypt_config *cc)
603 {
604 struct iv_tcw_private *tcw = &cc->iv_gen_private.tcw;
605
606 kfree_sensitive(tcw->iv_seed);
607 tcw->iv_seed = NULL;
608 kfree_sensitive(tcw->whitening);
609 tcw->whitening = NULL;
610
611 if (tcw->crc32_tfm && !IS_ERR(tcw->crc32_tfm))
612 crypto_free_shash(tcw->crc32_tfm);
613 tcw->crc32_tfm = NULL;
614 }
615
crypt_iv_tcw_ctr(struct crypt_config * cc,struct dm_target * ti,const char * opts)616 static int crypt_iv_tcw_ctr(struct crypt_config *cc, struct dm_target *ti,
617 const char *opts)
618 {
619 struct iv_tcw_private *tcw = &cc->iv_gen_private.tcw;
620
621 if (cc->sector_size != (1 << SECTOR_SHIFT)) {
622 ti->error = "Unsupported sector size for TCW";
623 return -EINVAL;
624 }
625
626 if (cc->key_size <= (cc->iv_size + TCW_WHITENING_SIZE)) {
627 ti->error = "Wrong key size for TCW";
628 return -EINVAL;
629 }
630
631 tcw->crc32_tfm = crypto_alloc_shash("crc32", 0,
632 CRYPTO_ALG_ALLOCATES_MEMORY);
633 if (IS_ERR(tcw->crc32_tfm)) {
634 ti->error = "Error initializing CRC32 in TCW";
635 return PTR_ERR(tcw->crc32_tfm);
636 }
637
638 tcw->iv_seed = kzalloc(cc->iv_size, GFP_KERNEL);
639 tcw->whitening = kzalloc(TCW_WHITENING_SIZE, GFP_KERNEL);
640 if (!tcw->iv_seed || !tcw->whitening) {
641 crypt_iv_tcw_dtr(cc);
642 ti->error = "Error allocating seed storage in TCW";
643 return -ENOMEM;
644 }
645
646 return 0;
647 }
648
crypt_iv_tcw_init(struct crypt_config * cc)649 static int crypt_iv_tcw_init(struct crypt_config *cc)
650 {
651 struct iv_tcw_private *tcw = &cc->iv_gen_private.tcw;
652 int key_offset = cc->key_size - cc->iv_size - TCW_WHITENING_SIZE;
653
654 memcpy(tcw->iv_seed, &cc->key[key_offset], cc->iv_size);
655 memcpy(tcw->whitening, &cc->key[key_offset + cc->iv_size],
656 TCW_WHITENING_SIZE);
657
658 return 0;
659 }
660
crypt_iv_tcw_wipe(struct crypt_config * cc)661 static int crypt_iv_tcw_wipe(struct crypt_config *cc)
662 {
663 struct iv_tcw_private *tcw = &cc->iv_gen_private.tcw;
664
665 memset(tcw->iv_seed, 0, cc->iv_size);
666 memset(tcw->whitening, 0, TCW_WHITENING_SIZE);
667
668 return 0;
669 }
670
crypt_iv_tcw_whitening(struct crypt_config * cc,struct dm_crypt_request * dmreq,u8 * data)671 static int crypt_iv_tcw_whitening(struct crypt_config *cc,
672 struct dm_crypt_request *dmreq,
673 u8 *data)
674 {
675 struct iv_tcw_private *tcw = &cc->iv_gen_private.tcw;
676 __le64 sector = cpu_to_le64(dmreq->iv_sector);
677 u8 buf[TCW_WHITENING_SIZE];
678 SHASH_DESC_ON_STACK(desc, tcw->crc32_tfm);
679 int i, r;
680
681 /* xor whitening with sector number */
682 crypto_xor_cpy(buf, tcw->whitening, (u8 *)§or, 8);
683 crypto_xor_cpy(&buf[8], tcw->whitening + 8, (u8 *)§or, 8);
684
685 /* calculate crc32 for every 32bit part and xor it */
686 desc->tfm = tcw->crc32_tfm;
687 for (i = 0; i < 4; i++) {
688 r = crypto_shash_digest(desc, &buf[i * 4], 4, &buf[i * 4]);
689 if (r)
690 goto out;
691 }
692 crypto_xor(&buf[0], &buf[12], 4);
693 crypto_xor(&buf[4], &buf[8], 4);
694
695 /* apply whitening (8 bytes) to whole sector */
696 for (i = 0; i < ((1 << SECTOR_SHIFT) / 8); i++)
697 crypto_xor(data + i * 8, buf, 8);
698 out:
699 memzero_explicit(buf, sizeof(buf));
700 return r;
701 }
702
crypt_iv_tcw_gen(struct crypt_config * cc,u8 * iv,struct dm_crypt_request * dmreq)703 static int crypt_iv_tcw_gen(struct crypt_config *cc, u8 *iv,
704 struct dm_crypt_request *dmreq)
705 {
706 struct scatterlist *sg;
707 struct iv_tcw_private *tcw = &cc->iv_gen_private.tcw;
708 __le64 sector = cpu_to_le64(dmreq->iv_sector);
709 u8 *src;
710 int r = 0;
711
712 /* Remove whitening from ciphertext */
713 if (bio_data_dir(dmreq->ctx->bio_in) != WRITE) {
714 sg = crypt_get_sg_data(cc, dmreq->sg_in);
715 src = kmap_local_page(sg_page(sg));
716 r = crypt_iv_tcw_whitening(cc, dmreq, src + sg->offset);
717 kunmap_local(src);
718 }
719
720 /* Calculate IV */
721 crypto_xor_cpy(iv, tcw->iv_seed, (u8 *)§or, 8);
722 if (cc->iv_size > 8)
723 crypto_xor_cpy(&iv[8], tcw->iv_seed + 8, (u8 *)§or,
724 cc->iv_size - 8);
725
726 return r;
727 }
728
crypt_iv_tcw_post(struct crypt_config * cc,u8 * iv,struct dm_crypt_request * dmreq)729 static int crypt_iv_tcw_post(struct crypt_config *cc, u8 *iv,
730 struct dm_crypt_request *dmreq)
731 {
732 struct scatterlist *sg;
733 u8 *dst;
734 int r;
735
736 if (bio_data_dir(dmreq->ctx->bio_in) != WRITE)
737 return 0;
738
739 /* Apply whitening on ciphertext */
740 sg = crypt_get_sg_data(cc, dmreq->sg_out);
741 dst = kmap_local_page(sg_page(sg));
742 r = crypt_iv_tcw_whitening(cc, dmreq, dst + sg->offset);
743 kunmap_local(dst);
744
745 return r;
746 }
747
crypt_iv_random_gen(struct crypt_config * cc,u8 * iv,struct dm_crypt_request * dmreq)748 static int crypt_iv_random_gen(struct crypt_config *cc, u8 *iv,
749 struct dm_crypt_request *dmreq)
750 {
751 /* Used only for writes, there must be an additional space to store IV */
752 get_random_bytes(iv, cc->iv_size);
753 return 0;
754 }
755
crypt_iv_eboiv_ctr(struct crypt_config * cc,struct dm_target * ti,const char * opts)756 static int crypt_iv_eboiv_ctr(struct crypt_config *cc, struct dm_target *ti,
757 const char *opts)
758 {
759 if (crypt_integrity_aead(cc)) {
760 ti->error = "AEAD transforms not supported for EBOIV";
761 return -EINVAL;
762 }
763
764 if (crypto_skcipher_blocksize(any_tfm(cc)) != cc->iv_size) {
765 ti->error = "Block size of EBOIV cipher does not match IV size of block cipher";
766 return -EINVAL;
767 }
768
769 return 0;
770 }
771
crypt_iv_eboiv_gen(struct crypt_config * cc,u8 * iv,struct dm_crypt_request * dmreq)772 static int crypt_iv_eboiv_gen(struct crypt_config *cc, u8 *iv,
773 struct dm_crypt_request *dmreq)
774 {
775 struct crypto_skcipher *tfm = any_tfm(cc);
776 struct skcipher_request *req;
777 struct scatterlist src, dst;
778 DECLARE_CRYPTO_WAIT(wait);
779 unsigned int reqsize;
780 int err;
781 u8 *buf;
782
783 reqsize = sizeof(*req) + crypto_skcipher_reqsize(tfm);
784 reqsize = ALIGN(reqsize, __alignof__(__le64));
785
786 req = kmalloc(reqsize + cc->iv_size, GFP_NOIO);
787 if (!req)
788 return -ENOMEM;
789
790 skcipher_request_set_tfm(req, tfm);
791
792 buf = (u8 *)req + reqsize;
793 memset(buf, 0, cc->iv_size);
794 *(__le64 *)buf = cpu_to_le64(dmreq->iv_sector * cc->sector_size);
795
796 sg_init_one(&src, page_address(ZERO_PAGE(0)), cc->iv_size);
797 sg_init_one(&dst, iv, cc->iv_size);
798 skcipher_request_set_crypt(req, &src, &dst, cc->iv_size, buf);
799 skcipher_request_set_callback(req, 0, crypto_req_done, &wait);
800 err = crypto_wait_req(crypto_skcipher_encrypt(req), &wait);
801 kfree_sensitive(req);
802
803 return err;
804 }
805
crypt_iv_elephant_dtr(struct crypt_config * cc)806 static void crypt_iv_elephant_dtr(struct crypt_config *cc)
807 {
808 struct iv_elephant_private *elephant = &cc->iv_gen_private.elephant;
809
810 crypto_free_skcipher(elephant->tfm);
811 elephant->tfm = NULL;
812 }
813
crypt_iv_elephant_ctr(struct crypt_config * cc,struct dm_target * ti,const char * opts)814 static int crypt_iv_elephant_ctr(struct crypt_config *cc, struct dm_target *ti,
815 const char *opts)
816 {
817 struct iv_elephant_private *elephant = &cc->iv_gen_private.elephant;
818 int r;
819
820 elephant->tfm = crypto_alloc_skcipher("ecb(aes)", 0,
821 CRYPTO_ALG_ALLOCATES_MEMORY);
822 if (IS_ERR(elephant->tfm)) {
823 r = PTR_ERR(elephant->tfm);
824 elephant->tfm = NULL;
825 return r;
826 }
827
828 r = crypt_iv_eboiv_ctr(cc, ti, NULL);
829 if (r)
830 crypt_iv_elephant_dtr(cc);
831 return r;
832 }
833
diffuser_disk_to_cpu(u32 * d,size_t n)834 static void diffuser_disk_to_cpu(u32 *d, size_t n)
835 {
836 #ifndef __LITTLE_ENDIAN
837 int i;
838
839 for (i = 0; i < n; i++)
840 d[i] = le32_to_cpu((__le32)d[i]);
841 #endif
842 }
843
diffuser_cpu_to_disk(__le32 * d,size_t n)844 static void diffuser_cpu_to_disk(__le32 *d, size_t n)
845 {
846 #ifndef __LITTLE_ENDIAN
847 int i;
848
849 for (i = 0; i < n; i++)
850 d[i] = cpu_to_le32((u32)d[i]);
851 #endif
852 }
853
diffuser_a_decrypt(u32 * d,size_t n)854 static void diffuser_a_decrypt(u32 *d, size_t n)
855 {
856 int i, i1, i2, i3;
857
858 for (i = 0; i < 5; i++) {
859 i1 = 0;
860 i2 = n - 2;
861 i3 = n - 5;
862
863 while (i1 < (n - 1)) {
864 d[i1] += d[i2] ^ (d[i3] << 9 | d[i3] >> 23);
865 i1++; i2++; i3++;
866
867 if (i3 >= n)
868 i3 -= n;
869
870 d[i1] += d[i2] ^ d[i3];
871 i1++; i2++; i3++;
872
873 if (i2 >= n)
874 i2 -= n;
875
876 d[i1] += d[i2] ^ (d[i3] << 13 | d[i3] >> 19);
877 i1++; i2++; i3++;
878
879 d[i1] += d[i2] ^ d[i3];
880 i1++; i2++; i3++;
881 }
882 }
883 }
884
diffuser_a_encrypt(u32 * d,size_t n)885 static void diffuser_a_encrypt(u32 *d, size_t n)
886 {
887 int i, i1, i2, i3;
888
889 for (i = 0; i < 5; i++) {
890 i1 = n - 1;
891 i2 = n - 2 - 1;
892 i3 = n - 5 - 1;
893
894 while (i1 > 0) {
895 d[i1] -= d[i2] ^ d[i3];
896 i1--; i2--; i3--;
897
898 d[i1] -= d[i2] ^ (d[i3] << 13 | d[i3] >> 19);
899 i1--; i2--; i3--;
900
901 if (i2 < 0)
902 i2 += n;
903
904 d[i1] -= d[i2] ^ d[i3];
905 i1--; i2--; i3--;
906
907 if (i3 < 0)
908 i3 += n;
909
910 d[i1] -= d[i2] ^ (d[i3] << 9 | d[i3] >> 23);
911 i1--; i2--; i3--;
912 }
913 }
914 }
915
diffuser_b_decrypt(u32 * d,size_t n)916 static void diffuser_b_decrypt(u32 *d, size_t n)
917 {
918 int i, i1, i2, i3;
919
920 for (i = 0; i < 3; i++) {
921 i1 = 0;
922 i2 = 2;
923 i3 = 5;
924
925 while (i1 < (n - 1)) {
926 d[i1] += d[i2] ^ d[i3];
927 i1++; i2++; i3++;
928
929 d[i1] += d[i2] ^ (d[i3] << 10 | d[i3] >> 22);
930 i1++; i2++; i3++;
931
932 if (i2 >= n)
933 i2 -= n;
934
935 d[i1] += d[i2] ^ d[i3];
936 i1++; i2++; i3++;
937
938 if (i3 >= n)
939 i3 -= n;
940
941 d[i1] += d[i2] ^ (d[i3] << 25 | d[i3] >> 7);
942 i1++; i2++; i3++;
943 }
944 }
945 }
946
diffuser_b_encrypt(u32 * d,size_t n)947 static void diffuser_b_encrypt(u32 *d, size_t n)
948 {
949 int i, i1, i2, i3;
950
951 for (i = 0; i < 3; i++) {
952 i1 = n - 1;
953 i2 = 2 - 1;
954 i3 = 5 - 1;
955
956 while (i1 > 0) {
957 d[i1] -= d[i2] ^ (d[i3] << 25 | d[i3] >> 7);
958 i1--; i2--; i3--;
959
960 if (i3 < 0)
961 i3 += n;
962
963 d[i1] -= d[i2] ^ d[i3];
964 i1--; i2--; i3--;
965
966 if (i2 < 0)
967 i2 += n;
968
969 d[i1] -= d[i2] ^ (d[i3] << 10 | d[i3] >> 22);
970 i1--; i2--; i3--;
971
972 d[i1] -= d[i2] ^ d[i3];
973 i1--; i2--; i3--;
974 }
975 }
976 }
977
crypt_iv_elephant(struct crypt_config * cc,struct dm_crypt_request * dmreq)978 static int crypt_iv_elephant(struct crypt_config *cc, struct dm_crypt_request *dmreq)
979 {
980 struct iv_elephant_private *elephant = &cc->iv_gen_private.elephant;
981 u8 *es, *ks, *data, *data2, *data_offset;
982 struct skcipher_request *req;
983 struct scatterlist *sg, *sg2, src, dst;
984 DECLARE_CRYPTO_WAIT(wait);
985 int i, r;
986
987 req = skcipher_request_alloc(elephant->tfm, GFP_NOIO);
988 es = kzalloc(16, GFP_NOIO); /* Key for AES */
989 ks = kzalloc(32, GFP_NOIO); /* Elephant sector key */
990
991 if (!req || !es || !ks) {
992 r = -ENOMEM;
993 goto out;
994 }
995
996 *(__le64 *)es = cpu_to_le64(dmreq->iv_sector * cc->sector_size);
997
998 /* E(Ks, e(s)) */
999 sg_init_one(&src, es, 16);
1000 sg_init_one(&dst, ks, 16);
1001 skcipher_request_set_crypt(req, &src, &dst, 16, NULL);
1002 skcipher_request_set_callback(req, 0, crypto_req_done, &wait);
1003 r = crypto_wait_req(crypto_skcipher_encrypt(req), &wait);
1004 if (r)
1005 goto out;
1006
1007 /* E(Ks, e'(s)) */
1008 es[15] = 0x80;
1009 sg_init_one(&dst, &ks[16], 16);
1010 r = crypto_wait_req(crypto_skcipher_encrypt(req), &wait);
1011 if (r)
1012 goto out;
1013
1014 sg = crypt_get_sg_data(cc, dmreq->sg_out);
1015 data = kmap_local_page(sg_page(sg));
1016 data_offset = data + sg->offset;
1017
1018 /* Cannot modify original bio, copy to sg_out and apply Elephant to it */
1019 if (bio_data_dir(dmreq->ctx->bio_in) == WRITE) {
1020 sg2 = crypt_get_sg_data(cc, dmreq->sg_in);
1021 data2 = kmap_local_page(sg_page(sg2));
1022 memcpy(data_offset, data2 + sg2->offset, cc->sector_size);
1023 kunmap_local(data2);
1024 }
1025
1026 if (bio_data_dir(dmreq->ctx->bio_in) != WRITE) {
1027 diffuser_disk_to_cpu((u32 *)data_offset, cc->sector_size / sizeof(u32));
1028 diffuser_b_decrypt((u32 *)data_offset, cc->sector_size / sizeof(u32));
1029 diffuser_a_decrypt((u32 *)data_offset, cc->sector_size / sizeof(u32));
1030 diffuser_cpu_to_disk((__le32 *)data_offset, cc->sector_size / sizeof(u32));
1031 }
1032
1033 for (i = 0; i < (cc->sector_size / 32); i++)
1034 crypto_xor(data_offset + i * 32, ks, 32);
1035
1036 if (bio_data_dir(dmreq->ctx->bio_in) == WRITE) {
1037 diffuser_disk_to_cpu((u32 *)data_offset, cc->sector_size / sizeof(u32));
1038 diffuser_a_encrypt((u32 *)data_offset, cc->sector_size / sizeof(u32));
1039 diffuser_b_encrypt((u32 *)data_offset, cc->sector_size / sizeof(u32));
1040 diffuser_cpu_to_disk((__le32 *)data_offset, cc->sector_size / sizeof(u32));
1041 }
1042
1043 kunmap_local(data);
1044 out:
1045 kfree_sensitive(ks);
1046 kfree_sensitive(es);
1047 skcipher_request_free(req);
1048 return r;
1049 }
1050
crypt_iv_elephant_gen(struct crypt_config * cc,u8 * iv,struct dm_crypt_request * dmreq)1051 static int crypt_iv_elephant_gen(struct crypt_config *cc, u8 *iv,
1052 struct dm_crypt_request *dmreq)
1053 {
1054 int r;
1055
1056 if (bio_data_dir(dmreq->ctx->bio_in) == WRITE) {
1057 r = crypt_iv_elephant(cc, dmreq);
1058 if (r)
1059 return r;
1060 }
1061
1062 return crypt_iv_eboiv_gen(cc, iv, dmreq);
1063 }
1064
crypt_iv_elephant_post(struct crypt_config * cc,u8 * iv,struct dm_crypt_request * dmreq)1065 static int crypt_iv_elephant_post(struct crypt_config *cc, u8 *iv,
1066 struct dm_crypt_request *dmreq)
1067 {
1068 if (bio_data_dir(dmreq->ctx->bio_in) != WRITE)
1069 return crypt_iv_elephant(cc, dmreq);
1070
1071 return 0;
1072 }
1073
crypt_iv_elephant_init(struct crypt_config * cc)1074 static int crypt_iv_elephant_init(struct crypt_config *cc)
1075 {
1076 struct iv_elephant_private *elephant = &cc->iv_gen_private.elephant;
1077 int key_offset = cc->key_size - cc->key_extra_size;
1078
1079 return crypto_skcipher_setkey(elephant->tfm, &cc->key[key_offset], cc->key_extra_size);
1080 }
1081
crypt_iv_elephant_wipe(struct crypt_config * cc)1082 static int crypt_iv_elephant_wipe(struct crypt_config *cc)
1083 {
1084 struct iv_elephant_private *elephant = &cc->iv_gen_private.elephant;
1085 u8 key[ELEPHANT_MAX_KEY_SIZE];
1086
1087 memset(key, 0, cc->key_extra_size);
1088 return crypto_skcipher_setkey(elephant->tfm, key, cc->key_extra_size);
1089 }
1090
1091 static const struct crypt_iv_operations crypt_iv_plain_ops = {
1092 .generator = crypt_iv_plain_gen
1093 };
1094
1095 static const struct crypt_iv_operations crypt_iv_plain64_ops = {
1096 .generator = crypt_iv_plain64_gen
1097 };
1098
1099 static const struct crypt_iv_operations crypt_iv_plain64be_ops = {
1100 .generator = crypt_iv_plain64be_gen
1101 };
1102
1103 static const struct crypt_iv_operations crypt_iv_essiv_ops = {
1104 .generator = crypt_iv_essiv_gen
1105 };
1106
1107 static const struct crypt_iv_operations crypt_iv_benbi_ops = {
1108 .ctr = crypt_iv_benbi_ctr,
1109 .dtr = crypt_iv_benbi_dtr,
1110 .generator = crypt_iv_benbi_gen
1111 };
1112
1113 static const struct crypt_iv_operations crypt_iv_null_ops = {
1114 .generator = crypt_iv_null_gen
1115 };
1116
1117 static const struct crypt_iv_operations crypt_iv_lmk_ops = {
1118 .ctr = crypt_iv_lmk_ctr,
1119 .dtr = crypt_iv_lmk_dtr,
1120 .init = crypt_iv_lmk_init,
1121 .wipe = crypt_iv_lmk_wipe,
1122 .generator = crypt_iv_lmk_gen,
1123 .post = crypt_iv_lmk_post
1124 };
1125
1126 static const struct crypt_iv_operations crypt_iv_tcw_ops = {
1127 .ctr = crypt_iv_tcw_ctr,
1128 .dtr = crypt_iv_tcw_dtr,
1129 .init = crypt_iv_tcw_init,
1130 .wipe = crypt_iv_tcw_wipe,
1131 .generator = crypt_iv_tcw_gen,
1132 .post = crypt_iv_tcw_post
1133 };
1134
1135 static const struct crypt_iv_operations crypt_iv_random_ops = {
1136 .generator = crypt_iv_random_gen
1137 };
1138
1139 static const struct crypt_iv_operations crypt_iv_eboiv_ops = {
1140 .ctr = crypt_iv_eboiv_ctr,
1141 .generator = crypt_iv_eboiv_gen
1142 };
1143
1144 static const struct crypt_iv_operations crypt_iv_elephant_ops = {
1145 .ctr = crypt_iv_elephant_ctr,
1146 .dtr = crypt_iv_elephant_dtr,
1147 .init = crypt_iv_elephant_init,
1148 .wipe = crypt_iv_elephant_wipe,
1149 .generator = crypt_iv_elephant_gen,
1150 .post = crypt_iv_elephant_post
1151 };
1152
1153 /*
1154 * Integrity extensions
1155 */
crypt_integrity_aead(struct crypt_config * cc)1156 static bool crypt_integrity_aead(struct crypt_config *cc)
1157 {
1158 return test_bit(CRYPT_MODE_INTEGRITY_AEAD, &cc->cipher_flags);
1159 }
1160
crypt_integrity_hmac(struct crypt_config * cc)1161 static bool crypt_integrity_hmac(struct crypt_config *cc)
1162 {
1163 return crypt_integrity_aead(cc) && cc->key_mac_size;
1164 }
1165
1166 /* Get sg containing data */
crypt_get_sg_data(struct crypt_config * cc,struct scatterlist * sg)1167 static struct scatterlist *crypt_get_sg_data(struct crypt_config *cc,
1168 struct scatterlist *sg)
1169 {
1170 if (unlikely(crypt_integrity_aead(cc)))
1171 return &sg[2];
1172
1173 return sg;
1174 }
1175
dm_crypt_integrity_io_alloc(struct dm_crypt_io * io,struct bio * bio)1176 static int dm_crypt_integrity_io_alloc(struct dm_crypt_io *io, struct bio *bio)
1177 {
1178 struct bio_integrity_payload *bip;
1179 unsigned int tag_len;
1180 int ret;
1181
1182 if (!bio_sectors(bio) || !io->cc->tuple_size)
1183 return 0;
1184
1185 bip = bio_integrity_alloc(bio, GFP_NOIO, 1);
1186 if (IS_ERR(bip))
1187 return PTR_ERR(bip);
1188
1189 tag_len = io->cc->tuple_size * (bio_sectors(bio) >> io->cc->sector_shift);
1190
1191 bip->bip_iter.bi_sector = bio->bi_iter.bi_sector;
1192
1193 ret = bio_integrity_add_page(bio, virt_to_page(io->integrity_metadata),
1194 tag_len, offset_in_page(io->integrity_metadata));
1195 if (unlikely(ret != tag_len))
1196 return -ENOMEM;
1197
1198 return 0;
1199 }
1200
crypt_integrity_ctr(struct crypt_config * cc,struct dm_target * ti)1201 static int crypt_integrity_ctr(struct crypt_config *cc, struct dm_target *ti)
1202 {
1203 #ifdef CONFIG_BLK_DEV_INTEGRITY
1204 struct blk_integrity *bi = blk_get_integrity(cc->dev->bdev->bd_disk);
1205 struct mapped_device *md = dm_table_get_md(ti->table);
1206
1207 /* We require an underlying device with non-PI metadata */
1208 if (!bi || bi->csum_type != BLK_INTEGRITY_CSUM_NONE) {
1209 ti->error = "Integrity profile not supported.";
1210 return -EINVAL;
1211 }
1212
1213 if (bi->tuple_size < cc->used_tag_size) {
1214 ti->error = "Integrity profile tag size mismatch.";
1215 return -EINVAL;
1216 }
1217 cc->tuple_size = bi->tuple_size;
1218 if (1 << bi->interval_exp != cc->sector_size) {
1219 ti->error = "Integrity profile sector size mismatch.";
1220 return -EINVAL;
1221 }
1222
1223 if (crypt_integrity_aead(cc)) {
1224 cc->integrity_tag_size = cc->used_tag_size - cc->integrity_iv_size;
1225 DMDEBUG("%s: Integrity AEAD, tag size %u, IV size %u.", dm_device_name(md),
1226 cc->integrity_tag_size, cc->integrity_iv_size);
1227
1228 if (crypto_aead_setauthsize(any_tfm_aead(cc), cc->integrity_tag_size)) {
1229 ti->error = "Integrity AEAD auth tag size is not supported.";
1230 return -EINVAL;
1231 }
1232 } else if (cc->integrity_iv_size)
1233 DMDEBUG("%s: Additional per-sector space %u bytes for IV.", dm_device_name(md),
1234 cc->integrity_iv_size);
1235
1236 if ((cc->integrity_tag_size + cc->integrity_iv_size) > cc->tuple_size) {
1237 ti->error = "Not enough space for integrity tag in the profile.";
1238 return -EINVAL;
1239 }
1240
1241 return 0;
1242 #else
1243 ti->error = "Integrity profile not supported.";
1244 return -EINVAL;
1245 #endif
1246 }
1247
crypt_convert_init(struct crypt_config * cc,struct convert_context * ctx,struct bio * bio_out,struct bio * bio_in,sector_t sector)1248 static void crypt_convert_init(struct crypt_config *cc,
1249 struct convert_context *ctx,
1250 struct bio *bio_out, struct bio *bio_in,
1251 sector_t sector)
1252 {
1253 ctx->bio_in = bio_in;
1254 ctx->bio_out = bio_out;
1255 if (bio_in)
1256 ctx->iter_in = bio_in->bi_iter;
1257 if (bio_out)
1258 ctx->iter_out = bio_out->bi_iter;
1259 ctx->cc_sector = sector + cc->iv_offset;
1260 ctx->tag_offset = 0;
1261 init_completion(&ctx->restart);
1262 }
1263
dmreq_of_req(struct crypt_config * cc,void * req)1264 static struct dm_crypt_request *dmreq_of_req(struct crypt_config *cc,
1265 void *req)
1266 {
1267 return (struct dm_crypt_request *)((char *)req + cc->dmreq_start);
1268 }
1269
req_of_dmreq(struct crypt_config * cc,struct dm_crypt_request * dmreq)1270 static void *req_of_dmreq(struct crypt_config *cc, struct dm_crypt_request *dmreq)
1271 {
1272 return (void *)((char *)dmreq - cc->dmreq_start);
1273 }
1274
iv_of_dmreq(struct crypt_config * cc,struct dm_crypt_request * dmreq)1275 static u8 *iv_of_dmreq(struct crypt_config *cc,
1276 struct dm_crypt_request *dmreq)
1277 {
1278 if (crypt_integrity_aead(cc))
1279 return (u8 *)ALIGN((unsigned long)(dmreq + 1),
1280 crypto_aead_alignmask(any_tfm_aead(cc)) + 1);
1281 else
1282 return (u8 *)ALIGN((unsigned long)(dmreq + 1),
1283 crypto_skcipher_alignmask(any_tfm(cc)) + 1);
1284 }
1285
org_iv_of_dmreq(struct crypt_config * cc,struct dm_crypt_request * dmreq)1286 static u8 *org_iv_of_dmreq(struct crypt_config *cc,
1287 struct dm_crypt_request *dmreq)
1288 {
1289 return iv_of_dmreq(cc, dmreq) + cc->iv_size;
1290 }
1291
org_sector_of_dmreq(struct crypt_config * cc,struct dm_crypt_request * dmreq)1292 static __le64 *org_sector_of_dmreq(struct crypt_config *cc,
1293 struct dm_crypt_request *dmreq)
1294 {
1295 u8 *ptr = iv_of_dmreq(cc, dmreq) + cc->iv_size + cc->iv_size;
1296
1297 return (__le64 *) ptr;
1298 }
1299
org_tag_of_dmreq(struct crypt_config * cc,struct dm_crypt_request * dmreq)1300 static unsigned int *org_tag_of_dmreq(struct crypt_config *cc,
1301 struct dm_crypt_request *dmreq)
1302 {
1303 u8 *ptr = iv_of_dmreq(cc, dmreq) + cc->iv_size +
1304 cc->iv_size + sizeof(uint64_t);
1305
1306 return (unsigned int *)ptr;
1307 }
1308
tag_from_dmreq(struct crypt_config * cc,struct dm_crypt_request * dmreq)1309 static void *tag_from_dmreq(struct crypt_config *cc,
1310 struct dm_crypt_request *dmreq)
1311 {
1312 struct convert_context *ctx = dmreq->ctx;
1313 struct dm_crypt_io *io = container_of(ctx, struct dm_crypt_io, ctx);
1314
1315 return &io->integrity_metadata[*org_tag_of_dmreq(cc, dmreq) *
1316 cc->tuple_size];
1317 }
1318
iv_tag_from_dmreq(struct crypt_config * cc,struct dm_crypt_request * dmreq)1319 static void *iv_tag_from_dmreq(struct crypt_config *cc,
1320 struct dm_crypt_request *dmreq)
1321 {
1322 return tag_from_dmreq(cc, dmreq) + cc->integrity_tag_size;
1323 }
1324
crypt_convert_block_aead(struct crypt_config * cc,struct convert_context * ctx,struct aead_request * req,unsigned int tag_offset)1325 static int crypt_convert_block_aead(struct crypt_config *cc,
1326 struct convert_context *ctx,
1327 struct aead_request *req,
1328 unsigned int tag_offset)
1329 {
1330 struct bio_vec bv_in = bio_iter_iovec(ctx->bio_in, ctx->iter_in);
1331 struct bio_vec bv_out = bio_iter_iovec(ctx->bio_out, ctx->iter_out);
1332 struct dm_crypt_request *dmreq;
1333 u8 *iv, *org_iv, *tag_iv, *tag;
1334 __le64 *sector;
1335 int r = 0;
1336
1337 BUG_ON(cc->integrity_iv_size && cc->integrity_iv_size != cc->iv_size);
1338
1339 /* Reject unexpected unaligned bio. */
1340 if (unlikely(bv_in.bv_len & (cc->sector_size - 1)))
1341 return -EIO;
1342
1343 dmreq = dmreq_of_req(cc, req);
1344 dmreq->iv_sector = ctx->cc_sector;
1345 if (test_bit(CRYPT_IV_LARGE_SECTORS, &cc->cipher_flags))
1346 dmreq->iv_sector >>= cc->sector_shift;
1347 dmreq->ctx = ctx;
1348
1349 *org_tag_of_dmreq(cc, dmreq) = tag_offset;
1350
1351 sector = org_sector_of_dmreq(cc, dmreq);
1352 *sector = cpu_to_le64(ctx->cc_sector - cc->iv_offset);
1353
1354 iv = iv_of_dmreq(cc, dmreq);
1355 org_iv = org_iv_of_dmreq(cc, dmreq);
1356 tag = tag_from_dmreq(cc, dmreq);
1357 tag_iv = iv_tag_from_dmreq(cc, dmreq);
1358
1359 /* AEAD request:
1360 * |----- AAD -------|------ DATA -------|-- AUTH TAG --|
1361 * | (authenticated) | (auth+encryption) | |
1362 * | sector_LE | IV | sector in/out | tag in/out |
1363 */
1364 sg_init_table(dmreq->sg_in, 4);
1365 sg_set_buf(&dmreq->sg_in[0], sector, sizeof(uint64_t));
1366 sg_set_buf(&dmreq->sg_in[1], org_iv, cc->iv_size);
1367 sg_set_page(&dmreq->sg_in[2], bv_in.bv_page, cc->sector_size, bv_in.bv_offset);
1368 sg_set_buf(&dmreq->sg_in[3], tag, cc->integrity_tag_size);
1369
1370 sg_init_table(dmreq->sg_out, 4);
1371 sg_set_buf(&dmreq->sg_out[0], sector, sizeof(uint64_t));
1372 sg_set_buf(&dmreq->sg_out[1], org_iv, cc->iv_size);
1373 sg_set_page(&dmreq->sg_out[2], bv_out.bv_page, cc->sector_size, bv_out.bv_offset);
1374 sg_set_buf(&dmreq->sg_out[3], tag, cc->integrity_tag_size);
1375
1376 if (cc->iv_gen_ops) {
1377 /* For READs use IV stored in integrity metadata */
1378 if (cc->integrity_iv_size && bio_data_dir(ctx->bio_in) != WRITE) {
1379 memcpy(org_iv, tag_iv, cc->iv_size);
1380 } else {
1381 r = cc->iv_gen_ops->generator(cc, org_iv, dmreq);
1382 if (r < 0)
1383 return r;
1384 /* Store generated IV in integrity metadata */
1385 if (cc->integrity_iv_size)
1386 memcpy(tag_iv, org_iv, cc->iv_size);
1387 }
1388 /* Working copy of IV, to be modified in crypto API */
1389 memcpy(iv, org_iv, cc->iv_size);
1390 }
1391
1392 aead_request_set_ad(req, sizeof(uint64_t) + cc->iv_size);
1393 if (bio_data_dir(ctx->bio_in) == WRITE) {
1394 aead_request_set_crypt(req, dmreq->sg_in, dmreq->sg_out,
1395 cc->sector_size, iv);
1396 r = crypto_aead_encrypt(req);
1397 if (cc->integrity_tag_size + cc->integrity_iv_size != cc->tuple_size)
1398 memset(tag + cc->integrity_tag_size + cc->integrity_iv_size, 0,
1399 cc->tuple_size - (cc->integrity_tag_size + cc->integrity_iv_size));
1400 } else {
1401 aead_request_set_crypt(req, dmreq->sg_in, dmreq->sg_out,
1402 cc->sector_size + cc->integrity_tag_size, iv);
1403 r = crypto_aead_decrypt(req);
1404 }
1405
1406 if (r == -EBADMSG) {
1407 sector_t s = le64_to_cpu(*sector);
1408
1409 ctx->aead_failed = true;
1410 if (ctx->aead_recheck) {
1411 DMERR_LIMIT("%pg: INTEGRITY AEAD ERROR, sector %llu",
1412 ctx->bio_in->bi_bdev, s);
1413 dm_audit_log_bio(DM_MSG_PREFIX, "integrity-aead",
1414 ctx->bio_in, s, 0);
1415 }
1416 }
1417
1418 if (!r && cc->iv_gen_ops && cc->iv_gen_ops->post)
1419 r = cc->iv_gen_ops->post(cc, org_iv, dmreq);
1420
1421 bio_advance_iter(ctx->bio_in, &ctx->iter_in, cc->sector_size);
1422 bio_advance_iter(ctx->bio_out, &ctx->iter_out, cc->sector_size);
1423
1424 return r;
1425 }
1426
crypt_convert_block_skcipher(struct crypt_config * cc,struct convert_context * ctx,struct skcipher_request * req,unsigned int tag_offset)1427 static int crypt_convert_block_skcipher(struct crypt_config *cc,
1428 struct convert_context *ctx,
1429 struct skcipher_request *req,
1430 unsigned int tag_offset)
1431 {
1432 struct bio_vec bv_in = bio_iter_iovec(ctx->bio_in, ctx->iter_in);
1433 struct bio_vec bv_out = bio_iter_iovec(ctx->bio_out, ctx->iter_out);
1434 struct scatterlist *sg_in, *sg_out;
1435 struct dm_crypt_request *dmreq;
1436 u8 *iv, *org_iv, *tag_iv;
1437 __le64 *sector;
1438 int r = 0;
1439
1440 /* Reject unexpected unaligned bio. */
1441 if (unlikely(bv_in.bv_len & (cc->sector_size - 1)))
1442 return -EIO;
1443
1444 dmreq = dmreq_of_req(cc, req);
1445 dmreq->iv_sector = ctx->cc_sector;
1446 if (test_bit(CRYPT_IV_LARGE_SECTORS, &cc->cipher_flags))
1447 dmreq->iv_sector >>= cc->sector_shift;
1448 dmreq->ctx = ctx;
1449
1450 *org_tag_of_dmreq(cc, dmreq) = tag_offset;
1451
1452 iv = iv_of_dmreq(cc, dmreq);
1453 org_iv = org_iv_of_dmreq(cc, dmreq);
1454 tag_iv = iv_tag_from_dmreq(cc, dmreq);
1455
1456 sector = org_sector_of_dmreq(cc, dmreq);
1457 *sector = cpu_to_le64(ctx->cc_sector - cc->iv_offset);
1458
1459 /* For skcipher we use only the first sg item */
1460 sg_in = &dmreq->sg_in[0];
1461 sg_out = &dmreq->sg_out[0];
1462
1463 sg_init_table(sg_in, 1);
1464 sg_set_page(sg_in, bv_in.bv_page, cc->sector_size, bv_in.bv_offset);
1465
1466 sg_init_table(sg_out, 1);
1467 sg_set_page(sg_out, bv_out.bv_page, cc->sector_size, bv_out.bv_offset);
1468
1469 if (cc->iv_gen_ops) {
1470 /* For READs use IV stored in integrity metadata */
1471 if (cc->integrity_iv_size && bio_data_dir(ctx->bio_in) != WRITE) {
1472 memcpy(org_iv, tag_iv, cc->integrity_iv_size);
1473 } else {
1474 r = cc->iv_gen_ops->generator(cc, org_iv, dmreq);
1475 if (r < 0)
1476 return r;
1477 /* Data can be already preprocessed in generator */
1478 if (test_bit(CRYPT_ENCRYPT_PREPROCESS, &cc->cipher_flags))
1479 sg_in = sg_out;
1480 /* Store generated IV in integrity metadata */
1481 if (cc->integrity_iv_size)
1482 memcpy(tag_iv, org_iv, cc->integrity_iv_size);
1483 }
1484 /* Working copy of IV, to be modified in crypto API */
1485 memcpy(iv, org_iv, cc->iv_size);
1486 }
1487
1488 skcipher_request_set_crypt(req, sg_in, sg_out, cc->sector_size, iv);
1489
1490 if (bio_data_dir(ctx->bio_in) == WRITE)
1491 r = crypto_skcipher_encrypt(req);
1492 else
1493 r = crypto_skcipher_decrypt(req);
1494
1495 if (!r && cc->iv_gen_ops && cc->iv_gen_ops->post)
1496 r = cc->iv_gen_ops->post(cc, org_iv, dmreq);
1497
1498 bio_advance_iter(ctx->bio_in, &ctx->iter_in, cc->sector_size);
1499 bio_advance_iter(ctx->bio_out, &ctx->iter_out, cc->sector_size);
1500
1501 return r;
1502 }
1503
1504 static void kcryptd_async_done(void *async_req, int error);
1505
crypt_alloc_req_skcipher(struct crypt_config * cc,struct convert_context * ctx)1506 static int crypt_alloc_req_skcipher(struct crypt_config *cc,
1507 struct convert_context *ctx)
1508 {
1509 unsigned int key_index = ctx->cc_sector & (cc->tfms_count - 1);
1510
1511 if (!ctx->r.req) {
1512 ctx->r.req = mempool_alloc(&cc->req_pool, in_interrupt() ? GFP_ATOMIC : GFP_NOIO);
1513 if (!ctx->r.req)
1514 return -ENOMEM;
1515 }
1516
1517 skcipher_request_set_tfm(ctx->r.req, cc->cipher_tfm.tfms[key_index]);
1518
1519 /*
1520 * Use REQ_MAY_BACKLOG so a cipher driver internally backlogs
1521 * requests if driver request queue is full.
1522 */
1523 skcipher_request_set_callback(ctx->r.req,
1524 CRYPTO_TFM_REQ_MAY_BACKLOG,
1525 kcryptd_async_done, dmreq_of_req(cc, ctx->r.req));
1526
1527 return 0;
1528 }
1529
crypt_alloc_req_aead(struct crypt_config * cc,struct convert_context * ctx)1530 static int crypt_alloc_req_aead(struct crypt_config *cc,
1531 struct convert_context *ctx)
1532 {
1533 if (!ctx->r.req_aead) {
1534 ctx->r.req_aead = mempool_alloc(&cc->req_pool, in_interrupt() ? GFP_ATOMIC : GFP_NOIO);
1535 if (!ctx->r.req_aead)
1536 return -ENOMEM;
1537 }
1538
1539 aead_request_set_tfm(ctx->r.req_aead, cc->cipher_tfm.tfms_aead[0]);
1540
1541 /*
1542 * Use REQ_MAY_BACKLOG so a cipher driver internally backlogs
1543 * requests if driver request queue is full.
1544 */
1545 aead_request_set_callback(ctx->r.req_aead,
1546 CRYPTO_TFM_REQ_MAY_BACKLOG,
1547 kcryptd_async_done, dmreq_of_req(cc, ctx->r.req_aead));
1548
1549 return 0;
1550 }
1551
crypt_alloc_req(struct crypt_config * cc,struct convert_context * ctx)1552 static int crypt_alloc_req(struct crypt_config *cc,
1553 struct convert_context *ctx)
1554 {
1555 if (crypt_integrity_aead(cc))
1556 return crypt_alloc_req_aead(cc, ctx);
1557 else
1558 return crypt_alloc_req_skcipher(cc, ctx);
1559 }
1560
crypt_free_req_skcipher(struct crypt_config * cc,struct skcipher_request * req,struct bio * base_bio)1561 static void crypt_free_req_skcipher(struct crypt_config *cc,
1562 struct skcipher_request *req, struct bio *base_bio)
1563 {
1564 struct dm_crypt_io *io = dm_per_bio_data(base_bio, cc->per_bio_data_size);
1565
1566 if ((struct skcipher_request *)(io + 1) != req)
1567 mempool_free(req, &cc->req_pool);
1568 }
1569
crypt_free_req_aead(struct crypt_config * cc,struct aead_request * req,struct bio * base_bio)1570 static void crypt_free_req_aead(struct crypt_config *cc,
1571 struct aead_request *req, struct bio *base_bio)
1572 {
1573 struct dm_crypt_io *io = dm_per_bio_data(base_bio, cc->per_bio_data_size);
1574
1575 if ((struct aead_request *)(io + 1) != req)
1576 mempool_free(req, &cc->req_pool);
1577 }
1578
crypt_free_req(struct crypt_config * cc,void * req,struct bio * base_bio)1579 static void crypt_free_req(struct crypt_config *cc, void *req, struct bio *base_bio)
1580 {
1581 if (crypt_integrity_aead(cc))
1582 crypt_free_req_aead(cc, req, base_bio);
1583 else
1584 crypt_free_req_skcipher(cc, req, base_bio);
1585 }
1586
1587 /*
1588 * Encrypt / decrypt data from one bio to another one (can be the same one)
1589 */
crypt_convert(struct crypt_config * cc,struct convert_context * ctx,bool atomic,bool reset_pending)1590 static blk_status_t crypt_convert(struct crypt_config *cc,
1591 struct convert_context *ctx, bool atomic, bool reset_pending)
1592 {
1593 unsigned int sector_step = cc->sector_size >> SECTOR_SHIFT;
1594 int r;
1595
1596 /*
1597 * if reset_pending is set we are dealing with the bio for the first time,
1598 * else we're continuing to work on the previous bio, so don't mess with
1599 * the cc_pending counter
1600 */
1601 if (reset_pending)
1602 atomic_set(&ctx->cc_pending, 1);
1603
1604 while (ctx->iter_in.bi_size && ctx->iter_out.bi_size) {
1605
1606 r = crypt_alloc_req(cc, ctx);
1607 if (r) {
1608 complete(&ctx->restart);
1609 return BLK_STS_DEV_RESOURCE;
1610 }
1611
1612 atomic_inc(&ctx->cc_pending);
1613
1614 if (crypt_integrity_aead(cc))
1615 r = crypt_convert_block_aead(cc, ctx, ctx->r.req_aead, ctx->tag_offset);
1616 else
1617 r = crypt_convert_block_skcipher(cc, ctx, ctx->r.req, ctx->tag_offset);
1618
1619 switch (r) {
1620 /*
1621 * The request was queued by a crypto driver
1622 * but the driver request queue is full, let's wait.
1623 */
1624 case -EBUSY:
1625 if (in_interrupt()) {
1626 if (try_wait_for_completion(&ctx->restart)) {
1627 /*
1628 * we don't have to block to wait for completion,
1629 * so proceed
1630 */
1631 } else {
1632 /*
1633 * we can't wait for completion without blocking
1634 * exit and continue processing in a workqueue
1635 */
1636 ctx->r.req = NULL;
1637 ctx->tag_offset++;
1638 ctx->cc_sector += sector_step;
1639 return BLK_STS_DEV_RESOURCE;
1640 }
1641 } else {
1642 wait_for_completion(&ctx->restart);
1643 }
1644 reinit_completion(&ctx->restart);
1645 fallthrough;
1646 /*
1647 * The request is queued and processed asynchronously,
1648 * completion function kcryptd_async_done() will be called.
1649 */
1650 case -EINPROGRESS:
1651 ctx->r.req = NULL;
1652 ctx->tag_offset++;
1653 ctx->cc_sector += sector_step;
1654 continue;
1655 /*
1656 * The request was already processed (synchronously).
1657 */
1658 case 0:
1659 atomic_dec(&ctx->cc_pending);
1660 ctx->cc_sector += sector_step;
1661 ctx->tag_offset++;
1662 if (!atomic)
1663 cond_resched();
1664 continue;
1665 /*
1666 * There was a data integrity error.
1667 */
1668 case -EBADMSG:
1669 atomic_dec(&ctx->cc_pending);
1670 return BLK_STS_PROTECTION;
1671 /*
1672 * There was an error while processing the request.
1673 */
1674 default:
1675 atomic_dec(&ctx->cc_pending);
1676 return BLK_STS_IOERR;
1677 }
1678 }
1679
1680 return 0;
1681 }
1682
1683 static void crypt_free_buffer_pages(struct crypt_config *cc, struct bio *clone);
1684
1685 /*
1686 * Generate a new unfragmented bio with the given size
1687 * This should never violate the device limitations (but if it did then block
1688 * core should split the bio as needed).
1689 *
1690 * This function may be called concurrently. If we allocate from the mempool
1691 * concurrently, there is a possibility of deadlock. For example, if we have
1692 * mempool of 256 pages, two processes, each wanting 256, pages allocate from
1693 * the mempool concurrently, it may deadlock in a situation where both processes
1694 * have allocated 128 pages and the mempool is exhausted.
1695 *
1696 * In order to avoid this scenario we allocate the pages under a mutex.
1697 *
1698 * In order to not degrade performance with excessive locking, we try
1699 * non-blocking allocations without a mutex first but on failure we fallback
1700 * to blocking allocations with a mutex.
1701 *
1702 * In order to reduce allocation overhead, we try to allocate compound pages in
1703 * the first pass. If they are not available, we fall back to the mempool.
1704 */
crypt_alloc_buffer(struct dm_crypt_io * io,unsigned int size)1705 static struct bio *crypt_alloc_buffer(struct dm_crypt_io *io, unsigned int size)
1706 {
1707 struct crypt_config *cc = io->cc;
1708 struct bio *clone;
1709 unsigned int nr_iovecs = (size + PAGE_SIZE - 1) >> PAGE_SHIFT;
1710 gfp_t gfp_mask = GFP_NOWAIT | __GFP_HIGHMEM;
1711 unsigned int remaining_size;
1712 unsigned int order = MAX_PAGE_ORDER;
1713
1714 retry:
1715 if (unlikely(gfp_mask & __GFP_DIRECT_RECLAIM))
1716 mutex_lock(&cc->bio_alloc_lock);
1717
1718 clone = bio_alloc_bioset(cc->dev->bdev, nr_iovecs, io->base_bio->bi_opf,
1719 GFP_NOIO, &cc->bs);
1720 clone->bi_private = io;
1721 clone->bi_end_io = crypt_endio;
1722 clone->bi_ioprio = io->base_bio->bi_ioprio;
1723 clone->bi_iter.bi_sector = cc->start + io->sector;
1724
1725 remaining_size = size;
1726
1727 while (remaining_size) {
1728 struct page *pages;
1729 unsigned size_to_add;
1730 unsigned remaining_order = __fls((remaining_size + PAGE_SIZE - 1) >> PAGE_SHIFT);
1731 order = min(order, remaining_order);
1732
1733 while (order > 0) {
1734 if (unlikely(percpu_counter_read_positive(&cc->n_allocated_pages) +
1735 (1 << order) > dm_crypt_pages_per_client))
1736 goto decrease_order;
1737 pages = alloc_pages(gfp_mask
1738 | __GFP_NOMEMALLOC | __GFP_NORETRY | __GFP_NOWARN | __GFP_COMP,
1739 order);
1740 if (likely(pages != NULL)) {
1741 percpu_counter_add(&cc->n_allocated_pages, 1 << order);
1742 goto have_pages;
1743 }
1744 decrease_order:
1745 order--;
1746 }
1747
1748 pages = mempool_alloc(&cc->page_pool, gfp_mask);
1749 if (!pages) {
1750 crypt_free_buffer_pages(cc, clone);
1751 bio_put(clone);
1752 gfp_mask |= __GFP_DIRECT_RECLAIM;
1753 order = 0;
1754 goto retry;
1755 }
1756
1757 have_pages:
1758 size_to_add = min((unsigned)PAGE_SIZE << order, remaining_size);
1759 __bio_add_page(clone, pages, size_to_add, 0);
1760 remaining_size -= size_to_add;
1761 }
1762
1763 /* Allocate space for integrity tags */
1764 if (dm_crypt_integrity_io_alloc(io, clone)) {
1765 crypt_free_buffer_pages(cc, clone);
1766 bio_put(clone);
1767 clone = NULL;
1768 }
1769
1770 if (unlikely(gfp_mask & __GFP_DIRECT_RECLAIM))
1771 mutex_unlock(&cc->bio_alloc_lock);
1772
1773 return clone;
1774 }
1775
crypt_free_buffer_pages(struct crypt_config * cc,struct bio * clone)1776 static void crypt_free_buffer_pages(struct crypt_config *cc, struct bio *clone)
1777 {
1778 struct folio_iter fi;
1779
1780 if (clone->bi_vcnt > 0) { /* bio_for_each_folio_all crashes with an empty bio */
1781 bio_for_each_folio_all(fi, clone) {
1782 if (folio_test_large(fi.folio)) {
1783 percpu_counter_sub(&cc->n_allocated_pages,
1784 1 << folio_order(fi.folio));
1785 folio_put(fi.folio);
1786 } else {
1787 mempool_free(&fi.folio->page, &cc->page_pool);
1788 }
1789 }
1790 }
1791 }
1792
crypt_io_init(struct dm_crypt_io * io,struct crypt_config * cc,struct bio * bio,sector_t sector)1793 static void crypt_io_init(struct dm_crypt_io *io, struct crypt_config *cc,
1794 struct bio *bio, sector_t sector)
1795 {
1796 io->cc = cc;
1797 io->base_bio = bio;
1798 io->sector = sector;
1799 io->error = 0;
1800 io->ctx.aead_recheck = false;
1801 io->ctx.aead_failed = false;
1802 io->ctx.r.req = NULL;
1803 io->integrity_metadata = NULL;
1804 io->integrity_metadata_from_pool = false;
1805 atomic_set(&io->io_pending, 0);
1806 }
1807
crypt_inc_pending(struct dm_crypt_io * io)1808 static void crypt_inc_pending(struct dm_crypt_io *io)
1809 {
1810 atomic_inc(&io->io_pending);
1811 }
1812
1813 static void kcryptd_queue_read(struct dm_crypt_io *io);
1814
1815 /*
1816 * One of the bios was finished. Check for completion of
1817 * the whole request and correctly clean up the buffer.
1818 */
crypt_dec_pending(struct dm_crypt_io * io)1819 static void crypt_dec_pending(struct dm_crypt_io *io)
1820 {
1821 struct crypt_config *cc = io->cc;
1822 struct bio *base_bio = io->base_bio;
1823 blk_status_t error = io->error;
1824
1825 if (!atomic_dec_and_test(&io->io_pending))
1826 return;
1827
1828 if (likely(!io->ctx.aead_recheck) && unlikely(io->ctx.aead_failed) &&
1829 cc->used_tag_size && bio_data_dir(base_bio) == READ) {
1830 io->ctx.aead_recheck = true;
1831 io->ctx.aead_failed = false;
1832 io->error = 0;
1833 kcryptd_queue_read(io);
1834 return;
1835 }
1836
1837 if (io->ctx.r.req)
1838 crypt_free_req(cc, io->ctx.r.req, base_bio);
1839
1840 if (unlikely(io->integrity_metadata_from_pool))
1841 mempool_free(io->integrity_metadata, &io->cc->tag_pool);
1842 else
1843 kfree(io->integrity_metadata);
1844
1845 base_bio->bi_status = error;
1846
1847 bio_endio(base_bio);
1848 }
1849
1850 /*
1851 * kcryptd/kcryptd_io:
1852 *
1853 * Needed because it would be very unwise to do decryption in an
1854 * interrupt context.
1855 *
1856 * kcryptd performs the actual encryption or decryption.
1857 *
1858 * kcryptd_io performs the IO submission.
1859 *
1860 * They must be separated as otherwise the final stages could be
1861 * starved by new requests which can block in the first stages due
1862 * to memory allocation.
1863 *
1864 * The work is done per CPU global for all dm-crypt instances.
1865 * They should not depend on each other and do not block.
1866 */
crypt_endio(struct bio * clone)1867 static void crypt_endio(struct bio *clone)
1868 {
1869 struct dm_crypt_io *io = clone->bi_private;
1870 struct crypt_config *cc = io->cc;
1871 unsigned int rw = bio_data_dir(clone);
1872 blk_status_t error = clone->bi_status;
1873
1874 if (io->ctx.aead_recheck && !error) {
1875 kcryptd_queue_crypt(io);
1876 return;
1877 }
1878
1879 /*
1880 * free the processed pages
1881 */
1882 if (rw == WRITE || io->ctx.aead_recheck)
1883 crypt_free_buffer_pages(cc, clone);
1884
1885 bio_put(clone);
1886
1887 if (rw == READ && !error) {
1888 kcryptd_queue_crypt(io);
1889 return;
1890 }
1891
1892 if (unlikely(error))
1893 io->error = error;
1894
1895 crypt_dec_pending(io);
1896 }
1897
1898 #define CRYPT_MAP_READ_GFP GFP_NOWAIT
1899
kcryptd_io_read(struct dm_crypt_io * io,gfp_t gfp)1900 static int kcryptd_io_read(struct dm_crypt_io *io, gfp_t gfp)
1901 {
1902 struct crypt_config *cc = io->cc;
1903 struct bio *clone;
1904
1905 if (io->ctx.aead_recheck) {
1906 if (!(gfp & __GFP_DIRECT_RECLAIM))
1907 return 1;
1908 crypt_inc_pending(io);
1909 clone = crypt_alloc_buffer(io, io->base_bio->bi_iter.bi_size);
1910 if (unlikely(!clone)) {
1911 crypt_dec_pending(io);
1912 return 1;
1913 }
1914 crypt_convert_init(cc, &io->ctx, clone, clone, io->sector);
1915 io->saved_bi_iter = clone->bi_iter;
1916 dm_submit_bio_remap(io->base_bio, clone);
1917 return 0;
1918 }
1919
1920 /*
1921 * We need the original biovec array in order to decrypt the whole bio
1922 * data *afterwards* -- thanks to immutable biovecs we don't need to
1923 * worry about the block layer modifying the biovec array; so leverage
1924 * bio_alloc_clone().
1925 */
1926 clone = bio_alloc_clone(cc->dev->bdev, io->base_bio, gfp, &cc->bs);
1927 if (!clone)
1928 return 1;
1929
1930 clone->bi_iter.bi_sector = cc->start + io->sector;
1931 clone->bi_private = io;
1932 clone->bi_end_io = crypt_endio;
1933
1934 crypt_inc_pending(io);
1935
1936 if (dm_crypt_integrity_io_alloc(io, clone)) {
1937 crypt_dec_pending(io);
1938 bio_put(clone);
1939 return 1;
1940 }
1941
1942 dm_submit_bio_remap(io->base_bio, clone);
1943 return 0;
1944 }
1945
kcryptd_io_read_work(struct work_struct * work)1946 static void kcryptd_io_read_work(struct work_struct *work)
1947 {
1948 struct dm_crypt_io *io = container_of(work, struct dm_crypt_io, work);
1949
1950 crypt_inc_pending(io);
1951 if (kcryptd_io_read(io, GFP_NOIO))
1952 io->error = BLK_STS_RESOURCE;
1953 crypt_dec_pending(io);
1954 }
1955
kcryptd_queue_read(struct dm_crypt_io * io)1956 static void kcryptd_queue_read(struct dm_crypt_io *io)
1957 {
1958 struct crypt_config *cc = io->cc;
1959
1960 INIT_WORK(&io->work, kcryptd_io_read_work);
1961 queue_work(cc->io_queue, &io->work);
1962 }
1963
kcryptd_io_write(struct dm_crypt_io * io)1964 static void kcryptd_io_write(struct dm_crypt_io *io)
1965 {
1966 struct bio *clone = io->ctx.bio_out;
1967
1968 dm_submit_bio_remap(io->base_bio, clone);
1969 }
1970
1971 #define crypt_io_from_node(node) rb_entry((node), struct dm_crypt_io, rb_node)
1972
dmcrypt_write(void * data)1973 static int dmcrypt_write(void *data)
1974 {
1975 struct crypt_config *cc = data;
1976 struct dm_crypt_io *io;
1977
1978 while (1) {
1979 struct rb_root write_tree;
1980 struct blk_plug plug;
1981
1982 spin_lock_irq(&cc->write_thread_lock);
1983 continue_locked:
1984
1985 if (!RB_EMPTY_ROOT(&cc->write_tree))
1986 goto pop_from_list;
1987
1988 set_current_state(TASK_INTERRUPTIBLE);
1989
1990 spin_unlock_irq(&cc->write_thread_lock);
1991
1992 if (unlikely(kthread_should_stop())) {
1993 set_current_state(TASK_RUNNING);
1994 break;
1995 }
1996
1997 schedule();
1998
1999 spin_lock_irq(&cc->write_thread_lock);
2000 goto continue_locked;
2001
2002 pop_from_list:
2003 write_tree = cc->write_tree;
2004 cc->write_tree = RB_ROOT;
2005 spin_unlock_irq(&cc->write_thread_lock);
2006
2007 BUG_ON(rb_parent(write_tree.rb_node));
2008
2009 /*
2010 * Note: we cannot walk the tree here with rb_next because
2011 * the structures may be freed when kcryptd_io_write is called.
2012 */
2013 blk_start_plug(&plug);
2014 do {
2015 io = crypt_io_from_node(rb_first(&write_tree));
2016 rb_erase(&io->rb_node, &write_tree);
2017 kcryptd_io_write(io);
2018 cond_resched();
2019 } while (!RB_EMPTY_ROOT(&write_tree));
2020 blk_finish_plug(&plug);
2021 }
2022 return 0;
2023 }
2024
kcryptd_crypt_write_io_submit(struct dm_crypt_io * io,int async)2025 static void kcryptd_crypt_write_io_submit(struct dm_crypt_io *io, int async)
2026 {
2027 struct bio *clone = io->ctx.bio_out;
2028 struct crypt_config *cc = io->cc;
2029 unsigned long flags;
2030 sector_t sector;
2031 struct rb_node **rbp, *parent;
2032
2033 if (unlikely(io->error)) {
2034 crypt_free_buffer_pages(cc, clone);
2035 bio_put(clone);
2036 crypt_dec_pending(io);
2037 return;
2038 }
2039
2040 /* crypt_convert should have filled the clone bio */
2041 BUG_ON(io->ctx.iter_out.bi_size);
2042
2043 if ((likely(!async) && test_bit(DM_CRYPT_NO_OFFLOAD, &cc->flags)) ||
2044 test_bit(DM_CRYPT_NO_WRITE_WORKQUEUE, &cc->flags)) {
2045 dm_submit_bio_remap(io->base_bio, clone);
2046 return;
2047 }
2048
2049 spin_lock_irqsave(&cc->write_thread_lock, flags);
2050 if (RB_EMPTY_ROOT(&cc->write_tree))
2051 wake_up_process(cc->write_thread);
2052 rbp = &cc->write_tree.rb_node;
2053 parent = NULL;
2054 sector = io->sector;
2055 while (*rbp) {
2056 parent = *rbp;
2057 if (sector < crypt_io_from_node(parent)->sector)
2058 rbp = &(*rbp)->rb_left;
2059 else
2060 rbp = &(*rbp)->rb_right;
2061 }
2062 rb_link_node(&io->rb_node, parent, rbp);
2063 rb_insert_color(&io->rb_node, &cc->write_tree);
2064 spin_unlock_irqrestore(&cc->write_thread_lock, flags);
2065 }
2066
kcryptd_crypt_write_inline(struct crypt_config * cc,struct convert_context * ctx)2067 static bool kcryptd_crypt_write_inline(struct crypt_config *cc,
2068 struct convert_context *ctx)
2069
2070 {
2071 if (!test_bit(DM_CRYPT_WRITE_INLINE, &cc->flags))
2072 return false;
2073
2074 /*
2075 * Note: zone append writes (REQ_OP_ZONE_APPEND) do not have ordering
2076 * constraints so they do not need to be issued inline by
2077 * kcryptd_crypt_write_convert().
2078 */
2079 switch (bio_op(ctx->bio_in)) {
2080 case REQ_OP_WRITE:
2081 case REQ_OP_WRITE_ZEROES:
2082 return true;
2083 default:
2084 return false;
2085 }
2086 }
2087
kcryptd_crypt_write_continue(struct work_struct * work)2088 static void kcryptd_crypt_write_continue(struct work_struct *work)
2089 {
2090 struct dm_crypt_io *io = container_of(work, struct dm_crypt_io, work);
2091 struct crypt_config *cc = io->cc;
2092 struct convert_context *ctx = &io->ctx;
2093 int crypt_finished;
2094 blk_status_t r;
2095
2096 wait_for_completion(&ctx->restart);
2097 reinit_completion(&ctx->restart);
2098
2099 r = crypt_convert(cc, &io->ctx, false, false);
2100 if (r)
2101 io->error = r;
2102 crypt_finished = atomic_dec_and_test(&ctx->cc_pending);
2103 if (!crypt_finished && kcryptd_crypt_write_inline(cc, ctx)) {
2104 /* Wait for completion signaled by kcryptd_async_done() */
2105 wait_for_completion(&ctx->restart);
2106 crypt_finished = 1;
2107 }
2108
2109 /* Encryption was already finished, submit io now */
2110 if (crypt_finished)
2111 kcryptd_crypt_write_io_submit(io, 0);
2112
2113 crypt_dec_pending(io);
2114 }
2115
kcryptd_crypt_write_convert(struct dm_crypt_io * io)2116 static void kcryptd_crypt_write_convert(struct dm_crypt_io *io)
2117 {
2118 struct crypt_config *cc = io->cc;
2119 struct convert_context *ctx = &io->ctx;
2120 struct bio *clone;
2121 int crypt_finished;
2122 blk_status_t r;
2123
2124 /*
2125 * Prevent io from disappearing until this function completes.
2126 */
2127 crypt_inc_pending(io);
2128 crypt_convert_init(cc, ctx, NULL, io->base_bio, io->sector);
2129
2130 clone = crypt_alloc_buffer(io, io->base_bio->bi_iter.bi_size);
2131 if (unlikely(!clone)) {
2132 io->error = BLK_STS_IOERR;
2133 goto dec;
2134 }
2135
2136 io->ctx.bio_out = clone;
2137 io->ctx.iter_out = clone->bi_iter;
2138
2139 if (crypt_integrity_aead(cc)) {
2140 bio_copy_data(clone, io->base_bio);
2141 io->ctx.bio_in = clone;
2142 io->ctx.iter_in = clone->bi_iter;
2143 }
2144
2145 crypt_inc_pending(io);
2146 r = crypt_convert(cc, ctx,
2147 test_bit(DM_CRYPT_NO_WRITE_WORKQUEUE, &cc->flags), true);
2148 /*
2149 * Crypto API backlogged the request, because its queue was full
2150 * and we're in softirq context, so continue from a workqueue
2151 * (TODO: is it actually possible to be in softirq in the write path?)
2152 */
2153 if (r == BLK_STS_DEV_RESOURCE) {
2154 INIT_WORK(&io->work, kcryptd_crypt_write_continue);
2155 queue_work(cc->crypt_queue, &io->work);
2156 return;
2157 }
2158 if (r)
2159 io->error = r;
2160 crypt_finished = atomic_dec_and_test(&ctx->cc_pending);
2161 if (!crypt_finished && kcryptd_crypt_write_inline(cc, ctx)) {
2162 /* Wait for completion signaled by kcryptd_async_done() */
2163 wait_for_completion(&ctx->restart);
2164 crypt_finished = 1;
2165 }
2166
2167 /* Encryption was already finished, submit io now */
2168 if (crypt_finished)
2169 kcryptd_crypt_write_io_submit(io, 0);
2170
2171 dec:
2172 crypt_dec_pending(io);
2173 }
2174
kcryptd_crypt_read_done(struct dm_crypt_io * io)2175 static void kcryptd_crypt_read_done(struct dm_crypt_io *io)
2176 {
2177 if (io->ctx.aead_recheck) {
2178 if (!io->error) {
2179 io->ctx.bio_in->bi_iter = io->saved_bi_iter;
2180 bio_copy_data(io->base_bio, io->ctx.bio_in);
2181 }
2182 crypt_free_buffer_pages(io->cc, io->ctx.bio_in);
2183 bio_put(io->ctx.bio_in);
2184 }
2185 crypt_dec_pending(io);
2186 }
2187
kcryptd_crypt_read_continue(struct work_struct * work)2188 static void kcryptd_crypt_read_continue(struct work_struct *work)
2189 {
2190 struct dm_crypt_io *io = container_of(work, struct dm_crypt_io, work);
2191 struct crypt_config *cc = io->cc;
2192 blk_status_t r;
2193
2194 wait_for_completion(&io->ctx.restart);
2195 reinit_completion(&io->ctx.restart);
2196
2197 r = crypt_convert(cc, &io->ctx, false, false);
2198 if (r)
2199 io->error = r;
2200
2201 if (atomic_dec_and_test(&io->ctx.cc_pending))
2202 kcryptd_crypt_read_done(io);
2203
2204 crypt_dec_pending(io);
2205 }
2206
kcryptd_crypt_read_convert(struct dm_crypt_io * io)2207 static void kcryptd_crypt_read_convert(struct dm_crypt_io *io)
2208 {
2209 struct crypt_config *cc = io->cc;
2210 blk_status_t r;
2211
2212 crypt_inc_pending(io);
2213
2214 if (io->ctx.aead_recheck) {
2215 r = crypt_convert(cc, &io->ctx,
2216 test_bit(DM_CRYPT_NO_READ_WORKQUEUE, &cc->flags), true);
2217 } else {
2218 crypt_convert_init(cc, &io->ctx, io->base_bio, io->base_bio,
2219 io->sector);
2220
2221 r = crypt_convert(cc, &io->ctx,
2222 test_bit(DM_CRYPT_NO_READ_WORKQUEUE, &cc->flags), true);
2223 }
2224 /*
2225 * Crypto API backlogged the request, because its queue was full
2226 * and we're in softirq context, so continue from a workqueue
2227 */
2228 if (r == BLK_STS_DEV_RESOURCE) {
2229 INIT_WORK(&io->work, kcryptd_crypt_read_continue);
2230 queue_work(cc->crypt_queue, &io->work);
2231 return;
2232 }
2233 if (r)
2234 io->error = r;
2235
2236 if (atomic_dec_and_test(&io->ctx.cc_pending))
2237 kcryptd_crypt_read_done(io);
2238
2239 crypt_dec_pending(io);
2240 }
2241
kcryptd_async_done(void * data,int error)2242 static void kcryptd_async_done(void *data, int error)
2243 {
2244 struct dm_crypt_request *dmreq = data;
2245 struct convert_context *ctx = dmreq->ctx;
2246 struct dm_crypt_io *io = container_of(ctx, struct dm_crypt_io, ctx);
2247 struct crypt_config *cc = io->cc;
2248
2249 /*
2250 * A request from crypto driver backlog is going to be processed now,
2251 * finish the completion and continue in crypt_convert().
2252 * (Callback will be called for the second time for this request.)
2253 */
2254 if (error == -EINPROGRESS) {
2255 complete(&ctx->restart);
2256 return;
2257 }
2258
2259 if (!error && cc->iv_gen_ops && cc->iv_gen_ops->post)
2260 error = cc->iv_gen_ops->post(cc, org_iv_of_dmreq(cc, dmreq), dmreq);
2261
2262 if (error == -EBADMSG) {
2263 sector_t s = le64_to_cpu(*org_sector_of_dmreq(cc, dmreq));
2264
2265 ctx->aead_failed = true;
2266 if (ctx->aead_recheck) {
2267 DMERR_LIMIT("%pg: INTEGRITY AEAD ERROR, sector %llu",
2268 ctx->bio_in->bi_bdev, s);
2269 dm_audit_log_bio(DM_MSG_PREFIX, "integrity-aead",
2270 ctx->bio_in, s, 0);
2271 }
2272 io->error = BLK_STS_PROTECTION;
2273 } else if (error < 0)
2274 io->error = BLK_STS_IOERR;
2275
2276 crypt_free_req(cc, req_of_dmreq(cc, dmreq), io->base_bio);
2277
2278 if (!atomic_dec_and_test(&ctx->cc_pending))
2279 return;
2280
2281 /*
2282 * The request is fully completed: for inline writes, let
2283 * kcryptd_crypt_write_convert() do the IO submission.
2284 */
2285 if (bio_data_dir(io->base_bio) == READ) {
2286 kcryptd_crypt_read_done(io);
2287 return;
2288 }
2289
2290 if (kcryptd_crypt_write_inline(cc, ctx)) {
2291 complete(&ctx->restart);
2292 return;
2293 }
2294
2295 kcryptd_crypt_write_io_submit(io, 1);
2296 }
2297
kcryptd_crypt(struct work_struct * work)2298 static void kcryptd_crypt(struct work_struct *work)
2299 {
2300 struct dm_crypt_io *io = container_of(work, struct dm_crypt_io, work);
2301
2302 if (bio_data_dir(io->base_bio) == READ)
2303 kcryptd_crypt_read_convert(io);
2304 else
2305 kcryptd_crypt_write_convert(io);
2306 }
2307
kcryptd_queue_crypt(struct dm_crypt_io * io)2308 static void kcryptd_queue_crypt(struct dm_crypt_io *io)
2309 {
2310 struct crypt_config *cc = io->cc;
2311
2312 if ((bio_data_dir(io->base_bio) == READ && test_bit(DM_CRYPT_NO_READ_WORKQUEUE, &cc->flags)) ||
2313 (bio_data_dir(io->base_bio) == WRITE && test_bit(DM_CRYPT_NO_WRITE_WORKQUEUE, &cc->flags))) {
2314 /*
2315 * in_hardirq(): Crypto API's skcipher_walk_first() refuses to work in hard IRQ context.
2316 * irqs_disabled(): the kernel may run some IO completion from the idle thread, but
2317 * it is being executed with irqs disabled.
2318 */
2319 if (in_hardirq() || irqs_disabled()) {
2320 INIT_WORK(&io->work, kcryptd_crypt);
2321 queue_work(system_bh_wq, &io->work);
2322 return;
2323 } else {
2324 kcryptd_crypt(&io->work);
2325 return;
2326 }
2327 }
2328
2329 INIT_WORK(&io->work, kcryptd_crypt);
2330 queue_work(cc->crypt_queue, &io->work);
2331 }
2332
crypt_free_tfms_aead(struct crypt_config * cc)2333 static void crypt_free_tfms_aead(struct crypt_config *cc)
2334 {
2335 if (!cc->cipher_tfm.tfms_aead)
2336 return;
2337
2338 if (cc->cipher_tfm.tfms_aead[0] && !IS_ERR(cc->cipher_tfm.tfms_aead[0])) {
2339 crypto_free_aead(cc->cipher_tfm.tfms_aead[0]);
2340 cc->cipher_tfm.tfms_aead[0] = NULL;
2341 }
2342
2343 kfree(cc->cipher_tfm.tfms_aead);
2344 cc->cipher_tfm.tfms_aead = NULL;
2345 }
2346
crypt_free_tfms_skcipher(struct crypt_config * cc)2347 static void crypt_free_tfms_skcipher(struct crypt_config *cc)
2348 {
2349 unsigned int i;
2350
2351 if (!cc->cipher_tfm.tfms)
2352 return;
2353
2354 for (i = 0; i < cc->tfms_count; i++)
2355 if (cc->cipher_tfm.tfms[i] && !IS_ERR(cc->cipher_tfm.tfms[i])) {
2356 crypto_free_skcipher(cc->cipher_tfm.tfms[i]);
2357 cc->cipher_tfm.tfms[i] = NULL;
2358 }
2359
2360 kfree(cc->cipher_tfm.tfms);
2361 cc->cipher_tfm.tfms = NULL;
2362 }
2363
crypt_free_tfms(struct crypt_config * cc)2364 static void crypt_free_tfms(struct crypt_config *cc)
2365 {
2366 if (crypt_integrity_aead(cc))
2367 crypt_free_tfms_aead(cc);
2368 else
2369 crypt_free_tfms_skcipher(cc);
2370 }
2371
crypt_alloc_tfms_skcipher(struct crypt_config * cc,char * ciphermode)2372 static int crypt_alloc_tfms_skcipher(struct crypt_config *cc, char *ciphermode)
2373 {
2374 unsigned int i;
2375 int err;
2376
2377 cc->cipher_tfm.tfms = kcalloc(cc->tfms_count,
2378 sizeof(struct crypto_skcipher *),
2379 GFP_KERNEL);
2380 if (!cc->cipher_tfm.tfms)
2381 return -ENOMEM;
2382
2383 for (i = 0; i < cc->tfms_count; i++) {
2384 cc->cipher_tfm.tfms[i] = crypto_alloc_skcipher(ciphermode, 0,
2385 CRYPTO_ALG_ALLOCATES_MEMORY);
2386 if (IS_ERR(cc->cipher_tfm.tfms[i])) {
2387 err = PTR_ERR(cc->cipher_tfm.tfms[i]);
2388 crypt_free_tfms(cc);
2389 return err;
2390 }
2391 }
2392
2393 /*
2394 * dm-crypt performance can vary greatly depending on which crypto
2395 * algorithm implementation is used. Help people debug performance
2396 * problems by logging the ->cra_driver_name.
2397 */
2398 DMDEBUG_LIMIT("%s using implementation \"%s\"", ciphermode,
2399 crypto_skcipher_alg(any_tfm(cc))->base.cra_driver_name);
2400 return 0;
2401 }
2402
crypt_alloc_tfms_aead(struct crypt_config * cc,char * ciphermode)2403 static int crypt_alloc_tfms_aead(struct crypt_config *cc, char *ciphermode)
2404 {
2405 int err;
2406
2407 cc->cipher_tfm.tfms = kmalloc(sizeof(struct crypto_aead *), GFP_KERNEL);
2408 if (!cc->cipher_tfm.tfms)
2409 return -ENOMEM;
2410
2411 cc->cipher_tfm.tfms_aead[0] = crypto_alloc_aead(ciphermode, 0,
2412 CRYPTO_ALG_ALLOCATES_MEMORY);
2413 if (IS_ERR(cc->cipher_tfm.tfms_aead[0])) {
2414 err = PTR_ERR(cc->cipher_tfm.tfms_aead[0]);
2415 crypt_free_tfms(cc);
2416 return err;
2417 }
2418
2419 DMDEBUG_LIMIT("%s using implementation \"%s\"", ciphermode,
2420 crypto_aead_alg(any_tfm_aead(cc))->base.cra_driver_name);
2421 return 0;
2422 }
2423
crypt_alloc_tfms(struct crypt_config * cc,char * ciphermode)2424 static int crypt_alloc_tfms(struct crypt_config *cc, char *ciphermode)
2425 {
2426 if (crypt_integrity_aead(cc))
2427 return crypt_alloc_tfms_aead(cc, ciphermode);
2428 else
2429 return crypt_alloc_tfms_skcipher(cc, ciphermode);
2430 }
2431
crypt_subkey_size(struct crypt_config * cc)2432 static unsigned int crypt_subkey_size(struct crypt_config *cc)
2433 {
2434 return (cc->key_size - cc->key_extra_size) >> ilog2(cc->tfms_count);
2435 }
2436
crypt_authenckey_size(struct crypt_config * cc)2437 static unsigned int crypt_authenckey_size(struct crypt_config *cc)
2438 {
2439 return crypt_subkey_size(cc) + RTA_SPACE(sizeof(struct crypto_authenc_key_param));
2440 }
2441
2442 /*
2443 * If AEAD is composed like authenc(hmac(sha256),xts(aes)),
2444 * the key must be for some reason in special format.
2445 * This funcion converts cc->key to this special format.
2446 */
crypt_copy_authenckey(char * p,const void * key,unsigned int enckeylen,unsigned int authkeylen)2447 static void crypt_copy_authenckey(char *p, const void *key,
2448 unsigned int enckeylen, unsigned int authkeylen)
2449 {
2450 struct crypto_authenc_key_param *param;
2451 struct rtattr *rta;
2452
2453 rta = (struct rtattr *)p;
2454 param = RTA_DATA(rta);
2455 param->enckeylen = cpu_to_be32(enckeylen);
2456 rta->rta_len = RTA_LENGTH(sizeof(*param));
2457 rta->rta_type = CRYPTO_AUTHENC_KEYA_PARAM;
2458 p += RTA_SPACE(sizeof(*param));
2459 memcpy(p, key + enckeylen, authkeylen);
2460 p += authkeylen;
2461 memcpy(p, key, enckeylen);
2462 }
2463
crypt_setkey(struct crypt_config * cc)2464 static int crypt_setkey(struct crypt_config *cc)
2465 {
2466 unsigned int subkey_size;
2467 int err = 0, i, r;
2468
2469 /* Ignore extra keys (which are used for IV etc) */
2470 subkey_size = crypt_subkey_size(cc);
2471
2472 if (crypt_integrity_hmac(cc)) {
2473 if (subkey_size < cc->key_mac_size)
2474 return -EINVAL;
2475
2476 crypt_copy_authenckey(cc->authenc_key, cc->key,
2477 subkey_size - cc->key_mac_size,
2478 cc->key_mac_size);
2479 }
2480
2481 for (i = 0; i < cc->tfms_count; i++) {
2482 if (crypt_integrity_hmac(cc))
2483 r = crypto_aead_setkey(cc->cipher_tfm.tfms_aead[i],
2484 cc->authenc_key, crypt_authenckey_size(cc));
2485 else if (crypt_integrity_aead(cc))
2486 r = crypto_aead_setkey(cc->cipher_tfm.tfms_aead[i],
2487 cc->key + (i * subkey_size),
2488 subkey_size);
2489 else
2490 r = crypto_skcipher_setkey(cc->cipher_tfm.tfms[i],
2491 cc->key + (i * subkey_size),
2492 subkey_size);
2493 if (r)
2494 err = r;
2495 }
2496
2497 if (crypt_integrity_hmac(cc))
2498 memzero_explicit(cc->authenc_key, crypt_authenckey_size(cc));
2499
2500 return err;
2501 }
2502
2503 #ifdef CONFIG_KEYS
2504
contains_whitespace(const char * str)2505 static bool contains_whitespace(const char *str)
2506 {
2507 while (*str)
2508 if (isspace(*str++))
2509 return true;
2510 return false;
2511 }
2512
set_key_user(struct crypt_config * cc,struct key * key)2513 static int set_key_user(struct crypt_config *cc, struct key *key)
2514 {
2515 const struct user_key_payload *ukp;
2516
2517 ukp = user_key_payload_locked(key);
2518 if (!ukp)
2519 return -EKEYREVOKED;
2520
2521 if (cc->key_size != ukp->datalen)
2522 return -EINVAL;
2523
2524 memcpy(cc->key, ukp->data, cc->key_size);
2525
2526 return 0;
2527 }
2528
set_key_encrypted(struct crypt_config * cc,struct key * key)2529 static int set_key_encrypted(struct crypt_config *cc, struct key *key)
2530 {
2531 const struct encrypted_key_payload *ekp;
2532
2533 ekp = key->payload.data[0];
2534 if (!ekp)
2535 return -EKEYREVOKED;
2536
2537 if (cc->key_size != ekp->decrypted_datalen)
2538 return -EINVAL;
2539
2540 memcpy(cc->key, ekp->decrypted_data, cc->key_size);
2541
2542 return 0;
2543 }
2544
set_key_trusted(struct crypt_config * cc,struct key * key)2545 static int set_key_trusted(struct crypt_config *cc, struct key *key)
2546 {
2547 const struct trusted_key_payload *tkp;
2548
2549 tkp = key->payload.data[0];
2550 if (!tkp)
2551 return -EKEYREVOKED;
2552
2553 if (cc->key_size != tkp->key_len)
2554 return -EINVAL;
2555
2556 memcpy(cc->key, tkp->key, cc->key_size);
2557
2558 return 0;
2559 }
2560
crypt_set_keyring_key(struct crypt_config * cc,const char * key_string)2561 static int crypt_set_keyring_key(struct crypt_config *cc, const char *key_string)
2562 {
2563 char *new_key_string, *key_desc;
2564 int ret;
2565 struct key_type *type;
2566 struct key *key;
2567 int (*set_key)(struct crypt_config *cc, struct key *key);
2568
2569 /*
2570 * Reject key_string with whitespace. dm core currently lacks code for
2571 * proper whitespace escaping in arguments on DM_TABLE_STATUS path.
2572 */
2573 if (contains_whitespace(key_string)) {
2574 DMERR("whitespace chars not allowed in key string");
2575 return -EINVAL;
2576 }
2577
2578 /* look for next ':' separating key_type from key_description */
2579 key_desc = strchr(key_string, ':');
2580 if (!key_desc || key_desc == key_string || !strlen(key_desc + 1))
2581 return -EINVAL;
2582
2583 if (!strncmp(key_string, "logon:", key_desc - key_string + 1)) {
2584 type = &key_type_logon;
2585 set_key = set_key_user;
2586 } else if (!strncmp(key_string, "user:", key_desc - key_string + 1)) {
2587 type = &key_type_user;
2588 set_key = set_key_user;
2589 } else if (IS_ENABLED(CONFIG_ENCRYPTED_KEYS) &&
2590 !strncmp(key_string, "encrypted:", key_desc - key_string + 1)) {
2591 type = &key_type_encrypted;
2592 set_key = set_key_encrypted;
2593 } else if (IS_ENABLED(CONFIG_TRUSTED_KEYS) &&
2594 !strncmp(key_string, "trusted:", key_desc - key_string + 1)) {
2595 type = &key_type_trusted;
2596 set_key = set_key_trusted;
2597 } else {
2598 return -EINVAL;
2599 }
2600
2601 new_key_string = kstrdup(key_string, GFP_KERNEL);
2602 if (!new_key_string)
2603 return -ENOMEM;
2604
2605 key = request_key(type, key_desc + 1, NULL);
2606 if (IS_ERR(key)) {
2607 ret = PTR_ERR(key);
2608 goto free_new_key_string;
2609 }
2610
2611 down_read(&key->sem);
2612 ret = set_key(cc, key);
2613 up_read(&key->sem);
2614 key_put(key);
2615 if (ret < 0)
2616 goto free_new_key_string;
2617
2618 /* clear the flag since following operations may invalidate previously valid key */
2619 clear_bit(DM_CRYPT_KEY_VALID, &cc->flags);
2620
2621 ret = crypt_setkey(cc);
2622 if (ret)
2623 goto free_new_key_string;
2624
2625 set_bit(DM_CRYPT_KEY_VALID, &cc->flags);
2626 kfree_sensitive(cc->key_string);
2627 cc->key_string = new_key_string;
2628 return 0;
2629
2630 free_new_key_string:
2631 kfree_sensitive(new_key_string);
2632 return ret;
2633 }
2634
get_key_size(char ** key_string)2635 static int get_key_size(char **key_string)
2636 {
2637 char *colon, dummy;
2638 int ret;
2639
2640 if (*key_string[0] != ':')
2641 return strlen(*key_string) >> 1;
2642
2643 /* look for next ':' in key string */
2644 colon = strpbrk(*key_string + 1, ":");
2645 if (!colon)
2646 return -EINVAL;
2647
2648 if (sscanf(*key_string + 1, "%u%c", &ret, &dummy) != 2 || dummy != ':')
2649 return -EINVAL;
2650
2651 *key_string = colon;
2652
2653 /* remaining key string should be :<logon|user>:<key_desc> */
2654
2655 return ret;
2656 }
2657
2658 #else
2659
crypt_set_keyring_key(struct crypt_config * cc,const char * key_string)2660 static int crypt_set_keyring_key(struct crypt_config *cc, const char *key_string)
2661 {
2662 return -EINVAL;
2663 }
2664
get_key_size(char ** key_string)2665 static int get_key_size(char **key_string)
2666 {
2667 return (*key_string[0] == ':') ? -EINVAL : (int)(strlen(*key_string) >> 1);
2668 }
2669
2670 #endif /* CONFIG_KEYS */
2671
crypt_set_key(struct crypt_config * cc,char * key)2672 static int crypt_set_key(struct crypt_config *cc, char *key)
2673 {
2674 int r = -EINVAL;
2675 int key_string_len = strlen(key);
2676
2677 /* Hyphen (which gives a key_size of zero) means there is no key. */
2678 if (!cc->key_size && strcmp(key, "-"))
2679 goto out;
2680
2681 /* ':' means the key is in kernel keyring, short-circuit normal key processing */
2682 if (key[0] == ':') {
2683 r = crypt_set_keyring_key(cc, key + 1);
2684 goto out;
2685 }
2686
2687 /* clear the flag since following operations may invalidate previously valid key */
2688 clear_bit(DM_CRYPT_KEY_VALID, &cc->flags);
2689
2690 /* wipe references to any kernel keyring key */
2691 kfree_sensitive(cc->key_string);
2692 cc->key_string = NULL;
2693
2694 /* Decode key from its hex representation. */
2695 if (cc->key_size && hex2bin(cc->key, key, cc->key_size) < 0)
2696 goto out;
2697
2698 r = crypt_setkey(cc);
2699 if (!r)
2700 set_bit(DM_CRYPT_KEY_VALID, &cc->flags);
2701
2702 out:
2703 /* Hex key string not needed after here, so wipe it. */
2704 memset(key, '0', key_string_len);
2705
2706 return r;
2707 }
2708
crypt_wipe_key(struct crypt_config * cc)2709 static int crypt_wipe_key(struct crypt_config *cc)
2710 {
2711 int r;
2712
2713 clear_bit(DM_CRYPT_KEY_VALID, &cc->flags);
2714 get_random_bytes(&cc->key, cc->key_size);
2715
2716 /* Wipe IV private keys */
2717 if (cc->iv_gen_ops && cc->iv_gen_ops->wipe) {
2718 r = cc->iv_gen_ops->wipe(cc);
2719 if (r)
2720 return r;
2721 }
2722
2723 kfree_sensitive(cc->key_string);
2724 cc->key_string = NULL;
2725 r = crypt_setkey(cc);
2726 memset(&cc->key, 0, cc->key_size * sizeof(u8));
2727
2728 return r;
2729 }
2730
crypt_calculate_pages_per_client(void)2731 static void crypt_calculate_pages_per_client(void)
2732 {
2733 unsigned long pages = (totalram_pages() - totalhigh_pages()) * DM_CRYPT_MEMORY_PERCENT / 100;
2734
2735 if (!dm_crypt_clients_n)
2736 return;
2737
2738 pages /= dm_crypt_clients_n;
2739 if (pages < DM_CRYPT_MIN_PAGES_PER_CLIENT)
2740 pages = DM_CRYPT_MIN_PAGES_PER_CLIENT;
2741 dm_crypt_pages_per_client = pages;
2742 }
2743
crypt_page_alloc(gfp_t gfp_mask,void * pool_data)2744 static void *crypt_page_alloc(gfp_t gfp_mask, void *pool_data)
2745 {
2746 struct crypt_config *cc = pool_data;
2747 struct page *page;
2748
2749 /*
2750 * Note, percpu_counter_read_positive() may over (and under) estimate
2751 * the current usage by at most (batch - 1) * num_online_cpus() pages,
2752 * but avoids potential spinlock contention of an exact result.
2753 */
2754 if (unlikely(percpu_counter_read_positive(&cc->n_allocated_pages) >= dm_crypt_pages_per_client) &&
2755 likely(gfp_mask & __GFP_NORETRY))
2756 return NULL;
2757
2758 page = alloc_page(gfp_mask);
2759 if (likely(page != NULL))
2760 percpu_counter_add(&cc->n_allocated_pages, 1);
2761
2762 return page;
2763 }
2764
crypt_page_free(void * page,void * pool_data)2765 static void crypt_page_free(void *page, void *pool_data)
2766 {
2767 struct crypt_config *cc = pool_data;
2768
2769 __free_page(page);
2770 percpu_counter_sub(&cc->n_allocated_pages, 1);
2771 }
2772
crypt_dtr(struct dm_target * ti)2773 static void crypt_dtr(struct dm_target *ti)
2774 {
2775 struct crypt_config *cc = ti->private;
2776
2777 ti->private = NULL;
2778
2779 if (!cc)
2780 return;
2781
2782 if (cc->write_thread)
2783 kthread_stop(cc->write_thread);
2784
2785 if (cc->io_queue)
2786 destroy_workqueue(cc->io_queue);
2787 if (cc->crypt_queue)
2788 destroy_workqueue(cc->crypt_queue);
2789
2790 if (cc->workqueue_id)
2791 ida_free(&workqueue_ida, cc->workqueue_id);
2792
2793 crypt_free_tfms(cc);
2794
2795 bioset_exit(&cc->bs);
2796
2797 mempool_exit(&cc->page_pool);
2798 mempool_exit(&cc->req_pool);
2799 mempool_exit(&cc->tag_pool);
2800
2801 WARN_ON(percpu_counter_sum(&cc->n_allocated_pages) != 0);
2802 percpu_counter_destroy(&cc->n_allocated_pages);
2803
2804 if (cc->iv_gen_ops && cc->iv_gen_ops->dtr)
2805 cc->iv_gen_ops->dtr(cc);
2806
2807 if (cc->dev)
2808 dm_put_device(ti, cc->dev);
2809
2810 kfree_sensitive(cc->cipher_string);
2811 kfree_sensitive(cc->key_string);
2812 kfree_sensitive(cc->cipher_auth);
2813 kfree_sensitive(cc->authenc_key);
2814
2815 mutex_destroy(&cc->bio_alloc_lock);
2816
2817 /* Must zero key material before freeing */
2818 kfree_sensitive(cc);
2819
2820 spin_lock(&dm_crypt_clients_lock);
2821 WARN_ON(!dm_crypt_clients_n);
2822 dm_crypt_clients_n--;
2823 crypt_calculate_pages_per_client();
2824 spin_unlock(&dm_crypt_clients_lock);
2825
2826 dm_audit_log_dtr(DM_MSG_PREFIX, ti, 1);
2827 }
2828
crypt_ctr_ivmode(struct dm_target * ti,const char * ivmode)2829 static int crypt_ctr_ivmode(struct dm_target *ti, const char *ivmode)
2830 {
2831 struct crypt_config *cc = ti->private;
2832
2833 if (crypt_integrity_aead(cc))
2834 cc->iv_size = crypto_aead_ivsize(any_tfm_aead(cc));
2835 else
2836 cc->iv_size = crypto_skcipher_ivsize(any_tfm(cc));
2837
2838 if (cc->iv_size)
2839 /* at least a 64 bit sector number should fit in our buffer */
2840 cc->iv_size = max(cc->iv_size,
2841 (unsigned int)(sizeof(u64) / sizeof(u8)));
2842 else if (ivmode) {
2843 DMWARN("Selected cipher does not support IVs");
2844 ivmode = NULL;
2845 }
2846
2847 /* Choose ivmode, see comments at iv code. */
2848 if (ivmode == NULL)
2849 cc->iv_gen_ops = NULL;
2850 else if (strcmp(ivmode, "plain") == 0)
2851 cc->iv_gen_ops = &crypt_iv_plain_ops;
2852 else if (strcmp(ivmode, "plain64") == 0)
2853 cc->iv_gen_ops = &crypt_iv_plain64_ops;
2854 else if (strcmp(ivmode, "plain64be") == 0)
2855 cc->iv_gen_ops = &crypt_iv_plain64be_ops;
2856 else if (strcmp(ivmode, "essiv") == 0)
2857 cc->iv_gen_ops = &crypt_iv_essiv_ops;
2858 else if (strcmp(ivmode, "benbi") == 0)
2859 cc->iv_gen_ops = &crypt_iv_benbi_ops;
2860 else if (strcmp(ivmode, "null") == 0)
2861 cc->iv_gen_ops = &crypt_iv_null_ops;
2862 else if (strcmp(ivmode, "eboiv") == 0)
2863 cc->iv_gen_ops = &crypt_iv_eboiv_ops;
2864 else if (strcmp(ivmode, "elephant") == 0) {
2865 cc->iv_gen_ops = &crypt_iv_elephant_ops;
2866 cc->key_parts = 2;
2867 cc->key_extra_size = cc->key_size / 2;
2868 if (cc->key_extra_size > ELEPHANT_MAX_KEY_SIZE)
2869 return -EINVAL;
2870 set_bit(CRYPT_ENCRYPT_PREPROCESS, &cc->cipher_flags);
2871 } else if (strcmp(ivmode, "lmk") == 0) {
2872 cc->iv_gen_ops = &crypt_iv_lmk_ops;
2873 /*
2874 * Version 2 and 3 is recognised according
2875 * to length of provided multi-key string.
2876 * If present (version 3), last key is used as IV seed.
2877 * All keys (including IV seed) are always the same size.
2878 */
2879 if (cc->key_size % cc->key_parts) {
2880 cc->key_parts++;
2881 cc->key_extra_size = cc->key_size / cc->key_parts;
2882 }
2883 } else if (strcmp(ivmode, "tcw") == 0) {
2884 cc->iv_gen_ops = &crypt_iv_tcw_ops;
2885 cc->key_parts += 2; /* IV + whitening */
2886 cc->key_extra_size = cc->iv_size + TCW_WHITENING_SIZE;
2887 } else if (strcmp(ivmode, "random") == 0) {
2888 cc->iv_gen_ops = &crypt_iv_random_ops;
2889 /* Need storage space in integrity fields. */
2890 cc->integrity_iv_size = cc->iv_size;
2891 } else {
2892 ti->error = "Invalid IV mode";
2893 return -EINVAL;
2894 }
2895
2896 return 0;
2897 }
2898
2899 /*
2900 * Workaround to parse HMAC algorithm from AEAD crypto API spec.
2901 * The HMAC is needed to calculate tag size (HMAC digest size).
2902 * This should be probably done by crypto-api calls (once available...)
2903 */
crypt_ctr_auth_cipher(struct crypt_config * cc,char * cipher_api)2904 static int crypt_ctr_auth_cipher(struct crypt_config *cc, char *cipher_api)
2905 {
2906 char *start, *end, *mac_alg = NULL;
2907 struct crypto_ahash *mac;
2908
2909 if (!strstarts(cipher_api, "authenc("))
2910 return 0;
2911
2912 start = strchr(cipher_api, '(');
2913 end = strchr(cipher_api, ',');
2914 if (!start || !end || ++start > end)
2915 return -EINVAL;
2916
2917 mac_alg = kmemdup_nul(start, end - start, GFP_KERNEL);
2918 if (!mac_alg)
2919 return -ENOMEM;
2920
2921 mac = crypto_alloc_ahash(mac_alg, 0, CRYPTO_ALG_ALLOCATES_MEMORY);
2922 kfree(mac_alg);
2923
2924 if (IS_ERR(mac))
2925 return PTR_ERR(mac);
2926
2927 if (!test_bit(CRYPT_KEY_MAC_SIZE_SET, &cc->cipher_flags))
2928 cc->key_mac_size = crypto_ahash_digestsize(mac);
2929 crypto_free_ahash(mac);
2930
2931 cc->authenc_key = kmalloc(crypt_authenckey_size(cc), GFP_KERNEL);
2932 if (!cc->authenc_key)
2933 return -ENOMEM;
2934
2935 return 0;
2936 }
2937
crypt_ctr_cipher_new(struct dm_target * ti,char * cipher_in,char * key,char ** ivmode,char ** ivopts)2938 static int crypt_ctr_cipher_new(struct dm_target *ti, char *cipher_in, char *key,
2939 char **ivmode, char **ivopts)
2940 {
2941 struct crypt_config *cc = ti->private;
2942 char *tmp, *cipher_api, buf[CRYPTO_MAX_ALG_NAME];
2943 int ret = -EINVAL;
2944
2945 cc->tfms_count = 1;
2946
2947 /*
2948 * New format (capi: prefix)
2949 * capi:cipher_api_spec-iv:ivopts
2950 */
2951 tmp = &cipher_in[strlen("capi:")];
2952
2953 /* Separate IV options if present, it can contain another '-' in hash name */
2954 *ivopts = strrchr(tmp, ':');
2955 if (*ivopts) {
2956 **ivopts = '\0';
2957 (*ivopts)++;
2958 }
2959 /* Parse IV mode */
2960 *ivmode = strrchr(tmp, '-');
2961 if (*ivmode) {
2962 **ivmode = '\0';
2963 (*ivmode)++;
2964 }
2965 /* The rest is crypto API spec */
2966 cipher_api = tmp;
2967
2968 /* Alloc AEAD, can be used only in new format. */
2969 if (crypt_integrity_aead(cc)) {
2970 ret = crypt_ctr_auth_cipher(cc, cipher_api);
2971 if (ret < 0) {
2972 ti->error = "Invalid AEAD cipher spec";
2973 return ret;
2974 }
2975 }
2976
2977 if (*ivmode && !strcmp(*ivmode, "lmk"))
2978 cc->tfms_count = 64;
2979
2980 if (*ivmode && !strcmp(*ivmode, "essiv")) {
2981 if (!*ivopts) {
2982 ti->error = "Digest algorithm missing for ESSIV mode";
2983 return -EINVAL;
2984 }
2985 ret = snprintf(buf, CRYPTO_MAX_ALG_NAME, "essiv(%s,%s)",
2986 cipher_api, *ivopts);
2987 if (ret < 0 || ret >= CRYPTO_MAX_ALG_NAME) {
2988 ti->error = "Cannot allocate cipher string";
2989 return -ENOMEM;
2990 }
2991 cipher_api = buf;
2992 }
2993
2994 cc->key_parts = cc->tfms_count;
2995
2996 /* Allocate cipher */
2997 ret = crypt_alloc_tfms(cc, cipher_api);
2998 if (ret < 0) {
2999 ti->error = "Error allocating crypto tfm";
3000 return ret;
3001 }
3002
3003 if (crypt_integrity_aead(cc))
3004 cc->iv_size = crypto_aead_ivsize(any_tfm_aead(cc));
3005 else
3006 cc->iv_size = crypto_skcipher_ivsize(any_tfm(cc));
3007
3008 return 0;
3009 }
3010
crypt_ctr_cipher_old(struct dm_target * ti,char * cipher_in,char * key,char ** ivmode,char ** ivopts)3011 static int crypt_ctr_cipher_old(struct dm_target *ti, char *cipher_in, char *key,
3012 char **ivmode, char **ivopts)
3013 {
3014 struct crypt_config *cc = ti->private;
3015 char *tmp, *cipher, *chainmode, *keycount;
3016 char *cipher_api = NULL;
3017 int ret = -EINVAL;
3018 char dummy;
3019
3020 if (strchr(cipher_in, '(') || crypt_integrity_aead(cc)) {
3021 ti->error = "Bad cipher specification";
3022 return -EINVAL;
3023 }
3024
3025 /*
3026 * Legacy dm-crypt cipher specification
3027 * cipher[:keycount]-mode-iv:ivopts
3028 */
3029 tmp = cipher_in;
3030 keycount = strsep(&tmp, "-");
3031 cipher = strsep(&keycount, ":");
3032
3033 if (!keycount)
3034 cc->tfms_count = 1;
3035 else if (sscanf(keycount, "%u%c", &cc->tfms_count, &dummy) != 1 ||
3036 !is_power_of_2(cc->tfms_count)) {
3037 ti->error = "Bad cipher key count specification";
3038 return -EINVAL;
3039 }
3040 cc->key_parts = cc->tfms_count;
3041
3042 chainmode = strsep(&tmp, "-");
3043 *ivmode = strsep(&tmp, ":");
3044 *ivopts = tmp;
3045
3046 /*
3047 * For compatibility with the original dm-crypt mapping format, if
3048 * only the cipher name is supplied, use cbc-plain.
3049 */
3050 if (!chainmode || (!strcmp(chainmode, "plain") && !*ivmode)) {
3051 chainmode = "cbc";
3052 *ivmode = "plain";
3053 }
3054
3055 if (strcmp(chainmode, "ecb") && !*ivmode) {
3056 ti->error = "IV mechanism required";
3057 return -EINVAL;
3058 }
3059
3060 cipher_api = kmalloc(CRYPTO_MAX_ALG_NAME, GFP_KERNEL);
3061 if (!cipher_api)
3062 goto bad_mem;
3063
3064 if (*ivmode && !strcmp(*ivmode, "essiv")) {
3065 if (!*ivopts) {
3066 ti->error = "Digest algorithm missing for ESSIV mode";
3067 kfree(cipher_api);
3068 return -EINVAL;
3069 }
3070 ret = snprintf(cipher_api, CRYPTO_MAX_ALG_NAME,
3071 "essiv(%s(%s),%s)", chainmode, cipher, *ivopts);
3072 } else {
3073 ret = snprintf(cipher_api, CRYPTO_MAX_ALG_NAME,
3074 "%s(%s)", chainmode, cipher);
3075 }
3076 if (ret < 0 || ret >= CRYPTO_MAX_ALG_NAME) {
3077 kfree(cipher_api);
3078 goto bad_mem;
3079 }
3080
3081 /* Allocate cipher */
3082 ret = crypt_alloc_tfms(cc, cipher_api);
3083 if (ret < 0) {
3084 ti->error = "Error allocating crypto tfm";
3085 kfree(cipher_api);
3086 return ret;
3087 }
3088 kfree(cipher_api);
3089
3090 return 0;
3091 bad_mem:
3092 ti->error = "Cannot allocate cipher strings";
3093 return -ENOMEM;
3094 }
3095
crypt_ctr_cipher(struct dm_target * ti,char * cipher_in,char * key)3096 static int crypt_ctr_cipher(struct dm_target *ti, char *cipher_in, char *key)
3097 {
3098 struct crypt_config *cc = ti->private;
3099 char *ivmode = NULL, *ivopts = NULL;
3100 int ret;
3101
3102 cc->cipher_string = kstrdup(cipher_in, GFP_KERNEL);
3103 if (!cc->cipher_string) {
3104 ti->error = "Cannot allocate cipher strings";
3105 return -ENOMEM;
3106 }
3107
3108 if (strstarts(cipher_in, "capi:"))
3109 ret = crypt_ctr_cipher_new(ti, cipher_in, key, &ivmode, &ivopts);
3110 else
3111 ret = crypt_ctr_cipher_old(ti, cipher_in, key, &ivmode, &ivopts);
3112 if (ret)
3113 return ret;
3114
3115 /* Initialize IV */
3116 ret = crypt_ctr_ivmode(ti, ivmode);
3117 if (ret < 0)
3118 return ret;
3119
3120 /* Initialize and set key */
3121 ret = crypt_set_key(cc, key);
3122 if (ret < 0) {
3123 ti->error = "Error decoding and setting key";
3124 return ret;
3125 }
3126
3127 /* Allocate IV */
3128 if (cc->iv_gen_ops && cc->iv_gen_ops->ctr) {
3129 ret = cc->iv_gen_ops->ctr(cc, ti, ivopts);
3130 if (ret < 0) {
3131 ti->error = "Error creating IV";
3132 return ret;
3133 }
3134 }
3135
3136 /* Initialize IV (set keys for ESSIV etc) */
3137 if (cc->iv_gen_ops && cc->iv_gen_ops->init) {
3138 ret = cc->iv_gen_ops->init(cc);
3139 if (ret < 0) {
3140 ti->error = "Error initialising IV";
3141 return ret;
3142 }
3143 }
3144
3145 /* wipe the kernel key payload copy */
3146 if (cc->key_string)
3147 memset(cc->key, 0, cc->key_size * sizeof(u8));
3148
3149 return ret;
3150 }
3151
crypt_ctr_optional(struct dm_target * ti,unsigned int argc,char ** argv)3152 static int crypt_ctr_optional(struct dm_target *ti, unsigned int argc, char **argv)
3153 {
3154 struct crypt_config *cc = ti->private;
3155 struct dm_arg_set as;
3156 static const struct dm_arg _args[] = {
3157 {0, 9, "Invalid number of feature args"},
3158 };
3159 unsigned int opt_params, val;
3160 const char *opt_string, *sval;
3161 char dummy;
3162 int ret;
3163
3164 /* Optional parameters */
3165 as.argc = argc;
3166 as.argv = argv;
3167
3168 ret = dm_read_arg_group(_args, &as, &opt_params, &ti->error);
3169 if (ret)
3170 return ret;
3171
3172 while (opt_params--) {
3173 opt_string = dm_shift_arg(&as);
3174 if (!opt_string) {
3175 ti->error = "Not enough feature arguments";
3176 return -EINVAL;
3177 }
3178
3179 if (!strcasecmp(opt_string, "allow_discards"))
3180 ti->num_discard_bios = 1;
3181
3182 else if (!strcasecmp(opt_string, "same_cpu_crypt"))
3183 set_bit(DM_CRYPT_SAME_CPU, &cc->flags);
3184 else if (!strcasecmp(opt_string, "high_priority"))
3185 set_bit(DM_CRYPT_HIGH_PRIORITY, &cc->flags);
3186
3187 else if (!strcasecmp(opt_string, "submit_from_crypt_cpus"))
3188 set_bit(DM_CRYPT_NO_OFFLOAD, &cc->flags);
3189 else if (!strcasecmp(opt_string, "no_read_workqueue"))
3190 set_bit(DM_CRYPT_NO_READ_WORKQUEUE, &cc->flags);
3191 else if (!strcasecmp(opt_string, "no_write_workqueue"))
3192 set_bit(DM_CRYPT_NO_WRITE_WORKQUEUE, &cc->flags);
3193 else if (sscanf(opt_string, "integrity:%u:", &val) == 1) {
3194 if (val == 0 || val > MAX_TAG_SIZE) {
3195 ti->error = "Invalid integrity arguments";
3196 return -EINVAL;
3197 }
3198 cc->used_tag_size = val;
3199 sval = strchr(opt_string + strlen("integrity:"), ':') + 1;
3200 if (!strcasecmp(sval, "aead")) {
3201 set_bit(CRYPT_MODE_INTEGRITY_AEAD, &cc->cipher_flags);
3202 } else if (strcasecmp(sval, "none")) {
3203 ti->error = "Unknown integrity profile";
3204 return -EINVAL;
3205 }
3206
3207 cc->cipher_auth = kstrdup(sval, GFP_KERNEL);
3208 if (!cc->cipher_auth)
3209 return -ENOMEM;
3210 } else if (sscanf(opt_string, "integrity_key_size:%u%c", &val, &dummy) == 1) {
3211 if (!val) {
3212 ti->error = "Invalid integrity_key_size argument";
3213 return -EINVAL;
3214 }
3215 cc->key_mac_size = val;
3216 set_bit(CRYPT_KEY_MAC_SIZE_SET, &cc->cipher_flags);
3217 } else if (sscanf(opt_string, "sector_size:%hu%c", &cc->sector_size, &dummy) == 1) {
3218 if (cc->sector_size < (1 << SECTOR_SHIFT) ||
3219 cc->sector_size > 4096 ||
3220 (cc->sector_size & (cc->sector_size - 1))) {
3221 ti->error = "Invalid feature value for sector_size";
3222 return -EINVAL;
3223 }
3224 if (ti->len & ((cc->sector_size >> SECTOR_SHIFT) - 1)) {
3225 ti->error = "Device size is not multiple of sector_size feature";
3226 return -EINVAL;
3227 }
3228 cc->sector_shift = __ffs(cc->sector_size) - SECTOR_SHIFT;
3229 } else if (!strcasecmp(opt_string, "iv_large_sectors"))
3230 set_bit(CRYPT_IV_LARGE_SECTORS, &cc->cipher_flags);
3231 else {
3232 ti->error = "Invalid feature arguments";
3233 return -EINVAL;
3234 }
3235 }
3236
3237 return 0;
3238 }
3239
3240 #ifdef CONFIG_BLK_DEV_ZONED
crypt_report_zones(struct dm_target * ti,struct dm_report_zones_args * args,unsigned int nr_zones)3241 static int crypt_report_zones(struct dm_target *ti,
3242 struct dm_report_zones_args *args, unsigned int nr_zones)
3243 {
3244 struct crypt_config *cc = ti->private;
3245
3246 return dm_report_zones(cc->dev->bdev, cc->start,
3247 cc->start + dm_target_offset(ti, args->next_sector),
3248 args, nr_zones);
3249 }
3250 #else
3251 #define crypt_report_zones NULL
3252 #endif
3253
3254 /*
3255 * Construct an encryption mapping:
3256 * <cipher> [<key>|:<key_size>:<user|logon>:<key_description>] <iv_offset> <dev_path> <start>
3257 */
crypt_ctr(struct dm_target * ti,unsigned int argc,char ** argv)3258 static int crypt_ctr(struct dm_target *ti, unsigned int argc, char **argv)
3259 {
3260 struct crypt_config *cc;
3261 const char *devname = dm_table_device_name(ti->table);
3262 int key_size, wq_id;
3263 unsigned int align_mask;
3264 unsigned int common_wq_flags;
3265 unsigned long long tmpll;
3266 int ret;
3267 size_t iv_size_padding, additional_req_size;
3268 char dummy;
3269
3270 if (argc < 5) {
3271 ti->error = "Not enough arguments";
3272 return -EINVAL;
3273 }
3274
3275 key_size = get_key_size(&argv[1]);
3276 if (key_size < 0) {
3277 ti->error = "Cannot parse key size";
3278 return -EINVAL;
3279 }
3280
3281 cc = kzalloc(struct_size(cc, key, key_size), GFP_KERNEL);
3282 if (!cc) {
3283 ti->error = "Cannot allocate encryption context";
3284 return -ENOMEM;
3285 }
3286 cc->key_size = key_size;
3287 cc->sector_size = (1 << SECTOR_SHIFT);
3288 cc->sector_shift = 0;
3289
3290 ti->private = cc;
3291
3292 spin_lock(&dm_crypt_clients_lock);
3293 dm_crypt_clients_n++;
3294 crypt_calculate_pages_per_client();
3295 spin_unlock(&dm_crypt_clients_lock);
3296
3297 ret = percpu_counter_init(&cc->n_allocated_pages, 0, GFP_KERNEL);
3298 if (ret < 0)
3299 goto bad;
3300
3301 /* Optional parameters need to be read before cipher constructor */
3302 if (argc > 5) {
3303 ret = crypt_ctr_optional(ti, argc - 5, &argv[5]);
3304 if (ret)
3305 goto bad;
3306 }
3307
3308 ret = crypt_ctr_cipher(ti, argv[0], argv[1]);
3309 if (ret < 0)
3310 goto bad;
3311
3312 if (crypt_integrity_aead(cc)) {
3313 cc->dmreq_start = sizeof(struct aead_request);
3314 cc->dmreq_start += crypto_aead_reqsize(any_tfm_aead(cc));
3315 align_mask = crypto_aead_alignmask(any_tfm_aead(cc));
3316 } else {
3317 cc->dmreq_start = sizeof(struct skcipher_request);
3318 cc->dmreq_start += crypto_skcipher_reqsize(any_tfm(cc));
3319 align_mask = crypto_skcipher_alignmask(any_tfm(cc));
3320 }
3321 cc->dmreq_start = ALIGN(cc->dmreq_start, __alignof__(struct dm_crypt_request));
3322
3323 if (align_mask < CRYPTO_MINALIGN) {
3324 /* Allocate the padding exactly */
3325 iv_size_padding = -(cc->dmreq_start + sizeof(struct dm_crypt_request))
3326 & align_mask;
3327 } else {
3328 /*
3329 * If the cipher requires greater alignment than kmalloc
3330 * alignment, we don't know the exact position of the
3331 * initialization vector. We must assume worst case.
3332 */
3333 iv_size_padding = align_mask;
3334 }
3335
3336 /* ...| IV + padding | original IV | original sec. number | bio tag offset | */
3337 additional_req_size = sizeof(struct dm_crypt_request) +
3338 iv_size_padding + cc->iv_size +
3339 cc->iv_size +
3340 sizeof(uint64_t) +
3341 sizeof(unsigned int);
3342
3343 ret = mempool_init_kmalloc_pool(&cc->req_pool, MIN_IOS, cc->dmreq_start + additional_req_size);
3344 if (ret) {
3345 ti->error = "Cannot allocate crypt request mempool";
3346 goto bad;
3347 }
3348
3349 cc->per_bio_data_size = ti->per_io_data_size =
3350 ALIGN(sizeof(struct dm_crypt_io) + cc->dmreq_start + additional_req_size,
3351 ARCH_DMA_MINALIGN);
3352
3353 ret = mempool_init(&cc->page_pool, BIO_MAX_VECS, crypt_page_alloc, crypt_page_free, cc);
3354 if (ret) {
3355 ti->error = "Cannot allocate page mempool";
3356 goto bad;
3357 }
3358
3359 ret = bioset_init(&cc->bs, MIN_IOS, 0, BIOSET_NEED_BVECS);
3360 if (ret) {
3361 ti->error = "Cannot allocate crypt bioset";
3362 goto bad;
3363 }
3364
3365 mutex_init(&cc->bio_alloc_lock);
3366
3367 ret = -EINVAL;
3368 if ((sscanf(argv[2], "%llu%c", &tmpll, &dummy) != 1) ||
3369 (tmpll & ((cc->sector_size >> SECTOR_SHIFT) - 1))) {
3370 ti->error = "Invalid iv_offset sector";
3371 goto bad;
3372 }
3373 cc->iv_offset = tmpll;
3374
3375 ret = dm_get_device(ti, argv[3], dm_table_get_mode(ti->table), &cc->dev);
3376 if (ret) {
3377 ti->error = "Device lookup failed";
3378 goto bad;
3379 }
3380
3381 ret = -EINVAL;
3382 if (sscanf(argv[4], "%llu%c", &tmpll, &dummy) != 1 || tmpll != (sector_t)tmpll) {
3383 ti->error = "Invalid device sector";
3384 goto bad;
3385 }
3386 cc->start = tmpll;
3387
3388 if (bdev_is_zoned(cc->dev->bdev)) {
3389 /*
3390 * For zoned block devices, we need to preserve the issuer write
3391 * ordering. To do so, disable write workqueues and force inline
3392 * encryption completion.
3393 */
3394 set_bit(DM_CRYPT_NO_WRITE_WORKQUEUE, &cc->flags);
3395 set_bit(DM_CRYPT_WRITE_INLINE, &cc->flags);
3396
3397 /*
3398 * All zone append writes to a zone of a zoned block device will
3399 * have the same BIO sector, the start of the zone. When the
3400 * cypher IV mode uses sector values, all data targeting a
3401 * zone will be encrypted using the first sector numbers of the
3402 * zone. This will not result in write errors but will
3403 * cause most reads to fail as reads will use the sector values
3404 * for the actual data locations, resulting in IV mismatch.
3405 * To avoid this problem, ask DM core to emulate zone append
3406 * operations with regular writes.
3407 */
3408 DMDEBUG("Zone append operations will be emulated");
3409 ti->emulate_zone_append = true;
3410 }
3411
3412 if (crypt_integrity_aead(cc) || cc->integrity_iv_size) {
3413 ret = crypt_integrity_ctr(cc, ti);
3414 if (ret)
3415 goto bad;
3416
3417 cc->tag_pool_max_sectors = POOL_ENTRY_SIZE / cc->tuple_size;
3418 if (!cc->tag_pool_max_sectors)
3419 cc->tag_pool_max_sectors = 1;
3420
3421 ret = mempool_init_kmalloc_pool(&cc->tag_pool, MIN_IOS,
3422 cc->tag_pool_max_sectors * cc->tuple_size);
3423 if (ret) {
3424 ti->error = "Cannot allocate integrity tags mempool";
3425 goto bad;
3426 }
3427
3428 cc->tag_pool_max_sectors <<= cc->sector_shift;
3429 }
3430
3431 wq_id = ida_alloc_min(&workqueue_ida, 1, GFP_KERNEL);
3432 if (wq_id < 0) {
3433 ti->error = "Couldn't get workqueue id";
3434 ret = wq_id;
3435 goto bad;
3436 }
3437 cc->workqueue_id = wq_id;
3438
3439 ret = -ENOMEM;
3440 common_wq_flags = WQ_MEM_RECLAIM | WQ_SYSFS;
3441 if (test_bit(DM_CRYPT_HIGH_PRIORITY, &cc->flags))
3442 common_wq_flags |= WQ_HIGHPRI;
3443
3444 cc->io_queue = alloc_workqueue("kcryptd_io-%s-%d", common_wq_flags, 1, devname, wq_id);
3445 if (!cc->io_queue) {
3446 ti->error = "Couldn't create kcryptd io queue";
3447 goto bad;
3448 }
3449
3450 if (test_bit(DM_CRYPT_SAME_CPU, &cc->flags)) {
3451 cc->crypt_queue = alloc_workqueue("kcryptd-%s-%d",
3452 common_wq_flags | WQ_CPU_INTENSIVE,
3453 1, devname, wq_id);
3454 } else {
3455 /*
3456 * While crypt_queue is certainly CPU intensive, the use of
3457 * WQ_CPU_INTENSIVE is meaningless with WQ_UNBOUND.
3458 */
3459 cc->crypt_queue = alloc_workqueue("kcryptd-%s-%d",
3460 common_wq_flags | WQ_UNBOUND,
3461 num_online_cpus(), devname, wq_id);
3462 }
3463 if (!cc->crypt_queue) {
3464 ti->error = "Couldn't create kcryptd queue";
3465 goto bad;
3466 }
3467
3468 spin_lock_init(&cc->write_thread_lock);
3469 cc->write_tree = RB_ROOT;
3470
3471 cc->write_thread = kthread_run(dmcrypt_write, cc, "dmcrypt_write/%s", devname);
3472 if (IS_ERR(cc->write_thread)) {
3473 ret = PTR_ERR(cc->write_thread);
3474 cc->write_thread = NULL;
3475 ti->error = "Couldn't spawn write thread";
3476 goto bad;
3477 }
3478 if (test_bit(DM_CRYPT_HIGH_PRIORITY, &cc->flags))
3479 set_user_nice(cc->write_thread, MIN_NICE);
3480
3481 ti->num_flush_bios = 1;
3482 ti->limit_swap_bios = true;
3483 ti->accounts_remapped_io = true;
3484
3485 dm_audit_log_ctr(DM_MSG_PREFIX, ti, 1);
3486 return 0;
3487
3488 bad:
3489 dm_audit_log_ctr(DM_MSG_PREFIX, ti, 0);
3490 crypt_dtr(ti);
3491 return ret;
3492 }
3493
crypt_map(struct dm_target * ti,struct bio * bio)3494 static int crypt_map(struct dm_target *ti, struct bio *bio)
3495 {
3496 struct dm_crypt_io *io;
3497 struct crypt_config *cc = ti->private;
3498 unsigned max_sectors;
3499
3500 /*
3501 * If bio is REQ_PREFLUSH or REQ_OP_DISCARD, just bypass crypt queues.
3502 * - for REQ_PREFLUSH device-mapper core ensures that no IO is in-flight
3503 * - for REQ_OP_DISCARD caller must use flush if IO ordering matters
3504 */
3505 if (unlikely(bio->bi_opf & REQ_PREFLUSH ||
3506 bio_op(bio) == REQ_OP_DISCARD)) {
3507 bio_set_dev(bio, cc->dev->bdev);
3508 if (bio_sectors(bio))
3509 bio->bi_iter.bi_sector = cc->start +
3510 dm_target_offset(ti, bio->bi_iter.bi_sector);
3511 return DM_MAPIO_REMAPPED;
3512 }
3513
3514 /*
3515 * Check if bio is too large, split as needed.
3516 */
3517 max_sectors = get_max_request_size(cc, bio_data_dir(bio) == WRITE);
3518 if (unlikely(bio_sectors(bio) > max_sectors))
3519 dm_accept_partial_bio(bio, max_sectors);
3520
3521 /*
3522 * Ensure that bio is a multiple of internal sector encryption size
3523 * and is aligned to this size as defined in IO hints.
3524 */
3525 if (unlikely((bio->bi_iter.bi_sector & ((cc->sector_size >> SECTOR_SHIFT) - 1)) != 0))
3526 return DM_MAPIO_KILL;
3527
3528 if (unlikely(bio->bi_iter.bi_size & (cc->sector_size - 1)))
3529 return DM_MAPIO_KILL;
3530
3531 io = dm_per_bio_data(bio, cc->per_bio_data_size);
3532 crypt_io_init(io, cc, bio, dm_target_offset(ti, bio->bi_iter.bi_sector));
3533
3534 if (cc->tuple_size) {
3535 unsigned int tag_len = cc->tuple_size * (bio_sectors(bio) >> cc->sector_shift);
3536
3537 if (unlikely(tag_len > KMALLOC_MAX_SIZE))
3538 io->integrity_metadata = NULL;
3539 else
3540 io->integrity_metadata = kmalloc(tag_len, GFP_NOIO | __GFP_NORETRY | __GFP_NOMEMALLOC | __GFP_NOWARN);
3541
3542 if (unlikely(!io->integrity_metadata)) {
3543 if (bio_sectors(bio) > cc->tag_pool_max_sectors)
3544 dm_accept_partial_bio(bio, cc->tag_pool_max_sectors);
3545 io->integrity_metadata = mempool_alloc(&cc->tag_pool, GFP_NOIO);
3546 io->integrity_metadata_from_pool = true;
3547 }
3548 }
3549
3550 if (crypt_integrity_aead(cc))
3551 io->ctx.r.req_aead = (struct aead_request *)(io + 1);
3552 else
3553 io->ctx.r.req = (struct skcipher_request *)(io + 1);
3554
3555 if (bio_data_dir(io->base_bio) == READ) {
3556 if (kcryptd_io_read(io, CRYPT_MAP_READ_GFP))
3557 kcryptd_queue_read(io);
3558 } else
3559 kcryptd_queue_crypt(io);
3560
3561 return DM_MAPIO_SUBMITTED;
3562 }
3563
hex2asc(unsigned char c)3564 static char hex2asc(unsigned char c)
3565 {
3566 return c + '0' + ((unsigned int)(9 - c) >> 4 & 0x27);
3567 }
3568
crypt_status(struct dm_target * ti,status_type_t type,unsigned int status_flags,char * result,unsigned int maxlen)3569 static void crypt_status(struct dm_target *ti, status_type_t type,
3570 unsigned int status_flags, char *result, unsigned int maxlen)
3571 {
3572 struct crypt_config *cc = ti->private;
3573 unsigned int i, sz = 0;
3574 int num_feature_args = 0;
3575
3576 switch (type) {
3577 case STATUSTYPE_INFO:
3578 result[0] = '\0';
3579 break;
3580
3581 case STATUSTYPE_TABLE:
3582 DMEMIT("%s ", cc->cipher_string);
3583
3584 if (cc->key_size > 0) {
3585 if (cc->key_string)
3586 DMEMIT(":%u:%s", cc->key_size, cc->key_string);
3587 else {
3588 for (i = 0; i < cc->key_size; i++) {
3589 DMEMIT("%c%c", hex2asc(cc->key[i] >> 4),
3590 hex2asc(cc->key[i] & 0xf));
3591 }
3592 }
3593 } else
3594 DMEMIT("-");
3595
3596 DMEMIT(" %llu %s %llu", (unsigned long long)cc->iv_offset,
3597 cc->dev->name, (unsigned long long)cc->start);
3598
3599 num_feature_args += !!ti->num_discard_bios;
3600 num_feature_args += test_bit(DM_CRYPT_SAME_CPU, &cc->flags);
3601 num_feature_args += test_bit(DM_CRYPT_HIGH_PRIORITY, &cc->flags);
3602 num_feature_args += test_bit(DM_CRYPT_NO_OFFLOAD, &cc->flags);
3603 num_feature_args += test_bit(DM_CRYPT_NO_READ_WORKQUEUE, &cc->flags);
3604 num_feature_args += test_bit(DM_CRYPT_NO_WRITE_WORKQUEUE, &cc->flags);
3605 num_feature_args += !!cc->used_tag_size;
3606 num_feature_args += cc->sector_size != (1 << SECTOR_SHIFT);
3607 num_feature_args += test_bit(CRYPT_IV_LARGE_SECTORS, &cc->cipher_flags);
3608 num_feature_args += test_bit(CRYPT_KEY_MAC_SIZE_SET, &cc->cipher_flags);
3609 if (num_feature_args) {
3610 DMEMIT(" %d", num_feature_args);
3611 if (ti->num_discard_bios)
3612 DMEMIT(" allow_discards");
3613 if (test_bit(DM_CRYPT_SAME_CPU, &cc->flags))
3614 DMEMIT(" same_cpu_crypt");
3615 if (test_bit(DM_CRYPT_HIGH_PRIORITY, &cc->flags))
3616 DMEMIT(" high_priority");
3617 if (test_bit(DM_CRYPT_NO_OFFLOAD, &cc->flags))
3618 DMEMIT(" submit_from_crypt_cpus");
3619 if (test_bit(DM_CRYPT_NO_READ_WORKQUEUE, &cc->flags))
3620 DMEMIT(" no_read_workqueue");
3621 if (test_bit(DM_CRYPT_NO_WRITE_WORKQUEUE, &cc->flags))
3622 DMEMIT(" no_write_workqueue");
3623 if (cc->used_tag_size)
3624 DMEMIT(" integrity:%u:%s", cc->used_tag_size, cc->cipher_auth);
3625 if (cc->sector_size != (1 << SECTOR_SHIFT))
3626 DMEMIT(" sector_size:%d", cc->sector_size);
3627 if (test_bit(CRYPT_IV_LARGE_SECTORS, &cc->cipher_flags))
3628 DMEMIT(" iv_large_sectors");
3629 if (test_bit(CRYPT_KEY_MAC_SIZE_SET, &cc->cipher_flags))
3630 DMEMIT(" integrity_key_size:%u", cc->key_mac_size);
3631 }
3632 break;
3633
3634 case STATUSTYPE_IMA:
3635 DMEMIT_TARGET_NAME_VERSION(ti->type);
3636 DMEMIT(",allow_discards=%c", ti->num_discard_bios ? 'y' : 'n');
3637 DMEMIT(",same_cpu_crypt=%c", test_bit(DM_CRYPT_SAME_CPU, &cc->flags) ? 'y' : 'n');
3638 DMEMIT(",high_priority=%c", test_bit(DM_CRYPT_HIGH_PRIORITY, &cc->flags) ? 'y' : 'n');
3639 DMEMIT(",submit_from_crypt_cpus=%c", test_bit(DM_CRYPT_NO_OFFLOAD, &cc->flags) ?
3640 'y' : 'n');
3641 DMEMIT(",no_read_workqueue=%c", test_bit(DM_CRYPT_NO_READ_WORKQUEUE, &cc->flags) ?
3642 'y' : 'n');
3643 DMEMIT(",no_write_workqueue=%c", test_bit(DM_CRYPT_NO_WRITE_WORKQUEUE, &cc->flags) ?
3644 'y' : 'n');
3645 DMEMIT(",iv_large_sectors=%c", test_bit(CRYPT_IV_LARGE_SECTORS, &cc->cipher_flags) ?
3646 'y' : 'n');
3647
3648 if (cc->used_tag_size)
3649 DMEMIT(",integrity_tag_size=%u,cipher_auth=%s",
3650 cc->used_tag_size, cc->cipher_auth);
3651 if (cc->sector_size != (1 << SECTOR_SHIFT))
3652 DMEMIT(",sector_size=%d", cc->sector_size);
3653 if (cc->cipher_string)
3654 DMEMIT(",cipher_string=%s", cc->cipher_string);
3655
3656 DMEMIT(",key_size=%u", cc->key_size);
3657 DMEMIT(",key_parts=%u", cc->key_parts);
3658 DMEMIT(",key_extra_size=%u", cc->key_extra_size);
3659 DMEMIT(",key_mac_size=%u", cc->key_mac_size);
3660 DMEMIT(";");
3661 break;
3662 }
3663 }
3664
crypt_postsuspend(struct dm_target * ti)3665 static void crypt_postsuspend(struct dm_target *ti)
3666 {
3667 struct crypt_config *cc = ti->private;
3668
3669 set_bit(DM_CRYPT_SUSPENDED, &cc->flags);
3670 }
3671
crypt_preresume(struct dm_target * ti)3672 static int crypt_preresume(struct dm_target *ti)
3673 {
3674 struct crypt_config *cc = ti->private;
3675
3676 if (!test_bit(DM_CRYPT_KEY_VALID, &cc->flags)) {
3677 DMERR("aborting resume - crypt key is not set.");
3678 return -EAGAIN;
3679 }
3680
3681 return 0;
3682 }
3683
crypt_resume(struct dm_target * ti)3684 static void crypt_resume(struct dm_target *ti)
3685 {
3686 struct crypt_config *cc = ti->private;
3687
3688 clear_bit(DM_CRYPT_SUSPENDED, &cc->flags);
3689 }
3690
3691 /* Message interface
3692 * key set <key>
3693 * key wipe
3694 */
crypt_message(struct dm_target * ti,unsigned int argc,char ** argv,char * result,unsigned int maxlen)3695 static int crypt_message(struct dm_target *ti, unsigned int argc, char **argv,
3696 char *result, unsigned int maxlen)
3697 {
3698 struct crypt_config *cc = ti->private;
3699 int key_size, ret = -EINVAL;
3700
3701 if (argc < 2)
3702 goto error;
3703
3704 if (!strcasecmp(argv[0], "key")) {
3705 if (!test_bit(DM_CRYPT_SUSPENDED, &cc->flags)) {
3706 DMWARN("not suspended during key manipulation.");
3707 return -EINVAL;
3708 }
3709 if (argc == 3 && !strcasecmp(argv[1], "set")) {
3710 /* The key size may not be changed. */
3711 key_size = get_key_size(&argv[2]);
3712 if (key_size < 0 || cc->key_size != key_size) {
3713 memset(argv[2], '0', strlen(argv[2]));
3714 return -EINVAL;
3715 }
3716
3717 ret = crypt_set_key(cc, argv[2]);
3718 if (ret)
3719 return ret;
3720 if (cc->iv_gen_ops && cc->iv_gen_ops->init)
3721 ret = cc->iv_gen_ops->init(cc);
3722 /* wipe the kernel key payload copy */
3723 if (cc->key_string)
3724 memset(cc->key, 0, cc->key_size * sizeof(u8));
3725 return ret;
3726 }
3727 if (argc == 2 && !strcasecmp(argv[1], "wipe"))
3728 return crypt_wipe_key(cc);
3729 }
3730
3731 error:
3732 DMWARN("unrecognised message received.");
3733 return -EINVAL;
3734 }
3735
crypt_iterate_devices(struct dm_target * ti,iterate_devices_callout_fn fn,void * data)3736 static int crypt_iterate_devices(struct dm_target *ti,
3737 iterate_devices_callout_fn fn, void *data)
3738 {
3739 struct crypt_config *cc = ti->private;
3740
3741 return fn(ti, cc->dev, cc->start, ti->len, data);
3742 }
3743
crypt_io_hints(struct dm_target * ti,struct queue_limits * limits)3744 static void crypt_io_hints(struct dm_target *ti, struct queue_limits *limits)
3745 {
3746 struct crypt_config *cc = ti->private;
3747
3748 limits->logical_block_size =
3749 max_t(unsigned int, limits->logical_block_size, cc->sector_size);
3750 limits->physical_block_size =
3751 max_t(unsigned int, limits->physical_block_size, cc->sector_size);
3752 limits->io_min = max_t(unsigned int, limits->io_min, cc->sector_size);
3753 limits->dma_alignment = limits->logical_block_size - 1;
3754 }
3755
3756 static struct target_type crypt_target = {
3757 .name = "crypt",
3758 .version = {1, 28, 0},
3759 .module = THIS_MODULE,
3760 .ctr = crypt_ctr,
3761 .dtr = crypt_dtr,
3762 .features = DM_TARGET_ZONED_HM,
3763 .report_zones = crypt_report_zones,
3764 .map = crypt_map,
3765 .status = crypt_status,
3766 .postsuspend = crypt_postsuspend,
3767 .preresume = crypt_preresume,
3768 .resume = crypt_resume,
3769 .message = crypt_message,
3770 .iterate_devices = crypt_iterate_devices,
3771 .io_hints = crypt_io_hints,
3772 };
3773 module_dm(crypt);
3774
3775 MODULE_AUTHOR("Jana Saout <[email protected]>");
3776 MODULE_DESCRIPTION(DM_NAME " target for transparent encryption / decryption");
3777 MODULE_LICENSE("GPL");
3778