1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Copyright (C) 2001 Sistina Software (UK) Limited.
4 * Copyright (C) 2004-2008 Red Hat, Inc. All rights reserved.
5 *
6 * This file is released under the GPL.
7 */
8
9 #include "dm-core.h"
10 #include "dm-rq.h"
11
12 #include <linux/module.h>
13 #include <linux/vmalloc.h>
14 #include <linux/blkdev.h>
15 #include <linux/blk-integrity.h>
16 #include <linux/namei.h>
17 #include <linux/ctype.h>
18 #include <linux/string.h>
19 #include <linux/slab.h>
20 #include <linux/interrupt.h>
21 #include <linux/mutex.h>
22 #include <linux/delay.h>
23 #include <linux/atomic.h>
24 #include <linux/blk-mq.h>
25 #include <linux/mount.h>
26 #include <linux/dax.h>
27
28 #define DM_MSG_PREFIX "table"
29
30 #define NODE_SIZE L1_CACHE_BYTES
31 #define KEYS_PER_NODE (NODE_SIZE / sizeof(sector_t))
32 #define CHILDREN_PER_NODE (KEYS_PER_NODE + 1)
33
34 /*
35 * Similar to ceiling(log_size(n))
36 */
int_log(unsigned int n,unsigned int base)37 static unsigned int int_log(unsigned int n, unsigned int base)
38 {
39 int result = 0;
40
41 while (n > 1) {
42 n = dm_div_up(n, base);
43 result++;
44 }
45
46 return result;
47 }
48
49 /*
50 * Calculate the index of the child node of the n'th node k'th key.
51 */
get_child(unsigned int n,unsigned int k)52 static inline unsigned int get_child(unsigned int n, unsigned int k)
53 {
54 return (n * CHILDREN_PER_NODE) + k;
55 }
56
57 /*
58 * Return the n'th node of level l from table t.
59 */
get_node(struct dm_table * t,unsigned int l,unsigned int n)60 static inline sector_t *get_node(struct dm_table *t,
61 unsigned int l, unsigned int n)
62 {
63 return t->index[l] + (n * KEYS_PER_NODE);
64 }
65
66 /*
67 * Return the highest key that you could lookup from the n'th
68 * node on level l of the btree.
69 */
high(struct dm_table * t,unsigned int l,unsigned int n)70 static sector_t high(struct dm_table *t, unsigned int l, unsigned int n)
71 {
72 for (; l < t->depth - 1; l++)
73 n = get_child(n, CHILDREN_PER_NODE - 1);
74
75 if (n >= t->counts[l])
76 return (sector_t) -1;
77
78 return get_node(t, l, n)[KEYS_PER_NODE - 1];
79 }
80
81 /*
82 * Fills in a level of the btree based on the highs of the level
83 * below it.
84 */
setup_btree_index(unsigned int l,struct dm_table * t)85 static int setup_btree_index(unsigned int l, struct dm_table *t)
86 {
87 unsigned int n, k;
88 sector_t *node;
89
90 for (n = 0U; n < t->counts[l]; n++) {
91 node = get_node(t, l, n);
92
93 for (k = 0U; k < KEYS_PER_NODE; k++)
94 node[k] = high(t, l + 1, get_child(n, k));
95 }
96
97 return 0;
98 }
99
100 /*
101 * highs, and targets are managed as dynamic arrays during a
102 * table load.
103 */
alloc_targets(struct dm_table * t,unsigned int num)104 static int alloc_targets(struct dm_table *t, unsigned int num)
105 {
106 sector_t *n_highs;
107 struct dm_target *n_targets;
108
109 /*
110 * Allocate both the target array and offset array at once.
111 */
112 n_highs = kvcalloc(num, sizeof(struct dm_target) + sizeof(sector_t),
113 GFP_KERNEL);
114 if (!n_highs)
115 return -ENOMEM;
116
117 n_targets = (struct dm_target *) (n_highs + num);
118
119 memset(n_highs, -1, sizeof(*n_highs) * num);
120 kvfree(t->highs);
121
122 t->num_allocated = num;
123 t->highs = n_highs;
124 t->targets = n_targets;
125
126 return 0;
127 }
128
dm_table_create(struct dm_table ** result,blk_mode_t mode,unsigned int num_targets,struct mapped_device * md)129 int dm_table_create(struct dm_table **result, blk_mode_t mode,
130 unsigned int num_targets, struct mapped_device *md)
131 {
132 struct dm_table *t;
133
134 if (num_targets > DM_MAX_TARGETS)
135 return -EOVERFLOW;
136
137 t = kzalloc(sizeof(*t), GFP_KERNEL);
138
139 if (!t)
140 return -ENOMEM;
141
142 INIT_LIST_HEAD(&t->devices);
143 init_rwsem(&t->devices_lock);
144
145 if (!num_targets)
146 num_targets = KEYS_PER_NODE;
147
148 num_targets = dm_round_up(num_targets, KEYS_PER_NODE);
149
150 if (!num_targets) {
151 kfree(t);
152 return -EOVERFLOW;
153 }
154
155 if (alloc_targets(t, num_targets)) {
156 kfree(t);
157 return -ENOMEM;
158 }
159
160 t->type = DM_TYPE_NONE;
161 t->mode = mode;
162 t->md = md;
163 t->flush_bypasses_map = true;
164 *result = t;
165 return 0;
166 }
167
free_devices(struct list_head * devices,struct mapped_device * md)168 static void free_devices(struct list_head *devices, struct mapped_device *md)
169 {
170 struct list_head *tmp, *next;
171
172 list_for_each_safe(tmp, next, devices) {
173 struct dm_dev_internal *dd =
174 list_entry(tmp, struct dm_dev_internal, list);
175 DMWARN("%s: dm_table_destroy: dm_put_device call missing for %s",
176 dm_device_name(md), dd->dm_dev->name);
177 dm_put_table_device(md, dd->dm_dev);
178 kfree(dd);
179 }
180 }
181
182 static void dm_table_destroy_crypto_profile(struct dm_table *t);
183
dm_table_destroy(struct dm_table * t)184 void dm_table_destroy(struct dm_table *t)
185 {
186 if (!t)
187 return;
188
189 /* free the indexes */
190 if (t->depth >= 2)
191 kvfree(t->index[t->depth - 2]);
192
193 /* free the targets */
194 for (unsigned int i = 0; i < t->num_targets; i++) {
195 struct dm_target *ti = dm_table_get_target(t, i);
196
197 if (ti->type->dtr)
198 ti->type->dtr(ti);
199
200 dm_put_target_type(ti->type);
201 }
202
203 kvfree(t->highs);
204
205 /* free the device list */
206 free_devices(&t->devices, t->md);
207
208 dm_free_md_mempools(t->mempools);
209
210 dm_table_destroy_crypto_profile(t);
211
212 kfree(t);
213 }
214
215 /*
216 * See if we've already got a device in the list.
217 */
find_device(struct list_head * l,dev_t dev)218 static struct dm_dev_internal *find_device(struct list_head *l, dev_t dev)
219 {
220 struct dm_dev_internal *dd;
221
222 list_for_each_entry(dd, l, list)
223 if (dd->dm_dev->bdev->bd_dev == dev)
224 return dd;
225
226 return NULL;
227 }
228
229 /*
230 * If possible, this checks an area of a destination device is invalid.
231 */
device_area_is_invalid(struct dm_target * ti,struct dm_dev * dev,sector_t start,sector_t len,void * data)232 static int device_area_is_invalid(struct dm_target *ti, struct dm_dev *dev,
233 sector_t start, sector_t len, void *data)
234 {
235 struct queue_limits *limits = data;
236 struct block_device *bdev = dev->bdev;
237 sector_t dev_size = bdev_nr_sectors(bdev);
238 unsigned short logical_block_size_sectors =
239 limits->logical_block_size >> SECTOR_SHIFT;
240
241 if (!dev_size)
242 return 0;
243
244 if ((start >= dev_size) || (start + len > dev_size)) {
245 DMERR("%s: %pg too small for target: start=%llu, len=%llu, dev_size=%llu",
246 dm_device_name(ti->table->md), bdev,
247 (unsigned long long)start,
248 (unsigned long long)len,
249 (unsigned long long)dev_size);
250 return 1;
251 }
252
253 /*
254 * If the target is mapped to zoned block device(s), check
255 * that the zones are not partially mapped.
256 */
257 if (bdev_is_zoned(bdev)) {
258 unsigned int zone_sectors = bdev_zone_sectors(bdev);
259
260 if (start & (zone_sectors - 1)) {
261 DMERR("%s: start=%llu not aligned to h/w zone size %u of %pg",
262 dm_device_name(ti->table->md),
263 (unsigned long long)start,
264 zone_sectors, bdev);
265 return 1;
266 }
267
268 /*
269 * Note: The last zone of a zoned block device may be smaller
270 * than other zones. So for a target mapping the end of a
271 * zoned block device with such a zone, len would not be zone
272 * aligned. We do not allow such last smaller zone to be part
273 * of the mapping here to ensure that mappings with multiple
274 * devices do not end up with a smaller zone in the middle of
275 * the sector range.
276 */
277 if (len & (zone_sectors - 1)) {
278 DMERR("%s: len=%llu not aligned to h/w zone size %u of %pg",
279 dm_device_name(ti->table->md),
280 (unsigned long long)len,
281 zone_sectors, bdev);
282 return 1;
283 }
284 }
285
286 if (logical_block_size_sectors <= 1)
287 return 0;
288
289 if (start & (logical_block_size_sectors - 1)) {
290 DMERR("%s: start=%llu not aligned to h/w logical block size %u of %pg",
291 dm_device_name(ti->table->md),
292 (unsigned long long)start,
293 limits->logical_block_size, bdev);
294 return 1;
295 }
296
297 if (len & (logical_block_size_sectors - 1)) {
298 DMERR("%s: len=%llu not aligned to h/w logical block size %u of %pg",
299 dm_device_name(ti->table->md),
300 (unsigned long long)len,
301 limits->logical_block_size, bdev);
302 return 1;
303 }
304
305 return 0;
306 }
307
308 /*
309 * This upgrades the mode on an already open dm_dev, being
310 * careful to leave things as they were if we fail to reopen the
311 * device and not to touch the existing bdev field in case
312 * it is accessed concurrently.
313 */
upgrade_mode(struct dm_dev_internal * dd,blk_mode_t new_mode,struct mapped_device * md)314 static int upgrade_mode(struct dm_dev_internal *dd, blk_mode_t new_mode,
315 struct mapped_device *md)
316 {
317 int r;
318 struct dm_dev *old_dev, *new_dev;
319
320 old_dev = dd->dm_dev;
321
322 r = dm_get_table_device(md, dd->dm_dev->bdev->bd_dev,
323 dd->dm_dev->mode | new_mode, &new_dev);
324 if (r)
325 return r;
326
327 dd->dm_dev = new_dev;
328 dm_put_table_device(md, old_dev);
329
330 return 0;
331 }
332
333 /*
334 * Note: the __ref annotation is because this function can call the __init
335 * marked early_lookup_bdev when called during early boot code from dm-init.c.
336 */
dm_devt_from_path(const char * path,dev_t * dev_p)337 int __ref dm_devt_from_path(const char *path, dev_t *dev_p)
338 {
339 int r;
340 dev_t dev;
341 unsigned int major, minor;
342 char dummy;
343
344 if (sscanf(path, "%u:%u%c", &major, &minor, &dummy) == 2) {
345 /* Extract the major/minor numbers */
346 dev = MKDEV(major, minor);
347 if (MAJOR(dev) != major || MINOR(dev) != minor)
348 return -EOVERFLOW;
349 } else {
350 r = lookup_bdev(path, &dev);
351 #ifndef MODULE
352 if (r && system_state < SYSTEM_RUNNING)
353 r = early_lookup_bdev(path, &dev);
354 #endif
355 if (r)
356 return r;
357 }
358 *dev_p = dev;
359 return 0;
360 }
361 EXPORT_SYMBOL(dm_devt_from_path);
362
363 /*
364 * Add a device to the list, or just increment the usage count if
365 * it's already present.
366 */
dm_get_device(struct dm_target * ti,const char * path,blk_mode_t mode,struct dm_dev ** result)367 int dm_get_device(struct dm_target *ti, const char *path, blk_mode_t mode,
368 struct dm_dev **result)
369 {
370 int r;
371 dev_t dev;
372 struct dm_dev_internal *dd;
373 struct dm_table *t = ti->table;
374
375 BUG_ON(!t);
376
377 r = dm_devt_from_path(path, &dev);
378 if (r)
379 return r;
380
381 if (dev == disk_devt(t->md->disk))
382 return -EINVAL;
383
384 down_write(&t->devices_lock);
385
386 dd = find_device(&t->devices, dev);
387 if (!dd) {
388 dd = kmalloc(sizeof(*dd), GFP_KERNEL);
389 if (!dd) {
390 r = -ENOMEM;
391 goto unlock_ret_r;
392 }
393
394 r = dm_get_table_device(t->md, dev, mode, &dd->dm_dev);
395 if (r) {
396 kfree(dd);
397 goto unlock_ret_r;
398 }
399
400 refcount_set(&dd->count, 1);
401 list_add(&dd->list, &t->devices);
402 goto out;
403
404 } else if (dd->dm_dev->mode != (mode | dd->dm_dev->mode)) {
405 r = upgrade_mode(dd, mode, t->md);
406 if (r)
407 goto unlock_ret_r;
408 }
409 refcount_inc(&dd->count);
410 out:
411 up_write(&t->devices_lock);
412 *result = dd->dm_dev;
413 return 0;
414
415 unlock_ret_r:
416 up_write(&t->devices_lock);
417 return r;
418 }
419 EXPORT_SYMBOL(dm_get_device);
420
dm_set_device_limits(struct dm_target * ti,struct dm_dev * dev,sector_t start,sector_t len,void * data)421 static int dm_set_device_limits(struct dm_target *ti, struct dm_dev *dev,
422 sector_t start, sector_t len, void *data)
423 {
424 struct queue_limits *limits = data;
425 struct block_device *bdev = dev->bdev;
426 struct request_queue *q = bdev_get_queue(bdev);
427
428 if (unlikely(!q)) {
429 DMWARN("%s: Cannot set limits for nonexistent device %pg",
430 dm_device_name(ti->table->md), bdev);
431 return 0;
432 }
433
434 if (blk_stack_limits(limits, &q->limits,
435 get_start_sect(bdev) + start) < 0)
436 DMWARN("%s: adding target device %pg caused an alignment inconsistency: "
437 "physical_block_size=%u, logical_block_size=%u, "
438 "alignment_offset=%u, start=%llu",
439 dm_device_name(ti->table->md), bdev,
440 q->limits.physical_block_size,
441 q->limits.logical_block_size,
442 q->limits.alignment_offset,
443 (unsigned long long) start << SECTOR_SHIFT);
444
445 /*
446 * Only stack the integrity profile if the target doesn't have native
447 * integrity support.
448 */
449 if (!dm_target_has_integrity(ti->type))
450 queue_limits_stack_integrity_bdev(limits, bdev);
451 return 0;
452 }
453
454 /*
455 * Decrement a device's use count and remove it if necessary.
456 */
dm_put_device(struct dm_target * ti,struct dm_dev * d)457 void dm_put_device(struct dm_target *ti, struct dm_dev *d)
458 {
459 int found = 0;
460 struct dm_table *t = ti->table;
461 struct list_head *devices = &t->devices;
462 struct dm_dev_internal *dd;
463
464 down_write(&t->devices_lock);
465
466 list_for_each_entry(dd, devices, list) {
467 if (dd->dm_dev == d) {
468 found = 1;
469 break;
470 }
471 }
472 if (!found) {
473 DMERR("%s: device %s not in table devices list",
474 dm_device_name(t->md), d->name);
475 goto unlock_ret;
476 }
477 if (refcount_dec_and_test(&dd->count)) {
478 dm_put_table_device(t->md, d);
479 list_del(&dd->list);
480 kfree(dd);
481 }
482
483 unlock_ret:
484 up_write(&t->devices_lock);
485 }
486 EXPORT_SYMBOL(dm_put_device);
487
488 /*
489 * Checks to see if the target joins onto the end of the table.
490 */
adjoin(struct dm_table * t,struct dm_target * ti)491 static int adjoin(struct dm_table *t, struct dm_target *ti)
492 {
493 struct dm_target *prev;
494
495 if (!t->num_targets)
496 return !ti->begin;
497
498 prev = &t->targets[t->num_targets - 1];
499 return (ti->begin == (prev->begin + prev->len));
500 }
501
502 /*
503 * Used to dynamically allocate the arg array.
504 *
505 * We do first allocation with GFP_NOIO because dm-mpath and dm-thin must
506 * process messages even if some device is suspended. These messages have a
507 * small fixed number of arguments.
508 *
509 * On the other hand, dm-switch needs to process bulk data using messages and
510 * excessive use of GFP_NOIO could cause trouble.
511 */
realloc_argv(unsigned int * size,char ** old_argv)512 static char **realloc_argv(unsigned int *size, char **old_argv)
513 {
514 char **argv;
515 unsigned int new_size;
516 gfp_t gfp;
517
518 if (*size) {
519 new_size = *size * 2;
520 gfp = GFP_KERNEL;
521 } else {
522 new_size = 8;
523 gfp = GFP_NOIO;
524 }
525 argv = kmalloc_array(new_size, sizeof(*argv), gfp);
526 if (argv && old_argv) {
527 memcpy(argv, old_argv, *size * sizeof(*argv));
528 *size = new_size;
529 }
530
531 kfree(old_argv);
532 return argv;
533 }
534
535 /*
536 * Destructively splits up the argument list to pass to ctr.
537 */
dm_split_args(int * argc,char *** argvp,char * input)538 int dm_split_args(int *argc, char ***argvp, char *input)
539 {
540 char *start, *end = input, *out, **argv = NULL;
541 unsigned int array_size = 0;
542
543 *argc = 0;
544
545 if (!input) {
546 *argvp = NULL;
547 return 0;
548 }
549
550 argv = realloc_argv(&array_size, argv);
551 if (!argv)
552 return -ENOMEM;
553
554 while (1) {
555 /* Skip whitespace */
556 start = skip_spaces(end);
557
558 if (!*start)
559 break; /* success, we hit the end */
560
561 /* 'out' is used to remove any back-quotes */
562 end = out = start;
563 while (*end) {
564 /* Everything apart from '\0' can be quoted */
565 if (*end == '\\' && *(end + 1)) {
566 *out++ = *(end + 1);
567 end += 2;
568 continue;
569 }
570
571 if (isspace(*end))
572 break; /* end of token */
573
574 *out++ = *end++;
575 }
576
577 /* have we already filled the array ? */
578 if ((*argc + 1) > array_size) {
579 argv = realloc_argv(&array_size, argv);
580 if (!argv)
581 return -ENOMEM;
582 }
583
584 /* we know this is whitespace */
585 if (*end)
586 end++;
587
588 /* terminate the string and put it in the array */
589 *out = '\0';
590 argv[*argc] = start;
591 (*argc)++;
592 }
593
594 *argvp = argv;
595 return 0;
596 }
597
dm_set_stacking_limits(struct queue_limits * limits)598 static void dm_set_stacking_limits(struct queue_limits *limits)
599 {
600 blk_set_stacking_limits(limits);
601 limits->features |= BLK_FEAT_IO_STAT | BLK_FEAT_NOWAIT | BLK_FEAT_POLL;
602 }
603
604 /*
605 * Impose necessary and sufficient conditions on a devices's table such
606 * that any incoming bio which respects its logical_block_size can be
607 * processed successfully. If it falls across the boundary between
608 * two or more targets, the size of each piece it gets split into must
609 * be compatible with the logical_block_size of the target processing it.
610 */
validate_hardware_logical_block_alignment(struct dm_table * t,struct queue_limits * limits)611 static int validate_hardware_logical_block_alignment(struct dm_table *t,
612 struct queue_limits *limits)
613 {
614 /*
615 * This function uses arithmetic modulo the logical_block_size
616 * (in units of 512-byte sectors).
617 */
618 unsigned short device_logical_block_size_sects =
619 limits->logical_block_size >> SECTOR_SHIFT;
620
621 /*
622 * Offset of the start of the next table entry, mod logical_block_size.
623 */
624 unsigned short next_target_start = 0;
625
626 /*
627 * Given an aligned bio that extends beyond the end of a
628 * target, how many sectors must the next target handle?
629 */
630 unsigned short remaining = 0;
631
632 struct dm_target *ti;
633 struct queue_limits ti_limits;
634 unsigned int i;
635
636 /*
637 * Check each entry in the table in turn.
638 */
639 for (i = 0; i < t->num_targets; i++) {
640 ti = dm_table_get_target(t, i);
641
642 dm_set_stacking_limits(&ti_limits);
643
644 /* combine all target devices' limits */
645 if (ti->type->iterate_devices)
646 ti->type->iterate_devices(ti, dm_set_device_limits,
647 &ti_limits);
648
649 /*
650 * If the remaining sectors fall entirely within this
651 * table entry are they compatible with its logical_block_size?
652 */
653 if (remaining < ti->len &&
654 remaining & ((ti_limits.logical_block_size >>
655 SECTOR_SHIFT) - 1))
656 break; /* Error */
657
658 next_target_start =
659 (unsigned short) ((next_target_start + ti->len) &
660 (device_logical_block_size_sects - 1));
661 remaining = next_target_start ?
662 device_logical_block_size_sects - next_target_start : 0;
663 }
664
665 if (remaining) {
666 DMERR("%s: table line %u (start sect %llu len %llu) "
667 "not aligned to h/w logical block size %u",
668 dm_device_name(t->md), i,
669 (unsigned long long) ti->begin,
670 (unsigned long long) ti->len,
671 limits->logical_block_size);
672 return -EINVAL;
673 }
674
675 return 0;
676 }
677
dm_table_add_target(struct dm_table * t,const char * type,sector_t start,sector_t len,char * params)678 int dm_table_add_target(struct dm_table *t, const char *type,
679 sector_t start, sector_t len, char *params)
680 {
681 int r = -EINVAL, argc;
682 char **argv;
683 struct dm_target *ti;
684
685 if (t->singleton) {
686 DMERR("%s: target type %s must appear alone in table",
687 dm_device_name(t->md), t->targets->type->name);
688 return -EINVAL;
689 }
690
691 BUG_ON(t->num_targets >= t->num_allocated);
692
693 ti = t->targets + t->num_targets;
694 memset(ti, 0, sizeof(*ti));
695
696 if (!len) {
697 DMERR("%s: zero-length target", dm_device_name(t->md));
698 return -EINVAL;
699 }
700
701 ti->type = dm_get_target_type(type);
702 if (!ti->type) {
703 DMERR("%s: %s: unknown target type", dm_device_name(t->md), type);
704 return -EINVAL;
705 }
706
707 if (dm_target_needs_singleton(ti->type)) {
708 if (t->num_targets) {
709 ti->error = "singleton target type must appear alone in table";
710 goto bad;
711 }
712 t->singleton = true;
713 }
714
715 if (dm_target_always_writeable(ti->type) &&
716 !(t->mode & BLK_OPEN_WRITE)) {
717 ti->error = "target type may not be included in a read-only table";
718 goto bad;
719 }
720
721 if (t->immutable_target_type) {
722 if (t->immutable_target_type != ti->type) {
723 ti->error = "immutable target type cannot be mixed with other target types";
724 goto bad;
725 }
726 } else if (dm_target_is_immutable(ti->type)) {
727 if (t->num_targets) {
728 ti->error = "immutable target type cannot be mixed with other target types";
729 goto bad;
730 }
731 t->immutable_target_type = ti->type;
732 }
733
734 ti->table = t;
735 ti->begin = start;
736 ti->len = len;
737 ti->error = "Unknown error";
738
739 /*
740 * Does this target adjoin the previous one ?
741 */
742 if (!adjoin(t, ti)) {
743 ti->error = "Gap in table";
744 goto bad;
745 }
746
747 r = dm_split_args(&argc, &argv, params);
748 if (r) {
749 ti->error = "couldn't split parameters";
750 goto bad;
751 }
752
753 r = ti->type->ctr(ti, argc, argv);
754 kfree(argv);
755 if (r)
756 goto bad;
757
758 t->highs[t->num_targets++] = ti->begin + ti->len - 1;
759
760 if (!ti->num_discard_bios && ti->discards_supported)
761 DMWARN("%s: %s: ignoring discards_supported because num_discard_bios is zero.",
762 dm_device_name(t->md), type);
763
764 if (ti->limit_swap_bios && !static_key_enabled(&swap_bios_enabled.key))
765 static_branch_enable(&swap_bios_enabled);
766
767 if (!ti->flush_bypasses_map)
768 t->flush_bypasses_map = false;
769
770 return 0;
771
772 bad:
773 DMERR("%s: %s: %s (%pe)", dm_device_name(t->md), type, ti->error, ERR_PTR(r));
774 dm_put_target_type(ti->type);
775 return r;
776 }
777
778 /*
779 * Target argument parsing helpers.
780 */
validate_next_arg(const struct dm_arg * arg,struct dm_arg_set * arg_set,unsigned int * value,char ** error,unsigned int grouped)781 static int validate_next_arg(const struct dm_arg *arg, struct dm_arg_set *arg_set,
782 unsigned int *value, char **error, unsigned int grouped)
783 {
784 const char *arg_str = dm_shift_arg(arg_set);
785 char dummy;
786
787 if (!arg_str ||
788 (sscanf(arg_str, "%u%c", value, &dummy) != 1) ||
789 (*value < arg->min) ||
790 (*value > arg->max) ||
791 (grouped && arg_set->argc < *value)) {
792 *error = arg->error;
793 return -EINVAL;
794 }
795
796 return 0;
797 }
798
dm_read_arg(const struct dm_arg * arg,struct dm_arg_set * arg_set,unsigned int * value,char ** error)799 int dm_read_arg(const struct dm_arg *arg, struct dm_arg_set *arg_set,
800 unsigned int *value, char **error)
801 {
802 return validate_next_arg(arg, arg_set, value, error, 0);
803 }
804 EXPORT_SYMBOL(dm_read_arg);
805
dm_read_arg_group(const struct dm_arg * arg,struct dm_arg_set * arg_set,unsigned int * value,char ** error)806 int dm_read_arg_group(const struct dm_arg *arg, struct dm_arg_set *arg_set,
807 unsigned int *value, char **error)
808 {
809 return validate_next_arg(arg, arg_set, value, error, 1);
810 }
811 EXPORT_SYMBOL(dm_read_arg_group);
812
dm_shift_arg(struct dm_arg_set * as)813 const char *dm_shift_arg(struct dm_arg_set *as)
814 {
815 char *r;
816
817 if (as->argc) {
818 as->argc--;
819 r = *as->argv;
820 as->argv++;
821 return r;
822 }
823
824 return NULL;
825 }
826 EXPORT_SYMBOL(dm_shift_arg);
827
dm_consume_args(struct dm_arg_set * as,unsigned int num_args)828 void dm_consume_args(struct dm_arg_set *as, unsigned int num_args)
829 {
830 BUG_ON(as->argc < num_args);
831 as->argc -= num_args;
832 as->argv += num_args;
833 }
834 EXPORT_SYMBOL(dm_consume_args);
835
__table_type_bio_based(enum dm_queue_mode table_type)836 static bool __table_type_bio_based(enum dm_queue_mode table_type)
837 {
838 return (table_type == DM_TYPE_BIO_BASED ||
839 table_type == DM_TYPE_DAX_BIO_BASED);
840 }
841
__table_type_request_based(enum dm_queue_mode table_type)842 static bool __table_type_request_based(enum dm_queue_mode table_type)
843 {
844 return table_type == DM_TYPE_REQUEST_BASED;
845 }
846
dm_table_set_type(struct dm_table * t,enum dm_queue_mode type)847 void dm_table_set_type(struct dm_table *t, enum dm_queue_mode type)
848 {
849 t->type = type;
850 }
851 EXPORT_SYMBOL_GPL(dm_table_set_type);
852
853 /* validate the dax capability of the target device span */
device_not_dax_capable(struct dm_target * ti,struct dm_dev * dev,sector_t start,sector_t len,void * data)854 static int device_not_dax_capable(struct dm_target *ti, struct dm_dev *dev,
855 sector_t start, sector_t len, void *data)
856 {
857 if (dev->dax_dev)
858 return false;
859
860 DMDEBUG("%pg: error: dax unsupported by block device", dev->bdev);
861 return true;
862 }
863
864 /* Check devices support synchronous DAX */
device_not_dax_synchronous_capable(struct dm_target * ti,struct dm_dev * dev,sector_t start,sector_t len,void * data)865 static int device_not_dax_synchronous_capable(struct dm_target *ti, struct dm_dev *dev,
866 sector_t start, sector_t len, void *data)
867 {
868 return !dev->dax_dev || !dax_synchronous(dev->dax_dev);
869 }
870
dm_table_supports_dax(struct dm_table * t,iterate_devices_callout_fn iterate_fn)871 static bool dm_table_supports_dax(struct dm_table *t,
872 iterate_devices_callout_fn iterate_fn)
873 {
874 /* Ensure that all targets support DAX. */
875 for (unsigned int i = 0; i < t->num_targets; i++) {
876 struct dm_target *ti = dm_table_get_target(t, i);
877
878 if (!ti->type->direct_access)
879 return false;
880
881 if (dm_target_is_wildcard(ti->type) ||
882 !ti->type->iterate_devices ||
883 ti->type->iterate_devices(ti, iterate_fn, NULL))
884 return false;
885 }
886
887 return true;
888 }
889
device_is_rq_stackable(struct dm_target * ti,struct dm_dev * dev,sector_t start,sector_t len,void * data)890 static int device_is_rq_stackable(struct dm_target *ti, struct dm_dev *dev,
891 sector_t start, sector_t len, void *data)
892 {
893 struct block_device *bdev = dev->bdev;
894 struct request_queue *q = bdev_get_queue(bdev);
895
896 /* request-based cannot stack on partitions! */
897 if (bdev_is_partition(bdev))
898 return false;
899
900 return queue_is_mq(q);
901 }
902
dm_table_determine_type(struct dm_table * t)903 static int dm_table_determine_type(struct dm_table *t)
904 {
905 unsigned int bio_based = 0, request_based = 0, hybrid = 0;
906 struct dm_target *ti;
907 struct list_head *devices = dm_table_get_devices(t);
908 enum dm_queue_mode live_md_type = dm_get_md_type(t->md);
909
910 if (t->type != DM_TYPE_NONE) {
911 /* target already set the table's type */
912 if (t->type == DM_TYPE_BIO_BASED) {
913 /* possibly upgrade to a variant of bio-based */
914 goto verify_bio_based;
915 }
916 BUG_ON(t->type == DM_TYPE_DAX_BIO_BASED);
917 goto verify_rq_based;
918 }
919
920 for (unsigned int i = 0; i < t->num_targets; i++) {
921 ti = dm_table_get_target(t, i);
922 if (dm_target_hybrid(ti))
923 hybrid = 1;
924 else if (dm_target_request_based(ti))
925 request_based = 1;
926 else
927 bio_based = 1;
928
929 if (bio_based && request_based) {
930 DMERR("Inconsistent table: different target types can't be mixed up");
931 return -EINVAL;
932 }
933 }
934
935 if (hybrid && !bio_based && !request_based) {
936 /*
937 * The targets can work either way.
938 * Determine the type from the live device.
939 * Default to bio-based if device is new.
940 */
941 if (__table_type_request_based(live_md_type))
942 request_based = 1;
943 else
944 bio_based = 1;
945 }
946
947 if (bio_based) {
948 verify_bio_based:
949 /* We must use this table as bio-based */
950 t->type = DM_TYPE_BIO_BASED;
951 if (dm_table_supports_dax(t, device_not_dax_capable) ||
952 (list_empty(devices) && live_md_type == DM_TYPE_DAX_BIO_BASED)) {
953 t->type = DM_TYPE_DAX_BIO_BASED;
954 }
955 return 0;
956 }
957
958 BUG_ON(!request_based); /* No targets in this table */
959
960 t->type = DM_TYPE_REQUEST_BASED;
961
962 verify_rq_based:
963 /*
964 * Request-based dm supports only tables that have a single target now.
965 * To support multiple targets, request splitting support is needed,
966 * and that needs lots of changes in the block-layer.
967 * (e.g. request completion process for partial completion.)
968 */
969 if (t->num_targets > 1) {
970 DMERR("request-based DM doesn't support multiple targets");
971 return -EINVAL;
972 }
973
974 if (list_empty(devices)) {
975 int srcu_idx;
976 struct dm_table *live_table = dm_get_live_table(t->md, &srcu_idx);
977
978 /* inherit live table's type */
979 if (live_table)
980 t->type = live_table->type;
981 dm_put_live_table(t->md, srcu_idx);
982 return 0;
983 }
984
985 ti = dm_table_get_immutable_target(t);
986 if (!ti) {
987 DMERR("table load rejected: immutable target is required");
988 return -EINVAL;
989 } else if (ti->max_io_len) {
990 DMERR("table load rejected: immutable target that splits IO is not supported");
991 return -EINVAL;
992 }
993
994 /* Non-request-stackable devices can't be used for request-based dm */
995 if (!ti->type->iterate_devices ||
996 !ti->type->iterate_devices(ti, device_is_rq_stackable, NULL)) {
997 DMERR("table load rejected: including non-request-stackable devices");
998 return -EINVAL;
999 }
1000
1001 return 0;
1002 }
1003
dm_table_get_type(struct dm_table * t)1004 enum dm_queue_mode dm_table_get_type(struct dm_table *t)
1005 {
1006 return t->type;
1007 }
1008
dm_table_get_immutable_target_type(struct dm_table * t)1009 struct target_type *dm_table_get_immutable_target_type(struct dm_table *t)
1010 {
1011 return t->immutable_target_type;
1012 }
1013
dm_table_get_immutable_target(struct dm_table * t)1014 struct dm_target *dm_table_get_immutable_target(struct dm_table *t)
1015 {
1016 /* Immutable target is implicitly a singleton */
1017 if (t->num_targets > 1 ||
1018 !dm_target_is_immutable(t->targets[0].type))
1019 return NULL;
1020
1021 return t->targets;
1022 }
1023
dm_table_get_wildcard_target(struct dm_table * t)1024 struct dm_target *dm_table_get_wildcard_target(struct dm_table *t)
1025 {
1026 for (unsigned int i = 0; i < t->num_targets; i++) {
1027 struct dm_target *ti = dm_table_get_target(t, i);
1028
1029 if (dm_target_is_wildcard(ti->type))
1030 return ti;
1031 }
1032
1033 return NULL;
1034 }
1035
dm_table_request_based(struct dm_table * t)1036 bool dm_table_request_based(struct dm_table *t)
1037 {
1038 return __table_type_request_based(dm_table_get_type(t));
1039 }
1040
dm_table_alloc_md_mempools(struct dm_table * t,struct mapped_device * md)1041 static int dm_table_alloc_md_mempools(struct dm_table *t, struct mapped_device *md)
1042 {
1043 enum dm_queue_mode type = dm_table_get_type(t);
1044 unsigned int per_io_data_size = 0, front_pad, io_front_pad;
1045 unsigned int min_pool_size = 0, pool_size;
1046 struct dm_md_mempools *pools;
1047 unsigned int bioset_flags = 0;
1048 bool mempool_needs_integrity = t->integrity_supported;
1049
1050 if (unlikely(type == DM_TYPE_NONE)) {
1051 DMERR("no table type is set, can't allocate mempools");
1052 return -EINVAL;
1053 }
1054
1055 pools = kzalloc_node(sizeof(*pools), GFP_KERNEL, md->numa_node_id);
1056 if (!pools)
1057 return -ENOMEM;
1058
1059 if (type == DM_TYPE_REQUEST_BASED) {
1060 pool_size = dm_get_reserved_rq_based_ios();
1061 front_pad = offsetof(struct dm_rq_clone_bio_info, clone);
1062 goto init_bs;
1063 }
1064
1065 if (md->queue->limits.features & BLK_FEAT_POLL)
1066 bioset_flags |= BIOSET_PERCPU_CACHE;
1067
1068 for (unsigned int i = 0; i < t->num_targets; i++) {
1069 struct dm_target *ti = dm_table_get_target(t, i);
1070
1071 per_io_data_size = max(per_io_data_size, ti->per_io_data_size);
1072 min_pool_size = max(min_pool_size, ti->num_flush_bios);
1073
1074 mempool_needs_integrity |= ti->mempool_needs_integrity;
1075 }
1076 pool_size = max(dm_get_reserved_bio_based_ios(), min_pool_size);
1077 front_pad = roundup(per_io_data_size,
1078 __alignof__(struct dm_target_io)) + DM_TARGET_IO_BIO_OFFSET;
1079
1080 io_front_pad = roundup(per_io_data_size,
1081 __alignof__(struct dm_io)) + DM_IO_BIO_OFFSET;
1082 if (bioset_init(&pools->io_bs, pool_size, io_front_pad, bioset_flags))
1083 goto out_free_pools;
1084 if (mempool_needs_integrity &&
1085 bioset_integrity_create(&pools->io_bs, pool_size))
1086 goto out_free_pools;
1087 init_bs:
1088 if (bioset_init(&pools->bs, pool_size, front_pad, 0))
1089 goto out_free_pools;
1090 if (mempool_needs_integrity &&
1091 bioset_integrity_create(&pools->bs, pool_size))
1092 goto out_free_pools;
1093
1094 t->mempools = pools;
1095 return 0;
1096
1097 out_free_pools:
1098 dm_free_md_mempools(pools);
1099 return -ENOMEM;
1100 }
1101
setup_indexes(struct dm_table * t)1102 static int setup_indexes(struct dm_table *t)
1103 {
1104 int i;
1105 unsigned int total = 0;
1106 sector_t *indexes;
1107
1108 /* allocate the space for *all* the indexes */
1109 for (i = t->depth - 2; i >= 0; i--) {
1110 t->counts[i] = dm_div_up(t->counts[i + 1], CHILDREN_PER_NODE);
1111 total += t->counts[i];
1112 }
1113
1114 indexes = kvcalloc(total, NODE_SIZE, GFP_KERNEL);
1115 if (!indexes)
1116 return -ENOMEM;
1117
1118 /* set up internal nodes, bottom-up */
1119 for (i = t->depth - 2; i >= 0; i--) {
1120 t->index[i] = indexes;
1121 indexes += (KEYS_PER_NODE * t->counts[i]);
1122 setup_btree_index(i, t);
1123 }
1124
1125 return 0;
1126 }
1127
1128 /*
1129 * Builds the btree to index the map.
1130 */
dm_table_build_index(struct dm_table * t)1131 static int dm_table_build_index(struct dm_table *t)
1132 {
1133 int r = 0;
1134 unsigned int leaf_nodes;
1135
1136 /* how many indexes will the btree have ? */
1137 leaf_nodes = dm_div_up(t->num_targets, KEYS_PER_NODE);
1138 t->depth = 1 + int_log(leaf_nodes, CHILDREN_PER_NODE);
1139
1140 /* leaf layer has already been set up */
1141 t->counts[t->depth - 1] = leaf_nodes;
1142 t->index[t->depth - 1] = t->highs;
1143
1144 if (t->depth >= 2)
1145 r = setup_indexes(t);
1146
1147 return r;
1148 }
1149
1150 #ifdef CONFIG_BLK_INLINE_ENCRYPTION
1151
1152 struct dm_crypto_profile {
1153 struct blk_crypto_profile profile;
1154 struct mapped_device *md;
1155 };
1156
dm_keyslot_evict_callback(struct dm_target * ti,struct dm_dev * dev,sector_t start,sector_t len,void * data)1157 static int dm_keyslot_evict_callback(struct dm_target *ti, struct dm_dev *dev,
1158 sector_t start, sector_t len, void *data)
1159 {
1160 const struct blk_crypto_key *key = data;
1161
1162 blk_crypto_evict_key(dev->bdev, key);
1163 return 0;
1164 }
1165
1166 /*
1167 * When an inline encryption key is evicted from a device-mapper device, evict
1168 * it from all the underlying devices.
1169 */
dm_keyslot_evict(struct blk_crypto_profile * profile,const struct blk_crypto_key * key,unsigned int slot)1170 static int dm_keyslot_evict(struct blk_crypto_profile *profile,
1171 const struct blk_crypto_key *key, unsigned int slot)
1172 {
1173 struct mapped_device *md =
1174 container_of(profile, struct dm_crypto_profile, profile)->md;
1175 struct dm_table *t;
1176 int srcu_idx;
1177
1178 t = dm_get_live_table(md, &srcu_idx);
1179 if (!t)
1180 return 0;
1181
1182 for (unsigned int i = 0; i < t->num_targets; i++) {
1183 struct dm_target *ti = dm_table_get_target(t, i);
1184
1185 if (!ti->type->iterate_devices)
1186 continue;
1187 ti->type->iterate_devices(ti, dm_keyslot_evict_callback,
1188 (void *)key);
1189 }
1190
1191 dm_put_live_table(md, srcu_idx);
1192 return 0;
1193 }
1194
1195 static int
device_intersect_crypto_capabilities(struct dm_target * ti,struct dm_dev * dev,sector_t start,sector_t len,void * data)1196 device_intersect_crypto_capabilities(struct dm_target *ti, struct dm_dev *dev,
1197 sector_t start, sector_t len, void *data)
1198 {
1199 struct blk_crypto_profile *parent = data;
1200 struct blk_crypto_profile *child =
1201 bdev_get_queue(dev->bdev)->crypto_profile;
1202
1203 blk_crypto_intersect_capabilities(parent, child);
1204 return 0;
1205 }
1206
dm_destroy_crypto_profile(struct blk_crypto_profile * profile)1207 void dm_destroy_crypto_profile(struct blk_crypto_profile *profile)
1208 {
1209 struct dm_crypto_profile *dmcp = container_of(profile,
1210 struct dm_crypto_profile,
1211 profile);
1212
1213 if (!profile)
1214 return;
1215
1216 blk_crypto_profile_destroy(profile);
1217 kfree(dmcp);
1218 }
1219
dm_table_destroy_crypto_profile(struct dm_table * t)1220 static void dm_table_destroy_crypto_profile(struct dm_table *t)
1221 {
1222 dm_destroy_crypto_profile(t->crypto_profile);
1223 t->crypto_profile = NULL;
1224 }
1225
1226 /*
1227 * Constructs and initializes t->crypto_profile with a crypto profile that
1228 * represents the common set of crypto capabilities of the devices described by
1229 * the dm_table. However, if the constructed crypto profile doesn't support all
1230 * crypto capabilities that are supported by the current mapped_device, it
1231 * returns an error instead, since we don't support removing crypto capabilities
1232 * on table changes. Finally, if the constructed crypto profile is "empty" (has
1233 * no crypto capabilities at all), it just sets t->crypto_profile to NULL.
1234 */
dm_table_construct_crypto_profile(struct dm_table * t)1235 static int dm_table_construct_crypto_profile(struct dm_table *t)
1236 {
1237 struct dm_crypto_profile *dmcp;
1238 struct blk_crypto_profile *profile;
1239 unsigned int i;
1240 bool empty_profile = true;
1241
1242 dmcp = kmalloc(sizeof(*dmcp), GFP_KERNEL);
1243 if (!dmcp)
1244 return -ENOMEM;
1245 dmcp->md = t->md;
1246
1247 profile = &dmcp->profile;
1248 blk_crypto_profile_init(profile, 0);
1249 profile->ll_ops.keyslot_evict = dm_keyslot_evict;
1250 profile->max_dun_bytes_supported = UINT_MAX;
1251 memset(profile->modes_supported, 0xFF,
1252 sizeof(profile->modes_supported));
1253
1254 for (i = 0; i < t->num_targets; i++) {
1255 struct dm_target *ti = dm_table_get_target(t, i);
1256
1257 if (!dm_target_passes_crypto(ti->type)) {
1258 blk_crypto_intersect_capabilities(profile, NULL);
1259 break;
1260 }
1261 if (!ti->type->iterate_devices)
1262 continue;
1263 ti->type->iterate_devices(ti,
1264 device_intersect_crypto_capabilities,
1265 profile);
1266 }
1267
1268 if (t->md->queue &&
1269 !blk_crypto_has_capabilities(profile,
1270 t->md->queue->crypto_profile)) {
1271 DMERR("Inline encryption capabilities of new DM table were more restrictive than the old table's. This is not supported!");
1272 dm_destroy_crypto_profile(profile);
1273 return -EINVAL;
1274 }
1275
1276 /*
1277 * If the new profile doesn't actually support any crypto capabilities,
1278 * we may as well represent it with a NULL profile.
1279 */
1280 for (i = 0; i < ARRAY_SIZE(profile->modes_supported); i++) {
1281 if (profile->modes_supported[i]) {
1282 empty_profile = false;
1283 break;
1284 }
1285 }
1286
1287 if (empty_profile) {
1288 dm_destroy_crypto_profile(profile);
1289 profile = NULL;
1290 }
1291
1292 /*
1293 * t->crypto_profile is only set temporarily while the table is being
1294 * set up, and it gets set to NULL after the profile has been
1295 * transferred to the request_queue.
1296 */
1297 t->crypto_profile = profile;
1298
1299 return 0;
1300 }
1301
dm_update_crypto_profile(struct request_queue * q,struct dm_table * t)1302 static void dm_update_crypto_profile(struct request_queue *q,
1303 struct dm_table *t)
1304 {
1305 if (!t->crypto_profile)
1306 return;
1307
1308 /* Make the crypto profile less restrictive. */
1309 if (!q->crypto_profile) {
1310 blk_crypto_register(t->crypto_profile, q);
1311 } else {
1312 blk_crypto_update_capabilities(q->crypto_profile,
1313 t->crypto_profile);
1314 dm_destroy_crypto_profile(t->crypto_profile);
1315 }
1316 t->crypto_profile = NULL;
1317 }
1318
1319 #else /* CONFIG_BLK_INLINE_ENCRYPTION */
1320
dm_table_construct_crypto_profile(struct dm_table * t)1321 static int dm_table_construct_crypto_profile(struct dm_table *t)
1322 {
1323 return 0;
1324 }
1325
dm_destroy_crypto_profile(struct blk_crypto_profile * profile)1326 void dm_destroy_crypto_profile(struct blk_crypto_profile *profile)
1327 {
1328 }
1329
dm_table_destroy_crypto_profile(struct dm_table * t)1330 static void dm_table_destroy_crypto_profile(struct dm_table *t)
1331 {
1332 }
1333
dm_update_crypto_profile(struct request_queue * q,struct dm_table * t)1334 static void dm_update_crypto_profile(struct request_queue *q,
1335 struct dm_table *t)
1336 {
1337 }
1338
1339 #endif /* !CONFIG_BLK_INLINE_ENCRYPTION */
1340
1341 /*
1342 * Prepares the table for use by building the indices,
1343 * setting the type, and allocating mempools.
1344 */
dm_table_complete(struct dm_table * t)1345 int dm_table_complete(struct dm_table *t)
1346 {
1347 int r;
1348
1349 r = dm_table_determine_type(t);
1350 if (r) {
1351 DMERR("unable to determine table type");
1352 return r;
1353 }
1354
1355 r = dm_table_build_index(t);
1356 if (r) {
1357 DMERR("unable to build btrees");
1358 return r;
1359 }
1360
1361 r = dm_table_construct_crypto_profile(t);
1362 if (r) {
1363 DMERR("could not construct crypto profile.");
1364 return r;
1365 }
1366
1367 r = dm_table_alloc_md_mempools(t, t->md);
1368 if (r)
1369 DMERR("unable to allocate mempools");
1370
1371 return r;
1372 }
1373
1374 static DEFINE_MUTEX(_event_lock);
dm_table_event_callback(struct dm_table * t,void (* fn)(void *),void * context)1375 void dm_table_event_callback(struct dm_table *t,
1376 void (*fn)(void *), void *context)
1377 {
1378 mutex_lock(&_event_lock);
1379 t->event_fn = fn;
1380 t->event_context = context;
1381 mutex_unlock(&_event_lock);
1382 }
1383
dm_table_event(struct dm_table * t)1384 void dm_table_event(struct dm_table *t)
1385 {
1386 mutex_lock(&_event_lock);
1387 if (t->event_fn)
1388 t->event_fn(t->event_context);
1389 mutex_unlock(&_event_lock);
1390 }
1391 EXPORT_SYMBOL(dm_table_event);
1392
dm_table_get_size(struct dm_table * t)1393 inline sector_t dm_table_get_size(struct dm_table *t)
1394 {
1395 return t->num_targets ? (t->highs[t->num_targets - 1] + 1) : 0;
1396 }
1397 EXPORT_SYMBOL(dm_table_get_size);
1398
1399 /*
1400 * Search the btree for the correct target.
1401 *
1402 * Caller should check returned pointer for NULL
1403 * to trap I/O beyond end of device.
1404 */
dm_table_find_target(struct dm_table * t,sector_t sector)1405 struct dm_target *dm_table_find_target(struct dm_table *t, sector_t sector)
1406 {
1407 unsigned int l, n = 0, k = 0;
1408 sector_t *node;
1409
1410 if (unlikely(sector >= dm_table_get_size(t)))
1411 return NULL;
1412
1413 for (l = 0; l < t->depth; l++) {
1414 n = get_child(n, k);
1415 node = get_node(t, l, n);
1416
1417 for (k = 0; k < KEYS_PER_NODE; k++)
1418 if (node[k] >= sector)
1419 break;
1420 }
1421
1422 return &t->targets[(KEYS_PER_NODE * n) + k];
1423 }
1424
1425 /*
1426 * type->iterate_devices() should be called when the sanity check needs to
1427 * iterate and check all underlying data devices. iterate_devices() will
1428 * iterate all underlying data devices until it encounters a non-zero return
1429 * code, returned by whether the input iterate_devices_callout_fn, or
1430 * iterate_devices() itself internally.
1431 *
1432 * For some target type (e.g. dm-stripe), one call of iterate_devices() may
1433 * iterate multiple underlying devices internally, in which case a non-zero
1434 * return code returned by iterate_devices_callout_fn will stop the iteration
1435 * in advance.
1436 *
1437 * Cases requiring _any_ underlying device supporting some kind of attribute,
1438 * should use the iteration structure like dm_table_any_dev_attr(), or call
1439 * it directly. @func should handle semantics of positive examples, e.g.
1440 * capable of something.
1441 *
1442 * Cases requiring _all_ underlying devices supporting some kind of attribute,
1443 * should use the iteration structure like dm_table_supports_nowait() or
1444 * dm_table_supports_discards(). Or introduce dm_table_all_devs_attr() that
1445 * uses an @anti_func that handle semantics of counter examples, e.g. not
1446 * capable of something. So: return !dm_table_any_dev_attr(t, anti_func, data);
1447 */
dm_table_any_dev_attr(struct dm_table * t,iterate_devices_callout_fn func,void * data)1448 static bool dm_table_any_dev_attr(struct dm_table *t,
1449 iterate_devices_callout_fn func, void *data)
1450 {
1451 for (unsigned int i = 0; i < t->num_targets; i++) {
1452 struct dm_target *ti = dm_table_get_target(t, i);
1453
1454 if (ti->type->iterate_devices &&
1455 ti->type->iterate_devices(ti, func, data))
1456 return true;
1457 }
1458
1459 return false;
1460 }
1461
count_device(struct dm_target * ti,struct dm_dev * dev,sector_t start,sector_t len,void * data)1462 static int count_device(struct dm_target *ti, struct dm_dev *dev,
1463 sector_t start, sector_t len, void *data)
1464 {
1465 unsigned int *num_devices = data;
1466
1467 (*num_devices)++;
1468
1469 return 0;
1470 }
1471
1472 /*
1473 * Check whether a table has no data devices attached using each
1474 * target's iterate_devices method.
1475 * Returns false if the result is unknown because a target doesn't
1476 * support iterate_devices.
1477 */
dm_table_has_no_data_devices(struct dm_table * t)1478 bool dm_table_has_no_data_devices(struct dm_table *t)
1479 {
1480 for (unsigned int i = 0; i < t->num_targets; i++) {
1481 struct dm_target *ti = dm_table_get_target(t, i);
1482 unsigned int num_devices = 0;
1483
1484 if (!ti->type->iterate_devices)
1485 return false;
1486
1487 ti->type->iterate_devices(ti, count_device, &num_devices);
1488 if (num_devices)
1489 return false;
1490 }
1491
1492 return true;
1493 }
1494
device_not_zoned(struct dm_target * ti,struct dm_dev * dev,sector_t start,sector_t len,void * data)1495 static int device_not_zoned(struct dm_target *ti, struct dm_dev *dev,
1496 sector_t start, sector_t len, void *data)
1497 {
1498 bool *zoned = data;
1499
1500 return bdev_is_zoned(dev->bdev) != *zoned;
1501 }
1502
device_is_zoned_model(struct dm_target * ti,struct dm_dev * dev,sector_t start,sector_t len,void * data)1503 static int device_is_zoned_model(struct dm_target *ti, struct dm_dev *dev,
1504 sector_t start, sector_t len, void *data)
1505 {
1506 return bdev_is_zoned(dev->bdev);
1507 }
1508
1509 /*
1510 * Check the device zoned model based on the target feature flag. If the target
1511 * has the DM_TARGET_ZONED_HM feature flag set, host-managed zoned devices are
1512 * also accepted but all devices must have the same zoned model. If the target
1513 * has the DM_TARGET_MIXED_ZONED_MODEL feature set, the devices can have any
1514 * zoned model with all zoned devices having the same zone size.
1515 */
dm_table_supports_zoned(struct dm_table * t,bool zoned)1516 static bool dm_table_supports_zoned(struct dm_table *t, bool zoned)
1517 {
1518 for (unsigned int i = 0; i < t->num_targets; i++) {
1519 struct dm_target *ti = dm_table_get_target(t, i);
1520
1521 /*
1522 * For the wildcard target (dm-error), if we do not have a
1523 * backing device, we must always return false. If we have a
1524 * backing device, the result must depend on checking zoned
1525 * model, like for any other target. So for this, check directly
1526 * if the target backing device is zoned as we get "false" when
1527 * dm-error was set without a backing device.
1528 */
1529 if (dm_target_is_wildcard(ti->type) &&
1530 !ti->type->iterate_devices(ti, device_is_zoned_model, NULL))
1531 return false;
1532
1533 if (dm_target_supports_zoned_hm(ti->type)) {
1534 if (!ti->type->iterate_devices ||
1535 ti->type->iterate_devices(ti, device_not_zoned,
1536 &zoned))
1537 return false;
1538 } else if (!dm_target_supports_mixed_zoned_model(ti->type)) {
1539 if (zoned)
1540 return false;
1541 }
1542 }
1543
1544 return true;
1545 }
1546
device_not_matches_zone_sectors(struct dm_target * ti,struct dm_dev * dev,sector_t start,sector_t len,void * data)1547 static int device_not_matches_zone_sectors(struct dm_target *ti, struct dm_dev *dev,
1548 sector_t start, sector_t len, void *data)
1549 {
1550 unsigned int *zone_sectors = data;
1551
1552 if (!bdev_is_zoned(dev->bdev))
1553 return 0;
1554 return bdev_zone_sectors(dev->bdev) != *zone_sectors;
1555 }
1556
1557 /*
1558 * Check consistency of zoned model and zone sectors across all targets. For
1559 * zone sectors, if the destination device is a zoned block device, it shall
1560 * have the specified zone_sectors.
1561 */
validate_hardware_zoned(struct dm_table * t,bool zoned,unsigned int zone_sectors)1562 static int validate_hardware_zoned(struct dm_table *t, bool zoned,
1563 unsigned int zone_sectors)
1564 {
1565 if (!zoned)
1566 return 0;
1567
1568 if (!dm_table_supports_zoned(t, zoned)) {
1569 DMERR("%s: zoned model is not consistent across all devices",
1570 dm_device_name(t->md));
1571 return -EINVAL;
1572 }
1573
1574 /* Check zone size validity and compatibility */
1575 if (!zone_sectors || !is_power_of_2(zone_sectors))
1576 return -EINVAL;
1577
1578 if (dm_table_any_dev_attr(t, device_not_matches_zone_sectors, &zone_sectors)) {
1579 DMERR("%s: zone sectors is not consistent across all zoned devices",
1580 dm_device_name(t->md));
1581 return -EINVAL;
1582 }
1583
1584 return 0;
1585 }
1586
1587 /*
1588 * Establish the new table's queue_limits and validate them.
1589 */
dm_calculate_queue_limits(struct dm_table * t,struct queue_limits * limits)1590 int dm_calculate_queue_limits(struct dm_table *t,
1591 struct queue_limits *limits)
1592 {
1593 struct queue_limits ti_limits;
1594 unsigned int zone_sectors = 0;
1595 bool zoned = false;
1596
1597 dm_set_stacking_limits(limits);
1598
1599 t->integrity_supported = true;
1600 for (unsigned int i = 0; i < t->num_targets; i++) {
1601 struct dm_target *ti = dm_table_get_target(t, i);
1602
1603 if (!dm_target_passes_integrity(ti->type))
1604 t->integrity_supported = false;
1605 }
1606
1607 for (unsigned int i = 0; i < t->num_targets; i++) {
1608 struct dm_target *ti = dm_table_get_target(t, i);
1609
1610 dm_set_stacking_limits(&ti_limits);
1611
1612 if (!ti->type->iterate_devices) {
1613 /* Set I/O hints portion of queue limits */
1614 if (ti->type->io_hints)
1615 ti->type->io_hints(ti, &ti_limits);
1616 goto combine_limits;
1617 }
1618
1619 /*
1620 * Combine queue limits of all the devices this target uses.
1621 */
1622 ti->type->iterate_devices(ti, dm_set_device_limits,
1623 &ti_limits);
1624
1625 if (!zoned && (ti_limits.features & BLK_FEAT_ZONED)) {
1626 /*
1627 * After stacking all limits, validate all devices
1628 * in table support this zoned model and zone sectors.
1629 */
1630 zoned = (ti_limits.features & BLK_FEAT_ZONED);
1631 zone_sectors = ti_limits.chunk_sectors;
1632 }
1633
1634 /* Set I/O hints portion of queue limits */
1635 if (ti->type->io_hints)
1636 ti->type->io_hints(ti, &ti_limits);
1637
1638 /*
1639 * Check each device area is consistent with the target's
1640 * overall queue limits.
1641 */
1642 if (ti->type->iterate_devices(ti, device_area_is_invalid,
1643 &ti_limits))
1644 return -EINVAL;
1645
1646 combine_limits:
1647 /*
1648 * Merge this target's queue limits into the overall limits
1649 * for the table.
1650 */
1651 if (blk_stack_limits(limits, &ti_limits, 0) < 0)
1652 DMWARN("%s: adding target device (start sect %llu len %llu) "
1653 "caused an alignment inconsistency",
1654 dm_device_name(t->md),
1655 (unsigned long long) ti->begin,
1656 (unsigned long long) ti->len);
1657
1658 if (t->integrity_supported ||
1659 dm_target_has_integrity(ti->type)) {
1660 if (!queue_limits_stack_integrity(limits, &ti_limits)) {
1661 DMWARN("%s: adding target device (start sect %llu len %llu) "
1662 "disabled integrity support due to incompatibility",
1663 dm_device_name(t->md),
1664 (unsigned long long) ti->begin,
1665 (unsigned long long) ti->len);
1666 t->integrity_supported = false;
1667 }
1668 }
1669 }
1670
1671 /*
1672 * Verify that the zoned model and zone sectors, as determined before
1673 * any .io_hints override, are the same across all devices in the table.
1674 * - this is especially relevant if .io_hints is emulating a disk-managed
1675 * zoned model on host-managed zoned block devices.
1676 * BUT...
1677 */
1678 if (limits->features & BLK_FEAT_ZONED) {
1679 /*
1680 * ...IF the above limits stacking determined a zoned model
1681 * validate that all of the table's devices conform to it.
1682 */
1683 zoned = limits->features & BLK_FEAT_ZONED;
1684 zone_sectors = limits->chunk_sectors;
1685 }
1686 if (validate_hardware_zoned(t, zoned, zone_sectors))
1687 return -EINVAL;
1688
1689 return validate_hardware_logical_block_alignment(t, limits);
1690 }
1691
1692 /*
1693 * Check if a target requires flush support even if none of the underlying
1694 * devices need it (e.g. to persist target-specific metadata).
1695 */
dm_table_supports_flush(struct dm_table * t)1696 static bool dm_table_supports_flush(struct dm_table *t)
1697 {
1698 for (unsigned int i = 0; i < t->num_targets; i++) {
1699 struct dm_target *ti = dm_table_get_target(t, i);
1700
1701 if (ti->num_flush_bios && ti->flush_supported)
1702 return true;
1703 }
1704
1705 return false;
1706 }
1707
device_dax_write_cache_enabled(struct dm_target * ti,struct dm_dev * dev,sector_t start,sector_t len,void * data)1708 static int device_dax_write_cache_enabled(struct dm_target *ti,
1709 struct dm_dev *dev, sector_t start,
1710 sector_t len, void *data)
1711 {
1712 struct dax_device *dax_dev = dev->dax_dev;
1713
1714 if (!dax_dev)
1715 return false;
1716
1717 if (dax_write_cache_enabled(dax_dev))
1718 return true;
1719 return false;
1720 }
1721
device_not_write_zeroes_capable(struct dm_target * ti,struct dm_dev * dev,sector_t start,sector_t len,void * data)1722 static int device_not_write_zeroes_capable(struct dm_target *ti, struct dm_dev *dev,
1723 sector_t start, sector_t len, void *data)
1724 {
1725 struct request_queue *q = bdev_get_queue(dev->bdev);
1726
1727 return !q->limits.max_write_zeroes_sectors;
1728 }
1729
dm_table_supports_write_zeroes(struct dm_table * t)1730 static bool dm_table_supports_write_zeroes(struct dm_table *t)
1731 {
1732 for (unsigned int i = 0; i < t->num_targets; i++) {
1733 struct dm_target *ti = dm_table_get_target(t, i);
1734
1735 if (!ti->num_write_zeroes_bios)
1736 return false;
1737
1738 if (!ti->type->iterate_devices ||
1739 ti->type->iterate_devices(ti, device_not_write_zeroes_capable, NULL))
1740 return false;
1741 }
1742
1743 return true;
1744 }
1745
dm_table_supports_nowait(struct dm_table * t)1746 static bool dm_table_supports_nowait(struct dm_table *t)
1747 {
1748 for (unsigned int i = 0; i < t->num_targets; i++) {
1749 struct dm_target *ti = dm_table_get_target(t, i);
1750
1751 if (!dm_target_supports_nowait(ti->type))
1752 return false;
1753 }
1754
1755 return true;
1756 }
1757
device_not_discard_capable(struct dm_target * ti,struct dm_dev * dev,sector_t start,sector_t len,void * data)1758 static int device_not_discard_capable(struct dm_target *ti, struct dm_dev *dev,
1759 sector_t start, sector_t len, void *data)
1760 {
1761 return !bdev_max_discard_sectors(dev->bdev);
1762 }
1763
dm_table_supports_discards(struct dm_table * t)1764 static bool dm_table_supports_discards(struct dm_table *t)
1765 {
1766 for (unsigned int i = 0; i < t->num_targets; i++) {
1767 struct dm_target *ti = dm_table_get_target(t, i);
1768
1769 if (!ti->num_discard_bios)
1770 return false;
1771
1772 /*
1773 * Either the target provides discard support (as implied by setting
1774 * 'discards_supported') or it relies on _all_ data devices having
1775 * discard support.
1776 */
1777 if (!ti->discards_supported &&
1778 (!ti->type->iterate_devices ||
1779 ti->type->iterate_devices(ti, device_not_discard_capable, NULL)))
1780 return false;
1781 }
1782
1783 return true;
1784 }
1785
device_not_secure_erase_capable(struct dm_target * ti,struct dm_dev * dev,sector_t start,sector_t len,void * data)1786 static int device_not_secure_erase_capable(struct dm_target *ti,
1787 struct dm_dev *dev, sector_t start,
1788 sector_t len, void *data)
1789 {
1790 return !bdev_max_secure_erase_sectors(dev->bdev);
1791 }
1792
dm_table_supports_secure_erase(struct dm_table * t)1793 static bool dm_table_supports_secure_erase(struct dm_table *t)
1794 {
1795 for (unsigned int i = 0; i < t->num_targets; i++) {
1796 struct dm_target *ti = dm_table_get_target(t, i);
1797
1798 if (!ti->num_secure_erase_bios)
1799 return false;
1800
1801 if (!ti->type->iterate_devices ||
1802 ti->type->iterate_devices(ti, device_not_secure_erase_capable, NULL))
1803 return false;
1804 }
1805
1806 return true;
1807 }
1808
device_not_atomic_write_capable(struct dm_target * ti,struct dm_dev * dev,sector_t start,sector_t len,void * data)1809 static int device_not_atomic_write_capable(struct dm_target *ti,
1810 struct dm_dev *dev, sector_t start,
1811 sector_t len, void *data)
1812 {
1813 return !bdev_can_atomic_write(dev->bdev);
1814 }
1815
dm_table_supports_atomic_writes(struct dm_table * t)1816 static bool dm_table_supports_atomic_writes(struct dm_table *t)
1817 {
1818 for (unsigned int i = 0; i < t->num_targets; i++) {
1819 struct dm_target *ti = dm_table_get_target(t, i);
1820
1821 if (!dm_target_supports_atomic_writes(ti->type))
1822 return false;
1823
1824 if (!ti->type->iterate_devices)
1825 return false;
1826
1827 if (ti->type->iterate_devices(ti,
1828 device_not_atomic_write_capable, NULL)) {
1829 return false;
1830 }
1831 }
1832 return true;
1833 }
1834
dm_table_set_restrictions(struct dm_table * t,struct request_queue * q,struct queue_limits * limits)1835 int dm_table_set_restrictions(struct dm_table *t, struct request_queue *q,
1836 struct queue_limits *limits)
1837 {
1838 int r;
1839
1840 if (!dm_table_supports_nowait(t))
1841 limits->features &= ~BLK_FEAT_NOWAIT;
1842
1843 /*
1844 * The current polling impementation does not support request based
1845 * stacking.
1846 */
1847 if (!__table_type_bio_based(t->type))
1848 limits->features &= ~BLK_FEAT_POLL;
1849
1850 if (!dm_table_supports_discards(t)) {
1851 limits->max_hw_discard_sectors = 0;
1852 limits->discard_granularity = 0;
1853 limits->discard_alignment = 0;
1854 }
1855
1856 if (!dm_table_supports_write_zeroes(t))
1857 limits->max_write_zeroes_sectors = 0;
1858
1859 if (!dm_table_supports_secure_erase(t))
1860 limits->max_secure_erase_sectors = 0;
1861
1862 if (dm_table_supports_flush(t))
1863 limits->features |= BLK_FEAT_WRITE_CACHE | BLK_FEAT_FUA;
1864
1865 if (dm_table_supports_dax(t, device_not_dax_capable)) {
1866 limits->features |= BLK_FEAT_DAX;
1867 if (dm_table_supports_dax(t, device_not_dax_synchronous_capable))
1868 set_dax_synchronous(t->md->dax_dev);
1869 } else
1870 limits->features &= ~BLK_FEAT_DAX;
1871
1872 if (dm_table_any_dev_attr(t, device_dax_write_cache_enabled, NULL))
1873 dax_write_cache(t->md->dax_dev, true);
1874
1875 /* For a zoned table, setup the zone related queue attributes. */
1876 if (IS_ENABLED(CONFIG_BLK_DEV_ZONED) &&
1877 (limits->features & BLK_FEAT_ZONED)) {
1878 r = dm_set_zones_restrictions(t, q, limits);
1879 if (r)
1880 return r;
1881 }
1882
1883 if (dm_table_supports_atomic_writes(t))
1884 limits->features |= BLK_FEAT_ATOMIC_WRITES;
1885
1886 r = queue_limits_set(q, limits);
1887 if (r)
1888 return r;
1889
1890 /*
1891 * Now that the limits are set, check the zones mapped by the table
1892 * and setup the resources for zone append emulation if necessary.
1893 */
1894 if (IS_ENABLED(CONFIG_BLK_DEV_ZONED) &&
1895 (limits->features & BLK_FEAT_ZONED)) {
1896 r = dm_revalidate_zones(t, q);
1897 if (r)
1898 return r;
1899 }
1900
1901 dm_update_crypto_profile(q, t);
1902 return 0;
1903 }
1904
dm_table_get_devices(struct dm_table * t)1905 struct list_head *dm_table_get_devices(struct dm_table *t)
1906 {
1907 return &t->devices;
1908 }
1909
dm_table_get_mode(struct dm_table * t)1910 blk_mode_t dm_table_get_mode(struct dm_table *t)
1911 {
1912 return t->mode;
1913 }
1914 EXPORT_SYMBOL(dm_table_get_mode);
1915
1916 enum suspend_mode {
1917 PRESUSPEND,
1918 PRESUSPEND_UNDO,
1919 POSTSUSPEND,
1920 };
1921
suspend_targets(struct dm_table * t,enum suspend_mode mode)1922 static void suspend_targets(struct dm_table *t, enum suspend_mode mode)
1923 {
1924 lockdep_assert_held(&t->md->suspend_lock);
1925
1926 for (unsigned int i = 0; i < t->num_targets; i++) {
1927 struct dm_target *ti = dm_table_get_target(t, i);
1928
1929 switch (mode) {
1930 case PRESUSPEND:
1931 if (ti->type->presuspend)
1932 ti->type->presuspend(ti);
1933 break;
1934 case PRESUSPEND_UNDO:
1935 if (ti->type->presuspend_undo)
1936 ti->type->presuspend_undo(ti);
1937 break;
1938 case POSTSUSPEND:
1939 if (ti->type->postsuspend)
1940 ti->type->postsuspend(ti);
1941 break;
1942 }
1943 }
1944 }
1945
dm_table_presuspend_targets(struct dm_table * t)1946 void dm_table_presuspend_targets(struct dm_table *t)
1947 {
1948 if (!t)
1949 return;
1950
1951 suspend_targets(t, PRESUSPEND);
1952 }
1953
dm_table_presuspend_undo_targets(struct dm_table * t)1954 void dm_table_presuspend_undo_targets(struct dm_table *t)
1955 {
1956 if (!t)
1957 return;
1958
1959 suspend_targets(t, PRESUSPEND_UNDO);
1960 }
1961
dm_table_postsuspend_targets(struct dm_table * t)1962 void dm_table_postsuspend_targets(struct dm_table *t)
1963 {
1964 if (!t)
1965 return;
1966
1967 suspend_targets(t, POSTSUSPEND);
1968 }
1969
dm_table_resume_targets(struct dm_table * t)1970 int dm_table_resume_targets(struct dm_table *t)
1971 {
1972 unsigned int i;
1973 int r = 0;
1974
1975 lockdep_assert_held(&t->md->suspend_lock);
1976
1977 for (i = 0; i < t->num_targets; i++) {
1978 struct dm_target *ti = dm_table_get_target(t, i);
1979
1980 if (!ti->type->preresume)
1981 continue;
1982
1983 r = ti->type->preresume(ti);
1984 if (r) {
1985 DMERR("%s: %s: preresume failed, error = %d",
1986 dm_device_name(t->md), ti->type->name, r);
1987 return r;
1988 }
1989 }
1990
1991 for (i = 0; i < t->num_targets; i++) {
1992 struct dm_target *ti = dm_table_get_target(t, i);
1993
1994 if (ti->type->resume)
1995 ti->type->resume(ti);
1996 }
1997
1998 return 0;
1999 }
2000
dm_table_get_md(struct dm_table * t)2001 struct mapped_device *dm_table_get_md(struct dm_table *t)
2002 {
2003 return t->md;
2004 }
2005 EXPORT_SYMBOL(dm_table_get_md);
2006
dm_table_device_name(struct dm_table * t)2007 const char *dm_table_device_name(struct dm_table *t)
2008 {
2009 return dm_device_name(t->md);
2010 }
2011 EXPORT_SYMBOL_GPL(dm_table_device_name);
2012
dm_table_run_md_queue_async(struct dm_table * t)2013 void dm_table_run_md_queue_async(struct dm_table *t)
2014 {
2015 if (!dm_table_request_based(t))
2016 return;
2017
2018 if (t->md->queue)
2019 blk_mq_run_hw_queues(t->md->queue, true);
2020 }
2021 EXPORT_SYMBOL(dm_table_run_md_queue_async);
2022
2023