1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * raid1.c : Multiple Devices driver for Linux
4  *
5  * Copyright (C) 1999, 2000, 2001 Ingo Molnar, Red Hat
6  *
7  * Copyright (C) 1996, 1997, 1998 Ingo Molnar, Miguel de Icaza, Gadi Oxman
8  *
9  * RAID-1 management functions.
10  *
11  * Better read-balancing code written by Mika Kuoppala <[email protected]>, 2000
12  *
13  * Fixes to reconstruction by Jakob Østergaard" <[email protected]>
14  * Various fixes by Neil Brown <[email protected]>
15  *
16  * Changes by Peter T. Breuer <[email protected]> 31/1/2003 to support
17  * bitmapped intelligence in resync:
18  *
19  *      - bitmap marked during normal i/o
20  *      - bitmap used to skip nondirty blocks during sync
21  *
22  * Additions to bitmap code, (C) 2003-2004 Paul Clements, SteelEye Technology:
23  * - persistent bitmap code
24  */
25 
26 #include <linux/slab.h>
27 #include <linux/delay.h>
28 #include <linux/blkdev.h>
29 #include <linux/module.h>
30 #include <linux/seq_file.h>
31 #include <linux/ratelimit.h>
32 #include <linux/interval_tree_generic.h>
33 
34 #include <trace/events/block.h>
35 
36 #include "md.h"
37 #include "raid1.h"
38 #include "md-bitmap.h"
39 
40 #define UNSUPPORTED_MDDEV_FLAGS		\
41 	((1L << MD_HAS_JOURNAL) |	\
42 	 (1L << MD_JOURNAL_CLEAN) |	\
43 	 (1L << MD_HAS_PPL) |		\
44 	 (1L << MD_HAS_MULTIPLE_PPLS))
45 
46 static void allow_barrier(struct r1conf *conf, sector_t sector_nr);
47 static void lower_barrier(struct r1conf *conf, sector_t sector_nr);
48 static void raid1_free(struct mddev *mddev, void *priv);
49 
50 #define RAID_1_10_NAME "raid1"
51 #include "raid1-10.c"
52 
53 #define START(node) ((node)->start)
54 #define LAST(node) ((node)->last)
55 INTERVAL_TREE_DEFINE(struct serial_info, node, sector_t, _subtree_last,
56 		     START, LAST, static inline, raid1_rb);
57 
check_and_add_serial(struct md_rdev * rdev,struct r1bio * r1_bio,struct serial_info * si,int idx)58 static int check_and_add_serial(struct md_rdev *rdev, struct r1bio *r1_bio,
59 				struct serial_info *si, int idx)
60 {
61 	unsigned long flags;
62 	int ret = 0;
63 	sector_t lo = r1_bio->sector;
64 	sector_t hi = lo + r1_bio->sectors;
65 	struct serial_in_rdev *serial = &rdev->serial[idx];
66 
67 	spin_lock_irqsave(&serial->serial_lock, flags);
68 	/* collision happened */
69 	if (raid1_rb_iter_first(&serial->serial_rb, lo, hi))
70 		ret = -EBUSY;
71 	else {
72 		si->start = lo;
73 		si->last = hi;
74 		raid1_rb_insert(si, &serial->serial_rb);
75 	}
76 	spin_unlock_irqrestore(&serial->serial_lock, flags);
77 
78 	return ret;
79 }
80 
wait_for_serialization(struct md_rdev * rdev,struct r1bio * r1_bio)81 static void wait_for_serialization(struct md_rdev *rdev, struct r1bio *r1_bio)
82 {
83 	struct mddev *mddev = rdev->mddev;
84 	struct serial_info *si;
85 	int idx = sector_to_idx(r1_bio->sector);
86 	struct serial_in_rdev *serial = &rdev->serial[idx];
87 
88 	if (WARN_ON(!mddev->serial_info_pool))
89 		return;
90 	si = mempool_alloc(mddev->serial_info_pool, GFP_NOIO);
91 	wait_event(serial->serial_io_wait,
92 		   check_and_add_serial(rdev, r1_bio, si, idx) == 0);
93 }
94 
remove_serial(struct md_rdev * rdev,sector_t lo,sector_t hi)95 static void remove_serial(struct md_rdev *rdev, sector_t lo, sector_t hi)
96 {
97 	struct serial_info *si;
98 	unsigned long flags;
99 	int found = 0;
100 	struct mddev *mddev = rdev->mddev;
101 	int idx = sector_to_idx(lo);
102 	struct serial_in_rdev *serial = &rdev->serial[idx];
103 
104 	spin_lock_irqsave(&serial->serial_lock, flags);
105 	for (si = raid1_rb_iter_first(&serial->serial_rb, lo, hi);
106 	     si; si = raid1_rb_iter_next(si, lo, hi)) {
107 		if (si->start == lo && si->last == hi) {
108 			raid1_rb_remove(si, &serial->serial_rb);
109 			mempool_free(si, mddev->serial_info_pool);
110 			found = 1;
111 			break;
112 		}
113 	}
114 	if (!found)
115 		WARN(1, "The write IO is not recorded for serialization\n");
116 	spin_unlock_irqrestore(&serial->serial_lock, flags);
117 	wake_up(&serial->serial_io_wait);
118 }
119 
120 /*
121  * for resync bio, r1bio pointer can be retrieved from the per-bio
122  * 'struct resync_pages'.
123  */
get_resync_r1bio(struct bio * bio)124 static inline struct r1bio *get_resync_r1bio(struct bio *bio)
125 {
126 	return get_resync_pages(bio)->raid_bio;
127 }
128 
r1bio_pool_alloc(gfp_t gfp_flags,void * data)129 static void * r1bio_pool_alloc(gfp_t gfp_flags, void *data)
130 {
131 	struct pool_info *pi = data;
132 	int size = offsetof(struct r1bio, bios[pi->raid_disks]);
133 
134 	/* allocate a r1bio with room for raid_disks entries in the bios array */
135 	return kzalloc(size, gfp_flags);
136 }
137 
138 #define RESYNC_DEPTH 32
139 #define RESYNC_SECTORS (RESYNC_BLOCK_SIZE >> 9)
140 #define RESYNC_WINDOW (RESYNC_BLOCK_SIZE * RESYNC_DEPTH)
141 #define RESYNC_WINDOW_SECTORS (RESYNC_WINDOW >> 9)
142 #define CLUSTER_RESYNC_WINDOW (16 * RESYNC_WINDOW)
143 #define CLUSTER_RESYNC_WINDOW_SECTORS (CLUSTER_RESYNC_WINDOW >> 9)
144 
r1buf_pool_alloc(gfp_t gfp_flags,void * data)145 static void * r1buf_pool_alloc(gfp_t gfp_flags, void *data)
146 {
147 	struct pool_info *pi = data;
148 	struct r1bio *r1_bio;
149 	struct bio *bio;
150 	int need_pages;
151 	int j;
152 	struct resync_pages *rps;
153 
154 	r1_bio = r1bio_pool_alloc(gfp_flags, pi);
155 	if (!r1_bio)
156 		return NULL;
157 
158 	rps = kmalloc_array(pi->raid_disks, sizeof(struct resync_pages),
159 			    gfp_flags);
160 	if (!rps)
161 		goto out_free_r1bio;
162 
163 	/*
164 	 * Allocate bios : 1 for reading, n-1 for writing
165 	 */
166 	for (j = pi->raid_disks ; j-- ; ) {
167 		bio = bio_kmalloc(RESYNC_PAGES, gfp_flags);
168 		if (!bio)
169 			goto out_free_bio;
170 		bio_init(bio, NULL, bio->bi_inline_vecs, RESYNC_PAGES, 0);
171 		r1_bio->bios[j] = bio;
172 	}
173 	/*
174 	 * Allocate RESYNC_PAGES data pages and attach them to
175 	 * the first bio.
176 	 * If this is a user-requested check/repair, allocate
177 	 * RESYNC_PAGES for each bio.
178 	 */
179 	if (test_bit(MD_RECOVERY_REQUESTED, &pi->mddev->recovery))
180 		need_pages = pi->raid_disks;
181 	else
182 		need_pages = 1;
183 	for (j = 0; j < pi->raid_disks; j++) {
184 		struct resync_pages *rp = &rps[j];
185 
186 		bio = r1_bio->bios[j];
187 
188 		if (j < need_pages) {
189 			if (resync_alloc_pages(rp, gfp_flags))
190 				goto out_free_pages;
191 		} else {
192 			memcpy(rp, &rps[0], sizeof(*rp));
193 			resync_get_all_pages(rp);
194 		}
195 
196 		rp->raid_bio = r1_bio;
197 		bio->bi_private = rp;
198 	}
199 
200 	r1_bio->master_bio = NULL;
201 
202 	return r1_bio;
203 
204 out_free_pages:
205 	while (--j >= 0)
206 		resync_free_pages(&rps[j]);
207 
208 out_free_bio:
209 	while (++j < pi->raid_disks) {
210 		bio_uninit(r1_bio->bios[j]);
211 		kfree(r1_bio->bios[j]);
212 	}
213 	kfree(rps);
214 
215 out_free_r1bio:
216 	rbio_pool_free(r1_bio, data);
217 	return NULL;
218 }
219 
r1buf_pool_free(void * __r1_bio,void * data)220 static void r1buf_pool_free(void *__r1_bio, void *data)
221 {
222 	struct pool_info *pi = data;
223 	int i;
224 	struct r1bio *r1bio = __r1_bio;
225 	struct resync_pages *rp = NULL;
226 
227 	for (i = pi->raid_disks; i--; ) {
228 		rp = get_resync_pages(r1bio->bios[i]);
229 		resync_free_pages(rp);
230 		bio_uninit(r1bio->bios[i]);
231 		kfree(r1bio->bios[i]);
232 	}
233 
234 	/* resync pages array stored in the 1st bio's .bi_private */
235 	kfree(rp);
236 
237 	rbio_pool_free(r1bio, data);
238 }
239 
put_all_bios(struct r1conf * conf,struct r1bio * r1_bio)240 static void put_all_bios(struct r1conf *conf, struct r1bio *r1_bio)
241 {
242 	int i;
243 
244 	for (i = 0; i < conf->raid_disks * 2; i++) {
245 		struct bio **bio = r1_bio->bios + i;
246 		if (!BIO_SPECIAL(*bio))
247 			bio_put(*bio);
248 		*bio = NULL;
249 	}
250 }
251 
free_r1bio(struct r1bio * r1_bio)252 static void free_r1bio(struct r1bio *r1_bio)
253 {
254 	struct r1conf *conf = r1_bio->mddev->private;
255 
256 	put_all_bios(conf, r1_bio);
257 	mempool_free(r1_bio, &conf->r1bio_pool);
258 }
259 
put_buf(struct r1bio * r1_bio)260 static void put_buf(struct r1bio *r1_bio)
261 {
262 	struct r1conf *conf = r1_bio->mddev->private;
263 	sector_t sect = r1_bio->sector;
264 	int i;
265 
266 	for (i = 0; i < conf->raid_disks * 2; i++) {
267 		struct bio *bio = r1_bio->bios[i];
268 		if (bio->bi_end_io)
269 			rdev_dec_pending(conf->mirrors[i].rdev, r1_bio->mddev);
270 	}
271 
272 	mempool_free(r1_bio, &conf->r1buf_pool);
273 
274 	lower_barrier(conf, sect);
275 }
276 
reschedule_retry(struct r1bio * r1_bio)277 static void reschedule_retry(struct r1bio *r1_bio)
278 {
279 	unsigned long flags;
280 	struct mddev *mddev = r1_bio->mddev;
281 	struct r1conf *conf = mddev->private;
282 	int idx;
283 
284 	idx = sector_to_idx(r1_bio->sector);
285 	spin_lock_irqsave(&conf->device_lock, flags);
286 	list_add(&r1_bio->retry_list, &conf->retry_list);
287 	atomic_inc(&conf->nr_queued[idx]);
288 	spin_unlock_irqrestore(&conf->device_lock, flags);
289 
290 	wake_up(&conf->wait_barrier);
291 	md_wakeup_thread(mddev->thread);
292 }
293 
294 /*
295  * raid_end_bio_io() is called when we have finished servicing a mirrored
296  * operation and are ready to return a success/failure code to the buffer
297  * cache layer.
298  */
call_bio_endio(struct r1bio * r1_bio)299 static void call_bio_endio(struct r1bio *r1_bio)
300 {
301 	struct bio *bio = r1_bio->master_bio;
302 
303 	if (!test_bit(R1BIO_Uptodate, &r1_bio->state))
304 		bio->bi_status = BLK_STS_IOERR;
305 
306 	bio_endio(bio);
307 }
308 
raid_end_bio_io(struct r1bio * r1_bio)309 static void raid_end_bio_io(struct r1bio *r1_bio)
310 {
311 	struct bio *bio = r1_bio->master_bio;
312 	struct r1conf *conf = r1_bio->mddev->private;
313 	sector_t sector = r1_bio->sector;
314 
315 	/* if nobody has done the final endio yet, do it now */
316 	if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) {
317 		pr_debug("raid1: sync end %s on sectors %llu-%llu\n",
318 			 (bio_data_dir(bio) == WRITE) ? "write" : "read",
319 			 (unsigned long long) bio->bi_iter.bi_sector,
320 			 (unsigned long long) bio_end_sector(bio) - 1);
321 
322 		call_bio_endio(r1_bio);
323 	}
324 
325 	free_r1bio(r1_bio);
326 	/*
327 	 * Wake up any possible resync thread that waits for the device
328 	 * to go idle.  All I/Os, even write-behind writes, are done.
329 	 */
330 	allow_barrier(conf, sector);
331 }
332 
333 /*
334  * Update disk head position estimator based on IRQ completion info.
335  */
update_head_pos(int disk,struct r1bio * r1_bio)336 static inline void update_head_pos(int disk, struct r1bio *r1_bio)
337 {
338 	struct r1conf *conf = r1_bio->mddev->private;
339 
340 	conf->mirrors[disk].head_position =
341 		r1_bio->sector + (r1_bio->sectors);
342 }
343 
344 /*
345  * Find the disk number which triggered given bio
346  */
find_bio_disk(struct r1bio * r1_bio,struct bio * bio)347 static int find_bio_disk(struct r1bio *r1_bio, struct bio *bio)
348 {
349 	int mirror;
350 	struct r1conf *conf = r1_bio->mddev->private;
351 	int raid_disks = conf->raid_disks;
352 
353 	for (mirror = 0; mirror < raid_disks * 2; mirror++)
354 		if (r1_bio->bios[mirror] == bio)
355 			break;
356 
357 	BUG_ON(mirror == raid_disks * 2);
358 	update_head_pos(mirror, r1_bio);
359 
360 	return mirror;
361 }
362 
raid1_end_read_request(struct bio * bio)363 static void raid1_end_read_request(struct bio *bio)
364 {
365 	int uptodate = !bio->bi_status;
366 	struct r1bio *r1_bio = bio->bi_private;
367 	struct r1conf *conf = r1_bio->mddev->private;
368 	struct md_rdev *rdev = conf->mirrors[r1_bio->read_disk].rdev;
369 
370 	/*
371 	 * this branch is our 'one mirror IO has finished' event handler:
372 	 */
373 	update_head_pos(r1_bio->read_disk, r1_bio);
374 
375 	if (uptodate)
376 		set_bit(R1BIO_Uptodate, &r1_bio->state);
377 	else if (test_bit(FailFast, &rdev->flags) &&
378 		 test_bit(R1BIO_FailFast, &r1_bio->state))
379 		/* This was a fail-fast read so we definitely
380 		 * want to retry */
381 		;
382 	else {
383 		/* If all other devices have failed, we want to return
384 		 * the error upwards rather than fail the last device.
385 		 * Here we redefine "uptodate" to mean "Don't want to retry"
386 		 */
387 		unsigned long flags;
388 		spin_lock_irqsave(&conf->device_lock, flags);
389 		if (r1_bio->mddev->degraded == conf->raid_disks ||
390 		    (r1_bio->mddev->degraded == conf->raid_disks-1 &&
391 		     test_bit(In_sync, &rdev->flags)))
392 			uptodate = 1;
393 		spin_unlock_irqrestore(&conf->device_lock, flags);
394 	}
395 
396 	if (uptodate) {
397 		raid_end_bio_io(r1_bio);
398 		rdev_dec_pending(rdev, conf->mddev);
399 	} else {
400 		/*
401 		 * oops, read error:
402 		 */
403 		pr_err_ratelimited("md/raid1:%s: %pg: rescheduling sector %llu\n",
404 				   mdname(conf->mddev),
405 				   rdev->bdev,
406 				   (unsigned long long)r1_bio->sector);
407 		set_bit(R1BIO_ReadError, &r1_bio->state);
408 		reschedule_retry(r1_bio);
409 		/* don't drop the reference on read_disk yet */
410 	}
411 }
412 
close_write(struct r1bio * r1_bio)413 static void close_write(struct r1bio *r1_bio)
414 {
415 	struct mddev *mddev = r1_bio->mddev;
416 
417 	/* it really is the end of this request */
418 	if (test_bit(R1BIO_BehindIO, &r1_bio->state)) {
419 		bio_free_pages(r1_bio->behind_master_bio);
420 		bio_put(r1_bio->behind_master_bio);
421 		r1_bio->behind_master_bio = NULL;
422 	}
423 
424 	if (test_bit(R1BIO_BehindIO, &r1_bio->state))
425 		mddev->bitmap_ops->end_behind_write(mddev);
426 	md_write_end(mddev);
427 }
428 
r1_bio_write_done(struct r1bio * r1_bio)429 static void r1_bio_write_done(struct r1bio *r1_bio)
430 {
431 	if (!atomic_dec_and_test(&r1_bio->remaining))
432 		return;
433 
434 	if (test_bit(R1BIO_WriteError, &r1_bio->state))
435 		reschedule_retry(r1_bio);
436 	else {
437 		close_write(r1_bio);
438 		if (test_bit(R1BIO_MadeGood, &r1_bio->state))
439 			reschedule_retry(r1_bio);
440 		else
441 			raid_end_bio_io(r1_bio);
442 	}
443 }
444 
raid1_end_write_request(struct bio * bio)445 static void raid1_end_write_request(struct bio *bio)
446 {
447 	struct r1bio *r1_bio = bio->bi_private;
448 	int behind = test_bit(R1BIO_BehindIO, &r1_bio->state);
449 	struct r1conf *conf = r1_bio->mddev->private;
450 	struct bio *to_put = NULL;
451 	int mirror = find_bio_disk(r1_bio, bio);
452 	struct md_rdev *rdev = conf->mirrors[mirror].rdev;
453 	bool discard_error;
454 	sector_t lo = r1_bio->sector;
455 	sector_t hi = r1_bio->sector + r1_bio->sectors;
456 
457 	discard_error = bio->bi_status && bio_op(bio) == REQ_OP_DISCARD;
458 
459 	/*
460 	 * 'one mirror IO has finished' event handler:
461 	 */
462 	if (bio->bi_status && !discard_error) {
463 		set_bit(WriteErrorSeen,	&rdev->flags);
464 		if (!test_and_set_bit(WantReplacement, &rdev->flags))
465 			set_bit(MD_RECOVERY_NEEDED, &
466 				conf->mddev->recovery);
467 
468 		if (test_bit(FailFast, &rdev->flags) &&
469 		    (bio->bi_opf & MD_FAILFAST) &&
470 		    /* We never try FailFast to WriteMostly devices */
471 		    !test_bit(WriteMostly, &rdev->flags)) {
472 			md_error(r1_bio->mddev, rdev);
473 		}
474 
475 		/*
476 		 * When the device is faulty, it is not necessary to
477 		 * handle write error.
478 		 */
479 		if (!test_bit(Faulty, &rdev->flags))
480 			set_bit(R1BIO_WriteError, &r1_bio->state);
481 		else {
482 			/* Finished with this branch */
483 			r1_bio->bios[mirror] = NULL;
484 			to_put = bio;
485 		}
486 	} else {
487 		/*
488 		 * Set R1BIO_Uptodate in our master bio, so that we
489 		 * will return a good error code for to the higher
490 		 * levels even if IO on some other mirrored buffer
491 		 * fails.
492 		 *
493 		 * The 'master' represents the composite IO operation
494 		 * to user-side. So if something waits for IO, then it
495 		 * will wait for the 'master' bio.
496 		 */
497 		r1_bio->bios[mirror] = NULL;
498 		to_put = bio;
499 		/*
500 		 * Do not set R1BIO_Uptodate if the current device is
501 		 * rebuilding or Faulty. This is because we cannot use
502 		 * such device for properly reading the data back (we could
503 		 * potentially use it, if the current write would have felt
504 		 * before rdev->recovery_offset, but for simplicity we don't
505 		 * check this here.
506 		 */
507 		if (test_bit(In_sync, &rdev->flags) &&
508 		    !test_bit(Faulty, &rdev->flags))
509 			set_bit(R1BIO_Uptodate, &r1_bio->state);
510 
511 		/* Maybe we can clear some bad blocks. */
512 		if (rdev_has_badblock(rdev, r1_bio->sector, r1_bio->sectors) &&
513 		    !discard_error) {
514 			r1_bio->bios[mirror] = IO_MADE_GOOD;
515 			set_bit(R1BIO_MadeGood, &r1_bio->state);
516 		}
517 	}
518 
519 	if (behind) {
520 		if (test_bit(CollisionCheck, &rdev->flags))
521 			remove_serial(rdev, lo, hi);
522 		if (test_bit(WriteMostly, &rdev->flags))
523 			atomic_dec(&r1_bio->behind_remaining);
524 
525 		/*
526 		 * In behind mode, we ACK the master bio once the I/O
527 		 * has safely reached all non-writemostly
528 		 * disks. Setting the Returned bit ensures that this
529 		 * gets done only once -- we don't ever want to return
530 		 * -EIO here, instead we'll wait
531 		 */
532 		if (atomic_read(&r1_bio->behind_remaining) >= (atomic_read(&r1_bio->remaining)-1) &&
533 		    test_bit(R1BIO_Uptodate, &r1_bio->state)) {
534 			/* Maybe we can return now */
535 			if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) {
536 				struct bio *mbio = r1_bio->master_bio;
537 				pr_debug("raid1: behind end write sectors"
538 					 " %llu-%llu\n",
539 					 (unsigned long long) mbio->bi_iter.bi_sector,
540 					 (unsigned long long) bio_end_sector(mbio) - 1);
541 				call_bio_endio(r1_bio);
542 			}
543 		}
544 	} else if (rdev->mddev->serialize_policy)
545 		remove_serial(rdev, lo, hi);
546 	if (r1_bio->bios[mirror] == NULL)
547 		rdev_dec_pending(rdev, conf->mddev);
548 
549 	/*
550 	 * Let's see if all mirrored write operations have finished
551 	 * already.
552 	 */
553 	r1_bio_write_done(r1_bio);
554 
555 	if (to_put)
556 		bio_put(to_put);
557 }
558 
align_to_barrier_unit_end(sector_t start_sector,sector_t sectors)559 static sector_t align_to_barrier_unit_end(sector_t start_sector,
560 					  sector_t sectors)
561 {
562 	sector_t len;
563 
564 	WARN_ON(sectors == 0);
565 	/*
566 	 * len is the number of sectors from start_sector to end of the
567 	 * barrier unit which start_sector belongs to.
568 	 */
569 	len = round_up(start_sector + 1, BARRIER_UNIT_SECTOR_SIZE) -
570 	      start_sector;
571 
572 	if (len > sectors)
573 		len = sectors;
574 
575 	return len;
576 }
577 
update_read_sectors(struct r1conf * conf,int disk,sector_t this_sector,int len)578 static void update_read_sectors(struct r1conf *conf, int disk,
579 				sector_t this_sector, int len)
580 {
581 	struct raid1_info *info = &conf->mirrors[disk];
582 
583 	atomic_inc(&info->rdev->nr_pending);
584 	if (info->next_seq_sect != this_sector)
585 		info->seq_start = this_sector;
586 	info->next_seq_sect = this_sector + len;
587 }
588 
choose_first_rdev(struct r1conf * conf,struct r1bio * r1_bio,int * max_sectors)589 static int choose_first_rdev(struct r1conf *conf, struct r1bio *r1_bio,
590 			     int *max_sectors)
591 {
592 	sector_t this_sector = r1_bio->sector;
593 	int len = r1_bio->sectors;
594 	int disk;
595 
596 	for (disk = 0 ; disk < conf->raid_disks * 2 ; disk++) {
597 		struct md_rdev *rdev;
598 		int read_len;
599 
600 		if (r1_bio->bios[disk] == IO_BLOCKED)
601 			continue;
602 
603 		rdev = conf->mirrors[disk].rdev;
604 		if (!rdev || test_bit(Faulty, &rdev->flags))
605 			continue;
606 
607 		/* choose the first disk even if it has some bad blocks. */
608 		read_len = raid1_check_read_range(rdev, this_sector, &len);
609 		if (read_len > 0) {
610 			update_read_sectors(conf, disk, this_sector, read_len);
611 			*max_sectors = read_len;
612 			return disk;
613 		}
614 	}
615 
616 	return -1;
617 }
618 
rdev_in_recovery(struct md_rdev * rdev,struct r1bio * r1_bio)619 static bool rdev_in_recovery(struct md_rdev *rdev, struct r1bio *r1_bio)
620 {
621 	return !test_bit(In_sync, &rdev->flags) &&
622 	       rdev->recovery_offset < r1_bio->sector + r1_bio->sectors;
623 }
624 
choose_bb_rdev(struct r1conf * conf,struct r1bio * r1_bio,int * max_sectors)625 static int choose_bb_rdev(struct r1conf *conf, struct r1bio *r1_bio,
626 			  int *max_sectors)
627 {
628 	sector_t this_sector = r1_bio->sector;
629 	int best_disk = -1;
630 	int best_len = 0;
631 	int disk;
632 
633 	for (disk = 0 ; disk < conf->raid_disks * 2 ; disk++) {
634 		struct md_rdev *rdev;
635 		int len;
636 		int read_len;
637 
638 		if (r1_bio->bios[disk] == IO_BLOCKED)
639 			continue;
640 
641 		rdev = conf->mirrors[disk].rdev;
642 		if (!rdev || test_bit(Faulty, &rdev->flags) ||
643 		    rdev_in_recovery(rdev, r1_bio) ||
644 		    test_bit(WriteMostly, &rdev->flags))
645 			continue;
646 
647 		/* keep track of the disk with the most readable sectors. */
648 		len = r1_bio->sectors;
649 		read_len = raid1_check_read_range(rdev, this_sector, &len);
650 		if (read_len > best_len) {
651 			best_disk = disk;
652 			best_len = read_len;
653 		}
654 	}
655 
656 	if (best_disk != -1) {
657 		*max_sectors = best_len;
658 		update_read_sectors(conf, best_disk, this_sector, best_len);
659 	}
660 
661 	return best_disk;
662 }
663 
choose_slow_rdev(struct r1conf * conf,struct r1bio * r1_bio,int * max_sectors)664 static int choose_slow_rdev(struct r1conf *conf, struct r1bio *r1_bio,
665 			    int *max_sectors)
666 {
667 	sector_t this_sector = r1_bio->sector;
668 	int bb_disk = -1;
669 	int bb_read_len = 0;
670 	int disk;
671 
672 	for (disk = 0 ; disk < conf->raid_disks * 2 ; disk++) {
673 		struct md_rdev *rdev;
674 		int len;
675 		int read_len;
676 
677 		if (r1_bio->bios[disk] == IO_BLOCKED)
678 			continue;
679 
680 		rdev = conf->mirrors[disk].rdev;
681 		if (!rdev || test_bit(Faulty, &rdev->flags) ||
682 		    !test_bit(WriteMostly, &rdev->flags) ||
683 		    rdev_in_recovery(rdev, r1_bio))
684 			continue;
685 
686 		/* there are no bad blocks, we can use this disk */
687 		len = r1_bio->sectors;
688 		read_len = raid1_check_read_range(rdev, this_sector, &len);
689 		if (read_len == r1_bio->sectors) {
690 			*max_sectors = read_len;
691 			update_read_sectors(conf, disk, this_sector, read_len);
692 			return disk;
693 		}
694 
695 		/*
696 		 * there are partial bad blocks, choose the rdev with largest
697 		 * read length.
698 		 */
699 		if (read_len > bb_read_len) {
700 			bb_disk = disk;
701 			bb_read_len = read_len;
702 		}
703 	}
704 
705 	if (bb_disk != -1) {
706 		*max_sectors = bb_read_len;
707 		update_read_sectors(conf, bb_disk, this_sector, bb_read_len);
708 	}
709 
710 	return bb_disk;
711 }
712 
is_sequential(struct r1conf * conf,int disk,struct r1bio * r1_bio)713 static bool is_sequential(struct r1conf *conf, int disk, struct r1bio *r1_bio)
714 {
715 	/* TODO: address issues with this check and concurrency. */
716 	return conf->mirrors[disk].next_seq_sect == r1_bio->sector ||
717 	       conf->mirrors[disk].head_position == r1_bio->sector;
718 }
719 
720 /*
721  * If buffered sequential IO size exceeds optimal iosize, check if there is idle
722  * disk. If yes, choose the idle disk.
723  */
should_choose_next(struct r1conf * conf,int disk)724 static bool should_choose_next(struct r1conf *conf, int disk)
725 {
726 	struct raid1_info *mirror = &conf->mirrors[disk];
727 	int opt_iosize;
728 
729 	if (!test_bit(Nonrot, &mirror->rdev->flags))
730 		return false;
731 
732 	opt_iosize = bdev_io_opt(mirror->rdev->bdev) >> 9;
733 	return opt_iosize > 0 && mirror->seq_start != MaxSector &&
734 	       mirror->next_seq_sect > opt_iosize &&
735 	       mirror->next_seq_sect - opt_iosize >= mirror->seq_start;
736 }
737 
rdev_readable(struct md_rdev * rdev,struct r1bio * r1_bio)738 static bool rdev_readable(struct md_rdev *rdev, struct r1bio *r1_bio)
739 {
740 	if (!rdev || test_bit(Faulty, &rdev->flags))
741 		return false;
742 
743 	if (rdev_in_recovery(rdev, r1_bio))
744 		return false;
745 
746 	/* don't read from slow disk unless have to */
747 	if (test_bit(WriteMostly, &rdev->flags))
748 		return false;
749 
750 	/* don't split IO for bad blocks unless have to */
751 	if (rdev_has_badblock(rdev, r1_bio->sector, r1_bio->sectors))
752 		return false;
753 
754 	return true;
755 }
756 
757 struct read_balance_ctl {
758 	sector_t closest_dist;
759 	int closest_dist_disk;
760 	int min_pending;
761 	int min_pending_disk;
762 	int sequential_disk;
763 	int readable_disks;
764 };
765 
choose_best_rdev(struct r1conf * conf,struct r1bio * r1_bio)766 static int choose_best_rdev(struct r1conf *conf, struct r1bio *r1_bio)
767 {
768 	int disk;
769 	struct read_balance_ctl ctl = {
770 		.closest_dist_disk      = -1,
771 		.closest_dist           = MaxSector,
772 		.min_pending_disk       = -1,
773 		.min_pending            = UINT_MAX,
774 		.sequential_disk	= -1,
775 	};
776 
777 	for (disk = 0 ; disk < conf->raid_disks * 2 ; disk++) {
778 		struct md_rdev *rdev;
779 		sector_t dist;
780 		unsigned int pending;
781 
782 		if (r1_bio->bios[disk] == IO_BLOCKED)
783 			continue;
784 
785 		rdev = conf->mirrors[disk].rdev;
786 		if (!rdev_readable(rdev, r1_bio))
787 			continue;
788 
789 		/* At least two disks to choose from so failfast is OK */
790 		if (ctl.readable_disks++ == 1)
791 			set_bit(R1BIO_FailFast, &r1_bio->state);
792 
793 		pending = atomic_read(&rdev->nr_pending);
794 		dist = abs(r1_bio->sector - conf->mirrors[disk].head_position);
795 
796 		/* Don't change to another disk for sequential reads */
797 		if (is_sequential(conf, disk, r1_bio)) {
798 			if (!should_choose_next(conf, disk))
799 				return disk;
800 
801 			/*
802 			 * Add 'pending' to avoid choosing this disk if
803 			 * there is other idle disk.
804 			 */
805 			pending++;
806 			/*
807 			 * If there is no other idle disk, this disk
808 			 * will be chosen.
809 			 */
810 			ctl.sequential_disk = disk;
811 		}
812 
813 		if (ctl.min_pending > pending) {
814 			ctl.min_pending = pending;
815 			ctl.min_pending_disk = disk;
816 		}
817 
818 		if (ctl.closest_dist > dist) {
819 			ctl.closest_dist = dist;
820 			ctl.closest_dist_disk = disk;
821 		}
822 	}
823 
824 	/*
825 	 * sequential IO size exceeds optimal iosize, however, there is no other
826 	 * idle disk, so choose the sequential disk.
827 	 */
828 	if (ctl.sequential_disk != -1 && ctl.min_pending != 0)
829 		return ctl.sequential_disk;
830 
831 	/*
832 	 * If all disks are rotational, choose the closest disk. If any disk is
833 	 * non-rotational, choose the disk with less pending request even the
834 	 * disk is rotational, which might/might not be optimal for raids with
835 	 * mixed ratation/non-rotational disks depending on workload.
836 	 */
837 	if (ctl.min_pending_disk != -1 &&
838 	    (READ_ONCE(conf->nonrot_disks) || ctl.min_pending == 0))
839 		return ctl.min_pending_disk;
840 	else
841 		return ctl.closest_dist_disk;
842 }
843 
844 /*
845  * This routine returns the disk from which the requested read should be done.
846  *
847  * 1) If resync is in progress, find the first usable disk and use it even if it
848  * has some bad blocks.
849  *
850  * 2) Now that there is no resync, loop through all disks and skipping slow
851  * disks and disks with bad blocks for now. Only pay attention to key disk
852  * choice.
853  *
854  * 3) If we've made it this far, now look for disks with bad blocks and choose
855  * the one with most number of sectors.
856  *
857  * 4) If we are all the way at the end, we have no choice but to use a disk even
858  * if it is write mostly.
859  *
860  * The rdev for the device selected will have nr_pending incremented.
861  */
read_balance(struct r1conf * conf,struct r1bio * r1_bio,int * max_sectors)862 static int read_balance(struct r1conf *conf, struct r1bio *r1_bio,
863 			int *max_sectors)
864 {
865 	int disk;
866 
867 	clear_bit(R1BIO_FailFast, &r1_bio->state);
868 
869 	if (raid1_should_read_first(conf->mddev, r1_bio->sector,
870 				    r1_bio->sectors))
871 		return choose_first_rdev(conf, r1_bio, max_sectors);
872 
873 	disk = choose_best_rdev(conf, r1_bio);
874 	if (disk >= 0) {
875 		*max_sectors = r1_bio->sectors;
876 		update_read_sectors(conf, disk, r1_bio->sector,
877 				    r1_bio->sectors);
878 		return disk;
879 	}
880 
881 	/*
882 	 * If we are here it means we didn't find a perfectly good disk so
883 	 * now spend a bit more time trying to find one with the most good
884 	 * sectors.
885 	 */
886 	disk = choose_bb_rdev(conf, r1_bio, max_sectors);
887 	if (disk >= 0)
888 		return disk;
889 
890 	return choose_slow_rdev(conf, r1_bio, max_sectors);
891 }
892 
wake_up_barrier(struct r1conf * conf)893 static void wake_up_barrier(struct r1conf *conf)
894 {
895 	if (wq_has_sleeper(&conf->wait_barrier))
896 		wake_up(&conf->wait_barrier);
897 }
898 
flush_bio_list(struct r1conf * conf,struct bio * bio)899 static void flush_bio_list(struct r1conf *conf, struct bio *bio)
900 {
901 	/* flush any pending bitmap writes to disk before proceeding w/ I/O */
902 	raid1_prepare_flush_writes(conf->mddev);
903 	wake_up_barrier(conf);
904 
905 	while (bio) { /* submit pending writes */
906 		struct bio *next = bio->bi_next;
907 
908 		raid1_submit_write(bio);
909 		bio = next;
910 		cond_resched();
911 	}
912 }
913 
flush_pending_writes(struct r1conf * conf)914 static void flush_pending_writes(struct r1conf *conf)
915 {
916 	/* Any writes that have been queued but are awaiting
917 	 * bitmap updates get flushed here.
918 	 */
919 	spin_lock_irq(&conf->device_lock);
920 
921 	if (conf->pending_bio_list.head) {
922 		struct blk_plug plug;
923 		struct bio *bio;
924 
925 		bio = bio_list_get(&conf->pending_bio_list);
926 		spin_unlock_irq(&conf->device_lock);
927 
928 		/*
929 		 * As this is called in a wait_event() loop (see freeze_array),
930 		 * current->state might be TASK_UNINTERRUPTIBLE which will
931 		 * cause a warning when we prepare to wait again.  As it is
932 		 * rare that this path is taken, it is perfectly safe to force
933 		 * us to go around the wait_event() loop again, so the warning
934 		 * is a false-positive.  Silence the warning by resetting
935 		 * thread state
936 		 */
937 		__set_current_state(TASK_RUNNING);
938 		blk_start_plug(&plug);
939 		flush_bio_list(conf, bio);
940 		blk_finish_plug(&plug);
941 	} else
942 		spin_unlock_irq(&conf->device_lock);
943 }
944 
945 /* Barriers....
946  * Sometimes we need to suspend IO while we do something else,
947  * either some resync/recovery, or reconfigure the array.
948  * To do this we raise a 'barrier'.
949  * The 'barrier' is a counter that can be raised multiple times
950  * to count how many activities are happening which preclude
951  * normal IO.
952  * We can only raise the barrier if there is no pending IO.
953  * i.e. if nr_pending == 0.
954  * We choose only to raise the barrier if no-one is waiting for the
955  * barrier to go down.  This means that as soon as an IO request
956  * is ready, no other operations which require a barrier will start
957  * until the IO request has had a chance.
958  *
959  * So: regular IO calls 'wait_barrier'.  When that returns there
960  *    is no backgroup IO happening,  It must arrange to call
961  *    allow_barrier when it has finished its IO.
962  * backgroup IO calls must call raise_barrier.  Once that returns
963  *    there is no normal IO happeing.  It must arrange to call
964  *    lower_barrier when the particular background IO completes.
965  *
966  * If resync/recovery is interrupted, returns -EINTR;
967  * Otherwise, returns 0.
968  */
raise_barrier(struct r1conf * conf,sector_t sector_nr)969 static int raise_barrier(struct r1conf *conf, sector_t sector_nr)
970 {
971 	int idx = sector_to_idx(sector_nr);
972 
973 	spin_lock_irq(&conf->resync_lock);
974 
975 	/* Wait until no block IO is waiting */
976 	wait_event_lock_irq(conf->wait_barrier,
977 			    !atomic_read(&conf->nr_waiting[idx]),
978 			    conf->resync_lock);
979 
980 	/* block any new IO from starting */
981 	atomic_inc(&conf->barrier[idx]);
982 	/*
983 	 * In raise_barrier() we firstly increase conf->barrier[idx] then
984 	 * check conf->nr_pending[idx]. In _wait_barrier() we firstly
985 	 * increase conf->nr_pending[idx] then check conf->barrier[idx].
986 	 * A memory barrier here to make sure conf->nr_pending[idx] won't
987 	 * be fetched before conf->barrier[idx] is increased. Otherwise
988 	 * there will be a race between raise_barrier() and _wait_barrier().
989 	 */
990 	smp_mb__after_atomic();
991 
992 	/* For these conditions we must wait:
993 	 * A: while the array is in frozen state
994 	 * B: while conf->nr_pending[idx] is not 0, meaning regular I/O
995 	 *    existing in corresponding I/O barrier bucket.
996 	 * C: while conf->barrier[idx] >= RESYNC_DEPTH, meaning reaches
997 	 *    max resync count which allowed on current I/O barrier bucket.
998 	 */
999 	wait_event_lock_irq(conf->wait_barrier,
1000 			    (!conf->array_frozen &&
1001 			     !atomic_read(&conf->nr_pending[idx]) &&
1002 			     atomic_read(&conf->barrier[idx]) < RESYNC_DEPTH) ||
1003 				test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery),
1004 			    conf->resync_lock);
1005 
1006 	if (test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery)) {
1007 		atomic_dec(&conf->barrier[idx]);
1008 		spin_unlock_irq(&conf->resync_lock);
1009 		wake_up(&conf->wait_barrier);
1010 		return -EINTR;
1011 	}
1012 
1013 	atomic_inc(&conf->nr_sync_pending);
1014 	spin_unlock_irq(&conf->resync_lock);
1015 
1016 	return 0;
1017 }
1018 
lower_barrier(struct r1conf * conf,sector_t sector_nr)1019 static void lower_barrier(struct r1conf *conf, sector_t sector_nr)
1020 {
1021 	int idx = sector_to_idx(sector_nr);
1022 
1023 	BUG_ON(atomic_read(&conf->barrier[idx]) <= 0);
1024 
1025 	atomic_dec(&conf->barrier[idx]);
1026 	atomic_dec(&conf->nr_sync_pending);
1027 	wake_up(&conf->wait_barrier);
1028 }
1029 
_wait_barrier(struct r1conf * conf,int idx,bool nowait)1030 static bool _wait_barrier(struct r1conf *conf, int idx, bool nowait)
1031 {
1032 	bool ret = true;
1033 
1034 	/*
1035 	 * We need to increase conf->nr_pending[idx] very early here,
1036 	 * then raise_barrier() can be blocked when it waits for
1037 	 * conf->nr_pending[idx] to be 0. Then we can avoid holding
1038 	 * conf->resync_lock when there is no barrier raised in same
1039 	 * barrier unit bucket. Also if the array is frozen, I/O
1040 	 * should be blocked until array is unfrozen.
1041 	 */
1042 	atomic_inc(&conf->nr_pending[idx]);
1043 	/*
1044 	 * In _wait_barrier() we firstly increase conf->nr_pending[idx], then
1045 	 * check conf->barrier[idx]. In raise_barrier() we firstly increase
1046 	 * conf->barrier[idx], then check conf->nr_pending[idx]. A memory
1047 	 * barrier is necessary here to make sure conf->barrier[idx] won't be
1048 	 * fetched before conf->nr_pending[idx] is increased. Otherwise there
1049 	 * will be a race between _wait_barrier() and raise_barrier().
1050 	 */
1051 	smp_mb__after_atomic();
1052 
1053 	/*
1054 	 * Don't worry about checking two atomic_t variables at same time
1055 	 * here. If during we check conf->barrier[idx], the array is
1056 	 * frozen (conf->array_frozen is 1), and chonf->barrier[idx] is
1057 	 * 0, it is safe to return and make the I/O continue. Because the
1058 	 * array is frozen, all I/O returned here will eventually complete
1059 	 * or be queued, no race will happen. See code comment in
1060 	 * frozen_array().
1061 	 */
1062 	if (!READ_ONCE(conf->array_frozen) &&
1063 	    !atomic_read(&conf->barrier[idx]))
1064 		return ret;
1065 
1066 	/*
1067 	 * After holding conf->resync_lock, conf->nr_pending[idx]
1068 	 * should be decreased before waiting for barrier to drop.
1069 	 * Otherwise, we may encounter a race condition because
1070 	 * raise_barrer() might be waiting for conf->nr_pending[idx]
1071 	 * to be 0 at same time.
1072 	 */
1073 	spin_lock_irq(&conf->resync_lock);
1074 	atomic_inc(&conf->nr_waiting[idx]);
1075 	atomic_dec(&conf->nr_pending[idx]);
1076 	/*
1077 	 * In case freeze_array() is waiting for
1078 	 * get_unqueued_pending() == extra
1079 	 */
1080 	wake_up_barrier(conf);
1081 	/* Wait for the barrier in same barrier unit bucket to drop. */
1082 
1083 	/* Return false when nowait flag is set */
1084 	if (nowait) {
1085 		ret = false;
1086 	} else {
1087 		wait_event_lock_irq(conf->wait_barrier,
1088 				!conf->array_frozen &&
1089 				!atomic_read(&conf->barrier[idx]),
1090 				conf->resync_lock);
1091 		atomic_inc(&conf->nr_pending[idx]);
1092 	}
1093 
1094 	atomic_dec(&conf->nr_waiting[idx]);
1095 	spin_unlock_irq(&conf->resync_lock);
1096 	return ret;
1097 }
1098 
wait_read_barrier(struct r1conf * conf,sector_t sector_nr,bool nowait)1099 static bool wait_read_barrier(struct r1conf *conf, sector_t sector_nr, bool nowait)
1100 {
1101 	int idx = sector_to_idx(sector_nr);
1102 	bool ret = true;
1103 
1104 	/*
1105 	 * Very similar to _wait_barrier(). The difference is, for read
1106 	 * I/O we don't need wait for sync I/O, but if the whole array
1107 	 * is frozen, the read I/O still has to wait until the array is
1108 	 * unfrozen. Since there is no ordering requirement with
1109 	 * conf->barrier[idx] here, memory barrier is unnecessary as well.
1110 	 */
1111 	atomic_inc(&conf->nr_pending[idx]);
1112 
1113 	if (!READ_ONCE(conf->array_frozen))
1114 		return ret;
1115 
1116 	spin_lock_irq(&conf->resync_lock);
1117 	atomic_inc(&conf->nr_waiting[idx]);
1118 	atomic_dec(&conf->nr_pending[idx]);
1119 	/*
1120 	 * In case freeze_array() is waiting for
1121 	 * get_unqueued_pending() == extra
1122 	 */
1123 	wake_up_barrier(conf);
1124 	/* Wait for array to be unfrozen */
1125 
1126 	/* Return false when nowait flag is set */
1127 	if (nowait) {
1128 		/* Return false when nowait flag is set */
1129 		ret = false;
1130 	} else {
1131 		wait_event_lock_irq(conf->wait_barrier,
1132 				!conf->array_frozen,
1133 				conf->resync_lock);
1134 		atomic_inc(&conf->nr_pending[idx]);
1135 	}
1136 
1137 	atomic_dec(&conf->nr_waiting[idx]);
1138 	spin_unlock_irq(&conf->resync_lock);
1139 	return ret;
1140 }
1141 
wait_barrier(struct r1conf * conf,sector_t sector_nr,bool nowait)1142 static bool wait_barrier(struct r1conf *conf, sector_t sector_nr, bool nowait)
1143 {
1144 	int idx = sector_to_idx(sector_nr);
1145 
1146 	return _wait_barrier(conf, idx, nowait);
1147 }
1148 
_allow_barrier(struct r1conf * conf,int idx)1149 static void _allow_barrier(struct r1conf *conf, int idx)
1150 {
1151 	atomic_dec(&conf->nr_pending[idx]);
1152 	wake_up_barrier(conf);
1153 }
1154 
allow_barrier(struct r1conf * conf,sector_t sector_nr)1155 static void allow_barrier(struct r1conf *conf, sector_t sector_nr)
1156 {
1157 	int idx = sector_to_idx(sector_nr);
1158 
1159 	_allow_barrier(conf, idx);
1160 }
1161 
1162 /* conf->resync_lock should be held */
get_unqueued_pending(struct r1conf * conf)1163 static int get_unqueued_pending(struct r1conf *conf)
1164 {
1165 	int idx, ret;
1166 
1167 	ret = atomic_read(&conf->nr_sync_pending);
1168 	for (idx = 0; idx < BARRIER_BUCKETS_NR; idx++)
1169 		ret += atomic_read(&conf->nr_pending[idx]) -
1170 			atomic_read(&conf->nr_queued[idx]);
1171 
1172 	return ret;
1173 }
1174 
freeze_array(struct r1conf * conf,int extra)1175 static void freeze_array(struct r1conf *conf, int extra)
1176 {
1177 	/* Stop sync I/O and normal I/O and wait for everything to
1178 	 * go quiet.
1179 	 * This is called in two situations:
1180 	 * 1) management command handlers (reshape, remove disk, quiesce).
1181 	 * 2) one normal I/O request failed.
1182 
1183 	 * After array_frozen is set to 1, new sync IO will be blocked at
1184 	 * raise_barrier(), and new normal I/O will blocked at _wait_barrier()
1185 	 * or wait_read_barrier(). The flying I/Os will either complete or be
1186 	 * queued. When everything goes quite, there are only queued I/Os left.
1187 
1188 	 * Every flying I/O contributes to a conf->nr_pending[idx], idx is the
1189 	 * barrier bucket index which this I/O request hits. When all sync and
1190 	 * normal I/O are queued, sum of all conf->nr_pending[] will match sum
1191 	 * of all conf->nr_queued[]. But normal I/O failure is an exception,
1192 	 * in handle_read_error(), we may call freeze_array() before trying to
1193 	 * fix the read error. In this case, the error read I/O is not queued,
1194 	 * so get_unqueued_pending() == 1.
1195 	 *
1196 	 * Therefore before this function returns, we need to wait until
1197 	 * get_unqueued_pendings(conf) gets equal to extra. For
1198 	 * normal I/O context, extra is 1, in rested situations extra is 0.
1199 	 */
1200 	spin_lock_irq(&conf->resync_lock);
1201 	conf->array_frozen = 1;
1202 	mddev_add_trace_msg(conf->mddev, "raid1 wait freeze");
1203 	wait_event_lock_irq_cmd(
1204 		conf->wait_barrier,
1205 		get_unqueued_pending(conf) == extra,
1206 		conf->resync_lock,
1207 		flush_pending_writes(conf));
1208 	spin_unlock_irq(&conf->resync_lock);
1209 }
unfreeze_array(struct r1conf * conf)1210 static void unfreeze_array(struct r1conf *conf)
1211 {
1212 	/* reverse the effect of the freeze */
1213 	spin_lock_irq(&conf->resync_lock);
1214 	conf->array_frozen = 0;
1215 	spin_unlock_irq(&conf->resync_lock);
1216 	wake_up(&conf->wait_barrier);
1217 }
1218 
alloc_behind_master_bio(struct r1bio * r1_bio,struct bio * bio)1219 static void alloc_behind_master_bio(struct r1bio *r1_bio,
1220 					   struct bio *bio)
1221 {
1222 	int size = bio->bi_iter.bi_size;
1223 	unsigned vcnt = (size + PAGE_SIZE - 1) >> PAGE_SHIFT;
1224 	int i = 0;
1225 	struct bio *behind_bio = NULL;
1226 
1227 	behind_bio = bio_alloc_bioset(NULL, vcnt, 0, GFP_NOIO,
1228 				      &r1_bio->mddev->bio_set);
1229 
1230 	/* discard op, we don't support writezero/writesame yet */
1231 	if (!bio_has_data(bio)) {
1232 		behind_bio->bi_iter.bi_size = size;
1233 		goto skip_copy;
1234 	}
1235 
1236 	while (i < vcnt && size) {
1237 		struct page *page;
1238 		int len = min_t(int, PAGE_SIZE, size);
1239 
1240 		page = alloc_page(GFP_NOIO);
1241 		if (unlikely(!page))
1242 			goto free_pages;
1243 
1244 		if (!bio_add_page(behind_bio, page, len, 0)) {
1245 			put_page(page);
1246 			goto free_pages;
1247 		}
1248 
1249 		size -= len;
1250 		i++;
1251 	}
1252 
1253 	bio_copy_data(behind_bio, bio);
1254 skip_copy:
1255 	r1_bio->behind_master_bio = behind_bio;
1256 	set_bit(R1BIO_BehindIO, &r1_bio->state);
1257 
1258 	return;
1259 
1260 free_pages:
1261 	pr_debug("%dB behind alloc failed, doing sync I/O\n",
1262 		 bio->bi_iter.bi_size);
1263 	bio_free_pages(behind_bio);
1264 	bio_put(behind_bio);
1265 }
1266 
raid1_unplug(struct blk_plug_cb * cb,bool from_schedule)1267 static void raid1_unplug(struct blk_plug_cb *cb, bool from_schedule)
1268 {
1269 	struct raid1_plug_cb *plug = container_of(cb, struct raid1_plug_cb,
1270 						  cb);
1271 	struct mddev *mddev = plug->cb.data;
1272 	struct r1conf *conf = mddev->private;
1273 	struct bio *bio;
1274 
1275 	if (from_schedule) {
1276 		spin_lock_irq(&conf->device_lock);
1277 		bio_list_merge(&conf->pending_bio_list, &plug->pending);
1278 		spin_unlock_irq(&conf->device_lock);
1279 		wake_up_barrier(conf);
1280 		md_wakeup_thread(mddev->thread);
1281 		kfree(plug);
1282 		return;
1283 	}
1284 
1285 	/* we aren't scheduling, so we can do the write-out directly. */
1286 	bio = bio_list_get(&plug->pending);
1287 	flush_bio_list(conf, bio);
1288 	kfree(plug);
1289 }
1290 
init_r1bio(struct r1bio * r1_bio,struct mddev * mddev,struct bio * bio)1291 static void init_r1bio(struct r1bio *r1_bio, struct mddev *mddev, struct bio *bio)
1292 {
1293 	r1_bio->master_bio = bio;
1294 	r1_bio->sectors = bio_sectors(bio);
1295 	r1_bio->state = 0;
1296 	r1_bio->mddev = mddev;
1297 	r1_bio->sector = bio->bi_iter.bi_sector;
1298 }
1299 
1300 static inline struct r1bio *
alloc_r1bio(struct mddev * mddev,struct bio * bio)1301 alloc_r1bio(struct mddev *mddev, struct bio *bio)
1302 {
1303 	struct r1conf *conf = mddev->private;
1304 	struct r1bio *r1_bio;
1305 
1306 	r1_bio = mempool_alloc(&conf->r1bio_pool, GFP_NOIO);
1307 	/* Ensure no bio records IO_BLOCKED */
1308 	memset(r1_bio->bios, 0, conf->raid_disks * sizeof(r1_bio->bios[0]));
1309 	init_r1bio(r1_bio, mddev, bio);
1310 	return r1_bio;
1311 }
1312 
raid1_read_request(struct mddev * mddev,struct bio * bio,int max_read_sectors,struct r1bio * r1_bio)1313 static void raid1_read_request(struct mddev *mddev, struct bio *bio,
1314 			       int max_read_sectors, struct r1bio *r1_bio)
1315 {
1316 	struct r1conf *conf = mddev->private;
1317 	struct raid1_info *mirror;
1318 	struct bio *read_bio;
1319 	int max_sectors;
1320 	int rdisk, error;
1321 	bool r1bio_existed = !!r1_bio;
1322 
1323 	/*
1324 	 * If r1_bio is set, we are blocking the raid1d thread
1325 	 * so there is a tiny risk of deadlock.  So ask for
1326 	 * emergency memory if needed.
1327 	 */
1328 	gfp_t gfp = r1_bio ? (GFP_NOIO | __GFP_HIGH) : GFP_NOIO;
1329 
1330 	/*
1331 	 * Still need barrier for READ in case that whole
1332 	 * array is frozen.
1333 	 */
1334 	if (!wait_read_barrier(conf, bio->bi_iter.bi_sector,
1335 				bio->bi_opf & REQ_NOWAIT)) {
1336 		bio_wouldblock_error(bio);
1337 		return;
1338 	}
1339 
1340 	if (!r1_bio)
1341 		r1_bio = alloc_r1bio(mddev, bio);
1342 	else
1343 		init_r1bio(r1_bio, mddev, bio);
1344 	r1_bio->sectors = max_read_sectors;
1345 
1346 	/*
1347 	 * make_request() can abort the operation when read-ahead is being
1348 	 * used and no empty request is available.
1349 	 */
1350 	rdisk = read_balance(conf, r1_bio, &max_sectors);
1351 	if (rdisk < 0) {
1352 		/* couldn't find anywhere to read from */
1353 		if (r1bio_existed)
1354 			pr_crit_ratelimited("md/raid1:%s: %pg: unrecoverable I/O read error for block %llu\n",
1355 					    mdname(mddev),
1356 					    conf->mirrors[r1_bio->read_disk].rdev->bdev,
1357 					    r1_bio->sector);
1358 		raid_end_bio_io(r1_bio);
1359 		return;
1360 	}
1361 	mirror = conf->mirrors + rdisk;
1362 
1363 	if (r1bio_existed)
1364 		pr_info_ratelimited("md/raid1:%s: redirecting sector %llu to other mirror: %pg\n",
1365 				    mdname(mddev),
1366 				    (unsigned long long)r1_bio->sector,
1367 				    mirror->rdev->bdev);
1368 
1369 	if (test_bit(WriteMostly, &mirror->rdev->flags)) {
1370 		/*
1371 		 * Reading from a write-mostly device must take care not to
1372 		 * over-take any writes that are 'behind'
1373 		 */
1374 		mddev_add_trace_msg(mddev, "raid1 wait behind writes");
1375 		mddev->bitmap_ops->wait_behind_writes(mddev);
1376 	}
1377 
1378 	if (max_sectors < bio_sectors(bio)) {
1379 		struct bio *split = bio_split(bio, max_sectors,
1380 					      gfp, &conf->bio_split);
1381 
1382 		if (IS_ERR(split)) {
1383 			error = PTR_ERR(split);
1384 			goto err_handle;
1385 		}
1386 		bio_chain(split, bio);
1387 		submit_bio_noacct(bio);
1388 		bio = split;
1389 		r1_bio->master_bio = bio;
1390 		r1_bio->sectors = max_sectors;
1391 	}
1392 
1393 	r1_bio->read_disk = rdisk;
1394 	if (!r1bio_existed) {
1395 		md_account_bio(mddev, &bio);
1396 		r1_bio->master_bio = bio;
1397 	}
1398 	read_bio = bio_alloc_clone(mirror->rdev->bdev, bio, gfp,
1399 				   &mddev->bio_set);
1400 
1401 	r1_bio->bios[rdisk] = read_bio;
1402 
1403 	read_bio->bi_iter.bi_sector = r1_bio->sector +
1404 		mirror->rdev->data_offset;
1405 	read_bio->bi_end_io = raid1_end_read_request;
1406 	if (test_bit(FailFast, &mirror->rdev->flags) &&
1407 	    test_bit(R1BIO_FailFast, &r1_bio->state))
1408 	        read_bio->bi_opf |= MD_FAILFAST;
1409 	read_bio->bi_private = r1_bio;
1410 	mddev_trace_remap(mddev, read_bio, r1_bio->sector);
1411 	submit_bio_noacct(read_bio);
1412 	return;
1413 
1414 err_handle:
1415 	atomic_dec(&mirror->rdev->nr_pending);
1416 	bio->bi_status = errno_to_blk_status(error);
1417 	set_bit(R1BIO_Uptodate, &r1_bio->state);
1418 	raid_end_bio_io(r1_bio);
1419 }
1420 
wait_blocked_rdev(struct mddev * mddev,struct bio * bio)1421 static bool wait_blocked_rdev(struct mddev *mddev, struct bio *bio)
1422 {
1423 	struct r1conf *conf = mddev->private;
1424 	int disks = conf->raid_disks * 2;
1425 	int i;
1426 
1427 retry:
1428 	for (i = 0; i < disks; i++) {
1429 		struct md_rdev *rdev = conf->mirrors[i].rdev;
1430 
1431 		if (!rdev)
1432 			continue;
1433 
1434 		/* don't write here until the bad block is acknowledged */
1435 		if (test_bit(WriteErrorSeen, &rdev->flags) &&
1436 		    rdev_has_badblock(rdev, bio->bi_iter.bi_sector,
1437 				      bio_sectors(bio)) < 0)
1438 			set_bit(BlockedBadBlocks, &rdev->flags);
1439 
1440 		if (rdev_blocked(rdev)) {
1441 			if (bio->bi_opf & REQ_NOWAIT)
1442 				return false;
1443 
1444 			mddev_add_trace_msg(rdev->mddev, "raid1 wait rdev %d blocked",
1445 					    rdev->raid_disk);
1446 			atomic_inc(&rdev->nr_pending);
1447 			md_wait_for_blocked_rdev(rdev, rdev->mddev);
1448 			goto retry;
1449 		}
1450 	}
1451 
1452 	return true;
1453 }
1454 
raid1_write_request(struct mddev * mddev,struct bio * bio,int max_write_sectors)1455 static void raid1_write_request(struct mddev *mddev, struct bio *bio,
1456 				int max_write_sectors)
1457 {
1458 	struct r1conf *conf = mddev->private;
1459 	struct r1bio *r1_bio;
1460 	int i, disks, k, error;
1461 	unsigned long flags;
1462 	int first_clone;
1463 	int max_sectors;
1464 	bool write_behind = false;
1465 	bool is_discard = (bio_op(bio) == REQ_OP_DISCARD);
1466 
1467 	if (mddev_is_clustered(mddev) &&
1468 	     md_cluster_ops->area_resyncing(mddev, WRITE,
1469 		     bio->bi_iter.bi_sector, bio_end_sector(bio))) {
1470 
1471 		DEFINE_WAIT(w);
1472 		if (bio->bi_opf & REQ_NOWAIT) {
1473 			bio_wouldblock_error(bio);
1474 			return;
1475 		}
1476 		for (;;) {
1477 			prepare_to_wait(&conf->wait_barrier,
1478 					&w, TASK_IDLE);
1479 			if (!md_cluster_ops->area_resyncing(mddev, WRITE,
1480 							bio->bi_iter.bi_sector,
1481 							bio_end_sector(bio)))
1482 				break;
1483 			schedule();
1484 		}
1485 		finish_wait(&conf->wait_barrier, &w);
1486 	}
1487 
1488 	/*
1489 	 * Register the new request and wait if the reconstruction
1490 	 * thread has put up a bar for new requests.
1491 	 * Continue immediately if no resync is active currently.
1492 	 */
1493 	if (!wait_barrier(conf, bio->bi_iter.bi_sector,
1494 				bio->bi_opf & REQ_NOWAIT)) {
1495 		bio_wouldblock_error(bio);
1496 		return;
1497 	}
1498 
1499 	if (!wait_blocked_rdev(mddev, bio)) {
1500 		bio_wouldblock_error(bio);
1501 		return;
1502 	}
1503 
1504 	r1_bio = alloc_r1bio(mddev, bio);
1505 	r1_bio->sectors = max_write_sectors;
1506 
1507 	/* first select target devices under rcu_lock and
1508 	 * inc refcount on their rdev.  Record them by setting
1509 	 * bios[x] to bio
1510 	 * If there are known/acknowledged bad blocks on any device on
1511 	 * which we have seen a write error, we want to avoid writing those
1512 	 * blocks.
1513 	 * This potentially requires several writes to write around
1514 	 * the bad blocks.  Each set of writes gets it's own r1bio
1515 	 * with a set of bios attached.
1516 	 */
1517 
1518 	disks = conf->raid_disks * 2;
1519 	max_sectors = r1_bio->sectors;
1520 	for (i = 0;  i < disks; i++) {
1521 		struct md_rdev *rdev = conf->mirrors[i].rdev;
1522 
1523 		/*
1524 		 * The write-behind io is only attempted on drives marked as
1525 		 * write-mostly, which means we could allocate write behind
1526 		 * bio later.
1527 		 */
1528 		if (!is_discard && rdev && test_bit(WriteMostly, &rdev->flags))
1529 			write_behind = true;
1530 
1531 		r1_bio->bios[i] = NULL;
1532 		if (!rdev || test_bit(Faulty, &rdev->flags))
1533 			continue;
1534 
1535 		atomic_inc(&rdev->nr_pending);
1536 		if (test_bit(WriteErrorSeen, &rdev->flags)) {
1537 			sector_t first_bad;
1538 			sector_t bad_sectors;
1539 			int is_bad;
1540 
1541 			is_bad = is_badblock(rdev, r1_bio->sector, max_sectors,
1542 					     &first_bad, &bad_sectors);
1543 			if (is_bad && first_bad <= r1_bio->sector) {
1544 				/* Cannot write here at all */
1545 				bad_sectors -= (r1_bio->sector - first_bad);
1546 				if (bad_sectors < max_sectors)
1547 					/* mustn't write more than bad_sectors
1548 					 * to other devices yet
1549 					 */
1550 					max_sectors = bad_sectors;
1551 				rdev_dec_pending(rdev, mddev);
1552 				continue;
1553 			}
1554 			if (is_bad) {
1555 				int good_sectors;
1556 
1557 				/*
1558 				 * We cannot atomically write this, so just
1559 				 * error in that case. It could be possible to
1560 				 * atomically write other mirrors, but the
1561 				 * complexity of supporting that is not worth
1562 				 * the benefit.
1563 				 */
1564 				if (bio->bi_opf & REQ_ATOMIC) {
1565 					error = -EIO;
1566 					goto err_handle;
1567 				}
1568 
1569 				good_sectors = first_bad - r1_bio->sector;
1570 				if (good_sectors < max_sectors)
1571 					max_sectors = good_sectors;
1572 			}
1573 		}
1574 		r1_bio->bios[i] = bio;
1575 	}
1576 
1577 	/*
1578 	 * When using a bitmap, we may call alloc_behind_master_bio below.
1579 	 * alloc_behind_master_bio allocates a copy of the data payload a page
1580 	 * at a time and thus needs a new bio that can fit the whole payload
1581 	 * this bio in page sized chunks.
1582 	 */
1583 	if (write_behind && mddev->bitmap)
1584 		max_sectors = min_t(int, max_sectors,
1585 				    BIO_MAX_VECS * (PAGE_SIZE >> 9));
1586 	if (max_sectors < bio_sectors(bio)) {
1587 		struct bio *split = bio_split(bio, max_sectors,
1588 					      GFP_NOIO, &conf->bio_split);
1589 
1590 		if (IS_ERR(split)) {
1591 			error = PTR_ERR(split);
1592 			goto err_handle;
1593 		}
1594 		bio_chain(split, bio);
1595 		submit_bio_noacct(bio);
1596 		bio = split;
1597 		r1_bio->master_bio = bio;
1598 		r1_bio->sectors = max_sectors;
1599 	}
1600 
1601 	md_account_bio(mddev, &bio);
1602 	r1_bio->master_bio = bio;
1603 	atomic_set(&r1_bio->remaining, 1);
1604 	atomic_set(&r1_bio->behind_remaining, 0);
1605 
1606 	first_clone = 1;
1607 
1608 	for (i = 0; i < disks; i++) {
1609 		struct bio *mbio = NULL;
1610 		struct md_rdev *rdev = conf->mirrors[i].rdev;
1611 		if (!r1_bio->bios[i])
1612 			continue;
1613 
1614 		if (first_clone) {
1615 			unsigned long max_write_behind =
1616 				mddev->bitmap_info.max_write_behind;
1617 			struct md_bitmap_stats stats;
1618 			int err;
1619 
1620 			/* do behind I/O ?
1621 			 * Not if there are too many, or cannot
1622 			 * allocate memory, or a reader on WriteMostly
1623 			 * is waiting for behind writes to flush */
1624 			err = mddev->bitmap_ops->get_stats(mddev->bitmap, &stats);
1625 			if (!err && write_behind && !stats.behind_wait &&
1626 			    stats.behind_writes < max_write_behind)
1627 				alloc_behind_master_bio(r1_bio, bio);
1628 
1629 			if (test_bit(R1BIO_BehindIO, &r1_bio->state))
1630 				mddev->bitmap_ops->start_behind_write(mddev);
1631 			first_clone = 0;
1632 		}
1633 
1634 		if (r1_bio->behind_master_bio) {
1635 			mbio = bio_alloc_clone(rdev->bdev,
1636 					       r1_bio->behind_master_bio,
1637 					       GFP_NOIO, &mddev->bio_set);
1638 			if (test_bit(CollisionCheck, &rdev->flags))
1639 				wait_for_serialization(rdev, r1_bio);
1640 			if (test_bit(WriteMostly, &rdev->flags))
1641 				atomic_inc(&r1_bio->behind_remaining);
1642 		} else {
1643 			mbio = bio_alloc_clone(rdev->bdev, bio, GFP_NOIO,
1644 					       &mddev->bio_set);
1645 
1646 			if (mddev->serialize_policy)
1647 				wait_for_serialization(rdev, r1_bio);
1648 		}
1649 
1650 		r1_bio->bios[i] = mbio;
1651 
1652 		mbio->bi_iter.bi_sector	= (r1_bio->sector + rdev->data_offset);
1653 		mbio->bi_end_io	= raid1_end_write_request;
1654 		if (test_bit(FailFast, &rdev->flags) &&
1655 		    !test_bit(WriteMostly, &rdev->flags) &&
1656 		    conf->raid_disks - mddev->degraded > 1)
1657 			mbio->bi_opf |= MD_FAILFAST;
1658 		mbio->bi_private = r1_bio;
1659 
1660 		atomic_inc(&r1_bio->remaining);
1661 		mddev_trace_remap(mddev, mbio, r1_bio->sector);
1662 		/* flush_pending_writes() needs access to the rdev so...*/
1663 		mbio->bi_bdev = (void *)rdev;
1664 		if (!raid1_add_bio_to_plug(mddev, mbio, raid1_unplug, disks)) {
1665 			spin_lock_irqsave(&conf->device_lock, flags);
1666 			bio_list_add(&conf->pending_bio_list, mbio);
1667 			spin_unlock_irqrestore(&conf->device_lock, flags);
1668 			md_wakeup_thread(mddev->thread);
1669 		}
1670 	}
1671 
1672 	r1_bio_write_done(r1_bio);
1673 
1674 	/* In case raid1d snuck in to freeze_array */
1675 	wake_up_barrier(conf);
1676 	return;
1677 err_handle:
1678 	for (k = 0; k < i; k++) {
1679 		if (r1_bio->bios[k]) {
1680 			rdev_dec_pending(conf->mirrors[k].rdev, mddev);
1681 			r1_bio->bios[k] = NULL;
1682 		}
1683 	}
1684 
1685 	bio->bi_status = errno_to_blk_status(error);
1686 	set_bit(R1BIO_Uptodate, &r1_bio->state);
1687 	raid_end_bio_io(r1_bio);
1688 }
1689 
raid1_make_request(struct mddev * mddev,struct bio * bio)1690 static bool raid1_make_request(struct mddev *mddev, struct bio *bio)
1691 {
1692 	sector_t sectors;
1693 
1694 	if (unlikely(bio->bi_opf & REQ_PREFLUSH)
1695 	    && md_flush_request(mddev, bio))
1696 		return true;
1697 
1698 	/*
1699 	 * There is a limit to the maximum size, but
1700 	 * the read/write handler might find a lower limit
1701 	 * due to bad blocks.  To avoid multiple splits,
1702 	 * we pass the maximum number of sectors down
1703 	 * and let the lower level perform the split.
1704 	 */
1705 	sectors = align_to_barrier_unit_end(
1706 		bio->bi_iter.bi_sector, bio_sectors(bio));
1707 
1708 	if (bio_data_dir(bio) == READ)
1709 		raid1_read_request(mddev, bio, sectors, NULL);
1710 	else {
1711 		md_write_start(mddev,bio);
1712 		raid1_write_request(mddev, bio, sectors);
1713 	}
1714 	return true;
1715 }
1716 
raid1_status(struct seq_file * seq,struct mddev * mddev)1717 static void raid1_status(struct seq_file *seq, struct mddev *mddev)
1718 {
1719 	struct r1conf *conf = mddev->private;
1720 	int i;
1721 
1722 	lockdep_assert_held(&mddev->lock);
1723 
1724 	seq_printf(seq, " [%d/%d] [", conf->raid_disks,
1725 		   conf->raid_disks - mddev->degraded);
1726 	for (i = 0; i < conf->raid_disks; i++) {
1727 		struct md_rdev *rdev = READ_ONCE(conf->mirrors[i].rdev);
1728 
1729 		seq_printf(seq, "%s",
1730 			   rdev && test_bit(In_sync, &rdev->flags) ? "U" : "_");
1731 	}
1732 	seq_printf(seq, "]");
1733 }
1734 
1735 /**
1736  * raid1_error() - RAID1 error handler.
1737  * @mddev: affected md device.
1738  * @rdev: member device to fail.
1739  *
1740  * The routine acknowledges &rdev failure and determines new @mddev state.
1741  * If it failed, then:
1742  *	- &MD_BROKEN flag is set in &mddev->flags.
1743  *	- recovery is disabled.
1744  * Otherwise, it must be degraded:
1745  *	- recovery is interrupted.
1746  *	- &mddev->degraded is bumped.
1747  *
1748  * @rdev is marked as &Faulty excluding case when array is failed and
1749  * &mddev->fail_last_dev is off.
1750  */
raid1_error(struct mddev * mddev,struct md_rdev * rdev)1751 static void raid1_error(struct mddev *mddev, struct md_rdev *rdev)
1752 {
1753 	struct r1conf *conf = mddev->private;
1754 	unsigned long flags;
1755 
1756 	spin_lock_irqsave(&conf->device_lock, flags);
1757 
1758 	if (test_bit(In_sync, &rdev->flags) &&
1759 	    (conf->raid_disks - mddev->degraded) == 1) {
1760 		set_bit(MD_BROKEN, &mddev->flags);
1761 
1762 		if (!mddev->fail_last_dev) {
1763 			conf->recovery_disabled = mddev->recovery_disabled;
1764 			spin_unlock_irqrestore(&conf->device_lock, flags);
1765 			return;
1766 		}
1767 	}
1768 	set_bit(Blocked, &rdev->flags);
1769 	if (test_and_clear_bit(In_sync, &rdev->flags))
1770 		mddev->degraded++;
1771 	set_bit(Faulty, &rdev->flags);
1772 	spin_unlock_irqrestore(&conf->device_lock, flags);
1773 	/*
1774 	 * if recovery is running, make sure it aborts.
1775 	 */
1776 	set_bit(MD_RECOVERY_INTR, &mddev->recovery);
1777 	set_mask_bits(&mddev->sb_flags, 0,
1778 		      BIT(MD_SB_CHANGE_DEVS) | BIT(MD_SB_CHANGE_PENDING));
1779 	pr_crit("md/raid1:%s: Disk failure on %pg, disabling device.\n"
1780 		"md/raid1:%s: Operation continuing on %d devices.\n",
1781 		mdname(mddev), rdev->bdev,
1782 		mdname(mddev), conf->raid_disks - mddev->degraded);
1783 }
1784 
print_conf(struct r1conf * conf)1785 static void print_conf(struct r1conf *conf)
1786 {
1787 	int i;
1788 
1789 	pr_debug("RAID1 conf printout:\n");
1790 	if (!conf) {
1791 		pr_debug("(!conf)\n");
1792 		return;
1793 	}
1794 	pr_debug(" --- wd:%d rd:%d\n", conf->raid_disks - conf->mddev->degraded,
1795 		 conf->raid_disks);
1796 
1797 	lockdep_assert_held(&conf->mddev->reconfig_mutex);
1798 	for (i = 0; i < conf->raid_disks; i++) {
1799 		struct md_rdev *rdev = conf->mirrors[i].rdev;
1800 		if (rdev)
1801 			pr_debug(" disk %d, wo:%d, o:%d, dev:%pg\n",
1802 				 i, !test_bit(In_sync, &rdev->flags),
1803 				 !test_bit(Faulty, &rdev->flags),
1804 				 rdev->bdev);
1805 	}
1806 }
1807 
close_sync(struct r1conf * conf)1808 static void close_sync(struct r1conf *conf)
1809 {
1810 	int idx;
1811 
1812 	for (idx = 0; idx < BARRIER_BUCKETS_NR; idx++) {
1813 		_wait_barrier(conf, idx, false);
1814 		_allow_barrier(conf, idx);
1815 	}
1816 
1817 	mempool_exit(&conf->r1buf_pool);
1818 }
1819 
raid1_spare_active(struct mddev * mddev)1820 static int raid1_spare_active(struct mddev *mddev)
1821 {
1822 	int i;
1823 	struct r1conf *conf = mddev->private;
1824 	int count = 0;
1825 	unsigned long flags;
1826 
1827 	/*
1828 	 * Find all failed disks within the RAID1 configuration
1829 	 * and mark them readable.
1830 	 * Called under mddev lock, so rcu protection not needed.
1831 	 * device_lock used to avoid races with raid1_end_read_request
1832 	 * which expects 'In_sync' flags and ->degraded to be consistent.
1833 	 */
1834 	spin_lock_irqsave(&conf->device_lock, flags);
1835 	for (i = 0; i < conf->raid_disks; i++) {
1836 		struct md_rdev *rdev = conf->mirrors[i].rdev;
1837 		struct md_rdev *repl = conf->mirrors[conf->raid_disks + i].rdev;
1838 		if (repl
1839 		    && !test_bit(Candidate, &repl->flags)
1840 		    && repl->recovery_offset == MaxSector
1841 		    && !test_bit(Faulty, &repl->flags)
1842 		    && !test_and_set_bit(In_sync, &repl->flags)) {
1843 			/* replacement has just become active */
1844 			if (!rdev ||
1845 			    !test_and_clear_bit(In_sync, &rdev->flags))
1846 				count++;
1847 			if (rdev) {
1848 				/* Replaced device not technically
1849 				 * faulty, but we need to be sure
1850 				 * it gets removed and never re-added
1851 				 */
1852 				set_bit(Faulty, &rdev->flags);
1853 				sysfs_notify_dirent_safe(
1854 					rdev->sysfs_state);
1855 			}
1856 		}
1857 		if (rdev
1858 		    && rdev->recovery_offset == MaxSector
1859 		    && !test_bit(Faulty, &rdev->flags)
1860 		    && !test_and_set_bit(In_sync, &rdev->flags)) {
1861 			count++;
1862 			sysfs_notify_dirent_safe(rdev->sysfs_state);
1863 		}
1864 	}
1865 	mddev->degraded -= count;
1866 	spin_unlock_irqrestore(&conf->device_lock, flags);
1867 
1868 	print_conf(conf);
1869 	return count;
1870 }
1871 
raid1_add_conf(struct r1conf * conf,struct md_rdev * rdev,int disk,bool replacement)1872 static bool raid1_add_conf(struct r1conf *conf, struct md_rdev *rdev, int disk,
1873 			   bool replacement)
1874 {
1875 	struct raid1_info *info = conf->mirrors + disk;
1876 
1877 	if (replacement)
1878 		info += conf->raid_disks;
1879 
1880 	if (info->rdev)
1881 		return false;
1882 
1883 	if (bdev_nonrot(rdev->bdev)) {
1884 		set_bit(Nonrot, &rdev->flags);
1885 		WRITE_ONCE(conf->nonrot_disks, conf->nonrot_disks + 1);
1886 	}
1887 
1888 	rdev->raid_disk = disk;
1889 	info->head_position = 0;
1890 	info->seq_start = MaxSector;
1891 	WRITE_ONCE(info->rdev, rdev);
1892 
1893 	return true;
1894 }
1895 
raid1_remove_conf(struct r1conf * conf,int disk)1896 static bool raid1_remove_conf(struct r1conf *conf, int disk)
1897 {
1898 	struct raid1_info *info = conf->mirrors + disk;
1899 	struct md_rdev *rdev = info->rdev;
1900 
1901 	if (!rdev || test_bit(In_sync, &rdev->flags) ||
1902 	    atomic_read(&rdev->nr_pending))
1903 		return false;
1904 
1905 	/* Only remove non-faulty devices if recovery is not possible. */
1906 	if (!test_bit(Faulty, &rdev->flags) &&
1907 	    rdev->mddev->recovery_disabled != conf->recovery_disabled &&
1908 	    rdev->mddev->degraded < conf->raid_disks)
1909 		return false;
1910 
1911 	if (test_and_clear_bit(Nonrot, &rdev->flags))
1912 		WRITE_ONCE(conf->nonrot_disks, conf->nonrot_disks - 1);
1913 
1914 	WRITE_ONCE(info->rdev, NULL);
1915 	return true;
1916 }
1917 
raid1_add_disk(struct mddev * mddev,struct md_rdev * rdev)1918 static int raid1_add_disk(struct mddev *mddev, struct md_rdev *rdev)
1919 {
1920 	struct r1conf *conf = mddev->private;
1921 	int err = -EEXIST;
1922 	int mirror = 0, repl_slot = -1;
1923 	struct raid1_info *p;
1924 	int first = 0;
1925 	int last = conf->raid_disks - 1;
1926 
1927 	if (mddev->recovery_disabled == conf->recovery_disabled)
1928 		return -EBUSY;
1929 
1930 	if (rdev->raid_disk >= 0)
1931 		first = last = rdev->raid_disk;
1932 
1933 	/*
1934 	 * find the disk ... but prefer rdev->saved_raid_disk
1935 	 * if possible.
1936 	 */
1937 	if (rdev->saved_raid_disk >= 0 &&
1938 	    rdev->saved_raid_disk >= first &&
1939 	    rdev->saved_raid_disk < conf->raid_disks &&
1940 	    conf->mirrors[rdev->saved_raid_disk].rdev == NULL)
1941 		first = last = rdev->saved_raid_disk;
1942 
1943 	for (mirror = first; mirror <= last; mirror++) {
1944 		p = conf->mirrors + mirror;
1945 		if (!p->rdev) {
1946 			err = mddev_stack_new_rdev(mddev, rdev);
1947 			if (err)
1948 				return err;
1949 
1950 			raid1_add_conf(conf, rdev, mirror, false);
1951 			/* As all devices are equivalent, we don't need a full recovery
1952 			 * if this was recently any drive of the array
1953 			 */
1954 			if (rdev->saved_raid_disk < 0)
1955 				conf->fullsync = 1;
1956 			break;
1957 		}
1958 		if (test_bit(WantReplacement, &p->rdev->flags) &&
1959 		    p[conf->raid_disks].rdev == NULL && repl_slot < 0)
1960 			repl_slot = mirror;
1961 	}
1962 
1963 	if (err && repl_slot >= 0) {
1964 		/* Add this device as a replacement */
1965 		clear_bit(In_sync, &rdev->flags);
1966 		set_bit(Replacement, &rdev->flags);
1967 		raid1_add_conf(conf, rdev, repl_slot, true);
1968 		err = 0;
1969 		conf->fullsync = 1;
1970 	}
1971 
1972 	print_conf(conf);
1973 	return err;
1974 }
1975 
raid1_remove_disk(struct mddev * mddev,struct md_rdev * rdev)1976 static int raid1_remove_disk(struct mddev *mddev, struct md_rdev *rdev)
1977 {
1978 	struct r1conf *conf = mddev->private;
1979 	int err = 0;
1980 	int number = rdev->raid_disk;
1981 	struct raid1_info *p = conf->mirrors + number;
1982 
1983 	if (unlikely(number >= conf->raid_disks))
1984 		goto abort;
1985 
1986 	if (rdev != p->rdev) {
1987 		number += conf->raid_disks;
1988 		p = conf->mirrors + number;
1989 	}
1990 
1991 	print_conf(conf);
1992 	if (rdev == p->rdev) {
1993 		if (!raid1_remove_conf(conf, number)) {
1994 			err = -EBUSY;
1995 			goto abort;
1996 		}
1997 
1998 		if (number < conf->raid_disks &&
1999 		    conf->mirrors[conf->raid_disks + number].rdev) {
2000 			/* We just removed a device that is being replaced.
2001 			 * Move down the replacement.  We drain all IO before
2002 			 * doing this to avoid confusion.
2003 			 */
2004 			struct md_rdev *repl =
2005 				conf->mirrors[conf->raid_disks + number].rdev;
2006 			freeze_array(conf, 0);
2007 			if (atomic_read(&repl->nr_pending)) {
2008 				/* It means that some queued IO of retry_list
2009 				 * hold repl. Thus, we cannot set replacement
2010 				 * as NULL, avoiding rdev NULL pointer
2011 				 * dereference in sync_request_write and
2012 				 * handle_write_finished.
2013 				 */
2014 				err = -EBUSY;
2015 				unfreeze_array(conf);
2016 				goto abort;
2017 			}
2018 			clear_bit(Replacement, &repl->flags);
2019 			WRITE_ONCE(p->rdev, repl);
2020 			conf->mirrors[conf->raid_disks + number].rdev = NULL;
2021 			unfreeze_array(conf);
2022 		}
2023 
2024 		clear_bit(WantReplacement, &rdev->flags);
2025 		err = md_integrity_register(mddev);
2026 	}
2027 abort:
2028 
2029 	print_conf(conf);
2030 	return err;
2031 }
2032 
end_sync_read(struct bio * bio)2033 static void end_sync_read(struct bio *bio)
2034 {
2035 	struct r1bio *r1_bio = get_resync_r1bio(bio);
2036 
2037 	update_head_pos(r1_bio->read_disk, r1_bio);
2038 
2039 	/*
2040 	 * we have read a block, now it needs to be re-written,
2041 	 * or re-read if the read failed.
2042 	 * We don't do much here, just schedule handling by raid1d
2043 	 */
2044 	if (!bio->bi_status)
2045 		set_bit(R1BIO_Uptodate, &r1_bio->state);
2046 
2047 	if (atomic_dec_and_test(&r1_bio->remaining))
2048 		reschedule_retry(r1_bio);
2049 }
2050 
abort_sync_write(struct mddev * mddev,struct r1bio * r1_bio)2051 static void abort_sync_write(struct mddev *mddev, struct r1bio *r1_bio)
2052 {
2053 	sector_t sync_blocks = 0;
2054 	sector_t s = r1_bio->sector;
2055 	long sectors_to_go = r1_bio->sectors;
2056 
2057 	/* make sure these bits don't get cleared. */
2058 	do {
2059 		mddev->bitmap_ops->end_sync(mddev, s, &sync_blocks);
2060 		s += sync_blocks;
2061 		sectors_to_go -= sync_blocks;
2062 	} while (sectors_to_go > 0);
2063 }
2064 
put_sync_write_buf(struct r1bio * r1_bio,int uptodate)2065 static void put_sync_write_buf(struct r1bio *r1_bio, int uptodate)
2066 {
2067 	if (atomic_dec_and_test(&r1_bio->remaining)) {
2068 		struct mddev *mddev = r1_bio->mddev;
2069 		int s = r1_bio->sectors;
2070 
2071 		if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
2072 		    test_bit(R1BIO_WriteError, &r1_bio->state))
2073 			reschedule_retry(r1_bio);
2074 		else {
2075 			put_buf(r1_bio);
2076 			md_done_sync(mddev, s, uptodate);
2077 		}
2078 	}
2079 }
2080 
end_sync_write(struct bio * bio)2081 static void end_sync_write(struct bio *bio)
2082 {
2083 	int uptodate = !bio->bi_status;
2084 	struct r1bio *r1_bio = get_resync_r1bio(bio);
2085 	struct mddev *mddev = r1_bio->mddev;
2086 	struct r1conf *conf = mddev->private;
2087 	struct md_rdev *rdev = conf->mirrors[find_bio_disk(r1_bio, bio)].rdev;
2088 
2089 	if (!uptodate) {
2090 		abort_sync_write(mddev, r1_bio);
2091 		set_bit(WriteErrorSeen, &rdev->flags);
2092 		if (!test_and_set_bit(WantReplacement, &rdev->flags))
2093 			set_bit(MD_RECOVERY_NEEDED, &
2094 				mddev->recovery);
2095 		set_bit(R1BIO_WriteError, &r1_bio->state);
2096 	} else if (rdev_has_badblock(rdev, r1_bio->sector, r1_bio->sectors) &&
2097 		   !rdev_has_badblock(conf->mirrors[r1_bio->read_disk].rdev,
2098 				      r1_bio->sector, r1_bio->sectors)) {
2099 		set_bit(R1BIO_MadeGood, &r1_bio->state);
2100 	}
2101 
2102 	put_sync_write_buf(r1_bio, uptodate);
2103 }
2104 
r1_sync_page_io(struct md_rdev * rdev,sector_t sector,int sectors,struct page * page,blk_opf_t rw)2105 static int r1_sync_page_io(struct md_rdev *rdev, sector_t sector,
2106 			   int sectors, struct page *page, blk_opf_t rw)
2107 {
2108 	if (sync_page_io(rdev, sector, sectors << 9, page, rw, false))
2109 		/* success */
2110 		return 1;
2111 	if (rw == REQ_OP_WRITE) {
2112 		set_bit(WriteErrorSeen, &rdev->flags);
2113 		if (!test_and_set_bit(WantReplacement,
2114 				      &rdev->flags))
2115 			set_bit(MD_RECOVERY_NEEDED, &
2116 				rdev->mddev->recovery);
2117 	}
2118 	/* need to record an error - either for the block or the device */
2119 	if (!rdev_set_badblocks(rdev, sector, sectors, 0))
2120 		md_error(rdev->mddev, rdev);
2121 	return 0;
2122 }
2123 
fix_sync_read_error(struct r1bio * r1_bio)2124 static int fix_sync_read_error(struct r1bio *r1_bio)
2125 {
2126 	/* Try some synchronous reads of other devices to get
2127 	 * good data, much like with normal read errors.  Only
2128 	 * read into the pages we already have so we don't
2129 	 * need to re-issue the read request.
2130 	 * We don't need to freeze the array, because being in an
2131 	 * active sync request, there is no normal IO, and
2132 	 * no overlapping syncs.
2133 	 * We don't need to check is_badblock() again as we
2134 	 * made sure that anything with a bad block in range
2135 	 * will have bi_end_io clear.
2136 	 */
2137 	struct mddev *mddev = r1_bio->mddev;
2138 	struct r1conf *conf = mddev->private;
2139 	struct bio *bio = r1_bio->bios[r1_bio->read_disk];
2140 	struct page **pages = get_resync_pages(bio)->pages;
2141 	sector_t sect = r1_bio->sector;
2142 	int sectors = r1_bio->sectors;
2143 	int idx = 0;
2144 	struct md_rdev *rdev;
2145 
2146 	rdev = conf->mirrors[r1_bio->read_disk].rdev;
2147 	if (test_bit(FailFast, &rdev->flags)) {
2148 		/* Don't try recovering from here - just fail it
2149 		 * ... unless it is the last working device of course */
2150 		md_error(mddev, rdev);
2151 		if (test_bit(Faulty, &rdev->flags))
2152 			/* Don't try to read from here, but make sure
2153 			 * put_buf does it's thing
2154 			 */
2155 			bio->bi_end_io = end_sync_write;
2156 	}
2157 
2158 	while(sectors) {
2159 		int s = sectors;
2160 		int d = r1_bio->read_disk;
2161 		int success = 0;
2162 		int start;
2163 
2164 		if (s > (PAGE_SIZE>>9))
2165 			s = PAGE_SIZE >> 9;
2166 		do {
2167 			if (r1_bio->bios[d]->bi_end_io == end_sync_read) {
2168 				/* No rcu protection needed here devices
2169 				 * can only be removed when no resync is
2170 				 * active, and resync is currently active
2171 				 */
2172 				rdev = conf->mirrors[d].rdev;
2173 				if (sync_page_io(rdev, sect, s<<9,
2174 						 pages[idx],
2175 						 REQ_OP_READ, false)) {
2176 					success = 1;
2177 					break;
2178 				}
2179 			}
2180 			d++;
2181 			if (d == conf->raid_disks * 2)
2182 				d = 0;
2183 		} while (!success && d != r1_bio->read_disk);
2184 
2185 		if (!success) {
2186 			int abort = 0;
2187 			/* Cannot read from anywhere, this block is lost.
2188 			 * Record a bad block on each device.  If that doesn't
2189 			 * work just disable and interrupt the recovery.
2190 			 * Don't fail devices as that won't really help.
2191 			 */
2192 			pr_crit_ratelimited("md/raid1:%s: %pg: unrecoverable I/O read error for block %llu\n",
2193 					    mdname(mddev), bio->bi_bdev,
2194 					    (unsigned long long)r1_bio->sector);
2195 			for (d = 0; d < conf->raid_disks * 2; d++) {
2196 				rdev = conf->mirrors[d].rdev;
2197 				if (!rdev || test_bit(Faulty, &rdev->flags))
2198 					continue;
2199 				if (!rdev_set_badblocks(rdev, sect, s, 0))
2200 					abort = 1;
2201 			}
2202 			if (abort) {
2203 				conf->recovery_disabled =
2204 					mddev->recovery_disabled;
2205 				set_bit(MD_RECOVERY_INTR, &mddev->recovery);
2206 				md_done_sync(mddev, r1_bio->sectors, 0);
2207 				put_buf(r1_bio);
2208 				return 0;
2209 			}
2210 			/* Try next page */
2211 			sectors -= s;
2212 			sect += s;
2213 			idx++;
2214 			continue;
2215 		}
2216 
2217 		start = d;
2218 		/* write it back and re-read */
2219 		while (d != r1_bio->read_disk) {
2220 			if (d == 0)
2221 				d = conf->raid_disks * 2;
2222 			d--;
2223 			if (r1_bio->bios[d]->bi_end_io != end_sync_read)
2224 				continue;
2225 			rdev = conf->mirrors[d].rdev;
2226 			if (r1_sync_page_io(rdev, sect, s,
2227 					    pages[idx],
2228 					    REQ_OP_WRITE) == 0) {
2229 				r1_bio->bios[d]->bi_end_io = NULL;
2230 				rdev_dec_pending(rdev, mddev);
2231 			}
2232 		}
2233 		d = start;
2234 		while (d != r1_bio->read_disk) {
2235 			if (d == 0)
2236 				d = conf->raid_disks * 2;
2237 			d--;
2238 			if (r1_bio->bios[d]->bi_end_io != end_sync_read)
2239 				continue;
2240 			rdev = conf->mirrors[d].rdev;
2241 			if (r1_sync_page_io(rdev, sect, s,
2242 					    pages[idx],
2243 					    REQ_OP_READ) != 0)
2244 				atomic_add(s, &rdev->corrected_errors);
2245 		}
2246 		sectors -= s;
2247 		sect += s;
2248 		idx ++;
2249 	}
2250 	set_bit(R1BIO_Uptodate, &r1_bio->state);
2251 	bio->bi_status = 0;
2252 	return 1;
2253 }
2254 
process_checks(struct r1bio * r1_bio)2255 static void process_checks(struct r1bio *r1_bio)
2256 {
2257 	/* We have read all readable devices.  If we haven't
2258 	 * got the block, then there is no hope left.
2259 	 * If we have, then we want to do a comparison
2260 	 * and skip the write if everything is the same.
2261 	 * If any blocks failed to read, then we need to
2262 	 * attempt an over-write
2263 	 */
2264 	struct mddev *mddev = r1_bio->mddev;
2265 	struct r1conf *conf = mddev->private;
2266 	int primary;
2267 	int i;
2268 	int vcnt;
2269 
2270 	/* Fix variable parts of all bios */
2271 	vcnt = (r1_bio->sectors + PAGE_SIZE / 512 - 1) >> (PAGE_SHIFT - 9);
2272 	for (i = 0; i < conf->raid_disks * 2; i++) {
2273 		blk_status_t status;
2274 		struct bio *b = r1_bio->bios[i];
2275 		struct resync_pages *rp = get_resync_pages(b);
2276 		if (b->bi_end_io != end_sync_read)
2277 			continue;
2278 		/* fixup the bio for reuse, but preserve errno */
2279 		status = b->bi_status;
2280 		bio_reset(b, conf->mirrors[i].rdev->bdev, REQ_OP_READ);
2281 		b->bi_status = status;
2282 		b->bi_iter.bi_sector = r1_bio->sector +
2283 			conf->mirrors[i].rdev->data_offset;
2284 		b->bi_end_io = end_sync_read;
2285 		rp->raid_bio = r1_bio;
2286 		b->bi_private = rp;
2287 
2288 		/* initialize bvec table again */
2289 		md_bio_reset_resync_pages(b, rp, r1_bio->sectors << 9);
2290 	}
2291 	for (primary = 0; primary < conf->raid_disks * 2; primary++)
2292 		if (r1_bio->bios[primary]->bi_end_io == end_sync_read &&
2293 		    !r1_bio->bios[primary]->bi_status) {
2294 			r1_bio->bios[primary]->bi_end_io = NULL;
2295 			rdev_dec_pending(conf->mirrors[primary].rdev, mddev);
2296 			break;
2297 		}
2298 	r1_bio->read_disk = primary;
2299 	for (i = 0; i < conf->raid_disks * 2; i++) {
2300 		int j = 0;
2301 		struct bio *pbio = r1_bio->bios[primary];
2302 		struct bio *sbio = r1_bio->bios[i];
2303 		blk_status_t status = sbio->bi_status;
2304 		struct page **ppages = get_resync_pages(pbio)->pages;
2305 		struct page **spages = get_resync_pages(sbio)->pages;
2306 		struct bio_vec *bi;
2307 		int page_len[RESYNC_PAGES] = { 0 };
2308 		struct bvec_iter_all iter_all;
2309 
2310 		if (sbio->bi_end_io != end_sync_read)
2311 			continue;
2312 		/* Now we can 'fixup' the error value */
2313 		sbio->bi_status = 0;
2314 
2315 		bio_for_each_segment_all(bi, sbio, iter_all)
2316 			page_len[j++] = bi->bv_len;
2317 
2318 		if (!status) {
2319 			for (j = vcnt; j-- ; ) {
2320 				if (memcmp(page_address(ppages[j]),
2321 					   page_address(spages[j]),
2322 					   page_len[j]))
2323 					break;
2324 			}
2325 		} else
2326 			j = 0;
2327 		if (j >= 0)
2328 			atomic64_add(r1_bio->sectors, &mddev->resync_mismatches);
2329 		if (j < 0 || (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)
2330 			      && !status)) {
2331 			/* No need to write to this device. */
2332 			sbio->bi_end_io = NULL;
2333 			rdev_dec_pending(conf->mirrors[i].rdev, mddev);
2334 			continue;
2335 		}
2336 
2337 		bio_copy_data(sbio, pbio);
2338 	}
2339 }
2340 
sync_request_write(struct mddev * mddev,struct r1bio * r1_bio)2341 static void sync_request_write(struct mddev *mddev, struct r1bio *r1_bio)
2342 {
2343 	struct r1conf *conf = mddev->private;
2344 	int i;
2345 	int disks = conf->raid_disks * 2;
2346 	struct bio *wbio;
2347 
2348 	if (!test_bit(R1BIO_Uptodate, &r1_bio->state))
2349 		/* ouch - failed to read all of that. */
2350 		if (!fix_sync_read_error(r1_bio))
2351 			return;
2352 
2353 	if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
2354 		process_checks(r1_bio);
2355 
2356 	/*
2357 	 * schedule writes
2358 	 */
2359 	atomic_set(&r1_bio->remaining, 1);
2360 	for (i = 0; i < disks ; i++) {
2361 		wbio = r1_bio->bios[i];
2362 		if (wbio->bi_end_io == NULL ||
2363 		    (wbio->bi_end_io == end_sync_read &&
2364 		     (i == r1_bio->read_disk ||
2365 		      !test_bit(MD_RECOVERY_SYNC, &mddev->recovery))))
2366 			continue;
2367 		if (test_bit(Faulty, &conf->mirrors[i].rdev->flags)) {
2368 			abort_sync_write(mddev, r1_bio);
2369 			continue;
2370 		}
2371 
2372 		wbio->bi_opf = REQ_OP_WRITE;
2373 		if (test_bit(FailFast, &conf->mirrors[i].rdev->flags))
2374 			wbio->bi_opf |= MD_FAILFAST;
2375 
2376 		wbio->bi_end_io = end_sync_write;
2377 		atomic_inc(&r1_bio->remaining);
2378 		md_sync_acct(conf->mirrors[i].rdev->bdev, bio_sectors(wbio));
2379 
2380 		submit_bio_noacct(wbio);
2381 	}
2382 
2383 	put_sync_write_buf(r1_bio, 1);
2384 }
2385 
2386 /*
2387  * This is a kernel thread which:
2388  *
2389  *	1.	Retries failed read operations on working mirrors.
2390  *	2.	Updates the raid superblock when problems encounter.
2391  *	3.	Performs writes following reads for array synchronising.
2392  */
2393 
fix_read_error(struct r1conf * conf,struct r1bio * r1_bio)2394 static void fix_read_error(struct r1conf *conf, struct r1bio *r1_bio)
2395 {
2396 	sector_t sect = r1_bio->sector;
2397 	int sectors = r1_bio->sectors;
2398 	int read_disk = r1_bio->read_disk;
2399 	struct mddev *mddev = conf->mddev;
2400 	struct md_rdev *rdev = conf->mirrors[read_disk].rdev;
2401 
2402 	if (exceed_read_errors(mddev, rdev)) {
2403 		r1_bio->bios[r1_bio->read_disk] = IO_BLOCKED;
2404 		return;
2405 	}
2406 
2407 	while(sectors) {
2408 		int s = sectors;
2409 		int d = read_disk;
2410 		int success = 0;
2411 		int start;
2412 
2413 		if (s > (PAGE_SIZE>>9))
2414 			s = PAGE_SIZE >> 9;
2415 
2416 		do {
2417 			rdev = conf->mirrors[d].rdev;
2418 			if (rdev &&
2419 			    (test_bit(In_sync, &rdev->flags) ||
2420 			     (!test_bit(Faulty, &rdev->flags) &&
2421 			      rdev->recovery_offset >= sect + s)) &&
2422 			    rdev_has_badblock(rdev, sect, s) == 0) {
2423 				atomic_inc(&rdev->nr_pending);
2424 				if (sync_page_io(rdev, sect, s<<9,
2425 					 conf->tmppage, REQ_OP_READ, false))
2426 					success = 1;
2427 				rdev_dec_pending(rdev, mddev);
2428 				if (success)
2429 					break;
2430 			}
2431 
2432 			d++;
2433 			if (d == conf->raid_disks * 2)
2434 				d = 0;
2435 		} while (d != read_disk);
2436 
2437 		if (!success) {
2438 			/* Cannot read from anywhere - mark it bad */
2439 			struct md_rdev *rdev = conf->mirrors[read_disk].rdev;
2440 			if (!rdev_set_badblocks(rdev, sect, s, 0))
2441 				md_error(mddev, rdev);
2442 			break;
2443 		}
2444 		/* write it back and re-read */
2445 		start = d;
2446 		while (d != read_disk) {
2447 			if (d==0)
2448 				d = conf->raid_disks * 2;
2449 			d--;
2450 			rdev = conf->mirrors[d].rdev;
2451 			if (rdev &&
2452 			    !test_bit(Faulty, &rdev->flags)) {
2453 				atomic_inc(&rdev->nr_pending);
2454 				r1_sync_page_io(rdev, sect, s,
2455 						conf->tmppage, REQ_OP_WRITE);
2456 				rdev_dec_pending(rdev, mddev);
2457 			}
2458 		}
2459 		d = start;
2460 		while (d != read_disk) {
2461 			if (d==0)
2462 				d = conf->raid_disks * 2;
2463 			d--;
2464 			rdev = conf->mirrors[d].rdev;
2465 			if (rdev &&
2466 			    !test_bit(Faulty, &rdev->flags)) {
2467 				atomic_inc(&rdev->nr_pending);
2468 				if (r1_sync_page_io(rdev, sect, s,
2469 						conf->tmppage, REQ_OP_READ)) {
2470 					atomic_add(s, &rdev->corrected_errors);
2471 					pr_info("md/raid1:%s: read error corrected (%d sectors at %llu on %pg)\n",
2472 						mdname(mddev), s,
2473 						(unsigned long long)(sect +
2474 								     rdev->data_offset),
2475 						rdev->bdev);
2476 				}
2477 				rdev_dec_pending(rdev, mddev);
2478 			}
2479 		}
2480 		sectors -= s;
2481 		sect += s;
2482 	}
2483 }
2484 
narrow_write_error(struct r1bio * r1_bio,int i)2485 static int narrow_write_error(struct r1bio *r1_bio, int i)
2486 {
2487 	struct mddev *mddev = r1_bio->mddev;
2488 	struct r1conf *conf = mddev->private;
2489 	struct md_rdev *rdev = conf->mirrors[i].rdev;
2490 
2491 	/* bio has the data to be written to device 'i' where
2492 	 * we just recently had a write error.
2493 	 * We repeatedly clone the bio and trim down to one block,
2494 	 * then try the write.  Where the write fails we record
2495 	 * a bad block.
2496 	 * It is conceivable that the bio doesn't exactly align with
2497 	 * blocks.  We must handle this somehow.
2498 	 *
2499 	 * We currently own a reference on the rdev.
2500 	 */
2501 
2502 	int block_sectors;
2503 	sector_t sector;
2504 	int sectors;
2505 	int sect_to_write = r1_bio->sectors;
2506 	int ok = 1;
2507 
2508 	if (rdev->badblocks.shift < 0)
2509 		return 0;
2510 
2511 	block_sectors = roundup(1 << rdev->badblocks.shift,
2512 				bdev_logical_block_size(rdev->bdev) >> 9);
2513 	sector = r1_bio->sector;
2514 	sectors = ((sector + block_sectors)
2515 		   & ~(sector_t)(block_sectors - 1))
2516 		- sector;
2517 
2518 	while (sect_to_write) {
2519 		struct bio *wbio;
2520 		if (sectors > sect_to_write)
2521 			sectors = sect_to_write;
2522 		/* Write at 'sector' for 'sectors'*/
2523 
2524 		if (test_bit(R1BIO_BehindIO, &r1_bio->state)) {
2525 			wbio = bio_alloc_clone(rdev->bdev,
2526 					       r1_bio->behind_master_bio,
2527 					       GFP_NOIO, &mddev->bio_set);
2528 		} else {
2529 			wbio = bio_alloc_clone(rdev->bdev, r1_bio->master_bio,
2530 					       GFP_NOIO, &mddev->bio_set);
2531 		}
2532 
2533 		wbio->bi_opf = REQ_OP_WRITE;
2534 		wbio->bi_iter.bi_sector = r1_bio->sector;
2535 		wbio->bi_iter.bi_size = r1_bio->sectors << 9;
2536 
2537 		bio_trim(wbio, sector - r1_bio->sector, sectors);
2538 		wbio->bi_iter.bi_sector += rdev->data_offset;
2539 
2540 		if (submit_bio_wait(wbio) < 0)
2541 			/* failure! */
2542 			ok = rdev_set_badblocks(rdev, sector,
2543 						sectors, 0)
2544 				&& ok;
2545 
2546 		bio_put(wbio);
2547 		sect_to_write -= sectors;
2548 		sector += sectors;
2549 		sectors = block_sectors;
2550 	}
2551 	return ok;
2552 }
2553 
handle_sync_write_finished(struct r1conf * conf,struct r1bio * r1_bio)2554 static void handle_sync_write_finished(struct r1conf *conf, struct r1bio *r1_bio)
2555 {
2556 	int m;
2557 	int s = r1_bio->sectors;
2558 	for (m = 0; m < conf->raid_disks * 2 ; m++) {
2559 		struct md_rdev *rdev = conf->mirrors[m].rdev;
2560 		struct bio *bio = r1_bio->bios[m];
2561 		if (bio->bi_end_io == NULL)
2562 			continue;
2563 		if (!bio->bi_status &&
2564 		    test_bit(R1BIO_MadeGood, &r1_bio->state)) {
2565 			rdev_clear_badblocks(rdev, r1_bio->sector, s, 0);
2566 		}
2567 		if (bio->bi_status &&
2568 		    test_bit(R1BIO_WriteError, &r1_bio->state)) {
2569 			if (!rdev_set_badblocks(rdev, r1_bio->sector, s, 0))
2570 				md_error(conf->mddev, rdev);
2571 		}
2572 	}
2573 	put_buf(r1_bio);
2574 	md_done_sync(conf->mddev, s, 1);
2575 }
2576 
handle_write_finished(struct r1conf * conf,struct r1bio * r1_bio)2577 static void handle_write_finished(struct r1conf *conf, struct r1bio *r1_bio)
2578 {
2579 	int m, idx;
2580 	bool fail = false;
2581 
2582 	for (m = 0; m < conf->raid_disks * 2 ; m++)
2583 		if (r1_bio->bios[m] == IO_MADE_GOOD) {
2584 			struct md_rdev *rdev = conf->mirrors[m].rdev;
2585 			rdev_clear_badblocks(rdev,
2586 					     r1_bio->sector,
2587 					     r1_bio->sectors, 0);
2588 			rdev_dec_pending(rdev, conf->mddev);
2589 		} else if (r1_bio->bios[m] != NULL) {
2590 			/* This drive got a write error.  We need to
2591 			 * narrow down and record precise write
2592 			 * errors.
2593 			 */
2594 			fail = true;
2595 			if (!narrow_write_error(r1_bio, m))
2596 				md_error(conf->mddev,
2597 					 conf->mirrors[m].rdev);
2598 				/* an I/O failed, we can't clear the bitmap */
2599 			rdev_dec_pending(conf->mirrors[m].rdev,
2600 					 conf->mddev);
2601 		}
2602 	if (fail) {
2603 		spin_lock_irq(&conf->device_lock);
2604 		list_add(&r1_bio->retry_list, &conf->bio_end_io_list);
2605 		idx = sector_to_idx(r1_bio->sector);
2606 		atomic_inc(&conf->nr_queued[idx]);
2607 		spin_unlock_irq(&conf->device_lock);
2608 		/*
2609 		 * In case freeze_array() is waiting for condition
2610 		 * get_unqueued_pending() == extra to be true.
2611 		 */
2612 		wake_up(&conf->wait_barrier);
2613 		md_wakeup_thread(conf->mddev->thread);
2614 	} else {
2615 		if (test_bit(R1BIO_WriteError, &r1_bio->state))
2616 			close_write(r1_bio);
2617 		raid_end_bio_io(r1_bio);
2618 	}
2619 }
2620 
handle_read_error(struct r1conf * conf,struct r1bio * r1_bio)2621 static void handle_read_error(struct r1conf *conf, struct r1bio *r1_bio)
2622 {
2623 	struct mddev *mddev = conf->mddev;
2624 	struct bio *bio;
2625 	struct md_rdev *rdev;
2626 	sector_t sector;
2627 
2628 	clear_bit(R1BIO_ReadError, &r1_bio->state);
2629 	/* we got a read error. Maybe the drive is bad.  Maybe just
2630 	 * the block and we can fix it.
2631 	 * We freeze all other IO, and try reading the block from
2632 	 * other devices.  When we find one, we re-write
2633 	 * and check it that fixes the read error.
2634 	 * This is all done synchronously while the array is
2635 	 * frozen
2636 	 */
2637 
2638 	bio = r1_bio->bios[r1_bio->read_disk];
2639 	bio_put(bio);
2640 	r1_bio->bios[r1_bio->read_disk] = NULL;
2641 
2642 	rdev = conf->mirrors[r1_bio->read_disk].rdev;
2643 	if (mddev->ro == 0
2644 	    && !test_bit(FailFast, &rdev->flags)) {
2645 		freeze_array(conf, 1);
2646 		fix_read_error(conf, r1_bio);
2647 		unfreeze_array(conf);
2648 	} else if (mddev->ro == 0 && test_bit(FailFast, &rdev->flags)) {
2649 		md_error(mddev, rdev);
2650 	} else {
2651 		r1_bio->bios[r1_bio->read_disk] = IO_BLOCKED;
2652 	}
2653 
2654 	rdev_dec_pending(rdev, conf->mddev);
2655 	sector = r1_bio->sector;
2656 	bio = r1_bio->master_bio;
2657 
2658 	/* Reuse the old r1_bio so that the IO_BLOCKED settings are preserved */
2659 	r1_bio->state = 0;
2660 	raid1_read_request(mddev, bio, r1_bio->sectors, r1_bio);
2661 	allow_barrier(conf, sector);
2662 }
2663 
raid1d(struct md_thread * thread)2664 static void raid1d(struct md_thread *thread)
2665 {
2666 	struct mddev *mddev = thread->mddev;
2667 	struct r1bio *r1_bio;
2668 	unsigned long flags;
2669 	struct r1conf *conf = mddev->private;
2670 	struct list_head *head = &conf->retry_list;
2671 	struct blk_plug plug;
2672 	int idx;
2673 
2674 	md_check_recovery(mddev);
2675 
2676 	if (!list_empty_careful(&conf->bio_end_io_list) &&
2677 	    !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)) {
2678 		LIST_HEAD(tmp);
2679 		spin_lock_irqsave(&conf->device_lock, flags);
2680 		if (!test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags))
2681 			list_splice_init(&conf->bio_end_io_list, &tmp);
2682 		spin_unlock_irqrestore(&conf->device_lock, flags);
2683 		while (!list_empty(&tmp)) {
2684 			r1_bio = list_first_entry(&tmp, struct r1bio,
2685 						  retry_list);
2686 			list_del(&r1_bio->retry_list);
2687 			idx = sector_to_idx(r1_bio->sector);
2688 			atomic_dec(&conf->nr_queued[idx]);
2689 			if (test_bit(R1BIO_WriteError, &r1_bio->state))
2690 				close_write(r1_bio);
2691 			raid_end_bio_io(r1_bio);
2692 		}
2693 	}
2694 
2695 	blk_start_plug(&plug);
2696 	for (;;) {
2697 
2698 		flush_pending_writes(conf);
2699 
2700 		spin_lock_irqsave(&conf->device_lock, flags);
2701 		if (list_empty(head)) {
2702 			spin_unlock_irqrestore(&conf->device_lock, flags);
2703 			break;
2704 		}
2705 		r1_bio = list_entry(head->prev, struct r1bio, retry_list);
2706 		list_del(head->prev);
2707 		idx = sector_to_idx(r1_bio->sector);
2708 		atomic_dec(&conf->nr_queued[idx]);
2709 		spin_unlock_irqrestore(&conf->device_lock, flags);
2710 
2711 		mddev = r1_bio->mddev;
2712 		conf = mddev->private;
2713 		if (test_bit(R1BIO_IsSync, &r1_bio->state)) {
2714 			if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
2715 			    test_bit(R1BIO_WriteError, &r1_bio->state))
2716 				handle_sync_write_finished(conf, r1_bio);
2717 			else
2718 				sync_request_write(mddev, r1_bio);
2719 		} else if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
2720 			   test_bit(R1BIO_WriteError, &r1_bio->state))
2721 			handle_write_finished(conf, r1_bio);
2722 		else if (test_bit(R1BIO_ReadError, &r1_bio->state))
2723 			handle_read_error(conf, r1_bio);
2724 		else
2725 			WARN_ON_ONCE(1);
2726 
2727 		cond_resched();
2728 		if (mddev->sb_flags & ~(1<<MD_SB_CHANGE_PENDING))
2729 			md_check_recovery(mddev);
2730 	}
2731 	blk_finish_plug(&plug);
2732 }
2733 
init_resync(struct r1conf * conf)2734 static int init_resync(struct r1conf *conf)
2735 {
2736 	int buffs;
2737 
2738 	buffs = RESYNC_WINDOW / RESYNC_BLOCK_SIZE;
2739 	BUG_ON(mempool_initialized(&conf->r1buf_pool));
2740 
2741 	return mempool_init(&conf->r1buf_pool, buffs, r1buf_pool_alloc,
2742 			    r1buf_pool_free, conf->poolinfo);
2743 }
2744 
raid1_alloc_init_r1buf(struct r1conf * conf)2745 static struct r1bio *raid1_alloc_init_r1buf(struct r1conf *conf)
2746 {
2747 	struct r1bio *r1bio = mempool_alloc(&conf->r1buf_pool, GFP_NOIO);
2748 	struct resync_pages *rps;
2749 	struct bio *bio;
2750 	int i;
2751 
2752 	for (i = conf->poolinfo->raid_disks; i--; ) {
2753 		bio = r1bio->bios[i];
2754 		rps = bio->bi_private;
2755 		bio_reset(bio, NULL, 0);
2756 		bio->bi_private = rps;
2757 	}
2758 	r1bio->master_bio = NULL;
2759 	return r1bio;
2760 }
2761 
2762 /*
2763  * perform a "sync" on one "block"
2764  *
2765  * We need to make sure that no normal I/O request - particularly write
2766  * requests - conflict with active sync requests.
2767  *
2768  * This is achieved by tracking pending requests and a 'barrier' concept
2769  * that can be installed to exclude normal IO requests.
2770  */
2771 
raid1_sync_request(struct mddev * mddev,sector_t sector_nr,sector_t max_sector,int * skipped)2772 static sector_t raid1_sync_request(struct mddev *mddev, sector_t sector_nr,
2773 				   sector_t max_sector, int *skipped)
2774 {
2775 	struct r1conf *conf = mddev->private;
2776 	struct r1bio *r1_bio;
2777 	struct bio *bio;
2778 	sector_t nr_sectors;
2779 	int disk = -1;
2780 	int i;
2781 	int wonly = -1;
2782 	int write_targets = 0, read_targets = 0;
2783 	sector_t sync_blocks;
2784 	bool still_degraded = false;
2785 	int good_sectors = RESYNC_SECTORS;
2786 	int min_bad = 0; /* number of sectors that are bad in all devices */
2787 	int idx = sector_to_idx(sector_nr);
2788 	int page_idx = 0;
2789 
2790 	if (!mempool_initialized(&conf->r1buf_pool))
2791 		if (init_resync(conf))
2792 			return 0;
2793 
2794 	if (sector_nr >= max_sector) {
2795 		/* If we aborted, we need to abort the
2796 		 * sync on the 'current' bitmap chunk (there will
2797 		 * only be one in raid1 resync.
2798 		 * We can find the current addess in mddev->curr_resync
2799 		 */
2800 		if (mddev->curr_resync < max_sector) /* aborted */
2801 			mddev->bitmap_ops->end_sync(mddev, mddev->curr_resync,
2802 						    &sync_blocks);
2803 		else /* completed sync */
2804 			conf->fullsync = 0;
2805 
2806 		mddev->bitmap_ops->close_sync(mddev);
2807 		close_sync(conf);
2808 
2809 		if (mddev_is_clustered(mddev)) {
2810 			conf->cluster_sync_low = 0;
2811 			conf->cluster_sync_high = 0;
2812 		}
2813 		return 0;
2814 	}
2815 
2816 	if (mddev->bitmap == NULL &&
2817 	    mddev->recovery_cp == MaxSector &&
2818 	    !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
2819 	    conf->fullsync == 0) {
2820 		*skipped = 1;
2821 		return max_sector - sector_nr;
2822 	}
2823 	/* before building a request, check if we can skip these blocks..
2824 	 * This call the bitmap_start_sync doesn't actually record anything
2825 	 */
2826 	if (!mddev->bitmap_ops->start_sync(mddev, sector_nr, &sync_blocks, true) &&
2827 	    !conf->fullsync && !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
2828 		/* We can skip this block, and probably several more */
2829 		*skipped = 1;
2830 		return sync_blocks;
2831 	}
2832 
2833 	/*
2834 	 * If there is non-resync activity waiting for a turn, then let it
2835 	 * though before starting on this new sync request.
2836 	 */
2837 	if (atomic_read(&conf->nr_waiting[idx]))
2838 		schedule_timeout_uninterruptible(1);
2839 
2840 	/* we are incrementing sector_nr below. To be safe, we check against
2841 	 * sector_nr + two times RESYNC_SECTORS
2842 	 */
2843 
2844 	mddev->bitmap_ops->cond_end_sync(mddev, sector_nr,
2845 		mddev_is_clustered(mddev) &&
2846 		(sector_nr + 2 * RESYNC_SECTORS > conf->cluster_sync_high));
2847 
2848 	if (raise_barrier(conf, sector_nr))
2849 		return 0;
2850 
2851 	r1_bio = raid1_alloc_init_r1buf(conf);
2852 
2853 	/*
2854 	 * If we get a correctably read error during resync or recovery,
2855 	 * we might want to read from a different device.  So we
2856 	 * flag all drives that could conceivably be read from for READ,
2857 	 * and any others (which will be non-In_sync devices) for WRITE.
2858 	 * If a read fails, we try reading from something else for which READ
2859 	 * is OK.
2860 	 */
2861 
2862 	r1_bio->mddev = mddev;
2863 	r1_bio->sector = sector_nr;
2864 	r1_bio->state = 0;
2865 	set_bit(R1BIO_IsSync, &r1_bio->state);
2866 	/* make sure good_sectors won't go across barrier unit boundary */
2867 	good_sectors = align_to_barrier_unit_end(sector_nr, good_sectors);
2868 
2869 	for (i = 0; i < conf->raid_disks * 2; i++) {
2870 		struct md_rdev *rdev;
2871 		bio = r1_bio->bios[i];
2872 
2873 		rdev = conf->mirrors[i].rdev;
2874 		if (rdev == NULL ||
2875 		    test_bit(Faulty, &rdev->flags)) {
2876 			if (i < conf->raid_disks)
2877 				still_degraded = true;
2878 		} else if (!test_bit(In_sync, &rdev->flags)) {
2879 			bio->bi_opf = REQ_OP_WRITE;
2880 			bio->bi_end_io = end_sync_write;
2881 			write_targets ++;
2882 		} else {
2883 			/* may need to read from here */
2884 			sector_t first_bad = MaxSector;
2885 			sector_t bad_sectors;
2886 
2887 			if (is_badblock(rdev, sector_nr, good_sectors,
2888 					&first_bad, &bad_sectors)) {
2889 				if (first_bad > sector_nr)
2890 					good_sectors = first_bad - sector_nr;
2891 				else {
2892 					bad_sectors -= (sector_nr - first_bad);
2893 					if (min_bad == 0 ||
2894 					    min_bad > bad_sectors)
2895 						min_bad = bad_sectors;
2896 				}
2897 			}
2898 			if (sector_nr < first_bad) {
2899 				if (test_bit(WriteMostly, &rdev->flags)) {
2900 					if (wonly < 0)
2901 						wonly = i;
2902 				} else {
2903 					if (disk < 0)
2904 						disk = i;
2905 				}
2906 				bio->bi_opf = REQ_OP_READ;
2907 				bio->bi_end_io = end_sync_read;
2908 				read_targets++;
2909 			} else if (!test_bit(WriteErrorSeen, &rdev->flags) &&
2910 				test_bit(MD_RECOVERY_SYNC, &mddev->recovery) &&
2911 				!test_bit(MD_RECOVERY_CHECK, &mddev->recovery)) {
2912 				/*
2913 				 * The device is suitable for reading (InSync),
2914 				 * but has bad block(s) here. Let's try to correct them,
2915 				 * if we are doing resync or repair. Otherwise, leave
2916 				 * this device alone for this sync request.
2917 				 */
2918 				bio->bi_opf = REQ_OP_WRITE;
2919 				bio->bi_end_io = end_sync_write;
2920 				write_targets++;
2921 			}
2922 		}
2923 		if (rdev && bio->bi_end_io) {
2924 			atomic_inc(&rdev->nr_pending);
2925 			bio->bi_iter.bi_sector = sector_nr + rdev->data_offset;
2926 			bio_set_dev(bio, rdev->bdev);
2927 			if (test_bit(FailFast, &rdev->flags))
2928 				bio->bi_opf |= MD_FAILFAST;
2929 		}
2930 	}
2931 	if (disk < 0)
2932 		disk = wonly;
2933 	r1_bio->read_disk = disk;
2934 
2935 	if (read_targets == 0 && min_bad > 0) {
2936 		/* These sectors are bad on all InSync devices, so we
2937 		 * need to mark them bad on all write targets
2938 		 */
2939 		int ok = 1;
2940 		for (i = 0 ; i < conf->raid_disks * 2 ; i++)
2941 			if (r1_bio->bios[i]->bi_end_io == end_sync_write) {
2942 				struct md_rdev *rdev = conf->mirrors[i].rdev;
2943 				ok = rdev_set_badblocks(rdev, sector_nr,
2944 							min_bad, 0
2945 					) && ok;
2946 			}
2947 		set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
2948 		*skipped = 1;
2949 		put_buf(r1_bio);
2950 
2951 		if (!ok) {
2952 			/* Cannot record the badblocks, so need to
2953 			 * abort the resync.
2954 			 * If there are multiple read targets, could just
2955 			 * fail the really bad ones ???
2956 			 */
2957 			conf->recovery_disabled = mddev->recovery_disabled;
2958 			set_bit(MD_RECOVERY_INTR, &mddev->recovery);
2959 			return 0;
2960 		} else
2961 			return min_bad;
2962 
2963 	}
2964 	if (min_bad > 0 && min_bad < good_sectors) {
2965 		/* only resync enough to reach the next bad->good
2966 		 * transition */
2967 		good_sectors = min_bad;
2968 	}
2969 
2970 	if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) && read_targets > 0)
2971 		/* extra read targets are also write targets */
2972 		write_targets += read_targets-1;
2973 
2974 	if (write_targets == 0 || read_targets == 0) {
2975 		/* There is nowhere to write, so all non-sync
2976 		 * drives must be failed - so we are finished
2977 		 */
2978 		sector_t rv;
2979 		if (min_bad > 0)
2980 			max_sector = sector_nr + min_bad;
2981 		rv = max_sector - sector_nr;
2982 		*skipped = 1;
2983 		put_buf(r1_bio);
2984 		return rv;
2985 	}
2986 
2987 	if (max_sector > mddev->resync_max)
2988 		max_sector = mddev->resync_max; /* Don't do IO beyond here */
2989 	if (max_sector > sector_nr + good_sectors)
2990 		max_sector = sector_nr + good_sectors;
2991 	nr_sectors = 0;
2992 	sync_blocks = 0;
2993 	do {
2994 		struct page *page;
2995 		int len = PAGE_SIZE;
2996 		if (sector_nr + (len>>9) > max_sector)
2997 			len = (max_sector - sector_nr) << 9;
2998 		if (len == 0)
2999 			break;
3000 		if (sync_blocks == 0) {
3001 			if (!mddev->bitmap_ops->start_sync(mddev, sector_nr,
3002 						&sync_blocks, still_degraded) &&
3003 			    !conf->fullsync &&
3004 			    !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
3005 				break;
3006 			if ((len >> 9) > sync_blocks)
3007 				len = sync_blocks<<9;
3008 		}
3009 
3010 		for (i = 0 ; i < conf->raid_disks * 2; i++) {
3011 			struct resync_pages *rp;
3012 
3013 			bio = r1_bio->bios[i];
3014 			rp = get_resync_pages(bio);
3015 			if (bio->bi_end_io) {
3016 				page = resync_fetch_page(rp, page_idx);
3017 
3018 				/*
3019 				 * won't fail because the vec table is big
3020 				 * enough to hold all these pages
3021 				 */
3022 				__bio_add_page(bio, page, len, 0);
3023 			}
3024 		}
3025 		nr_sectors += len>>9;
3026 		sector_nr += len>>9;
3027 		sync_blocks -= (len>>9);
3028 	} while (++page_idx < RESYNC_PAGES);
3029 
3030 	r1_bio->sectors = nr_sectors;
3031 
3032 	if (mddev_is_clustered(mddev) &&
3033 			conf->cluster_sync_high < sector_nr + nr_sectors) {
3034 		conf->cluster_sync_low = mddev->curr_resync_completed;
3035 		conf->cluster_sync_high = conf->cluster_sync_low + CLUSTER_RESYNC_WINDOW_SECTORS;
3036 		/* Send resync message */
3037 		md_cluster_ops->resync_info_update(mddev,
3038 				conf->cluster_sync_low,
3039 				conf->cluster_sync_high);
3040 	}
3041 
3042 	/* For a user-requested sync, we read all readable devices and do a
3043 	 * compare
3044 	 */
3045 	if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
3046 		atomic_set(&r1_bio->remaining, read_targets);
3047 		for (i = 0; i < conf->raid_disks * 2 && read_targets; i++) {
3048 			bio = r1_bio->bios[i];
3049 			if (bio->bi_end_io == end_sync_read) {
3050 				read_targets--;
3051 				md_sync_acct_bio(bio, nr_sectors);
3052 				if (read_targets == 1)
3053 					bio->bi_opf &= ~MD_FAILFAST;
3054 				submit_bio_noacct(bio);
3055 			}
3056 		}
3057 	} else {
3058 		atomic_set(&r1_bio->remaining, 1);
3059 		bio = r1_bio->bios[r1_bio->read_disk];
3060 		md_sync_acct_bio(bio, nr_sectors);
3061 		if (read_targets == 1)
3062 			bio->bi_opf &= ~MD_FAILFAST;
3063 		submit_bio_noacct(bio);
3064 	}
3065 	return nr_sectors;
3066 }
3067 
raid1_size(struct mddev * mddev,sector_t sectors,int raid_disks)3068 static sector_t raid1_size(struct mddev *mddev, sector_t sectors, int raid_disks)
3069 {
3070 	if (sectors)
3071 		return sectors;
3072 
3073 	return mddev->dev_sectors;
3074 }
3075 
setup_conf(struct mddev * mddev)3076 static struct r1conf *setup_conf(struct mddev *mddev)
3077 {
3078 	struct r1conf *conf;
3079 	int i;
3080 	struct raid1_info *disk;
3081 	struct md_rdev *rdev;
3082 	int err = -ENOMEM;
3083 
3084 	conf = kzalloc(sizeof(struct r1conf), GFP_KERNEL);
3085 	if (!conf)
3086 		goto abort;
3087 
3088 	conf->nr_pending = kcalloc(BARRIER_BUCKETS_NR,
3089 				   sizeof(atomic_t), GFP_KERNEL);
3090 	if (!conf->nr_pending)
3091 		goto abort;
3092 
3093 	conf->nr_waiting = kcalloc(BARRIER_BUCKETS_NR,
3094 				   sizeof(atomic_t), GFP_KERNEL);
3095 	if (!conf->nr_waiting)
3096 		goto abort;
3097 
3098 	conf->nr_queued = kcalloc(BARRIER_BUCKETS_NR,
3099 				  sizeof(atomic_t), GFP_KERNEL);
3100 	if (!conf->nr_queued)
3101 		goto abort;
3102 
3103 	conf->barrier = kcalloc(BARRIER_BUCKETS_NR,
3104 				sizeof(atomic_t), GFP_KERNEL);
3105 	if (!conf->barrier)
3106 		goto abort;
3107 
3108 	conf->mirrors = kzalloc(array3_size(sizeof(struct raid1_info),
3109 					    mddev->raid_disks, 2),
3110 				GFP_KERNEL);
3111 	if (!conf->mirrors)
3112 		goto abort;
3113 
3114 	conf->tmppage = alloc_page(GFP_KERNEL);
3115 	if (!conf->tmppage)
3116 		goto abort;
3117 
3118 	conf->poolinfo = kzalloc(sizeof(*conf->poolinfo), GFP_KERNEL);
3119 	if (!conf->poolinfo)
3120 		goto abort;
3121 	conf->poolinfo->raid_disks = mddev->raid_disks * 2;
3122 	err = mempool_init(&conf->r1bio_pool, NR_RAID_BIOS, r1bio_pool_alloc,
3123 			   rbio_pool_free, conf->poolinfo);
3124 	if (err)
3125 		goto abort;
3126 
3127 	err = bioset_init(&conf->bio_split, BIO_POOL_SIZE, 0, 0);
3128 	if (err)
3129 		goto abort;
3130 
3131 	conf->poolinfo->mddev = mddev;
3132 
3133 	err = -EINVAL;
3134 	spin_lock_init(&conf->device_lock);
3135 	conf->raid_disks = mddev->raid_disks;
3136 	rdev_for_each(rdev, mddev) {
3137 		int disk_idx = rdev->raid_disk;
3138 
3139 		if (disk_idx >= conf->raid_disks || disk_idx < 0)
3140 			continue;
3141 
3142 		if (!raid1_add_conf(conf, rdev, disk_idx,
3143 				    test_bit(Replacement, &rdev->flags)))
3144 			goto abort;
3145 	}
3146 	conf->mddev = mddev;
3147 	INIT_LIST_HEAD(&conf->retry_list);
3148 	INIT_LIST_HEAD(&conf->bio_end_io_list);
3149 
3150 	spin_lock_init(&conf->resync_lock);
3151 	init_waitqueue_head(&conf->wait_barrier);
3152 
3153 	bio_list_init(&conf->pending_bio_list);
3154 	conf->recovery_disabled = mddev->recovery_disabled - 1;
3155 
3156 	err = -EIO;
3157 	for (i = 0; i < conf->raid_disks * 2; i++) {
3158 
3159 		disk = conf->mirrors + i;
3160 
3161 		if (i < conf->raid_disks &&
3162 		    disk[conf->raid_disks].rdev) {
3163 			/* This slot has a replacement. */
3164 			if (!disk->rdev) {
3165 				/* No original, just make the replacement
3166 				 * a recovering spare
3167 				 */
3168 				disk->rdev =
3169 					disk[conf->raid_disks].rdev;
3170 				disk[conf->raid_disks].rdev = NULL;
3171 			} else if (!test_bit(In_sync, &disk->rdev->flags))
3172 				/* Original is not in_sync - bad */
3173 				goto abort;
3174 		}
3175 
3176 		if (!disk->rdev ||
3177 		    !test_bit(In_sync, &disk->rdev->flags)) {
3178 			disk->head_position = 0;
3179 			if (disk->rdev &&
3180 			    (disk->rdev->saved_raid_disk < 0))
3181 				conf->fullsync = 1;
3182 		}
3183 	}
3184 
3185 	err = -ENOMEM;
3186 	rcu_assign_pointer(conf->thread,
3187 			   md_register_thread(raid1d, mddev, "raid1"));
3188 	if (!conf->thread)
3189 		goto abort;
3190 
3191 	return conf;
3192 
3193  abort:
3194 	if (conf) {
3195 		mempool_exit(&conf->r1bio_pool);
3196 		kfree(conf->mirrors);
3197 		safe_put_page(conf->tmppage);
3198 		kfree(conf->poolinfo);
3199 		kfree(conf->nr_pending);
3200 		kfree(conf->nr_waiting);
3201 		kfree(conf->nr_queued);
3202 		kfree(conf->barrier);
3203 		bioset_exit(&conf->bio_split);
3204 		kfree(conf);
3205 	}
3206 	return ERR_PTR(err);
3207 }
3208 
raid1_set_limits(struct mddev * mddev)3209 static int raid1_set_limits(struct mddev *mddev)
3210 {
3211 	struct queue_limits lim;
3212 	int err;
3213 
3214 	md_init_stacking_limits(&lim);
3215 	lim.max_write_zeroes_sectors = 0;
3216 	lim.features |= BLK_FEAT_ATOMIC_WRITES;
3217 	err = mddev_stack_rdev_limits(mddev, &lim, MDDEV_STACK_INTEGRITY);
3218 	if (err)
3219 		return err;
3220 	return queue_limits_set(mddev->gendisk->queue, &lim);
3221 }
3222 
raid1_run(struct mddev * mddev)3223 static int raid1_run(struct mddev *mddev)
3224 {
3225 	struct r1conf *conf;
3226 	int i;
3227 	int ret;
3228 
3229 	if (mddev->level != 1) {
3230 		pr_warn("md/raid1:%s: raid level not set to mirroring (%d)\n",
3231 			mdname(mddev), mddev->level);
3232 		return -EIO;
3233 	}
3234 	if (mddev->reshape_position != MaxSector) {
3235 		pr_warn("md/raid1:%s: reshape_position set but not supported\n",
3236 			mdname(mddev));
3237 		return -EIO;
3238 	}
3239 
3240 	/*
3241 	 * copy the already verified devices into our private RAID1
3242 	 * bookkeeping area. [whatever we allocate in run(),
3243 	 * should be freed in raid1_free()]
3244 	 */
3245 	if (mddev->private == NULL)
3246 		conf = setup_conf(mddev);
3247 	else
3248 		conf = mddev->private;
3249 
3250 	if (IS_ERR(conf))
3251 		return PTR_ERR(conf);
3252 
3253 	if (!mddev_is_dm(mddev)) {
3254 		ret = raid1_set_limits(mddev);
3255 		if (ret) {
3256 			if (!mddev->private)
3257 				raid1_free(mddev, conf);
3258 			return ret;
3259 		}
3260 	}
3261 
3262 	mddev->degraded = 0;
3263 	for (i = 0; i < conf->raid_disks; i++)
3264 		if (conf->mirrors[i].rdev == NULL ||
3265 		    !test_bit(In_sync, &conf->mirrors[i].rdev->flags) ||
3266 		    test_bit(Faulty, &conf->mirrors[i].rdev->flags))
3267 			mddev->degraded++;
3268 	/*
3269 	 * RAID1 needs at least one disk in active
3270 	 */
3271 	if (conf->raid_disks - mddev->degraded < 1) {
3272 		md_unregister_thread(mddev, &conf->thread);
3273 		if (!mddev->private)
3274 			raid1_free(mddev, conf);
3275 		return -EINVAL;
3276 	}
3277 
3278 	if (conf->raid_disks - mddev->degraded == 1)
3279 		mddev->recovery_cp = MaxSector;
3280 
3281 	if (mddev->recovery_cp != MaxSector)
3282 		pr_info("md/raid1:%s: not clean -- starting background reconstruction\n",
3283 			mdname(mddev));
3284 	pr_info("md/raid1:%s: active with %d out of %d mirrors\n",
3285 		mdname(mddev), mddev->raid_disks - mddev->degraded,
3286 		mddev->raid_disks);
3287 
3288 	/*
3289 	 * Ok, everything is just fine now
3290 	 */
3291 	rcu_assign_pointer(mddev->thread, conf->thread);
3292 	rcu_assign_pointer(conf->thread, NULL);
3293 	mddev->private = conf;
3294 	set_bit(MD_FAILFAST_SUPPORTED, &mddev->flags);
3295 
3296 	md_set_array_sectors(mddev, raid1_size(mddev, 0, 0));
3297 
3298 	ret = md_integrity_register(mddev);
3299 	if (ret)
3300 		md_unregister_thread(mddev, &mddev->thread);
3301 	return ret;
3302 }
3303 
raid1_free(struct mddev * mddev,void * priv)3304 static void raid1_free(struct mddev *mddev, void *priv)
3305 {
3306 	struct r1conf *conf = priv;
3307 
3308 	mempool_exit(&conf->r1bio_pool);
3309 	kfree(conf->mirrors);
3310 	safe_put_page(conf->tmppage);
3311 	kfree(conf->poolinfo);
3312 	kfree(conf->nr_pending);
3313 	kfree(conf->nr_waiting);
3314 	kfree(conf->nr_queued);
3315 	kfree(conf->barrier);
3316 	bioset_exit(&conf->bio_split);
3317 	kfree(conf);
3318 }
3319 
raid1_resize(struct mddev * mddev,sector_t sectors)3320 static int raid1_resize(struct mddev *mddev, sector_t sectors)
3321 {
3322 	/* no resync is happening, and there is enough space
3323 	 * on all devices, so we can resize.
3324 	 * We need to make sure resync covers any new space.
3325 	 * If the array is shrinking we should possibly wait until
3326 	 * any io in the removed space completes, but it hardly seems
3327 	 * worth it.
3328 	 */
3329 	sector_t newsize = raid1_size(mddev, sectors, 0);
3330 	int ret;
3331 
3332 	if (mddev->external_size &&
3333 	    mddev->array_sectors > newsize)
3334 		return -EINVAL;
3335 
3336 	ret = mddev->bitmap_ops->resize(mddev, newsize, 0, false);
3337 	if (ret)
3338 		return ret;
3339 
3340 	md_set_array_sectors(mddev, newsize);
3341 	if (sectors > mddev->dev_sectors &&
3342 	    mddev->recovery_cp > mddev->dev_sectors) {
3343 		mddev->recovery_cp = mddev->dev_sectors;
3344 		set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3345 	}
3346 	mddev->dev_sectors = sectors;
3347 	mddev->resync_max_sectors = sectors;
3348 	return 0;
3349 }
3350 
raid1_reshape(struct mddev * mddev)3351 static int raid1_reshape(struct mddev *mddev)
3352 {
3353 	/* We need to:
3354 	 * 1/ resize the r1bio_pool
3355 	 * 2/ resize conf->mirrors
3356 	 *
3357 	 * We allocate a new r1bio_pool if we can.
3358 	 * Then raise a device barrier and wait until all IO stops.
3359 	 * Then resize conf->mirrors and swap in the new r1bio pool.
3360 	 *
3361 	 * At the same time, we "pack" the devices so that all the missing
3362 	 * devices have the higher raid_disk numbers.
3363 	 */
3364 	mempool_t newpool, oldpool;
3365 	struct pool_info *newpoolinfo;
3366 	struct raid1_info *newmirrors;
3367 	struct r1conf *conf = mddev->private;
3368 	int cnt, raid_disks;
3369 	unsigned long flags;
3370 	int d, d2;
3371 	int ret;
3372 
3373 	memset(&newpool, 0, sizeof(newpool));
3374 	memset(&oldpool, 0, sizeof(oldpool));
3375 
3376 	/* Cannot change chunk_size, layout, or level */
3377 	if (mddev->chunk_sectors != mddev->new_chunk_sectors ||
3378 	    mddev->layout != mddev->new_layout ||
3379 	    mddev->level != mddev->new_level) {
3380 		mddev->new_chunk_sectors = mddev->chunk_sectors;
3381 		mddev->new_layout = mddev->layout;
3382 		mddev->new_level = mddev->level;
3383 		return -EINVAL;
3384 	}
3385 
3386 	if (!mddev_is_clustered(mddev))
3387 		md_allow_write(mddev);
3388 
3389 	raid_disks = mddev->raid_disks + mddev->delta_disks;
3390 
3391 	if (raid_disks < conf->raid_disks) {
3392 		cnt=0;
3393 		for (d= 0; d < conf->raid_disks; d++)
3394 			if (conf->mirrors[d].rdev)
3395 				cnt++;
3396 		if (cnt > raid_disks)
3397 			return -EBUSY;
3398 	}
3399 
3400 	newpoolinfo = kmalloc(sizeof(*newpoolinfo), GFP_KERNEL);
3401 	if (!newpoolinfo)
3402 		return -ENOMEM;
3403 	newpoolinfo->mddev = mddev;
3404 	newpoolinfo->raid_disks = raid_disks * 2;
3405 
3406 	ret = mempool_init(&newpool, NR_RAID_BIOS, r1bio_pool_alloc,
3407 			   rbio_pool_free, newpoolinfo);
3408 	if (ret) {
3409 		kfree(newpoolinfo);
3410 		return ret;
3411 	}
3412 	newmirrors = kzalloc(array3_size(sizeof(struct raid1_info),
3413 					 raid_disks, 2),
3414 			     GFP_KERNEL);
3415 	if (!newmirrors) {
3416 		kfree(newpoolinfo);
3417 		mempool_exit(&newpool);
3418 		return -ENOMEM;
3419 	}
3420 
3421 	freeze_array(conf, 0);
3422 
3423 	/* ok, everything is stopped */
3424 	oldpool = conf->r1bio_pool;
3425 	conf->r1bio_pool = newpool;
3426 
3427 	for (d = d2 = 0; d < conf->raid_disks; d++) {
3428 		struct md_rdev *rdev = conf->mirrors[d].rdev;
3429 		if (rdev && rdev->raid_disk != d2) {
3430 			sysfs_unlink_rdev(mddev, rdev);
3431 			rdev->raid_disk = d2;
3432 			sysfs_unlink_rdev(mddev, rdev);
3433 			if (sysfs_link_rdev(mddev, rdev))
3434 				pr_warn("md/raid1:%s: cannot register rd%d\n",
3435 					mdname(mddev), rdev->raid_disk);
3436 		}
3437 		if (rdev)
3438 			newmirrors[d2++].rdev = rdev;
3439 	}
3440 	kfree(conf->mirrors);
3441 	conf->mirrors = newmirrors;
3442 	kfree(conf->poolinfo);
3443 	conf->poolinfo = newpoolinfo;
3444 
3445 	spin_lock_irqsave(&conf->device_lock, flags);
3446 	mddev->degraded += (raid_disks - conf->raid_disks);
3447 	spin_unlock_irqrestore(&conf->device_lock, flags);
3448 	conf->raid_disks = mddev->raid_disks = raid_disks;
3449 	mddev->delta_disks = 0;
3450 
3451 	unfreeze_array(conf);
3452 
3453 	set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
3454 	set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3455 	md_wakeup_thread(mddev->thread);
3456 
3457 	mempool_exit(&oldpool);
3458 	return 0;
3459 }
3460 
raid1_quiesce(struct mddev * mddev,int quiesce)3461 static void raid1_quiesce(struct mddev *mddev, int quiesce)
3462 {
3463 	struct r1conf *conf = mddev->private;
3464 
3465 	if (quiesce)
3466 		freeze_array(conf, 0);
3467 	else
3468 		unfreeze_array(conf);
3469 }
3470 
raid1_takeover(struct mddev * mddev)3471 static void *raid1_takeover(struct mddev *mddev)
3472 {
3473 	/* raid1 can take over:
3474 	 *  raid5 with 2 devices, any layout or chunk size
3475 	 */
3476 	if (mddev->level == 5 && mddev->raid_disks == 2) {
3477 		struct r1conf *conf;
3478 		mddev->new_level = 1;
3479 		mddev->new_layout = 0;
3480 		mddev->new_chunk_sectors = 0;
3481 		conf = setup_conf(mddev);
3482 		if (!IS_ERR(conf)) {
3483 			/* Array must appear to be quiesced */
3484 			conf->array_frozen = 1;
3485 			mddev_clear_unsupported_flags(mddev,
3486 				UNSUPPORTED_MDDEV_FLAGS);
3487 		}
3488 		return conf;
3489 	}
3490 	return ERR_PTR(-EINVAL);
3491 }
3492 
3493 static struct md_personality raid1_personality =
3494 {
3495 	.name		= "raid1",
3496 	.level		= 1,
3497 	.owner		= THIS_MODULE,
3498 	.make_request	= raid1_make_request,
3499 	.run		= raid1_run,
3500 	.free		= raid1_free,
3501 	.status		= raid1_status,
3502 	.error_handler	= raid1_error,
3503 	.hot_add_disk	= raid1_add_disk,
3504 	.hot_remove_disk= raid1_remove_disk,
3505 	.spare_active	= raid1_spare_active,
3506 	.sync_request	= raid1_sync_request,
3507 	.resize		= raid1_resize,
3508 	.size		= raid1_size,
3509 	.check_reshape	= raid1_reshape,
3510 	.quiesce	= raid1_quiesce,
3511 	.takeover	= raid1_takeover,
3512 };
3513 
raid_init(void)3514 static int __init raid_init(void)
3515 {
3516 	return register_md_personality(&raid1_personality);
3517 }
3518 
raid_exit(void)3519 static void raid_exit(void)
3520 {
3521 	unregister_md_personality(&raid1_personality);
3522 }
3523 
3524 module_init(raid_init);
3525 module_exit(raid_exit);
3526 MODULE_LICENSE("GPL");
3527 MODULE_DESCRIPTION("RAID1 (mirroring) personality for MD");
3528 MODULE_ALIAS("md-personality-3"); /* RAID1 */
3529 MODULE_ALIAS("md-raid1");
3530 MODULE_ALIAS("md-level-1");
3531