1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * The Marvell camera core.  This device appears in a number of settings,
4  * so it needs platform-specific support outside of the core.
5  *
6  * Copyright 2011 Jonathan Corbet [email protected]
7  * Copyright 2018 Lubomir Rintel <[email protected]>
8  */
9 #include <linux/kernel.h>
10 #include <linux/module.h>
11 #include <linux/fs.h>
12 #include <linux/mm.h>
13 #include <linux/i2c.h>
14 #include <linux/interrupt.h>
15 #include <linux/spinlock.h>
16 #include <linux/slab.h>
17 #include <linux/device.h>
18 #include <linux/wait.h>
19 #include <linux/list.h>
20 #include <linux/dma-mapping.h>
21 #include <linux/delay.h>
22 #include <linux/vmalloc.h>
23 #include <linux/io.h>
24 #include <linux/clk.h>
25 #include <linux/clk-provider.h>
26 #include <linux/videodev2.h>
27 #include <linux/pm_runtime.h>
28 #include <media/v4l2-device.h>
29 #include <media/v4l2-ioctl.h>
30 #include <media/v4l2-ctrls.h>
31 #include <media/v4l2-event.h>
32 #include <media/videobuf2-vmalloc.h>
33 #include <media/videobuf2-dma-contig.h>
34 #include <media/videobuf2-dma-sg.h>
35 
36 #include "mcam-core.h"
37 
38 #ifdef MCAM_MODE_VMALLOC
39 /*
40  * Internal DMA buffer management.  Since the controller cannot do S/G I/O,
41  * we must have physically contiguous buffers to bring frames into.
42  * These parameters control how many buffers we use, whether we
43  * allocate them at load time (better chance of success, but nails down
44  * memory) or when somebody tries to use the camera (riskier), and,
45  * for load-time allocation, how big they should be.
46  *
47  * The controller can cycle through three buffers.  We could use
48  * more by flipping pointers around, but it probably makes little
49  * sense.
50  */
51 
52 static bool alloc_bufs_at_read;
53 module_param(alloc_bufs_at_read, bool, 0444);
54 MODULE_PARM_DESC(alloc_bufs_at_read,
55 		"Non-zero value causes DMA buffers to be allocated when the video capture device is read, rather than at module load time.  This saves memory, but decreases the chances of successfully getting those buffers.  This parameter is only used in the vmalloc buffer mode");
56 
57 static int n_dma_bufs = 3;
58 module_param(n_dma_bufs, uint, 0644);
59 MODULE_PARM_DESC(n_dma_bufs,
60 		"The number of DMA buffers to allocate.  Can be either two (saves memory, makes timing tighter) or three.");
61 
62 static int dma_buf_size = VGA_WIDTH * VGA_HEIGHT * 2;  /* Worst case */
63 module_param(dma_buf_size, uint, 0444);
64 MODULE_PARM_DESC(dma_buf_size,
65 		"The size of the allocated DMA buffers.  If actual operating parameters require larger buffers, an attempt to reallocate will be made.");
66 #else /* MCAM_MODE_VMALLOC */
67 static const bool alloc_bufs_at_read;
68 static const int n_dma_bufs = 3;  /* Used by S/G_PARM */
69 #endif /* MCAM_MODE_VMALLOC */
70 
71 static bool flip;
72 module_param(flip, bool, 0444);
73 MODULE_PARM_DESC(flip,
74 		"If set, the sensor will be instructed to flip the image vertically.");
75 
76 static int buffer_mode = -1;
77 module_param(buffer_mode, int, 0444);
78 MODULE_PARM_DESC(buffer_mode,
79 		"Set the buffer mode to be used; default is to go with what the platform driver asks for.  Set to 0 for vmalloc, 1 for DMA contiguous.");
80 
81 /*
82  * Status flags.  Always manipulated with bit operations.
83  */
84 #define CF_BUF0_VALID	 0	/* Buffers valid - first three */
85 #define CF_BUF1_VALID	 1
86 #define CF_BUF2_VALID	 2
87 #define CF_DMA_ACTIVE	 3	/* A frame is incoming */
88 #define CF_CONFIG_NEEDED 4	/* Must configure hardware */
89 #define CF_SINGLE_BUFFER 5	/* Running with a single buffer */
90 #define CF_SG_RESTART	 6	/* SG restart needed */
91 #define CF_FRAME_SOF0	 7	/* Frame 0 started */
92 #define CF_FRAME_SOF1	 8
93 #define CF_FRAME_SOF2	 9
94 
95 #define sensor_call(cam, o, f, args...) \
96 	v4l2_subdev_call(cam->sensor, o, f, ##args)
97 
98 #define notifier_to_mcam(notifier) \
99 	container_of(notifier, struct mcam_camera, notifier)
100 
101 static struct mcam_format_struct {
102 	__u32 pixelformat;
103 	int bpp;   /* Bytes per pixel */
104 	bool planar;
105 	u32 mbus_code;
106 } mcam_formats[] = {
107 	{
108 		.pixelformat	= V4L2_PIX_FMT_YUYV,
109 		.mbus_code	= MEDIA_BUS_FMT_YUYV8_2X8,
110 		.bpp		= 2,
111 		.planar		= false,
112 	},
113 	{
114 		.pixelformat	= V4L2_PIX_FMT_YVYU,
115 		.mbus_code	= MEDIA_BUS_FMT_YUYV8_2X8,
116 		.bpp		= 2,
117 		.planar		= false,
118 	},
119 	{
120 		.pixelformat	= V4L2_PIX_FMT_YUV420,
121 		.mbus_code	= MEDIA_BUS_FMT_YUYV8_2X8,
122 		.bpp		= 1,
123 		.planar		= true,
124 	},
125 	{
126 		.pixelformat	= V4L2_PIX_FMT_YVU420,
127 		.mbus_code	= MEDIA_BUS_FMT_YUYV8_2X8,
128 		.bpp		= 1,
129 		.planar		= true,
130 	},
131 	{
132 		.pixelformat	= V4L2_PIX_FMT_XRGB444,
133 		.mbus_code	= MEDIA_BUS_FMT_RGB444_2X8_PADHI_LE,
134 		.bpp		= 2,
135 		.planar		= false,
136 	},
137 	{
138 		.pixelformat	= V4L2_PIX_FMT_RGB565,
139 		.mbus_code	= MEDIA_BUS_FMT_RGB565_2X8_LE,
140 		.bpp		= 2,
141 		.planar		= false,
142 	},
143 	{
144 		.pixelformat	= V4L2_PIX_FMT_SBGGR8,
145 		.mbus_code	= MEDIA_BUS_FMT_SBGGR8_1X8,
146 		.bpp		= 1,
147 		.planar		= false,
148 	},
149 };
150 #define N_MCAM_FMTS ARRAY_SIZE(mcam_formats)
151 
mcam_find_format(u32 pixelformat)152 static struct mcam_format_struct *mcam_find_format(u32 pixelformat)
153 {
154 	unsigned i;
155 
156 	for (i = 0; i < N_MCAM_FMTS; i++)
157 		if (mcam_formats[i].pixelformat == pixelformat)
158 			return mcam_formats + i;
159 	/* Not found? Then return the first format. */
160 	return mcam_formats;
161 }
162 
163 /*
164  * The default format we use until somebody says otherwise.
165  */
166 static const struct v4l2_pix_format mcam_def_pix_format = {
167 	.width		= VGA_WIDTH,
168 	.height		= VGA_HEIGHT,
169 	.pixelformat	= V4L2_PIX_FMT_YUYV,
170 	.field		= V4L2_FIELD_NONE,
171 	.bytesperline	= VGA_WIDTH*2,
172 	.sizeimage	= VGA_WIDTH*VGA_HEIGHT*2,
173 	.colorspace	= V4L2_COLORSPACE_SRGB,
174 };
175 
176 static const u32 mcam_def_mbus_code = MEDIA_BUS_FMT_YUYV8_2X8;
177 
178 
179 /*
180  * The two-word DMA descriptor format used by the Armada 610 and like.  There
181  * Is a three-word format as well (set C1_DESC_3WORD) where the third
182  * word is a pointer to the next descriptor, but we don't use it.  Two-word
183  * descriptors have to be contiguous in memory.
184  */
185 struct mcam_dma_desc {
186 	u32 dma_addr;
187 	u32 segment_len;
188 };
189 
190 /*
191  * Our buffer type for working with videobuf2.  Note that the vb2
192  * developers have decreed that struct vb2_v4l2_buffer must be at the
193  * beginning of this structure.
194  */
195 struct mcam_vb_buffer {
196 	struct vb2_v4l2_buffer vb_buf;
197 	struct list_head queue;
198 	struct mcam_dma_desc *dma_desc;	/* Descriptor virtual address */
199 	dma_addr_t dma_desc_pa;		/* Descriptor physical address */
200 };
201 
vb_to_mvb(struct vb2_v4l2_buffer * vb)202 static inline struct mcam_vb_buffer *vb_to_mvb(struct vb2_v4l2_buffer *vb)
203 {
204 	return container_of(vb, struct mcam_vb_buffer, vb_buf);
205 }
206 
207 /*
208  * Hand a completed buffer back to user space.
209  */
mcam_buffer_done(struct mcam_camera * cam,int frame,struct vb2_v4l2_buffer * vbuf)210 static void mcam_buffer_done(struct mcam_camera *cam, int frame,
211 		struct vb2_v4l2_buffer *vbuf)
212 {
213 	vbuf->vb2_buf.planes[0].bytesused = cam->pix_format.sizeimage;
214 	vbuf->sequence = cam->buf_seq[frame];
215 	vbuf->field = V4L2_FIELD_NONE;
216 	vbuf->vb2_buf.timestamp = ktime_get_ns();
217 	vb2_set_plane_payload(&vbuf->vb2_buf, 0, cam->pix_format.sizeimage);
218 	vb2_buffer_done(&vbuf->vb2_buf, VB2_BUF_STATE_DONE);
219 }
220 
221 
222 
223 /*
224  * Debugging and related.
225  */
226 #define cam_err(cam, fmt, arg...) \
227 	dev_err((cam)->dev, fmt, ##arg);
228 #define cam_warn(cam, fmt, arg...) \
229 	dev_warn((cam)->dev, fmt, ##arg);
230 #define cam_dbg(cam, fmt, arg...) \
231 	dev_dbg((cam)->dev, fmt, ##arg);
232 
233 
234 /*
235  * Flag manipulation helpers
236  */
mcam_reset_buffers(struct mcam_camera * cam)237 static void mcam_reset_buffers(struct mcam_camera *cam)
238 {
239 	int i;
240 
241 	cam->next_buf = -1;
242 	for (i = 0; i < cam->nbufs; i++) {
243 		clear_bit(i, &cam->flags);
244 		clear_bit(CF_FRAME_SOF0 + i, &cam->flags);
245 	}
246 }
247 
mcam_needs_config(struct mcam_camera * cam)248 static inline int mcam_needs_config(struct mcam_camera *cam)
249 {
250 	return test_bit(CF_CONFIG_NEEDED, &cam->flags);
251 }
252 
mcam_set_config_needed(struct mcam_camera * cam,int needed)253 static void mcam_set_config_needed(struct mcam_camera *cam, int needed)
254 {
255 	if (needed)
256 		set_bit(CF_CONFIG_NEEDED, &cam->flags);
257 	else
258 		clear_bit(CF_CONFIG_NEEDED, &cam->flags);
259 }
260 
261 /* ------------------------------------------------------------------- */
262 /*
263  * Make the controller start grabbing images.  Everything must
264  * be set up before doing this.
265  */
mcam_ctlr_start(struct mcam_camera * cam)266 static void mcam_ctlr_start(struct mcam_camera *cam)
267 {
268 	/* set_bit performs a read, so no other barrier should be
269 	   needed here */
270 	mcam_reg_set_bit(cam, REG_CTRL0, C0_ENABLE);
271 }
272 
mcam_ctlr_stop(struct mcam_camera * cam)273 static void mcam_ctlr_stop(struct mcam_camera *cam)
274 {
275 	mcam_reg_clear_bit(cam, REG_CTRL0, C0_ENABLE);
276 }
277 
mcam_enable_mipi(struct mcam_camera * mcam)278 static void mcam_enable_mipi(struct mcam_camera *mcam)
279 {
280 	/* Using MIPI mode and enable MIPI */
281 	if (mcam->calc_dphy)
282 		mcam->calc_dphy(mcam);
283 	cam_dbg(mcam, "camera: DPHY3=0x%x, DPHY5=0x%x, DPHY6=0x%x\n",
284 			mcam->dphy[0], mcam->dphy[1], mcam->dphy[2]);
285 	mcam_reg_write(mcam, REG_CSI2_DPHY3, mcam->dphy[0]);
286 	mcam_reg_write(mcam, REG_CSI2_DPHY5, mcam->dphy[1]);
287 	mcam_reg_write(mcam, REG_CSI2_DPHY6, mcam->dphy[2]);
288 
289 	if (!mcam->mipi_enabled) {
290 		if (mcam->lane > 4 || mcam->lane <= 0) {
291 			cam_warn(mcam, "lane number error\n");
292 			mcam->lane = 1;	/* set the default value */
293 		}
294 		/*
295 		 * 0x41 actives 1 lane
296 		 * 0x43 actives 2 lanes
297 		 * 0x45 actives 3 lanes (never happen)
298 		 * 0x47 actives 4 lanes
299 		 */
300 		mcam_reg_write(mcam, REG_CSI2_CTRL0,
301 			CSI2_C0_MIPI_EN | CSI2_C0_ACT_LANE(mcam->lane));
302 		mcam->mipi_enabled = true;
303 	}
304 }
305 
mcam_disable_mipi(struct mcam_camera * mcam)306 static void mcam_disable_mipi(struct mcam_camera *mcam)
307 {
308 	/* Using Parallel mode or disable MIPI */
309 	mcam_reg_write(mcam, REG_CSI2_CTRL0, 0x0);
310 	mcam_reg_write(mcam, REG_CSI2_DPHY3, 0x0);
311 	mcam_reg_write(mcam, REG_CSI2_DPHY5, 0x0);
312 	mcam_reg_write(mcam, REG_CSI2_DPHY6, 0x0);
313 	mcam->mipi_enabled = false;
314 }
315 
mcam_fmt_is_planar(__u32 pfmt)316 static bool mcam_fmt_is_planar(__u32 pfmt)
317 {
318 	struct mcam_format_struct *f;
319 
320 	f = mcam_find_format(pfmt);
321 	return f->planar;
322 }
323 
mcam_write_yuv_bases(struct mcam_camera * cam,unsigned frame,dma_addr_t base)324 static void mcam_write_yuv_bases(struct mcam_camera *cam,
325 				 unsigned frame, dma_addr_t base)
326 {
327 	struct v4l2_pix_format *fmt = &cam->pix_format;
328 	u32 pixel_count = fmt->width * fmt->height;
329 	dma_addr_t y, u = 0, v = 0;
330 
331 	y = base;
332 
333 	switch (fmt->pixelformat) {
334 	case V4L2_PIX_FMT_YUV420:
335 		u = y + pixel_count;
336 		v = u + pixel_count / 4;
337 		break;
338 	case V4L2_PIX_FMT_YVU420:
339 		v = y + pixel_count;
340 		u = v + pixel_count / 4;
341 		break;
342 	default:
343 		break;
344 	}
345 
346 	mcam_reg_write(cam, REG_Y0BAR + frame * 4, y);
347 	if (mcam_fmt_is_planar(fmt->pixelformat)) {
348 		mcam_reg_write(cam, REG_U0BAR + frame * 4, u);
349 		mcam_reg_write(cam, REG_V0BAR + frame * 4, v);
350 	}
351 }
352 
353 /* ------------------------------------------------------------------- */
354 
355 #ifdef MCAM_MODE_VMALLOC
356 /*
357  * Code specific to the vmalloc buffer mode.
358  */
359 
360 /*
361  * Allocate in-kernel DMA buffers for vmalloc mode.
362  */
mcam_alloc_dma_bufs(struct mcam_camera * cam,int loadtime)363 static int mcam_alloc_dma_bufs(struct mcam_camera *cam, int loadtime)
364 {
365 	int i;
366 
367 	mcam_set_config_needed(cam, 1);
368 	if (loadtime)
369 		cam->dma_buf_size = dma_buf_size;
370 	else
371 		cam->dma_buf_size = cam->pix_format.sizeimage;
372 	if (n_dma_bufs > 3)
373 		n_dma_bufs = 3;
374 
375 	cam->nbufs = 0;
376 	for (i = 0; i < n_dma_bufs; i++) {
377 		cam->dma_bufs[i] = dma_alloc_coherent(cam->dev,
378 				cam->dma_buf_size, cam->dma_handles + i,
379 				GFP_KERNEL);
380 		if (cam->dma_bufs[i] == NULL) {
381 			cam_warn(cam, "Failed to allocate DMA buffer\n");
382 			break;
383 		}
384 		(cam->nbufs)++;
385 	}
386 
387 	switch (cam->nbufs) {
388 	case 1:
389 		dma_free_coherent(cam->dev, cam->dma_buf_size,
390 				cam->dma_bufs[0], cam->dma_handles[0]);
391 		cam->nbufs = 0;
392 		fallthrough;
393 	case 0:
394 		cam_err(cam, "Insufficient DMA buffers, cannot operate\n");
395 		return -ENOMEM;
396 
397 	case 2:
398 		if (n_dma_bufs > 2)
399 			cam_warn(cam, "Will limp along with only 2 buffers\n");
400 		break;
401 	}
402 	return 0;
403 }
404 
mcam_free_dma_bufs(struct mcam_camera * cam)405 static void mcam_free_dma_bufs(struct mcam_camera *cam)
406 {
407 	int i;
408 
409 	for (i = 0; i < cam->nbufs; i++) {
410 		dma_free_coherent(cam->dev, cam->dma_buf_size,
411 				cam->dma_bufs[i], cam->dma_handles[i]);
412 		cam->dma_bufs[i] = NULL;
413 	}
414 	cam->nbufs = 0;
415 }
416 
417 
418 /*
419  * Set up DMA buffers when operating in vmalloc mode
420  */
mcam_ctlr_dma_vmalloc(struct mcam_camera * cam)421 static void mcam_ctlr_dma_vmalloc(struct mcam_camera *cam)
422 {
423 	/*
424 	 * Store the first two YUV buffers. Then either
425 	 * set the third if it exists, or tell the controller
426 	 * to just use two.
427 	 */
428 	mcam_write_yuv_bases(cam, 0, cam->dma_handles[0]);
429 	mcam_write_yuv_bases(cam, 1, cam->dma_handles[1]);
430 	if (cam->nbufs > 2) {
431 		mcam_write_yuv_bases(cam, 2, cam->dma_handles[2]);
432 		mcam_reg_clear_bit(cam, REG_CTRL1, C1_TWOBUFS);
433 	} else
434 		mcam_reg_set_bit(cam, REG_CTRL1, C1_TWOBUFS);
435 	if (cam->chip_id == MCAM_CAFE)
436 		mcam_reg_write(cam, REG_UBAR, 0); /* 32 bits only */
437 }
438 
439 /*
440  * Copy data out to user space in the vmalloc case
441  */
mcam_frame_work(struct work_struct * t)442 static void mcam_frame_work(struct work_struct *t)
443 {
444 	struct mcam_camera *cam = from_work(cam, t, s_bh_work);
445 	int i;
446 	unsigned long flags;
447 	struct mcam_vb_buffer *buf;
448 
449 	spin_lock_irqsave(&cam->dev_lock, flags);
450 	for (i = 0; i < cam->nbufs; i++) {
451 		int bufno = cam->next_buf;
452 
453 		if (cam->state != S_STREAMING || bufno < 0)
454 			break;  /* I/O got stopped */
455 		if (++(cam->next_buf) >= cam->nbufs)
456 			cam->next_buf = 0;
457 		if (!test_bit(bufno, &cam->flags))
458 			continue;
459 		if (list_empty(&cam->buffers)) {
460 			cam->frame_state.singles++;
461 			break;  /* Leave it valid, hope for better later */
462 		}
463 		cam->frame_state.delivered++;
464 		clear_bit(bufno, &cam->flags);
465 		buf = list_first_entry(&cam->buffers, struct mcam_vb_buffer,
466 				queue);
467 		list_del_init(&buf->queue);
468 		/*
469 		 * Drop the lock during the big copy.  This *should* be safe...
470 		 */
471 		spin_unlock_irqrestore(&cam->dev_lock, flags);
472 		memcpy(vb2_plane_vaddr(&buf->vb_buf.vb2_buf, 0),
473 				cam->dma_bufs[bufno],
474 				cam->pix_format.sizeimage);
475 		mcam_buffer_done(cam, bufno, &buf->vb_buf);
476 		spin_lock_irqsave(&cam->dev_lock, flags);
477 	}
478 	spin_unlock_irqrestore(&cam->dev_lock, flags);
479 }
480 
481 
482 /*
483  * Make sure our allocated buffers are up to the task.
484  */
mcam_check_dma_buffers(struct mcam_camera * cam)485 static int mcam_check_dma_buffers(struct mcam_camera *cam)
486 {
487 	if (cam->nbufs > 0 && cam->dma_buf_size < cam->pix_format.sizeimage)
488 			mcam_free_dma_bufs(cam);
489 	if (cam->nbufs == 0)
490 		return mcam_alloc_dma_bufs(cam, 0);
491 	return 0;
492 }
493 
mcam_vmalloc_done(struct mcam_camera * cam,int frame)494 static void mcam_vmalloc_done(struct mcam_camera *cam, int frame)
495 {
496 	queue_work(system_bh_wq, &cam->s_bh_work);
497 }
498 
499 #else /* MCAM_MODE_VMALLOC */
500 
mcam_alloc_dma_bufs(struct mcam_camera * cam,int loadtime)501 static inline int mcam_alloc_dma_bufs(struct mcam_camera *cam, int loadtime)
502 {
503 	return 0;
504 }
505 
mcam_free_dma_bufs(struct mcam_camera * cam)506 static inline void mcam_free_dma_bufs(struct mcam_camera *cam)
507 {
508 	return;
509 }
510 
mcam_check_dma_buffers(struct mcam_camera * cam)511 static inline int mcam_check_dma_buffers(struct mcam_camera *cam)
512 {
513 	return 0;
514 }
515 
516 
517 
518 #endif /* MCAM_MODE_VMALLOC */
519 
520 
521 #ifdef MCAM_MODE_DMA_CONTIG
522 /* ---------------------------------------------------------------------- */
523 /*
524  * DMA-contiguous code.
525  */
526 
527 /*
528  * Set up a contiguous buffer for the given frame.  Here also is where
529  * the underrun strategy is set: if there is no buffer available, reuse
530  * the buffer from the other BAR and set the CF_SINGLE_BUFFER flag to
531  * keep the interrupt handler from giving that buffer back to user
532  * space.  In this way, we always have a buffer to DMA to and don't
533  * have to try to play games stopping and restarting the controller.
534  */
mcam_set_contig_buffer(struct mcam_camera * cam,int frame)535 static void mcam_set_contig_buffer(struct mcam_camera *cam, int frame)
536 {
537 	struct mcam_vb_buffer *buf;
538 	dma_addr_t dma_handle;
539 	struct vb2_v4l2_buffer *vb;
540 
541 	/*
542 	 * If there are no available buffers, go into single mode
543 	 */
544 	if (list_empty(&cam->buffers)) {
545 		buf = cam->vb_bufs[frame ^ 0x1];
546 		set_bit(CF_SINGLE_BUFFER, &cam->flags);
547 		cam->frame_state.singles++;
548 	} else {
549 		/*
550 		 * OK, we have a buffer we can use.
551 		 */
552 		buf = list_first_entry(&cam->buffers, struct mcam_vb_buffer,
553 					queue);
554 		list_del_init(&buf->queue);
555 		clear_bit(CF_SINGLE_BUFFER, &cam->flags);
556 	}
557 
558 	cam->vb_bufs[frame] = buf;
559 	vb = &buf->vb_buf;
560 
561 	dma_handle = vb2_dma_contig_plane_dma_addr(&vb->vb2_buf, 0);
562 	mcam_write_yuv_bases(cam, frame, dma_handle);
563 }
564 
565 /*
566  * Initial B_DMA_contig setup.
567  */
mcam_ctlr_dma_contig(struct mcam_camera * cam)568 static void mcam_ctlr_dma_contig(struct mcam_camera *cam)
569 {
570 	mcam_reg_set_bit(cam, REG_CTRL1, C1_TWOBUFS);
571 	cam->nbufs = 2;
572 	mcam_set_contig_buffer(cam, 0);
573 	mcam_set_contig_buffer(cam, 1);
574 }
575 
576 /*
577  * Frame completion handling.
578  */
mcam_dma_contig_done(struct mcam_camera * cam,int frame)579 static void mcam_dma_contig_done(struct mcam_camera *cam, int frame)
580 {
581 	struct mcam_vb_buffer *buf = cam->vb_bufs[frame];
582 
583 	if (!test_bit(CF_SINGLE_BUFFER, &cam->flags)) {
584 		cam->frame_state.delivered++;
585 		cam->vb_bufs[frame] = NULL;
586 		mcam_buffer_done(cam, frame, &buf->vb_buf);
587 	}
588 	mcam_set_contig_buffer(cam, frame);
589 }
590 
591 #endif /* MCAM_MODE_DMA_CONTIG */
592 
593 #ifdef MCAM_MODE_DMA_SG
594 /* ---------------------------------------------------------------------- */
595 /*
596  * Scatter/gather-specific code.
597  */
598 
599 /*
600  * Set up the next buffer for S/G I/O; caller should be sure that
601  * the controller is stopped and a buffer is available.
602  */
mcam_sg_next_buffer(struct mcam_camera * cam)603 static void mcam_sg_next_buffer(struct mcam_camera *cam)
604 {
605 	struct mcam_vb_buffer *buf;
606 	struct sg_table *sg_table;
607 
608 	buf = list_first_entry(&cam->buffers, struct mcam_vb_buffer, queue);
609 	list_del_init(&buf->queue);
610 	sg_table = vb2_dma_sg_plane_desc(&buf->vb_buf.vb2_buf, 0);
611 	/*
612 	 * Very Bad Not Good Things happen if you don't clear
613 	 * C1_DESC_ENA before making any descriptor changes.
614 	 */
615 	mcam_reg_clear_bit(cam, REG_CTRL1, C1_DESC_ENA);
616 	mcam_reg_write(cam, REG_DMA_DESC_Y, buf->dma_desc_pa);
617 	mcam_reg_write(cam, REG_DESC_LEN_Y,
618 			sg_table->nents * sizeof(struct mcam_dma_desc));
619 	mcam_reg_write(cam, REG_DESC_LEN_U, 0);
620 	mcam_reg_write(cam, REG_DESC_LEN_V, 0);
621 	mcam_reg_set_bit(cam, REG_CTRL1, C1_DESC_ENA);
622 	cam->vb_bufs[0] = buf;
623 }
624 
625 /*
626  * Initial B_DMA_sg setup
627  */
mcam_ctlr_dma_sg(struct mcam_camera * cam)628 static void mcam_ctlr_dma_sg(struct mcam_camera *cam)
629 {
630 	/*
631 	 * The list-empty condition can hit us at resume time
632 	 * if the buffer list was empty when the system was suspended.
633 	 */
634 	if (list_empty(&cam->buffers)) {
635 		set_bit(CF_SG_RESTART, &cam->flags);
636 		return;
637 	}
638 
639 	mcam_reg_clear_bit(cam, REG_CTRL1, C1_DESC_3WORD);
640 	mcam_sg_next_buffer(cam);
641 	cam->nbufs = 3;
642 }
643 
644 
645 /*
646  * Frame completion with S/G is trickier.  We can't muck with
647  * a descriptor chain on the fly, since the controller buffers it
648  * internally.  So we have to actually stop and restart; Marvell
649  * says this is the way to do it.
650  *
651  * Of course, stopping is easier said than done; experience shows
652  * that the controller can start a frame *after* C0_ENABLE has been
653  * cleared.  So when running in S/G mode, the controller is "stopped"
654  * on receipt of the start-of-frame interrupt.  That means we can
655  * safely change the DMA descriptor array here and restart things
656  * (assuming there's another buffer waiting to go).
657  */
mcam_dma_sg_done(struct mcam_camera * cam,int frame)658 static void mcam_dma_sg_done(struct mcam_camera *cam, int frame)
659 {
660 	struct mcam_vb_buffer *buf = cam->vb_bufs[0];
661 
662 	/*
663 	 * If we're no longer supposed to be streaming, don't do anything.
664 	 */
665 	if (cam->state != S_STREAMING)
666 		return;
667 	/*
668 	 * If we have another buffer available, put it in and
669 	 * restart the engine.
670 	 */
671 	if (!list_empty(&cam->buffers)) {
672 		mcam_sg_next_buffer(cam);
673 		mcam_ctlr_start(cam);
674 	/*
675 	 * Otherwise set CF_SG_RESTART and the controller will
676 	 * be restarted once another buffer shows up.
677 	 */
678 	} else {
679 		set_bit(CF_SG_RESTART, &cam->flags);
680 		cam->frame_state.singles++;
681 		cam->vb_bufs[0] = NULL;
682 	}
683 	/*
684 	 * Now we can give the completed frame back to user space.
685 	 */
686 	cam->frame_state.delivered++;
687 	mcam_buffer_done(cam, frame, &buf->vb_buf);
688 }
689 
690 
691 /*
692  * Scatter/gather mode requires stopping the controller between
693  * frames so we can put in a new DMA descriptor array.  If no new
694  * buffer exists at frame completion, the controller is left stopped;
695  * this function is charged with getting things going again.
696  */
mcam_sg_restart(struct mcam_camera * cam)697 static void mcam_sg_restart(struct mcam_camera *cam)
698 {
699 	mcam_ctlr_dma_sg(cam);
700 	mcam_ctlr_start(cam);
701 	clear_bit(CF_SG_RESTART, &cam->flags);
702 }
703 
704 #else /* MCAM_MODE_DMA_SG */
705 
mcam_sg_restart(struct mcam_camera * cam)706 static inline void mcam_sg_restart(struct mcam_camera *cam)
707 {
708 	return;
709 }
710 
711 #endif /* MCAM_MODE_DMA_SG */
712 
713 /* ---------------------------------------------------------------------- */
714 /*
715  * Buffer-mode-independent controller code.
716  */
717 
718 /*
719  * Image format setup
720  */
mcam_ctlr_image(struct mcam_camera * cam)721 static void mcam_ctlr_image(struct mcam_camera *cam)
722 {
723 	struct v4l2_pix_format *fmt = &cam->pix_format;
724 	u32 widthy = 0, widthuv = 0, imgsz_h, imgsz_w;
725 
726 	cam_dbg(cam, "camera: bytesperline = %d; height = %d\n",
727 		fmt->bytesperline, fmt->sizeimage / fmt->bytesperline);
728 	imgsz_h = (fmt->height << IMGSZ_V_SHIFT) & IMGSZ_V_MASK;
729 	imgsz_w = (fmt->width * 2) & IMGSZ_H_MASK;
730 
731 	switch (fmt->pixelformat) {
732 	case V4L2_PIX_FMT_YUYV:
733 	case V4L2_PIX_FMT_YVYU:
734 		widthy = fmt->width * 2;
735 		widthuv = 0;
736 		break;
737 	case V4L2_PIX_FMT_YUV420:
738 	case V4L2_PIX_FMT_YVU420:
739 		widthy = fmt->width;
740 		widthuv = fmt->width / 2;
741 		break;
742 	default:
743 		widthy = fmt->bytesperline;
744 		widthuv = 0;
745 		break;
746 	}
747 
748 	mcam_reg_write_mask(cam, REG_IMGPITCH, widthuv << 16 | widthy,
749 			IMGP_YP_MASK | IMGP_UVP_MASK);
750 	mcam_reg_write(cam, REG_IMGSIZE, imgsz_h | imgsz_w);
751 	mcam_reg_write(cam, REG_IMGOFFSET, 0x0);
752 
753 	/*
754 	 * Tell the controller about the image format we are using.
755 	 */
756 	switch (fmt->pixelformat) {
757 	case V4L2_PIX_FMT_YUV420:
758 	case V4L2_PIX_FMT_YVU420:
759 		mcam_reg_write_mask(cam, REG_CTRL0,
760 			C0_DF_YUV | C0_YUV_420PL | C0_YUVE_VYUY, C0_DF_MASK);
761 		break;
762 	case V4L2_PIX_FMT_YUYV:
763 		mcam_reg_write_mask(cam, REG_CTRL0,
764 			C0_DF_YUV | C0_YUV_PACKED | C0_YUVE_NOSWAP, C0_DF_MASK);
765 		break;
766 	case V4L2_PIX_FMT_YVYU:
767 		mcam_reg_write_mask(cam, REG_CTRL0,
768 			C0_DF_YUV | C0_YUV_PACKED | C0_YUVE_SWAP24, C0_DF_MASK);
769 		break;
770 	case V4L2_PIX_FMT_XRGB444:
771 		mcam_reg_write_mask(cam, REG_CTRL0,
772 			C0_DF_RGB | C0_RGBF_444 | C0_RGB4_XBGR, C0_DF_MASK);
773 		break;
774 	case V4L2_PIX_FMT_RGB565:
775 		mcam_reg_write_mask(cam, REG_CTRL0,
776 			C0_DF_RGB | C0_RGBF_565 | C0_RGB5_BGGR, C0_DF_MASK);
777 		break;
778 	case V4L2_PIX_FMT_SBGGR8:
779 		mcam_reg_write_mask(cam, REG_CTRL0,
780 			C0_DF_RGB | C0_RGB5_GRBG, C0_DF_MASK);
781 		break;
782 	default:
783 		cam_err(cam, "camera: unknown format: %#x\n", fmt->pixelformat);
784 		break;
785 	}
786 
787 	/*
788 	 * Make sure it knows we want to use hsync/vsync.
789 	 */
790 	mcam_reg_write_mask(cam, REG_CTRL0, C0_SIF_HVSYNC, C0_SIFM_MASK);
791 }
792 
793 
794 /*
795  * Configure the controller for operation; caller holds the
796  * device mutex.
797  */
mcam_ctlr_configure(struct mcam_camera * cam)798 static int mcam_ctlr_configure(struct mcam_camera *cam)
799 {
800 	unsigned long flags;
801 
802 	spin_lock_irqsave(&cam->dev_lock, flags);
803 	clear_bit(CF_SG_RESTART, &cam->flags);
804 	cam->dma_setup(cam);
805 	mcam_ctlr_image(cam);
806 	mcam_set_config_needed(cam, 0);
807 	spin_unlock_irqrestore(&cam->dev_lock, flags);
808 	return 0;
809 }
810 
mcam_ctlr_irq_enable(struct mcam_camera * cam)811 static void mcam_ctlr_irq_enable(struct mcam_camera *cam)
812 {
813 	/*
814 	 * Clear any pending interrupts, since we do not
815 	 * expect to have I/O active prior to enabling.
816 	 */
817 	mcam_reg_write(cam, REG_IRQSTAT, FRAMEIRQS);
818 	mcam_reg_set_bit(cam, REG_IRQMASK, FRAMEIRQS);
819 }
820 
mcam_ctlr_irq_disable(struct mcam_camera * cam)821 static void mcam_ctlr_irq_disable(struct mcam_camera *cam)
822 {
823 	mcam_reg_clear_bit(cam, REG_IRQMASK, FRAMEIRQS);
824 }
825 
826 /*
827  * Stop the controller, and don't return until we're really sure that no
828  * further DMA is going on.
829  */
mcam_ctlr_stop_dma(struct mcam_camera * cam)830 static void mcam_ctlr_stop_dma(struct mcam_camera *cam)
831 {
832 	unsigned long flags;
833 
834 	/*
835 	 * Theory: stop the camera controller (whether it is operating
836 	 * or not).  Delay briefly just in case we race with the SOF
837 	 * interrupt, then wait until no DMA is active.
838 	 */
839 	spin_lock_irqsave(&cam->dev_lock, flags);
840 	clear_bit(CF_SG_RESTART, &cam->flags);
841 	mcam_ctlr_stop(cam);
842 	cam->state = S_IDLE;
843 	spin_unlock_irqrestore(&cam->dev_lock, flags);
844 	/*
845 	 * This is a brutally long sleep, but experience shows that
846 	 * it can take the controller a while to get the message that
847 	 * it needs to stop grabbing frames.  In particular, we can
848 	 * sometimes (on mmp) get a frame at the end WITHOUT the
849 	 * start-of-frame indication.
850 	 */
851 	msleep(150);
852 	if (test_bit(CF_DMA_ACTIVE, &cam->flags))
853 		cam_err(cam, "Timeout waiting for DMA to end\n");
854 		/* This would be bad news - what now? */
855 	spin_lock_irqsave(&cam->dev_lock, flags);
856 	mcam_ctlr_irq_disable(cam);
857 	spin_unlock_irqrestore(&cam->dev_lock, flags);
858 }
859 
860 /*
861  * Power up and down.
862  */
mcam_ctlr_power_up(struct mcam_camera * cam)863 static int mcam_ctlr_power_up(struct mcam_camera *cam)
864 {
865 	unsigned long flags;
866 	int ret;
867 
868 	spin_lock_irqsave(&cam->dev_lock, flags);
869 	if (cam->plat_power_up) {
870 		ret = cam->plat_power_up(cam);
871 		if (ret) {
872 			spin_unlock_irqrestore(&cam->dev_lock, flags);
873 			return ret;
874 		}
875 	}
876 	mcam_reg_clear_bit(cam, REG_CTRL1, C1_PWRDWN);
877 	spin_unlock_irqrestore(&cam->dev_lock, flags);
878 	return 0;
879 }
880 
mcam_ctlr_power_down(struct mcam_camera * cam)881 static void mcam_ctlr_power_down(struct mcam_camera *cam)
882 {
883 	unsigned long flags;
884 
885 	spin_lock_irqsave(&cam->dev_lock, flags);
886 	/*
887 	 * School of hard knocks department: be sure we do any register
888 	 * twiddling on the controller *before* calling the platform
889 	 * power down routine.
890 	 */
891 	mcam_reg_set_bit(cam, REG_CTRL1, C1_PWRDWN);
892 	if (cam->plat_power_down)
893 		cam->plat_power_down(cam);
894 	spin_unlock_irqrestore(&cam->dev_lock, flags);
895 }
896 
897 /* ---------------------------------------------------------------------- */
898 /*
899  * Master sensor clock.
900  */
mclk_prepare(struct clk_hw * hw)901 static int mclk_prepare(struct clk_hw *hw)
902 {
903 	struct mcam_camera *cam = container_of(hw, struct mcam_camera, mclk_hw);
904 
905 	clk_prepare(cam->clk[0]);
906 	return 0;
907 }
908 
mclk_unprepare(struct clk_hw * hw)909 static void mclk_unprepare(struct clk_hw *hw)
910 {
911 	struct mcam_camera *cam = container_of(hw, struct mcam_camera, mclk_hw);
912 
913 	clk_unprepare(cam->clk[0]);
914 }
915 
mclk_enable(struct clk_hw * hw)916 static int mclk_enable(struct clk_hw *hw)
917 {
918 	struct mcam_camera *cam = container_of(hw, struct mcam_camera, mclk_hw);
919 	int mclk_src;
920 	int mclk_div;
921 	int ret;
922 
923 	/*
924 	 * Clock the sensor appropriately.  Controller clock should
925 	 * be 48MHz, sensor "typical" value is half that.
926 	 */
927 	if (cam->bus_type == V4L2_MBUS_CSI2_DPHY) {
928 		mclk_src = cam->mclk_src;
929 		mclk_div = cam->mclk_div;
930 	} else {
931 		mclk_src = 3;
932 		mclk_div = 2;
933 	}
934 
935 	ret = pm_runtime_resume_and_get(cam->dev);
936 	if (ret < 0)
937 		return ret;
938 	ret = clk_enable(cam->clk[0]);
939 	if (ret) {
940 		pm_runtime_put(cam->dev);
941 		return ret;
942 	}
943 
944 	mcam_reg_write(cam, REG_CLKCTRL, (mclk_src << 29) | mclk_div);
945 	mcam_ctlr_power_up(cam);
946 
947 	return 0;
948 }
949 
mclk_disable(struct clk_hw * hw)950 static void mclk_disable(struct clk_hw *hw)
951 {
952 	struct mcam_camera *cam = container_of(hw, struct mcam_camera, mclk_hw);
953 
954 	mcam_ctlr_power_down(cam);
955 	clk_disable(cam->clk[0]);
956 	pm_runtime_put(cam->dev);
957 }
958 
mclk_recalc_rate(struct clk_hw * hw,unsigned long parent_rate)959 static unsigned long mclk_recalc_rate(struct clk_hw *hw,
960 				unsigned long parent_rate)
961 {
962 	return 48000000;
963 }
964 
965 static const struct clk_ops mclk_ops = {
966 	.prepare = mclk_prepare,
967 	.unprepare = mclk_unprepare,
968 	.enable = mclk_enable,
969 	.disable = mclk_disable,
970 	.recalc_rate = mclk_recalc_rate,
971 };
972 
973 /* -------------------------------------------------------------------- */
974 /*
975  * Communications with the sensor.
976  */
977 
__mcam_cam_reset(struct mcam_camera * cam)978 static int __mcam_cam_reset(struct mcam_camera *cam)
979 {
980 	return sensor_call(cam, core, reset, 0);
981 }
982 
983 /*
984  * We have found the sensor on the i2c.  Let's try to have a
985  * conversation.
986  */
mcam_cam_init(struct mcam_camera * cam)987 static int mcam_cam_init(struct mcam_camera *cam)
988 {
989 	int ret;
990 
991 	if (cam->state != S_NOTREADY)
992 		cam_warn(cam, "Cam init with device in funky state %d",
993 				cam->state);
994 	ret = __mcam_cam_reset(cam);
995 	/* Get/set parameters? */
996 	cam->state = S_IDLE;
997 	return ret;
998 }
999 
1000 /*
1001  * Configure the sensor to match the parameters we have.  Caller should
1002  * hold s_mutex
1003  */
mcam_cam_set_flip(struct mcam_camera * cam)1004 static int mcam_cam_set_flip(struct mcam_camera *cam)
1005 {
1006 	struct v4l2_control ctrl;
1007 
1008 	memset(&ctrl, 0, sizeof(ctrl));
1009 	ctrl.id = V4L2_CID_VFLIP;
1010 	ctrl.value = flip;
1011 	return v4l2_s_ctrl(NULL, cam->sensor->ctrl_handler, &ctrl);
1012 }
1013 
1014 
mcam_cam_configure(struct mcam_camera * cam)1015 static int mcam_cam_configure(struct mcam_camera *cam)
1016 {
1017 	struct v4l2_subdev_format format = {
1018 		.which = V4L2_SUBDEV_FORMAT_ACTIVE,
1019 	};
1020 	int ret;
1021 
1022 	v4l2_fill_mbus_format(&format.format, &cam->pix_format, cam->mbus_code);
1023 	ret = sensor_call(cam, core, init, 0);
1024 	if (ret == 0)
1025 		ret = sensor_call(cam, pad, set_fmt, NULL, &format);
1026 	/*
1027 	 * OV7670 does weird things if flip is set *before* format...
1028 	 */
1029 	ret += mcam_cam_set_flip(cam);
1030 	return ret;
1031 }
1032 
1033 /*
1034  * Get everything ready, and start grabbing frames.
1035  */
mcam_read_setup(struct mcam_camera * cam)1036 static int mcam_read_setup(struct mcam_camera *cam)
1037 {
1038 	int ret;
1039 	unsigned long flags;
1040 
1041 	/*
1042 	 * Configuration.  If we still don't have DMA buffers,
1043 	 * make one last, desperate attempt.
1044 	 */
1045 	if (cam->buffer_mode == B_vmalloc && cam->nbufs == 0 &&
1046 			mcam_alloc_dma_bufs(cam, 0))
1047 		return -ENOMEM;
1048 
1049 	if (mcam_needs_config(cam)) {
1050 		mcam_cam_configure(cam);
1051 		ret = mcam_ctlr_configure(cam);
1052 		if (ret)
1053 			return ret;
1054 	}
1055 
1056 	/*
1057 	 * Turn it loose.
1058 	 */
1059 	spin_lock_irqsave(&cam->dev_lock, flags);
1060 	clear_bit(CF_DMA_ACTIVE, &cam->flags);
1061 	mcam_reset_buffers(cam);
1062 	if (cam->bus_type == V4L2_MBUS_CSI2_DPHY)
1063 		mcam_enable_mipi(cam);
1064 	else
1065 		mcam_disable_mipi(cam);
1066 	mcam_ctlr_irq_enable(cam);
1067 	cam->state = S_STREAMING;
1068 	if (!test_bit(CF_SG_RESTART, &cam->flags))
1069 		mcam_ctlr_start(cam);
1070 	spin_unlock_irqrestore(&cam->dev_lock, flags);
1071 	return 0;
1072 }
1073 
1074 /* ----------------------------------------------------------------------- */
1075 /*
1076  * Videobuf2 interface code.
1077  */
1078 
mcam_vb_queue_setup(struct vb2_queue * vq,unsigned int * nbufs,unsigned int * num_planes,unsigned int sizes[],struct device * alloc_devs[])1079 static int mcam_vb_queue_setup(struct vb2_queue *vq,
1080 		unsigned int *nbufs,
1081 		unsigned int *num_planes, unsigned int sizes[],
1082 		struct device *alloc_devs[])
1083 {
1084 	struct mcam_camera *cam = vb2_get_drv_priv(vq);
1085 	int minbufs = (cam->buffer_mode == B_DMA_contig) ? 3 : 2;
1086 	unsigned size = cam->pix_format.sizeimage;
1087 
1088 	if (*nbufs < minbufs)
1089 		*nbufs = minbufs;
1090 
1091 	if (*num_planes)
1092 		return sizes[0] < size ? -EINVAL : 0;
1093 	sizes[0] = size;
1094 	*num_planes = 1; /* Someday we have to support planar formats... */
1095 	return 0;
1096 }
1097 
1098 
mcam_vb_buf_queue(struct vb2_buffer * vb)1099 static void mcam_vb_buf_queue(struct vb2_buffer *vb)
1100 {
1101 	struct vb2_v4l2_buffer *vbuf = to_vb2_v4l2_buffer(vb);
1102 	struct mcam_vb_buffer *mvb = vb_to_mvb(vbuf);
1103 	struct mcam_camera *cam = vb2_get_drv_priv(vb->vb2_queue);
1104 	unsigned long flags;
1105 	int start;
1106 
1107 	spin_lock_irqsave(&cam->dev_lock, flags);
1108 	start = (cam->state == S_BUFWAIT) && !list_empty(&cam->buffers);
1109 	list_add(&mvb->queue, &cam->buffers);
1110 	if (cam->state == S_STREAMING && test_bit(CF_SG_RESTART, &cam->flags))
1111 		mcam_sg_restart(cam);
1112 	spin_unlock_irqrestore(&cam->dev_lock, flags);
1113 	if (start)
1114 		mcam_read_setup(cam);
1115 }
1116 
mcam_vb_requeue_bufs(struct vb2_queue * vq,enum vb2_buffer_state state)1117 static void mcam_vb_requeue_bufs(struct vb2_queue *vq,
1118 				 enum vb2_buffer_state state)
1119 {
1120 	struct mcam_camera *cam = vb2_get_drv_priv(vq);
1121 	struct mcam_vb_buffer *buf, *node;
1122 	unsigned long flags;
1123 	unsigned i;
1124 
1125 	spin_lock_irqsave(&cam->dev_lock, flags);
1126 	list_for_each_entry_safe(buf, node, &cam->buffers, queue) {
1127 		vb2_buffer_done(&buf->vb_buf.vb2_buf, state);
1128 		list_del(&buf->queue);
1129 	}
1130 	for (i = 0; i < MAX_DMA_BUFS; i++) {
1131 		buf = cam->vb_bufs[i];
1132 
1133 		if (buf) {
1134 			vb2_buffer_done(&buf->vb_buf.vb2_buf, state);
1135 			cam->vb_bufs[i] = NULL;
1136 		}
1137 	}
1138 	spin_unlock_irqrestore(&cam->dev_lock, flags);
1139 }
1140 
1141 /*
1142  * These need to be called with the mutex held from vb2
1143  */
mcam_vb_start_streaming(struct vb2_queue * vq,unsigned int count)1144 static int mcam_vb_start_streaming(struct vb2_queue *vq, unsigned int count)
1145 {
1146 	struct mcam_camera *cam = vb2_get_drv_priv(vq);
1147 	unsigned int frame;
1148 	int ret;
1149 
1150 	if (cam->state != S_IDLE) {
1151 		mcam_vb_requeue_bufs(vq, VB2_BUF_STATE_QUEUED);
1152 		return -EINVAL;
1153 	}
1154 	cam->frame_state.frames = 0;
1155 	cam->frame_state.singles = 0;
1156 	cam->frame_state.delivered = 0;
1157 	cam->sequence = 0;
1158 	/*
1159 	 * Videobuf2 sneakily hoards all the buffers and won't
1160 	 * give them to us until *after* streaming starts.  But
1161 	 * we can't actually start streaming until we have a
1162 	 * destination.  So go into a wait state and hope they
1163 	 * give us buffers soon.
1164 	 */
1165 	if (cam->buffer_mode != B_vmalloc && list_empty(&cam->buffers)) {
1166 		cam->state = S_BUFWAIT;
1167 		return 0;
1168 	}
1169 
1170 	/*
1171 	 * Ensure clear the left over frame flags
1172 	 * before every really start streaming
1173 	 */
1174 	for (frame = 0; frame < cam->nbufs; frame++)
1175 		clear_bit(CF_FRAME_SOF0 + frame, &cam->flags);
1176 
1177 	ret = mcam_read_setup(cam);
1178 	if (ret)
1179 		mcam_vb_requeue_bufs(vq, VB2_BUF_STATE_QUEUED);
1180 	return ret;
1181 }
1182 
mcam_vb_stop_streaming(struct vb2_queue * vq)1183 static void mcam_vb_stop_streaming(struct vb2_queue *vq)
1184 {
1185 	struct mcam_camera *cam = vb2_get_drv_priv(vq);
1186 
1187 	cam_dbg(cam, "stop_streaming: %d frames, %d singles, %d delivered\n",
1188 			cam->frame_state.frames, cam->frame_state.singles,
1189 			cam->frame_state.delivered);
1190 	if (cam->state == S_BUFWAIT) {
1191 		/* They never gave us buffers */
1192 		cam->state = S_IDLE;
1193 		return;
1194 	}
1195 	if (cam->state != S_STREAMING)
1196 		return;
1197 	mcam_ctlr_stop_dma(cam);
1198 	/*
1199 	 * VB2 reclaims the buffers, so we need to forget
1200 	 * about them.
1201 	 */
1202 	mcam_vb_requeue_bufs(vq, VB2_BUF_STATE_ERROR);
1203 }
1204 
1205 
1206 static const struct vb2_ops mcam_vb2_ops = {
1207 	.queue_setup		= mcam_vb_queue_setup,
1208 	.buf_queue		= mcam_vb_buf_queue,
1209 	.start_streaming	= mcam_vb_start_streaming,
1210 	.stop_streaming		= mcam_vb_stop_streaming,
1211 };
1212 
1213 
1214 #ifdef MCAM_MODE_DMA_SG
1215 /*
1216  * Scatter/gather mode uses all of the above functions plus a
1217  * few extras to deal with DMA mapping.
1218  */
mcam_vb_sg_buf_init(struct vb2_buffer * vb)1219 static int mcam_vb_sg_buf_init(struct vb2_buffer *vb)
1220 {
1221 	struct vb2_v4l2_buffer *vbuf = to_vb2_v4l2_buffer(vb);
1222 	struct mcam_vb_buffer *mvb = vb_to_mvb(vbuf);
1223 	struct mcam_camera *cam = vb2_get_drv_priv(vb->vb2_queue);
1224 	int ndesc = cam->pix_format.sizeimage/PAGE_SIZE + 1;
1225 
1226 	mvb->dma_desc = dma_alloc_coherent(cam->dev,
1227 			ndesc * sizeof(struct mcam_dma_desc),
1228 			&mvb->dma_desc_pa, GFP_KERNEL);
1229 	if (mvb->dma_desc == NULL) {
1230 		cam_err(cam, "Unable to get DMA descriptor array\n");
1231 		return -ENOMEM;
1232 	}
1233 	return 0;
1234 }
1235 
mcam_vb_sg_buf_prepare(struct vb2_buffer * vb)1236 static int mcam_vb_sg_buf_prepare(struct vb2_buffer *vb)
1237 {
1238 	struct vb2_v4l2_buffer *vbuf = to_vb2_v4l2_buffer(vb);
1239 	struct mcam_vb_buffer *mvb = vb_to_mvb(vbuf);
1240 	struct sg_table *sg_table = vb2_dma_sg_plane_desc(vb, 0);
1241 	struct mcam_dma_desc *desc = mvb->dma_desc;
1242 	struct scatterlist *sg;
1243 	int i;
1244 
1245 	for_each_sg(sg_table->sgl, sg, sg_table->nents, i) {
1246 		desc->dma_addr = sg_dma_address(sg);
1247 		desc->segment_len = sg_dma_len(sg);
1248 		desc++;
1249 	}
1250 	return 0;
1251 }
1252 
mcam_vb_sg_buf_cleanup(struct vb2_buffer * vb)1253 static void mcam_vb_sg_buf_cleanup(struct vb2_buffer *vb)
1254 {
1255 	struct vb2_v4l2_buffer *vbuf = to_vb2_v4l2_buffer(vb);
1256 	struct mcam_camera *cam = vb2_get_drv_priv(vb->vb2_queue);
1257 	struct mcam_vb_buffer *mvb = vb_to_mvb(vbuf);
1258 	int ndesc = cam->pix_format.sizeimage/PAGE_SIZE + 1;
1259 
1260 	dma_free_coherent(cam->dev, ndesc * sizeof(struct mcam_dma_desc),
1261 			mvb->dma_desc, mvb->dma_desc_pa);
1262 }
1263 
1264 
1265 static const struct vb2_ops mcam_vb2_sg_ops = {
1266 	.queue_setup		= mcam_vb_queue_setup,
1267 	.buf_init		= mcam_vb_sg_buf_init,
1268 	.buf_prepare		= mcam_vb_sg_buf_prepare,
1269 	.buf_queue		= mcam_vb_buf_queue,
1270 	.buf_cleanup		= mcam_vb_sg_buf_cleanup,
1271 	.start_streaming	= mcam_vb_start_streaming,
1272 	.stop_streaming		= mcam_vb_stop_streaming,
1273 };
1274 
1275 #endif /* MCAM_MODE_DMA_SG */
1276 
mcam_setup_vb2(struct mcam_camera * cam)1277 static int mcam_setup_vb2(struct mcam_camera *cam)
1278 {
1279 	struct vb2_queue *vq = &cam->vb_queue;
1280 
1281 	memset(vq, 0, sizeof(*vq));
1282 	vq->type = V4L2_BUF_TYPE_VIDEO_CAPTURE;
1283 	vq->drv_priv = cam;
1284 	vq->lock = &cam->s_mutex;
1285 	vq->timestamp_flags = V4L2_BUF_FLAG_TIMESTAMP_MONOTONIC;
1286 	vq->io_modes = VB2_MMAP | VB2_USERPTR | VB2_DMABUF | VB2_READ;
1287 	vq->buf_struct_size = sizeof(struct mcam_vb_buffer);
1288 	vq->dev = cam->dev;
1289 	INIT_LIST_HEAD(&cam->buffers);
1290 	switch (cam->buffer_mode) {
1291 	case B_DMA_contig:
1292 #ifdef MCAM_MODE_DMA_CONTIG
1293 		vq->ops = &mcam_vb2_ops;
1294 		vq->mem_ops = &vb2_dma_contig_memops;
1295 		cam->dma_setup = mcam_ctlr_dma_contig;
1296 		cam->frame_complete = mcam_dma_contig_done;
1297 #endif
1298 		break;
1299 	case B_DMA_sg:
1300 #ifdef MCAM_MODE_DMA_SG
1301 		vq->ops = &mcam_vb2_sg_ops;
1302 		vq->mem_ops = &vb2_dma_sg_memops;
1303 		cam->dma_setup = mcam_ctlr_dma_sg;
1304 		cam->frame_complete = mcam_dma_sg_done;
1305 #endif
1306 		break;
1307 	case B_vmalloc:
1308 #ifdef MCAM_MODE_VMALLOC
1309 		INIT_WORK(&cam->s_bh_work, mcam_frame_work);
1310 		vq->ops = &mcam_vb2_ops;
1311 		vq->mem_ops = &vb2_vmalloc_memops;
1312 		cam->dma_setup = mcam_ctlr_dma_vmalloc;
1313 		cam->frame_complete = mcam_vmalloc_done;
1314 #endif
1315 		break;
1316 	}
1317 	return vb2_queue_init(vq);
1318 }
1319 
1320 
1321 /* ---------------------------------------------------------------------- */
1322 /*
1323  * The long list of V4L2 ioctl() operations.
1324  */
1325 
mcam_vidioc_querycap(struct file * file,void * priv,struct v4l2_capability * cap)1326 static int mcam_vidioc_querycap(struct file *file, void *priv,
1327 		struct v4l2_capability *cap)
1328 {
1329 	struct mcam_camera *cam = video_drvdata(file);
1330 
1331 	strscpy(cap->driver, "marvell_ccic", sizeof(cap->driver));
1332 	strscpy(cap->card, "marvell_ccic", sizeof(cap->card));
1333 	strscpy(cap->bus_info, cam->bus_info, sizeof(cap->bus_info));
1334 	return 0;
1335 }
1336 
1337 
mcam_vidioc_enum_fmt_vid_cap(struct file * filp,void * priv,struct v4l2_fmtdesc * fmt)1338 static int mcam_vidioc_enum_fmt_vid_cap(struct file *filp,
1339 		void *priv, struct v4l2_fmtdesc *fmt)
1340 {
1341 	if (fmt->index >= N_MCAM_FMTS)
1342 		return -EINVAL;
1343 	fmt->pixelformat = mcam_formats[fmt->index].pixelformat;
1344 	return 0;
1345 }
1346 
mcam_vidioc_try_fmt_vid_cap(struct file * filp,void * priv,struct v4l2_format * fmt)1347 static int mcam_vidioc_try_fmt_vid_cap(struct file *filp, void *priv,
1348 		struct v4l2_format *fmt)
1349 {
1350 	struct mcam_camera *cam = video_drvdata(filp);
1351 	struct mcam_format_struct *f;
1352 	struct v4l2_pix_format *pix = &fmt->fmt.pix;
1353 	struct v4l2_subdev_pad_config pad_cfg;
1354 	struct v4l2_subdev_state pad_state = {
1355 		.pads = &pad_cfg,
1356 	};
1357 	struct v4l2_subdev_format format = {
1358 		.which = V4L2_SUBDEV_FORMAT_TRY,
1359 	};
1360 	int ret;
1361 
1362 	f = mcam_find_format(pix->pixelformat);
1363 	pix->pixelformat = f->pixelformat;
1364 	v4l2_fill_mbus_format(&format.format, pix, f->mbus_code);
1365 	ret = sensor_call(cam, pad, set_fmt, &pad_state, &format);
1366 	v4l2_fill_pix_format(pix, &format.format);
1367 	pix->bytesperline = pix->width * f->bpp;
1368 	switch (f->pixelformat) {
1369 	case V4L2_PIX_FMT_YUV420:
1370 	case V4L2_PIX_FMT_YVU420:
1371 		pix->sizeimage = pix->height * pix->bytesperline * 3 / 2;
1372 		break;
1373 	default:
1374 		pix->sizeimage = pix->height * pix->bytesperline;
1375 		break;
1376 	}
1377 	pix->colorspace = V4L2_COLORSPACE_SRGB;
1378 	return ret;
1379 }
1380 
mcam_vidioc_s_fmt_vid_cap(struct file * filp,void * priv,struct v4l2_format * fmt)1381 static int mcam_vidioc_s_fmt_vid_cap(struct file *filp, void *priv,
1382 		struct v4l2_format *fmt)
1383 {
1384 	struct mcam_camera *cam = video_drvdata(filp);
1385 	struct mcam_format_struct *f;
1386 	int ret;
1387 
1388 	/*
1389 	 * Can't do anything if the device is not idle
1390 	 * Also can't if there are streaming buffers in place.
1391 	 */
1392 	if (cam->state != S_IDLE || vb2_is_busy(&cam->vb_queue))
1393 		return -EBUSY;
1394 
1395 	f = mcam_find_format(fmt->fmt.pix.pixelformat);
1396 
1397 	/*
1398 	 * See if the formatting works in principle.
1399 	 */
1400 	ret = mcam_vidioc_try_fmt_vid_cap(filp, priv, fmt);
1401 	if (ret)
1402 		return ret;
1403 	/*
1404 	 * Now we start to change things for real, so let's do it
1405 	 * under lock.
1406 	 */
1407 	cam->pix_format = fmt->fmt.pix;
1408 	cam->mbus_code = f->mbus_code;
1409 
1410 	/*
1411 	 * Make sure we have appropriate DMA buffers.
1412 	 */
1413 	if (cam->buffer_mode == B_vmalloc) {
1414 		ret = mcam_check_dma_buffers(cam);
1415 		if (ret)
1416 			goto out;
1417 	}
1418 	mcam_set_config_needed(cam, 1);
1419 out:
1420 	return ret;
1421 }
1422 
1423 /*
1424  * Return our stored notion of how the camera is/should be configured.
1425  * The V4l2 spec wants us to be smarter, and actually get this from
1426  * the camera (and not mess with it at open time).  Someday.
1427  */
mcam_vidioc_g_fmt_vid_cap(struct file * filp,void * priv,struct v4l2_format * f)1428 static int mcam_vidioc_g_fmt_vid_cap(struct file *filp, void *priv,
1429 		struct v4l2_format *f)
1430 {
1431 	struct mcam_camera *cam = video_drvdata(filp);
1432 
1433 	f->fmt.pix = cam->pix_format;
1434 	return 0;
1435 }
1436 
1437 /*
1438  * We only have one input - the sensor - so minimize the nonsense here.
1439  */
mcam_vidioc_enum_input(struct file * filp,void * priv,struct v4l2_input * input)1440 static int mcam_vidioc_enum_input(struct file *filp, void *priv,
1441 		struct v4l2_input *input)
1442 {
1443 	if (input->index != 0)
1444 		return -EINVAL;
1445 
1446 	input->type = V4L2_INPUT_TYPE_CAMERA;
1447 	strscpy(input->name, "Camera", sizeof(input->name));
1448 	return 0;
1449 }
1450 
mcam_vidioc_g_input(struct file * filp,void * priv,unsigned int * i)1451 static int mcam_vidioc_g_input(struct file *filp, void *priv, unsigned int *i)
1452 {
1453 	*i = 0;
1454 	return 0;
1455 }
1456 
mcam_vidioc_s_input(struct file * filp,void * priv,unsigned int i)1457 static int mcam_vidioc_s_input(struct file *filp, void *priv, unsigned int i)
1458 {
1459 	if (i != 0)
1460 		return -EINVAL;
1461 	return 0;
1462 }
1463 
1464 /*
1465  * G/S_PARM.  Most of this is done by the sensor, but we are
1466  * the level which controls the number of read buffers.
1467  */
mcam_vidioc_g_parm(struct file * filp,void * priv,struct v4l2_streamparm * a)1468 static int mcam_vidioc_g_parm(struct file *filp, void *priv,
1469 		struct v4l2_streamparm *a)
1470 {
1471 	struct mcam_camera *cam = video_drvdata(filp);
1472 	int ret;
1473 
1474 	ret = v4l2_g_parm_cap(video_devdata(filp), cam->sensor, a);
1475 	a->parm.capture.readbuffers = n_dma_bufs;
1476 	return ret;
1477 }
1478 
mcam_vidioc_s_parm(struct file * filp,void * priv,struct v4l2_streamparm * a)1479 static int mcam_vidioc_s_parm(struct file *filp, void *priv,
1480 		struct v4l2_streamparm *a)
1481 {
1482 	struct mcam_camera *cam = video_drvdata(filp);
1483 	int ret;
1484 
1485 	ret = v4l2_s_parm_cap(video_devdata(filp), cam->sensor, a);
1486 	a->parm.capture.readbuffers = n_dma_bufs;
1487 	return ret;
1488 }
1489 
mcam_vidioc_enum_framesizes(struct file * filp,void * priv,struct v4l2_frmsizeenum * sizes)1490 static int mcam_vidioc_enum_framesizes(struct file *filp, void *priv,
1491 		struct v4l2_frmsizeenum *sizes)
1492 {
1493 	struct mcam_camera *cam = video_drvdata(filp);
1494 	struct mcam_format_struct *f;
1495 	struct v4l2_subdev_frame_size_enum fse = {
1496 		.index = sizes->index,
1497 		.which = V4L2_SUBDEV_FORMAT_ACTIVE,
1498 	};
1499 	int ret;
1500 
1501 	f = mcam_find_format(sizes->pixel_format);
1502 	if (f->pixelformat != sizes->pixel_format)
1503 		return -EINVAL;
1504 	fse.code = f->mbus_code;
1505 	ret = sensor_call(cam, pad, enum_frame_size, NULL, &fse);
1506 	if (ret)
1507 		return ret;
1508 	if (fse.min_width == fse.max_width &&
1509 	    fse.min_height == fse.max_height) {
1510 		sizes->type = V4L2_FRMSIZE_TYPE_DISCRETE;
1511 		sizes->discrete.width = fse.min_width;
1512 		sizes->discrete.height = fse.min_height;
1513 		return 0;
1514 	}
1515 	sizes->type = V4L2_FRMSIZE_TYPE_CONTINUOUS;
1516 	sizes->stepwise.min_width = fse.min_width;
1517 	sizes->stepwise.max_width = fse.max_width;
1518 	sizes->stepwise.min_height = fse.min_height;
1519 	sizes->stepwise.max_height = fse.max_height;
1520 	sizes->stepwise.step_width = 1;
1521 	sizes->stepwise.step_height = 1;
1522 	return 0;
1523 }
1524 
mcam_vidioc_enum_frameintervals(struct file * filp,void * priv,struct v4l2_frmivalenum * interval)1525 static int mcam_vidioc_enum_frameintervals(struct file *filp, void *priv,
1526 		struct v4l2_frmivalenum *interval)
1527 {
1528 	struct mcam_camera *cam = video_drvdata(filp);
1529 	struct mcam_format_struct *f;
1530 	struct v4l2_subdev_frame_interval_enum fie = {
1531 		.index = interval->index,
1532 		.width = interval->width,
1533 		.height = interval->height,
1534 		.which = V4L2_SUBDEV_FORMAT_ACTIVE,
1535 	};
1536 	int ret;
1537 
1538 	f = mcam_find_format(interval->pixel_format);
1539 	if (f->pixelformat != interval->pixel_format)
1540 		return -EINVAL;
1541 	fie.code = f->mbus_code;
1542 	ret = sensor_call(cam, pad, enum_frame_interval, NULL, &fie);
1543 	if (ret)
1544 		return ret;
1545 	interval->type = V4L2_FRMIVAL_TYPE_DISCRETE;
1546 	interval->discrete = fie.interval;
1547 	return 0;
1548 }
1549 
1550 #ifdef CONFIG_VIDEO_ADV_DEBUG
mcam_vidioc_g_register(struct file * file,void * priv,struct v4l2_dbg_register * reg)1551 static int mcam_vidioc_g_register(struct file *file, void *priv,
1552 		struct v4l2_dbg_register *reg)
1553 {
1554 	struct mcam_camera *cam = video_drvdata(file);
1555 
1556 	if (reg->reg > cam->regs_size - 4)
1557 		return -EINVAL;
1558 	reg->val = mcam_reg_read(cam, reg->reg);
1559 	reg->size = 4;
1560 	return 0;
1561 }
1562 
mcam_vidioc_s_register(struct file * file,void * priv,const struct v4l2_dbg_register * reg)1563 static int mcam_vidioc_s_register(struct file *file, void *priv,
1564 		const struct v4l2_dbg_register *reg)
1565 {
1566 	struct mcam_camera *cam = video_drvdata(file);
1567 
1568 	if (reg->reg > cam->regs_size - 4)
1569 		return -EINVAL;
1570 	mcam_reg_write(cam, reg->reg, reg->val);
1571 	return 0;
1572 }
1573 #endif
1574 
1575 static const struct v4l2_ioctl_ops mcam_v4l_ioctl_ops = {
1576 	.vidioc_querycap	= mcam_vidioc_querycap,
1577 	.vidioc_enum_fmt_vid_cap = mcam_vidioc_enum_fmt_vid_cap,
1578 	.vidioc_try_fmt_vid_cap	= mcam_vidioc_try_fmt_vid_cap,
1579 	.vidioc_s_fmt_vid_cap	= mcam_vidioc_s_fmt_vid_cap,
1580 	.vidioc_g_fmt_vid_cap	= mcam_vidioc_g_fmt_vid_cap,
1581 	.vidioc_enum_input	= mcam_vidioc_enum_input,
1582 	.vidioc_g_input		= mcam_vidioc_g_input,
1583 	.vidioc_s_input		= mcam_vidioc_s_input,
1584 	.vidioc_reqbufs		= vb2_ioctl_reqbufs,
1585 	.vidioc_create_bufs	= vb2_ioctl_create_bufs,
1586 	.vidioc_querybuf	= vb2_ioctl_querybuf,
1587 	.vidioc_qbuf		= vb2_ioctl_qbuf,
1588 	.vidioc_dqbuf		= vb2_ioctl_dqbuf,
1589 	.vidioc_expbuf		= vb2_ioctl_expbuf,
1590 	.vidioc_streamon	= vb2_ioctl_streamon,
1591 	.vidioc_streamoff	= vb2_ioctl_streamoff,
1592 	.vidioc_g_parm		= mcam_vidioc_g_parm,
1593 	.vidioc_s_parm		= mcam_vidioc_s_parm,
1594 	.vidioc_enum_framesizes = mcam_vidioc_enum_framesizes,
1595 	.vidioc_enum_frameintervals = mcam_vidioc_enum_frameintervals,
1596 	.vidioc_subscribe_event = v4l2_ctrl_subscribe_event,
1597 	.vidioc_unsubscribe_event = v4l2_event_unsubscribe,
1598 #ifdef CONFIG_VIDEO_ADV_DEBUG
1599 	.vidioc_g_register	= mcam_vidioc_g_register,
1600 	.vidioc_s_register	= mcam_vidioc_s_register,
1601 #endif
1602 };
1603 
1604 /* ---------------------------------------------------------------------- */
1605 /*
1606  * Our various file operations.
1607  */
mcam_v4l_open(struct file * filp)1608 static int mcam_v4l_open(struct file *filp)
1609 {
1610 	struct mcam_camera *cam = video_drvdata(filp);
1611 	int ret;
1612 
1613 	mutex_lock(&cam->s_mutex);
1614 	ret = v4l2_fh_open(filp);
1615 	if (ret)
1616 		goto out;
1617 	if (v4l2_fh_is_singular_file(filp)) {
1618 		ret = sensor_call(cam, core, s_power, 1);
1619 		if (ret)
1620 			goto out;
1621 		ret = pm_runtime_resume_and_get(cam->dev);
1622 		if (ret < 0)
1623 			goto out;
1624 		__mcam_cam_reset(cam);
1625 		mcam_set_config_needed(cam, 1);
1626 	}
1627 out:
1628 	mutex_unlock(&cam->s_mutex);
1629 	if (ret)
1630 		v4l2_fh_release(filp);
1631 	return ret;
1632 }
1633 
1634 
mcam_v4l_release(struct file * filp)1635 static int mcam_v4l_release(struct file *filp)
1636 {
1637 	struct mcam_camera *cam = video_drvdata(filp);
1638 	bool last_open;
1639 
1640 	mutex_lock(&cam->s_mutex);
1641 	last_open = v4l2_fh_is_singular_file(filp);
1642 	_vb2_fop_release(filp, NULL);
1643 	if (last_open) {
1644 		mcam_disable_mipi(cam);
1645 		sensor_call(cam, core, s_power, 0);
1646 		pm_runtime_put(cam->dev);
1647 		if (cam->buffer_mode == B_vmalloc && alloc_bufs_at_read)
1648 			mcam_free_dma_bufs(cam);
1649 	}
1650 
1651 	mutex_unlock(&cam->s_mutex);
1652 	return 0;
1653 }
1654 
1655 static const struct v4l2_file_operations mcam_v4l_fops = {
1656 	.owner = THIS_MODULE,
1657 	.open = mcam_v4l_open,
1658 	.release = mcam_v4l_release,
1659 	.read = vb2_fop_read,
1660 	.poll = vb2_fop_poll,
1661 	.mmap = vb2_fop_mmap,
1662 	.unlocked_ioctl = video_ioctl2,
1663 };
1664 
1665 
1666 /*
1667  * This template device holds all of those v4l2 methods; we
1668  * clone it for specific real devices.
1669  */
1670 static const struct video_device mcam_v4l_template = {
1671 	.name = "mcam",
1672 	.fops = &mcam_v4l_fops,
1673 	.ioctl_ops = &mcam_v4l_ioctl_ops,
1674 	.release = video_device_release_empty,
1675 	.device_caps = V4L2_CAP_VIDEO_CAPTURE | V4L2_CAP_READWRITE |
1676 		       V4L2_CAP_STREAMING,
1677 };
1678 
1679 /* ---------------------------------------------------------------------- */
1680 /*
1681  * Interrupt handler stuff
1682  */
mcam_frame_complete(struct mcam_camera * cam,int frame)1683 static void mcam_frame_complete(struct mcam_camera *cam, int frame)
1684 {
1685 	/*
1686 	 * Basic frame housekeeping.
1687 	 */
1688 	set_bit(frame, &cam->flags);
1689 	clear_bit(CF_DMA_ACTIVE, &cam->flags);
1690 	cam->next_buf = frame;
1691 	cam->buf_seq[frame] = cam->sequence++;
1692 	cam->frame_state.frames++;
1693 	/*
1694 	 * "This should never happen"
1695 	 */
1696 	if (cam->state != S_STREAMING)
1697 		return;
1698 	/*
1699 	 * Process the frame and set up the next one.
1700 	 */
1701 	cam->frame_complete(cam, frame);
1702 }
1703 
1704 
1705 /*
1706  * The interrupt handler; this needs to be called from the
1707  * platform irq handler with the lock held.
1708  */
mccic_irq(struct mcam_camera * cam,unsigned int irqs)1709 int mccic_irq(struct mcam_camera *cam, unsigned int irqs)
1710 {
1711 	unsigned int frame, handled = 0;
1712 
1713 	mcam_reg_write(cam, REG_IRQSTAT, FRAMEIRQS); /* Clear'em all */
1714 	/*
1715 	 * Handle any frame completions.  There really should
1716 	 * not be more than one of these, or we have fallen
1717 	 * far behind.
1718 	 *
1719 	 * When running in S/G mode, the frame number lacks any
1720 	 * real meaning - there's only one descriptor array - but
1721 	 * the controller still picks a different one to signal
1722 	 * each time.
1723 	 */
1724 	for (frame = 0; frame < cam->nbufs; frame++)
1725 		if (irqs & (IRQ_EOF0 << frame) &&
1726 			test_bit(CF_FRAME_SOF0 + frame, &cam->flags)) {
1727 			mcam_frame_complete(cam, frame);
1728 			handled = 1;
1729 			clear_bit(CF_FRAME_SOF0 + frame, &cam->flags);
1730 			if (cam->buffer_mode == B_DMA_sg)
1731 				break;
1732 		}
1733 	/*
1734 	 * If a frame starts, note that we have DMA active.  This
1735 	 * code assumes that we won't get multiple frame interrupts
1736 	 * at once; may want to rethink that.
1737 	 */
1738 	for (frame = 0; frame < cam->nbufs; frame++) {
1739 		if (irqs & (IRQ_SOF0 << frame)) {
1740 			set_bit(CF_FRAME_SOF0 + frame, &cam->flags);
1741 			handled = IRQ_HANDLED;
1742 		}
1743 	}
1744 
1745 	if (handled == IRQ_HANDLED) {
1746 		set_bit(CF_DMA_ACTIVE, &cam->flags);
1747 		if (cam->buffer_mode == B_DMA_sg)
1748 			mcam_ctlr_stop(cam);
1749 	}
1750 	return handled;
1751 }
1752 EXPORT_SYMBOL_GPL(mccic_irq);
1753 
1754 /* ---------------------------------------------------------------------- */
1755 /*
1756  * Registration and such.
1757  */
1758 
mccic_notify_bound(struct v4l2_async_notifier * notifier,struct v4l2_subdev * subdev,struct v4l2_async_connection * asd)1759 static int mccic_notify_bound(struct v4l2_async_notifier *notifier,
1760 	struct v4l2_subdev *subdev, struct v4l2_async_connection *asd)
1761 {
1762 	struct mcam_camera *cam = notifier_to_mcam(notifier);
1763 	int ret;
1764 
1765 	mutex_lock(&cam->s_mutex);
1766 	if (cam->sensor) {
1767 		cam_err(cam, "sensor already bound\n");
1768 		ret = -EBUSY;
1769 		goto out;
1770 	}
1771 
1772 	v4l2_set_subdev_hostdata(subdev, cam);
1773 	cam->sensor = subdev;
1774 
1775 	ret = mcam_cam_init(cam);
1776 	if (ret) {
1777 		cam->sensor = NULL;
1778 		goto out;
1779 	}
1780 
1781 	ret = mcam_setup_vb2(cam);
1782 	if (ret) {
1783 		cam->sensor = NULL;
1784 		goto out;
1785 	}
1786 
1787 	cam->vdev = mcam_v4l_template;
1788 	cam->vdev.v4l2_dev = &cam->v4l2_dev;
1789 	cam->vdev.lock = &cam->s_mutex;
1790 	cam->vdev.queue = &cam->vb_queue;
1791 	video_set_drvdata(&cam->vdev, cam);
1792 	ret = video_register_device(&cam->vdev, VFL_TYPE_VIDEO, -1);
1793 	if (ret) {
1794 		cam->sensor = NULL;
1795 		goto out;
1796 	}
1797 
1798 	cam_dbg(cam, "sensor %s bound\n", subdev->name);
1799 out:
1800 	mutex_unlock(&cam->s_mutex);
1801 	return ret;
1802 }
1803 
mccic_notify_unbind(struct v4l2_async_notifier * notifier,struct v4l2_subdev * subdev,struct v4l2_async_connection * asd)1804 static void mccic_notify_unbind(struct v4l2_async_notifier *notifier,
1805 	struct v4l2_subdev *subdev, struct v4l2_async_connection *asd)
1806 {
1807 	struct mcam_camera *cam = notifier_to_mcam(notifier);
1808 
1809 	mutex_lock(&cam->s_mutex);
1810 	if (cam->sensor != subdev) {
1811 		cam_err(cam, "sensor %s not bound\n", subdev->name);
1812 		goto out;
1813 	}
1814 
1815 	video_unregister_device(&cam->vdev);
1816 	cam->sensor = NULL;
1817 	cam_dbg(cam, "sensor %s unbound\n", subdev->name);
1818 
1819 out:
1820 	mutex_unlock(&cam->s_mutex);
1821 }
1822 
mccic_notify_complete(struct v4l2_async_notifier * notifier)1823 static int mccic_notify_complete(struct v4l2_async_notifier *notifier)
1824 {
1825 	struct mcam_camera *cam = notifier_to_mcam(notifier);
1826 	int ret;
1827 
1828 	/*
1829 	 * Get the v4l2 setup done.
1830 	 */
1831 	ret = v4l2_ctrl_handler_init(&cam->ctrl_handler, 10);
1832 	if (!ret)
1833 		cam->v4l2_dev.ctrl_handler = &cam->ctrl_handler;
1834 
1835 	return ret;
1836 }
1837 
1838 static const struct v4l2_async_notifier_operations mccic_notify_ops = {
1839 	.bound = mccic_notify_bound,
1840 	.unbind = mccic_notify_unbind,
1841 	.complete = mccic_notify_complete,
1842 };
1843 
mccic_register(struct mcam_camera * cam)1844 int mccic_register(struct mcam_camera *cam)
1845 {
1846 	struct clk_init_data mclk_init = { };
1847 	int ret;
1848 
1849 	/*
1850 	 * Validate the requested buffer mode.
1851 	 */
1852 	if (buffer_mode >= 0)
1853 		cam->buffer_mode = buffer_mode;
1854 	if (cam->buffer_mode == B_DMA_sg &&
1855 			cam->chip_id == MCAM_CAFE) {
1856 		printk(KERN_ERR "marvell-cam: Cafe can't do S/G I/O, attempting vmalloc mode instead\n");
1857 		cam->buffer_mode = B_vmalloc;
1858 	}
1859 
1860 	if (!mcam_buffer_mode_supported(cam->buffer_mode)) {
1861 		printk(KERN_ERR "marvell-cam: buffer mode %d unsupported\n",
1862 				cam->buffer_mode);
1863 		ret = -EINVAL;
1864 		goto out;
1865 	}
1866 
1867 	mutex_init(&cam->s_mutex);
1868 	cam->state = S_NOTREADY;
1869 	mcam_set_config_needed(cam, 1);
1870 	cam->pix_format = mcam_def_pix_format;
1871 	cam->mbus_code = mcam_def_mbus_code;
1872 
1873 	cam->notifier.ops = &mccic_notify_ops;
1874 	ret = v4l2_async_nf_register(&cam->notifier);
1875 	if (ret < 0) {
1876 		cam_warn(cam, "failed to register a sensor notifier");
1877 		goto out;
1878 	}
1879 
1880 	/*
1881 	 * Register sensor master clock.
1882 	 */
1883 	mclk_init.parent_names = NULL;
1884 	mclk_init.num_parents = 0;
1885 	mclk_init.ops = &mclk_ops;
1886 	mclk_init.name = "mclk";
1887 
1888 	of_property_read_string(cam->dev->of_node, "clock-output-names",
1889 							&mclk_init.name);
1890 
1891 	cam->mclk_hw.init = &mclk_init;
1892 
1893 	cam->mclk = devm_clk_register(cam->dev, &cam->mclk_hw);
1894 	if (IS_ERR(cam->mclk)) {
1895 		ret = PTR_ERR(cam->mclk);
1896 		dev_err(cam->dev, "can't register clock\n");
1897 		goto out;
1898 	}
1899 
1900 	/*
1901 	 * If so requested, try to get our DMA buffers now.
1902 	 */
1903 	if (cam->buffer_mode == B_vmalloc && !alloc_bufs_at_read) {
1904 		if (mcam_alloc_dma_bufs(cam, 1))
1905 			cam_warn(cam, "Unable to alloc DMA buffers at load will try again later.");
1906 	}
1907 
1908 	return 0;
1909 
1910 out:
1911 	v4l2_async_nf_unregister(&cam->notifier);
1912 	v4l2_async_nf_cleanup(&cam->notifier);
1913 	return ret;
1914 }
1915 EXPORT_SYMBOL_GPL(mccic_register);
1916 
mccic_shutdown(struct mcam_camera * cam)1917 void mccic_shutdown(struct mcam_camera *cam)
1918 {
1919 	/*
1920 	 * If we have no users (and we really, really should have no
1921 	 * users) the device will already be powered down.  Trying to
1922 	 * take it down again will wedge the machine, which is frowned
1923 	 * upon.
1924 	 */
1925 	if (!list_empty(&cam->vdev.fh_list)) {
1926 		cam_warn(cam, "Removing a device with users!\n");
1927 		sensor_call(cam, core, s_power, 0);
1928 	}
1929 	if (cam->buffer_mode == B_vmalloc)
1930 		mcam_free_dma_bufs(cam);
1931 	v4l2_ctrl_handler_free(&cam->ctrl_handler);
1932 	v4l2_async_nf_unregister(&cam->notifier);
1933 	v4l2_async_nf_cleanup(&cam->notifier);
1934 }
1935 EXPORT_SYMBOL_GPL(mccic_shutdown);
1936 
1937 /*
1938  * Power management
1939  */
mccic_suspend(struct mcam_camera * cam)1940 void mccic_suspend(struct mcam_camera *cam)
1941 {
1942 	mutex_lock(&cam->s_mutex);
1943 	if (!list_empty(&cam->vdev.fh_list)) {
1944 		enum mcam_state cstate = cam->state;
1945 
1946 		mcam_ctlr_stop_dma(cam);
1947 		sensor_call(cam, core, s_power, 0);
1948 		cam->state = cstate;
1949 	}
1950 	mutex_unlock(&cam->s_mutex);
1951 }
1952 EXPORT_SYMBOL_GPL(mccic_suspend);
1953 
mccic_resume(struct mcam_camera * cam)1954 int mccic_resume(struct mcam_camera *cam)
1955 {
1956 	int ret = 0;
1957 
1958 	mutex_lock(&cam->s_mutex);
1959 	if (!list_empty(&cam->vdev.fh_list)) {
1960 		ret = sensor_call(cam, core, s_power, 1);
1961 		if (ret) {
1962 			mutex_unlock(&cam->s_mutex);
1963 			return ret;
1964 		}
1965 		__mcam_cam_reset(cam);
1966 	} else {
1967 		sensor_call(cam, core, s_power, 0);
1968 	}
1969 	mutex_unlock(&cam->s_mutex);
1970 
1971 	set_bit(CF_CONFIG_NEEDED, &cam->flags);
1972 	if (cam->state == S_STREAMING) {
1973 		/*
1974 		 * If there was a buffer in the DMA engine at suspend
1975 		 * time, put it back on the queue or we'll forget about it.
1976 		 */
1977 		if (cam->buffer_mode == B_DMA_sg && cam->vb_bufs[0])
1978 			list_add(&cam->vb_bufs[0]->queue, &cam->buffers);
1979 		ret = mcam_read_setup(cam);
1980 	}
1981 	return ret;
1982 }
1983 EXPORT_SYMBOL_GPL(mccic_resume);
1984 
1985 MODULE_DESCRIPTION("Marvell camera core driver");
1986 MODULE_LICENSE("GPL v2");
1987 MODULE_AUTHOR("Jonathan Corbet <[email protected]>");
1988