1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * Synopsys DesignWare Multimedia Card Interface driver
4 * (Based on NXP driver for lpc 31xx)
5 *
6 * Copyright (C) 2009 NXP Semiconductors
7 * Copyright (C) 2009, 2010 Imagination Technologies Ltd.
8 */
9
10 #include <linux/blkdev.h>
11 #include <linux/clk.h>
12 #include <linux/debugfs.h>
13 #include <linux/device.h>
14 #include <linux/dma-mapping.h>
15 #include <linux/err.h>
16 #include <linux/init.h>
17 #include <linux/interrupt.h>
18 #include <linux/iopoll.h>
19 #include <linux/ioport.h>
20 #include <linux/ktime.h>
21 #include <linux/module.h>
22 #include <linux/platform_device.h>
23 #include <linux/pm_runtime.h>
24 #include <linux/prandom.h>
25 #include <linux/seq_file.h>
26 #include <linux/slab.h>
27 #include <linux/stat.h>
28 #include <linux/delay.h>
29 #include <linux/irq.h>
30 #include <linux/mmc/card.h>
31 #include <linux/mmc/host.h>
32 #include <linux/mmc/mmc.h>
33 #include <linux/mmc/sd.h>
34 #include <linux/mmc/sdio.h>
35 #include <linux/bitops.h>
36 #include <linux/regulator/consumer.h>
37 #include <linux/of.h>
38 #include <linux/mmc/slot-gpio.h>
39
40 #include "dw_mmc.h"
41
42 /* Common flag combinations */
43 #define DW_MCI_DATA_ERROR_FLAGS (SDMMC_INT_DRTO | SDMMC_INT_DCRC | \
44 SDMMC_INT_HTO | SDMMC_INT_SBE | \
45 SDMMC_INT_EBE | SDMMC_INT_HLE)
46 #define DW_MCI_CMD_ERROR_FLAGS (SDMMC_INT_RTO | SDMMC_INT_RCRC | \
47 SDMMC_INT_RESP_ERR | SDMMC_INT_HLE)
48 #define DW_MCI_ERROR_FLAGS (DW_MCI_DATA_ERROR_FLAGS | \
49 DW_MCI_CMD_ERROR_FLAGS)
50 #define DW_MCI_SEND_STATUS 1
51 #define DW_MCI_RECV_STATUS 2
52 #define DW_MCI_DMA_THRESHOLD 16
53
54 #define DW_MCI_FREQ_MAX 200000000 /* unit: HZ */
55 #define DW_MCI_FREQ_MIN 100000 /* unit: HZ */
56
57 #define IDMAC_INT_CLR (SDMMC_IDMAC_INT_AI | SDMMC_IDMAC_INT_NI | \
58 SDMMC_IDMAC_INT_CES | SDMMC_IDMAC_INT_DU | \
59 SDMMC_IDMAC_INT_FBE | SDMMC_IDMAC_INT_RI | \
60 SDMMC_IDMAC_INT_TI)
61
62 #define DESC_RING_BUF_SZ PAGE_SIZE
63
64 struct idmac_desc_64addr {
65 u32 des0; /* Control Descriptor */
66 #define IDMAC_OWN_CLR64(x) \
67 !((x) & cpu_to_le32(IDMAC_DES0_OWN))
68
69 u32 des1; /* Reserved */
70
71 u32 des2; /*Buffer sizes */
72 #define IDMAC_64ADDR_SET_BUFFER1_SIZE(d, s) \
73 ((d)->des2 = ((d)->des2 & cpu_to_le32(0x03ffe000)) | \
74 ((cpu_to_le32(s)) & cpu_to_le32(0x1fff)))
75
76 u32 des3; /* Reserved */
77
78 u32 des4; /* Lower 32-bits of Buffer Address Pointer 1*/
79 u32 des5; /* Upper 32-bits of Buffer Address Pointer 1*/
80
81 u32 des6; /* Lower 32-bits of Next Descriptor Address */
82 u32 des7; /* Upper 32-bits of Next Descriptor Address */
83 };
84
85 struct idmac_desc {
86 __le32 des0; /* Control Descriptor */
87 #define IDMAC_DES0_DIC BIT(1)
88 #define IDMAC_DES0_LD BIT(2)
89 #define IDMAC_DES0_FD BIT(3)
90 #define IDMAC_DES0_CH BIT(4)
91 #define IDMAC_DES0_ER BIT(5)
92 #define IDMAC_DES0_CES BIT(30)
93 #define IDMAC_DES0_OWN BIT(31)
94
95 __le32 des1; /* Buffer sizes */
96 #define IDMAC_SET_BUFFER1_SIZE(d, s) \
97 ((d)->des1 = ((d)->des1 & cpu_to_le32(0x03ffe000)) | (cpu_to_le32((s) & 0x1fff)))
98
99 __le32 des2; /* buffer 1 physical address */
100
101 __le32 des3; /* buffer 2 physical address */
102 };
103
104 /* Each descriptor can transfer up to 4KB of data in chained mode */
105 #define DW_MCI_DESC_DATA_LENGTH 0x1000
106
107 #if defined(CONFIG_DEBUG_FS)
dw_mci_req_show(struct seq_file * s,void * v)108 static int dw_mci_req_show(struct seq_file *s, void *v)
109 {
110 struct dw_mci_slot *slot = s->private;
111 struct mmc_request *mrq;
112 struct mmc_command *cmd;
113 struct mmc_command *stop;
114 struct mmc_data *data;
115
116 /* Make sure we get a consistent snapshot */
117 spin_lock_bh(&slot->host->lock);
118 mrq = slot->mrq;
119
120 if (mrq) {
121 cmd = mrq->cmd;
122 data = mrq->data;
123 stop = mrq->stop;
124
125 if (cmd)
126 seq_printf(s,
127 "CMD%u(0x%x) flg %x rsp %x %x %x %x err %d\n",
128 cmd->opcode, cmd->arg, cmd->flags,
129 cmd->resp[0], cmd->resp[1], cmd->resp[2],
130 cmd->resp[2], cmd->error);
131 if (data)
132 seq_printf(s, "DATA %u / %u * %u flg %x err %d\n",
133 data->bytes_xfered, data->blocks,
134 data->blksz, data->flags, data->error);
135 if (stop)
136 seq_printf(s,
137 "CMD%u(0x%x) flg %x rsp %x %x %x %x err %d\n",
138 stop->opcode, stop->arg, stop->flags,
139 stop->resp[0], stop->resp[1], stop->resp[2],
140 stop->resp[2], stop->error);
141 }
142
143 spin_unlock_bh(&slot->host->lock);
144
145 return 0;
146 }
147 DEFINE_SHOW_ATTRIBUTE(dw_mci_req);
148
dw_mci_regs_show(struct seq_file * s,void * v)149 static int dw_mci_regs_show(struct seq_file *s, void *v)
150 {
151 struct dw_mci *host = s->private;
152
153 pm_runtime_get_sync(host->dev);
154
155 seq_printf(s, "STATUS:\t0x%08x\n", mci_readl(host, STATUS));
156 seq_printf(s, "RINTSTS:\t0x%08x\n", mci_readl(host, RINTSTS));
157 seq_printf(s, "CMD:\t0x%08x\n", mci_readl(host, CMD));
158 seq_printf(s, "CTRL:\t0x%08x\n", mci_readl(host, CTRL));
159 seq_printf(s, "INTMASK:\t0x%08x\n", mci_readl(host, INTMASK));
160 seq_printf(s, "CLKENA:\t0x%08x\n", mci_readl(host, CLKENA));
161
162 pm_runtime_put_autosuspend(host->dev);
163
164 return 0;
165 }
166 DEFINE_SHOW_ATTRIBUTE(dw_mci_regs);
167
dw_mci_init_debugfs(struct dw_mci_slot * slot)168 static void dw_mci_init_debugfs(struct dw_mci_slot *slot)
169 {
170 struct mmc_host *mmc = slot->mmc;
171 struct dw_mci *host = slot->host;
172 struct dentry *root;
173
174 root = mmc->debugfs_root;
175 if (!root)
176 return;
177
178 debugfs_create_file("regs", S_IRUSR, root, host, &dw_mci_regs_fops);
179 debugfs_create_file("req", S_IRUSR, root, slot, &dw_mci_req_fops);
180 debugfs_create_u32("state", S_IRUSR, root, &host->state);
181 debugfs_create_xul("pending_events", S_IRUSR, root,
182 &host->pending_events);
183 debugfs_create_xul("completed_events", S_IRUSR, root,
184 &host->completed_events);
185 #ifdef CONFIG_FAULT_INJECTION
186 fault_create_debugfs_attr("fail_data_crc", root, &host->fail_data_crc);
187 #endif
188 }
189 #endif /* defined(CONFIG_DEBUG_FS) */
190
dw_mci_ctrl_reset(struct dw_mci * host,u32 reset)191 static bool dw_mci_ctrl_reset(struct dw_mci *host, u32 reset)
192 {
193 u32 ctrl;
194
195 ctrl = mci_readl(host, CTRL);
196 ctrl |= reset;
197 mci_writel(host, CTRL, ctrl);
198
199 /* wait till resets clear */
200 if (readl_poll_timeout_atomic(host->regs + SDMMC_CTRL, ctrl,
201 !(ctrl & reset),
202 1, 500 * USEC_PER_MSEC)) {
203 dev_err(host->dev,
204 "Timeout resetting block (ctrl reset %#x)\n",
205 ctrl & reset);
206 return false;
207 }
208
209 return true;
210 }
211
dw_mci_wait_while_busy(struct dw_mci * host,u32 cmd_flags)212 static void dw_mci_wait_while_busy(struct dw_mci *host, u32 cmd_flags)
213 {
214 u32 status;
215
216 /*
217 * Databook says that before issuing a new data transfer command
218 * we need to check to see if the card is busy. Data transfer commands
219 * all have SDMMC_CMD_PRV_DAT_WAIT set, so we'll key off that.
220 *
221 * ...also allow sending for SDMMC_CMD_VOLT_SWITCH where busy is
222 * expected.
223 */
224 if ((cmd_flags & SDMMC_CMD_PRV_DAT_WAIT) &&
225 !(cmd_flags & SDMMC_CMD_VOLT_SWITCH)) {
226 if (readl_poll_timeout_atomic(host->regs + SDMMC_STATUS,
227 status,
228 !(status & SDMMC_STATUS_BUSY),
229 10, 500 * USEC_PER_MSEC))
230 dev_err(host->dev, "Busy; trying anyway\n");
231 }
232 }
233
mci_send_cmd(struct dw_mci_slot * slot,u32 cmd,u32 arg)234 static void mci_send_cmd(struct dw_mci_slot *slot, u32 cmd, u32 arg)
235 {
236 struct dw_mci *host = slot->host;
237 unsigned int cmd_status = 0;
238
239 mci_writel(host, CMDARG, arg);
240 wmb(); /* drain writebuffer */
241 dw_mci_wait_while_busy(host, cmd);
242 mci_writel(host, CMD, SDMMC_CMD_START | cmd);
243
244 if (readl_poll_timeout_atomic(host->regs + SDMMC_CMD, cmd_status,
245 !(cmd_status & SDMMC_CMD_START),
246 1, 500 * USEC_PER_MSEC))
247 dev_err(&slot->mmc->class_dev,
248 "Timeout sending command (cmd %#x arg %#x status %#x)\n",
249 cmd, arg, cmd_status);
250 }
251
dw_mci_prepare_command(struct mmc_host * mmc,struct mmc_command * cmd)252 static u32 dw_mci_prepare_command(struct mmc_host *mmc, struct mmc_command *cmd)
253 {
254 struct dw_mci_slot *slot = mmc_priv(mmc);
255 struct dw_mci *host = slot->host;
256 u32 cmdr;
257
258 cmd->error = -EINPROGRESS;
259 cmdr = cmd->opcode;
260
261 if (cmd->opcode == MMC_STOP_TRANSMISSION ||
262 cmd->opcode == MMC_GO_IDLE_STATE ||
263 cmd->opcode == MMC_GO_INACTIVE_STATE ||
264 (cmd->opcode == SD_IO_RW_DIRECT &&
265 ((cmd->arg >> 9) & 0x1FFFF) == SDIO_CCCR_ABORT))
266 cmdr |= SDMMC_CMD_STOP;
267 else if (cmd->opcode != MMC_SEND_STATUS && cmd->data)
268 cmdr |= SDMMC_CMD_PRV_DAT_WAIT;
269
270 if (cmd->opcode == SD_SWITCH_VOLTAGE) {
271 u32 clk_en_a;
272
273 /* Special bit makes CMD11 not die */
274 cmdr |= SDMMC_CMD_VOLT_SWITCH;
275
276 /* Change state to continue to handle CMD11 weirdness */
277 WARN_ON(slot->host->state != STATE_SENDING_CMD);
278 slot->host->state = STATE_SENDING_CMD11;
279
280 /*
281 * We need to disable low power mode (automatic clock stop)
282 * while doing voltage switch so we don't confuse the card,
283 * since stopping the clock is a specific part of the UHS
284 * voltage change dance.
285 *
286 * Note that low power mode (SDMMC_CLKEN_LOW_PWR) will be
287 * unconditionally turned back on in dw_mci_setup_bus() if it's
288 * ever called with a non-zero clock. That shouldn't happen
289 * until the voltage change is all done.
290 */
291 clk_en_a = mci_readl(host, CLKENA);
292 clk_en_a &= ~(SDMMC_CLKEN_LOW_PWR << slot->id);
293 mci_writel(host, CLKENA, clk_en_a);
294 mci_send_cmd(slot, SDMMC_CMD_UPD_CLK |
295 SDMMC_CMD_PRV_DAT_WAIT, 0);
296 }
297
298 if (cmd->flags & MMC_RSP_PRESENT) {
299 /* We expect a response, so set this bit */
300 cmdr |= SDMMC_CMD_RESP_EXP;
301 if (cmd->flags & MMC_RSP_136)
302 cmdr |= SDMMC_CMD_RESP_LONG;
303 }
304
305 if (cmd->flags & MMC_RSP_CRC)
306 cmdr |= SDMMC_CMD_RESP_CRC;
307
308 if (cmd->data) {
309 cmdr |= SDMMC_CMD_DAT_EXP;
310 if (cmd->data->flags & MMC_DATA_WRITE)
311 cmdr |= SDMMC_CMD_DAT_WR;
312 }
313
314 if (!test_bit(DW_MMC_CARD_NO_USE_HOLD, &slot->flags))
315 cmdr |= SDMMC_CMD_USE_HOLD_REG;
316
317 return cmdr;
318 }
319
dw_mci_prep_stop_abort(struct dw_mci * host,struct mmc_command * cmd)320 static u32 dw_mci_prep_stop_abort(struct dw_mci *host, struct mmc_command *cmd)
321 {
322 struct mmc_command *stop;
323 u32 cmdr;
324
325 if (!cmd->data)
326 return 0;
327
328 stop = &host->stop_abort;
329 cmdr = cmd->opcode;
330 memset(stop, 0, sizeof(struct mmc_command));
331
332 if (cmdr == MMC_READ_SINGLE_BLOCK ||
333 cmdr == MMC_READ_MULTIPLE_BLOCK ||
334 cmdr == MMC_WRITE_BLOCK ||
335 cmdr == MMC_WRITE_MULTIPLE_BLOCK ||
336 mmc_op_tuning(cmdr) ||
337 cmdr == MMC_GEN_CMD) {
338 stop->opcode = MMC_STOP_TRANSMISSION;
339 stop->arg = 0;
340 stop->flags = MMC_RSP_R1B | MMC_CMD_AC;
341 } else if (cmdr == SD_IO_RW_EXTENDED) {
342 stop->opcode = SD_IO_RW_DIRECT;
343 stop->arg |= (1 << 31) | (0 << 28) | (SDIO_CCCR_ABORT << 9) |
344 ((cmd->arg >> 28) & 0x7);
345 stop->flags = MMC_RSP_SPI_R5 | MMC_RSP_R5 | MMC_CMD_AC;
346 } else {
347 return 0;
348 }
349
350 cmdr = stop->opcode | SDMMC_CMD_STOP |
351 SDMMC_CMD_RESP_CRC | SDMMC_CMD_RESP_EXP;
352
353 if (!test_bit(DW_MMC_CARD_NO_USE_HOLD, &host->slot->flags))
354 cmdr |= SDMMC_CMD_USE_HOLD_REG;
355
356 return cmdr;
357 }
358
dw_mci_set_cto(struct dw_mci * host)359 static inline void dw_mci_set_cto(struct dw_mci *host)
360 {
361 unsigned int cto_clks;
362 unsigned int cto_div;
363 unsigned int cto_ms;
364 unsigned long irqflags;
365
366 cto_clks = mci_readl(host, TMOUT) & 0xff;
367 cto_div = (mci_readl(host, CLKDIV) & 0xff) * 2;
368 if (cto_div == 0)
369 cto_div = 1;
370
371 cto_ms = DIV_ROUND_UP_ULL((u64)MSEC_PER_SEC * cto_clks * cto_div,
372 host->bus_hz);
373
374 /* add a bit spare time */
375 cto_ms += 10;
376
377 /*
378 * The durations we're working with are fairly short so we have to be
379 * extra careful about synchronization here. Specifically in hardware a
380 * command timeout is _at most_ 5.1 ms, so that means we expect an
381 * interrupt (either command done or timeout) to come rather quickly
382 * after the mci_writel. ...but just in case we have a long interrupt
383 * latency let's add a bit of paranoia.
384 *
385 * In general we'll assume that at least an interrupt will be asserted
386 * in hardware by the time the cto_timer runs. ...and if it hasn't
387 * been asserted in hardware by that time then we'll assume it'll never
388 * come.
389 */
390 spin_lock_irqsave(&host->irq_lock, irqflags);
391 if (!test_bit(EVENT_CMD_COMPLETE, &host->pending_events))
392 mod_timer(&host->cto_timer,
393 jiffies + msecs_to_jiffies(cto_ms) + 1);
394 spin_unlock_irqrestore(&host->irq_lock, irqflags);
395 }
396
dw_mci_start_command(struct dw_mci * host,struct mmc_command * cmd,u32 cmd_flags)397 static void dw_mci_start_command(struct dw_mci *host,
398 struct mmc_command *cmd, u32 cmd_flags)
399 {
400 host->cmd = cmd;
401 dev_vdbg(host->dev,
402 "start command: ARGR=0x%08x CMDR=0x%08x\n",
403 cmd->arg, cmd_flags);
404
405 mci_writel(host, CMDARG, cmd->arg);
406 wmb(); /* drain writebuffer */
407 dw_mci_wait_while_busy(host, cmd_flags);
408
409 mci_writel(host, CMD, cmd_flags | SDMMC_CMD_START);
410
411 /* response expected command only */
412 if (cmd_flags & SDMMC_CMD_RESP_EXP)
413 dw_mci_set_cto(host);
414 }
415
send_stop_abort(struct dw_mci * host,struct mmc_data * data)416 static inline void send_stop_abort(struct dw_mci *host, struct mmc_data *data)
417 {
418 struct mmc_command *stop = &host->stop_abort;
419
420 dw_mci_start_command(host, stop, host->stop_cmdr);
421 }
422
423 /* DMA interface functions */
dw_mci_stop_dma(struct dw_mci * host)424 static void dw_mci_stop_dma(struct dw_mci *host)
425 {
426 if (host->using_dma) {
427 host->dma_ops->stop(host);
428 host->dma_ops->cleanup(host);
429 }
430
431 /* Data transfer was stopped by the interrupt handler */
432 set_bit(EVENT_XFER_COMPLETE, &host->pending_events);
433 }
434
dw_mci_dma_cleanup(struct dw_mci * host)435 static void dw_mci_dma_cleanup(struct dw_mci *host)
436 {
437 struct mmc_data *data = host->data;
438
439 if (data && data->host_cookie == COOKIE_MAPPED) {
440 dma_unmap_sg(host->dev,
441 data->sg,
442 data->sg_len,
443 mmc_get_dma_dir(data));
444 data->host_cookie = COOKIE_UNMAPPED;
445 }
446 }
447
dw_mci_idmac_reset(struct dw_mci * host)448 static void dw_mci_idmac_reset(struct dw_mci *host)
449 {
450 u32 bmod = mci_readl(host, BMOD);
451 /* Software reset of DMA */
452 bmod |= SDMMC_IDMAC_SWRESET;
453 mci_writel(host, BMOD, bmod);
454 }
455
dw_mci_idmac_stop_dma(struct dw_mci * host)456 static void dw_mci_idmac_stop_dma(struct dw_mci *host)
457 {
458 u32 temp;
459
460 /* Disable and reset the IDMAC interface */
461 temp = mci_readl(host, CTRL);
462 temp &= ~SDMMC_CTRL_USE_IDMAC;
463 temp |= SDMMC_CTRL_DMA_RESET;
464 mci_writel(host, CTRL, temp);
465
466 /* Stop the IDMAC running */
467 temp = mci_readl(host, BMOD);
468 temp &= ~(SDMMC_IDMAC_ENABLE | SDMMC_IDMAC_FB);
469 temp |= SDMMC_IDMAC_SWRESET;
470 mci_writel(host, BMOD, temp);
471 }
472
dw_mci_dmac_complete_dma(void * arg)473 static void dw_mci_dmac_complete_dma(void *arg)
474 {
475 struct dw_mci *host = arg;
476 struct mmc_data *data = host->data;
477
478 dev_vdbg(host->dev, "DMA complete\n");
479
480 if ((host->use_dma == TRANS_MODE_EDMAC) &&
481 data && (data->flags & MMC_DATA_READ))
482 /* Invalidate cache after read */
483 dma_sync_sg_for_cpu(mmc_dev(host->slot->mmc),
484 data->sg,
485 data->sg_len,
486 DMA_FROM_DEVICE);
487
488 host->dma_ops->cleanup(host);
489
490 /*
491 * If the card was removed, data will be NULL. No point in trying to
492 * send the stop command or waiting for NBUSY in this case.
493 */
494 if (data) {
495 set_bit(EVENT_XFER_COMPLETE, &host->pending_events);
496 queue_work(system_bh_wq, &host->bh_work);
497 }
498 }
499
dw_mci_idmac_init(struct dw_mci * host)500 static int dw_mci_idmac_init(struct dw_mci *host)
501 {
502 int i;
503
504 if (host->dma_64bit_address == 1) {
505 struct idmac_desc_64addr *p;
506 /* Number of descriptors in the ring buffer */
507 host->ring_size =
508 DESC_RING_BUF_SZ / sizeof(struct idmac_desc_64addr);
509
510 /* Forward link the descriptor list */
511 for (i = 0, p = host->sg_cpu; i < host->ring_size - 1;
512 i++, p++) {
513 p->des6 = (host->sg_dma +
514 (sizeof(struct idmac_desc_64addr) *
515 (i + 1))) & 0xffffffff;
516
517 p->des7 = (u64)(host->sg_dma +
518 (sizeof(struct idmac_desc_64addr) *
519 (i + 1))) >> 32;
520 /* Initialize reserved and buffer size fields to "0" */
521 p->des0 = 0;
522 p->des1 = 0;
523 p->des2 = 0;
524 p->des3 = 0;
525 }
526
527 /* Set the last descriptor as the end-of-ring descriptor */
528 p->des6 = host->sg_dma & 0xffffffff;
529 p->des7 = (u64)host->sg_dma >> 32;
530 p->des0 = IDMAC_DES0_ER;
531
532 } else {
533 struct idmac_desc *p;
534 /* Number of descriptors in the ring buffer */
535 host->ring_size =
536 DESC_RING_BUF_SZ / sizeof(struct idmac_desc);
537
538 /* Forward link the descriptor list */
539 for (i = 0, p = host->sg_cpu;
540 i < host->ring_size - 1;
541 i++, p++) {
542 p->des3 = cpu_to_le32(host->sg_dma +
543 (sizeof(struct idmac_desc) * (i + 1)));
544 p->des0 = 0;
545 p->des1 = 0;
546 }
547
548 /* Set the last descriptor as the end-of-ring descriptor */
549 p->des3 = cpu_to_le32(host->sg_dma);
550 p->des0 = cpu_to_le32(IDMAC_DES0_ER);
551 }
552
553 dw_mci_idmac_reset(host);
554
555 if (host->dma_64bit_address == 1) {
556 /* Mask out interrupts - get Tx & Rx complete only */
557 mci_writel(host, IDSTS64, IDMAC_INT_CLR);
558 mci_writel(host, IDINTEN64, SDMMC_IDMAC_INT_NI |
559 SDMMC_IDMAC_INT_RI | SDMMC_IDMAC_INT_TI);
560
561 /* Set the descriptor base address */
562 mci_writel(host, DBADDRL, host->sg_dma & 0xffffffff);
563 mci_writel(host, DBADDRU, (u64)host->sg_dma >> 32);
564
565 } else {
566 /* Mask out interrupts - get Tx & Rx complete only */
567 mci_writel(host, IDSTS, IDMAC_INT_CLR);
568 mci_writel(host, IDINTEN, SDMMC_IDMAC_INT_NI |
569 SDMMC_IDMAC_INT_RI | SDMMC_IDMAC_INT_TI);
570
571 /* Set the descriptor base address */
572 mci_writel(host, DBADDR, host->sg_dma);
573 }
574
575 return 0;
576 }
577
dw_mci_prepare_desc64(struct dw_mci * host,struct mmc_data * data,unsigned int sg_len)578 static inline int dw_mci_prepare_desc64(struct dw_mci *host,
579 struct mmc_data *data,
580 unsigned int sg_len)
581 {
582 unsigned int desc_len;
583 struct idmac_desc_64addr *desc_first, *desc_last, *desc;
584 u32 val;
585 int i;
586
587 desc_first = desc_last = desc = host->sg_cpu;
588
589 for (i = 0; i < sg_len; i++) {
590 unsigned int length = sg_dma_len(&data->sg[i]);
591
592 u64 mem_addr = sg_dma_address(&data->sg[i]);
593
594 for ( ; length ; desc++) {
595 desc_len = (length <= DW_MCI_DESC_DATA_LENGTH) ?
596 length : DW_MCI_DESC_DATA_LENGTH;
597
598 length -= desc_len;
599
600 /*
601 * Wait for the former clear OWN bit operation
602 * of IDMAC to make sure that this descriptor
603 * isn't still owned by IDMAC as IDMAC's write
604 * ops and CPU's read ops are asynchronous.
605 */
606 if (readl_poll_timeout_atomic(&desc->des0, val,
607 !(val & IDMAC_DES0_OWN),
608 10, 100 * USEC_PER_MSEC))
609 goto err_own_bit;
610
611 /*
612 * Set the OWN bit and disable interrupts
613 * for this descriptor
614 */
615 desc->des0 = IDMAC_DES0_OWN | IDMAC_DES0_DIC |
616 IDMAC_DES0_CH;
617
618 /* Buffer length */
619 IDMAC_64ADDR_SET_BUFFER1_SIZE(desc, desc_len);
620
621 /* Physical address to DMA to/from */
622 desc->des4 = mem_addr & 0xffffffff;
623 desc->des5 = mem_addr >> 32;
624
625 /* Update physical address for the next desc */
626 mem_addr += desc_len;
627
628 /* Save pointer to the last descriptor */
629 desc_last = desc;
630 }
631 }
632
633 /* Set first descriptor */
634 desc_first->des0 |= IDMAC_DES0_FD;
635
636 /* Set last descriptor */
637 desc_last->des0 &= ~(IDMAC_DES0_CH | IDMAC_DES0_DIC);
638 desc_last->des0 |= IDMAC_DES0_LD;
639
640 return 0;
641 err_own_bit:
642 /* restore the descriptor chain as it's polluted */
643 dev_dbg(host->dev, "descriptor is still owned by IDMAC.\n");
644 memset(host->sg_cpu, 0, DESC_RING_BUF_SZ);
645 dw_mci_idmac_init(host);
646 return -EINVAL;
647 }
648
649
dw_mci_prepare_desc32(struct dw_mci * host,struct mmc_data * data,unsigned int sg_len)650 static inline int dw_mci_prepare_desc32(struct dw_mci *host,
651 struct mmc_data *data,
652 unsigned int sg_len)
653 {
654 unsigned int desc_len;
655 struct idmac_desc *desc_first, *desc_last, *desc;
656 u32 val;
657 int i;
658
659 desc_first = desc_last = desc = host->sg_cpu;
660
661 for (i = 0; i < sg_len; i++) {
662 unsigned int length = sg_dma_len(&data->sg[i]);
663
664 u32 mem_addr = sg_dma_address(&data->sg[i]);
665
666 for ( ; length ; desc++) {
667 desc_len = (length <= DW_MCI_DESC_DATA_LENGTH) ?
668 length : DW_MCI_DESC_DATA_LENGTH;
669
670 length -= desc_len;
671
672 /*
673 * Wait for the former clear OWN bit operation
674 * of IDMAC to make sure that this descriptor
675 * isn't still owned by IDMAC as IDMAC's write
676 * ops and CPU's read ops are asynchronous.
677 */
678 if (readl_poll_timeout_atomic(&desc->des0, val,
679 IDMAC_OWN_CLR64(val),
680 10,
681 100 * USEC_PER_MSEC))
682 goto err_own_bit;
683
684 /*
685 * Set the OWN bit and disable interrupts
686 * for this descriptor
687 */
688 desc->des0 = cpu_to_le32(IDMAC_DES0_OWN |
689 IDMAC_DES0_DIC |
690 IDMAC_DES0_CH);
691
692 /* Buffer length */
693 IDMAC_SET_BUFFER1_SIZE(desc, desc_len);
694
695 /* Physical address to DMA to/from */
696 desc->des2 = cpu_to_le32(mem_addr);
697
698 /* Update physical address for the next desc */
699 mem_addr += desc_len;
700
701 /* Save pointer to the last descriptor */
702 desc_last = desc;
703 }
704 }
705
706 /* Set first descriptor */
707 desc_first->des0 |= cpu_to_le32(IDMAC_DES0_FD);
708
709 /* Set last descriptor */
710 desc_last->des0 &= cpu_to_le32(~(IDMAC_DES0_CH |
711 IDMAC_DES0_DIC));
712 desc_last->des0 |= cpu_to_le32(IDMAC_DES0_LD);
713
714 return 0;
715 err_own_bit:
716 /* restore the descriptor chain as it's polluted */
717 dev_dbg(host->dev, "descriptor is still owned by IDMAC.\n");
718 memset(host->sg_cpu, 0, DESC_RING_BUF_SZ);
719 dw_mci_idmac_init(host);
720 return -EINVAL;
721 }
722
dw_mci_idmac_start_dma(struct dw_mci * host,unsigned int sg_len)723 static int dw_mci_idmac_start_dma(struct dw_mci *host, unsigned int sg_len)
724 {
725 u32 temp;
726 int ret;
727
728 if (host->dma_64bit_address == 1)
729 ret = dw_mci_prepare_desc64(host, host->data, sg_len);
730 else
731 ret = dw_mci_prepare_desc32(host, host->data, sg_len);
732
733 if (ret)
734 goto out;
735
736 /* drain writebuffer */
737 wmb();
738
739 /* Make sure to reset DMA in case we did PIO before this */
740 dw_mci_ctrl_reset(host, SDMMC_CTRL_DMA_RESET);
741 dw_mci_idmac_reset(host);
742
743 /* Select IDMAC interface */
744 temp = mci_readl(host, CTRL);
745 temp |= SDMMC_CTRL_USE_IDMAC;
746 mci_writel(host, CTRL, temp);
747
748 /* drain writebuffer */
749 wmb();
750
751 /* Enable the IDMAC */
752 temp = mci_readl(host, BMOD);
753 temp |= SDMMC_IDMAC_ENABLE | SDMMC_IDMAC_FB;
754 mci_writel(host, BMOD, temp);
755
756 /* Start it running */
757 mci_writel(host, PLDMND, 1);
758
759 out:
760 return ret;
761 }
762
763 static const struct dw_mci_dma_ops dw_mci_idmac_ops = {
764 .init = dw_mci_idmac_init,
765 .start = dw_mci_idmac_start_dma,
766 .stop = dw_mci_idmac_stop_dma,
767 .complete = dw_mci_dmac_complete_dma,
768 .cleanup = dw_mci_dma_cleanup,
769 };
770
dw_mci_edmac_stop_dma(struct dw_mci * host)771 static void dw_mci_edmac_stop_dma(struct dw_mci *host)
772 {
773 dmaengine_terminate_async(host->dms->ch);
774 }
775
dw_mci_edmac_start_dma(struct dw_mci * host,unsigned int sg_len)776 static int dw_mci_edmac_start_dma(struct dw_mci *host,
777 unsigned int sg_len)
778 {
779 struct dma_slave_config cfg;
780 struct dma_async_tx_descriptor *desc = NULL;
781 struct scatterlist *sgl = host->data->sg;
782 static const u32 mszs[] = {1, 4, 8, 16, 32, 64, 128, 256};
783 u32 sg_elems = host->data->sg_len;
784 u32 fifoth_val;
785 u32 fifo_offset = host->fifo_reg - host->regs;
786 int ret = 0;
787
788 /* Set external dma config: burst size, burst width */
789 memset(&cfg, 0, sizeof(cfg));
790 cfg.dst_addr = host->phy_regs + fifo_offset;
791 cfg.src_addr = cfg.dst_addr;
792 cfg.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
793 cfg.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
794
795 /* Match burst msize with external dma config */
796 fifoth_val = mci_readl(host, FIFOTH);
797 cfg.dst_maxburst = mszs[(fifoth_val >> 28) & 0x7];
798 cfg.src_maxburst = cfg.dst_maxburst;
799
800 if (host->data->flags & MMC_DATA_WRITE)
801 cfg.direction = DMA_MEM_TO_DEV;
802 else
803 cfg.direction = DMA_DEV_TO_MEM;
804
805 ret = dmaengine_slave_config(host->dms->ch, &cfg);
806 if (ret) {
807 dev_err(host->dev, "Failed to config edmac.\n");
808 return -EBUSY;
809 }
810
811 desc = dmaengine_prep_slave_sg(host->dms->ch, sgl,
812 sg_len, cfg.direction,
813 DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
814 if (!desc) {
815 dev_err(host->dev, "Can't prepare slave sg.\n");
816 return -EBUSY;
817 }
818
819 /* Set dw_mci_dmac_complete_dma as callback */
820 desc->callback = dw_mci_dmac_complete_dma;
821 desc->callback_param = (void *)host;
822 dmaengine_submit(desc);
823
824 /* Flush cache before write */
825 if (host->data->flags & MMC_DATA_WRITE)
826 dma_sync_sg_for_device(mmc_dev(host->slot->mmc), sgl,
827 sg_elems, DMA_TO_DEVICE);
828
829 dma_async_issue_pending(host->dms->ch);
830
831 return 0;
832 }
833
dw_mci_edmac_init(struct dw_mci * host)834 static int dw_mci_edmac_init(struct dw_mci *host)
835 {
836 /* Request external dma channel */
837 host->dms = kzalloc(sizeof(struct dw_mci_dma_slave), GFP_KERNEL);
838 if (!host->dms)
839 return -ENOMEM;
840
841 host->dms->ch = dma_request_chan(host->dev, "rx-tx");
842 if (IS_ERR(host->dms->ch)) {
843 int ret = PTR_ERR(host->dms->ch);
844
845 dev_err(host->dev, "Failed to get external DMA channel.\n");
846 kfree(host->dms);
847 host->dms = NULL;
848 return ret;
849 }
850
851 return 0;
852 }
853
dw_mci_edmac_exit(struct dw_mci * host)854 static void dw_mci_edmac_exit(struct dw_mci *host)
855 {
856 if (host->dms) {
857 if (host->dms->ch) {
858 dma_release_channel(host->dms->ch);
859 host->dms->ch = NULL;
860 }
861 kfree(host->dms);
862 host->dms = NULL;
863 }
864 }
865
866 static const struct dw_mci_dma_ops dw_mci_edmac_ops = {
867 .init = dw_mci_edmac_init,
868 .exit = dw_mci_edmac_exit,
869 .start = dw_mci_edmac_start_dma,
870 .stop = dw_mci_edmac_stop_dma,
871 .complete = dw_mci_dmac_complete_dma,
872 .cleanup = dw_mci_dma_cleanup,
873 };
874
dw_mci_pre_dma_transfer(struct dw_mci * host,struct mmc_data * data,int cookie)875 static int dw_mci_pre_dma_transfer(struct dw_mci *host,
876 struct mmc_data *data,
877 int cookie)
878 {
879 struct scatterlist *sg;
880 unsigned int i, sg_len;
881
882 if (data->host_cookie == COOKIE_PRE_MAPPED)
883 return data->sg_len;
884
885 /*
886 * We don't do DMA on "complex" transfers, i.e. with
887 * non-word-aligned buffers or lengths. Also, we don't bother
888 * with all the DMA setup overhead for short transfers.
889 */
890 if (data->blocks * data->blksz < DW_MCI_DMA_THRESHOLD)
891 return -EINVAL;
892
893 if (data->blksz & 3)
894 return -EINVAL;
895
896 for_each_sg(data->sg, sg, data->sg_len, i) {
897 if (sg->offset & 3 || sg->length & 3)
898 return -EINVAL;
899 }
900
901 sg_len = dma_map_sg(host->dev,
902 data->sg,
903 data->sg_len,
904 mmc_get_dma_dir(data));
905 if (sg_len == 0)
906 return -EINVAL;
907
908 data->host_cookie = cookie;
909
910 return sg_len;
911 }
912
dw_mci_pre_req(struct mmc_host * mmc,struct mmc_request * mrq)913 static void dw_mci_pre_req(struct mmc_host *mmc,
914 struct mmc_request *mrq)
915 {
916 struct dw_mci_slot *slot = mmc_priv(mmc);
917 struct mmc_data *data = mrq->data;
918
919 if (!slot->host->use_dma || !data)
920 return;
921
922 /* This data might be unmapped at this time */
923 data->host_cookie = COOKIE_UNMAPPED;
924
925 if (dw_mci_pre_dma_transfer(slot->host, mrq->data,
926 COOKIE_PRE_MAPPED) < 0)
927 data->host_cookie = COOKIE_UNMAPPED;
928 }
929
dw_mci_post_req(struct mmc_host * mmc,struct mmc_request * mrq,int err)930 static void dw_mci_post_req(struct mmc_host *mmc,
931 struct mmc_request *mrq,
932 int err)
933 {
934 struct dw_mci_slot *slot = mmc_priv(mmc);
935 struct mmc_data *data = mrq->data;
936
937 if (!slot->host->use_dma || !data)
938 return;
939
940 if (data->host_cookie != COOKIE_UNMAPPED)
941 dma_unmap_sg(slot->host->dev,
942 data->sg,
943 data->sg_len,
944 mmc_get_dma_dir(data));
945 data->host_cookie = COOKIE_UNMAPPED;
946 }
947
dw_mci_get_cd(struct mmc_host * mmc)948 static int dw_mci_get_cd(struct mmc_host *mmc)
949 {
950 int present;
951 struct dw_mci_slot *slot = mmc_priv(mmc);
952 struct dw_mci *host = slot->host;
953 int gpio_cd = mmc_gpio_get_cd(mmc);
954
955 /* Use platform get_cd function, else try onboard card detect */
956 if (((mmc->caps & MMC_CAP_NEEDS_POLL)
957 || !mmc_card_is_removable(mmc))) {
958 present = 1;
959
960 if (!test_bit(DW_MMC_CARD_PRESENT, &slot->flags)) {
961 if (mmc->caps & MMC_CAP_NEEDS_POLL) {
962 dev_info(&mmc->class_dev,
963 "card is polling.\n");
964 } else {
965 dev_info(&mmc->class_dev,
966 "card is non-removable.\n");
967 }
968 set_bit(DW_MMC_CARD_PRESENT, &slot->flags);
969 }
970
971 return present;
972 } else if (gpio_cd >= 0)
973 present = gpio_cd;
974 else
975 present = (mci_readl(slot->host, CDETECT) & (1 << slot->id))
976 == 0 ? 1 : 0;
977
978 spin_lock_bh(&host->lock);
979 if (present && !test_and_set_bit(DW_MMC_CARD_PRESENT, &slot->flags))
980 dev_dbg(&mmc->class_dev, "card is present\n");
981 else if (!present &&
982 !test_and_clear_bit(DW_MMC_CARD_PRESENT, &slot->flags))
983 dev_dbg(&mmc->class_dev, "card is not present\n");
984 spin_unlock_bh(&host->lock);
985
986 return present;
987 }
988
dw_mci_adjust_fifoth(struct dw_mci * host,struct mmc_data * data)989 static void dw_mci_adjust_fifoth(struct dw_mci *host, struct mmc_data *data)
990 {
991 unsigned int blksz = data->blksz;
992 static const u32 mszs[] = {1, 4, 8, 16, 32, 64, 128, 256};
993 u32 fifo_width = 1 << host->data_shift;
994 u32 blksz_depth = blksz / fifo_width, fifoth_val;
995 u32 msize = 0, rx_wmark = 1, tx_wmark, tx_wmark_invers;
996 int idx = ARRAY_SIZE(mszs) - 1;
997
998 /* pio should ship this scenario */
999 if (!host->use_dma)
1000 return;
1001
1002 tx_wmark = (host->fifo_depth) / 2;
1003 tx_wmark_invers = host->fifo_depth - tx_wmark;
1004
1005 /*
1006 * MSIZE is '1',
1007 * if blksz is not a multiple of the FIFO width
1008 */
1009 if (blksz % fifo_width)
1010 goto done;
1011
1012 do {
1013 if (!((blksz_depth % mszs[idx]) ||
1014 (tx_wmark_invers % mszs[idx]))) {
1015 msize = idx;
1016 rx_wmark = mszs[idx] - 1;
1017 break;
1018 }
1019 } while (--idx > 0);
1020 /*
1021 * If idx is '0', it won't be tried
1022 * Thus, initial values are uesed
1023 */
1024 done:
1025 fifoth_val = SDMMC_SET_FIFOTH(msize, rx_wmark, tx_wmark);
1026 mci_writel(host, FIFOTH, fifoth_val);
1027 }
1028
dw_mci_ctrl_thld(struct dw_mci * host,struct mmc_data * data)1029 static void dw_mci_ctrl_thld(struct dw_mci *host, struct mmc_data *data)
1030 {
1031 unsigned int blksz = data->blksz;
1032 u32 blksz_depth, fifo_depth;
1033 u16 thld_size;
1034 u8 enable;
1035
1036 /*
1037 * CDTHRCTL doesn't exist prior to 240A (in fact that register offset is
1038 * in the FIFO region, so we really shouldn't access it).
1039 */
1040 if (host->verid < DW_MMC_240A ||
1041 (host->verid < DW_MMC_280A && data->flags & MMC_DATA_WRITE))
1042 return;
1043
1044 /*
1045 * Card write Threshold is introduced since 2.80a
1046 * It's used when HS400 mode is enabled.
1047 */
1048 if (data->flags & MMC_DATA_WRITE &&
1049 host->timing != MMC_TIMING_MMC_HS400)
1050 goto disable;
1051
1052 if (data->flags & MMC_DATA_WRITE)
1053 enable = SDMMC_CARD_WR_THR_EN;
1054 else
1055 enable = SDMMC_CARD_RD_THR_EN;
1056
1057 if (host->timing != MMC_TIMING_MMC_HS200 &&
1058 host->timing != MMC_TIMING_UHS_SDR104 &&
1059 host->timing != MMC_TIMING_MMC_HS400)
1060 goto disable;
1061
1062 blksz_depth = blksz / (1 << host->data_shift);
1063 fifo_depth = host->fifo_depth;
1064
1065 if (blksz_depth > fifo_depth)
1066 goto disable;
1067
1068 /*
1069 * If (blksz_depth) >= (fifo_depth >> 1), should be 'thld_size <= blksz'
1070 * If (blksz_depth) < (fifo_depth >> 1), should be thld_size = blksz
1071 * Currently just choose blksz.
1072 */
1073 thld_size = blksz;
1074 mci_writel(host, CDTHRCTL, SDMMC_SET_THLD(thld_size, enable));
1075 return;
1076
1077 disable:
1078 mci_writel(host, CDTHRCTL, 0);
1079 }
1080
dw_mci_submit_data_dma(struct dw_mci * host,struct mmc_data * data)1081 static int dw_mci_submit_data_dma(struct dw_mci *host, struct mmc_data *data)
1082 {
1083 unsigned long irqflags;
1084 int sg_len;
1085 u32 temp;
1086
1087 host->using_dma = 0;
1088
1089 /* If we don't have a channel, we can't do DMA */
1090 if (!host->use_dma)
1091 return -ENODEV;
1092
1093 sg_len = dw_mci_pre_dma_transfer(host, data, COOKIE_MAPPED);
1094 if (sg_len < 0) {
1095 host->dma_ops->stop(host);
1096 return sg_len;
1097 }
1098
1099 host->using_dma = 1;
1100
1101 if (host->use_dma == TRANS_MODE_IDMAC)
1102 dev_vdbg(host->dev,
1103 "sd sg_cpu: %#lx sg_dma: %#lx sg_len: %d\n",
1104 (unsigned long)host->sg_cpu,
1105 (unsigned long)host->sg_dma,
1106 sg_len);
1107
1108 /*
1109 * Decide the MSIZE and RX/TX Watermark.
1110 * If current block size is same with previous size,
1111 * no need to update fifoth.
1112 */
1113 if (host->prev_blksz != data->blksz)
1114 dw_mci_adjust_fifoth(host, data);
1115
1116 /* Enable the DMA interface */
1117 temp = mci_readl(host, CTRL);
1118 temp |= SDMMC_CTRL_DMA_ENABLE;
1119 mci_writel(host, CTRL, temp);
1120
1121 /* Disable RX/TX IRQs, let DMA handle it */
1122 spin_lock_irqsave(&host->irq_lock, irqflags);
1123 temp = mci_readl(host, INTMASK);
1124 temp &= ~(SDMMC_INT_RXDR | SDMMC_INT_TXDR);
1125 mci_writel(host, INTMASK, temp);
1126 spin_unlock_irqrestore(&host->irq_lock, irqflags);
1127
1128 if (host->dma_ops->start(host, sg_len)) {
1129 host->dma_ops->stop(host);
1130 /* We can't do DMA, try PIO for this one */
1131 dev_dbg(host->dev,
1132 "%s: fall back to PIO mode for current transfer\n",
1133 __func__);
1134 return -ENODEV;
1135 }
1136
1137 return 0;
1138 }
1139
dw_mci_submit_data(struct dw_mci * host,struct mmc_data * data)1140 static void dw_mci_submit_data(struct dw_mci *host, struct mmc_data *data)
1141 {
1142 unsigned long irqflags;
1143 int flags = SG_MITER_ATOMIC;
1144 u32 temp;
1145
1146 data->error = -EINPROGRESS;
1147
1148 WARN_ON(host->data);
1149 host->sg = NULL;
1150 host->data = data;
1151
1152 if (data->flags & MMC_DATA_READ)
1153 host->dir_status = DW_MCI_RECV_STATUS;
1154 else
1155 host->dir_status = DW_MCI_SEND_STATUS;
1156
1157 dw_mci_ctrl_thld(host, data);
1158
1159 if (dw_mci_submit_data_dma(host, data)) {
1160 if (host->data->flags & MMC_DATA_READ)
1161 flags |= SG_MITER_TO_SG;
1162 else
1163 flags |= SG_MITER_FROM_SG;
1164
1165 sg_miter_start(&host->sg_miter, data->sg, data->sg_len, flags);
1166 host->sg = data->sg;
1167 host->part_buf_start = 0;
1168 host->part_buf_count = 0;
1169
1170 mci_writel(host, RINTSTS, SDMMC_INT_TXDR | SDMMC_INT_RXDR);
1171
1172 spin_lock_irqsave(&host->irq_lock, irqflags);
1173 temp = mci_readl(host, INTMASK);
1174 temp |= SDMMC_INT_TXDR | SDMMC_INT_RXDR;
1175 mci_writel(host, INTMASK, temp);
1176 spin_unlock_irqrestore(&host->irq_lock, irqflags);
1177
1178 temp = mci_readl(host, CTRL);
1179 temp &= ~SDMMC_CTRL_DMA_ENABLE;
1180 mci_writel(host, CTRL, temp);
1181
1182 /*
1183 * Use the initial fifoth_val for PIO mode. If wm_algined
1184 * is set, we set watermark same as data size.
1185 * If next issued data may be transferred by DMA mode,
1186 * prev_blksz should be invalidated.
1187 */
1188 if (host->wm_aligned)
1189 dw_mci_adjust_fifoth(host, data);
1190 else
1191 mci_writel(host, FIFOTH, host->fifoth_val);
1192 host->prev_blksz = 0;
1193 } else {
1194 /*
1195 * Keep the current block size.
1196 * It will be used to decide whether to update
1197 * fifoth register next time.
1198 */
1199 host->prev_blksz = data->blksz;
1200 }
1201 }
1202
dw_mci_setup_bus(struct dw_mci_slot * slot,bool force_clkinit)1203 static void dw_mci_setup_bus(struct dw_mci_slot *slot, bool force_clkinit)
1204 {
1205 struct dw_mci *host = slot->host;
1206 unsigned int clock = slot->clock;
1207 u32 div;
1208 u32 clk_en_a;
1209 u32 sdmmc_cmd_bits = SDMMC_CMD_UPD_CLK | SDMMC_CMD_PRV_DAT_WAIT;
1210
1211 /* We must continue to set bit 28 in CMD until the change is complete */
1212 if (host->state == STATE_WAITING_CMD11_DONE)
1213 sdmmc_cmd_bits |= SDMMC_CMD_VOLT_SWITCH;
1214
1215 slot->mmc->actual_clock = 0;
1216
1217 if (!clock) {
1218 mci_writel(host, CLKENA, 0);
1219 mci_send_cmd(slot, sdmmc_cmd_bits, 0);
1220 } else if (clock != host->current_speed || force_clkinit) {
1221 div = host->bus_hz / clock;
1222 if (host->bus_hz % clock && host->bus_hz > clock)
1223 /*
1224 * move the + 1 after the divide to prevent
1225 * over-clocking the card.
1226 */
1227 div += 1;
1228
1229 div = (host->bus_hz != clock) ? DIV_ROUND_UP(div, 2) : 0;
1230
1231 if ((clock != slot->__clk_old &&
1232 !test_bit(DW_MMC_CARD_NEEDS_POLL, &slot->flags)) ||
1233 force_clkinit) {
1234 /* Silent the verbose log if calling from PM context */
1235 if (!force_clkinit)
1236 dev_info(&slot->mmc->class_dev,
1237 "Bus speed (slot %d) = %dHz (slot req %dHz, actual %dHZ div = %d)\n",
1238 slot->id, host->bus_hz, clock,
1239 div ? ((host->bus_hz / div) >> 1) :
1240 host->bus_hz, div);
1241
1242 /*
1243 * If card is polling, display the message only
1244 * one time at boot time.
1245 */
1246 if (slot->mmc->caps & MMC_CAP_NEEDS_POLL &&
1247 slot->mmc->f_min == clock)
1248 set_bit(DW_MMC_CARD_NEEDS_POLL, &slot->flags);
1249 }
1250
1251 /* disable clock */
1252 mci_writel(host, CLKENA, 0);
1253 mci_writel(host, CLKSRC, 0);
1254
1255 /* inform CIU */
1256 mci_send_cmd(slot, sdmmc_cmd_bits, 0);
1257
1258 /* set clock to desired speed */
1259 mci_writel(host, CLKDIV, div);
1260
1261 /* inform CIU */
1262 mci_send_cmd(slot, sdmmc_cmd_bits, 0);
1263
1264 /* enable clock; only low power if no SDIO */
1265 clk_en_a = SDMMC_CLKEN_ENABLE << slot->id;
1266 if (!test_bit(DW_MMC_CARD_NO_LOW_PWR, &slot->flags))
1267 clk_en_a |= SDMMC_CLKEN_LOW_PWR << slot->id;
1268 mci_writel(host, CLKENA, clk_en_a);
1269
1270 /* inform CIU */
1271 mci_send_cmd(slot, sdmmc_cmd_bits, 0);
1272
1273 /* keep the last clock value that was requested from core */
1274 slot->__clk_old = clock;
1275 slot->mmc->actual_clock = div ? ((host->bus_hz / div) >> 1) :
1276 host->bus_hz;
1277 }
1278
1279 host->current_speed = clock;
1280
1281 /* Set the current slot bus width */
1282 mci_writel(host, CTYPE, (slot->ctype << slot->id));
1283 }
1284
dw_mci_set_data_timeout(struct dw_mci * host,unsigned int timeout_ns)1285 static void dw_mci_set_data_timeout(struct dw_mci *host,
1286 unsigned int timeout_ns)
1287 {
1288 const struct dw_mci_drv_data *drv_data = host->drv_data;
1289 u32 clk_div, tmout;
1290 u64 tmp;
1291
1292 if (drv_data && drv_data->set_data_timeout)
1293 return drv_data->set_data_timeout(host, timeout_ns);
1294
1295 clk_div = (mci_readl(host, CLKDIV) & 0xFF) * 2;
1296 if (clk_div == 0)
1297 clk_div = 1;
1298
1299 tmp = DIV_ROUND_UP_ULL((u64)timeout_ns * host->bus_hz, NSEC_PER_SEC);
1300 tmp = DIV_ROUND_UP_ULL(tmp, clk_div);
1301
1302 /* TMOUT[7:0] (RESPONSE_TIMEOUT) */
1303 tmout = 0xFF; /* Set maximum */
1304
1305 /* TMOUT[31:8] (DATA_TIMEOUT) */
1306 if (!tmp || tmp > 0xFFFFFF)
1307 tmout |= (0xFFFFFF << 8);
1308 else
1309 tmout |= (tmp & 0xFFFFFF) << 8;
1310
1311 mci_writel(host, TMOUT, tmout);
1312 dev_dbg(host->dev, "timeout_ns: %u => TMOUT[31:8]: %#08x",
1313 timeout_ns, tmout >> 8);
1314 }
1315
__dw_mci_start_request(struct dw_mci * host,struct dw_mci_slot * slot,struct mmc_command * cmd)1316 static void __dw_mci_start_request(struct dw_mci *host,
1317 struct dw_mci_slot *slot,
1318 struct mmc_command *cmd)
1319 {
1320 struct mmc_request *mrq;
1321 struct mmc_data *data;
1322 u32 cmdflags;
1323
1324 mrq = slot->mrq;
1325
1326 host->mrq = mrq;
1327
1328 host->pending_events = 0;
1329 host->completed_events = 0;
1330 host->cmd_status = 0;
1331 host->data_status = 0;
1332 host->dir_status = 0;
1333
1334 data = cmd->data;
1335 if (data) {
1336 dw_mci_set_data_timeout(host, data->timeout_ns);
1337 mci_writel(host, BYTCNT, data->blksz*data->blocks);
1338 mci_writel(host, BLKSIZ, data->blksz);
1339 }
1340
1341 cmdflags = dw_mci_prepare_command(slot->mmc, cmd);
1342
1343 /* this is the first command, send the initialization clock */
1344 if (test_and_clear_bit(DW_MMC_CARD_NEED_INIT, &slot->flags))
1345 cmdflags |= SDMMC_CMD_INIT;
1346
1347 if (data) {
1348 dw_mci_submit_data(host, data);
1349 wmb(); /* drain writebuffer */
1350 }
1351
1352 dw_mci_start_command(host, cmd, cmdflags);
1353
1354 if (cmd->opcode == SD_SWITCH_VOLTAGE) {
1355 unsigned long irqflags;
1356
1357 /*
1358 * Databook says to fail after 2ms w/ no response, but evidence
1359 * shows that sometimes the cmd11 interrupt takes over 130ms.
1360 * We'll set to 500ms, plus an extra jiffy just in case jiffies
1361 * is just about to roll over.
1362 *
1363 * We do this whole thing under spinlock and only if the
1364 * command hasn't already completed (indicating the irq
1365 * already ran so we don't want the timeout).
1366 */
1367 spin_lock_irqsave(&host->irq_lock, irqflags);
1368 if (!test_bit(EVENT_CMD_COMPLETE, &host->pending_events))
1369 mod_timer(&host->cmd11_timer,
1370 jiffies + msecs_to_jiffies(500) + 1);
1371 spin_unlock_irqrestore(&host->irq_lock, irqflags);
1372 }
1373
1374 host->stop_cmdr = dw_mci_prep_stop_abort(host, cmd);
1375 }
1376
dw_mci_start_request(struct dw_mci * host,struct dw_mci_slot * slot)1377 static void dw_mci_start_request(struct dw_mci *host,
1378 struct dw_mci_slot *slot)
1379 {
1380 struct mmc_request *mrq = slot->mrq;
1381 struct mmc_command *cmd;
1382
1383 cmd = mrq->sbc ? mrq->sbc : mrq->cmd;
1384 __dw_mci_start_request(host, slot, cmd);
1385 }
1386
1387 /* must be called with host->lock held */
dw_mci_queue_request(struct dw_mci * host,struct dw_mci_slot * slot,struct mmc_request * mrq)1388 static void dw_mci_queue_request(struct dw_mci *host, struct dw_mci_slot *slot,
1389 struct mmc_request *mrq)
1390 {
1391 dev_vdbg(&slot->mmc->class_dev, "queue request: state=%d\n",
1392 host->state);
1393
1394 slot->mrq = mrq;
1395
1396 if (host->state == STATE_WAITING_CMD11_DONE) {
1397 dev_warn(&slot->mmc->class_dev,
1398 "Voltage change didn't complete\n");
1399 /*
1400 * this case isn't expected to happen, so we can
1401 * either crash here or just try to continue on
1402 * in the closest possible state
1403 */
1404 host->state = STATE_IDLE;
1405 }
1406
1407 if (host->state == STATE_IDLE) {
1408 host->state = STATE_SENDING_CMD;
1409 dw_mci_start_request(host, slot);
1410 } else {
1411 list_add_tail(&slot->queue_node, &host->queue);
1412 }
1413 }
1414
dw_mci_request(struct mmc_host * mmc,struct mmc_request * mrq)1415 static void dw_mci_request(struct mmc_host *mmc, struct mmc_request *mrq)
1416 {
1417 struct dw_mci_slot *slot = mmc_priv(mmc);
1418 struct dw_mci *host = slot->host;
1419
1420 WARN_ON(slot->mrq);
1421
1422 /*
1423 * The check for card presence and queueing of the request must be
1424 * atomic, otherwise the card could be removed in between and the
1425 * request wouldn't fail until another card was inserted.
1426 */
1427
1428 if (!dw_mci_get_cd(mmc)) {
1429 mrq->cmd->error = -ENOMEDIUM;
1430 mmc_request_done(mmc, mrq);
1431 return;
1432 }
1433
1434 spin_lock_bh(&host->lock);
1435
1436 dw_mci_queue_request(host, slot, mrq);
1437
1438 spin_unlock_bh(&host->lock);
1439 }
1440
dw_mci_set_ios(struct mmc_host * mmc,struct mmc_ios * ios)1441 static void dw_mci_set_ios(struct mmc_host *mmc, struct mmc_ios *ios)
1442 {
1443 struct dw_mci_slot *slot = mmc_priv(mmc);
1444 const struct dw_mci_drv_data *drv_data = slot->host->drv_data;
1445 u32 regs;
1446 int ret;
1447
1448 switch (ios->bus_width) {
1449 case MMC_BUS_WIDTH_4:
1450 slot->ctype = SDMMC_CTYPE_4BIT;
1451 break;
1452 case MMC_BUS_WIDTH_8:
1453 slot->ctype = SDMMC_CTYPE_8BIT;
1454 break;
1455 default:
1456 /* set default 1 bit mode */
1457 slot->ctype = SDMMC_CTYPE_1BIT;
1458 }
1459
1460 regs = mci_readl(slot->host, UHS_REG);
1461
1462 /* DDR mode set */
1463 if (ios->timing == MMC_TIMING_MMC_DDR52 ||
1464 ios->timing == MMC_TIMING_UHS_DDR50 ||
1465 ios->timing == MMC_TIMING_MMC_HS400)
1466 regs |= ((0x1 << slot->id) << 16);
1467 else
1468 regs &= ~((0x1 << slot->id) << 16);
1469
1470 mci_writel(slot->host, UHS_REG, regs);
1471 slot->host->timing = ios->timing;
1472
1473 /*
1474 * Use mirror of ios->clock to prevent race with mmc
1475 * core ios update when finding the minimum.
1476 */
1477 slot->clock = ios->clock;
1478
1479 if (drv_data && drv_data->set_ios)
1480 drv_data->set_ios(slot->host, ios);
1481
1482 switch (ios->power_mode) {
1483 case MMC_POWER_UP:
1484 if (!IS_ERR(mmc->supply.vmmc)) {
1485 ret = mmc_regulator_set_ocr(mmc, mmc->supply.vmmc,
1486 ios->vdd);
1487 if (ret) {
1488 dev_err(slot->host->dev,
1489 "failed to enable vmmc regulator\n");
1490 /*return, if failed turn on vmmc*/
1491 return;
1492 }
1493 }
1494 set_bit(DW_MMC_CARD_NEED_INIT, &slot->flags);
1495 regs = mci_readl(slot->host, PWREN);
1496 regs |= (1 << slot->id);
1497 mci_writel(slot->host, PWREN, regs);
1498 break;
1499 case MMC_POWER_ON:
1500 if (!slot->host->vqmmc_enabled) {
1501 if (!IS_ERR(mmc->supply.vqmmc)) {
1502 ret = regulator_enable(mmc->supply.vqmmc);
1503 if (ret < 0)
1504 dev_err(slot->host->dev,
1505 "failed to enable vqmmc\n");
1506 else
1507 slot->host->vqmmc_enabled = true;
1508
1509 } else {
1510 /* Keep track so we don't reset again */
1511 slot->host->vqmmc_enabled = true;
1512 }
1513
1514 /* Reset our state machine after powering on */
1515 dw_mci_ctrl_reset(slot->host,
1516 SDMMC_CTRL_ALL_RESET_FLAGS);
1517 }
1518
1519 /* Adjust clock / bus width after power is up */
1520 dw_mci_setup_bus(slot, false);
1521
1522 break;
1523 case MMC_POWER_OFF:
1524 /* Turn clock off before power goes down */
1525 dw_mci_setup_bus(slot, false);
1526
1527 if (!IS_ERR(mmc->supply.vmmc))
1528 mmc_regulator_set_ocr(mmc, mmc->supply.vmmc, 0);
1529
1530 if (!IS_ERR(mmc->supply.vqmmc) && slot->host->vqmmc_enabled)
1531 regulator_disable(mmc->supply.vqmmc);
1532 slot->host->vqmmc_enabled = false;
1533
1534 regs = mci_readl(slot->host, PWREN);
1535 regs &= ~(1 << slot->id);
1536 mci_writel(slot->host, PWREN, regs);
1537 break;
1538 default:
1539 break;
1540 }
1541
1542 if (slot->host->state == STATE_WAITING_CMD11_DONE && ios->clock != 0)
1543 slot->host->state = STATE_IDLE;
1544 }
1545
dw_mci_card_busy(struct mmc_host * mmc)1546 static int dw_mci_card_busy(struct mmc_host *mmc)
1547 {
1548 struct dw_mci_slot *slot = mmc_priv(mmc);
1549 u32 status;
1550
1551 /*
1552 * Check the busy bit which is low when DAT[3:0]
1553 * (the data lines) are 0000
1554 */
1555 status = mci_readl(slot->host, STATUS);
1556
1557 return !!(status & SDMMC_STATUS_BUSY);
1558 }
1559
dw_mci_switch_voltage(struct mmc_host * mmc,struct mmc_ios * ios)1560 static int dw_mci_switch_voltage(struct mmc_host *mmc, struct mmc_ios *ios)
1561 {
1562 struct dw_mci_slot *slot = mmc_priv(mmc);
1563 struct dw_mci *host = slot->host;
1564 const struct dw_mci_drv_data *drv_data = host->drv_data;
1565 u32 uhs;
1566 u32 v18 = SDMMC_UHS_18V << slot->id;
1567 int ret;
1568
1569 if (drv_data && drv_data->switch_voltage)
1570 return drv_data->switch_voltage(mmc, ios);
1571
1572 /*
1573 * Program the voltage. Note that some instances of dw_mmc may use
1574 * the UHS_REG for this. For other instances (like exynos) the UHS_REG
1575 * does no harm but you need to set the regulator directly. Try both.
1576 */
1577 uhs = mci_readl(host, UHS_REG);
1578 if (ios->signal_voltage == MMC_SIGNAL_VOLTAGE_330)
1579 uhs &= ~v18;
1580 else
1581 uhs |= v18;
1582
1583 if (!IS_ERR(mmc->supply.vqmmc)) {
1584 ret = mmc_regulator_set_vqmmc(mmc, ios);
1585 if (ret < 0) {
1586 dev_dbg(&mmc->class_dev,
1587 "Regulator set error %d - %s V\n",
1588 ret, uhs & v18 ? "1.8" : "3.3");
1589 return ret;
1590 }
1591 }
1592 mci_writel(host, UHS_REG, uhs);
1593
1594 return 0;
1595 }
1596
dw_mci_get_ro(struct mmc_host * mmc)1597 static int dw_mci_get_ro(struct mmc_host *mmc)
1598 {
1599 int read_only;
1600 struct dw_mci_slot *slot = mmc_priv(mmc);
1601 int gpio_ro = mmc_gpio_get_ro(mmc);
1602
1603 /* Use platform get_ro function, else try on board write protect */
1604 if (gpio_ro >= 0)
1605 read_only = gpio_ro;
1606 else
1607 read_only =
1608 mci_readl(slot->host, WRTPRT) & (1 << slot->id) ? 1 : 0;
1609
1610 dev_dbg(&mmc->class_dev, "card is %s\n",
1611 read_only ? "read-only" : "read-write");
1612
1613 return read_only;
1614 }
1615
dw_mci_hw_reset(struct mmc_host * mmc)1616 static void dw_mci_hw_reset(struct mmc_host *mmc)
1617 {
1618 struct dw_mci_slot *slot = mmc_priv(mmc);
1619 struct dw_mci *host = slot->host;
1620 const struct dw_mci_drv_data *drv_data = host->drv_data;
1621 int reset;
1622
1623 if (host->use_dma == TRANS_MODE_IDMAC)
1624 dw_mci_idmac_reset(host);
1625
1626 if (!dw_mci_ctrl_reset(host, SDMMC_CTRL_DMA_RESET |
1627 SDMMC_CTRL_FIFO_RESET))
1628 return;
1629
1630 if (drv_data && drv_data->hw_reset) {
1631 drv_data->hw_reset(host);
1632 return;
1633 }
1634
1635 /*
1636 * According to eMMC spec, card reset procedure:
1637 * tRstW >= 1us: RST_n pulse width
1638 * tRSCA >= 200us: RST_n to Command time
1639 * tRSTH >= 1us: RST_n high period
1640 */
1641 reset = mci_readl(host, RST_N);
1642 reset &= ~(SDMMC_RST_HWACTIVE << slot->id);
1643 mci_writel(host, RST_N, reset);
1644 usleep_range(1, 2);
1645 reset |= SDMMC_RST_HWACTIVE << slot->id;
1646 mci_writel(host, RST_N, reset);
1647 usleep_range(200, 300);
1648 }
1649
dw_mci_prepare_sdio_irq(struct dw_mci_slot * slot,bool prepare)1650 static void dw_mci_prepare_sdio_irq(struct dw_mci_slot *slot, bool prepare)
1651 {
1652 struct dw_mci *host = slot->host;
1653 const u32 clken_low_pwr = SDMMC_CLKEN_LOW_PWR << slot->id;
1654 u32 clk_en_a_old;
1655 u32 clk_en_a;
1656
1657 /*
1658 * Low power mode will stop the card clock when idle. According to the
1659 * description of the CLKENA register we should disable low power mode
1660 * for SDIO cards if we need SDIO interrupts to work.
1661 */
1662
1663 clk_en_a_old = mci_readl(host, CLKENA);
1664 if (prepare) {
1665 set_bit(DW_MMC_CARD_NO_LOW_PWR, &slot->flags);
1666 clk_en_a = clk_en_a_old & ~clken_low_pwr;
1667 } else {
1668 clear_bit(DW_MMC_CARD_NO_LOW_PWR, &slot->flags);
1669 clk_en_a = clk_en_a_old | clken_low_pwr;
1670 }
1671
1672 if (clk_en_a != clk_en_a_old) {
1673 mci_writel(host, CLKENA, clk_en_a);
1674 mci_send_cmd(slot, SDMMC_CMD_UPD_CLK | SDMMC_CMD_PRV_DAT_WAIT,
1675 0);
1676 }
1677 }
1678
__dw_mci_enable_sdio_irq(struct dw_mci_slot * slot,int enb)1679 static void __dw_mci_enable_sdio_irq(struct dw_mci_slot *slot, int enb)
1680 {
1681 struct dw_mci *host = slot->host;
1682 unsigned long irqflags;
1683 u32 int_mask;
1684
1685 spin_lock_irqsave(&host->irq_lock, irqflags);
1686
1687 /* Enable/disable Slot Specific SDIO interrupt */
1688 int_mask = mci_readl(host, INTMASK);
1689 if (enb)
1690 int_mask |= SDMMC_INT_SDIO(slot->sdio_id);
1691 else
1692 int_mask &= ~SDMMC_INT_SDIO(slot->sdio_id);
1693 mci_writel(host, INTMASK, int_mask);
1694
1695 spin_unlock_irqrestore(&host->irq_lock, irqflags);
1696 }
1697
dw_mci_enable_sdio_irq(struct mmc_host * mmc,int enb)1698 static void dw_mci_enable_sdio_irq(struct mmc_host *mmc, int enb)
1699 {
1700 struct dw_mci_slot *slot = mmc_priv(mmc);
1701 struct dw_mci *host = slot->host;
1702
1703 dw_mci_prepare_sdio_irq(slot, enb);
1704 __dw_mci_enable_sdio_irq(slot, enb);
1705
1706 /* Avoid runtime suspending the device when SDIO IRQ is enabled */
1707 if (enb)
1708 pm_runtime_get_noresume(host->dev);
1709 else
1710 pm_runtime_put_noidle(host->dev);
1711 }
1712
dw_mci_ack_sdio_irq(struct mmc_host * mmc)1713 static void dw_mci_ack_sdio_irq(struct mmc_host *mmc)
1714 {
1715 struct dw_mci_slot *slot = mmc_priv(mmc);
1716
1717 __dw_mci_enable_sdio_irq(slot, 1);
1718 }
1719
dw_mci_execute_tuning(struct mmc_host * mmc,u32 opcode)1720 static int dw_mci_execute_tuning(struct mmc_host *mmc, u32 opcode)
1721 {
1722 struct dw_mci_slot *slot = mmc_priv(mmc);
1723 struct dw_mci *host = slot->host;
1724 const struct dw_mci_drv_data *drv_data = host->drv_data;
1725 int err = -EINVAL;
1726
1727 if (drv_data && drv_data->execute_tuning)
1728 err = drv_data->execute_tuning(slot, opcode);
1729 return err;
1730 }
1731
dw_mci_prepare_hs400_tuning(struct mmc_host * mmc,struct mmc_ios * ios)1732 static int dw_mci_prepare_hs400_tuning(struct mmc_host *mmc,
1733 struct mmc_ios *ios)
1734 {
1735 struct dw_mci_slot *slot = mmc_priv(mmc);
1736 struct dw_mci *host = slot->host;
1737 const struct dw_mci_drv_data *drv_data = host->drv_data;
1738
1739 if (drv_data && drv_data->prepare_hs400_tuning)
1740 return drv_data->prepare_hs400_tuning(host, ios);
1741
1742 return 0;
1743 }
1744
dw_mci_reset(struct dw_mci * host)1745 static bool dw_mci_reset(struct dw_mci *host)
1746 {
1747 u32 flags = SDMMC_CTRL_RESET | SDMMC_CTRL_FIFO_RESET;
1748 bool ret = false;
1749 u32 status = 0;
1750
1751 /*
1752 * Resetting generates a block interrupt, hence setting
1753 * the scatter-gather pointer to NULL.
1754 */
1755 if (host->sg) {
1756 sg_miter_stop(&host->sg_miter);
1757 host->sg = NULL;
1758 }
1759
1760 if (host->use_dma)
1761 flags |= SDMMC_CTRL_DMA_RESET;
1762
1763 if (dw_mci_ctrl_reset(host, flags)) {
1764 /*
1765 * In all cases we clear the RAWINTS
1766 * register to clear any interrupts.
1767 */
1768 mci_writel(host, RINTSTS, 0xFFFFFFFF);
1769
1770 if (!host->use_dma) {
1771 ret = true;
1772 goto ciu_out;
1773 }
1774
1775 /* Wait for dma_req to be cleared */
1776 if (readl_poll_timeout_atomic(host->regs + SDMMC_STATUS,
1777 status,
1778 !(status & SDMMC_STATUS_DMA_REQ),
1779 1, 500 * USEC_PER_MSEC)) {
1780 dev_err(host->dev,
1781 "%s: Timeout waiting for dma_req to be cleared\n",
1782 __func__);
1783 goto ciu_out;
1784 }
1785
1786 /* when using DMA next we reset the fifo again */
1787 if (!dw_mci_ctrl_reset(host, SDMMC_CTRL_FIFO_RESET))
1788 goto ciu_out;
1789 } else {
1790 /* if the controller reset bit did clear, then set clock regs */
1791 if (!(mci_readl(host, CTRL) & SDMMC_CTRL_RESET)) {
1792 dev_err(host->dev,
1793 "%s: fifo/dma reset bits didn't clear but ciu was reset, doing clock update\n",
1794 __func__);
1795 goto ciu_out;
1796 }
1797 }
1798
1799 if (host->use_dma == TRANS_MODE_IDMAC)
1800 /* It is also required that we reinit idmac */
1801 dw_mci_idmac_init(host);
1802
1803 ret = true;
1804
1805 ciu_out:
1806 /* After a CTRL reset we need to have CIU set clock registers */
1807 mci_send_cmd(host->slot, SDMMC_CMD_UPD_CLK, 0);
1808
1809 return ret;
1810 }
1811
1812 static const struct mmc_host_ops dw_mci_ops = {
1813 .request = dw_mci_request,
1814 .pre_req = dw_mci_pre_req,
1815 .post_req = dw_mci_post_req,
1816 .set_ios = dw_mci_set_ios,
1817 .get_ro = dw_mci_get_ro,
1818 .get_cd = dw_mci_get_cd,
1819 .card_hw_reset = dw_mci_hw_reset,
1820 .enable_sdio_irq = dw_mci_enable_sdio_irq,
1821 .ack_sdio_irq = dw_mci_ack_sdio_irq,
1822 .execute_tuning = dw_mci_execute_tuning,
1823 .card_busy = dw_mci_card_busy,
1824 .start_signal_voltage_switch = dw_mci_switch_voltage,
1825 .prepare_hs400_tuning = dw_mci_prepare_hs400_tuning,
1826 };
1827
1828 #ifdef CONFIG_FAULT_INJECTION
dw_mci_fault_timer(struct hrtimer * t)1829 static enum hrtimer_restart dw_mci_fault_timer(struct hrtimer *t)
1830 {
1831 struct dw_mci *host = container_of(t, struct dw_mci, fault_timer);
1832 unsigned long flags;
1833
1834 spin_lock_irqsave(&host->irq_lock, flags);
1835
1836 /*
1837 * Only inject an error if we haven't already got an error or data over
1838 * interrupt.
1839 */
1840 if (!host->data_status) {
1841 host->data_status = SDMMC_INT_DCRC;
1842 set_bit(EVENT_DATA_ERROR, &host->pending_events);
1843 queue_work(system_bh_wq, &host->bh_work);
1844 }
1845
1846 spin_unlock_irqrestore(&host->irq_lock, flags);
1847
1848 return HRTIMER_NORESTART;
1849 }
1850
dw_mci_start_fault_timer(struct dw_mci * host)1851 static void dw_mci_start_fault_timer(struct dw_mci *host)
1852 {
1853 struct mmc_data *data = host->data;
1854
1855 if (!data || data->blocks <= 1)
1856 return;
1857
1858 if (!should_fail(&host->fail_data_crc, 1))
1859 return;
1860
1861 /*
1862 * Try to inject the error at random points during the data transfer.
1863 */
1864 hrtimer_start(&host->fault_timer,
1865 ms_to_ktime(get_random_u32_below(25)),
1866 HRTIMER_MODE_REL);
1867 }
1868
dw_mci_stop_fault_timer(struct dw_mci * host)1869 static void dw_mci_stop_fault_timer(struct dw_mci *host)
1870 {
1871 hrtimer_cancel(&host->fault_timer);
1872 }
1873
dw_mci_init_fault(struct dw_mci * host)1874 static void dw_mci_init_fault(struct dw_mci *host)
1875 {
1876 host->fail_data_crc = (struct fault_attr) FAULT_ATTR_INITIALIZER;
1877
1878 hrtimer_init(&host->fault_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1879 host->fault_timer.function = dw_mci_fault_timer;
1880 }
1881 #else
dw_mci_init_fault(struct dw_mci * host)1882 static void dw_mci_init_fault(struct dw_mci *host)
1883 {
1884 }
1885
dw_mci_start_fault_timer(struct dw_mci * host)1886 static void dw_mci_start_fault_timer(struct dw_mci *host)
1887 {
1888 }
1889
dw_mci_stop_fault_timer(struct dw_mci * host)1890 static void dw_mci_stop_fault_timer(struct dw_mci *host)
1891 {
1892 }
1893 #endif
1894
dw_mci_request_end(struct dw_mci * host,struct mmc_request * mrq)1895 static void dw_mci_request_end(struct dw_mci *host, struct mmc_request *mrq)
1896 __releases(&host->lock)
1897 __acquires(&host->lock)
1898 {
1899 struct dw_mci_slot *slot;
1900 struct mmc_host *prev_mmc = host->slot->mmc;
1901
1902 WARN_ON(host->cmd || host->data);
1903
1904 host->slot->mrq = NULL;
1905 host->mrq = NULL;
1906 if (!list_empty(&host->queue)) {
1907 slot = list_entry(host->queue.next,
1908 struct dw_mci_slot, queue_node);
1909 list_del(&slot->queue_node);
1910 dev_vdbg(host->dev, "list not empty: %s is next\n",
1911 mmc_hostname(slot->mmc));
1912 host->state = STATE_SENDING_CMD;
1913 dw_mci_start_request(host, slot);
1914 } else {
1915 dev_vdbg(host->dev, "list empty\n");
1916
1917 if (host->state == STATE_SENDING_CMD11)
1918 host->state = STATE_WAITING_CMD11_DONE;
1919 else
1920 host->state = STATE_IDLE;
1921 }
1922
1923 spin_unlock(&host->lock);
1924 mmc_request_done(prev_mmc, mrq);
1925 spin_lock(&host->lock);
1926 }
1927
dw_mci_command_complete(struct dw_mci * host,struct mmc_command * cmd)1928 static int dw_mci_command_complete(struct dw_mci *host, struct mmc_command *cmd)
1929 {
1930 u32 status = host->cmd_status;
1931
1932 host->cmd_status = 0;
1933
1934 /* Read the response from the card (up to 16 bytes) */
1935 if (cmd->flags & MMC_RSP_PRESENT) {
1936 if (cmd->flags & MMC_RSP_136) {
1937 cmd->resp[3] = mci_readl(host, RESP0);
1938 cmd->resp[2] = mci_readl(host, RESP1);
1939 cmd->resp[1] = mci_readl(host, RESP2);
1940 cmd->resp[0] = mci_readl(host, RESP3);
1941 } else {
1942 cmd->resp[0] = mci_readl(host, RESP0);
1943 cmd->resp[1] = 0;
1944 cmd->resp[2] = 0;
1945 cmd->resp[3] = 0;
1946 }
1947 }
1948
1949 if (status & SDMMC_INT_RTO)
1950 cmd->error = -ETIMEDOUT;
1951 else if ((cmd->flags & MMC_RSP_CRC) && (status & SDMMC_INT_RCRC))
1952 cmd->error = -EILSEQ;
1953 else if (status & SDMMC_INT_RESP_ERR)
1954 cmd->error = -EIO;
1955 else
1956 cmd->error = 0;
1957
1958 return cmd->error;
1959 }
1960
dw_mci_data_complete(struct dw_mci * host,struct mmc_data * data)1961 static int dw_mci_data_complete(struct dw_mci *host, struct mmc_data *data)
1962 {
1963 u32 status = host->data_status;
1964
1965 if (status & DW_MCI_DATA_ERROR_FLAGS) {
1966 if (status & SDMMC_INT_DRTO) {
1967 data->error = -ETIMEDOUT;
1968 } else if (status & SDMMC_INT_DCRC) {
1969 data->error = -EILSEQ;
1970 } else if (status & SDMMC_INT_EBE) {
1971 if (host->dir_status ==
1972 DW_MCI_SEND_STATUS) {
1973 /*
1974 * No data CRC status was returned.
1975 * The number of bytes transferred
1976 * will be exaggerated in PIO mode.
1977 */
1978 data->bytes_xfered = 0;
1979 data->error = -ETIMEDOUT;
1980 } else if (host->dir_status ==
1981 DW_MCI_RECV_STATUS) {
1982 data->error = -EILSEQ;
1983 }
1984 } else {
1985 /* SDMMC_INT_SBE is included */
1986 data->error = -EILSEQ;
1987 }
1988
1989 dev_dbg(host->dev, "data error, status 0x%08x\n", status);
1990
1991 /*
1992 * After an error, there may be data lingering
1993 * in the FIFO
1994 */
1995 dw_mci_reset(host);
1996 } else {
1997 data->bytes_xfered = data->blocks * data->blksz;
1998 data->error = 0;
1999 }
2000
2001 return data->error;
2002 }
2003
dw_mci_set_drto(struct dw_mci * host)2004 static void dw_mci_set_drto(struct dw_mci *host)
2005 {
2006 const struct dw_mci_drv_data *drv_data = host->drv_data;
2007 unsigned int drto_clks;
2008 unsigned int drto_div;
2009 unsigned int drto_ms;
2010 unsigned long irqflags;
2011
2012 if (drv_data && drv_data->get_drto_clks)
2013 drto_clks = drv_data->get_drto_clks(host);
2014 else
2015 drto_clks = mci_readl(host, TMOUT) >> 8;
2016 drto_div = (mci_readl(host, CLKDIV) & 0xff) * 2;
2017 if (drto_div == 0)
2018 drto_div = 1;
2019
2020 drto_ms = DIV_ROUND_UP_ULL((u64)MSEC_PER_SEC * drto_clks * drto_div,
2021 host->bus_hz);
2022
2023 dev_dbg(host->dev, "drto_ms: %u\n", drto_ms);
2024
2025 /* add a bit spare time */
2026 drto_ms += 10;
2027
2028 spin_lock_irqsave(&host->irq_lock, irqflags);
2029 if (!test_bit(EVENT_DATA_COMPLETE, &host->pending_events))
2030 mod_timer(&host->dto_timer,
2031 jiffies + msecs_to_jiffies(drto_ms));
2032 spin_unlock_irqrestore(&host->irq_lock, irqflags);
2033 }
2034
dw_mci_clear_pending_cmd_complete(struct dw_mci * host)2035 static bool dw_mci_clear_pending_cmd_complete(struct dw_mci *host)
2036 {
2037 if (!test_bit(EVENT_CMD_COMPLETE, &host->pending_events))
2038 return false;
2039
2040 /*
2041 * Really be certain that the timer has stopped. This is a bit of
2042 * paranoia and could only really happen if we had really bad
2043 * interrupt latency and the interrupt routine and timeout were
2044 * running concurrently so that the del_timer() in the interrupt
2045 * handler couldn't run.
2046 */
2047 WARN_ON(del_timer_sync(&host->cto_timer));
2048 clear_bit(EVENT_CMD_COMPLETE, &host->pending_events);
2049
2050 return true;
2051 }
2052
dw_mci_clear_pending_data_complete(struct dw_mci * host)2053 static bool dw_mci_clear_pending_data_complete(struct dw_mci *host)
2054 {
2055 if (!test_bit(EVENT_DATA_COMPLETE, &host->pending_events))
2056 return false;
2057
2058 /* Extra paranoia just like dw_mci_clear_pending_cmd_complete() */
2059 WARN_ON(del_timer_sync(&host->dto_timer));
2060 clear_bit(EVENT_DATA_COMPLETE, &host->pending_events);
2061
2062 return true;
2063 }
2064
dw_mci_work_func(struct work_struct * t)2065 static void dw_mci_work_func(struct work_struct *t)
2066 {
2067 struct dw_mci *host = from_work(host, t, bh_work);
2068 struct mmc_data *data;
2069 struct mmc_command *cmd;
2070 struct mmc_request *mrq;
2071 enum dw_mci_state state;
2072 enum dw_mci_state prev_state;
2073 unsigned int err;
2074
2075 spin_lock(&host->lock);
2076
2077 state = host->state;
2078 data = host->data;
2079 mrq = host->mrq;
2080
2081 do {
2082 prev_state = state;
2083
2084 switch (state) {
2085 case STATE_IDLE:
2086 case STATE_WAITING_CMD11_DONE:
2087 break;
2088
2089 case STATE_SENDING_CMD11:
2090 case STATE_SENDING_CMD:
2091 if (!dw_mci_clear_pending_cmd_complete(host))
2092 break;
2093
2094 cmd = host->cmd;
2095 host->cmd = NULL;
2096 set_bit(EVENT_CMD_COMPLETE, &host->completed_events);
2097 err = dw_mci_command_complete(host, cmd);
2098 if (cmd == mrq->sbc && !err) {
2099 __dw_mci_start_request(host, host->slot,
2100 mrq->cmd);
2101 goto unlock;
2102 }
2103
2104 if (cmd->data && err) {
2105 /*
2106 * During UHS tuning sequence, sending the stop
2107 * command after the response CRC error would
2108 * throw the system into a confused state
2109 * causing all future tuning phases to report
2110 * failure.
2111 *
2112 * In such case controller will move into a data
2113 * transfer state after a response error or
2114 * response CRC error. Let's let that finish
2115 * before trying to send a stop, so we'll go to
2116 * STATE_SENDING_DATA.
2117 *
2118 * Although letting the data transfer take place
2119 * will waste a bit of time (we already know
2120 * the command was bad), it can't cause any
2121 * errors since it's possible it would have
2122 * taken place anyway if this bh work got
2123 * delayed. Allowing the transfer to take place
2124 * avoids races and keeps things simple.
2125 */
2126 if (err != -ETIMEDOUT &&
2127 host->dir_status == DW_MCI_RECV_STATUS) {
2128 state = STATE_SENDING_DATA;
2129 continue;
2130 }
2131
2132 send_stop_abort(host, data);
2133 dw_mci_stop_dma(host);
2134 state = STATE_SENDING_STOP;
2135 break;
2136 }
2137
2138 if (!cmd->data || err) {
2139 dw_mci_request_end(host, mrq);
2140 goto unlock;
2141 }
2142
2143 prev_state = state = STATE_SENDING_DATA;
2144 fallthrough;
2145
2146 case STATE_SENDING_DATA:
2147 /*
2148 * We could get a data error and never a transfer
2149 * complete so we'd better check for it here.
2150 *
2151 * Note that we don't really care if we also got a
2152 * transfer complete; stopping the DMA and sending an
2153 * abort won't hurt.
2154 */
2155 if (test_and_clear_bit(EVENT_DATA_ERROR,
2156 &host->pending_events)) {
2157 if (!(host->data_status & (SDMMC_INT_DRTO |
2158 SDMMC_INT_EBE)))
2159 send_stop_abort(host, data);
2160 dw_mci_stop_dma(host);
2161 state = STATE_DATA_ERROR;
2162 break;
2163 }
2164
2165 if (!test_and_clear_bit(EVENT_XFER_COMPLETE,
2166 &host->pending_events)) {
2167 /*
2168 * If all data-related interrupts don't come
2169 * within the given time in reading data state.
2170 */
2171 if (host->dir_status == DW_MCI_RECV_STATUS)
2172 dw_mci_set_drto(host);
2173 break;
2174 }
2175
2176 set_bit(EVENT_XFER_COMPLETE, &host->completed_events);
2177
2178 /*
2179 * Handle an EVENT_DATA_ERROR that might have shown up
2180 * before the transfer completed. This might not have
2181 * been caught by the check above because the interrupt
2182 * could have gone off between the previous check and
2183 * the check for transfer complete.
2184 *
2185 * Technically this ought not be needed assuming we
2186 * get a DATA_COMPLETE eventually (we'll notice the
2187 * error and end the request), but it shouldn't hurt.
2188 *
2189 * This has the advantage of sending the stop command.
2190 */
2191 if (test_and_clear_bit(EVENT_DATA_ERROR,
2192 &host->pending_events)) {
2193 if (!(host->data_status & (SDMMC_INT_DRTO |
2194 SDMMC_INT_EBE)))
2195 send_stop_abort(host, data);
2196 dw_mci_stop_dma(host);
2197 state = STATE_DATA_ERROR;
2198 break;
2199 }
2200 prev_state = state = STATE_DATA_BUSY;
2201
2202 fallthrough;
2203
2204 case STATE_DATA_BUSY:
2205 if (!dw_mci_clear_pending_data_complete(host)) {
2206 /*
2207 * If data error interrupt comes but data over
2208 * interrupt doesn't come within the given time.
2209 * in reading data state.
2210 */
2211 if (host->dir_status == DW_MCI_RECV_STATUS)
2212 dw_mci_set_drto(host);
2213 break;
2214 }
2215
2216 dw_mci_stop_fault_timer(host);
2217 host->data = NULL;
2218 set_bit(EVENT_DATA_COMPLETE, &host->completed_events);
2219 err = dw_mci_data_complete(host, data);
2220
2221 if (!err) {
2222 if (!data->stop || mrq->sbc) {
2223 if (mrq->sbc && data->stop)
2224 data->stop->error = 0;
2225 dw_mci_request_end(host, mrq);
2226 goto unlock;
2227 }
2228
2229 /* stop command for open-ended transfer*/
2230 if (data->stop)
2231 send_stop_abort(host, data);
2232 } else {
2233 /*
2234 * If we don't have a command complete now we'll
2235 * never get one since we just reset everything;
2236 * better end the request.
2237 *
2238 * If we do have a command complete we'll fall
2239 * through to the SENDING_STOP command and
2240 * everything will be peachy keen.
2241 */
2242 if (!test_bit(EVENT_CMD_COMPLETE,
2243 &host->pending_events)) {
2244 host->cmd = NULL;
2245 dw_mci_request_end(host, mrq);
2246 goto unlock;
2247 }
2248 }
2249
2250 /*
2251 * If err has non-zero,
2252 * stop-abort command has been already issued.
2253 */
2254 prev_state = state = STATE_SENDING_STOP;
2255
2256 fallthrough;
2257
2258 case STATE_SENDING_STOP:
2259 if (!dw_mci_clear_pending_cmd_complete(host))
2260 break;
2261
2262 /* CMD error in data command */
2263 if (mrq->cmd->error && mrq->data)
2264 dw_mci_reset(host);
2265
2266 dw_mci_stop_fault_timer(host);
2267 host->cmd = NULL;
2268 host->data = NULL;
2269
2270 if (!mrq->sbc && mrq->stop)
2271 dw_mci_command_complete(host, mrq->stop);
2272 else
2273 host->cmd_status = 0;
2274
2275 dw_mci_request_end(host, mrq);
2276 goto unlock;
2277
2278 case STATE_DATA_ERROR:
2279 if (!test_and_clear_bit(EVENT_XFER_COMPLETE,
2280 &host->pending_events))
2281 break;
2282
2283 state = STATE_DATA_BUSY;
2284 break;
2285 }
2286 } while (state != prev_state);
2287
2288 host->state = state;
2289 unlock:
2290 spin_unlock(&host->lock);
2291
2292 }
2293
2294 /* push final bytes to part_buf, only use during push */
dw_mci_set_part_bytes(struct dw_mci * host,void * buf,int cnt)2295 static void dw_mci_set_part_bytes(struct dw_mci *host, void *buf, int cnt)
2296 {
2297 memcpy((void *)&host->part_buf, buf, cnt);
2298 host->part_buf_count = cnt;
2299 }
2300
2301 /* append bytes to part_buf, only use during push */
dw_mci_push_part_bytes(struct dw_mci * host,void * buf,int cnt)2302 static int dw_mci_push_part_bytes(struct dw_mci *host, void *buf, int cnt)
2303 {
2304 cnt = min(cnt, (1 << host->data_shift) - host->part_buf_count);
2305 memcpy((void *)&host->part_buf + host->part_buf_count, buf, cnt);
2306 host->part_buf_count += cnt;
2307 return cnt;
2308 }
2309
2310 /* pull first bytes from part_buf, only use during pull */
dw_mci_pull_part_bytes(struct dw_mci * host,void * buf,int cnt)2311 static int dw_mci_pull_part_bytes(struct dw_mci *host, void *buf, int cnt)
2312 {
2313 cnt = min_t(int, cnt, host->part_buf_count);
2314 if (cnt) {
2315 memcpy(buf, (void *)&host->part_buf + host->part_buf_start,
2316 cnt);
2317 host->part_buf_count -= cnt;
2318 host->part_buf_start += cnt;
2319 }
2320 return cnt;
2321 }
2322
2323 /* pull final bytes from the part_buf, assuming it's just been filled */
dw_mci_pull_final_bytes(struct dw_mci * host,void * buf,int cnt)2324 static void dw_mci_pull_final_bytes(struct dw_mci *host, void *buf, int cnt)
2325 {
2326 memcpy(buf, &host->part_buf, cnt);
2327 host->part_buf_start = cnt;
2328 host->part_buf_count = (1 << host->data_shift) - cnt;
2329 }
2330
dw_mci_push_data16(struct dw_mci * host,void * buf,int cnt)2331 static void dw_mci_push_data16(struct dw_mci *host, void *buf, int cnt)
2332 {
2333 struct mmc_data *data = host->data;
2334 int init_cnt = cnt;
2335
2336 /* try and push anything in the part_buf */
2337 if (unlikely(host->part_buf_count)) {
2338 int len = dw_mci_push_part_bytes(host, buf, cnt);
2339
2340 buf += len;
2341 cnt -= len;
2342 if (host->part_buf_count == 2) {
2343 mci_fifo_writew(host->fifo_reg, host->part_buf16);
2344 host->part_buf_count = 0;
2345 }
2346 }
2347 #ifndef CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS
2348 if (unlikely((unsigned long)buf & 0x1)) {
2349 while (cnt >= 2) {
2350 u16 aligned_buf[64];
2351 int len = min(cnt & -2, (int)sizeof(aligned_buf));
2352 int items = len >> 1;
2353 int i;
2354 /* memcpy from input buffer into aligned buffer */
2355 memcpy(aligned_buf, buf, len);
2356 buf += len;
2357 cnt -= len;
2358 /* push data from aligned buffer into fifo */
2359 for (i = 0; i < items; ++i)
2360 mci_fifo_writew(host->fifo_reg, aligned_buf[i]);
2361 }
2362 } else
2363 #endif
2364 {
2365 u16 *pdata = buf;
2366
2367 for (; cnt >= 2; cnt -= 2)
2368 mci_fifo_writew(host->fifo_reg, *pdata++);
2369 buf = pdata;
2370 }
2371 /* put anything remaining in the part_buf */
2372 if (cnt) {
2373 dw_mci_set_part_bytes(host, buf, cnt);
2374 /* Push data if we have reached the expected data length */
2375 if ((data->bytes_xfered + init_cnt) ==
2376 (data->blksz * data->blocks))
2377 mci_fifo_writew(host->fifo_reg, host->part_buf16);
2378 }
2379 }
2380
dw_mci_pull_data16(struct dw_mci * host,void * buf,int cnt)2381 static void dw_mci_pull_data16(struct dw_mci *host, void *buf, int cnt)
2382 {
2383 #ifndef CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS
2384 if (unlikely((unsigned long)buf & 0x1)) {
2385 while (cnt >= 2) {
2386 /* pull data from fifo into aligned buffer */
2387 u16 aligned_buf[64];
2388 int len = min(cnt & -2, (int)sizeof(aligned_buf));
2389 int items = len >> 1;
2390 int i;
2391
2392 for (i = 0; i < items; ++i)
2393 aligned_buf[i] = mci_fifo_readw(host->fifo_reg);
2394 /* memcpy from aligned buffer into output buffer */
2395 memcpy(buf, aligned_buf, len);
2396 buf += len;
2397 cnt -= len;
2398 }
2399 } else
2400 #endif
2401 {
2402 u16 *pdata = buf;
2403
2404 for (; cnt >= 2; cnt -= 2)
2405 *pdata++ = mci_fifo_readw(host->fifo_reg);
2406 buf = pdata;
2407 }
2408 if (cnt) {
2409 host->part_buf16 = mci_fifo_readw(host->fifo_reg);
2410 dw_mci_pull_final_bytes(host, buf, cnt);
2411 }
2412 }
2413
dw_mci_push_data32(struct dw_mci * host,void * buf,int cnt)2414 static void dw_mci_push_data32(struct dw_mci *host, void *buf, int cnt)
2415 {
2416 struct mmc_data *data = host->data;
2417 int init_cnt = cnt;
2418
2419 /* try and push anything in the part_buf */
2420 if (unlikely(host->part_buf_count)) {
2421 int len = dw_mci_push_part_bytes(host, buf, cnt);
2422
2423 buf += len;
2424 cnt -= len;
2425 if (host->part_buf_count == 4) {
2426 mci_fifo_writel(host->fifo_reg, host->part_buf32);
2427 host->part_buf_count = 0;
2428 }
2429 }
2430 #ifndef CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS
2431 if (unlikely((unsigned long)buf & 0x3)) {
2432 while (cnt >= 4) {
2433 u32 aligned_buf[32];
2434 int len = min(cnt & -4, (int)sizeof(aligned_buf));
2435 int items = len >> 2;
2436 int i;
2437 /* memcpy from input buffer into aligned buffer */
2438 memcpy(aligned_buf, buf, len);
2439 buf += len;
2440 cnt -= len;
2441 /* push data from aligned buffer into fifo */
2442 for (i = 0; i < items; ++i)
2443 mci_fifo_writel(host->fifo_reg, aligned_buf[i]);
2444 }
2445 } else
2446 #endif
2447 {
2448 u32 *pdata = buf;
2449
2450 for (; cnt >= 4; cnt -= 4)
2451 mci_fifo_writel(host->fifo_reg, *pdata++);
2452 buf = pdata;
2453 }
2454 /* put anything remaining in the part_buf */
2455 if (cnt) {
2456 dw_mci_set_part_bytes(host, buf, cnt);
2457 /* Push data if we have reached the expected data length */
2458 if ((data->bytes_xfered + init_cnt) ==
2459 (data->blksz * data->blocks))
2460 mci_fifo_writel(host->fifo_reg, host->part_buf32);
2461 }
2462 }
2463
dw_mci_pull_data32(struct dw_mci * host,void * buf,int cnt)2464 static void dw_mci_pull_data32(struct dw_mci *host, void *buf, int cnt)
2465 {
2466 #ifndef CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS
2467 if (unlikely((unsigned long)buf & 0x3)) {
2468 while (cnt >= 4) {
2469 /* pull data from fifo into aligned buffer */
2470 u32 aligned_buf[32];
2471 int len = min(cnt & -4, (int)sizeof(aligned_buf));
2472 int items = len >> 2;
2473 int i;
2474
2475 for (i = 0; i < items; ++i)
2476 aligned_buf[i] = mci_fifo_readl(host->fifo_reg);
2477 /* memcpy from aligned buffer into output buffer */
2478 memcpy(buf, aligned_buf, len);
2479 buf += len;
2480 cnt -= len;
2481 }
2482 } else
2483 #endif
2484 {
2485 u32 *pdata = buf;
2486
2487 for (; cnt >= 4; cnt -= 4)
2488 *pdata++ = mci_fifo_readl(host->fifo_reg);
2489 buf = pdata;
2490 }
2491 if (cnt) {
2492 host->part_buf32 = mci_fifo_readl(host->fifo_reg);
2493 dw_mci_pull_final_bytes(host, buf, cnt);
2494 }
2495 }
2496
dw_mci_push_data64(struct dw_mci * host,void * buf,int cnt)2497 static void dw_mci_push_data64(struct dw_mci *host, void *buf, int cnt)
2498 {
2499 struct mmc_data *data = host->data;
2500 int init_cnt = cnt;
2501
2502 /* try and push anything in the part_buf */
2503 if (unlikely(host->part_buf_count)) {
2504 int len = dw_mci_push_part_bytes(host, buf, cnt);
2505
2506 buf += len;
2507 cnt -= len;
2508
2509 if (host->part_buf_count == 8) {
2510 mci_fifo_writeq(host->fifo_reg, host->part_buf);
2511 host->part_buf_count = 0;
2512 }
2513 }
2514 #ifndef CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS
2515 if (unlikely((unsigned long)buf & 0x7)) {
2516 while (cnt >= 8) {
2517 u64 aligned_buf[16];
2518 int len = min(cnt & -8, (int)sizeof(aligned_buf));
2519 int items = len >> 3;
2520 int i;
2521 /* memcpy from input buffer into aligned buffer */
2522 memcpy(aligned_buf, buf, len);
2523 buf += len;
2524 cnt -= len;
2525 /* push data from aligned buffer into fifo */
2526 for (i = 0; i < items; ++i)
2527 mci_fifo_writeq(host->fifo_reg, aligned_buf[i]);
2528 }
2529 } else
2530 #endif
2531 {
2532 u64 *pdata = buf;
2533
2534 for (; cnt >= 8; cnt -= 8)
2535 mci_fifo_writeq(host->fifo_reg, *pdata++);
2536 buf = pdata;
2537 }
2538 /* put anything remaining in the part_buf */
2539 if (cnt) {
2540 dw_mci_set_part_bytes(host, buf, cnt);
2541 /* Push data if we have reached the expected data length */
2542 if ((data->bytes_xfered + init_cnt) ==
2543 (data->blksz * data->blocks))
2544 mci_fifo_writeq(host->fifo_reg, host->part_buf);
2545 }
2546 }
2547
dw_mci_pull_data64(struct dw_mci * host,void * buf,int cnt)2548 static void dw_mci_pull_data64(struct dw_mci *host, void *buf, int cnt)
2549 {
2550 #ifndef CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS
2551 if (unlikely((unsigned long)buf & 0x7)) {
2552 while (cnt >= 8) {
2553 /* pull data from fifo into aligned buffer */
2554 u64 aligned_buf[16];
2555 int len = min(cnt & -8, (int)sizeof(aligned_buf));
2556 int items = len >> 3;
2557 int i;
2558
2559 for (i = 0; i < items; ++i)
2560 aligned_buf[i] = mci_fifo_readq(host->fifo_reg);
2561
2562 /* memcpy from aligned buffer into output buffer */
2563 memcpy(buf, aligned_buf, len);
2564 buf += len;
2565 cnt -= len;
2566 }
2567 } else
2568 #endif
2569 {
2570 u64 *pdata = buf;
2571
2572 for (; cnt >= 8; cnt -= 8)
2573 *pdata++ = mci_fifo_readq(host->fifo_reg);
2574 buf = pdata;
2575 }
2576 if (cnt) {
2577 host->part_buf = mci_fifo_readq(host->fifo_reg);
2578 dw_mci_pull_final_bytes(host, buf, cnt);
2579 }
2580 }
2581
dw_mci_push_data64_32(struct dw_mci * host,void * buf,int cnt)2582 static void dw_mci_push_data64_32(struct dw_mci *host, void *buf, int cnt)
2583 {
2584 struct mmc_data *data = host->data;
2585 int init_cnt = cnt;
2586
2587 /* try and push anything in the part_buf */
2588 if (unlikely(host->part_buf_count)) {
2589 int len = dw_mci_push_part_bytes(host, buf, cnt);
2590
2591 buf += len;
2592 cnt -= len;
2593
2594 if (host->part_buf_count == 8) {
2595 mci_fifo_l_writeq(host->fifo_reg, host->part_buf);
2596 host->part_buf_count = 0;
2597 }
2598 }
2599 #ifndef CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS
2600 if (unlikely((unsigned long)buf & 0x7)) {
2601 while (cnt >= 8) {
2602 u64 aligned_buf[16];
2603 int len = min(cnt & -8, (int)sizeof(aligned_buf));
2604 int items = len >> 3;
2605 int i;
2606 /* memcpy from input buffer into aligned buffer */
2607 memcpy(aligned_buf, buf, len);
2608 buf += len;
2609 cnt -= len;
2610 /* push data from aligned buffer into fifo */
2611 for (i = 0; i < items; ++i)
2612 mci_fifo_l_writeq(host->fifo_reg, aligned_buf[i]);
2613 }
2614 } else
2615 #endif
2616 {
2617 u64 *pdata = buf;
2618
2619 for (; cnt >= 8; cnt -= 8)
2620 mci_fifo_l_writeq(host->fifo_reg, *pdata++);
2621 buf = pdata;
2622 }
2623 /* put anything remaining in the part_buf */
2624 if (cnt) {
2625 dw_mci_set_part_bytes(host, buf, cnt);
2626 /* Push data if we have reached the expected data length */
2627 if ((data->bytes_xfered + init_cnt) ==
2628 (data->blksz * data->blocks))
2629 mci_fifo_l_writeq(host->fifo_reg, host->part_buf);
2630 }
2631 }
2632
dw_mci_pull_data64_32(struct dw_mci * host,void * buf,int cnt)2633 static void dw_mci_pull_data64_32(struct dw_mci *host, void *buf, int cnt)
2634 {
2635 #ifndef CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS
2636 if (unlikely((unsigned long)buf & 0x7)) {
2637 while (cnt >= 8) {
2638 /* pull data from fifo into aligned buffer */
2639 u64 aligned_buf[16];
2640 int len = min(cnt & -8, (int)sizeof(aligned_buf));
2641 int items = len >> 3;
2642 int i;
2643
2644 for (i = 0; i < items; ++i)
2645 aligned_buf[i] = mci_fifo_l_readq(host->fifo_reg);
2646
2647 /* memcpy from aligned buffer into output buffer */
2648 memcpy(buf, aligned_buf, len);
2649 buf += len;
2650 cnt -= len;
2651 }
2652 } else
2653 #endif
2654 {
2655 u64 *pdata = buf;
2656
2657 for (; cnt >= 8; cnt -= 8)
2658 *pdata++ = mci_fifo_l_readq(host->fifo_reg);
2659 buf = pdata;
2660 }
2661 if (cnt) {
2662 host->part_buf = mci_fifo_l_readq(host->fifo_reg);
2663 dw_mci_pull_final_bytes(host, buf, cnt);
2664 }
2665 }
2666
dw_mci_pull_data(struct dw_mci * host,void * buf,int cnt)2667 static void dw_mci_pull_data(struct dw_mci *host, void *buf, int cnt)
2668 {
2669 int len;
2670
2671 /* get remaining partial bytes */
2672 len = dw_mci_pull_part_bytes(host, buf, cnt);
2673 if (unlikely(len == cnt))
2674 return;
2675 buf += len;
2676 cnt -= len;
2677
2678 /* get the rest of the data */
2679 host->pull_data(host, buf, cnt);
2680 }
2681
dw_mci_read_data_pio(struct dw_mci * host,bool dto)2682 static void dw_mci_read_data_pio(struct dw_mci *host, bool dto)
2683 {
2684 struct sg_mapping_iter *sg_miter = &host->sg_miter;
2685 void *buf;
2686 unsigned int offset;
2687 struct mmc_data *data = host->data;
2688 int shift = host->data_shift;
2689 u32 status;
2690 unsigned int len;
2691 unsigned int remain, fcnt;
2692
2693 do {
2694 if (!sg_miter_next(sg_miter))
2695 goto done;
2696
2697 host->sg = sg_miter->piter.sg;
2698 buf = sg_miter->addr;
2699 remain = sg_miter->length;
2700 offset = 0;
2701
2702 do {
2703 fcnt = (SDMMC_GET_FCNT(mci_readl(host, STATUS))
2704 << shift) + host->part_buf_count;
2705 len = min(remain, fcnt);
2706 if (!len)
2707 break;
2708 dw_mci_pull_data(host, (void *)(buf + offset), len);
2709 data->bytes_xfered += len;
2710 offset += len;
2711 remain -= len;
2712 } while (remain);
2713
2714 sg_miter->consumed = offset;
2715 status = mci_readl(host, MINTSTS);
2716 mci_writel(host, RINTSTS, SDMMC_INT_RXDR);
2717 /* if the RXDR is ready read again */
2718 } while ((status & SDMMC_INT_RXDR) ||
2719 (dto && SDMMC_GET_FCNT(mci_readl(host, STATUS))));
2720
2721 if (!remain) {
2722 if (!sg_miter_next(sg_miter))
2723 goto done;
2724 sg_miter->consumed = 0;
2725 }
2726 sg_miter_stop(sg_miter);
2727 return;
2728
2729 done:
2730 sg_miter_stop(sg_miter);
2731 host->sg = NULL;
2732 smp_wmb(); /* drain writebuffer */
2733 set_bit(EVENT_XFER_COMPLETE, &host->pending_events);
2734 }
2735
dw_mci_write_data_pio(struct dw_mci * host)2736 static void dw_mci_write_data_pio(struct dw_mci *host)
2737 {
2738 struct sg_mapping_iter *sg_miter = &host->sg_miter;
2739 void *buf;
2740 unsigned int offset;
2741 struct mmc_data *data = host->data;
2742 int shift = host->data_shift;
2743 u32 status;
2744 unsigned int len;
2745 unsigned int fifo_depth = host->fifo_depth;
2746 unsigned int remain, fcnt;
2747
2748 do {
2749 if (!sg_miter_next(sg_miter))
2750 goto done;
2751
2752 host->sg = sg_miter->piter.sg;
2753 buf = sg_miter->addr;
2754 remain = sg_miter->length;
2755 offset = 0;
2756
2757 do {
2758 fcnt = ((fifo_depth -
2759 SDMMC_GET_FCNT(mci_readl(host, STATUS)))
2760 << shift) - host->part_buf_count;
2761 len = min(remain, fcnt);
2762 if (!len)
2763 break;
2764 host->push_data(host, (void *)(buf + offset), len);
2765 data->bytes_xfered += len;
2766 offset += len;
2767 remain -= len;
2768 } while (remain);
2769
2770 sg_miter->consumed = offset;
2771 status = mci_readl(host, MINTSTS);
2772 mci_writel(host, RINTSTS, SDMMC_INT_TXDR);
2773 } while (status & SDMMC_INT_TXDR); /* if TXDR write again */
2774
2775 if (!remain) {
2776 if (!sg_miter_next(sg_miter))
2777 goto done;
2778 sg_miter->consumed = 0;
2779 }
2780 sg_miter_stop(sg_miter);
2781 return;
2782
2783 done:
2784 sg_miter_stop(sg_miter);
2785 host->sg = NULL;
2786 smp_wmb(); /* drain writebuffer */
2787 set_bit(EVENT_XFER_COMPLETE, &host->pending_events);
2788 }
2789
dw_mci_cmd_interrupt(struct dw_mci * host,u32 status)2790 static void dw_mci_cmd_interrupt(struct dw_mci *host, u32 status)
2791 {
2792 del_timer(&host->cto_timer);
2793
2794 if (!host->cmd_status)
2795 host->cmd_status = status;
2796
2797 smp_wmb(); /* drain writebuffer */
2798
2799 set_bit(EVENT_CMD_COMPLETE, &host->pending_events);
2800 queue_work(system_bh_wq, &host->bh_work);
2801
2802 dw_mci_start_fault_timer(host);
2803 }
2804
dw_mci_handle_cd(struct dw_mci * host)2805 static void dw_mci_handle_cd(struct dw_mci *host)
2806 {
2807 struct dw_mci_slot *slot = host->slot;
2808
2809 mmc_detect_change(slot->mmc,
2810 msecs_to_jiffies(host->pdata->detect_delay_ms));
2811 }
2812
dw_mci_interrupt(int irq,void * dev_id)2813 static irqreturn_t dw_mci_interrupt(int irq, void *dev_id)
2814 {
2815 struct dw_mci *host = dev_id;
2816 u32 pending;
2817 struct dw_mci_slot *slot = host->slot;
2818
2819 pending = mci_readl(host, MINTSTS); /* read-only mask reg */
2820
2821 if (pending) {
2822 /* Check volt switch first, since it can look like an error */
2823 if ((host->state == STATE_SENDING_CMD11) &&
2824 (pending & SDMMC_INT_VOLT_SWITCH)) {
2825 mci_writel(host, RINTSTS, SDMMC_INT_VOLT_SWITCH);
2826 pending &= ~SDMMC_INT_VOLT_SWITCH;
2827
2828 /*
2829 * Hold the lock; we know cmd11_timer can't be kicked
2830 * off after the lock is released, so safe to delete.
2831 */
2832 spin_lock(&host->irq_lock);
2833 dw_mci_cmd_interrupt(host, pending);
2834 spin_unlock(&host->irq_lock);
2835
2836 del_timer(&host->cmd11_timer);
2837 }
2838
2839 if (pending & DW_MCI_CMD_ERROR_FLAGS) {
2840 spin_lock(&host->irq_lock);
2841
2842 del_timer(&host->cto_timer);
2843 mci_writel(host, RINTSTS, DW_MCI_CMD_ERROR_FLAGS);
2844 host->cmd_status = pending;
2845 smp_wmb(); /* drain writebuffer */
2846 set_bit(EVENT_CMD_COMPLETE, &host->pending_events);
2847
2848 spin_unlock(&host->irq_lock);
2849 }
2850
2851 if (pending & DW_MCI_DATA_ERROR_FLAGS) {
2852 spin_lock(&host->irq_lock);
2853
2854 if (host->quirks & DW_MMC_QUIRK_EXTENDED_TMOUT)
2855 del_timer(&host->dto_timer);
2856
2857 /* if there is an error report DATA_ERROR */
2858 mci_writel(host, RINTSTS, DW_MCI_DATA_ERROR_FLAGS);
2859 host->data_status = pending;
2860 smp_wmb(); /* drain writebuffer */
2861 set_bit(EVENT_DATA_ERROR, &host->pending_events);
2862
2863 if (host->quirks & DW_MMC_QUIRK_EXTENDED_TMOUT)
2864 /* In case of error, we cannot expect a DTO */
2865 set_bit(EVENT_DATA_COMPLETE,
2866 &host->pending_events);
2867
2868 queue_work(system_bh_wq, &host->bh_work);
2869
2870 spin_unlock(&host->irq_lock);
2871 }
2872
2873 if (pending & SDMMC_INT_DATA_OVER) {
2874 spin_lock(&host->irq_lock);
2875
2876 del_timer(&host->dto_timer);
2877
2878 mci_writel(host, RINTSTS, SDMMC_INT_DATA_OVER);
2879 if (!host->data_status)
2880 host->data_status = pending;
2881 smp_wmb(); /* drain writebuffer */
2882 if (host->dir_status == DW_MCI_RECV_STATUS) {
2883 if (host->sg != NULL)
2884 dw_mci_read_data_pio(host, true);
2885 }
2886 set_bit(EVENT_DATA_COMPLETE, &host->pending_events);
2887 queue_work(system_bh_wq, &host->bh_work);
2888
2889 spin_unlock(&host->irq_lock);
2890 }
2891
2892 if (pending & SDMMC_INT_RXDR) {
2893 mci_writel(host, RINTSTS, SDMMC_INT_RXDR);
2894 if (host->dir_status == DW_MCI_RECV_STATUS && host->sg)
2895 dw_mci_read_data_pio(host, false);
2896 }
2897
2898 if (pending & SDMMC_INT_TXDR) {
2899 mci_writel(host, RINTSTS, SDMMC_INT_TXDR);
2900 if (host->dir_status == DW_MCI_SEND_STATUS && host->sg)
2901 dw_mci_write_data_pio(host);
2902 }
2903
2904 if (pending & SDMMC_INT_CMD_DONE) {
2905 spin_lock(&host->irq_lock);
2906
2907 mci_writel(host, RINTSTS, SDMMC_INT_CMD_DONE);
2908 dw_mci_cmd_interrupt(host, pending);
2909
2910 spin_unlock(&host->irq_lock);
2911 }
2912
2913 if (pending & SDMMC_INT_CD) {
2914 mci_writel(host, RINTSTS, SDMMC_INT_CD);
2915 dw_mci_handle_cd(host);
2916 }
2917
2918 if (pending & SDMMC_INT_SDIO(slot->sdio_id)) {
2919 mci_writel(host, RINTSTS,
2920 SDMMC_INT_SDIO(slot->sdio_id));
2921 __dw_mci_enable_sdio_irq(slot, 0);
2922 sdio_signal_irq(slot->mmc);
2923 }
2924
2925 }
2926
2927 if (host->use_dma != TRANS_MODE_IDMAC)
2928 return IRQ_HANDLED;
2929
2930 /* Handle IDMA interrupts */
2931 if (host->dma_64bit_address == 1) {
2932 pending = mci_readl(host, IDSTS64);
2933 if (pending & (SDMMC_IDMAC_INT_TI | SDMMC_IDMAC_INT_RI)) {
2934 mci_writel(host, IDSTS64, SDMMC_IDMAC_INT_TI |
2935 SDMMC_IDMAC_INT_RI);
2936 mci_writel(host, IDSTS64, SDMMC_IDMAC_INT_NI);
2937 if (!test_bit(EVENT_DATA_ERROR, &host->pending_events))
2938 host->dma_ops->complete((void *)host);
2939 }
2940 } else {
2941 pending = mci_readl(host, IDSTS);
2942 if (pending & (SDMMC_IDMAC_INT_TI | SDMMC_IDMAC_INT_RI)) {
2943 mci_writel(host, IDSTS, SDMMC_IDMAC_INT_TI |
2944 SDMMC_IDMAC_INT_RI);
2945 mci_writel(host, IDSTS, SDMMC_IDMAC_INT_NI);
2946 if (!test_bit(EVENT_DATA_ERROR, &host->pending_events))
2947 host->dma_ops->complete((void *)host);
2948 }
2949 }
2950
2951 return IRQ_HANDLED;
2952 }
2953
dw_mci_init_slot_caps(struct dw_mci_slot * slot)2954 static int dw_mci_init_slot_caps(struct dw_mci_slot *slot)
2955 {
2956 struct dw_mci *host = slot->host;
2957 const struct dw_mci_drv_data *drv_data = host->drv_data;
2958 struct mmc_host *mmc = slot->mmc;
2959 int ctrl_id;
2960
2961 if (host->pdata->caps)
2962 mmc->caps = host->pdata->caps;
2963
2964 if (host->pdata->pm_caps)
2965 mmc->pm_caps = host->pdata->pm_caps;
2966
2967 if (drv_data)
2968 mmc->caps |= drv_data->common_caps;
2969
2970 if (host->dev->of_node) {
2971 ctrl_id = of_alias_get_id(host->dev->of_node, "mshc");
2972 if (ctrl_id < 0)
2973 ctrl_id = 0;
2974 } else {
2975 ctrl_id = to_platform_device(host->dev)->id;
2976 }
2977
2978 if (drv_data && drv_data->caps) {
2979 if (ctrl_id >= drv_data->num_caps) {
2980 dev_err(host->dev, "invalid controller id %d\n",
2981 ctrl_id);
2982 return -EINVAL;
2983 }
2984 mmc->caps |= drv_data->caps[ctrl_id];
2985 }
2986
2987 if (host->pdata->caps2)
2988 mmc->caps2 = host->pdata->caps2;
2989
2990 /* if host has set a minimum_freq, we should respect it */
2991 if (host->minimum_speed)
2992 mmc->f_min = host->minimum_speed;
2993 else
2994 mmc->f_min = DW_MCI_FREQ_MIN;
2995
2996 if (!mmc->f_max)
2997 mmc->f_max = DW_MCI_FREQ_MAX;
2998
2999 /* Process SDIO IRQs through the sdio_irq_work. */
3000 if (mmc->caps & MMC_CAP_SDIO_IRQ)
3001 mmc->caps2 |= MMC_CAP2_SDIO_IRQ_NOTHREAD;
3002
3003 return 0;
3004 }
3005
dw_mci_init_slot(struct dw_mci * host)3006 static int dw_mci_init_slot(struct dw_mci *host)
3007 {
3008 struct mmc_host *mmc;
3009 struct dw_mci_slot *slot;
3010 int ret;
3011
3012 mmc = mmc_alloc_host(sizeof(struct dw_mci_slot), host->dev);
3013 if (!mmc)
3014 return -ENOMEM;
3015
3016 slot = mmc_priv(mmc);
3017 slot->id = 0;
3018 slot->sdio_id = host->sdio_id0 + slot->id;
3019 slot->mmc = mmc;
3020 slot->host = host;
3021 host->slot = slot;
3022
3023 mmc->ops = &dw_mci_ops;
3024
3025 /*if there are external regulators, get them*/
3026 ret = mmc_regulator_get_supply(mmc);
3027 if (ret)
3028 goto err_host_allocated;
3029
3030 if (!mmc->ocr_avail)
3031 mmc->ocr_avail = MMC_VDD_32_33 | MMC_VDD_33_34;
3032
3033 ret = mmc_of_parse(mmc);
3034 if (ret)
3035 goto err_host_allocated;
3036
3037 ret = dw_mci_init_slot_caps(slot);
3038 if (ret)
3039 goto err_host_allocated;
3040
3041 /* Useful defaults if platform data is unset. */
3042 if (host->use_dma == TRANS_MODE_IDMAC) {
3043 mmc->max_segs = host->ring_size;
3044 mmc->max_blk_size = 65535;
3045 mmc->max_seg_size = 0x1000;
3046 mmc->max_req_size = mmc->max_seg_size * host->ring_size;
3047 mmc->max_blk_count = mmc->max_req_size / 512;
3048 } else if (host->use_dma == TRANS_MODE_EDMAC) {
3049 mmc->max_segs = 64;
3050 mmc->max_blk_size = 65535;
3051 mmc->max_blk_count = 65535;
3052 mmc->max_req_size =
3053 mmc->max_blk_size * mmc->max_blk_count;
3054 mmc->max_seg_size = mmc->max_req_size;
3055 } else {
3056 /* TRANS_MODE_PIO */
3057 mmc->max_segs = 64;
3058 mmc->max_blk_size = 65535; /* BLKSIZ is 16 bits */
3059 mmc->max_blk_count = 512;
3060 mmc->max_req_size = mmc->max_blk_size *
3061 mmc->max_blk_count;
3062 mmc->max_seg_size = mmc->max_req_size;
3063 }
3064
3065 dw_mci_get_cd(mmc);
3066
3067 ret = mmc_add_host(mmc);
3068 if (ret)
3069 goto err_host_allocated;
3070
3071 #if defined(CONFIG_DEBUG_FS)
3072 dw_mci_init_debugfs(slot);
3073 #endif
3074
3075 return 0;
3076
3077 err_host_allocated:
3078 mmc_free_host(mmc);
3079 return ret;
3080 }
3081
dw_mci_cleanup_slot(struct dw_mci_slot * slot)3082 static void dw_mci_cleanup_slot(struct dw_mci_slot *slot)
3083 {
3084 /* Debugfs stuff is cleaned up by mmc core */
3085 mmc_remove_host(slot->mmc);
3086 slot->host->slot = NULL;
3087 mmc_free_host(slot->mmc);
3088 }
3089
dw_mci_init_dma(struct dw_mci * host)3090 static void dw_mci_init_dma(struct dw_mci *host)
3091 {
3092 int addr_config;
3093 struct device *dev = host->dev;
3094
3095 /*
3096 * Check tansfer mode from HCON[17:16]
3097 * Clear the ambiguous description of dw_mmc databook:
3098 * 2b'00: No DMA Interface -> Actually means using Internal DMA block
3099 * 2b'01: DesignWare DMA Interface -> Synopsys DW-DMA block
3100 * 2b'10: Generic DMA Interface -> non-Synopsys generic DMA block
3101 * 2b'11: Non DW DMA Interface -> pio only
3102 * Compared to DesignWare DMA Interface, Generic DMA Interface has a
3103 * simpler request/acknowledge handshake mechanism and both of them
3104 * are regarded as external dma master for dw_mmc.
3105 */
3106 host->use_dma = SDMMC_GET_TRANS_MODE(mci_readl(host, HCON));
3107 if (host->use_dma == DMA_INTERFACE_IDMA) {
3108 host->use_dma = TRANS_MODE_IDMAC;
3109 } else if (host->use_dma == DMA_INTERFACE_DWDMA ||
3110 host->use_dma == DMA_INTERFACE_GDMA) {
3111 host->use_dma = TRANS_MODE_EDMAC;
3112 } else {
3113 goto no_dma;
3114 }
3115
3116 /* Determine which DMA interface to use */
3117 if (host->use_dma == TRANS_MODE_IDMAC) {
3118 /*
3119 * Check ADDR_CONFIG bit in HCON to find
3120 * IDMAC address bus width
3121 */
3122 addr_config = SDMMC_GET_ADDR_CONFIG(mci_readl(host, HCON));
3123
3124 if (addr_config == 1) {
3125 /* host supports IDMAC in 64-bit address mode */
3126 host->dma_64bit_address = 1;
3127 dev_info(host->dev,
3128 "IDMAC supports 64-bit address mode.\n");
3129 if (!dma_set_mask(host->dev, DMA_BIT_MASK(64)))
3130 dma_set_coherent_mask(host->dev,
3131 DMA_BIT_MASK(64));
3132 } else {
3133 /* host supports IDMAC in 32-bit address mode */
3134 host->dma_64bit_address = 0;
3135 dev_info(host->dev,
3136 "IDMAC supports 32-bit address mode.\n");
3137 }
3138
3139 /* Alloc memory for sg translation */
3140 host->sg_cpu = dmam_alloc_coherent(host->dev,
3141 DESC_RING_BUF_SZ,
3142 &host->sg_dma, GFP_KERNEL);
3143 if (!host->sg_cpu) {
3144 dev_err(host->dev,
3145 "%s: could not alloc DMA memory\n",
3146 __func__);
3147 goto no_dma;
3148 }
3149
3150 host->dma_ops = &dw_mci_idmac_ops;
3151 dev_info(host->dev, "Using internal DMA controller.\n");
3152 } else {
3153 /* TRANS_MODE_EDMAC: check dma bindings again */
3154 if ((device_property_string_array_count(dev, "dma-names") < 0) ||
3155 !device_property_present(dev, "dmas")) {
3156 goto no_dma;
3157 }
3158 host->dma_ops = &dw_mci_edmac_ops;
3159 dev_info(host->dev, "Using external DMA controller.\n");
3160 }
3161
3162 if (host->dma_ops->init && host->dma_ops->start &&
3163 host->dma_ops->stop && host->dma_ops->cleanup) {
3164 if (host->dma_ops->init(host)) {
3165 dev_err(host->dev, "%s: Unable to initialize DMA Controller.\n",
3166 __func__);
3167 goto no_dma;
3168 }
3169 } else {
3170 dev_err(host->dev, "DMA initialization not found.\n");
3171 goto no_dma;
3172 }
3173
3174 return;
3175
3176 no_dma:
3177 dev_info(host->dev, "Using PIO mode.\n");
3178 host->use_dma = TRANS_MODE_PIO;
3179 }
3180
dw_mci_cmd11_timer(struct timer_list * t)3181 static void dw_mci_cmd11_timer(struct timer_list *t)
3182 {
3183 struct dw_mci *host = from_timer(host, t, cmd11_timer);
3184
3185 if (host->state != STATE_SENDING_CMD11) {
3186 dev_warn(host->dev, "Unexpected CMD11 timeout\n");
3187 return;
3188 }
3189
3190 host->cmd_status = SDMMC_INT_RTO;
3191 set_bit(EVENT_CMD_COMPLETE, &host->pending_events);
3192 queue_work(system_bh_wq, &host->bh_work);
3193 }
3194
dw_mci_cto_timer(struct timer_list * t)3195 static void dw_mci_cto_timer(struct timer_list *t)
3196 {
3197 struct dw_mci *host = from_timer(host, t, cto_timer);
3198 unsigned long irqflags;
3199 u32 pending;
3200
3201 spin_lock_irqsave(&host->irq_lock, irqflags);
3202
3203 /*
3204 * If somehow we have very bad interrupt latency it's remotely possible
3205 * that the timer could fire while the interrupt is still pending or
3206 * while the interrupt is midway through running. Let's be paranoid
3207 * and detect those two cases. Note that this is paranoia is somewhat
3208 * justified because in this function we don't actually cancel the
3209 * pending command in the controller--we just assume it will never come.
3210 */
3211 pending = mci_readl(host, MINTSTS); /* read-only mask reg */
3212 if (pending & (DW_MCI_CMD_ERROR_FLAGS | SDMMC_INT_CMD_DONE)) {
3213 /* The interrupt should fire; no need to act but we can warn */
3214 dev_warn(host->dev, "Unexpected interrupt latency\n");
3215 goto exit;
3216 }
3217 if (test_bit(EVENT_CMD_COMPLETE, &host->pending_events)) {
3218 /* Presumably interrupt handler couldn't delete the timer */
3219 dev_warn(host->dev, "CTO timeout when already completed\n");
3220 goto exit;
3221 }
3222
3223 /*
3224 * Continued paranoia to make sure we're in the state we expect.
3225 * This paranoia isn't really justified but it seems good to be safe.
3226 */
3227 switch (host->state) {
3228 case STATE_SENDING_CMD11:
3229 case STATE_SENDING_CMD:
3230 case STATE_SENDING_STOP:
3231 /*
3232 * If CMD_DONE interrupt does NOT come in sending command
3233 * state, we should notify the driver to terminate current
3234 * transfer and report a command timeout to the core.
3235 */
3236 host->cmd_status = SDMMC_INT_RTO;
3237 set_bit(EVENT_CMD_COMPLETE, &host->pending_events);
3238 queue_work(system_bh_wq, &host->bh_work);
3239 break;
3240 default:
3241 dev_warn(host->dev, "Unexpected command timeout, state %d\n",
3242 host->state);
3243 break;
3244 }
3245
3246 exit:
3247 spin_unlock_irqrestore(&host->irq_lock, irqflags);
3248 }
3249
dw_mci_dto_timer(struct timer_list * t)3250 static void dw_mci_dto_timer(struct timer_list *t)
3251 {
3252 struct dw_mci *host = from_timer(host, t, dto_timer);
3253 unsigned long irqflags;
3254 u32 pending;
3255
3256 spin_lock_irqsave(&host->irq_lock, irqflags);
3257
3258 /*
3259 * The DTO timer is much longer than the CTO timer, so it's even less
3260 * likely that we'll these cases, but it pays to be paranoid.
3261 */
3262 pending = mci_readl(host, MINTSTS); /* read-only mask reg */
3263 if (pending & SDMMC_INT_DATA_OVER) {
3264 /* The interrupt should fire; no need to act but we can warn */
3265 dev_warn(host->dev, "Unexpected data interrupt latency\n");
3266 goto exit;
3267 }
3268 if (test_bit(EVENT_DATA_COMPLETE, &host->pending_events)) {
3269 /* Presumably interrupt handler couldn't delete the timer */
3270 dev_warn(host->dev, "DTO timeout when already completed\n");
3271 goto exit;
3272 }
3273
3274 /*
3275 * Continued paranoia to make sure we're in the state we expect.
3276 * This paranoia isn't really justified but it seems good to be safe.
3277 */
3278 switch (host->state) {
3279 case STATE_SENDING_DATA:
3280 case STATE_DATA_BUSY:
3281 /*
3282 * If DTO interrupt does NOT come in sending data state,
3283 * we should notify the driver to terminate current transfer
3284 * and report a data timeout to the core.
3285 */
3286 host->data_status = SDMMC_INT_DRTO;
3287 set_bit(EVENT_DATA_ERROR, &host->pending_events);
3288 set_bit(EVENT_DATA_COMPLETE, &host->pending_events);
3289 queue_work(system_bh_wq, &host->bh_work);
3290 break;
3291 default:
3292 dev_warn(host->dev, "Unexpected data timeout, state %d\n",
3293 host->state);
3294 break;
3295 }
3296
3297 exit:
3298 spin_unlock_irqrestore(&host->irq_lock, irqflags);
3299 }
3300
3301 #ifdef CONFIG_OF
dw_mci_parse_dt(struct dw_mci * host)3302 static struct dw_mci_board *dw_mci_parse_dt(struct dw_mci *host)
3303 {
3304 struct dw_mci_board *pdata;
3305 struct device *dev = host->dev;
3306 const struct dw_mci_drv_data *drv_data = host->drv_data;
3307 int ret;
3308 u32 clock_frequency;
3309
3310 pdata = devm_kzalloc(dev, sizeof(*pdata), GFP_KERNEL);
3311 if (!pdata)
3312 return ERR_PTR(-ENOMEM);
3313
3314 /* find reset controller when exist */
3315 pdata->rstc = devm_reset_control_get_optional_exclusive(dev, "reset");
3316 if (IS_ERR(pdata->rstc))
3317 return ERR_CAST(pdata->rstc);
3318
3319 if (device_property_read_u32(dev, "fifo-depth", &pdata->fifo_depth))
3320 dev_info(dev,
3321 "fifo-depth property not found, using value of FIFOTH register as default\n");
3322
3323 device_property_read_u32(dev, "card-detect-delay",
3324 &pdata->detect_delay_ms);
3325
3326 device_property_read_u32(dev, "data-addr", &host->data_addr_override);
3327
3328 if (device_property_present(dev, "fifo-watermark-aligned"))
3329 host->wm_aligned = true;
3330
3331 if (!device_property_read_u32(dev, "clock-frequency", &clock_frequency))
3332 pdata->bus_hz = clock_frequency;
3333
3334 if (drv_data && drv_data->parse_dt) {
3335 ret = drv_data->parse_dt(host);
3336 if (ret)
3337 return ERR_PTR(ret);
3338 }
3339
3340 return pdata;
3341 }
3342
3343 #else /* CONFIG_OF */
dw_mci_parse_dt(struct dw_mci * host)3344 static struct dw_mci_board *dw_mci_parse_dt(struct dw_mci *host)
3345 {
3346 return ERR_PTR(-EINVAL);
3347 }
3348 #endif /* CONFIG_OF */
3349
dw_mci_enable_cd(struct dw_mci * host)3350 static void dw_mci_enable_cd(struct dw_mci *host)
3351 {
3352 unsigned long irqflags;
3353 u32 temp;
3354
3355 /*
3356 * No need for CD if all slots have a non-error GPIO
3357 * as well as broken card detection is found.
3358 */
3359 if (host->slot->mmc->caps & MMC_CAP_NEEDS_POLL)
3360 return;
3361
3362 if (mmc_gpio_get_cd(host->slot->mmc) < 0) {
3363 spin_lock_irqsave(&host->irq_lock, irqflags);
3364 temp = mci_readl(host, INTMASK);
3365 temp |= SDMMC_INT_CD;
3366 mci_writel(host, INTMASK, temp);
3367 spin_unlock_irqrestore(&host->irq_lock, irqflags);
3368 }
3369 }
3370
dw_mci_probe(struct dw_mci * host)3371 int dw_mci_probe(struct dw_mci *host)
3372 {
3373 const struct dw_mci_drv_data *drv_data = host->drv_data;
3374 int width, i, ret = 0;
3375 u32 fifo_size;
3376
3377 if (!host->pdata) {
3378 host->pdata = dw_mci_parse_dt(host);
3379 if (IS_ERR(host->pdata))
3380 return dev_err_probe(host->dev, PTR_ERR(host->pdata),
3381 "platform data not available\n");
3382 }
3383
3384 host->biu_clk = devm_clk_get(host->dev, "biu");
3385 if (IS_ERR(host->biu_clk)) {
3386 dev_dbg(host->dev, "biu clock not available\n");
3387 ret = PTR_ERR(host->biu_clk);
3388 if (ret == -EPROBE_DEFER)
3389 return ret;
3390
3391 } else {
3392 ret = clk_prepare_enable(host->biu_clk);
3393 if (ret) {
3394 dev_err(host->dev, "failed to enable biu clock\n");
3395 return ret;
3396 }
3397 }
3398
3399 host->ciu_clk = devm_clk_get(host->dev, "ciu");
3400 if (IS_ERR(host->ciu_clk)) {
3401 dev_dbg(host->dev, "ciu clock not available\n");
3402 ret = PTR_ERR(host->ciu_clk);
3403 if (ret == -EPROBE_DEFER)
3404 goto err_clk_biu;
3405
3406 host->bus_hz = host->pdata->bus_hz;
3407 } else {
3408 ret = clk_prepare_enable(host->ciu_clk);
3409 if (ret) {
3410 dev_err(host->dev, "failed to enable ciu clock\n");
3411 goto err_clk_biu;
3412 }
3413
3414 if (host->pdata->bus_hz) {
3415 ret = clk_set_rate(host->ciu_clk, host->pdata->bus_hz);
3416 if (ret)
3417 dev_warn(host->dev,
3418 "Unable to set bus rate to %uHz\n",
3419 host->pdata->bus_hz);
3420 }
3421 host->bus_hz = clk_get_rate(host->ciu_clk);
3422 }
3423
3424 if (!host->bus_hz) {
3425 dev_err(host->dev,
3426 "Platform data must supply bus speed\n");
3427 ret = -ENODEV;
3428 goto err_clk_ciu;
3429 }
3430
3431 if (host->pdata->rstc) {
3432 reset_control_assert(host->pdata->rstc);
3433 usleep_range(10, 50);
3434 reset_control_deassert(host->pdata->rstc);
3435 }
3436
3437 if (drv_data && drv_data->init) {
3438 ret = drv_data->init(host);
3439 if (ret) {
3440 dev_err(host->dev,
3441 "implementation specific init failed\n");
3442 goto err_clk_ciu;
3443 }
3444 }
3445
3446 timer_setup(&host->cmd11_timer, dw_mci_cmd11_timer, 0);
3447 timer_setup(&host->cto_timer, dw_mci_cto_timer, 0);
3448 timer_setup(&host->dto_timer, dw_mci_dto_timer, 0);
3449
3450 spin_lock_init(&host->lock);
3451 spin_lock_init(&host->irq_lock);
3452 INIT_LIST_HEAD(&host->queue);
3453
3454 dw_mci_init_fault(host);
3455
3456 /*
3457 * Get the host data width - this assumes that HCON has been set with
3458 * the correct values.
3459 */
3460 i = SDMMC_GET_HDATA_WIDTH(mci_readl(host, HCON));
3461 if (!i) {
3462 host->push_data = dw_mci_push_data16;
3463 host->pull_data = dw_mci_pull_data16;
3464 width = 16;
3465 host->data_shift = 1;
3466 } else if (i == 2) {
3467 if ((host->quirks & DW_MMC_QUIRK_FIFO64_32)) {
3468 host->push_data = dw_mci_push_data64_32;
3469 host->pull_data = dw_mci_pull_data64_32;
3470 } else {
3471 host->push_data = dw_mci_push_data64;
3472 host->pull_data = dw_mci_pull_data64;
3473 }
3474 width = 64;
3475 host->data_shift = 3;
3476 } else {
3477 /* Check for a reserved value, and warn if it is */
3478 WARN((i != 1),
3479 "HCON reports a reserved host data width!\n"
3480 "Defaulting to 32-bit access.\n");
3481 host->push_data = dw_mci_push_data32;
3482 host->pull_data = dw_mci_pull_data32;
3483 width = 32;
3484 host->data_shift = 2;
3485 }
3486
3487 /* Reset all blocks */
3488 if (!dw_mci_ctrl_reset(host, SDMMC_CTRL_ALL_RESET_FLAGS)) {
3489 ret = -ENODEV;
3490 goto err_clk_ciu;
3491 }
3492
3493 host->dma_ops = host->pdata->dma_ops;
3494 dw_mci_init_dma(host);
3495
3496 /* Clear the interrupts for the host controller */
3497 mci_writel(host, RINTSTS, 0xFFFFFFFF);
3498 mci_writel(host, INTMASK, 0); /* disable all mmc interrupt first */
3499
3500 /* Put in max timeout */
3501 mci_writel(host, TMOUT, 0xFFFFFFFF);
3502
3503 /*
3504 * FIFO threshold settings RxMark = fifo_size / 2 - 1,
3505 * Tx Mark = fifo_size / 2 DMA Size = 8
3506 */
3507 if (!host->pdata->fifo_depth) {
3508 /*
3509 * Power-on value of RX_WMark is FIFO_DEPTH-1, but this may
3510 * have been overwritten by the bootloader, just like we're
3511 * about to do, so if you know the value for your hardware, you
3512 * should put it in the platform data.
3513 */
3514 fifo_size = mci_readl(host, FIFOTH);
3515 fifo_size = 1 + ((fifo_size >> 16) & 0xfff);
3516 } else {
3517 fifo_size = host->pdata->fifo_depth;
3518 }
3519 host->fifo_depth = fifo_size;
3520 host->fifoth_val =
3521 SDMMC_SET_FIFOTH(0x2, fifo_size / 2 - 1, fifo_size / 2);
3522 mci_writel(host, FIFOTH, host->fifoth_val);
3523
3524 /* disable clock to CIU */
3525 mci_writel(host, CLKENA, 0);
3526 mci_writel(host, CLKSRC, 0);
3527
3528 /*
3529 * In 2.40a spec, Data offset is changed.
3530 * Need to check the version-id and set data-offset for DATA register.
3531 */
3532 host->verid = SDMMC_GET_VERID(mci_readl(host, VERID));
3533 dev_info(host->dev, "Version ID is %04x\n", host->verid);
3534
3535 if (host->data_addr_override)
3536 host->fifo_reg = host->regs + host->data_addr_override;
3537 else if (host->verid < DW_MMC_240A)
3538 host->fifo_reg = host->regs + DATA_OFFSET;
3539 else
3540 host->fifo_reg = host->regs + DATA_240A_OFFSET;
3541
3542 INIT_WORK(&host->bh_work, dw_mci_work_func);
3543 ret = devm_request_irq(host->dev, host->irq, dw_mci_interrupt,
3544 host->irq_flags, "dw-mci", host);
3545 if (ret)
3546 goto err_dmaunmap;
3547
3548 /*
3549 * Enable interrupts for command done, data over, data empty,
3550 * receive ready and error such as transmit, receive timeout, crc error
3551 */
3552 mci_writel(host, INTMASK, SDMMC_INT_CMD_DONE | SDMMC_INT_DATA_OVER |
3553 SDMMC_INT_TXDR | SDMMC_INT_RXDR |
3554 DW_MCI_ERROR_FLAGS);
3555 /* Enable mci interrupt */
3556 mci_writel(host, CTRL, SDMMC_CTRL_INT_ENABLE);
3557
3558 dev_info(host->dev,
3559 "DW MMC controller at irq %d,%d bit host data width,%u deep fifo\n",
3560 host->irq, width, fifo_size);
3561
3562 /* We need at least one slot to succeed */
3563 ret = dw_mci_init_slot(host);
3564 if (ret) {
3565 dev_dbg(host->dev, "slot %d init failed\n", i);
3566 goto err_dmaunmap;
3567 }
3568
3569 /* Now that slots are all setup, we can enable card detect */
3570 dw_mci_enable_cd(host);
3571
3572 return 0;
3573
3574 err_dmaunmap:
3575 if (host->use_dma && host->dma_ops->exit)
3576 host->dma_ops->exit(host);
3577
3578 reset_control_assert(host->pdata->rstc);
3579
3580 err_clk_ciu:
3581 clk_disable_unprepare(host->ciu_clk);
3582
3583 err_clk_biu:
3584 clk_disable_unprepare(host->biu_clk);
3585
3586 return ret;
3587 }
3588 EXPORT_SYMBOL(dw_mci_probe);
3589
dw_mci_remove(struct dw_mci * host)3590 void dw_mci_remove(struct dw_mci *host)
3591 {
3592 dev_dbg(host->dev, "remove slot\n");
3593 if (host->slot)
3594 dw_mci_cleanup_slot(host->slot);
3595
3596 mci_writel(host, RINTSTS, 0xFFFFFFFF);
3597 mci_writel(host, INTMASK, 0); /* disable all mmc interrupt first */
3598
3599 /* disable clock to CIU */
3600 mci_writel(host, CLKENA, 0);
3601 mci_writel(host, CLKSRC, 0);
3602
3603 if (host->use_dma && host->dma_ops->exit)
3604 host->dma_ops->exit(host);
3605
3606 reset_control_assert(host->pdata->rstc);
3607
3608 clk_disable_unprepare(host->ciu_clk);
3609 clk_disable_unprepare(host->biu_clk);
3610 }
3611 EXPORT_SYMBOL(dw_mci_remove);
3612
3613
3614
3615 #ifdef CONFIG_PM
dw_mci_runtime_suspend(struct device * dev)3616 int dw_mci_runtime_suspend(struct device *dev)
3617 {
3618 struct dw_mci *host = dev_get_drvdata(dev);
3619
3620 if (host->use_dma && host->dma_ops->exit)
3621 host->dma_ops->exit(host);
3622
3623 clk_disable_unprepare(host->ciu_clk);
3624
3625 if (host->slot &&
3626 (mmc_can_gpio_cd(host->slot->mmc) ||
3627 !mmc_card_is_removable(host->slot->mmc)))
3628 clk_disable_unprepare(host->biu_clk);
3629
3630 return 0;
3631 }
3632 EXPORT_SYMBOL(dw_mci_runtime_suspend);
3633
dw_mci_runtime_resume(struct device * dev)3634 int dw_mci_runtime_resume(struct device *dev)
3635 {
3636 int ret = 0;
3637 struct dw_mci *host = dev_get_drvdata(dev);
3638
3639 if (host->slot &&
3640 (mmc_can_gpio_cd(host->slot->mmc) ||
3641 !mmc_card_is_removable(host->slot->mmc))) {
3642 ret = clk_prepare_enable(host->biu_clk);
3643 if (ret)
3644 return ret;
3645 }
3646
3647 ret = clk_prepare_enable(host->ciu_clk);
3648 if (ret)
3649 goto err;
3650
3651 if (!dw_mci_ctrl_reset(host, SDMMC_CTRL_ALL_RESET_FLAGS)) {
3652 clk_disable_unprepare(host->ciu_clk);
3653 ret = -ENODEV;
3654 goto err;
3655 }
3656
3657 if (host->use_dma && host->dma_ops->init)
3658 host->dma_ops->init(host);
3659
3660 /*
3661 * Restore the initial value at FIFOTH register
3662 * And Invalidate the prev_blksz with zero
3663 */
3664 mci_writel(host, FIFOTH, host->fifoth_val);
3665 host->prev_blksz = 0;
3666
3667 /* Put in max timeout */
3668 mci_writel(host, TMOUT, 0xFFFFFFFF);
3669
3670 mci_writel(host, RINTSTS, 0xFFFFFFFF);
3671 mci_writel(host, INTMASK, SDMMC_INT_CMD_DONE | SDMMC_INT_DATA_OVER |
3672 SDMMC_INT_TXDR | SDMMC_INT_RXDR |
3673 DW_MCI_ERROR_FLAGS);
3674 mci_writel(host, CTRL, SDMMC_CTRL_INT_ENABLE);
3675
3676
3677 if (host->slot && host->slot->mmc->pm_flags & MMC_PM_KEEP_POWER)
3678 dw_mci_set_ios(host->slot->mmc, &host->slot->mmc->ios);
3679
3680 /* Force setup bus to guarantee available clock output */
3681 dw_mci_setup_bus(host->slot, true);
3682
3683 /* Re-enable SDIO interrupts. */
3684 if (sdio_irq_claimed(host->slot->mmc))
3685 __dw_mci_enable_sdio_irq(host->slot, 1);
3686
3687 /* Now that slots are all setup, we can enable card detect */
3688 dw_mci_enable_cd(host);
3689
3690 return 0;
3691
3692 err:
3693 if (host->slot &&
3694 (mmc_can_gpio_cd(host->slot->mmc) ||
3695 !mmc_card_is_removable(host->slot->mmc)))
3696 clk_disable_unprepare(host->biu_clk);
3697
3698 return ret;
3699 }
3700 EXPORT_SYMBOL(dw_mci_runtime_resume);
3701 #endif /* CONFIG_PM */
3702
dw_mci_init(void)3703 static int __init dw_mci_init(void)
3704 {
3705 pr_info("Synopsys Designware Multimedia Card Interface Driver\n");
3706 return 0;
3707 }
3708
dw_mci_exit(void)3709 static void __exit dw_mci_exit(void)
3710 {
3711 }
3712
3713 module_init(dw_mci_init);
3714 module_exit(dw_mci_exit);
3715
3716 MODULE_DESCRIPTION("DW Multimedia Card Interface driver");
3717 MODULE_AUTHOR("NXP Semiconductor VietNam");
3718 MODULE_AUTHOR("Imagination Technologies Ltd");
3719 MODULE_LICENSE("GPL v2");
3720