1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2016-2017 Micron Technology, Inc.
4  *
5  * Authors:
6  *	Peter Pan <[email protected]>
7  *	Boris Brezillon <[email protected]>
8  */
9 
10 #define pr_fmt(fmt)	"spi-nand: " fmt
11 
12 #include <linux/device.h>
13 #include <linux/jiffies.h>
14 #include <linux/kernel.h>
15 #include <linux/module.h>
16 #include <linux/mtd/spinand.h>
17 #include <linux/of.h>
18 #include <linux/slab.h>
19 #include <linux/string.h>
20 #include <linux/spi/spi.h>
21 #include <linux/spi/spi-mem.h>
22 
spinand_read_reg_op(struct spinand_device * spinand,u8 reg,u8 * val)23 static int spinand_read_reg_op(struct spinand_device *spinand, u8 reg, u8 *val)
24 {
25 	struct spi_mem_op op = SPINAND_GET_FEATURE_OP(reg,
26 						      spinand->scratchbuf);
27 	int ret;
28 
29 	ret = spi_mem_exec_op(spinand->spimem, &op);
30 	if (ret)
31 		return ret;
32 
33 	*val = *spinand->scratchbuf;
34 	return 0;
35 }
36 
spinand_write_reg_op(struct spinand_device * spinand,u8 reg,u8 val)37 int spinand_write_reg_op(struct spinand_device *spinand, u8 reg, u8 val)
38 {
39 	struct spi_mem_op op = SPINAND_SET_FEATURE_OP(reg,
40 						      spinand->scratchbuf);
41 
42 	*spinand->scratchbuf = val;
43 	return spi_mem_exec_op(spinand->spimem, &op);
44 }
45 
spinand_read_status(struct spinand_device * spinand,u8 * status)46 static int spinand_read_status(struct spinand_device *spinand, u8 *status)
47 {
48 	return spinand_read_reg_op(spinand, REG_STATUS, status);
49 }
50 
spinand_get_cfg(struct spinand_device * spinand,u8 * cfg)51 static int spinand_get_cfg(struct spinand_device *spinand, u8 *cfg)
52 {
53 	struct nand_device *nand = spinand_to_nand(spinand);
54 
55 	if (WARN_ON(spinand->cur_target < 0 ||
56 		    spinand->cur_target >= nand->memorg.ntargets))
57 		return -EINVAL;
58 
59 	*cfg = spinand->cfg_cache[spinand->cur_target];
60 	return 0;
61 }
62 
spinand_set_cfg(struct spinand_device * spinand,u8 cfg)63 static int spinand_set_cfg(struct spinand_device *spinand, u8 cfg)
64 {
65 	struct nand_device *nand = spinand_to_nand(spinand);
66 	int ret;
67 
68 	if (WARN_ON(spinand->cur_target < 0 ||
69 		    spinand->cur_target >= nand->memorg.ntargets))
70 		return -EINVAL;
71 
72 	if (spinand->cfg_cache[spinand->cur_target] == cfg)
73 		return 0;
74 
75 	ret = spinand_write_reg_op(spinand, REG_CFG, cfg);
76 	if (ret)
77 		return ret;
78 
79 	spinand->cfg_cache[spinand->cur_target] = cfg;
80 	return 0;
81 }
82 
83 /**
84  * spinand_upd_cfg() - Update the configuration register
85  * @spinand: the spinand device
86  * @mask: the mask encoding the bits to update in the config reg
87  * @val: the new value to apply
88  *
89  * Update the configuration register.
90  *
91  * Return: 0 on success, a negative error code otherwise.
92  */
spinand_upd_cfg(struct spinand_device * spinand,u8 mask,u8 val)93 int spinand_upd_cfg(struct spinand_device *spinand, u8 mask, u8 val)
94 {
95 	int ret;
96 	u8 cfg;
97 
98 	ret = spinand_get_cfg(spinand, &cfg);
99 	if (ret)
100 		return ret;
101 
102 	cfg &= ~mask;
103 	cfg |= val;
104 
105 	return spinand_set_cfg(spinand, cfg);
106 }
107 
108 /**
109  * spinand_select_target() - Select a specific NAND target/die
110  * @spinand: the spinand device
111  * @target: the target/die to select
112  *
113  * Select a new target/die. If chip only has one die, this function is a NOOP.
114  *
115  * Return: 0 on success, a negative error code otherwise.
116  */
spinand_select_target(struct spinand_device * spinand,unsigned int target)117 int spinand_select_target(struct spinand_device *spinand, unsigned int target)
118 {
119 	struct nand_device *nand = spinand_to_nand(spinand);
120 	int ret;
121 
122 	if (WARN_ON(target >= nand->memorg.ntargets))
123 		return -EINVAL;
124 
125 	if (spinand->cur_target == target)
126 		return 0;
127 
128 	if (nand->memorg.ntargets == 1) {
129 		spinand->cur_target = target;
130 		return 0;
131 	}
132 
133 	ret = spinand->select_target(spinand, target);
134 	if (ret)
135 		return ret;
136 
137 	spinand->cur_target = target;
138 	return 0;
139 }
140 
spinand_read_cfg(struct spinand_device * spinand)141 static int spinand_read_cfg(struct spinand_device *spinand)
142 {
143 	struct nand_device *nand = spinand_to_nand(spinand);
144 	unsigned int target;
145 	int ret;
146 
147 	for (target = 0; target < nand->memorg.ntargets; target++) {
148 		ret = spinand_select_target(spinand, target);
149 		if (ret)
150 			return ret;
151 
152 		/*
153 		 * We use spinand_read_reg_op() instead of spinand_get_cfg()
154 		 * here to bypass the config cache.
155 		 */
156 		ret = spinand_read_reg_op(spinand, REG_CFG,
157 					  &spinand->cfg_cache[target]);
158 		if (ret)
159 			return ret;
160 	}
161 
162 	return 0;
163 }
164 
spinand_init_cfg_cache(struct spinand_device * spinand)165 static int spinand_init_cfg_cache(struct spinand_device *spinand)
166 {
167 	struct nand_device *nand = spinand_to_nand(spinand);
168 	struct device *dev = &spinand->spimem->spi->dev;
169 
170 	spinand->cfg_cache = devm_kcalloc(dev,
171 					  nand->memorg.ntargets,
172 					  sizeof(*spinand->cfg_cache),
173 					  GFP_KERNEL);
174 	if (!spinand->cfg_cache)
175 		return -ENOMEM;
176 
177 	return 0;
178 }
179 
spinand_init_quad_enable(struct spinand_device * spinand)180 static int spinand_init_quad_enable(struct spinand_device *spinand)
181 {
182 	bool enable = false;
183 
184 	if (!(spinand->flags & SPINAND_HAS_QE_BIT))
185 		return 0;
186 
187 	if (spinand->op_templates.read_cache->data.buswidth == 4 ||
188 	    spinand->op_templates.write_cache->data.buswidth == 4 ||
189 	    spinand->op_templates.update_cache->data.buswidth == 4)
190 		enable = true;
191 
192 	return spinand_upd_cfg(spinand, CFG_QUAD_ENABLE,
193 			       enable ? CFG_QUAD_ENABLE : 0);
194 }
195 
spinand_ecc_enable(struct spinand_device * spinand,bool enable)196 static int spinand_ecc_enable(struct spinand_device *spinand,
197 			      bool enable)
198 {
199 	return spinand_upd_cfg(spinand, CFG_ECC_ENABLE,
200 			       enable ? CFG_ECC_ENABLE : 0);
201 }
202 
spinand_cont_read_enable(struct spinand_device * spinand,bool enable)203 static int spinand_cont_read_enable(struct spinand_device *spinand,
204 				    bool enable)
205 {
206 	return spinand->set_cont_read(spinand, enable);
207 }
208 
spinand_check_ecc_status(struct spinand_device * spinand,u8 status)209 static int spinand_check_ecc_status(struct spinand_device *spinand, u8 status)
210 {
211 	struct nand_device *nand = spinand_to_nand(spinand);
212 
213 	if (spinand->eccinfo.get_status)
214 		return spinand->eccinfo.get_status(spinand, status);
215 
216 	switch (status & STATUS_ECC_MASK) {
217 	case STATUS_ECC_NO_BITFLIPS:
218 		return 0;
219 
220 	case STATUS_ECC_HAS_BITFLIPS:
221 		/*
222 		 * We have no way to know exactly how many bitflips have been
223 		 * fixed, so let's return the maximum possible value so that
224 		 * wear-leveling layers move the data immediately.
225 		 */
226 		return nanddev_get_ecc_conf(nand)->strength;
227 
228 	case STATUS_ECC_UNCOR_ERROR:
229 		return -EBADMSG;
230 
231 	default:
232 		break;
233 	}
234 
235 	return -EINVAL;
236 }
237 
spinand_noecc_ooblayout_ecc(struct mtd_info * mtd,int section,struct mtd_oob_region * region)238 static int spinand_noecc_ooblayout_ecc(struct mtd_info *mtd, int section,
239 				       struct mtd_oob_region *region)
240 {
241 	return -ERANGE;
242 }
243 
spinand_noecc_ooblayout_free(struct mtd_info * mtd,int section,struct mtd_oob_region * region)244 static int spinand_noecc_ooblayout_free(struct mtd_info *mtd, int section,
245 					struct mtd_oob_region *region)
246 {
247 	if (section)
248 		return -ERANGE;
249 
250 	/* Reserve 2 bytes for the BBM. */
251 	region->offset = 2;
252 	region->length = 62;
253 
254 	return 0;
255 }
256 
257 static const struct mtd_ooblayout_ops spinand_noecc_ooblayout = {
258 	.ecc = spinand_noecc_ooblayout_ecc,
259 	.free = spinand_noecc_ooblayout_free,
260 };
261 
spinand_ondie_ecc_init_ctx(struct nand_device * nand)262 static int spinand_ondie_ecc_init_ctx(struct nand_device *nand)
263 {
264 	struct spinand_device *spinand = nand_to_spinand(nand);
265 	struct mtd_info *mtd = nanddev_to_mtd(nand);
266 	struct spinand_ondie_ecc_conf *engine_conf;
267 
268 	nand->ecc.ctx.conf.engine_type = NAND_ECC_ENGINE_TYPE_ON_DIE;
269 	nand->ecc.ctx.conf.step_size = nand->ecc.requirements.step_size;
270 	nand->ecc.ctx.conf.strength = nand->ecc.requirements.strength;
271 
272 	engine_conf = kzalloc(sizeof(*engine_conf), GFP_KERNEL);
273 	if (!engine_conf)
274 		return -ENOMEM;
275 
276 	nand->ecc.ctx.priv = engine_conf;
277 
278 	if (spinand->eccinfo.ooblayout)
279 		mtd_set_ooblayout(mtd, spinand->eccinfo.ooblayout);
280 	else
281 		mtd_set_ooblayout(mtd, &spinand_noecc_ooblayout);
282 
283 	return 0;
284 }
285 
spinand_ondie_ecc_cleanup_ctx(struct nand_device * nand)286 static void spinand_ondie_ecc_cleanup_ctx(struct nand_device *nand)
287 {
288 	kfree(nand->ecc.ctx.priv);
289 }
290 
spinand_ondie_ecc_prepare_io_req(struct nand_device * nand,struct nand_page_io_req * req)291 static int spinand_ondie_ecc_prepare_io_req(struct nand_device *nand,
292 					    struct nand_page_io_req *req)
293 {
294 	struct spinand_device *spinand = nand_to_spinand(nand);
295 	bool enable = (req->mode != MTD_OPS_RAW);
296 
297 	if (!enable && spinand->flags & SPINAND_NO_RAW_ACCESS)
298 		return -EOPNOTSUPP;
299 
300 	memset(spinand->oobbuf, 0xff, nanddev_per_page_oobsize(nand));
301 
302 	/* Only enable or disable the engine */
303 	return spinand_ecc_enable(spinand, enable);
304 }
305 
spinand_ondie_ecc_finish_io_req(struct nand_device * nand,struct nand_page_io_req * req)306 static int spinand_ondie_ecc_finish_io_req(struct nand_device *nand,
307 					   struct nand_page_io_req *req)
308 {
309 	struct spinand_ondie_ecc_conf *engine_conf = nand->ecc.ctx.priv;
310 	struct spinand_device *spinand = nand_to_spinand(nand);
311 	struct mtd_info *mtd = spinand_to_mtd(spinand);
312 	int ret;
313 
314 	if (req->mode == MTD_OPS_RAW)
315 		return 0;
316 
317 	/* Nothing to do when finishing a page write */
318 	if (req->type == NAND_PAGE_WRITE)
319 		return 0;
320 
321 	/* Finish a page read: check the status, report errors/bitflips */
322 	ret = spinand_check_ecc_status(spinand, engine_conf->status);
323 	if (ret == -EBADMSG) {
324 		mtd->ecc_stats.failed++;
325 	} else if (ret > 0) {
326 		unsigned int pages;
327 
328 		/*
329 		 * Continuous reads don't allow us to get the detail,
330 		 * so we may exagerate the actual number of corrected bitflips.
331 		 */
332 		if (!req->continuous)
333 			pages = 1;
334 		else
335 			pages = req->datalen / nanddev_page_size(nand);
336 
337 		mtd->ecc_stats.corrected += ret * pages;
338 	}
339 
340 	return ret;
341 }
342 
343 static const struct nand_ecc_engine_ops spinand_ondie_ecc_engine_ops = {
344 	.init_ctx = spinand_ondie_ecc_init_ctx,
345 	.cleanup_ctx = spinand_ondie_ecc_cleanup_ctx,
346 	.prepare_io_req = spinand_ondie_ecc_prepare_io_req,
347 	.finish_io_req = spinand_ondie_ecc_finish_io_req,
348 };
349 
350 static struct nand_ecc_engine spinand_ondie_ecc_engine = {
351 	.ops = &spinand_ondie_ecc_engine_ops,
352 };
353 
spinand_ondie_ecc_save_status(struct nand_device * nand,u8 status)354 static void spinand_ondie_ecc_save_status(struct nand_device *nand, u8 status)
355 {
356 	struct spinand_ondie_ecc_conf *engine_conf = nand->ecc.ctx.priv;
357 
358 	if (nand->ecc.ctx.conf.engine_type == NAND_ECC_ENGINE_TYPE_ON_DIE &&
359 	    engine_conf)
360 		engine_conf->status = status;
361 }
362 
spinand_write_enable_op(struct spinand_device * spinand)363 static int spinand_write_enable_op(struct spinand_device *spinand)
364 {
365 	struct spi_mem_op op = SPINAND_WR_EN_DIS_OP(true);
366 
367 	return spi_mem_exec_op(spinand->spimem, &op);
368 }
369 
spinand_load_page_op(struct spinand_device * spinand,const struct nand_page_io_req * req)370 static int spinand_load_page_op(struct spinand_device *spinand,
371 				const struct nand_page_io_req *req)
372 {
373 	struct nand_device *nand = spinand_to_nand(spinand);
374 	unsigned int row = nanddev_pos_to_row(nand, &req->pos);
375 	struct spi_mem_op op = SPINAND_PAGE_READ_OP(row);
376 
377 	return spi_mem_exec_op(spinand->spimem, &op);
378 }
379 
spinand_read_from_cache_op(struct spinand_device * spinand,const struct nand_page_io_req * req)380 static int spinand_read_from_cache_op(struct spinand_device *spinand,
381 				      const struct nand_page_io_req *req)
382 {
383 	struct nand_device *nand = spinand_to_nand(spinand);
384 	struct mtd_info *mtd = spinand_to_mtd(spinand);
385 	struct spi_mem_dirmap_desc *rdesc;
386 	unsigned int nbytes = 0;
387 	void *buf = NULL;
388 	u16 column = 0;
389 	ssize_t ret;
390 
391 	if (req->datalen) {
392 		buf = spinand->databuf;
393 		if (!req->continuous)
394 			nbytes = nanddev_page_size(nand);
395 		else
396 			nbytes = round_up(req->dataoffs + req->datalen,
397 					  nanddev_page_size(nand));
398 		column = 0;
399 	}
400 
401 	if (req->ooblen) {
402 		nbytes += nanddev_per_page_oobsize(nand);
403 		if (!buf) {
404 			buf = spinand->oobbuf;
405 			column = nanddev_page_size(nand);
406 		}
407 	}
408 
409 	if (req->mode == MTD_OPS_RAW)
410 		rdesc = spinand->dirmaps[req->pos.plane].rdesc;
411 	else
412 		rdesc = spinand->dirmaps[req->pos.plane].rdesc_ecc;
413 
414 	if (spinand->flags & SPINAND_HAS_READ_PLANE_SELECT_BIT)
415 		column |= req->pos.plane << fls(nanddev_page_size(nand));
416 
417 	while (nbytes) {
418 		ret = spi_mem_dirmap_read(rdesc, column, nbytes, buf);
419 		if (ret < 0)
420 			return ret;
421 
422 		if (!ret || ret > nbytes)
423 			return -EIO;
424 
425 		nbytes -= ret;
426 		column += ret;
427 		buf += ret;
428 
429 		/*
430 		 * Dirmap accesses are allowed to toggle the CS.
431 		 * Toggling the CS during a continuous read is forbidden.
432 		 */
433 		if (nbytes && req->continuous)
434 			return -EIO;
435 	}
436 
437 	if (req->datalen)
438 		memcpy(req->databuf.in, spinand->databuf + req->dataoffs,
439 		       req->datalen);
440 
441 	if (req->ooblen) {
442 		if (req->mode == MTD_OPS_AUTO_OOB)
443 			mtd_ooblayout_get_databytes(mtd, req->oobbuf.in,
444 						    spinand->oobbuf,
445 						    req->ooboffs,
446 						    req->ooblen);
447 		else
448 			memcpy(req->oobbuf.in, spinand->oobbuf + req->ooboffs,
449 			       req->ooblen);
450 	}
451 
452 	return 0;
453 }
454 
spinand_write_to_cache_op(struct spinand_device * spinand,const struct nand_page_io_req * req)455 static int spinand_write_to_cache_op(struct spinand_device *spinand,
456 				     const struct nand_page_io_req *req)
457 {
458 	struct nand_device *nand = spinand_to_nand(spinand);
459 	struct mtd_info *mtd = spinand_to_mtd(spinand);
460 	struct spi_mem_dirmap_desc *wdesc;
461 	unsigned int nbytes, column = 0;
462 	void *buf = spinand->databuf;
463 	ssize_t ret;
464 
465 	/*
466 	 * Looks like PROGRAM LOAD (AKA write cache) does not necessarily reset
467 	 * the cache content to 0xFF (depends on vendor implementation), so we
468 	 * must fill the page cache entirely even if we only want to program
469 	 * the data portion of the page, otherwise we might corrupt the BBM or
470 	 * user data previously programmed in OOB area.
471 	 *
472 	 * Only reset the data buffer manually, the OOB buffer is prepared by
473 	 * ECC engines ->prepare_io_req() callback.
474 	 */
475 	nbytes = nanddev_page_size(nand) + nanddev_per_page_oobsize(nand);
476 	memset(spinand->databuf, 0xff, nanddev_page_size(nand));
477 
478 	if (req->datalen)
479 		memcpy(spinand->databuf + req->dataoffs, req->databuf.out,
480 		       req->datalen);
481 
482 	if (req->ooblen) {
483 		if (req->mode == MTD_OPS_AUTO_OOB)
484 			mtd_ooblayout_set_databytes(mtd, req->oobbuf.out,
485 						    spinand->oobbuf,
486 						    req->ooboffs,
487 						    req->ooblen);
488 		else
489 			memcpy(spinand->oobbuf + req->ooboffs, req->oobbuf.out,
490 			       req->ooblen);
491 	}
492 
493 	if (req->mode == MTD_OPS_RAW)
494 		wdesc = spinand->dirmaps[req->pos.plane].wdesc;
495 	else
496 		wdesc = spinand->dirmaps[req->pos.plane].wdesc_ecc;
497 
498 	if (spinand->flags & SPINAND_HAS_PROG_PLANE_SELECT_BIT)
499 		column |= req->pos.plane << fls(nanddev_page_size(nand));
500 
501 	while (nbytes) {
502 		ret = spi_mem_dirmap_write(wdesc, column, nbytes, buf);
503 		if (ret < 0)
504 			return ret;
505 
506 		if (!ret || ret > nbytes)
507 			return -EIO;
508 
509 		nbytes -= ret;
510 		column += ret;
511 		buf += ret;
512 	}
513 
514 	return 0;
515 }
516 
spinand_program_op(struct spinand_device * spinand,const struct nand_page_io_req * req)517 static int spinand_program_op(struct spinand_device *spinand,
518 			      const struct nand_page_io_req *req)
519 {
520 	struct nand_device *nand = spinand_to_nand(spinand);
521 	unsigned int row = nanddev_pos_to_row(nand, &req->pos);
522 	struct spi_mem_op op = SPINAND_PROG_EXEC_OP(row);
523 
524 	return spi_mem_exec_op(spinand->spimem, &op);
525 }
526 
spinand_erase_op(struct spinand_device * spinand,const struct nand_pos * pos)527 static int spinand_erase_op(struct spinand_device *spinand,
528 			    const struct nand_pos *pos)
529 {
530 	struct nand_device *nand = spinand_to_nand(spinand);
531 	unsigned int row = nanddev_pos_to_row(nand, pos);
532 	struct spi_mem_op op = SPINAND_BLK_ERASE_OP(row);
533 
534 	return spi_mem_exec_op(spinand->spimem, &op);
535 }
536 
spinand_wait(struct spinand_device * spinand,unsigned long initial_delay_us,unsigned long poll_delay_us,u8 * s)537 static int spinand_wait(struct spinand_device *spinand,
538 			unsigned long initial_delay_us,
539 			unsigned long poll_delay_us,
540 			u8 *s)
541 {
542 	struct spi_mem_op op = SPINAND_GET_FEATURE_OP(REG_STATUS,
543 						      spinand->scratchbuf);
544 	u8 status;
545 	int ret;
546 
547 	ret = spi_mem_poll_status(spinand->spimem, &op, STATUS_BUSY, 0,
548 				  initial_delay_us,
549 				  poll_delay_us,
550 				  SPINAND_WAITRDY_TIMEOUT_MS);
551 	if (ret)
552 		return ret;
553 
554 	status = *spinand->scratchbuf;
555 	if (!(status & STATUS_BUSY))
556 		goto out;
557 
558 	/*
559 	 * Extra read, just in case the STATUS_READY bit has changed
560 	 * since our last check
561 	 */
562 	ret = spinand_read_status(spinand, &status);
563 	if (ret)
564 		return ret;
565 
566 out:
567 	if (s)
568 		*s = status;
569 
570 	return status & STATUS_BUSY ? -ETIMEDOUT : 0;
571 }
572 
spinand_read_id_op(struct spinand_device * spinand,u8 naddr,u8 ndummy,u8 * buf)573 static int spinand_read_id_op(struct spinand_device *spinand, u8 naddr,
574 			      u8 ndummy, u8 *buf)
575 {
576 	struct spi_mem_op op = SPINAND_READID_OP(
577 		naddr, ndummy, spinand->scratchbuf, SPINAND_MAX_ID_LEN);
578 	int ret;
579 
580 	ret = spi_mem_exec_op(spinand->spimem, &op);
581 	if (!ret)
582 		memcpy(buf, spinand->scratchbuf, SPINAND_MAX_ID_LEN);
583 
584 	return ret;
585 }
586 
spinand_reset_op(struct spinand_device * spinand)587 static int spinand_reset_op(struct spinand_device *spinand)
588 {
589 	struct spi_mem_op op = SPINAND_RESET_OP;
590 	int ret;
591 
592 	ret = spi_mem_exec_op(spinand->spimem, &op);
593 	if (ret)
594 		return ret;
595 
596 	return spinand_wait(spinand,
597 			    SPINAND_RESET_INITIAL_DELAY_US,
598 			    SPINAND_RESET_POLL_DELAY_US,
599 			    NULL);
600 }
601 
spinand_lock_block(struct spinand_device * spinand,u8 lock)602 static int spinand_lock_block(struct spinand_device *spinand, u8 lock)
603 {
604 	return spinand_write_reg_op(spinand, REG_BLOCK_LOCK, lock);
605 }
606 
spinand_read_page(struct spinand_device * spinand,const struct nand_page_io_req * req)607 static int spinand_read_page(struct spinand_device *spinand,
608 			     const struct nand_page_io_req *req)
609 {
610 	struct nand_device *nand = spinand_to_nand(spinand);
611 	u8 status;
612 	int ret;
613 
614 	ret = nand_ecc_prepare_io_req(nand, (struct nand_page_io_req *)req);
615 	if (ret)
616 		return ret;
617 
618 	ret = spinand_load_page_op(spinand, req);
619 	if (ret)
620 		return ret;
621 
622 	ret = spinand_wait(spinand,
623 			   SPINAND_READ_INITIAL_DELAY_US,
624 			   SPINAND_READ_POLL_DELAY_US,
625 			   &status);
626 	if (ret < 0)
627 		return ret;
628 
629 	spinand_ondie_ecc_save_status(nand, status);
630 
631 	ret = spinand_read_from_cache_op(spinand, req);
632 	if (ret)
633 		return ret;
634 
635 	return nand_ecc_finish_io_req(nand, (struct nand_page_io_req *)req);
636 }
637 
spinand_write_page(struct spinand_device * spinand,const struct nand_page_io_req * req)638 static int spinand_write_page(struct spinand_device *spinand,
639 			      const struct nand_page_io_req *req)
640 {
641 	struct nand_device *nand = spinand_to_nand(spinand);
642 	u8 status;
643 	int ret;
644 
645 	ret = nand_ecc_prepare_io_req(nand, (struct nand_page_io_req *)req);
646 	if (ret)
647 		return ret;
648 
649 	ret = spinand_write_enable_op(spinand);
650 	if (ret)
651 		return ret;
652 
653 	ret = spinand_write_to_cache_op(spinand, req);
654 	if (ret)
655 		return ret;
656 
657 	ret = spinand_program_op(spinand, req);
658 	if (ret)
659 		return ret;
660 
661 	ret = spinand_wait(spinand,
662 			   SPINAND_WRITE_INITIAL_DELAY_US,
663 			   SPINAND_WRITE_POLL_DELAY_US,
664 			   &status);
665 	if (!ret && (status & STATUS_PROG_FAILED))
666 		return -EIO;
667 
668 	return nand_ecc_finish_io_req(nand, (struct nand_page_io_req *)req);
669 }
670 
spinand_mtd_regular_page_read(struct mtd_info * mtd,loff_t from,struct mtd_oob_ops * ops,unsigned int * max_bitflips)671 static int spinand_mtd_regular_page_read(struct mtd_info *mtd, loff_t from,
672 					 struct mtd_oob_ops *ops,
673 					 unsigned int *max_bitflips)
674 {
675 	struct spinand_device *spinand = mtd_to_spinand(mtd);
676 	struct nand_device *nand = mtd_to_nanddev(mtd);
677 	struct nand_io_iter iter;
678 	bool disable_ecc = false;
679 	bool ecc_failed = false;
680 	int ret;
681 
682 	if (ops->mode == MTD_OPS_RAW || !mtd->ooblayout)
683 		disable_ecc = true;
684 
685 	nanddev_io_for_each_page(nand, NAND_PAGE_READ, from, ops, &iter) {
686 		if (disable_ecc)
687 			iter.req.mode = MTD_OPS_RAW;
688 
689 		ret = spinand_select_target(spinand, iter.req.pos.target);
690 		if (ret)
691 			break;
692 
693 		ret = spinand_read_page(spinand, &iter.req);
694 		if (ret < 0 && ret != -EBADMSG)
695 			break;
696 
697 		if (ret == -EBADMSG)
698 			ecc_failed = true;
699 		else
700 			*max_bitflips = max_t(unsigned int, *max_bitflips, ret);
701 
702 		ret = 0;
703 		ops->retlen += iter.req.datalen;
704 		ops->oobretlen += iter.req.ooblen;
705 	}
706 
707 	if (ecc_failed && !ret)
708 		ret = -EBADMSG;
709 
710 	return ret;
711 }
712 
spinand_mtd_continuous_page_read(struct mtd_info * mtd,loff_t from,struct mtd_oob_ops * ops,unsigned int * max_bitflips)713 static int spinand_mtd_continuous_page_read(struct mtd_info *mtd, loff_t from,
714 					    struct mtd_oob_ops *ops,
715 					    unsigned int *max_bitflips)
716 {
717 	struct spinand_device *spinand = mtd_to_spinand(mtd);
718 	struct nand_device *nand = mtd_to_nanddev(mtd);
719 	struct nand_io_iter iter;
720 	u8 status;
721 	int ret;
722 
723 	ret = spinand_cont_read_enable(spinand, true);
724 	if (ret)
725 		return ret;
726 
727 	/*
728 	 * The cache is divided into two halves. While one half of the cache has
729 	 * the requested data, the other half is loaded with the next chunk of data.
730 	 * Therefore, the host can read out the data continuously from page to page.
731 	 * Each data read must be a multiple of 4-bytes and full pages should be read;
732 	 * otherwise, the data output might get out of sequence from one read command
733 	 * to another.
734 	 */
735 	nanddev_io_for_each_block(nand, NAND_PAGE_READ, from, ops, &iter) {
736 		ret = spinand_select_target(spinand, iter.req.pos.target);
737 		if (ret)
738 			goto end_cont_read;
739 
740 		ret = nand_ecc_prepare_io_req(nand, &iter.req);
741 		if (ret)
742 			goto end_cont_read;
743 
744 		ret = spinand_load_page_op(spinand, &iter.req);
745 		if (ret)
746 			goto end_cont_read;
747 
748 		ret = spinand_wait(spinand, SPINAND_READ_INITIAL_DELAY_US,
749 				   SPINAND_READ_POLL_DELAY_US, NULL);
750 		if (ret < 0)
751 			goto end_cont_read;
752 
753 		ret = spinand_read_from_cache_op(spinand, &iter.req);
754 		if (ret)
755 			goto end_cont_read;
756 
757 		ops->retlen += iter.req.datalen;
758 
759 		ret = spinand_read_status(spinand, &status);
760 		if (ret)
761 			goto end_cont_read;
762 
763 		spinand_ondie_ecc_save_status(nand, status);
764 
765 		ret = nand_ecc_finish_io_req(nand, &iter.req);
766 		if (ret < 0)
767 			goto end_cont_read;
768 
769 		*max_bitflips = max_t(unsigned int, *max_bitflips, ret);
770 		ret = 0;
771 	}
772 
773 end_cont_read:
774 	/*
775 	 * Once all the data has been read out, the host can either pull CS#
776 	 * high and wait for tRST or manually clear the bit in the configuration
777 	 * register to terminate the continuous read operation. We have no
778 	 * guarantee the SPI controller drivers will effectively deassert the CS
779 	 * when we expect them to, so take the register based approach.
780 	 */
781 	spinand_cont_read_enable(spinand, false);
782 
783 	return ret;
784 }
785 
spinand_cont_read_init(struct spinand_device * spinand)786 static void spinand_cont_read_init(struct spinand_device *spinand)
787 {
788 	struct nand_device *nand = spinand_to_nand(spinand);
789 	enum nand_ecc_engine_type engine_type = nand->ecc.ctx.conf.engine_type;
790 
791 	/* OOBs cannot be retrieved so external/on-host ECC engine won't work */
792 	if (spinand->set_cont_read &&
793 	    (engine_type == NAND_ECC_ENGINE_TYPE_ON_DIE ||
794 	     engine_type == NAND_ECC_ENGINE_TYPE_NONE)) {
795 		spinand->cont_read_possible = true;
796 	}
797 }
798 
spinand_use_cont_read(struct mtd_info * mtd,loff_t from,struct mtd_oob_ops * ops)799 static bool spinand_use_cont_read(struct mtd_info *mtd, loff_t from,
800 				  struct mtd_oob_ops *ops)
801 {
802 	struct nand_device *nand = mtd_to_nanddev(mtd);
803 	struct spinand_device *spinand = nand_to_spinand(nand);
804 	struct nand_pos start_pos, end_pos;
805 
806 	if (!spinand->cont_read_possible)
807 		return false;
808 
809 	/* OOBs won't be retrieved */
810 	if (ops->ooblen || ops->oobbuf)
811 		return false;
812 
813 	nanddev_offs_to_pos(nand, from, &start_pos);
814 	nanddev_offs_to_pos(nand, from + ops->len - 1, &end_pos);
815 
816 	/*
817 	 * Continuous reads never cross LUN boundaries. Some devices don't
818 	 * support crossing planes boundaries. Some devices don't even support
819 	 * crossing blocks boundaries. The common case being to read through UBI,
820 	 * we will very rarely read two consequent blocks or more, so it is safer
821 	 * and easier (can be improved) to only enable continuous reads when
822 	 * reading within the same erase block.
823 	 */
824 	if (start_pos.target != end_pos.target ||
825 	    start_pos.plane != end_pos.plane ||
826 	    start_pos.eraseblock != end_pos.eraseblock)
827 		return false;
828 
829 	return start_pos.page < end_pos.page;
830 }
831 
spinand_mtd_read(struct mtd_info * mtd,loff_t from,struct mtd_oob_ops * ops)832 static int spinand_mtd_read(struct mtd_info *mtd, loff_t from,
833 			    struct mtd_oob_ops *ops)
834 {
835 	struct spinand_device *spinand = mtd_to_spinand(mtd);
836 	struct mtd_ecc_stats old_stats;
837 	unsigned int max_bitflips = 0;
838 	int ret;
839 
840 	mutex_lock(&spinand->lock);
841 
842 	old_stats = mtd->ecc_stats;
843 
844 	if (spinand_use_cont_read(mtd, from, ops))
845 		ret = spinand_mtd_continuous_page_read(mtd, from, ops, &max_bitflips);
846 	else
847 		ret = spinand_mtd_regular_page_read(mtd, from, ops, &max_bitflips);
848 
849 	if (ops->stats) {
850 		ops->stats->uncorrectable_errors +=
851 			mtd->ecc_stats.failed - old_stats.failed;
852 		ops->stats->corrected_bitflips +=
853 			mtd->ecc_stats.corrected - old_stats.corrected;
854 	}
855 
856 	mutex_unlock(&spinand->lock);
857 
858 	return ret ? ret : max_bitflips;
859 }
860 
spinand_mtd_write(struct mtd_info * mtd,loff_t to,struct mtd_oob_ops * ops)861 static int spinand_mtd_write(struct mtd_info *mtd, loff_t to,
862 			     struct mtd_oob_ops *ops)
863 {
864 	struct spinand_device *spinand = mtd_to_spinand(mtd);
865 	struct nand_device *nand = mtd_to_nanddev(mtd);
866 	struct nand_io_iter iter;
867 	bool disable_ecc = false;
868 	int ret = 0;
869 
870 	if (ops->mode == MTD_OPS_RAW || !mtd->ooblayout)
871 		disable_ecc = true;
872 
873 	mutex_lock(&spinand->lock);
874 
875 	nanddev_io_for_each_page(nand, NAND_PAGE_WRITE, to, ops, &iter) {
876 		if (disable_ecc)
877 			iter.req.mode = MTD_OPS_RAW;
878 
879 		ret = spinand_select_target(spinand, iter.req.pos.target);
880 		if (ret)
881 			break;
882 
883 		ret = spinand_write_page(spinand, &iter.req);
884 		if (ret)
885 			break;
886 
887 		ops->retlen += iter.req.datalen;
888 		ops->oobretlen += iter.req.ooblen;
889 	}
890 
891 	mutex_unlock(&spinand->lock);
892 
893 	return ret;
894 }
895 
spinand_isbad(struct nand_device * nand,const struct nand_pos * pos)896 static bool spinand_isbad(struct nand_device *nand, const struct nand_pos *pos)
897 {
898 	struct spinand_device *spinand = nand_to_spinand(nand);
899 	u8 marker[2] = { };
900 	struct nand_page_io_req req = {
901 		.pos = *pos,
902 		.ooblen = sizeof(marker),
903 		.ooboffs = 0,
904 		.oobbuf.in = marker,
905 		.mode = MTD_OPS_RAW,
906 	};
907 	int ret;
908 
909 	spinand_select_target(spinand, pos->target);
910 
911 	ret = spinand_read_page(spinand, &req);
912 	if (ret == -EOPNOTSUPP) {
913 		/* Retry with ECC in case raw access is not supported */
914 		req.mode = MTD_OPS_PLACE_OOB;
915 		spinand_read_page(spinand, &req);
916 	}
917 
918 	if (marker[0] != 0xff || marker[1] != 0xff)
919 		return true;
920 
921 	return false;
922 }
923 
spinand_mtd_block_isbad(struct mtd_info * mtd,loff_t offs)924 static int spinand_mtd_block_isbad(struct mtd_info *mtd, loff_t offs)
925 {
926 	struct nand_device *nand = mtd_to_nanddev(mtd);
927 	struct spinand_device *spinand = nand_to_spinand(nand);
928 	struct nand_pos pos;
929 	int ret;
930 
931 	nanddev_offs_to_pos(nand, offs, &pos);
932 	mutex_lock(&spinand->lock);
933 	ret = nanddev_isbad(nand, &pos);
934 	mutex_unlock(&spinand->lock);
935 
936 	return ret;
937 }
938 
spinand_markbad(struct nand_device * nand,const struct nand_pos * pos)939 static int spinand_markbad(struct nand_device *nand, const struct nand_pos *pos)
940 {
941 	struct spinand_device *spinand = nand_to_spinand(nand);
942 	u8 marker[2] = { };
943 	struct nand_page_io_req req = {
944 		.pos = *pos,
945 		.ooboffs = 0,
946 		.ooblen = sizeof(marker),
947 		.oobbuf.out = marker,
948 		.mode = MTD_OPS_RAW,
949 	};
950 	int ret;
951 
952 	ret = spinand_select_target(spinand, pos->target);
953 	if (ret)
954 		return ret;
955 
956 	ret = spinand_write_page(spinand, &req);
957 	if (ret == -EOPNOTSUPP) {
958 		/* Retry with ECC in case raw access is not supported */
959 		req.mode = MTD_OPS_PLACE_OOB;
960 		ret = spinand_write_page(spinand, &req);
961 	}
962 
963 	return ret;
964 }
965 
spinand_mtd_block_markbad(struct mtd_info * mtd,loff_t offs)966 static int spinand_mtd_block_markbad(struct mtd_info *mtd, loff_t offs)
967 {
968 	struct nand_device *nand = mtd_to_nanddev(mtd);
969 	struct spinand_device *spinand = nand_to_spinand(nand);
970 	struct nand_pos pos;
971 	int ret;
972 
973 	nanddev_offs_to_pos(nand, offs, &pos);
974 	mutex_lock(&spinand->lock);
975 	ret = nanddev_markbad(nand, &pos);
976 	mutex_unlock(&spinand->lock);
977 
978 	return ret;
979 }
980 
spinand_erase(struct nand_device * nand,const struct nand_pos * pos)981 static int spinand_erase(struct nand_device *nand, const struct nand_pos *pos)
982 {
983 	struct spinand_device *spinand = nand_to_spinand(nand);
984 	u8 status;
985 	int ret;
986 
987 	ret = spinand_select_target(spinand, pos->target);
988 	if (ret)
989 		return ret;
990 
991 	ret = spinand_write_enable_op(spinand);
992 	if (ret)
993 		return ret;
994 
995 	ret = spinand_erase_op(spinand, pos);
996 	if (ret)
997 		return ret;
998 
999 	ret = spinand_wait(spinand,
1000 			   SPINAND_ERASE_INITIAL_DELAY_US,
1001 			   SPINAND_ERASE_POLL_DELAY_US,
1002 			   &status);
1003 
1004 	if (!ret && (status & STATUS_ERASE_FAILED))
1005 		ret = -EIO;
1006 
1007 	return ret;
1008 }
1009 
spinand_mtd_erase(struct mtd_info * mtd,struct erase_info * einfo)1010 static int spinand_mtd_erase(struct mtd_info *mtd,
1011 			     struct erase_info *einfo)
1012 {
1013 	struct spinand_device *spinand = mtd_to_spinand(mtd);
1014 	int ret;
1015 
1016 	mutex_lock(&spinand->lock);
1017 	ret = nanddev_mtd_erase(mtd, einfo);
1018 	mutex_unlock(&spinand->lock);
1019 
1020 	return ret;
1021 }
1022 
spinand_mtd_block_isreserved(struct mtd_info * mtd,loff_t offs)1023 static int spinand_mtd_block_isreserved(struct mtd_info *mtd, loff_t offs)
1024 {
1025 	struct spinand_device *spinand = mtd_to_spinand(mtd);
1026 	struct nand_device *nand = mtd_to_nanddev(mtd);
1027 	struct nand_pos pos;
1028 	int ret;
1029 
1030 	nanddev_offs_to_pos(nand, offs, &pos);
1031 	mutex_lock(&spinand->lock);
1032 	ret = nanddev_isreserved(nand, &pos);
1033 	mutex_unlock(&spinand->lock);
1034 
1035 	return ret;
1036 }
1037 
spinand_create_dirmap(struct spinand_device * spinand,unsigned int plane)1038 static int spinand_create_dirmap(struct spinand_device *spinand,
1039 				 unsigned int plane)
1040 {
1041 	struct nand_device *nand = spinand_to_nand(spinand);
1042 	struct spi_mem_dirmap_info info = {
1043 		.length = nanddev_page_size(nand) +
1044 			  nanddev_per_page_oobsize(nand),
1045 	};
1046 	struct spi_mem_dirmap_desc *desc;
1047 
1048 	if (spinand->cont_read_possible)
1049 		info.length = nanddev_eraseblock_size(nand);
1050 
1051 	/* The plane number is passed in MSB just above the column address */
1052 	info.offset = plane << fls(nand->memorg.pagesize);
1053 
1054 	info.op_tmpl = *spinand->op_templates.update_cache;
1055 	desc = devm_spi_mem_dirmap_create(&spinand->spimem->spi->dev,
1056 					  spinand->spimem, &info);
1057 	if (IS_ERR(desc))
1058 		return PTR_ERR(desc);
1059 
1060 	spinand->dirmaps[plane].wdesc = desc;
1061 
1062 	info.op_tmpl = *spinand->op_templates.read_cache;
1063 	desc = devm_spi_mem_dirmap_create(&spinand->spimem->spi->dev,
1064 					  spinand->spimem, &info);
1065 	if (IS_ERR(desc))
1066 		return PTR_ERR(desc);
1067 
1068 	spinand->dirmaps[plane].rdesc = desc;
1069 
1070 	if (nand->ecc.engine->integration != NAND_ECC_ENGINE_INTEGRATION_PIPELINED) {
1071 		spinand->dirmaps[plane].wdesc_ecc = spinand->dirmaps[plane].wdesc;
1072 		spinand->dirmaps[plane].rdesc_ecc = spinand->dirmaps[plane].rdesc;
1073 
1074 		return 0;
1075 	}
1076 
1077 	info.op_tmpl = *spinand->op_templates.update_cache;
1078 	info.op_tmpl.data.ecc = true;
1079 	desc = devm_spi_mem_dirmap_create(&spinand->spimem->spi->dev,
1080 					  spinand->spimem, &info);
1081 	if (IS_ERR(desc))
1082 		return PTR_ERR(desc);
1083 
1084 	spinand->dirmaps[plane].wdesc_ecc = desc;
1085 
1086 	info.op_tmpl = *spinand->op_templates.read_cache;
1087 	info.op_tmpl.data.ecc = true;
1088 	desc = devm_spi_mem_dirmap_create(&spinand->spimem->spi->dev,
1089 					  spinand->spimem, &info);
1090 	if (IS_ERR(desc))
1091 		return PTR_ERR(desc);
1092 
1093 	spinand->dirmaps[plane].rdesc_ecc = desc;
1094 
1095 	return 0;
1096 }
1097 
spinand_create_dirmaps(struct spinand_device * spinand)1098 static int spinand_create_dirmaps(struct spinand_device *spinand)
1099 {
1100 	struct nand_device *nand = spinand_to_nand(spinand);
1101 	int i, ret;
1102 
1103 	spinand->dirmaps = devm_kzalloc(&spinand->spimem->spi->dev,
1104 					sizeof(*spinand->dirmaps) *
1105 					nand->memorg.planes_per_lun,
1106 					GFP_KERNEL);
1107 	if (!spinand->dirmaps)
1108 		return -ENOMEM;
1109 
1110 	for (i = 0; i < nand->memorg.planes_per_lun; i++) {
1111 		ret = spinand_create_dirmap(spinand, i);
1112 		if (ret)
1113 			return ret;
1114 	}
1115 
1116 	return 0;
1117 }
1118 
1119 static const struct nand_ops spinand_ops = {
1120 	.erase = spinand_erase,
1121 	.markbad = spinand_markbad,
1122 	.isbad = spinand_isbad,
1123 };
1124 
1125 static const struct spinand_manufacturer *spinand_manufacturers[] = {
1126 	&alliancememory_spinand_manufacturer,
1127 	&ato_spinand_manufacturer,
1128 	&esmt_c8_spinand_manufacturer,
1129 	&foresee_spinand_manufacturer,
1130 	&gigadevice_spinand_manufacturer,
1131 	&macronix_spinand_manufacturer,
1132 	&micron_spinand_manufacturer,
1133 	&paragon_spinand_manufacturer,
1134 	&skyhigh_spinand_manufacturer,
1135 	&toshiba_spinand_manufacturer,
1136 	&winbond_spinand_manufacturer,
1137 	&xtx_spinand_manufacturer,
1138 };
1139 
spinand_manufacturer_match(struct spinand_device * spinand,enum spinand_readid_method rdid_method)1140 static int spinand_manufacturer_match(struct spinand_device *spinand,
1141 				      enum spinand_readid_method rdid_method)
1142 {
1143 	u8 *id = spinand->id.data;
1144 	unsigned int i;
1145 	int ret;
1146 
1147 	for (i = 0; i < ARRAY_SIZE(spinand_manufacturers); i++) {
1148 		const struct spinand_manufacturer *manufacturer =
1149 			spinand_manufacturers[i];
1150 
1151 		if (id[0] != manufacturer->id)
1152 			continue;
1153 
1154 		ret = spinand_match_and_init(spinand,
1155 					     manufacturer->chips,
1156 					     manufacturer->nchips,
1157 					     rdid_method);
1158 		if (ret < 0)
1159 			continue;
1160 
1161 		spinand->manufacturer = manufacturer;
1162 		return 0;
1163 	}
1164 	return -EOPNOTSUPP;
1165 }
1166 
spinand_id_detect(struct spinand_device * spinand)1167 static int spinand_id_detect(struct spinand_device *spinand)
1168 {
1169 	u8 *id = spinand->id.data;
1170 	int ret;
1171 
1172 	ret = spinand_read_id_op(spinand, 0, 0, id);
1173 	if (ret)
1174 		return ret;
1175 	ret = spinand_manufacturer_match(spinand, SPINAND_READID_METHOD_OPCODE);
1176 	if (!ret)
1177 		return 0;
1178 
1179 	ret = spinand_read_id_op(spinand, 1, 0, id);
1180 	if (ret)
1181 		return ret;
1182 	ret = spinand_manufacturer_match(spinand,
1183 					 SPINAND_READID_METHOD_OPCODE_ADDR);
1184 	if (!ret)
1185 		return 0;
1186 
1187 	ret = spinand_read_id_op(spinand, 0, 1, id);
1188 	if (ret)
1189 		return ret;
1190 	ret = spinand_manufacturer_match(spinand,
1191 					 SPINAND_READID_METHOD_OPCODE_DUMMY);
1192 
1193 	return ret;
1194 }
1195 
spinand_manufacturer_init(struct spinand_device * spinand)1196 static int spinand_manufacturer_init(struct spinand_device *spinand)
1197 {
1198 	if (spinand->manufacturer->ops->init)
1199 		return spinand->manufacturer->ops->init(spinand);
1200 
1201 	return 0;
1202 }
1203 
spinand_manufacturer_cleanup(struct spinand_device * spinand)1204 static void spinand_manufacturer_cleanup(struct spinand_device *spinand)
1205 {
1206 	/* Release manufacturer private data */
1207 	if (spinand->manufacturer->ops->cleanup)
1208 		return spinand->manufacturer->ops->cleanup(spinand);
1209 }
1210 
1211 static const struct spi_mem_op *
spinand_select_op_variant(struct spinand_device * spinand,const struct spinand_op_variants * variants)1212 spinand_select_op_variant(struct spinand_device *spinand,
1213 			  const struct spinand_op_variants *variants)
1214 {
1215 	struct nand_device *nand = spinand_to_nand(spinand);
1216 	const struct spi_mem_op *best_variant = NULL;
1217 	u64 best_op_duration_ns = ULLONG_MAX;
1218 	unsigned int i;
1219 
1220 	for (i = 0; i < variants->nops; i++) {
1221 		struct spi_mem_op op = variants->ops[i];
1222 		u64 op_duration_ns = 0;
1223 		unsigned int nbytes;
1224 		int ret;
1225 
1226 		nbytes = nanddev_per_page_oobsize(nand) +
1227 			 nanddev_page_size(nand);
1228 
1229 		while (nbytes) {
1230 			op.data.nbytes = nbytes;
1231 			ret = spi_mem_adjust_op_size(spinand->spimem, &op);
1232 			if (ret)
1233 				break;
1234 
1235 			spi_mem_adjust_op_freq(spinand->spimem, &op);
1236 
1237 			if (!spi_mem_supports_op(spinand->spimem, &op))
1238 				break;
1239 
1240 			nbytes -= op.data.nbytes;
1241 
1242 			op_duration_ns += spi_mem_calc_op_duration(&op);
1243 		}
1244 
1245 		if (!nbytes && op_duration_ns < best_op_duration_ns) {
1246 			best_op_duration_ns = op_duration_ns;
1247 			best_variant = &variants->ops[i];
1248 		}
1249 	}
1250 
1251 	return best_variant;
1252 }
1253 
1254 /**
1255  * spinand_match_and_init() - Try to find a match between a device ID and an
1256  *			      entry in a spinand_info table
1257  * @spinand: SPI NAND object
1258  * @table: SPI NAND device description table
1259  * @table_size: size of the device description table
1260  * @rdid_method: read id method to match
1261  *
1262  * Match between a device ID retrieved through the READ_ID command and an
1263  * entry in the SPI NAND description table. If a match is found, the spinand
1264  * object will be initialized with information provided by the matching
1265  * spinand_info entry.
1266  *
1267  * Return: 0 on success, a negative error code otherwise.
1268  */
spinand_match_and_init(struct spinand_device * spinand,const struct spinand_info * table,unsigned int table_size,enum spinand_readid_method rdid_method)1269 int spinand_match_and_init(struct spinand_device *spinand,
1270 			   const struct spinand_info *table,
1271 			   unsigned int table_size,
1272 			   enum spinand_readid_method rdid_method)
1273 {
1274 	u8 *id = spinand->id.data;
1275 	struct nand_device *nand = spinand_to_nand(spinand);
1276 	unsigned int i;
1277 
1278 	for (i = 0; i < table_size; i++) {
1279 		const struct spinand_info *info = &table[i];
1280 		const struct spi_mem_op *op;
1281 
1282 		if (rdid_method != info->devid.method)
1283 			continue;
1284 
1285 		if (memcmp(id + 1, info->devid.id, info->devid.len))
1286 			continue;
1287 
1288 		nand->memorg = table[i].memorg;
1289 		nanddev_set_ecc_requirements(nand, &table[i].eccreq);
1290 		spinand->eccinfo = table[i].eccinfo;
1291 		spinand->flags = table[i].flags;
1292 		spinand->id.len = 1 + table[i].devid.len;
1293 		spinand->select_target = table[i].select_target;
1294 		spinand->set_cont_read = table[i].set_cont_read;
1295 
1296 		op = spinand_select_op_variant(spinand,
1297 					       info->op_variants.read_cache);
1298 		if (!op)
1299 			return -ENOTSUPP;
1300 
1301 		spinand->op_templates.read_cache = op;
1302 
1303 		op = spinand_select_op_variant(spinand,
1304 					       info->op_variants.write_cache);
1305 		if (!op)
1306 			return -ENOTSUPP;
1307 
1308 		spinand->op_templates.write_cache = op;
1309 
1310 		op = spinand_select_op_variant(spinand,
1311 					       info->op_variants.update_cache);
1312 		spinand->op_templates.update_cache = op;
1313 
1314 		return 0;
1315 	}
1316 
1317 	return -ENOTSUPP;
1318 }
1319 
spinand_detect(struct spinand_device * spinand)1320 static int spinand_detect(struct spinand_device *spinand)
1321 {
1322 	struct device *dev = &spinand->spimem->spi->dev;
1323 	struct nand_device *nand = spinand_to_nand(spinand);
1324 	int ret;
1325 
1326 	ret = spinand_reset_op(spinand);
1327 	if (ret)
1328 		return ret;
1329 
1330 	ret = spinand_id_detect(spinand);
1331 	if (ret) {
1332 		dev_err(dev, "unknown raw ID %*phN\n", SPINAND_MAX_ID_LEN,
1333 			spinand->id.data);
1334 		return ret;
1335 	}
1336 
1337 	if (nand->memorg.ntargets > 1 && !spinand->select_target) {
1338 		dev_err(dev,
1339 			"SPI NANDs with more than one die must implement ->select_target()\n");
1340 		return -EINVAL;
1341 	}
1342 
1343 	dev_info(&spinand->spimem->spi->dev,
1344 		 "%s SPI NAND was found.\n", spinand->manufacturer->name);
1345 	dev_info(&spinand->spimem->spi->dev,
1346 		 "%llu MiB, block size: %zu KiB, page size: %zu, OOB size: %u\n",
1347 		 nanddev_size(nand) >> 20, nanddev_eraseblock_size(nand) >> 10,
1348 		 nanddev_page_size(nand), nanddev_per_page_oobsize(nand));
1349 
1350 	return 0;
1351 }
1352 
spinand_init_flash(struct spinand_device * spinand)1353 static int spinand_init_flash(struct spinand_device *spinand)
1354 {
1355 	struct device *dev = &spinand->spimem->spi->dev;
1356 	struct nand_device *nand = spinand_to_nand(spinand);
1357 	int ret, i;
1358 
1359 	ret = spinand_read_cfg(spinand);
1360 	if (ret)
1361 		return ret;
1362 
1363 	ret = spinand_init_quad_enable(spinand);
1364 	if (ret)
1365 		return ret;
1366 
1367 	ret = spinand_upd_cfg(spinand, CFG_OTP_ENABLE, 0);
1368 	if (ret)
1369 		return ret;
1370 
1371 	ret = spinand_manufacturer_init(spinand);
1372 	if (ret) {
1373 		dev_err(dev,
1374 		"Failed to initialize the SPI NAND chip (err = %d)\n",
1375 		ret);
1376 		return ret;
1377 	}
1378 
1379 	/* After power up, all blocks are locked, so unlock them here. */
1380 	for (i = 0; i < nand->memorg.ntargets; i++) {
1381 		ret = spinand_select_target(spinand, i);
1382 		if (ret)
1383 			break;
1384 
1385 		ret = spinand_lock_block(spinand, BL_ALL_UNLOCKED);
1386 		if (ret)
1387 			break;
1388 	}
1389 
1390 	if (ret)
1391 		spinand_manufacturer_cleanup(spinand);
1392 
1393 	return ret;
1394 }
1395 
spinand_mtd_resume(struct mtd_info * mtd)1396 static void spinand_mtd_resume(struct mtd_info *mtd)
1397 {
1398 	struct spinand_device *spinand = mtd_to_spinand(mtd);
1399 	int ret;
1400 
1401 	ret = spinand_reset_op(spinand);
1402 	if (ret)
1403 		return;
1404 
1405 	ret = spinand_init_flash(spinand);
1406 	if (ret)
1407 		return;
1408 
1409 	spinand_ecc_enable(spinand, false);
1410 }
1411 
spinand_init(struct spinand_device * spinand)1412 static int spinand_init(struct spinand_device *spinand)
1413 {
1414 	struct device *dev = &spinand->spimem->spi->dev;
1415 	struct mtd_info *mtd = spinand_to_mtd(spinand);
1416 	struct nand_device *nand = mtd_to_nanddev(mtd);
1417 	int ret;
1418 
1419 	/*
1420 	 * We need a scratch buffer because the spi_mem interface requires that
1421 	 * buf passed in spi_mem_op->data.buf be DMA-able.
1422 	 */
1423 	spinand->scratchbuf = kzalloc(SPINAND_MAX_ID_LEN, GFP_KERNEL);
1424 	if (!spinand->scratchbuf)
1425 		return -ENOMEM;
1426 
1427 	ret = spinand_detect(spinand);
1428 	if (ret)
1429 		goto err_free_bufs;
1430 
1431 	/*
1432 	 * Use kzalloc() instead of devm_kzalloc() here, because some drivers
1433 	 * may use this buffer for DMA access.
1434 	 * Memory allocated by devm_ does not guarantee DMA-safe alignment.
1435 	 */
1436 	spinand->databuf = kzalloc(nanddev_eraseblock_size(nand),
1437 				   GFP_KERNEL);
1438 	if (!spinand->databuf) {
1439 		ret = -ENOMEM;
1440 		goto err_free_bufs;
1441 	}
1442 
1443 	spinand->oobbuf = spinand->databuf + nanddev_page_size(nand);
1444 
1445 	ret = spinand_init_cfg_cache(spinand);
1446 	if (ret)
1447 		goto err_free_bufs;
1448 
1449 	ret = spinand_init_flash(spinand);
1450 	if (ret)
1451 		goto err_free_bufs;
1452 
1453 	ret = nanddev_init(nand, &spinand_ops, THIS_MODULE);
1454 	if (ret)
1455 		goto err_manuf_cleanup;
1456 
1457 	/* SPI-NAND default ECC engine is on-die */
1458 	nand->ecc.defaults.engine_type = NAND_ECC_ENGINE_TYPE_ON_DIE;
1459 	nand->ecc.ondie_engine = &spinand_ondie_ecc_engine;
1460 
1461 	spinand_ecc_enable(spinand, false);
1462 	ret = nanddev_ecc_engine_init(nand);
1463 	if (ret)
1464 		goto err_cleanup_nanddev;
1465 
1466 	/*
1467 	 * Continuous read can only be enabled with an on-die ECC engine, so the
1468 	 * ECC initialization must have happened previously.
1469 	 */
1470 	spinand_cont_read_init(spinand);
1471 
1472 	mtd->_read_oob = spinand_mtd_read;
1473 	mtd->_write_oob = spinand_mtd_write;
1474 	mtd->_block_isbad = spinand_mtd_block_isbad;
1475 	mtd->_block_markbad = spinand_mtd_block_markbad;
1476 	mtd->_block_isreserved = spinand_mtd_block_isreserved;
1477 	mtd->_erase = spinand_mtd_erase;
1478 	mtd->_max_bad_blocks = nanddev_mtd_max_bad_blocks;
1479 	mtd->_resume = spinand_mtd_resume;
1480 
1481 	if (nand->ecc.engine) {
1482 		ret = mtd_ooblayout_count_freebytes(mtd);
1483 		if (ret < 0)
1484 			goto err_cleanup_ecc_engine;
1485 	}
1486 
1487 	mtd->oobavail = ret;
1488 
1489 	/* Propagate ECC information to mtd_info */
1490 	mtd->ecc_strength = nanddev_get_ecc_conf(nand)->strength;
1491 	mtd->ecc_step_size = nanddev_get_ecc_conf(nand)->step_size;
1492 	mtd->bitflip_threshold = DIV_ROUND_UP(mtd->ecc_strength * 3, 4);
1493 
1494 	ret = spinand_create_dirmaps(spinand);
1495 	if (ret) {
1496 		dev_err(dev,
1497 			"Failed to create direct mappings for read/write operations (err = %d)\n",
1498 			ret);
1499 		goto err_cleanup_ecc_engine;
1500 	}
1501 
1502 	return 0;
1503 
1504 err_cleanup_ecc_engine:
1505 	nanddev_ecc_engine_cleanup(nand);
1506 
1507 err_cleanup_nanddev:
1508 	nanddev_cleanup(nand);
1509 
1510 err_manuf_cleanup:
1511 	spinand_manufacturer_cleanup(spinand);
1512 
1513 err_free_bufs:
1514 	kfree(spinand->databuf);
1515 	kfree(spinand->scratchbuf);
1516 	return ret;
1517 }
1518 
spinand_cleanup(struct spinand_device * spinand)1519 static void spinand_cleanup(struct spinand_device *spinand)
1520 {
1521 	struct nand_device *nand = spinand_to_nand(spinand);
1522 
1523 	nanddev_cleanup(nand);
1524 	spinand_manufacturer_cleanup(spinand);
1525 	kfree(spinand->databuf);
1526 	kfree(spinand->scratchbuf);
1527 }
1528 
spinand_probe(struct spi_mem * mem)1529 static int spinand_probe(struct spi_mem *mem)
1530 {
1531 	struct spinand_device *spinand;
1532 	struct mtd_info *mtd;
1533 	int ret;
1534 
1535 	spinand = devm_kzalloc(&mem->spi->dev, sizeof(*spinand),
1536 			       GFP_KERNEL);
1537 	if (!spinand)
1538 		return -ENOMEM;
1539 
1540 	spinand->spimem = mem;
1541 	spi_mem_set_drvdata(mem, spinand);
1542 	spinand_set_of_node(spinand, mem->spi->dev.of_node);
1543 	mutex_init(&spinand->lock);
1544 	mtd = spinand_to_mtd(spinand);
1545 	mtd->dev.parent = &mem->spi->dev;
1546 
1547 	ret = spinand_init(spinand);
1548 	if (ret)
1549 		return ret;
1550 
1551 	ret = mtd_device_register(mtd, NULL, 0);
1552 	if (ret)
1553 		goto err_spinand_cleanup;
1554 
1555 	return 0;
1556 
1557 err_spinand_cleanup:
1558 	spinand_cleanup(spinand);
1559 
1560 	return ret;
1561 }
1562 
spinand_remove(struct spi_mem * mem)1563 static int spinand_remove(struct spi_mem *mem)
1564 {
1565 	struct spinand_device *spinand;
1566 	struct mtd_info *mtd;
1567 	int ret;
1568 
1569 	spinand = spi_mem_get_drvdata(mem);
1570 	mtd = spinand_to_mtd(spinand);
1571 
1572 	ret = mtd_device_unregister(mtd);
1573 	if (ret)
1574 		return ret;
1575 
1576 	spinand_cleanup(spinand);
1577 
1578 	return 0;
1579 }
1580 
1581 static const struct spi_device_id spinand_ids[] = {
1582 	{ .name = "spi-nand" },
1583 	{ /* sentinel */ },
1584 };
1585 MODULE_DEVICE_TABLE(spi, spinand_ids);
1586 
1587 #ifdef CONFIG_OF
1588 static const struct of_device_id spinand_of_ids[] = {
1589 	{ .compatible = "spi-nand" },
1590 	{ /* sentinel */ },
1591 };
1592 MODULE_DEVICE_TABLE(of, spinand_of_ids);
1593 #endif
1594 
1595 static struct spi_mem_driver spinand_drv = {
1596 	.spidrv = {
1597 		.id_table = spinand_ids,
1598 		.driver = {
1599 			.name = "spi-nand",
1600 			.of_match_table = of_match_ptr(spinand_of_ids),
1601 		},
1602 	},
1603 	.probe = spinand_probe,
1604 	.remove = spinand_remove,
1605 };
1606 module_spi_mem_driver(spinand_drv);
1607 
1608 MODULE_DESCRIPTION("SPI NAND framework");
1609 MODULE_AUTHOR("Peter Pan<[email protected]>");
1610 MODULE_LICENSE("GPL v2");
1611