1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright (c) 2019, Intel Corporation. */
3
4 #include <net/xdp_sock_drv.h>
5 #include "ice_base.h"
6 #include "ice_lib.h"
7 #include "ice_dcb_lib.h"
8 #include "ice_sriov.h"
9
10 /**
11 * __ice_vsi_get_qs_contig - Assign a contiguous chunk of queues to VSI
12 * @qs_cfg: gathered variables needed for PF->VSI queues assignment
13 *
14 * Return 0 on success and -ENOMEM in case of no left space in PF queue bitmap
15 */
__ice_vsi_get_qs_contig(struct ice_qs_cfg * qs_cfg)16 static int __ice_vsi_get_qs_contig(struct ice_qs_cfg *qs_cfg)
17 {
18 unsigned int offset, i;
19
20 mutex_lock(qs_cfg->qs_mutex);
21 offset = bitmap_find_next_zero_area(qs_cfg->pf_map, qs_cfg->pf_map_size,
22 0, qs_cfg->q_count, 0);
23 if (offset >= qs_cfg->pf_map_size) {
24 mutex_unlock(qs_cfg->qs_mutex);
25 return -ENOMEM;
26 }
27
28 bitmap_set(qs_cfg->pf_map, offset, qs_cfg->q_count);
29 for (i = 0; i < qs_cfg->q_count; i++)
30 qs_cfg->vsi_map[i + qs_cfg->vsi_map_offset] = (u16)(i + offset);
31 mutex_unlock(qs_cfg->qs_mutex);
32
33 return 0;
34 }
35
36 /**
37 * __ice_vsi_get_qs_sc - Assign a scattered queues from PF to VSI
38 * @qs_cfg: gathered variables needed for pf->vsi queues assignment
39 *
40 * Return 0 on success and -ENOMEM in case of no left space in PF queue bitmap
41 */
__ice_vsi_get_qs_sc(struct ice_qs_cfg * qs_cfg)42 static int __ice_vsi_get_qs_sc(struct ice_qs_cfg *qs_cfg)
43 {
44 unsigned int i, index = 0;
45
46 mutex_lock(qs_cfg->qs_mutex);
47 for (i = 0; i < qs_cfg->q_count; i++) {
48 index = find_next_zero_bit(qs_cfg->pf_map,
49 qs_cfg->pf_map_size, index);
50 if (index >= qs_cfg->pf_map_size)
51 goto err_scatter;
52 set_bit(index, qs_cfg->pf_map);
53 qs_cfg->vsi_map[i + qs_cfg->vsi_map_offset] = (u16)index;
54 }
55 mutex_unlock(qs_cfg->qs_mutex);
56
57 return 0;
58 err_scatter:
59 for (index = 0; index < i; index++) {
60 clear_bit(qs_cfg->vsi_map[index], qs_cfg->pf_map);
61 qs_cfg->vsi_map[index + qs_cfg->vsi_map_offset] = 0;
62 }
63 mutex_unlock(qs_cfg->qs_mutex);
64
65 return -ENOMEM;
66 }
67
68 /**
69 * ice_pf_rxq_wait - Wait for a PF's Rx queue to be enabled or disabled
70 * @pf: the PF being configured
71 * @pf_q: the PF queue
72 * @ena: enable or disable state of the queue
73 *
74 * This routine will wait for the given Rx queue of the PF to reach the
75 * enabled or disabled state.
76 * Returns -ETIMEDOUT in case of failing to reach the requested state after
77 * multiple retries; else will return 0 in case of success.
78 */
ice_pf_rxq_wait(struct ice_pf * pf,int pf_q,bool ena)79 static int ice_pf_rxq_wait(struct ice_pf *pf, int pf_q, bool ena)
80 {
81 int i;
82
83 for (i = 0; i < ICE_Q_WAIT_MAX_RETRY; i++) {
84 if (ena == !!(rd32(&pf->hw, QRX_CTRL(pf_q)) &
85 QRX_CTRL_QENA_STAT_M))
86 return 0;
87
88 usleep_range(20, 40);
89 }
90
91 return -ETIMEDOUT;
92 }
93
94 /**
95 * ice_vsi_alloc_q_vector - Allocate memory for a single interrupt vector
96 * @vsi: the VSI being configured
97 * @v_idx: index of the vector in the VSI struct
98 *
99 * We allocate one q_vector and set default value for ITR setting associated
100 * with this q_vector. If allocation fails we return -ENOMEM.
101 */
ice_vsi_alloc_q_vector(struct ice_vsi * vsi,u16 v_idx)102 static int ice_vsi_alloc_q_vector(struct ice_vsi *vsi, u16 v_idx)
103 {
104 struct ice_pf *pf = vsi->back;
105 struct ice_q_vector *q_vector;
106 int err;
107
108 /* allocate q_vector */
109 q_vector = kzalloc(sizeof(*q_vector), GFP_KERNEL);
110 if (!q_vector)
111 return -ENOMEM;
112
113 q_vector->vsi = vsi;
114 q_vector->v_idx = v_idx;
115 q_vector->tx.itr_setting = ICE_DFLT_TX_ITR;
116 q_vector->rx.itr_setting = ICE_DFLT_RX_ITR;
117 q_vector->tx.itr_mode = ITR_DYNAMIC;
118 q_vector->rx.itr_mode = ITR_DYNAMIC;
119 q_vector->tx.type = ICE_TX_CONTAINER;
120 q_vector->rx.type = ICE_RX_CONTAINER;
121 q_vector->irq.index = -ENOENT;
122
123 if (vsi->type == ICE_VSI_VF) {
124 ice_calc_vf_reg_idx(vsi->vf, q_vector);
125 goto out;
126 } else if (vsi->type == ICE_VSI_CTRL && vsi->vf) {
127 struct ice_vsi *ctrl_vsi = ice_get_vf_ctrl_vsi(pf, vsi);
128
129 if (ctrl_vsi) {
130 if (unlikely(!ctrl_vsi->q_vectors)) {
131 err = -ENOENT;
132 goto err_free_q_vector;
133 }
134
135 q_vector->irq = ctrl_vsi->q_vectors[0]->irq;
136 goto skip_alloc;
137 }
138 }
139
140 q_vector->irq = ice_alloc_irq(pf, vsi->irq_dyn_alloc);
141 if (q_vector->irq.index < 0) {
142 err = -ENOMEM;
143 goto err_free_q_vector;
144 }
145
146 skip_alloc:
147 q_vector->reg_idx = q_vector->irq.index;
148 q_vector->vf_reg_idx = q_vector->irq.index;
149
150 /* only set affinity_mask if the CPU is online */
151 if (cpu_online(v_idx))
152 cpumask_set_cpu(v_idx, &q_vector->affinity_mask);
153
154 /* This will not be called in the driver load path because the netdev
155 * will not be created yet. All other cases with register the NAPI
156 * handler here (i.e. resume, reset/rebuild, etc.)
157 */
158 if (vsi->netdev)
159 netif_napi_add_config(vsi->netdev, &q_vector->napi,
160 ice_napi_poll, v_idx);
161
162 out:
163 /* tie q_vector and VSI together */
164 vsi->q_vectors[v_idx] = q_vector;
165
166 return 0;
167
168 err_free_q_vector:
169 kfree(q_vector);
170
171 return err;
172 }
173
174 /**
175 * ice_free_q_vector - Free memory allocated for a specific interrupt vector
176 * @vsi: VSI having the memory freed
177 * @v_idx: index of the vector to be freed
178 */
ice_free_q_vector(struct ice_vsi * vsi,int v_idx)179 static void ice_free_q_vector(struct ice_vsi *vsi, int v_idx)
180 {
181 struct ice_q_vector *q_vector;
182 struct ice_pf *pf = vsi->back;
183 struct ice_tx_ring *tx_ring;
184 struct ice_rx_ring *rx_ring;
185 struct device *dev;
186
187 dev = ice_pf_to_dev(pf);
188 if (!vsi->q_vectors[v_idx]) {
189 dev_dbg(dev, "Queue vector at index %d not found\n", v_idx);
190 return;
191 }
192 q_vector = vsi->q_vectors[v_idx];
193
194 ice_for_each_tx_ring(tx_ring, vsi->q_vectors[v_idx]->tx)
195 tx_ring->q_vector = NULL;
196
197 ice_for_each_rx_ring(rx_ring, vsi->q_vectors[v_idx]->rx)
198 rx_ring->q_vector = NULL;
199
200 /* only VSI with an associated netdev is set up with NAPI */
201 if (vsi->netdev)
202 netif_napi_del(&q_vector->napi);
203
204 /* release MSIX interrupt if q_vector had interrupt allocated */
205 if (q_vector->irq.index < 0)
206 goto free_q_vector;
207
208 /* only free last VF ctrl vsi interrupt */
209 if (vsi->type == ICE_VSI_CTRL && vsi->vf &&
210 ice_get_vf_ctrl_vsi(pf, vsi))
211 goto free_q_vector;
212
213 ice_free_irq(pf, q_vector->irq);
214
215 free_q_vector:
216 kfree(q_vector);
217 vsi->q_vectors[v_idx] = NULL;
218 }
219
220 /**
221 * ice_cfg_itr_gran - set the ITR granularity to 2 usecs if not already set
222 * @hw: board specific structure
223 */
ice_cfg_itr_gran(struct ice_hw * hw)224 static void ice_cfg_itr_gran(struct ice_hw *hw)
225 {
226 u32 regval = rd32(hw, GLINT_CTL);
227
228 /* no need to update global register if ITR gran is already set */
229 if (!(regval & GLINT_CTL_DIS_AUTOMASK_M) &&
230 (FIELD_GET(GLINT_CTL_ITR_GRAN_200_M, regval) == ICE_ITR_GRAN_US) &&
231 (FIELD_GET(GLINT_CTL_ITR_GRAN_100_M, regval) == ICE_ITR_GRAN_US) &&
232 (FIELD_GET(GLINT_CTL_ITR_GRAN_50_M, regval) == ICE_ITR_GRAN_US) &&
233 (FIELD_GET(GLINT_CTL_ITR_GRAN_25_M, regval) == ICE_ITR_GRAN_US))
234 return;
235
236 regval = FIELD_PREP(GLINT_CTL_ITR_GRAN_200_M, ICE_ITR_GRAN_US) |
237 FIELD_PREP(GLINT_CTL_ITR_GRAN_100_M, ICE_ITR_GRAN_US) |
238 FIELD_PREP(GLINT_CTL_ITR_GRAN_50_M, ICE_ITR_GRAN_US) |
239 FIELD_PREP(GLINT_CTL_ITR_GRAN_25_M, ICE_ITR_GRAN_US);
240 wr32(hw, GLINT_CTL, regval);
241 }
242
243 /**
244 * ice_calc_txq_handle - calculate the queue handle
245 * @vsi: VSI that ring belongs to
246 * @ring: ring to get the absolute queue index
247 * @tc: traffic class number
248 */
ice_calc_txq_handle(struct ice_vsi * vsi,struct ice_tx_ring * ring,u8 tc)249 static u16 ice_calc_txq_handle(struct ice_vsi *vsi, struct ice_tx_ring *ring, u8 tc)
250 {
251 WARN_ONCE(ice_ring_is_xdp(ring) && tc, "XDP ring can't belong to TC other than 0\n");
252
253 if (ring->ch)
254 return ring->q_index - ring->ch->base_q;
255
256 /* Idea here for calculation is that we subtract the number of queue
257 * count from TC that ring belongs to from it's absolute queue index
258 * and as a result we get the queue's index within TC.
259 */
260 return ring->q_index - vsi->tc_cfg.tc_info[tc].qoffset;
261 }
262
263 /**
264 * ice_cfg_xps_tx_ring - Configure XPS for a Tx ring
265 * @ring: The Tx ring to configure
266 *
267 * This enables/disables XPS for a given Tx descriptor ring
268 * based on the TCs enabled for the VSI that ring belongs to.
269 */
ice_cfg_xps_tx_ring(struct ice_tx_ring * ring)270 static void ice_cfg_xps_tx_ring(struct ice_tx_ring *ring)
271 {
272 if (!ring->q_vector || !ring->netdev)
273 return;
274
275 /* We only initialize XPS once, so as not to overwrite user settings */
276 if (test_and_set_bit(ICE_TX_XPS_INIT_DONE, ring->xps_state))
277 return;
278
279 netif_set_xps_queue(ring->netdev, &ring->q_vector->affinity_mask,
280 ring->q_index);
281 }
282
283 /**
284 * ice_setup_tx_ctx - setup a struct ice_tlan_ctx instance
285 * @ring: The Tx ring to configure
286 * @tlan_ctx: Pointer to the Tx LAN queue context structure to be initialized
287 * @pf_q: queue index in the PF space
288 *
289 * Configure the Tx descriptor ring in TLAN context.
290 */
291 static void
ice_setup_tx_ctx(struct ice_tx_ring * ring,struct ice_tlan_ctx * tlan_ctx,u16 pf_q)292 ice_setup_tx_ctx(struct ice_tx_ring *ring, struct ice_tlan_ctx *tlan_ctx, u16 pf_q)
293 {
294 struct ice_vsi *vsi = ring->vsi;
295 struct ice_hw *hw = &vsi->back->hw;
296
297 tlan_ctx->base = ring->dma >> ICE_TLAN_CTX_BASE_S;
298
299 tlan_ctx->port_num = vsi->port_info->lport;
300
301 /* Transmit Queue Length */
302 tlan_ctx->qlen = ring->count;
303
304 ice_set_cgd_num(tlan_ctx, ring->dcb_tc);
305
306 /* PF number */
307 tlan_ctx->pf_num = hw->pf_id;
308
309 /* queue belongs to a specific VSI type
310 * VF / VM index should be programmed per vmvf_type setting:
311 * for vmvf_type = VF, it is VF number between 0-256
312 * for vmvf_type = VM, it is VM number between 0-767
313 * for PF or EMP this field should be set to zero
314 */
315 switch (vsi->type) {
316 case ICE_VSI_LB:
317 case ICE_VSI_CTRL:
318 case ICE_VSI_PF:
319 if (ring->ch)
320 tlan_ctx->vmvf_type = ICE_TLAN_CTX_VMVF_TYPE_VMQ;
321 else
322 tlan_ctx->vmvf_type = ICE_TLAN_CTX_VMVF_TYPE_PF;
323 break;
324 case ICE_VSI_VF:
325 /* Firmware expects vmvf_num to be absolute VF ID */
326 tlan_ctx->vmvf_num = hw->func_caps.vf_base_id + vsi->vf->vf_id;
327 tlan_ctx->vmvf_type = ICE_TLAN_CTX_VMVF_TYPE_VF;
328 break;
329 case ICE_VSI_SF:
330 tlan_ctx->vmvf_type = ICE_TLAN_CTX_VMVF_TYPE_VMQ;
331 break;
332 default:
333 return;
334 }
335
336 /* make sure the context is associated with the right VSI */
337 if (ring->ch)
338 tlan_ctx->src_vsi = ring->ch->vsi_num;
339 else
340 tlan_ctx->src_vsi = ice_get_hw_vsi_num(hw, vsi->idx);
341
342 /* Restrict Tx timestamps to the PF VSI */
343 switch (vsi->type) {
344 case ICE_VSI_PF:
345 tlan_ctx->tsyn_ena = 1;
346 break;
347 default:
348 break;
349 }
350
351 tlan_ctx->quanta_prof_idx = ring->quanta_prof_id;
352
353 tlan_ctx->tso_ena = ICE_TX_LEGACY;
354 tlan_ctx->tso_qnum = pf_q;
355
356 /* Legacy or Advanced Host Interface:
357 * 0: Advanced Host Interface
358 * 1: Legacy Host Interface
359 */
360 tlan_ctx->legacy_int = ICE_TX_LEGACY;
361 }
362
363 /**
364 * ice_rx_offset - Return expected offset into page to access data
365 * @rx_ring: Ring we are requesting offset of
366 *
367 * Returns the offset value for ring into the data buffer.
368 */
ice_rx_offset(struct ice_rx_ring * rx_ring)369 static unsigned int ice_rx_offset(struct ice_rx_ring *rx_ring)
370 {
371 if (ice_ring_uses_build_skb(rx_ring))
372 return ICE_SKB_PAD;
373 return 0;
374 }
375
376 /**
377 * ice_setup_rx_ctx - Configure a receive ring context
378 * @ring: The Rx ring to configure
379 *
380 * Configure the Rx descriptor ring in RLAN context.
381 */
ice_setup_rx_ctx(struct ice_rx_ring * ring)382 static int ice_setup_rx_ctx(struct ice_rx_ring *ring)
383 {
384 struct ice_vsi *vsi = ring->vsi;
385 u32 rxdid = ICE_RXDID_FLEX_NIC;
386 struct ice_rlan_ctx rlan_ctx;
387 struct ice_hw *hw;
388 u16 pf_q;
389 int err;
390
391 hw = &vsi->back->hw;
392
393 /* what is Rx queue number in global space of 2K Rx queues */
394 pf_q = vsi->rxq_map[ring->q_index];
395
396 /* clear the context structure first */
397 memset(&rlan_ctx, 0, sizeof(rlan_ctx));
398
399 /* Receive Queue Base Address.
400 * Indicates the starting address of the descriptor queue defined in
401 * 128 Byte units.
402 */
403 rlan_ctx.base = ring->dma >> ICE_RLAN_BASE_S;
404
405 rlan_ctx.qlen = ring->count;
406
407 /* Receive Packet Data Buffer Size.
408 * The Packet Data Buffer Size is defined in 128 byte units.
409 */
410 rlan_ctx.dbuf = DIV_ROUND_UP(ring->rx_buf_len,
411 BIT_ULL(ICE_RLAN_CTX_DBUF_S));
412
413 /* use 32 byte descriptors */
414 rlan_ctx.dsize = 1;
415
416 /* Strip the Ethernet CRC bytes before the packet is posted to host
417 * memory.
418 */
419 rlan_ctx.crcstrip = !(ring->flags & ICE_RX_FLAGS_CRC_STRIP_DIS);
420
421 /* L2TSEL flag defines the reported L2 Tags in the receive descriptor
422 * and it needs to remain 1 for non-DVM capable configurations to not
423 * break backward compatibility for VF drivers. Setting this field to 0
424 * will cause the single/outer VLAN tag to be stripped to the L2TAG2_2ND
425 * field in the Rx descriptor. Setting it to 1 allows the VLAN tag to
426 * be stripped in L2TAG1 of the Rx descriptor, which is where VFs will
427 * check for the tag
428 */
429 if (ice_is_dvm_ena(hw))
430 if (vsi->type == ICE_VSI_VF &&
431 ice_vf_is_port_vlan_ena(vsi->vf))
432 rlan_ctx.l2tsel = 1;
433 else
434 rlan_ctx.l2tsel = 0;
435 else
436 rlan_ctx.l2tsel = 1;
437
438 rlan_ctx.dtype = ICE_RX_DTYPE_NO_SPLIT;
439 rlan_ctx.hsplit_0 = ICE_RLAN_RX_HSPLIT_0_NO_SPLIT;
440 rlan_ctx.hsplit_1 = ICE_RLAN_RX_HSPLIT_1_NO_SPLIT;
441
442 /* This controls whether VLAN is stripped from inner headers
443 * The VLAN in the inner L2 header is stripped to the receive
444 * descriptor if enabled by this flag.
445 */
446 rlan_ctx.showiv = 0;
447
448 /* Max packet size for this queue - must not be set to a larger value
449 * than 5 x DBUF
450 */
451 rlan_ctx.rxmax = min_t(u32, ring->max_frame,
452 ICE_MAX_CHAINED_RX_BUFS * ring->rx_buf_len);
453
454 /* Rx queue threshold in units of 64 */
455 rlan_ctx.lrxqthresh = 1;
456
457 /* Enable descriptor prefetch */
458 rlan_ctx.prefena = 1;
459
460 /* PF acts as uplink for switchdev; set flex descriptor with src_vsi
461 * metadata and flags to allow redirecting to PR netdev
462 */
463 if (ice_is_eswitch_mode_switchdev(vsi->back)) {
464 ring->flags |= ICE_RX_FLAGS_MULTIDEV;
465 rxdid = ICE_RXDID_FLEX_NIC_2;
466 }
467
468 /* Enable Flexible Descriptors in the queue context which
469 * allows this driver to select a specific receive descriptor format
470 * increasing context priority to pick up profile ID; default is 0x01;
471 * setting to 0x03 to ensure profile is programming if prev context is
472 * of same priority
473 */
474 if (vsi->type != ICE_VSI_VF)
475 ice_write_qrxflxp_cntxt(hw, pf_q, rxdid, 0x3, true);
476 else
477 ice_write_qrxflxp_cntxt(hw, pf_q, ICE_RXDID_LEGACY_1, 0x3,
478 false);
479
480 /* Absolute queue number out of 2K needs to be passed */
481 err = ice_write_rxq_ctx(hw, &rlan_ctx, pf_q);
482 if (err) {
483 dev_err(ice_pf_to_dev(vsi->back), "Failed to set LAN Rx queue context for absolute Rx queue %d error: %d\n",
484 pf_q, err);
485 return -EIO;
486 }
487
488 if (vsi->type == ICE_VSI_VF)
489 return 0;
490
491 /* configure Rx buffer alignment */
492 if (!vsi->netdev || test_bit(ICE_FLAG_LEGACY_RX, vsi->back->flags))
493 ice_clear_ring_build_skb_ena(ring);
494 else
495 ice_set_ring_build_skb_ena(ring);
496
497 ring->rx_offset = ice_rx_offset(ring);
498
499 /* init queue specific tail register */
500 ring->tail = hw->hw_addr + QRX_TAIL(pf_q);
501 writel(0, ring->tail);
502
503 return 0;
504 }
505
ice_xsk_pool_fill_cb(struct ice_rx_ring * ring)506 static void ice_xsk_pool_fill_cb(struct ice_rx_ring *ring)
507 {
508 void *ctx_ptr = &ring->pkt_ctx;
509 struct xsk_cb_desc desc = {};
510
511 XSK_CHECK_PRIV_TYPE(struct ice_xdp_buff);
512 desc.src = &ctx_ptr;
513 desc.off = offsetof(struct ice_xdp_buff, pkt_ctx) -
514 sizeof(struct xdp_buff);
515 desc.bytes = sizeof(ctx_ptr);
516 xsk_pool_fill_cb(ring->xsk_pool, &desc);
517 }
518
519 /**
520 * ice_get_frame_sz - calculate xdp_buff::frame_sz
521 * @rx_ring: the ring being configured
522 *
523 * Return frame size based on underlying PAGE_SIZE
524 */
ice_get_frame_sz(struct ice_rx_ring * rx_ring)525 static unsigned int ice_get_frame_sz(struct ice_rx_ring *rx_ring)
526 {
527 unsigned int frame_sz;
528
529 #if (PAGE_SIZE >= 8192)
530 frame_sz = rx_ring->rx_buf_len;
531 #else
532 frame_sz = ice_rx_pg_size(rx_ring) / 2;
533 #endif
534
535 return frame_sz;
536 }
537
538 /**
539 * ice_vsi_cfg_rxq - Configure an Rx queue
540 * @ring: the ring being configured
541 *
542 * Return 0 on success and a negative value on error.
543 */
ice_vsi_cfg_rxq(struct ice_rx_ring * ring)544 static int ice_vsi_cfg_rxq(struct ice_rx_ring *ring)
545 {
546 struct device *dev = ice_pf_to_dev(ring->vsi->back);
547 u32 num_bufs = ICE_RX_DESC_UNUSED(ring);
548 int err;
549
550 if (ring->vsi->type == ICE_VSI_PF || ring->vsi->type == ICE_VSI_SF) {
551 if (!xdp_rxq_info_is_reg(&ring->xdp_rxq)) {
552 err = __xdp_rxq_info_reg(&ring->xdp_rxq, ring->netdev,
553 ring->q_index,
554 ring->q_vector->napi.napi_id,
555 ring->rx_buf_len);
556 if (err)
557 return err;
558 }
559
560 ice_rx_xsk_pool(ring);
561 if (ring->xsk_pool) {
562 xdp_rxq_info_unreg(&ring->xdp_rxq);
563
564 ring->rx_buf_len =
565 xsk_pool_get_rx_frame_size(ring->xsk_pool);
566 err = __xdp_rxq_info_reg(&ring->xdp_rxq, ring->netdev,
567 ring->q_index,
568 ring->q_vector->napi.napi_id,
569 ring->rx_buf_len);
570 if (err)
571 return err;
572 err = xdp_rxq_info_reg_mem_model(&ring->xdp_rxq,
573 MEM_TYPE_XSK_BUFF_POOL,
574 NULL);
575 if (err)
576 return err;
577 xsk_pool_set_rxq_info(ring->xsk_pool, &ring->xdp_rxq);
578 ice_xsk_pool_fill_cb(ring);
579
580 dev_info(dev, "Registered XDP mem model MEM_TYPE_XSK_BUFF_POOL on Rx ring %d\n",
581 ring->q_index);
582 } else {
583 if (!xdp_rxq_info_is_reg(&ring->xdp_rxq)) {
584 err = __xdp_rxq_info_reg(&ring->xdp_rxq, ring->netdev,
585 ring->q_index,
586 ring->q_vector->napi.napi_id,
587 ring->rx_buf_len);
588 if (err)
589 return err;
590 }
591
592 err = xdp_rxq_info_reg_mem_model(&ring->xdp_rxq,
593 MEM_TYPE_PAGE_SHARED,
594 NULL);
595 if (err)
596 return err;
597 }
598 }
599
600 xdp_init_buff(&ring->xdp, ice_get_frame_sz(ring), &ring->xdp_rxq);
601 ring->xdp.data = NULL;
602 ring->xdp_ext.pkt_ctx = &ring->pkt_ctx;
603 err = ice_setup_rx_ctx(ring);
604 if (err) {
605 dev_err(dev, "ice_setup_rx_ctx failed for RxQ %d, err %d\n",
606 ring->q_index, err);
607 return err;
608 }
609
610 if (ring->xsk_pool) {
611 bool ok;
612
613 if (!xsk_buff_can_alloc(ring->xsk_pool, num_bufs)) {
614 dev_warn(dev, "XSK buffer pool does not provide enough addresses to fill %d buffers on Rx ring %d\n",
615 num_bufs, ring->q_index);
616 dev_warn(dev, "Change Rx ring/fill queue size to avoid performance issues\n");
617
618 return 0;
619 }
620
621 ok = ice_alloc_rx_bufs_zc(ring, ring->xsk_pool, num_bufs);
622 if (!ok) {
623 u16 pf_q = ring->vsi->rxq_map[ring->q_index];
624
625 dev_info(dev, "Failed to allocate some buffers on XSK buffer pool enabled Rx ring %d (pf_q %d)\n",
626 ring->q_index, pf_q);
627 }
628
629 return 0;
630 }
631
632 ice_alloc_rx_bufs(ring, num_bufs);
633
634 return 0;
635 }
636
ice_vsi_cfg_single_rxq(struct ice_vsi * vsi,u16 q_idx)637 int ice_vsi_cfg_single_rxq(struct ice_vsi *vsi, u16 q_idx)
638 {
639 if (q_idx >= vsi->num_rxq)
640 return -EINVAL;
641
642 return ice_vsi_cfg_rxq(vsi->rx_rings[q_idx]);
643 }
644
645 /**
646 * ice_vsi_cfg_frame_size - setup max frame size and Rx buffer length
647 * @vsi: VSI
648 * @ring: Rx ring to configure
649 *
650 * Determine the maximum frame size and Rx buffer length to use for a PF VSI.
651 * Set these in the associated Rx ring structure.
652 */
ice_vsi_cfg_frame_size(struct ice_vsi * vsi,struct ice_rx_ring * ring)653 static void ice_vsi_cfg_frame_size(struct ice_vsi *vsi, struct ice_rx_ring *ring)
654 {
655 if (!vsi->netdev || test_bit(ICE_FLAG_LEGACY_RX, vsi->back->flags)) {
656 ring->max_frame = ICE_MAX_FRAME_LEGACY_RX;
657 ring->rx_buf_len = ICE_RXBUF_1664;
658 #if (PAGE_SIZE < 8192)
659 } else if (!ICE_2K_TOO_SMALL_WITH_PADDING &&
660 (vsi->netdev->mtu <= ETH_DATA_LEN)) {
661 ring->max_frame = ICE_RXBUF_1536 - NET_IP_ALIGN;
662 ring->rx_buf_len = ICE_RXBUF_1536 - NET_IP_ALIGN;
663 #endif
664 } else {
665 ring->max_frame = ICE_AQ_SET_MAC_FRAME_SIZE_MAX;
666 ring->rx_buf_len = ICE_RXBUF_3072;
667 }
668 }
669
670 /**
671 * ice_vsi_cfg_rxqs - Configure the VSI for Rx
672 * @vsi: the VSI being configured
673 *
674 * Return 0 on success and a negative value on error
675 * Configure the Rx VSI for operation.
676 */
ice_vsi_cfg_rxqs(struct ice_vsi * vsi)677 int ice_vsi_cfg_rxqs(struct ice_vsi *vsi)
678 {
679 u16 i;
680
681 /* set up individual rings */
682 ice_for_each_rxq(vsi, i) {
683 struct ice_rx_ring *ring = vsi->rx_rings[i];
684 int err;
685
686 if (vsi->type != ICE_VSI_VF)
687 ice_vsi_cfg_frame_size(vsi, ring);
688
689 err = ice_vsi_cfg_rxq(ring);
690 if (err)
691 return err;
692 }
693
694 return 0;
695 }
696
697 /**
698 * __ice_vsi_get_qs - helper function for assigning queues from PF to VSI
699 * @qs_cfg: gathered variables needed for pf->vsi queues assignment
700 *
701 * This function first tries to find contiguous space. If it is not successful,
702 * it tries with the scatter approach.
703 *
704 * Return 0 on success and -ENOMEM in case of no left space in PF queue bitmap
705 */
__ice_vsi_get_qs(struct ice_qs_cfg * qs_cfg)706 int __ice_vsi_get_qs(struct ice_qs_cfg *qs_cfg)
707 {
708 int ret = 0;
709
710 ret = __ice_vsi_get_qs_contig(qs_cfg);
711 if (ret) {
712 /* contig failed, so try with scatter approach */
713 qs_cfg->mapping_mode = ICE_VSI_MAP_SCATTER;
714 qs_cfg->q_count = min_t(unsigned int, qs_cfg->q_count,
715 qs_cfg->scatter_count);
716 ret = __ice_vsi_get_qs_sc(qs_cfg);
717 }
718 return ret;
719 }
720
721 /**
722 * ice_vsi_ctrl_one_rx_ring - start/stop VSI's Rx ring with no busy wait
723 * @vsi: the VSI being configured
724 * @ena: start or stop the Rx ring
725 * @rxq_idx: 0-based Rx queue index for the VSI passed in
726 * @wait: wait or don't wait for configuration to finish in hardware
727 *
728 * Return 0 on success and negative on error.
729 */
730 int
ice_vsi_ctrl_one_rx_ring(struct ice_vsi * vsi,bool ena,u16 rxq_idx,bool wait)731 ice_vsi_ctrl_one_rx_ring(struct ice_vsi *vsi, bool ena, u16 rxq_idx, bool wait)
732 {
733 int pf_q = vsi->rxq_map[rxq_idx];
734 struct ice_pf *pf = vsi->back;
735 struct ice_hw *hw = &pf->hw;
736 u32 rx_reg;
737
738 rx_reg = rd32(hw, QRX_CTRL(pf_q));
739
740 /* Skip if the queue is already in the requested state */
741 if (ena == !!(rx_reg & QRX_CTRL_QENA_STAT_M))
742 return 0;
743
744 /* turn on/off the queue */
745 if (ena)
746 rx_reg |= QRX_CTRL_QENA_REQ_M;
747 else
748 rx_reg &= ~QRX_CTRL_QENA_REQ_M;
749 wr32(hw, QRX_CTRL(pf_q), rx_reg);
750
751 if (!wait)
752 return 0;
753
754 ice_flush(hw);
755 return ice_pf_rxq_wait(pf, pf_q, ena);
756 }
757
758 /**
759 * ice_vsi_wait_one_rx_ring - wait for a VSI's Rx ring to be stopped/started
760 * @vsi: the VSI being configured
761 * @ena: true/false to verify Rx ring has been enabled/disabled respectively
762 * @rxq_idx: 0-based Rx queue index for the VSI passed in
763 *
764 * This routine will wait for the given Rx queue of the VSI to reach the
765 * enabled or disabled state. Returns -ETIMEDOUT in case of failing to reach
766 * the requested state after multiple retries; else will return 0 in case of
767 * success.
768 */
ice_vsi_wait_one_rx_ring(struct ice_vsi * vsi,bool ena,u16 rxq_idx)769 int ice_vsi_wait_one_rx_ring(struct ice_vsi *vsi, bool ena, u16 rxq_idx)
770 {
771 int pf_q = vsi->rxq_map[rxq_idx];
772 struct ice_pf *pf = vsi->back;
773
774 return ice_pf_rxq_wait(pf, pf_q, ena);
775 }
776
777 /**
778 * ice_vsi_alloc_q_vectors - Allocate memory for interrupt vectors
779 * @vsi: the VSI being configured
780 *
781 * We allocate one q_vector per queue interrupt. If allocation fails we
782 * return -ENOMEM.
783 */
ice_vsi_alloc_q_vectors(struct ice_vsi * vsi)784 int ice_vsi_alloc_q_vectors(struct ice_vsi *vsi)
785 {
786 struct device *dev = ice_pf_to_dev(vsi->back);
787 u16 v_idx;
788 int err;
789
790 if (vsi->q_vectors[0]) {
791 dev_dbg(dev, "VSI %d has existing q_vectors\n", vsi->vsi_num);
792 return -EEXIST;
793 }
794
795 for (v_idx = 0; v_idx < vsi->num_q_vectors; v_idx++) {
796 err = ice_vsi_alloc_q_vector(vsi, v_idx);
797 if (err)
798 goto err_out;
799 }
800
801 return 0;
802
803 err_out:
804 while (v_idx--)
805 ice_free_q_vector(vsi, v_idx);
806
807 dev_err(dev, "Failed to allocate %d q_vector for VSI %d, ret=%d\n",
808 vsi->num_q_vectors, vsi->vsi_num, err);
809 vsi->num_q_vectors = 0;
810 return err;
811 }
812
813 /**
814 * ice_vsi_map_rings_to_vectors - Map VSI rings to interrupt vectors
815 * @vsi: the VSI being configured
816 *
817 * This function maps descriptor rings to the queue-specific vectors allotted
818 * through the MSI-X enabling code. On a constrained vector budget, we map Tx
819 * and Rx rings to the vector as "efficiently" as possible.
820 */
ice_vsi_map_rings_to_vectors(struct ice_vsi * vsi)821 void ice_vsi_map_rings_to_vectors(struct ice_vsi *vsi)
822 {
823 int q_vectors = vsi->num_q_vectors;
824 u16 tx_rings_rem, rx_rings_rem;
825 int v_id;
826
827 /* initially assigning remaining rings count to VSIs num queue value */
828 tx_rings_rem = vsi->num_txq;
829 rx_rings_rem = vsi->num_rxq;
830
831 for (v_id = 0; v_id < q_vectors; v_id++) {
832 struct ice_q_vector *q_vector = vsi->q_vectors[v_id];
833 u8 tx_rings_per_v, rx_rings_per_v;
834 u16 q_id, q_base;
835
836 /* Tx rings mapping to vector */
837 tx_rings_per_v = (u8)DIV_ROUND_UP(tx_rings_rem,
838 q_vectors - v_id);
839 q_vector->num_ring_tx = tx_rings_per_v;
840 q_vector->tx.tx_ring = NULL;
841 q_vector->tx.itr_idx = ICE_TX_ITR;
842 q_base = vsi->num_txq - tx_rings_rem;
843
844 for (q_id = q_base; q_id < (q_base + tx_rings_per_v); q_id++) {
845 struct ice_tx_ring *tx_ring = vsi->tx_rings[q_id];
846
847 tx_ring->q_vector = q_vector;
848 tx_ring->next = q_vector->tx.tx_ring;
849 q_vector->tx.tx_ring = tx_ring;
850 }
851 tx_rings_rem -= tx_rings_per_v;
852
853 /* Rx rings mapping to vector */
854 rx_rings_per_v = (u8)DIV_ROUND_UP(rx_rings_rem,
855 q_vectors - v_id);
856 q_vector->num_ring_rx = rx_rings_per_v;
857 q_vector->rx.rx_ring = NULL;
858 q_vector->rx.itr_idx = ICE_RX_ITR;
859 q_base = vsi->num_rxq - rx_rings_rem;
860
861 for (q_id = q_base; q_id < (q_base + rx_rings_per_v); q_id++) {
862 struct ice_rx_ring *rx_ring = vsi->rx_rings[q_id];
863
864 rx_ring->q_vector = q_vector;
865 rx_ring->next = q_vector->rx.rx_ring;
866 q_vector->rx.rx_ring = rx_ring;
867 }
868 rx_rings_rem -= rx_rings_per_v;
869 }
870
871 if (ice_is_xdp_ena_vsi(vsi))
872 ice_map_xdp_rings(vsi);
873 }
874
875 /**
876 * ice_vsi_free_q_vectors - Free memory allocated for interrupt vectors
877 * @vsi: the VSI having memory freed
878 */
ice_vsi_free_q_vectors(struct ice_vsi * vsi)879 void ice_vsi_free_q_vectors(struct ice_vsi *vsi)
880 {
881 int v_idx;
882
883 ice_for_each_q_vector(vsi, v_idx)
884 ice_free_q_vector(vsi, v_idx);
885
886 vsi->num_q_vectors = 0;
887 }
888
889 /**
890 * ice_vsi_cfg_txq - Configure single Tx queue
891 * @vsi: the VSI that queue belongs to
892 * @ring: Tx ring to be configured
893 * @qg_buf: queue group buffer
894 */
895 static int
ice_vsi_cfg_txq(struct ice_vsi * vsi,struct ice_tx_ring * ring,struct ice_aqc_add_tx_qgrp * qg_buf)896 ice_vsi_cfg_txq(struct ice_vsi *vsi, struct ice_tx_ring *ring,
897 struct ice_aqc_add_tx_qgrp *qg_buf)
898 {
899 u8 buf_len = struct_size(qg_buf, txqs, 1);
900 struct ice_tlan_ctx tlan_ctx = { 0 };
901 struct ice_aqc_add_txqs_perq *txq;
902 struct ice_channel *ch = ring->ch;
903 struct ice_pf *pf = vsi->back;
904 struct ice_hw *hw = &pf->hw;
905 int status;
906 u16 pf_q;
907 u8 tc;
908
909 /* Configure XPS */
910 ice_cfg_xps_tx_ring(ring);
911
912 pf_q = ring->reg_idx;
913 ice_setup_tx_ctx(ring, &tlan_ctx, pf_q);
914 /* copy context contents into the qg_buf */
915 qg_buf->txqs[0].txq_id = cpu_to_le16(pf_q);
916 ice_pack_txq_ctx(&tlan_ctx, &qg_buf->txqs[0].txq_ctx);
917
918 /* init queue specific tail reg. It is referred as
919 * transmit comm scheduler queue doorbell.
920 */
921 ring->tail = hw->hw_addr + QTX_COMM_DBELL(pf_q);
922
923 if (IS_ENABLED(CONFIG_DCB))
924 tc = ring->dcb_tc;
925 else
926 tc = 0;
927
928 /* Add unique software queue handle of the Tx queue per
929 * TC into the VSI Tx ring
930 */
931 ring->q_handle = ice_calc_txq_handle(vsi, ring, tc);
932
933 if (ch)
934 status = ice_ena_vsi_txq(vsi->port_info, ch->ch_vsi->idx, 0,
935 ring->q_handle, 1, qg_buf, buf_len,
936 NULL);
937 else
938 status = ice_ena_vsi_txq(vsi->port_info, vsi->idx, tc,
939 ring->q_handle, 1, qg_buf, buf_len,
940 NULL);
941 if (status) {
942 dev_err(ice_pf_to_dev(pf), "Failed to set LAN Tx queue context, error: %d\n",
943 status);
944 return status;
945 }
946
947 /* Add Tx Queue TEID into the VSI Tx ring from the
948 * response. This will complete configuring and
949 * enabling the queue.
950 */
951 txq = &qg_buf->txqs[0];
952 if (pf_q == le16_to_cpu(txq->txq_id))
953 ring->txq_teid = le32_to_cpu(txq->q_teid);
954
955 return 0;
956 }
957
ice_vsi_cfg_single_txq(struct ice_vsi * vsi,struct ice_tx_ring ** tx_rings,u16 q_idx)958 int ice_vsi_cfg_single_txq(struct ice_vsi *vsi, struct ice_tx_ring **tx_rings,
959 u16 q_idx)
960 {
961 DEFINE_RAW_FLEX(struct ice_aqc_add_tx_qgrp, qg_buf, txqs, 1);
962
963 if (q_idx >= vsi->alloc_txq || !tx_rings || !tx_rings[q_idx])
964 return -EINVAL;
965
966 qg_buf->num_txqs = 1;
967
968 return ice_vsi_cfg_txq(vsi, tx_rings[q_idx], qg_buf);
969 }
970
971 /**
972 * ice_vsi_cfg_txqs - Configure the VSI for Tx
973 * @vsi: the VSI being configured
974 * @rings: Tx ring array to be configured
975 * @count: number of Tx ring array elements
976 *
977 * Return 0 on success and a negative value on error
978 * Configure the Tx VSI for operation.
979 */
980 static int
ice_vsi_cfg_txqs(struct ice_vsi * vsi,struct ice_tx_ring ** rings,u16 count)981 ice_vsi_cfg_txqs(struct ice_vsi *vsi, struct ice_tx_ring **rings, u16 count)
982 {
983 DEFINE_RAW_FLEX(struct ice_aqc_add_tx_qgrp, qg_buf, txqs, 1);
984 int err = 0;
985 u16 q_idx;
986
987 qg_buf->num_txqs = 1;
988
989 for (q_idx = 0; q_idx < count; q_idx++) {
990 err = ice_vsi_cfg_txq(vsi, rings[q_idx], qg_buf);
991 if (err)
992 break;
993 }
994
995 return err;
996 }
997
998 /**
999 * ice_vsi_cfg_lan_txqs - Configure the VSI for Tx
1000 * @vsi: the VSI being configured
1001 *
1002 * Return 0 on success and a negative value on error
1003 * Configure the Tx VSI for operation.
1004 */
ice_vsi_cfg_lan_txqs(struct ice_vsi * vsi)1005 int ice_vsi_cfg_lan_txqs(struct ice_vsi *vsi)
1006 {
1007 return ice_vsi_cfg_txqs(vsi, vsi->tx_rings, vsi->num_txq);
1008 }
1009
1010 /**
1011 * ice_vsi_cfg_xdp_txqs - Configure Tx queues dedicated for XDP in given VSI
1012 * @vsi: the VSI being configured
1013 *
1014 * Return 0 on success and a negative value on error
1015 * Configure the Tx queues dedicated for XDP in given VSI for operation.
1016 */
ice_vsi_cfg_xdp_txqs(struct ice_vsi * vsi)1017 int ice_vsi_cfg_xdp_txqs(struct ice_vsi *vsi)
1018 {
1019 int ret;
1020 int i;
1021
1022 ret = ice_vsi_cfg_txqs(vsi, vsi->xdp_rings, vsi->num_xdp_txq);
1023 if (ret)
1024 return ret;
1025
1026 ice_for_each_rxq(vsi, i)
1027 ice_tx_xsk_pool(vsi, i);
1028
1029 return 0;
1030 }
1031
1032 /**
1033 * ice_cfg_itr - configure the initial interrupt throttle values
1034 * @hw: pointer to the HW structure
1035 * @q_vector: interrupt vector that's being configured
1036 *
1037 * Configure interrupt throttling values for the ring containers that are
1038 * associated with the interrupt vector passed in.
1039 */
ice_cfg_itr(struct ice_hw * hw,struct ice_q_vector * q_vector)1040 void ice_cfg_itr(struct ice_hw *hw, struct ice_q_vector *q_vector)
1041 {
1042 ice_cfg_itr_gran(hw);
1043
1044 if (q_vector->num_ring_rx)
1045 ice_write_itr(&q_vector->rx, q_vector->rx.itr_setting);
1046
1047 if (q_vector->num_ring_tx)
1048 ice_write_itr(&q_vector->tx, q_vector->tx.itr_setting);
1049
1050 ice_write_intrl(q_vector, q_vector->intrl);
1051 }
1052
1053 /**
1054 * ice_cfg_txq_interrupt - configure interrupt on Tx queue
1055 * @vsi: the VSI being configured
1056 * @txq: Tx queue being mapped to MSI-X vector
1057 * @msix_idx: MSI-X vector index within the function
1058 * @itr_idx: ITR index of the interrupt cause
1059 *
1060 * Configure interrupt on Tx queue by associating Tx queue to MSI-X vector
1061 * within the function space.
1062 */
1063 void
ice_cfg_txq_interrupt(struct ice_vsi * vsi,u16 txq,u16 msix_idx,u16 itr_idx)1064 ice_cfg_txq_interrupt(struct ice_vsi *vsi, u16 txq, u16 msix_idx, u16 itr_idx)
1065 {
1066 struct ice_pf *pf = vsi->back;
1067 struct ice_hw *hw = &pf->hw;
1068 u32 val;
1069
1070 itr_idx = FIELD_PREP(QINT_TQCTL_ITR_INDX_M, itr_idx);
1071
1072 val = QINT_TQCTL_CAUSE_ENA_M | itr_idx |
1073 FIELD_PREP(QINT_TQCTL_MSIX_INDX_M, msix_idx);
1074
1075 wr32(hw, QINT_TQCTL(vsi->txq_map[txq]), val);
1076 if (ice_is_xdp_ena_vsi(vsi)) {
1077 u32 xdp_txq = txq + vsi->num_xdp_txq;
1078
1079 wr32(hw, QINT_TQCTL(vsi->txq_map[xdp_txq]),
1080 val);
1081 }
1082 ice_flush(hw);
1083 }
1084
1085 /**
1086 * ice_cfg_rxq_interrupt - configure interrupt on Rx queue
1087 * @vsi: the VSI being configured
1088 * @rxq: Rx queue being mapped to MSI-X vector
1089 * @msix_idx: MSI-X vector index within the function
1090 * @itr_idx: ITR index of the interrupt cause
1091 *
1092 * Configure interrupt on Rx queue by associating Rx queue to MSI-X vector
1093 * within the function space.
1094 */
1095 void
ice_cfg_rxq_interrupt(struct ice_vsi * vsi,u16 rxq,u16 msix_idx,u16 itr_idx)1096 ice_cfg_rxq_interrupt(struct ice_vsi *vsi, u16 rxq, u16 msix_idx, u16 itr_idx)
1097 {
1098 struct ice_pf *pf = vsi->back;
1099 struct ice_hw *hw = &pf->hw;
1100 u32 val;
1101
1102 itr_idx = FIELD_PREP(QINT_RQCTL_ITR_INDX_M, itr_idx);
1103
1104 val = QINT_RQCTL_CAUSE_ENA_M | itr_idx |
1105 FIELD_PREP(QINT_RQCTL_MSIX_INDX_M, msix_idx);
1106
1107 wr32(hw, QINT_RQCTL(vsi->rxq_map[rxq]), val);
1108
1109 ice_flush(hw);
1110 }
1111
1112 /**
1113 * ice_trigger_sw_intr - trigger a software interrupt
1114 * @hw: pointer to the HW structure
1115 * @q_vector: interrupt vector to trigger the software interrupt for
1116 */
ice_trigger_sw_intr(struct ice_hw * hw,const struct ice_q_vector * q_vector)1117 void ice_trigger_sw_intr(struct ice_hw *hw, const struct ice_q_vector *q_vector)
1118 {
1119 wr32(hw, GLINT_DYN_CTL(q_vector->reg_idx),
1120 (ICE_ITR_NONE << GLINT_DYN_CTL_ITR_INDX_S) |
1121 GLINT_DYN_CTL_SWINT_TRIG_M |
1122 GLINT_DYN_CTL_INTENA_M);
1123 }
1124
1125 /**
1126 * ice_vsi_stop_tx_ring - Disable single Tx ring
1127 * @vsi: the VSI being configured
1128 * @rst_src: reset source
1129 * @rel_vmvf_num: Relative ID of VF/VM
1130 * @ring: Tx ring to be stopped
1131 * @txq_meta: Meta data of Tx ring to be stopped
1132 */
1133 int
ice_vsi_stop_tx_ring(struct ice_vsi * vsi,enum ice_disq_rst_src rst_src,u16 rel_vmvf_num,struct ice_tx_ring * ring,struct ice_txq_meta * txq_meta)1134 ice_vsi_stop_tx_ring(struct ice_vsi *vsi, enum ice_disq_rst_src rst_src,
1135 u16 rel_vmvf_num, struct ice_tx_ring *ring,
1136 struct ice_txq_meta *txq_meta)
1137 {
1138 struct ice_pf *pf = vsi->back;
1139 struct ice_q_vector *q_vector;
1140 struct ice_hw *hw = &pf->hw;
1141 int status;
1142 u32 val;
1143
1144 /* clear cause_ena bit for disabled queues */
1145 val = rd32(hw, QINT_TQCTL(ring->reg_idx));
1146 val &= ~QINT_TQCTL_CAUSE_ENA_M;
1147 wr32(hw, QINT_TQCTL(ring->reg_idx), val);
1148
1149 /* software is expected to wait for 100 ns */
1150 ndelay(100);
1151
1152 /* trigger a software interrupt for the vector
1153 * associated to the queue to schedule NAPI handler
1154 */
1155 q_vector = ring->q_vector;
1156 if (q_vector && !(vsi->vf && ice_is_vf_disabled(vsi->vf)))
1157 ice_trigger_sw_intr(hw, q_vector);
1158
1159 status = ice_dis_vsi_txq(vsi->port_info, txq_meta->vsi_idx,
1160 txq_meta->tc, 1, &txq_meta->q_handle,
1161 &txq_meta->q_id, &txq_meta->q_teid, rst_src,
1162 rel_vmvf_num, NULL);
1163
1164 /* if the disable queue command was exercised during an
1165 * active reset flow, -EBUSY is returned.
1166 * This is not an error as the reset operation disables
1167 * queues at the hardware level anyway.
1168 */
1169 if (status == -EBUSY) {
1170 dev_dbg(ice_pf_to_dev(vsi->back), "Reset in progress. LAN Tx queues already disabled\n");
1171 } else if (status == -ENOENT) {
1172 dev_dbg(ice_pf_to_dev(vsi->back), "LAN Tx queues do not exist, nothing to disable\n");
1173 } else if (status) {
1174 dev_dbg(ice_pf_to_dev(vsi->back), "Failed to disable LAN Tx queues, error: %d\n",
1175 status);
1176 return status;
1177 }
1178
1179 return 0;
1180 }
1181
1182 /**
1183 * ice_fill_txq_meta - Prepare the Tx queue's meta data
1184 * @vsi: VSI that ring belongs to
1185 * @ring: ring that txq_meta will be based on
1186 * @txq_meta: a helper struct that wraps Tx queue's information
1187 *
1188 * Set up a helper struct that will contain all the necessary fields that
1189 * are needed for stopping Tx queue
1190 */
1191 void
ice_fill_txq_meta(const struct ice_vsi * vsi,struct ice_tx_ring * ring,struct ice_txq_meta * txq_meta)1192 ice_fill_txq_meta(const struct ice_vsi *vsi, struct ice_tx_ring *ring,
1193 struct ice_txq_meta *txq_meta)
1194 {
1195 struct ice_channel *ch = ring->ch;
1196 u8 tc;
1197
1198 if (IS_ENABLED(CONFIG_DCB))
1199 tc = ring->dcb_tc;
1200 else
1201 tc = 0;
1202
1203 txq_meta->q_id = ring->reg_idx;
1204 txq_meta->q_teid = ring->txq_teid;
1205 txq_meta->q_handle = ring->q_handle;
1206 if (ch) {
1207 txq_meta->vsi_idx = ch->ch_vsi->idx;
1208 txq_meta->tc = 0;
1209 } else {
1210 txq_meta->vsi_idx = vsi->idx;
1211 txq_meta->tc = tc;
1212 }
1213 }
1214