1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright (C) 2021, Intel Corporation. */
3
4 #include "ice.h"
5 #include "ice_lib.h"
6 #include "ice_trace.h"
7 #include "ice_cgu_regs.h"
8
9 static const char ice_pin_names[][64] = {
10 "SDP0",
11 "SDP1",
12 "SDP2",
13 "SDP3",
14 "TIME_SYNC",
15 "1PPS"
16 };
17
18 static const struct ice_ptp_pin_desc ice_pin_desc_e82x[] = {
19 /* name, gpio, delay */
20 { TIME_SYNC, { 4, -1 }, { 0, 0 }},
21 { ONE_PPS, { -1, 5 }, { 0, 11 }},
22 };
23
24 static const struct ice_ptp_pin_desc ice_pin_desc_e825c[] = {
25 /* name, gpio, delay */
26 { SDP0, { 0, 0 }, { 15, 14 }},
27 { SDP1, { 1, 1 }, { 15, 14 }},
28 { SDP2, { 2, 2 }, { 15, 14 }},
29 { SDP3, { 3, 3 }, { 15, 14 }},
30 { TIME_SYNC, { 4, -1 }, { 11, 0 }},
31 { ONE_PPS, { -1, 5 }, { 0, 9 }},
32 };
33
34 static const struct ice_ptp_pin_desc ice_pin_desc_e810[] = {
35 /* name, gpio, delay */
36 { SDP0, { 0, 0 }, { 0, 1 }},
37 { SDP1, { 1, 1 }, { 0, 1 }},
38 { SDP2, { 2, 2 }, { 0, 1 }},
39 { SDP3, { 3, 3 }, { 0, 1 }},
40 { ONE_PPS, { -1, 5 }, { 0, 1 }},
41 };
42
43 static const char ice_pin_names_nvm[][64] = {
44 "GNSS",
45 "SMA1",
46 "U.FL1",
47 "SMA2",
48 "U.FL2",
49 };
50
51 static const struct ice_ptp_pin_desc ice_pin_desc_e810_sma[] = {
52 /* name, gpio, delay */
53 { GNSS, { 1, -1 }, { 0, 0 }},
54 { SMA1, { 1, 0 }, { 0, 1 }},
55 { UFL1, { -1, 0 }, { 0, 1 }},
56 { SMA2, { 3, 2 }, { 0, 1 }},
57 { UFL2, { 3, -1 }, { 0, 0 }},
58 };
59
ice_get_ctrl_pf(struct ice_pf * pf)60 static struct ice_pf *ice_get_ctrl_pf(struct ice_pf *pf)
61 {
62 return !pf->adapter ? NULL : pf->adapter->ctrl_pf;
63 }
64
ice_get_ctrl_ptp(struct ice_pf * pf)65 static struct ice_ptp *ice_get_ctrl_ptp(struct ice_pf *pf)
66 {
67 struct ice_pf *ctrl_pf = ice_get_ctrl_pf(pf);
68
69 return !ctrl_pf ? NULL : &ctrl_pf->ptp;
70 }
71
72 /**
73 * ice_ptp_find_pin_idx - Find pin index in ptp_pin_desc
74 * @pf: Board private structure
75 * @func: Pin function
76 * @chan: GPIO channel
77 *
78 * Return: positive pin number when pin is present, -1 otherwise
79 */
ice_ptp_find_pin_idx(struct ice_pf * pf,enum ptp_pin_function func,unsigned int chan)80 static int ice_ptp_find_pin_idx(struct ice_pf *pf, enum ptp_pin_function func,
81 unsigned int chan)
82 {
83 const struct ptp_clock_info *info = &pf->ptp.info;
84 int i;
85
86 for (i = 0; i < info->n_pins; i++) {
87 if (info->pin_config[i].func == func &&
88 info->pin_config[i].chan == chan)
89 return i;
90 }
91
92 return -1;
93 }
94
95 /**
96 * ice_ptp_update_sma_data - update SMA pins data according to pins setup
97 * @pf: Board private structure
98 * @sma_pins: parsed SMA pins status
99 * @data: SMA data to update
100 */
ice_ptp_update_sma_data(struct ice_pf * pf,unsigned int sma_pins[],u8 * data)101 static void ice_ptp_update_sma_data(struct ice_pf *pf, unsigned int sma_pins[],
102 u8 *data)
103 {
104 const char *state1, *state2;
105
106 /* Set the right state based on the desired configuration.
107 * When bit is set, functionality is disabled.
108 */
109 *data &= ~ICE_ALL_SMA_MASK;
110 if (!sma_pins[UFL1 - 1]) {
111 if (sma_pins[SMA1 - 1] == PTP_PF_EXTTS) {
112 state1 = "SMA1 Rx, U.FL1 disabled";
113 *data |= ICE_SMA1_TX_EN;
114 } else if (sma_pins[SMA1 - 1] == PTP_PF_PEROUT) {
115 state1 = "SMA1 Tx U.FL1 disabled";
116 *data |= ICE_SMA1_DIR_EN;
117 } else {
118 state1 = "SMA1 disabled, U.FL1 disabled";
119 *data |= ICE_SMA1_MASK;
120 }
121 } else {
122 /* U.FL1 Tx will always enable SMA1 Rx */
123 state1 = "SMA1 Rx, U.FL1 Tx";
124 }
125
126 if (!sma_pins[UFL2 - 1]) {
127 if (sma_pins[SMA2 - 1] == PTP_PF_EXTTS) {
128 state2 = "SMA2 Rx, U.FL2 disabled";
129 *data |= ICE_SMA2_TX_EN | ICE_SMA2_UFL2_RX_DIS;
130 } else if (sma_pins[SMA2 - 1] == PTP_PF_PEROUT) {
131 state2 = "SMA2 Tx, U.FL2 disabled";
132 *data |= ICE_SMA2_DIR_EN | ICE_SMA2_UFL2_RX_DIS;
133 } else {
134 state2 = "SMA2 disabled, U.FL2 disabled";
135 *data |= ICE_SMA2_MASK;
136 }
137 } else {
138 if (!sma_pins[SMA2 - 1]) {
139 state2 = "SMA2 disabled, U.FL2 Rx";
140 *data |= ICE_SMA2_DIR_EN | ICE_SMA2_TX_EN;
141 } else {
142 state2 = "SMA2 Tx, U.FL2 Rx";
143 *data |= ICE_SMA2_DIR_EN;
144 }
145 }
146
147 dev_dbg(ice_pf_to_dev(pf), "%s, %s\n", state1, state2);
148 }
149
150 /**
151 * ice_ptp_set_sma_cfg - set the configuration of the SMA control logic
152 * @pf: Board private structure
153 *
154 * Return: 0 on success, negative error code otherwise
155 */
ice_ptp_set_sma_cfg(struct ice_pf * pf)156 static int ice_ptp_set_sma_cfg(struct ice_pf *pf)
157 {
158 const struct ice_ptp_pin_desc *ice_pins = pf->ptp.ice_pin_desc;
159 struct ptp_pin_desc *pins = pf->ptp.pin_desc;
160 unsigned int sma_pins[ICE_SMA_PINS_NUM] = {};
161 int err;
162 u8 data;
163
164 /* Read initial pin state value */
165 err = ice_read_sma_ctrl(&pf->hw, &data);
166 if (err)
167 return err;
168
169 /* Get SMA/U.FL pins states */
170 for (int i = 0; i < pf->ptp.info.n_pins; i++)
171 if (pins[i].func) {
172 int name_idx = ice_pins[i].name_idx;
173
174 switch (name_idx) {
175 case SMA1:
176 case UFL1:
177 case SMA2:
178 case UFL2:
179 sma_pins[name_idx - 1] = pins[i].func;
180 break;
181 default:
182 continue;
183 }
184 }
185
186 ice_ptp_update_sma_data(pf, sma_pins, &data);
187 return ice_write_sma_ctrl(&pf->hw, data);
188 }
189
190 /**
191 * ice_ptp_cfg_tx_interrupt - Configure Tx timestamp interrupt for the device
192 * @pf: Board private structure
193 *
194 * Program the device to respond appropriately to the Tx timestamp interrupt
195 * cause.
196 */
ice_ptp_cfg_tx_interrupt(struct ice_pf * pf)197 static void ice_ptp_cfg_tx_interrupt(struct ice_pf *pf)
198 {
199 struct ice_hw *hw = &pf->hw;
200 bool enable;
201 u32 val;
202
203 switch (pf->ptp.tx_interrupt_mode) {
204 case ICE_PTP_TX_INTERRUPT_ALL:
205 /* React to interrupts across all quads. */
206 wr32(hw, PFINT_TSYN_MSK + (0x4 * hw->pf_id), (u32)0x1f);
207 enable = true;
208 break;
209 case ICE_PTP_TX_INTERRUPT_NONE:
210 /* Do not react to interrupts on any quad. */
211 wr32(hw, PFINT_TSYN_MSK + (0x4 * hw->pf_id), (u32)0x0);
212 enable = false;
213 break;
214 case ICE_PTP_TX_INTERRUPT_SELF:
215 default:
216 enable = pf->ptp.tstamp_config.tx_type == HWTSTAMP_TX_ON;
217 break;
218 }
219
220 /* Configure the Tx timestamp interrupt */
221 val = rd32(hw, PFINT_OICR_ENA);
222 if (enable)
223 val |= PFINT_OICR_TSYN_TX_M;
224 else
225 val &= ~PFINT_OICR_TSYN_TX_M;
226 wr32(hw, PFINT_OICR_ENA, val);
227 }
228
229 /**
230 * ice_set_rx_tstamp - Enable or disable Rx timestamping
231 * @pf: The PF pointer to search in
232 * @on: bool value for whether timestamps are enabled or disabled
233 */
ice_set_rx_tstamp(struct ice_pf * pf,bool on)234 static void ice_set_rx_tstamp(struct ice_pf *pf, bool on)
235 {
236 struct ice_vsi *vsi;
237 u16 i;
238
239 vsi = ice_get_main_vsi(pf);
240 if (!vsi || !vsi->rx_rings)
241 return;
242
243 /* Set the timestamp flag for all the Rx rings */
244 ice_for_each_rxq(vsi, i) {
245 if (!vsi->rx_rings[i])
246 continue;
247 vsi->rx_rings[i]->ptp_rx = on;
248 }
249 }
250
251 /**
252 * ice_ptp_disable_timestamp_mode - Disable current timestamp mode
253 * @pf: Board private structure
254 *
255 * Called during preparation for reset to temporarily disable timestamping on
256 * the device. Called during remove to disable timestamping while cleaning up
257 * driver resources.
258 */
ice_ptp_disable_timestamp_mode(struct ice_pf * pf)259 static void ice_ptp_disable_timestamp_mode(struct ice_pf *pf)
260 {
261 struct ice_hw *hw = &pf->hw;
262 u32 val;
263
264 val = rd32(hw, PFINT_OICR_ENA);
265 val &= ~PFINT_OICR_TSYN_TX_M;
266 wr32(hw, PFINT_OICR_ENA, val);
267
268 ice_set_rx_tstamp(pf, false);
269 }
270
271 /**
272 * ice_ptp_restore_timestamp_mode - Restore timestamp configuration
273 * @pf: Board private structure
274 *
275 * Called at the end of rebuild to restore timestamp configuration after
276 * a device reset.
277 */
ice_ptp_restore_timestamp_mode(struct ice_pf * pf)278 void ice_ptp_restore_timestamp_mode(struct ice_pf *pf)
279 {
280 struct ice_hw *hw = &pf->hw;
281 bool enable_rx;
282
283 ice_ptp_cfg_tx_interrupt(pf);
284
285 enable_rx = pf->ptp.tstamp_config.rx_filter == HWTSTAMP_FILTER_ALL;
286 ice_set_rx_tstamp(pf, enable_rx);
287
288 /* Trigger an immediate software interrupt to ensure that timestamps
289 * which occurred during reset are handled now.
290 */
291 wr32(hw, PFINT_OICR, PFINT_OICR_TSYN_TX_M);
292 ice_flush(hw);
293 }
294
295 /**
296 * ice_ptp_read_src_clk_reg - Read the source clock register
297 * @pf: Board private structure
298 * @sts: Optional parameter for holding a pair of system timestamps from
299 * the system clock. Will be ignored if NULL is given.
300 */
301 static u64
ice_ptp_read_src_clk_reg(struct ice_pf * pf,struct ptp_system_timestamp * sts)302 ice_ptp_read_src_clk_reg(struct ice_pf *pf, struct ptp_system_timestamp *sts)
303 {
304 struct ice_hw *hw = &pf->hw;
305 u32 hi, lo, lo2;
306 u8 tmr_idx;
307
308 tmr_idx = ice_get_ptp_src_clock_index(hw);
309 guard(spinlock)(&pf->adapter->ptp_gltsyn_time_lock);
310 /* Read the system timestamp pre PHC read */
311 ptp_read_system_prets(sts);
312
313 lo = rd32(hw, GLTSYN_TIME_L(tmr_idx));
314
315 /* Read the system timestamp post PHC read */
316 ptp_read_system_postts(sts);
317
318 hi = rd32(hw, GLTSYN_TIME_H(tmr_idx));
319 lo2 = rd32(hw, GLTSYN_TIME_L(tmr_idx));
320
321 if (lo2 < lo) {
322 /* if TIME_L rolled over read TIME_L again and update
323 * system timestamps
324 */
325 ptp_read_system_prets(sts);
326 lo = rd32(hw, GLTSYN_TIME_L(tmr_idx));
327 ptp_read_system_postts(sts);
328 hi = rd32(hw, GLTSYN_TIME_H(tmr_idx));
329 }
330
331 return ((u64)hi << 32) | lo;
332 }
333
334 /**
335 * ice_ptp_extend_32b_ts - Convert a 32b nanoseconds timestamp to 64b
336 * @cached_phc_time: recently cached copy of PHC time
337 * @in_tstamp: Ingress/egress 32b nanoseconds timestamp value
338 *
339 * Hardware captures timestamps which contain only 32 bits of nominal
340 * nanoseconds, as opposed to the 64bit timestamps that the stack expects.
341 * Note that the captured timestamp values may be 40 bits, but the lower
342 * 8 bits are sub-nanoseconds and generally discarded.
343 *
344 * Extend the 32bit nanosecond timestamp using the following algorithm and
345 * assumptions:
346 *
347 * 1) have a recently cached copy of the PHC time
348 * 2) assume that the in_tstamp was captured 2^31 nanoseconds (~2.1
349 * seconds) before or after the PHC time was captured.
350 * 3) calculate the delta between the cached time and the timestamp
351 * 4) if the delta is smaller than 2^31 nanoseconds, then the timestamp was
352 * captured after the PHC time. In this case, the full timestamp is just
353 * the cached PHC time plus the delta.
354 * 5) otherwise, if the delta is larger than 2^31 nanoseconds, then the
355 * timestamp was captured *before* the PHC time, i.e. because the PHC
356 * cache was updated after the timestamp was captured by hardware. In this
357 * case, the full timestamp is the cached time minus the inverse delta.
358 *
359 * This algorithm works even if the PHC time was updated after a Tx timestamp
360 * was requested, but before the Tx timestamp event was reported from
361 * hardware.
362 *
363 * This calculation primarily relies on keeping the cached PHC time up to
364 * date. If the timestamp was captured more than 2^31 nanoseconds after the
365 * PHC time, it is possible that the lower 32bits of PHC time have
366 * overflowed more than once, and we might generate an incorrect timestamp.
367 *
368 * This is prevented by (a) periodically updating the cached PHC time once
369 * a second, and (b) discarding any Tx timestamp packet if it has waited for
370 * a timestamp for more than one second.
371 */
ice_ptp_extend_32b_ts(u64 cached_phc_time,u32 in_tstamp)372 static u64 ice_ptp_extend_32b_ts(u64 cached_phc_time, u32 in_tstamp)
373 {
374 u32 delta, phc_time_lo;
375 u64 ns;
376
377 /* Extract the lower 32 bits of the PHC time */
378 phc_time_lo = (u32)cached_phc_time;
379
380 /* Calculate the delta between the lower 32bits of the cached PHC
381 * time and the in_tstamp value
382 */
383 delta = (in_tstamp - phc_time_lo);
384
385 /* Do not assume that the in_tstamp is always more recent than the
386 * cached PHC time. If the delta is large, it indicates that the
387 * in_tstamp was taken in the past, and should be converted
388 * forward.
389 */
390 if (delta > (U32_MAX / 2)) {
391 /* reverse the delta calculation here */
392 delta = (phc_time_lo - in_tstamp);
393 ns = cached_phc_time - delta;
394 } else {
395 ns = cached_phc_time + delta;
396 }
397
398 return ns;
399 }
400
401 /**
402 * ice_ptp_extend_40b_ts - Convert a 40b timestamp to 64b nanoseconds
403 * @pf: Board private structure
404 * @in_tstamp: Ingress/egress 40b timestamp value
405 *
406 * The Tx and Rx timestamps are 40 bits wide, including 32 bits of nominal
407 * nanoseconds, 7 bits of sub-nanoseconds, and a valid bit.
408 *
409 * *--------------------------------------------------------------*
410 * | 32 bits of nanoseconds | 7 high bits of sub ns underflow | v |
411 * *--------------------------------------------------------------*
412 *
413 * The low bit is an indicator of whether the timestamp is valid. The next
414 * 7 bits are a capture of the upper 7 bits of the sub-nanosecond underflow,
415 * and the remaining 32 bits are the lower 32 bits of the PHC timer.
416 *
417 * It is assumed that the caller verifies the timestamp is valid prior to
418 * calling this function.
419 *
420 * Extract the 32bit nominal nanoseconds and extend them. Use the cached PHC
421 * time stored in the device private PTP structure as the basis for timestamp
422 * extension.
423 *
424 * See ice_ptp_extend_32b_ts for a detailed explanation of the extension
425 * algorithm.
426 */
ice_ptp_extend_40b_ts(struct ice_pf * pf,u64 in_tstamp)427 static u64 ice_ptp_extend_40b_ts(struct ice_pf *pf, u64 in_tstamp)
428 {
429 const u64 mask = GENMASK_ULL(31, 0);
430 unsigned long discard_time;
431
432 /* Discard the hardware timestamp if the cached PHC time is too old */
433 discard_time = pf->ptp.cached_phc_jiffies + msecs_to_jiffies(2000);
434 if (time_is_before_jiffies(discard_time)) {
435 pf->ptp.tx_hwtstamp_discarded++;
436 return 0;
437 }
438
439 return ice_ptp_extend_32b_ts(pf->ptp.cached_phc_time,
440 (in_tstamp >> 8) & mask);
441 }
442
443 /**
444 * ice_ptp_is_tx_tracker_up - Check if Tx tracker is ready for new timestamps
445 * @tx: the PTP Tx timestamp tracker to check
446 *
447 * Check that a given PTP Tx timestamp tracker is up, i.e. that it is ready
448 * to accept new timestamp requests.
449 *
450 * Assumes the tx->lock spinlock is already held.
451 */
452 static bool
ice_ptp_is_tx_tracker_up(struct ice_ptp_tx * tx)453 ice_ptp_is_tx_tracker_up(struct ice_ptp_tx *tx)
454 {
455 lockdep_assert_held(&tx->lock);
456
457 return tx->init && !tx->calibrating;
458 }
459
460 /**
461 * ice_ptp_req_tx_single_tstamp - Request Tx timestamp for a port from FW
462 * @tx: the PTP Tx timestamp tracker
463 * @idx: index of the timestamp to request
464 */
ice_ptp_req_tx_single_tstamp(struct ice_ptp_tx * tx,u8 idx)465 void ice_ptp_req_tx_single_tstamp(struct ice_ptp_tx *tx, u8 idx)
466 {
467 struct ice_e810_params *params;
468 struct ice_ptp_port *ptp_port;
469 unsigned long flags;
470 struct sk_buff *skb;
471 struct ice_pf *pf;
472
473 if (!tx->init)
474 return;
475
476 ptp_port = container_of(tx, struct ice_ptp_port, tx);
477 pf = ptp_port_to_pf(ptp_port);
478 params = &pf->hw.ptp.phy.e810;
479
480 /* Drop packets which have waited for more than 2 seconds */
481 if (time_is_before_jiffies(tx->tstamps[idx].start + 2 * HZ)) {
482 /* Count the number of Tx timestamps that timed out */
483 pf->ptp.tx_hwtstamp_timeouts++;
484
485 skb = tx->tstamps[idx].skb;
486 tx->tstamps[idx].skb = NULL;
487 clear_bit(idx, tx->in_use);
488
489 dev_kfree_skb_any(skb);
490 return;
491 }
492
493 ice_trace(tx_tstamp_fw_req, tx->tstamps[idx].skb, idx);
494
495 spin_lock_irqsave(¶ms->atqbal_wq.lock, flags);
496
497 params->atqbal_flags |= ATQBAL_FLAGS_INTR_IN_PROGRESS;
498
499 /* Write TS index to read to the PF register so the FW can read it */
500 wr32(&pf->hw, REG_LL_PROXY_H,
501 REG_LL_PROXY_H_TS_INTR_ENA | FIELD_PREP(REG_LL_PROXY_H_TS_IDX, idx) |
502 REG_LL_PROXY_H_EXEC);
503 tx->last_ll_ts_idx_read = idx;
504
505 spin_unlock_irqrestore(¶ms->atqbal_wq.lock, flags);
506 }
507
508 /**
509 * ice_ptp_complete_tx_single_tstamp - Complete Tx timestamp for a port
510 * @tx: the PTP Tx timestamp tracker
511 */
ice_ptp_complete_tx_single_tstamp(struct ice_ptp_tx * tx)512 void ice_ptp_complete_tx_single_tstamp(struct ice_ptp_tx *tx)
513 {
514 struct skb_shared_hwtstamps shhwtstamps = {};
515 u8 idx = tx->last_ll_ts_idx_read;
516 struct ice_e810_params *params;
517 struct ice_ptp_port *ptp_port;
518 u64 raw_tstamp, tstamp;
519 bool drop_ts = false;
520 struct sk_buff *skb;
521 unsigned long flags;
522 struct device *dev;
523 struct ice_pf *pf;
524 u32 reg_ll_high;
525
526 if (!tx->init || tx->last_ll_ts_idx_read < 0)
527 return;
528
529 ptp_port = container_of(tx, struct ice_ptp_port, tx);
530 pf = ptp_port_to_pf(ptp_port);
531 dev = ice_pf_to_dev(pf);
532 params = &pf->hw.ptp.phy.e810;
533
534 ice_trace(tx_tstamp_fw_done, tx->tstamps[idx].skb, idx);
535
536 spin_lock_irqsave(¶ms->atqbal_wq.lock, flags);
537
538 if (!(params->atqbal_flags & ATQBAL_FLAGS_INTR_IN_PROGRESS))
539 dev_dbg(dev, "%s: low latency interrupt request not in progress?\n",
540 __func__);
541
542 /* Read the low 32 bit value */
543 raw_tstamp = rd32(&pf->hw, REG_LL_PROXY_L);
544 /* Read the status together with high TS part */
545 reg_ll_high = rd32(&pf->hw, REG_LL_PROXY_H);
546
547 /* Wake up threads waiting on low latency interface */
548 params->atqbal_flags &= ~ATQBAL_FLAGS_INTR_IN_PROGRESS;
549
550 wake_up_locked(¶ms->atqbal_wq);
551
552 spin_unlock_irqrestore(¶ms->atqbal_wq.lock, flags);
553
554 /* When the bit is cleared, the TS is ready in the register */
555 if (reg_ll_high & REG_LL_PROXY_H_EXEC) {
556 dev_err(ice_pf_to_dev(pf), "Failed to get the Tx tstamp - FW not ready");
557 return;
558 }
559
560 /* High 8 bit value of the TS is on the bits 16:23 */
561 raw_tstamp |= ((u64)FIELD_GET(REG_LL_PROXY_H_TS_HIGH, reg_ll_high)) << 32;
562
563 /* Devices using this interface always verify the timestamp differs
564 * relative to the last cached timestamp value.
565 */
566 if (raw_tstamp == tx->tstamps[idx].cached_tstamp)
567 return;
568
569 tx->tstamps[idx].cached_tstamp = raw_tstamp;
570 clear_bit(idx, tx->in_use);
571 skb = tx->tstamps[idx].skb;
572 tx->tstamps[idx].skb = NULL;
573 if (test_and_clear_bit(idx, tx->stale))
574 drop_ts = true;
575
576 if (!skb)
577 return;
578
579 if (drop_ts) {
580 dev_kfree_skb_any(skb);
581 return;
582 }
583
584 /* Extend the timestamp using cached PHC time */
585 tstamp = ice_ptp_extend_40b_ts(pf, raw_tstamp);
586 if (tstamp) {
587 shhwtstamps.hwtstamp = ns_to_ktime(tstamp);
588 ice_trace(tx_tstamp_complete, skb, idx);
589 }
590
591 skb_tstamp_tx(skb, &shhwtstamps);
592 dev_kfree_skb_any(skb);
593 }
594
595 /**
596 * ice_ptp_process_tx_tstamp - Process Tx timestamps for a port
597 * @tx: the PTP Tx timestamp tracker
598 *
599 * Process timestamps captured by the PHY associated with this port. To do
600 * this, loop over each index with a waiting skb.
601 *
602 * If a given index has a valid timestamp, perform the following steps:
603 *
604 * 1) check that the timestamp request is not stale
605 * 2) check that a timestamp is ready and available in the PHY memory bank
606 * 3) read and copy the timestamp out of the PHY register
607 * 4) unlock the index by clearing the associated in_use bit
608 * 5) check if the timestamp is stale, and discard if so
609 * 6) extend the 40 bit timestamp value to get a 64 bit timestamp value
610 * 7) send this 64 bit timestamp to the stack
611 *
612 * Note that we do not hold the tracking lock while reading the Tx timestamp.
613 * This is because reading the timestamp requires taking a mutex that might
614 * sleep.
615 *
616 * The only place where we set in_use is when a new timestamp is initiated
617 * with a slot index. This is only called in the hard xmit routine where an
618 * SKB has a request flag set. The only places where we clear this bit is this
619 * function, or during teardown when the Tx timestamp tracker is being
620 * removed. A timestamp index will never be re-used until the in_use bit for
621 * that index is cleared.
622 *
623 * If a Tx thread starts a new timestamp, we might not begin processing it
624 * right away but we will notice it at the end when we re-queue the task.
625 *
626 * If a Tx thread starts a new timestamp just after this function exits, the
627 * interrupt for that timestamp should re-trigger this function once
628 * a timestamp is ready.
629 *
630 * In cases where the PTP hardware clock was directly adjusted, some
631 * timestamps may not be able to safely use the timestamp extension math. In
632 * this case, software will set the stale bit for any outstanding Tx
633 * timestamps when the clock is adjusted. Then this function will discard
634 * those captured timestamps instead of sending them to the stack.
635 *
636 * If a Tx packet has been waiting for more than 2 seconds, it is not possible
637 * to correctly extend the timestamp using the cached PHC time. It is
638 * extremely unlikely that a packet will ever take this long to timestamp. If
639 * we detect a Tx timestamp request that has waited for this long we assume
640 * the packet will never be sent by hardware and discard it without reading
641 * the timestamp register.
642 */
ice_ptp_process_tx_tstamp(struct ice_ptp_tx * tx)643 static void ice_ptp_process_tx_tstamp(struct ice_ptp_tx *tx)
644 {
645 struct ice_ptp_port *ptp_port;
646 unsigned long flags;
647 struct ice_pf *pf;
648 struct ice_hw *hw;
649 u64 tstamp_ready;
650 bool link_up;
651 int err;
652 u8 idx;
653
654 ptp_port = container_of(tx, struct ice_ptp_port, tx);
655 pf = ptp_port_to_pf(ptp_port);
656 hw = &pf->hw;
657
658 /* Read the Tx ready status first */
659 if (tx->has_ready_bitmap) {
660 err = ice_get_phy_tx_tstamp_ready(hw, tx->block, &tstamp_ready);
661 if (err)
662 return;
663 }
664
665 /* Drop packets if the link went down */
666 link_up = ptp_port->link_up;
667
668 for_each_set_bit(idx, tx->in_use, tx->len) {
669 struct skb_shared_hwtstamps shhwtstamps = {};
670 u8 phy_idx = idx + tx->offset;
671 u64 raw_tstamp = 0, tstamp;
672 bool drop_ts = !link_up;
673 struct sk_buff *skb;
674
675 /* Drop packets which have waited for more than 2 seconds */
676 if (time_is_before_jiffies(tx->tstamps[idx].start + 2 * HZ)) {
677 drop_ts = true;
678
679 /* Count the number of Tx timestamps that timed out */
680 pf->ptp.tx_hwtstamp_timeouts++;
681 }
682
683 /* Only read a timestamp from the PHY if its marked as ready
684 * by the tstamp_ready register. This avoids unnecessary
685 * reading of timestamps which are not yet valid. This is
686 * important as we must read all timestamps which are valid
687 * and only timestamps which are valid during each interrupt.
688 * If we do not, the hardware logic for generating a new
689 * interrupt can get stuck on some devices.
690 */
691 if (tx->has_ready_bitmap &&
692 !(tstamp_ready & BIT_ULL(phy_idx))) {
693 if (drop_ts)
694 goto skip_ts_read;
695
696 continue;
697 }
698
699 ice_trace(tx_tstamp_fw_req, tx->tstamps[idx].skb, idx);
700
701 err = ice_read_phy_tstamp(hw, tx->block, phy_idx, &raw_tstamp);
702 if (err && !drop_ts)
703 continue;
704
705 ice_trace(tx_tstamp_fw_done, tx->tstamps[idx].skb, idx);
706
707 /* For PHYs which don't implement a proper timestamp ready
708 * bitmap, verify that the timestamp value is different
709 * from the last cached timestamp. If it is not, skip this for
710 * now assuming it hasn't yet been captured by hardware.
711 */
712 if (!drop_ts && !tx->has_ready_bitmap &&
713 raw_tstamp == tx->tstamps[idx].cached_tstamp)
714 continue;
715
716 /* Discard any timestamp value without the valid bit set */
717 if (!(raw_tstamp & ICE_PTP_TS_VALID))
718 drop_ts = true;
719
720 skip_ts_read:
721 spin_lock_irqsave(&tx->lock, flags);
722 if (!tx->has_ready_bitmap && raw_tstamp)
723 tx->tstamps[idx].cached_tstamp = raw_tstamp;
724 clear_bit(idx, tx->in_use);
725 skb = tx->tstamps[idx].skb;
726 tx->tstamps[idx].skb = NULL;
727 if (test_and_clear_bit(idx, tx->stale))
728 drop_ts = true;
729 spin_unlock_irqrestore(&tx->lock, flags);
730
731 /* It is unlikely but possible that the SKB will have been
732 * flushed at this point due to link change or teardown.
733 */
734 if (!skb)
735 continue;
736
737 if (drop_ts) {
738 dev_kfree_skb_any(skb);
739 continue;
740 }
741
742 /* Extend the timestamp using cached PHC time */
743 tstamp = ice_ptp_extend_40b_ts(pf, raw_tstamp);
744 if (tstamp) {
745 shhwtstamps.hwtstamp = ns_to_ktime(tstamp);
746 ice_trace(tx_tstamp_complete, skb, idx);
747 }
748
749 skb_tstamp_tx(skb, &shhwtstamps);
750 dev_kfree_skb_any(skb);
751 }
752 }
753
754 /**
755 * ice_ptp_tx_tstamp_owner - Process Tx timestamps for all ports on the device
756 * @pf: Board private structure
757 */
ice_ptp_tx_tstamp_owner(struct ice_pf * pf)758 static enum ice_tx_tstamp_work ice_ptp_tx_tstamp_owner(struct ice_pf *pf)
759 {
760 struct ice_ptp_port *port;
761 unsigned int i;
762
763 mutex_lock(&pf->adapter->ports.lock);
764 list_for_each_entry(port, &pf->adapter->ports.ports, list_node) {
765 struct ice_ptp_tx *tx = &port->tx;
766
767 if (!tx || !tx->init)
768 continue;
769
770 ice_ptp_process_tx_tstamp(tx);
771 }
772 mutex_unlock(&pf->adapter->ports.lock);
773
774 for (i = 0; i < ICE_GET_QUAD_NUM(pf->hw.ptp.num_lports); i++) {
775 u64 tstamp_ready;
776 int err;
777
778 /* Read the Tx ready status first */
779 err = ice_get_phy_tx_tstamp_ready(&pf->hw, i, &tstamp_ready);
780 if (err)
781 break;
782 else if (tstamp_ready)
783 return ICE_TX_TSTAMP_WORK_PENDING;
784 }
785
786 return ICE_TX_TSTAMP_WORK_DONE;
787 }
788
789 /**
790 * ice_ptp_tx_tstamp - Process Tx timestamps for this function.
791 * @tx: Tx tracking structure to initialize
792 *
793 * Returns: ICE_TX_TSTAMP_WORK_PENDING if there are any outstanding incomplete
794 * Tx timestamps, or ICE_TX_TSTAMP_WORK_DONE otherwise.
795 */
ice_ptp_tx_tstamp(struct ice_ptp_tx * tx)796 static enum ice_tx_tstamp_work ice_ptp_tx_tstamp(struct ice_ptp_tx *tx)
797 {
798 bool more_timestamps;
799 unsigned long flags;
800
801 if (!tx->init)
802 return ICE_TX_TSTAMP_WORK_DONE;
803
804 /* Process the Tx timestamp tracker */
805 ice_ptp_process_tx_tstamp(tx);
806
807 /* Check if there are outstanding Tx timestamps */
808 spin_lock_irqsave(&tx->lock, flags);
809 more_timestamps = tx->init && !bitmap_empty(tx->in_use, tx->len);
810 spin_unlock_irqrestore(&tx->lock, flags);
811
812 if (more_timestamps)
813 return ICE_TX_TSTAMP_WORK_PENDING;
814
815 return ICE_TX_TSTAMP_WORK_DONE;
816 }
817
818 /**
819 * ice_ptp_alloc_tx_tracker - Initialize tracking for Tx timestamps
820 * @tx: Tx tracking structure to initialize
821 *
822 * Assumes that the length has already been initialized. Do not call directly,
823 * use the ice_ptp_init_tx_* instead.
824 */
825 static int
ice_ptp_alloc_tx_tracker(struct ice_ptp_tx * tx)826 ice_ptp_alloc_tx_tracker(struct ice_ptp_tx *tx)
827 {
828 unsigned long *in_use, *stale;
829 struct ice_tx_tstamp *tstamps;
830
831 tstamps = kcalloc(tx->len, sizeof(*tstamps), GFP_KERNEL);
832 in_use = bitmap_zalloc(tx->len, GFP_KERNEL);
833 stale = bitmap_zalloc(tx->len, GFP_KERNEL);
834
835 if (!tstamps || !in_use || !stale) {
836 kfree(tstamps);
837 bitmap_free(in_use);
838 bitmap_free(stale);
839
840 return -ENOMEM;
841 }
842
843 tx->tstamps = tstamps;
844 tx->in_use = in_use;
845 tx->stale = stale;
846 tx->init = 1;
847 tx->last_ll_ts_idx_read = -1;
848
849 spin_lock_init(&tx->lock);
850
851 return 0;
852 }
853
854 /**
855 * ice_ptp_flush_tx_tracker - Flush any remaining timestamps from the tracker
856 * @pf: Board private structure
857 * @tx: the tracker to flush
858 *
859 * Called during teardown when a Tx tracker is being removed.
860 */
861 static void
ice_ptp_flush_tx_tracker(struct ice_pf * pf,struct ice_ptp_tx * tx)862 ice_ptp_flush_tx_tracker(struct ice_pf *pf, struct ice_ptp_tx *tx)
863 {
864 struct ice_hw *hw = &pf->hw;
865 unsigned long flags;
866 u64 tstamp_ready;
867 int err;
868 u8 idx;
869
870 err = ice_get_phy_tx_tstamp_ready(hw, tx->block, &tstamp_ready);
871 if (err) {
872 dev_dbg(ice_pf_to_dev(pf), "Failed to get the Tx tstamp ready bitmap for block %u, err %d\n",
873 tx->block, err);
874
875 /* If we fail to read the Tx timestamp ready bitmap just
876 * skip clearing the PHY timestamps.
877 */
878 tstamp_ready = 0;
879 }
880
881 for_each_set_bit(idx, tx->in_use, tx->len) {
882 u8 phy_idx = idx + tx->offset;
883 struct sk_buff *skb;
884
885 /* In case this timestamp is ready, we need to clear it. */
886 if (!hw->reset_ongoing && (tstamp_ready & BIT_ULL(phy_idx)))
887 ice_clear_phy_tstamp(hw, tx->block, phy_idx);
888
889 spin_lock_irqsave(&tx->lock, flags);
890 skb = tx->tstamps[idx].skb;
891 tx->tstamps[idx].skb = NULL;
892 clear_bit(idx, tx->in_use);
893 clear_bit(idx, tx->stale);
894 spin_unlock_irqrestore(&tx->lock, flags);
895
896 /* Count the number of Tx timestamps flushed */
897 pf->ptp.tx_hwtstamp_flushed++;
898
899 /* Free the SKB after we've cleared the bit */
900 dev_kfree_skb_any(skb);
901 }
902 }
903
904 /**
905 * ice_ptp_mark_tx_tracker_stale - Mark unfinished timestamps as stale
906 * @tx: the tracker to mark
907 *
908 * Mark currently outstanding Tx timestamps as stale. This prevents sending
909 * their timestamp value to the stack. This is required to prevent extending
910 * the 40bit hardware timestamp incorrectly.
911 *
912 * This should be called when the PTP clock is modified such as after a set
913 * time request.
914 */
915 static void
ice_ptp_mark_tx_tracker_stale(struct ice_ptp_tx * tx)916 ice_ptp_mark_tx_tracker_stale(struct ice_ptp_tx *tx)
917 {
918 unsigned long flags;
919
920 spin_lock_irqsave(&tx->lock, flags);
921 bitmap_or(tx->stale, tx->stale, tx->in_use, tx->len);
922 spin_unlock_irqrestore(&tx->lock, flags);
923 }
924
925 /**
926 * ice_ptp_flush_all_tx_tracker - Flush all timestamp trackers on this clock
927 * @pf: Board private structure
928 *
929 * Called by the clock owner to flush all the Tx timestamp trackers associated
930 * with the clock.
931 */
932 static void
ice_ptp_flush_all_tx_tracker(struct ice_pf * pf)933 ice_ptp_flush_all_tx_tracker(struct ice_pf *pf)
934 {
935 struct ice_ptp_port *port;
936
937 list_for_each_entry(port, &pf->adapter->ports.ports, list_node)
938 ice_ptp_flush_tx_tracker(ptp_port_to_pf(port), &port->tx);
939 }
940
941 /**
942 * ice_ptp_release_tx_tracker - Release allocated memory for Tx tracker
943 * @pf: Board private structure
944 * @tx: Tx tracking structure to release
945 *
946 * Free memory associated with the Tx timestamp tracker.
947 */
948 static void
ice_ptp_release_tx_tracker(struct ice_pf * pf,struct ice_ptp_tx * tx)949 ice_ptp_release_tx_tracker(struct ice_pf *pf, struct ice_ptp_tx *tx)
950 {
951 unsigned long flags;
952
953 spin_lock_irqsave(&tx->lock, flags);
954 tx->init = 0;
955 spin_unlock_irqrestore(&tx->lock, flags);
956
957 /* wait for potentially outstanding interrupt to complete */
958 synchronize_irq(pf->oicr_irq.virq);
959
960 ice_ptp_flush_tx_tracker(pf, tx);
961
962 kfree(tx->tstamps);
963 tx->tstamps = NULL;
964
965 bitmap_free(tx->in_use);
966 tx->in_use = NULL;
967
968 bitmap_free(tx->stale);
969 tx->stale = NULL;
970
971 tx->len = 0;
972 }
973
974 /**
975 * ice_ptp_init_tx_eth56g - Initialize tracking for Tx timestamps
976 * @pf: Board private structure
977 * @tx: the Tx tracking structure to initialize
978 * @port: the port this structure tracks
979 *
980 * Initialize the Tx timestamp tracker for this port. ETH56G PHYs
981 * have independent memory blocks for all ports.
982 *
983 * Return: 0 for success, -ENOMEM when failed to allocate Tx tracker
984 */
ice_ptp_init_tx_eth56g(struct ice_pf * pf,struct ice_ptp_tx * tx,u8 port)985 static int ice_ptp_init_tx_eth56g(struct ice_pf *pf, struct ice_ptp_tx *tx,
986 u8 port)
987 {
988 tx->block = port;
989 tx->offset = 0;
990 tx->len = INDEX_PER_PORT_ETH56G;
991 tx->has_ready_bitmap = 1;
992
993 return ice_ptp_alloc_tx_tracker(tx);
994 }
995
996 /**
997 * ice_ptp_init_tx_e82x - Initialize tracking for Tx timestamps
998 * @pf: Board private structure
999 * @tx: the Tx tracking structure to initialize
1000 * @port: the port this structure tracks
1001 *
1002 * Initialize the Tx timestamp tracker for this port. For generic MAC devices,
1003 * the timestamp block is shared for all ports in the same quad. To avoid
1004 * ports using the same timestamp index, logically break the block of
1005 * registers into chunks based on the port number.
1006 */
1007 static int
ice_ptp_init_tx_e82x(struct ice_pf * pf,struct ice_ptp_tx * tx,u8 port)1008 ice_ptp_init_tx_e82x(struct ice_pf *pf, struct ice_ptp_tx *tx, u8 port)
1009 {
1010 tx->block = ICE_GET_QUAD_NUM(port);
1011 tx->offset = (port % ICE_PORTS_PER_QUAD) * INDEX_PER_PORT_E82X;
1012 tx->len = INDEX_PER_PORT_E82X;
1013 tx->has_ready_bitmap = 1;
1014
1015 return ice_ptp_alloc_tx_tracker(tx);
1016 }
1017
1018 /**
1019 * ice_ptp_init_tx_e810 - Initialize tracking for Tx timestamps
1020 * @pf: Board private structure
1021 * @tx: the Tx tracking structure to initialize
1022 *
1023 * Initialize the Tx timestamp tracker for this PF. For E810 devices, each
1024 * port has its own block of timestamps, independent of the other ports.
1025 */
1026 static int
ice_ptp_init_tx_e810(struct ice_pf * pf,struct ice_ptp_tx * tx)1027 ice_ptp_init_tx_e810(struct ice_pf *pf, struct ice_ptp_tx *tx)
1028 {
1029 tx->block = pf->hw.port_info->lport;
1030 tx->offset = 0;
1031 tx->len = INDEX_PER_PORT_E810;
1032 /* The E810 PHY does not provide a timestamp ready bitmap. Instead,
1033 * verify new timestamps against cached copy of the last read
1034 * timestamp.
1035 */
1036 tx->has_ready_bitmap = 0;
1037
1038 return ice_ptp_alloc_tx_tracker(tx);
1039 }
1040
1041 /**
1042 * ice_ptp_update_cached_phctime - Update the cached PHC time values
1043 * @pf: Board specific private structure
1044 *
1045 * This function updates the system time values which are cached in the PF
1046 * structure and the Rx rings.
1047 *
1048 * This function must be called periodically to ensure that the cached value
1049 * is never more than 2 seconds old.
1050 *
1051 * Note that the cached copy in the PF PTP structure is always updated, even
1052 * if we can't update the copy in the Rx rings.
1053 *
1054 * Return:
1055 * * 0 - OK, successfully updated
1056 * * -EAGAIN - PF was busy, need to reschedule the update
1057 */
ice_ptp_update_cached_phctime(struct ice_pf * pf)1058 static int ice_ptp_update_cached_phctime(struct ice_pf *pf)
1059 {
1060 struct device *dev = ice_pf_to_dev(pf);
1061 unsigned long update_before;
1062 u64 systime;
1063 int i;
1064
1065 update_before = pf->ptp.cached_phc_jiffies + msecs_to_jiffies(2000);
1066 if (pf->ptp.cached_phc_time &&
1067 time_is_before_jiffies(update_before)) {
1068 unsigned long time_taken = jiffies - pf->ptp.cached_phc_jiffies;
1069
1070 dev_warn(dev, "%u msecs passed between update to cached PHC time\n",
1071 jiffies_to_msecs(time_taken));
1072 pf->ptp.late_cached_phc_updates++;
1073 }
1074
1075 /* Read the current PHC time */
1076 systime = ice_ptp_read_src_clk_reg(pf, NULL);
1077
1078 /* Update the cached PHC time stored in the PF structure */
1079 WRITE_ONCE(pf->ptp.cached_phc_time, systime);
1080 WRITE_ONCE(pf->ptp.cached_phc_jiffies, jiffies);
1081
1082 if (test_and_set_bit(ICE_CFG_BUSY, pf->state))
1083 return -EAGAIN;
1084
1085 ice_for_each_vsi(pf, i) {
1086 struct ice_vsi *vsi = pf->vsi[i];
1087 int j;
1088
1089 if (!vsi)
1090 continue;
1091
1092 if (vsi->type != ICE_VSI_PF)
1093 continue;
1094
1095 ice_for_each_rxq(vsi, j) {
1096 if (!vsi->rx_rings[j])
1097 continue;
1098 WRITE_ONCE(vsi->rx_rings[j]->cached_phctime, systime);
1099 }
1100 }
1101 clear_bit(ICE_CFG_BUSY, pf->state);
1102
1103 return 0;
1104 }
1105
1106 /**
1107 * ice_ptp_reset_cached_phctime - Reset cached PHC time after an update
1108 * @pf: Board specific private structure
1109 *
1110 * This function must be called when the cached PHC time is no longer valid,
1111 * such as after a time adjustment. It marks any currently outstanding Tx
1112 * timestamps as stale and updates the cached PHC time for both the PF and Rx
1113 * rings.
1114 *
1115 * If updating the PHC time cannot be done immediately, a warning message is
1116 * logged and the work item is scheduled immediately to minimize the window
1117 * with a wrong cached timestamp.
1118 */
ice_ptp_reset_cached_phctime(struct ice_pf * pf)1119 static void ice_ptp_reset_cached_phctime(struct ice_pf *pf)
1120 {
1121 struct device *dev = ice_pf_to_dev(pf);
1122 int err;
1123
1124 /* Update the cached PHC time immediately if possible, otherwise
1125 * schedule the work item to execute soon.
1126 */
1127 err = ice_ptp_update_cached_phctime(pf);
1128 if (err) {
1129 /* If another thread is updating the Rx rings, we won't
1130 * properly reset them here. This could lead to reporting of
1131 * invalid timestamps, but there isn't much we can do.
1132 */
1133 dev_warn(dev, "%s: ICE_CFG_BUSY, unable to immediately update cached PHC time\n",
1134 __func__);
1135
1136 /* Queue the work item to update the Rx rings when possible */
1137 kthread_queue_delayed_work(pf->ptp.kworker, &pf->ptp.work,
1138 msecs_to_jiffies(10));
1139 }
1140
1141 /* Mark any outstanding timestamps as stale, since they might have
1142 * been captured in hardware before the time update. This could lead
1143 * to us extending them with the wrong cached value resulting in
1144 * incorrect timestamp values.
1145 */
1146 ice_ptp_mark_tx_tracker_stale(&pf->ptp.port.tx);
1147 }
1148
1149 /**
1150 * ice_ptp_write_init - Set PHC time to provided value
1151 * @pf: Board private structure
1152 * @ts: timespec structure that holds the new time value
1153 *
1154 * Set the PHC time to the specified time provided in the timespec.
1155 */
ice_ptp_write_init(struct ice_pf * pf,struct timespec64 * ts)1156 static int ice_ptp_write_init(struct ice_pf *pf, struct timespec64 *ts)
1157 {
1158 u64 ns = timespec64_to_ns(ts);
1159 struct ice_hw *hw = &pf->hw;
1160
1161 return ice_ptp_init_time(hw, ns);
1162 }
1163
1164 /**
1165 * ice_ptp_write_adj - Adjust PHC clock time atomically
1166 * @pf: Board private structure
1167 * @adj: Adjustment in nanoseconds
1168 *
1169 * Perform an atomic adjustment of the PHC time by the specified number of
1170 * nanoseconds.
1171 */
ice_ptp_write_adj(struct ice_pf * pf,s32 adj)1172 static int ice_ptp_write_adj(struct ice_pf *pf, s32 adj)
1173 {
1174 struct ice_hw *hw = &pf->hw;
1175
1176 return ice_ptp_adj_clock(hw, adj);
1177 }
1178
1179 /**
1180 * ice_base_incval - Get base timer increment value
1181 * @pf: Board private structure
1182 *
1183 * Look up the base timer increment value for this device. The base increment
1184 * value is used to define the nominal clock tick rate. This increment value
1185 * is programmed during device initialization. It is also used as the basis
1186 * for calculating adjustments using scaled_ppm.
1187 */
ice_base_incval(struct ice_pf * pf)1188 static u64 ice_base_incval(struct ice_pf *pf)
1189 {
1190 struct ice_hw *hw = &pf->hw;
1191 u64 incval;
1192
1193 incval = ice_get_base_incval(hw);
1194
1195 dev_dbg(ice_pf_to_dev(pf), "PTP: using base increment value of 0x%016llx\n",
1196 incval);
1197
1198 return incval;
1199 }
1200
1201 /**
1202 * ice_ptp_check_tx_fifo - Check whether Tx FIFO is in an OK state
1203 * @port: PTP port for which Tx FIFO is checked
1204 */
ice_ptp_check_tx_fifo(struct ice_ptp_port * port)1205 static int ice_ptp_check_tx_fifo(struct ice_ptp_port *port)
1206 {
1207 int offs = port->port_num % ICE_PORTS_PER_QUAD;
1208 int quad = ICE_GET_QUAD_NUM(port->port_num);
1209 struct ice_pf *pf;
1210 struct ice_hw *hw;
1211 u32 val, phy_sts;
1212 int err;
1213
1214 pf = ptp_port_to_pf(port);
1215 hw = &pf->hw;
1216
1217 if (port->tx_fifo_busy_cnt == FIFO_OK)
1218 return 0;
1219
1220 /* need to read FIFO state */
1221 if (offs == 0 || offs == 1)
1222 err = ice_read_quad_reg_e82x(hw, quad, Q_REG_FIFO01_STATUS,
1223 &val);
1224 else
1225 err = ice_read_quad_reg_e82x(hw, quad, Q_REG_FIFO23_STATUS,
1226 &val);
1227
1228 if (err) {
1229 dev_err(ice_pf_to_dev(pf), "PTP failed to check port %d Tx FIFO, err %d\n",
1230 port->port_num, err);
1231 return err;
1232 }
1233
1234 if (offs & 0x1)
1235 phy_sts = FIELD_GET(Q_REG_FIFO13_M, val);
1236 else
1237 phy_sts = FIELD_GET(Q_REG_FIFO02_M, val);
1238
1239 if (phy_sts & FIFO_EMPTY) {
1240 port->tx_fifo_busy_cnt = FIFO_OK;
1241 return 0;
1242 }
1243
1244 port->tx_fifo_busy_cnt++;
1245
1246 dev_dbg(ice_pf_to_dev(pf), "Try %d, port %d FIFO not empty\n",
1247 port->tx_fifo_busy_cnt, port->port_num);
1248
1249 if (port->tx_fifo_busy_cnt == ICE_PTP_FIFO_NUM_CHECKS) {
1250 dev_dbg(ice_pf_to_dev(pf),
1251 "Port %d Tx FIFO still not empty; resetting quad %d\n",
1252 port->port_num, quad);
1253 ice_ptp_reset_ts_memory_quad_e82x(hw, quad);
1254 port->tx_fifo_busy_cnt = FIFO_OK;
1255 return 0;
1256 }
1257
1258 return -EAGAIN;
1259 }
1260
1261 /**
1262 * ice_ptp_wait_for_offsets - Check for valid Tx and Rx offsets
1263 * @work: Pointer to the kthread_work structure for this task
1264 *
1265 * Check whether hardware has completed measuring the Tx and Rx offset values
1266 * used to configure and enable vernier timestamp calibration.
1267 *
1268 * Once the offset in either direction is measured, configure the associated
1269 * registers with the calibrated offset values and enable timestamping. The Tx
1270 * and Rx directions are configured independently as soon as their associated
1271 * offsets are known.
1272 *
1273 * This function reschedules itself until both Tx and Rx calibration have
1274 * completed.
1275 */
ice_ptp_wait_for_offsets(struct kthread_work * work)1276 static void ice_ptp_wait_for_offsets(struct kthread_work *work)
1277 {
1278 struct ice_ptp_port *port;
1279 struct ice_pf *pf;
1280 struct ice_hw *hw;
1281 int tx_err;
1282 int rx_err;
1283
1284 port = container_of(work, struct ice_ptp_port, ov_work.work);
1285 pf = ptp_port_to_pf(port);
1286 hw = &pf->hw;
1287
1288 if (ice_is_reset_in_progress(pf->state)) {
1289 /* wait for device driver to complete reset */
1290 kthread_queue_delayed_work(pf->ptp.kworker,
1291 &port->ov_work,
1292 msecs_to_jiffies(100));
1293 return;
1294 }
1295
1296 tx_err = ice_ptp_check_tx_fifo(port);
1297 if (!tx_err)
1298 tx_err = ice_phy_cfg_tx_offset_e82x(hw, port->port_num);
1299 rx_err = ice_phy_cfg_rx_offset_e82x(hw, port->port_num);
1300 if (tx_err || rx_err) {
1301 /* Tx and/or Rx offset not yet configured, try again later */
1302 kthread_queue_delayed_work(pf->ptp.kworker,
1303 &port->ov_work,
1304 msecs_to_jiffies(100));
1305 return;
1306 }
1307 }
1308
1309 /**
1310 * ice_ptp_port_phy_stop - Stop timestamping for a PHY port
1311 * @ptp_port: PTP port to stop
1312 */
1313 static int
ice_ptp_port_phy_stop(struct ice_ptp_port * ptp_port)1314 ice_ptp_port_phy_stop(struct ice_ptp_port *ptp_port)
1315 {
1316 struct ice_pf *pf = ptp_port_to_pf(ptp_port);
1317 u8 port = ptp_port->port_num;
1318 struct ice_hw *hw = &pf->hw;
1319 int err;
1320
1321 if (ice_is_e810(hw))
1322 return 0;
1323
1324 mutex_lock(&ptp_port->ps_lock);
1325
1326 switch (ice_get_phy_model(hw)) {
1327 case ICE_PHY_ETH56G:
1328 err = ice_stop_phy_timer_eth56g(hw, port, true);
1329 break;
1330 case ICE_PHY_E82X:
1331 kthread_cancel_delayed_work_sync(&ptp_port->ov_work);
1332
1333 err = ice_stop_phy_timer_e82x(hw, port, true);
1334 break;
1335 default:
1336 err = -ENODEV;
1337 }
1338 if (err && err != -EBUSY)
1339 dev_err(ice_pf_to_dev(pf), "PTP failed to set PHY port %d down, err %d\n",
1340 port, err);
1341
1342 mutex_unlock(&ptp_port->ps_lock);
1343
1344 return err;
1345 }
1346
1347 /**
1348 * ice_ptp_port_phy_restart - (Re)start and calibrate PHY timestamping
1349 * @ptp_port: PTP port for which the PHY start is set
1350 *
1351 * Start the PHY timestamping block, and initiate Vernier timestamping
1352 * calibration. If timestamping cannot be calibrated (such as if link is down)
1353 * then disable the timestamping block instead.
1354 */
1355 static int
ice_ptp_port_phy_restart(struct ice_ptp_port * ptp_port)1356 ice_ptp_port_phy_restart(struct ice_ptp_port *ptp_port)
1357 {
1358 struct ice_pf *pf = ptp_port_to_pf(ptp_port);
1359 u8 port = ptp_port->port_num;
1360 struct ice_hw *hw = &pf->hw;
1361 unsigned long flags;
1362 int err;
1363
1364 if (ice_is_e810(hw))
1365 return 0;
1366
1367 if (!ptp_port->link_up)
1368 return ice_ptp_port_phy_stop(ptp_port);
1369
1370 mutex_lock(&ptp_port->ps_lock);
1371
1372 switch (ice_get_phy_model(hw)) {
1373 case ICE_PHY_ETH56G:
1374 err = ice_start_phy_timer_eth56g(hw, port);
1375 break;
1376 case ICE_PHY_E82X:
1377 /* Start the PHY timer in Vernier mode */
1378 kthread_cancel_delayed_work_sync(&ptp_port->ov_work);
1379
1380 /* temporarily disable Tx timestamps while calibrating
1381 * PHY offset
1382 */
1383 spin_lock_irqsave(&ptp_port->tx.lock, flags);
1384 ptp_port->tx.calibrating = true;
1385 spin_unlock_irqrestore(&ptp_port->tx.lock, flags);
1386 ptp_port->tx_fifo_busy_cnt = 0;
1387
1388 /* Start the PHY timer in Vernier mode */
1389 err = ice_start_phy_timer_e82x(hw, port);
1390 if (err)
1391 break;
1392
1393 /* Enable Tx timestamps right away */
1394 spin_lock_irqsave(&ptp_port->tx.lock, flags);
1395 ptp_port->tx.calibrating = false;
1396 spin_unlock_irqrestore(&ptp_port->tx.lock, flags);
1397
1398 kthread_queue_delayed_work(pf->ptp.kworker, &ptp_port->ov_work,
1399 0);
1400 break;
1401 default:
1402 err = -ENODEV;
1403 }
1404
1405 if (err)
1406 dev_err(ice_pf_to_dev(pf), "PTP failed to set PHY port %d up, err %d\n",
1407 port, err);
1408
1409 mutex_unlock(&ptp_port->ps_lock);
1410
1411 return err;
1412 }
1413
1414 /**
1415 * ice_ptp_link_change - Reconfigure PTP after link status change
1416 * @pf: Board private structure
1417 * @linkup: Link is up or down
1418 */
ice_ptp_link_change(struct ice_pf * pf,bool linkup)1419 void ice_ptp_link_change(struct ice_pf *pf, bool linkup)
1420 {
1421 struct ice_ptp_port *ptp_port;
1422 struct ice_hw *hw = &pf->hw;
1423
1424 if (pf->ptp.state != ICE_PTP_READY)
1425 return;
1426
1427 ptp_port = &pf->ptp.port;
1428
1429 /* Update cached link status for this port immediately */
1430 ptp_port->link_up = linkup;
1431
1432 /* Skip HW writes if reset is in progress */
1433 if (pf->hw.reset_ongoing)
1434 return;
1435 switch (ice_get_phy_model(hw)) {
1436 case ICE_PHY_E810:
1437 /* Do not reconfigure E810 PHY */
1438 return;
1439 case ICE_PHY_ETH56G:
1440 case ICE_PHY_E82X:
1441 ice_ptp_port_phy_restart(ptp_port);
1442 return;
1443 default:
1444 dev_warn(ice_pf_to_dev(pf), "%s: Unknown PHY type\n", __func__);
1445 }
1446 }
1447
1448 /**
1449 * ice_ptp_cfg_phy_interrupt - Configure PHY interrupt settings
1450 * @pf: PF private structure
1451 * @ena: bool value to enable or disable interrupt
1452 * @threshold: Minimum number of packets at which intr is triggered
1453 *
1454 * Utility function to configure all the PHY interrupt settings, including
1455 * whether the PHY interrupt is enabled, and what threshold to use. Also
1456 * configures The E82X timestamp owner to react to interrupts from all PHYs.
1457 *
1458 * Return: 0 on success, -EOPNOTSUPP when PHY model incorrect, other error codes
1459 * when failed to configure PHY interrupt for E82X
1460 */
ice_ptp_cfg_phy_interrupt(struct ice_pf * pf,bool ena,u32 threshold)1461 static int ice_ptp_cfg_phy_interrupt(struct ice_pf *pf, bool ena, u32 threshold)
1462 {
1463 struct device *dev = ice_pf_to_dev(pf);
1464 struct ice_hw *hw = &pf->hw;
1465
1466 ice_ptp_reset_ts_memory(hw);
1467
1468 switch (ice_get_phy_model(hw)) {
1469 case ICE_PHY_ETH56G: {
1470 int port;
1471
1472 for (port = 0; port < hw->ptp.num_lports; port++) {
1473 int err;
1474
1475 err = ice_phy_cfg_intr_eth56g(hw, port, ena, threshold);
1476 if (err) {
1477 dev_err(dev, "Failed to configure PHY interrupt for port %d, err %d\n",
1478 port, err);
1479 return err;
1480 }
1481 }
1482
1483 return 0;
1484 }
1485 case ICE_PHY_E82X: {
1486 int quad;
1487
1488 for (quad = 0; quad < ICE_GET_QUAD_NUM(hw->ptp.num_lports);
1489 quad++) {
1490 int err;
1491
1492 err = ice_phy_cfg_intr_e82x(hw, quad, ena, threshold);
1493 if (err) {
1494 dev_err(dev, "Failed to configure PHY interrupt for quad %d, err %d\n",
1495 quad, err);
1496 return err;
1497 }
1498 }
1499
1500 return 0;
1501 }
1502 case ICE_PHY_E810:
1503 return 0;
1504 case ICE_PHY_UNSUP:
1505 default:
1506 dev_warn(dev, "%s: Unexpected PHY model %d\n", __func__,
1507 ice_get_phy_model(hw));
1508 return -EOPNOTSUPP;
1509 }
1510 }
1511
1512 /**
1513 * ice_ptp_reset_phy_timestamping - Reset PHY timestamping block
1514 * @pf: Board private structure
1515 */
ice_ptp_reset_phy_timestamping(struct ice_pf * pf)1516 static void ice_ptp_reset_phy_timestamping(struct ice_pf *pf)
1517 {
1518 ice_ptp_port_phy_restart(&pf->ptp.port);
1519 }
1520
1521 /**
1522 * ice_ptp_restart_all_phy - Restart all PHYs to recalibrate timestamping
1523 * @pf: Board private structure
1524 */
ice_ptp_restart_all_phy(struct ice_pf * pf)1525 static void ice_ptp_restart_all_phy(struct ice_pf *pf)
1526 {
1527 struct list_head *entry;
1528
1529 list_for_each(entry, &pf->adapter->ports.ports) {
1530 struct ice_ptp_port *port = list_entry(entry,
1531 struct ice_ptp_port,
1532 list_node);
1533
1534 if (port->link_up)
1535 ice_ptp_port_phy_restart(port);
1536 }
1537 }
1538
1539 /**
1540 * ice_ptp_adjfine - Adjust clock increment rate
1541 * @info: the driver's PTP info structure
1542 * @scaled_ppm: Parts per million with 16-bit fractional field
1543 *
1544 * Adjust the frequency of the clock by the indicated scaled ppm from the
1545 * base frequency.
1546 */
ice_ptp_adjfine(struct ptp_clock_info * info,long scaled_ppm)1547 static int ice_ptp_adjfine(struct ptp_clock_info *info, long scaled_ppm)
1548 {
1549 struct ice_pf *pf = ptp_info_to_pf(info);
1550 struct ice_hw *hw = &pf->hw;
1551 u64 incval;
1552 int err;
1553
1554 incval = adjust_by_scaled_ppm(ice_base_incval(pf), scaled_ppm);
1555 err = ice_ptp_write_incval_locked(hw, incval);
1556 if (err) {
1557 dev_err(ice_pf_to_dev(pf), "PTP failed to set incval, err %d\n",
1558 err);
1559 return -EIO;
1560 }
1561
1562 return 0;
1563 }
1564
1565 /**
1566 * ice_ptp_extts_event - Process PTP external clock event
1567 * @pf: Board private structure
1568 */
ice_ptp_extts_event(struct ice_pf * pf)1569 void ice_ptp_extts_event(struct ice_pf *pf)
1570 {
1571 struct ptp_clock_event event;
1572 struct ice_hw *hw = &pf->hw;
1573 u8 chan, tmr_idx;
1574 u32 hi, lo;
1575
1576 /* Don't process timestamp events if PTP is not ready */
1577 if (pf->ptp.state != ICE_PTP_READY)
1578 return;
1579
1580 tmr_idx = hw->func_caps.ts_func_info.tmr_index_owned;
1581 /* Event time is captured by one of the two matched registers
1582 * GLTSYN_EVNT_L: 32 LSB of sampled time event
1583 * GLTSYN_EVNT_H: 32 MSB of sampled time event
1584 * Event is defined in GLTSYN_EVNT_0 register
1585 */
1586 for (chan = 0; chan < GLTSYN_EVNT_H_IDX_MAX; chan++) {
1587 int pin_desc_idx;
1588
1589 /* Check if channel is enabled */
1590 if (!(pf->ptp.ext_ts_irq & (1 << chan)))
1591 continue;
1592
1593 lo = rd32(hw, GLTSYN_EVNT_L(chan, tmr_idx));
1594 hi = rd32(hw, GLTSYN_EVNT_H(chan, tmr_idx));
1595 event.timestamp = (u64)hi << 32 | lo;
1596
1597 /* Add delay compensation */
1598 pin_desc_idx = ice_ptp_find_pin_idx(pf, PTP_PF_EXTTS, chan);
1599 if (pin_desc_idx >= 0) {
1600 const struct ice_ptp_pin_desc *desc;
1601
1602 desc = &pf->ptp.ice_pin_desc[pin_desc_idx];
1603 event.timestamp -= desc->delay[0];
1604 }
1605
1606 event.type = PTP_CLOCK_EXTTS;
1607 event.index = chan;
1608 pf->ptp.ext_ts_irq &= ~(1 << chan);
1609 ptp_clock_event(pf->ptp.clock, &event);
1610 }
1611 }
1612
1613 /**
1614 * ice_ptp_cfg_extts - Configure EXTTS pin and channel
1615 * @pf: Board private structure
1616 * @rq: External timestamp request
1617 * @on: Enable/disable flag
1618 *
1619 * Configure an external timestamp event on the requested channel.
1620 *
1621 * Return: 0 on success, negative error code otherwise
1622 */
ice_ptp_cfg_extts(struct ice_pf * pf,struct ptp_extts_request * rq,int on)1623 static int ice_ptp_cfg_extts(struct ice_pf *pf, struct ptp_extts_request *rq,
1624 int on)
1625 {
1626 u32 aux_reg, gpio_reg, irq_reg;
1627 struct ice_hw *hw = &pf->hw;
1628 unsigned int chan, gpio_pin;
1629 int pin_desc_idx;
1630 u8 tmr_idx;
1631
1632 /* Reject requests with unsupported flags */
1633
1634 if (rq->flags & ~(PTP_ENABLE_FEATURE |
1635 PTP_RISING_EDGE |
1636 PTP_FALLING_EDGE |
1637 PTP_STRICT_FLAGS))
1638 return -EOPNOTSUPP;
1639
1640 tmr_idx = hw->func_caps.ts_func_info.tmr_index_owned;
1641 chan = rq->index;
1642
1643 pin_desc_idx = ice_ptp_find_pin_idx(pf, PTP_PF_EXTTS, chan);
1644 if (pin_desc_idx < 0)
1645 return -EIO;
1646
1647 gpio_pin = pf->ptp.ice_pin_desc[pin_desc_idx].gpio[0];
1648 irq_reg = rd32(hw, PFINT_OICR_ENA);
1649
1650 if (on) {
1651 /* Enable the interrupt */
1652 irq_reg |= PFINT_OICR_TSYN_EVNT_M;
1653 aux_reg = GLTSYN_AUX_IN_0_INT_ENA_M;
1654
1655 #define GLTSYN_AUX_IN_0_EVNTLVL_RISING_EDGE BIT(0)
1656 #define GLTSYN_AUX_IN_0_EVNTLVL_FALLING_EDGE BIT(1)
1657
1658 /* set event level to requested edge */
1659 if (rq->flags & PTP_FALLING_EDGE)
1660 aux_reg |= GLTSYN_AUX_IN_0_EVNTLVL_FALLING_EDGE;
1661 if (rq->flags & PTP_RISING_EDGE)
1662 aux_reg |= GLTSYN_AUX_IN_0_EVNTLVL_RISING_EDGE;
1663
1664 /* Write GPIO CTL reg.
1665 * 0x1 is input sampled by EVENT register(channel)
1666 * + num_in_channels * tmr_idx
1667 */
1668 gpio_reg = FIELD_PREP(GLGEN_GPIO_CTL_PIN_FUNC_M,
1669 1 + chan + (tmr_idx * 3));
1670 } else {
1671 bool last_enabled = true;
1672
1673 /* clear the values we set to reset defaults */
1674 aux_reg = 0;
1675 gpio_reg = 0;
1676
1677 for (unsigned int i = 0; i < pf->ptp.info.n_ext_ts; i++)
1678 if ((pf->ptp.extts_rqs[i].flags &
1679 PTP_ENABLE_FEATURE) &&
1680 i != chan) {
1681 last_enabled = false;
1682 }
1683
1684 if (last_enabled)
1685 irq_reg &= ~PFINT_OICR_TSYN_EVNT_M;
1686 }
1687
1688 wr32(hw, PFINT_OICR_ENA, irq_reg);
1689 wr32(hw, GLTSYN_AUX_IN(chan, tmr_idx), aux_reg);
1690 wr32(hw, GLGEN_GPIO_CTL(gpio_pin), gpio_reg);
1691
1692 return 0;
1693 }
1694
1695 /**
1696 * ice_ptp_disable_all_extts - Disable all EXTTS channels
1697 * @pf: Board private structure
1698 */
ice_ptp_disable_all_extts(struct ice_pf * pf)1699 static void ice_ptp_disable_all_extts(struct ice_pf *pf)
1700 {
1701 for (unsigned int i = 0; i < pf->ptp.info.n_ext_ts ; i++)
1702 if (pf->ptp.extts_rqs[i].flags & PTP_ENABLE_FEATURE)
1703 ice_ptp_cfg_extts(pf, &pf->ptp.extts_rqs[i],
1704 false);
1705
1706 synchronize_irq(pf->oicr_irq.virq);
1707 }
1708
1709 /**
1710 * ice_ptp_enable_all_extts - Enable all EXTTS channels
1711 * @pf: Board private structure
1712 *
1713 * Called during reset to restore user configuration.
1714 */
ice_ptp_enable_all_extts(struct ice_pf * pf)1715 static void ice_ptp_enable_all_extts(struct ice_pf *pf)
1716 {
1717 for (unsigned int i = 0; i < pf->ptp.info.n_ext_ts ; i++)
1718 if (pf->ptp.extts_rqs[i].flags & PTP_ENABLE_FEATURE)
1719 ice_ptp_cfg_extts(pf, &pf->ptp.extts_rqs[i],
1720 true);
1721 }
1722
1723 /**
1724 * ice_ptp_write_perout - Write periodic wave parameters to HW
1725 * @hw: pointer to the HW struct
1726 * @chan: target channel
1727 * @gpio_pin: target GPIO pin
1728 * @start: target time to start periodic output
1729 * @period: target period
1730 *
1731 * Return: 0 on success, negative error code otherwise
1732 */
ice_ptp_write_perout(struct ice_hw * hw,unsigned int chan,unsigned int gpio_pin,u64 start,u64 period)1733 static int ice_ptp_write_perout(struct ice_hw *hw, unsigned int chan,
1734 unsigned int gpio_pin, u64 start, u64 period)
1735 {
1736
1737 u8 tmr_idx = hw->func_caps.ts_func_info.tmr_index_owned;
1738 u32 val = 0;
1739
1740 /* 0. Reset mode & out_en in AUX_OUT */
1741 wr32(hw, GLTSYN_AUX_OUT(chan, tmr_idx), 0);
1742
1743 if (ice_is_e825c(hw)) {
1744 int err;
1745
1746 /* Enable/disable CGU 1PPS output for E825C */
1747 err = ice_cgu_cfg_pps_out(hw, !!period);
1748 if (err)
1749 return err;
1750 }
1751
1752 /* 1. Write perout with half of required period value.
1753 * HW toggles output when source clock hits the TGT and then adds
1754 * GLTSYN_CLKO value to the target, so it ends up with 50% duty cycle.
1755 */
1756 period >>= 1;
1757
1758 /* For proper operation, GLTSYN_CLKO must be larger than clock tick and
1759 * period has to fit in 32 bit register.
1760 */
1761 #define MIN_PULSE 3
1762 if (!!period && (period <= MIN_PULSE || period > U32_MAX)) {
1763 dev_err(ice_hw_to_dev(hw), "CLK period ticks must be >= %d && <= 2^32",
1764 MIN_PULSE);
1765 return -EIO;
1766 }
1767
1768 wr32(hw, GLTSYN_CLKO(chan, tmr_idx), lower_32_bits(period));
1769
1770 /* 2. Write TARGET time */
1771 wr32(hw, GLTSYN_TGT_L(chan, tmr_idx), lower_32_bits(start));
1772 wr32(hw, GLTSYN_TGT_H(chan, tmr_idx), upper_32_bits(start));
1773
1774 /* 3. Write AUX_OUT register */
1775 if (!!period)
1776 val = GLTSYN_AUX_OUT_0_OUT_ENA_M | GLTSYN_AUX_OUT_0_OUTMOD_M;
1777 wr32(hw, GLTSYN_AUX_OUT(chan, tmr_idx), val);
1778
1779 /* 4. write GPIO CTL reg */
1780 val = GLGEN_GPIO_CTL_PIN_DIR_M;
1781 if (!!period)
1782 val |= FIELD_PREP(GLGEN_GPIO_CTL_PIN_FUNC_M,
1783 8 + chan + (tmr_idx * 4));
1784
1785 wr32(hw, GLGEN_GPIO_CTL(gpio_pin), val);
1786 ice_flush(hw);
1787
1788 return 0;
1789 }
1790
1791 /**
1792 * ice_ptp_cfg_perout - Configure clock to generate periodic wave
1793 * @pf: Board private structure
1794 * @rq: Periodic output request
1795 * @on: Enable/disable flag
1796 *
1797 * Configure the internal clock generator modules to generate the clock wave of
1798 * specified period.
1799 *
1800 * Return: 0 on success, negative error code otherwise
1801 */
ice_ptp_cfg_perout(struct ice_pf * pf,struct ptp_perout_request * rq,int on)1802 static int ice_ptp_cfg_perout(struct ice_pf *pf, struct ptp_perout_request *rq,
1803 int on)
1804 {
1805 unsigned int gpio_pin, prop_delay_ns;
1806 u64 clk, period, start, phase;
1807 struct ice_hw *hw = &pf->hw;
1808 int pin_desc_idx;
1809
1810 if (rq->flags & ~PTP_PEROUT_PHASE)
1811 return -EOPNOTSUPP;
1812
1813 pin_desc_idx = ice_ptp_find_pin_idx(pf, PTP_PF_PEROUT, rq->index);
1814 if (pin_desc_idx < 0)
1815 return -EIO;
1816
1817 gpio_pin = pf->ptp.ice_pin_desc[pin_desc_idx].gpio[1];
1818 prop_delay_ns = pf->ptp.ice_pin_desc[pin_desc_idx].delay[1];
1819 period = rq->period.sec * NSEC_PER_SEC + rq->period.nsec;
1820
1821 /* If we're disabling the output or period is 0, clear out CLKO and TGT
1822 * and keep output level low.
1823 */
1824 if (!on || !period)
1825 return ice_ptp_write_perout(hw, rq->index, gpio_pin, 0, 0);
1826
1827 if (strncmp(pf->ptp.pin_desc[pin_desc_idx].name, "1PPS", 64) == 0 &&
1828 period != NSEC_PER_SEC && hw->ptp.phy_model == ICE_PHY_E82X) {
1829 dev_err(ice_pf_to_dev(pf), "1PPS pin supports only 1 s period\n");
1830 return -EOPNOTSUPP;
1831 }
1832
1833 if (period & 0x1) {
1834 dev_err(ice_pf_to_dev(pf), "CLK Period must be an even value\n");
1835 return -EIO;
1836 }
1837
1838 start = rq->start.sec * NSEC_PER_SEC + rq->start.nsec;
1839
1840 /* If PTP_PEROUT_PHASE is set, rq has phase instead of start time */
1841 if (rq->flags & PTP_PEROUT_PHASE)
1842 phase = start;
1843 else
1844 div64_u64_rem(start, period, &phase);
1845
1846 /* If we have only phase or start time is in the past, start the timer
1847 * at the next multiple of period, maintaining phase at least 0.5 second
1848 * from now, so we have time to write it to HW.
1849 */
1850 clk = ice_ptp_read_src_clk_reg(pf, NULL) + NSEC_PER_MSEC * 500;
1851 if (rq->flags & PTP_PEROUT_PHASE || start <= clk - prop_delay_ns)
1852 start = div64_u64(clk + period - 1, period) * period + phase;
1853
1854 /* Compensate for propagation delay from the generator to the pin. */
1855 start -= prop_delay_ns;
1856
1857 return ice_ptp_write_perout(hw, rq->index, gpio_pin, start, period);
1858 }
1859
1860 /**
1861 * ice_ptp_disable_all_perout - Disable all currently configured outputs
1862 * @pf: Board private structure
1863 *
1864 * Disable all currently configured clock outputs. This is necessary before
1865 * certain changes to the PTP hardware clock. Use ice_ptp_enable_all_perout to
1866 * re-enable the clocks again.
1867 */
ice_ptp_disable_all_perout(struct ice_pf * pf)1868 static void ice_ptp_disable_all_perout(struct ice_pf *pf)
1869 {
1870 for (unsigned int i = 0; i < pf->ptp.info.n_per_out; i++)
1871 if (pf->ptp.perout_rqs[i].period.sec ||
1872 pf->ptp.perout_rqs[i].period.nsec)
1873 ice_ptp_cfg_perout(pf, &pf->ptp.perout_rqs[i],
1874 false);
1875 }
1876
1877 /**
1878 * ice_ptp_enable_all_perout - Enable all configured periodic clock outputs
1879 * @pf: Board private structure
1880 *
1881 * Enable all currently configured clock outputs. Use this after
1882 * ice_ptp_disable_all_perout to reconfigure the output signals according to
1883 * their configuration.
1884 */
ice_ptp_enable_all_perout(struct ice_pf * pf)1885 static void ice_ptp_enable_all_perout(struct ice_pf *pf)
1886 {
1887 for (unsigned int i = 0; i < pf->ptp.info.n_per_out; i++)
1888 if (pf->ptp.perout_rqs[i].period.sec ||
1889 pf->ptp.perout_rqs[i].period.nsec)
1890 ice_ptp_cfg_perout(pf, &pf->ptp.perout_rqs[i],
1891 true);
1892 }
1893
1894 /**
1895 * ice_ptp_disable_shared_pin - Disable enabled pin that shares GPIO
1896 * @pf: Board private structure
1897 * @pin: Pin index
1898 * @func: Assigned function
1899 *
1900 * Return: 0 on success, negative error code otherwise
1901 */
ice_ptp_disable_shared_pin(struct ice_pf * pf,unsigned int pin,enum ptp_pin_function func)1902 static int ice_ptp_disable_shared_pin(struct ice_pf *pf, unsigned int pin,
1903 enum ptp_pin_function func)
1904 {
1905 unsigned int gpio_pin;
1906
1907 switch (func) {
1908 case PTP_PF_PEROUT:
1909 gpio_pin = pf->ptp.ice_pin_desc[pin].gpio[1];
1910 break;
1911 case PTP_PF_EXTTS:
1912 gpio_pin = pf->ptp.ice_pin_desc[pin].gpio[0];
1913 break;
1914 default:
1915 return -EOPNOTSUPP;
1916 }
1917
1918 for (unsigned int i = 0; i < pf->ptp.info.n_pins; i++) {
1919 struct ptp_pin_desc *pin_desc = &pf->ptp.pin_desc[i];
1920 unsigned int chan = pin_desc->chan;
1921
1922 /* Skip pin idx from the request */
1923 if (i == pin)
1924 continue;
1925
1926 if (pin_desc->func == PTP_PF_PEROUT &&
1927 pf->ptp.ice_pin_desc[i].gpio[1] == gpio_pin) {
1928 pf->ptp.perout_rqs[chan].period.sec = 0;
1929 pf->ptp.perout_rqs[chan].period.nsec = 0;
1930 pin_desc->func = PTP_PF_NONE;
1931 pin_desc->chan = 0;
1932 dev_dbg(ice_pf_to_dev(pf), "Disabling pin %u with shared output GPIO pin %u\n",
1933 i, gpio_pin);
1934 return ice_ptp_cfg_perout(pf, &pf->ptp.perout_rqs[chan],
1935 false);
1936 } else if (pf->ptp.pin_desc->func == PTP_PF_EXTTS &&
1937 pf->ptp.ice_pin_desc[i].gpio[0] == gpio_pin) {
1938 pf->ptp.extts_rqs[chan].flags &= ~PTP_ENABLE_FEATURE;
1939 pin_desc->func = PTP_PF_NONE;
1940 pin_desc->chan = 0;
1941 dev_dbg(ice_pf_to_dev(pf), "Disabling pin %u with shared input GPIO pin %u\n",
1942 i, gpio_pin);
1943 return ice_ptp_cfg_extts(pf, &pf->ptp.extts_rqs[chan],
1944 false);
1945 }
1946 }
1947
1948 return 0;
1949 }
1950
1951 /**
1952 * ice_verify_pin - verify if pin supports requested pin function
1953 * @info: the driver's PTP info structure
1954 * @pin: Pin index
1955 * @func: Assigned function
1956 * @chan: Assigned channel
1957 *
1958 * Return: 0 on success, -EOPNOTSUPP when function is not supported.
1959 */
ice_verify_pin(struct ptp_clock_info * info,unsigned int pin,enum ptp_pin_function func,unsigned int chan)1960 static int ice_verify_pin(struct ptp_clock_info *info, unsigned int pin,
1961 enum ptp_pin_function func, unsigned int chan)
1962 {
1963 struct ice_pf *pf = ptp_info_to_pf(info);
1964 const struct ice_ptp_pin_desc *pin_desc;
1965
1966 pin_desc = &pf->ptp.ice_pin_desc[pin];
1967
1968 /* Is assigned function allowed? */
1969 switch (func) {
1970 case PTP_PF_EXTTS:
1971 if (pin_desc->gpio[0] < 0)
1972 return -EOPNOTSUPP;
1973 break;
1974 case PTP_PF_PEROUT:
1975 if (pin_desc->gpio[1] < 0)
1976 return -EOPNOTSUPP;
1977 break;
1978 case PTP_PF_NONE:
1979 break;
1980 case PTP_PF_PHYSYNC:
1981 default:
1982 return -EOPNOTSUPP;
1983 }
1984
1985 /* On adapters with SMA_CTRL disable other pins that share same GPIO */
1986 if (ice_is_feature_supported(pf, ICE_F_SMA_CTRL)) {
1987 ice_ptp_disable_shared_pin(pf, pin, func);
1988 pf->ptp.pin_desc[pin].func = func;
1989 pf->ptp.pin_desc[pin].chan = chan;
1990 return ice_ptp_set_sma_cfg(pf);
1991 }
1992
1993 return 0;
1994 }
1995
1996 /**
1997 * ice_ptp_gpio_enable - Enable/disable ancillary features of PHC
1998 * @info: The driver's PTP info structure
1999 * @rq: The requested feature to change
2000 * @on: Enable/disable flag
2001 *
2002 * Return: 0 on success, negative error code otherwise
2003 */
ice_ptp_gpio_enable(struct ptp_clock_info * info,struct ptp_clock_request * rq,int on)2004 static int ice_ptp_gpio_enable(struct ptp_clock_info *info,
2005 struct ptp_clock_request *rq, int on)
2006 {
2007 struct ice_pf *pf = ptp_info_to_pf(info);
2008 int err;
2009
2010 switch (rq->type) {
2011 case PTP_CLK_REQ_PEROUT:
2012 {
2013 struct ptp_perout_request *cached =
2014 &pf->ptp.perout_rqs[rq->perout.index];
2015
2016 err = ice_ptp_cfg_perout(pf, &rq->perout, on);
2017 if (!err) {
2018 *cached = rq->perout;
2019 } else {
2020 cached->period.sec = 0;
2021 cached->period.nsec = 0;
2022 }
2023 return err;
2024 }
2025 case PTP_CLK_REQ_EXTTS:
2026 {
2027 struct ptp_extts_request *cached =
2028 &pf->ptp.extts_rqs[rq->extts.index];
2029
2030 err = ice_ptp_cfg_extts(pf, &rq->extts, on);
2031 if (!err)
2032 *cached = rq->extts;
2033 else
2034 cached->flags &= ~PTP_ENABLE_FEATURE;
2035 return err;
2036 }
2037 default:
2038 return -EOPNOTSUPP;
2039 }
2040 }
2041
2042 /**
2043 * ice_ptp_gettimex64 - Get the time of the clock
2044 * @info: the driver's PTP info structure
2045 * @ts: timespec64 structure to hold the current time value
2046 * @sts: Optional parameter for holding a pair of system timestamps from
2047 * the system clock. Will be ignored if NULL is given.
2048 *
2049 * Read the device clock and return the correct value on ns, after converting it
2050 * into a timespec struct.
2051 */
2052 static int
ice_ptp_gettimex64(struct ptp_clock_info * info,struct timespec64 * ts,struct ptp_system_timestamp * sts)2053 ice_ptp_gettimex64(struct ptp_clock_info *info, struct timespec64 *ts,
2054 struct ptp_system_timestamp *sts)
2055 {
2056 struct ice_pf *pf = ptp_info_to_pf(info);
2057 u64 time_ns;
2058
2059 time_ns = ice_ptp_read_src_clk_reg(pf, sts);
2060 *ts = ns_to_timespec64(time_ns);
2061 return 0;
2062 }
2063
2064 /**
2065 * ice_ptp_settime64 - Set the time of the clock
2066 * @info: the driver's PTP info structure
2067 * @ts: timespec64 structure that holds the new time value
2068 *
2069 * Set the device clock to the user input value. The conversion from timespec
2070 * to ns happens in the write function.
2071 */
2072 static int
ice_ptp_settime64(struct ptp_clock_info * info,const struct timespec64 * ts)2073 ice_ptp_settime64(struct ptp_clock_info *info, const struct timespec64 *ts)
2074 {
2075 struct ice_pf *pf = ptp_info_to_pf(info);
2076 struct timespec64 ts64 = *ts;
2077 struct ice_hw *hw = &pf->hw;
2078 int err;
2079
2080 /* For Vernier mode on E82X, we need to recalibrate after new settime.
2081 * Start with marking timestamps as invalid.
2082 */
2083 if (ice_get_phy_model(hw) == ICE_PHY_E82X) {
2084 err = ice_ptp_clear_phy_offset_ready_e82x(hw);
2085 if (err)
2086 dev_warn(ice_pf_to_dev(pf), "Failed to mark timestamps as invalid before settime\n");
2087 }
2088
2089 if (!ice_ptp_lock(hw)) {
2090 err = -EBUSY;
2091 goto exit;
2092 }
2093
2094 /* Disable periodic outputs */
2095 ice_ptp_disable_all_perout(pf);
2096
2097 err = ice_ptp_write_init(pf, &ts64);
2098 ice_ptp_unlock(hw);
2099
2100 if (!err)
2101 ice_ptp_reset_cached_phctime(pf);
2102
2103 /* Reenable periodic outputs */
2104 ice_ptp_enable_all_perout(pf);
2105
2106 /* Recalibrate and re-enable timestamp blocks for E822/E823 */
2107 if (ice_get_phy_model(hw) == ICE_PHY_E82X)
2108 ice_ptp_restart_all_phy(pf);
2109 exit:
2110 if (err) {
2111 dev_err(ice_pf_to_dev(pf), "PTP failed to set time %d\n", err);
2112 return err;
2113 }
2114
2115 return 0;
2116 }
2117
2118 /**
2119 * ice_ptp_adjtime_nonatomic - Do a non-atomic clock adjustment
2120 * @info: the driver's PTP info structure
2121 * @delta: Offset in nanoseconds to adjust the time by
2122 */
ice_ptp_adjtime_nonatomic(struct ptp_clock_info * info,s64 delta)2123 static int ice_ptp_adjtime_nonatomic(struct ptp_clock_info *info, s64 delta)
2124 {
2125 struct timespec64 now, then;
2126 int ret;
2127
2128 then = ns_to_timespec64(delta);
2129 ret = ice_ptp_gettimex64(info, &now, NULL);
2130 if (ret)
2131 return ret;
2132 now = timespec64_add(now, then);
2133
2134 return ice_ptp_settime64(info, (const struct timespec64 *)&now);
2135 }
2136
2137 /**
2138 * ice_ptp_adjtime - Adjust the time of the clock by the indicated delta
2139 * @info: the driver's PTP info structure
2140 * @delta: Offset in nanoseconds to adjust the time by
2141 */
ice_ptp_adjtime(struct ptp_clock_info * info,s64 delta)2142 static int ice_ptp_adjtime(struct ptp_clock_info *info, s64 delta)
2143 {
2144 struct ice_pf *pf = ptp_info_to_pf(info);
2145 struct ice_hw *hw = &pf->hw;
2146 struct device *dev;
2147 int err;
2148
2149 dev = ice_pf_to_dev(pf);
2150
2151 /* Hardware only supports atomic adjustments using signed 32-bit
2152 * integers. For any adjustment outside this range, perform
2153 * a non-atomic get->adjust->set flow.
2154 */
2155 if (delta > S32_MAX || delta < S32_MIN) {
2156 dev_dbg(dev, "delta = %lld, adjtime non-atomic\n", delta);
2157 return ice_ptp_adjtime_nonatomic(info, delta);
2158 }
2159
2160 if (!ice_ptp_lock(hw)) {
2161 dev_err(dev, "PTP failed to acquire semaphore in adjtime\n");
2162 return -EBUSY;
2163 }
2164
2165 /* Disable periodic outputs */
2166 ice_ptp_disable_all_perout(pf);
2167
2168 err = ice_ptp_write_adj(pf, delta);
2169
2170 /* Reenable periodic outputs */
2171 ice_ptp_enable_all_perout(pf);
2172
2173 ice_ptp_unlock(hw);
2174
2175 if (err) {
2176 dev_err(dev, "PTP failed to adjust time, err %d\n", err);
2177 return err;
2178 }
2179
2180 ice_ptp_reset_cached_phctime(pf);
2181
2182 return 0;
2183 }
2184
2185 #ifdef CONFIG_ICE_HWTS
2186 /**
2187 * ice_ptp_get_syncdevicetime - Get the cross time stamp info
2188 * @device: Current device time
2189 * @system: System counter value read synchronously with device time
2190 * @ctx: Context provided by timekeeping code
2191 *
2192 * Read device and system (ART) clock simultaneously and return the corrected
2193 * clock values in ns.
2194 */
2195 static int
ice_ptp_get_syncdevicetime(ktime_t * device,struct system_counterval_t * system,void * ctx)2196 ice_ptp_get_syncdevicetime(ktime_t *device,
2197 struct system_counterval_t *system,
2198 void *ctx)
2199 {
2200 struct ice_pf *pf = (struct ice_pf *)ctx;
2201 struct ice_hw *hw = &pf->hw;
2202 u32 hh_lock, hh_art_ctl;
2203 int i;
2204
2205 #define MAX_HH_HW_LOCK_TRIES 5
2206 #define MAX_HH_CTL_LOCK_TRIES 100
2207
2208 for (i = 0; i < MAX_HH_HW_LOCK_TRIES; i++) {
2209 /* Get the HW lock */
2210 hh_lock = rd32(hw, PFHH_SEM + (PFTSYN_SEM_BYTES * hw->pf_id));
2211 if (hh_lock & PFHH_SEM_BUSY_M) {
2212 usleep_range(10000, 15000);
2213 continue;
2214 }
2215 break;
2216 }
2217 if (hh_lock & PFHH_SEM_BUSY_M) {
2218 dev_err(ice_pf_to_dev(pf), "PTP failed to get hh lock\n");
2219 return -EBUSY;
2220 }
2221
2222 /* Program cmd to master timer */
2223 ice_ptp_src_cmd(hw, ICE_PTP_READ_TIME);
2224
2225 /* Start the ART and device clock sync sequence */
2226 hh_art_ctl = rd32(hw, GLHH_ART_CTL);
2227 hh_art_ctl = hh_art_ctl | GLHH_ART_CTL_ACTIVE_M;
2228 wr32(hw, GLHH_ART_CTL, hh_art_ctl);
2229
2230 for (i = 0; i < MAX_HH_CTL_LOCK_TRIES; i++) {
2231 /* Wait for sync to complete */
2232 hh_art_ctl = rd32(hw, GLHH_ART_CTL);
2233 if (hh_art_ctl & GLHH_ART_CTL_ACTIVE_M) {
2234 udelay(1);
2235 continue;
2236 } else {
2237 u32 hh_ts_lo, hh_ts_hi, tmr_idx;
2238 u64 hh_ts;
2239
2240 tmr_idx = hw->func_caps.ts_func_info.tmr_index_assoc;
2241 /* Read ART time */
2242 hh_ts_lo = rd32(hw, GLHH_ART_TIME_L);
2243 hh_ts_hi = rd32(hw, GLHH_ART_TIME_H);
2244 hh_ts = ((u64)hh_ts_hi << 32) | hh_ts_lo;
2245 system->cycles = hh_ts;
2246 system->cs_id = CSID_X86_ART;
2247 /* Read Device source clock time */
2248 hh_ts_lo = rd32(hw, GLTSYN_HHTIME_L(tmr_idx));
2249 hh_ts_hi = rd32(hw, GLTSYN_HHTIME_H(tmr_idx));
2250 hh_ts = ((u64)hh_ts_hi << 32) | hh_ts_lo;
2251 *device = ns_to_ktime(hh_ts);
2252 break;
2253 }
2254 }
2255
2256 /* Clear the master timer */
2257 ice_ptp_src_cmd(hw, ICE_PTP_NOP);
2258
2259 /* Release HW lock */
2260 hh_lock = rd32(hw, PFHH_SEM + (PFTSYN_SEM_BYTES * hw->pf_id));
2261 hh_lock = hh_lock & ~PFHH_SEM_BUSY_M;
2262 wr32(hw, PFHH_SEM + (PFTSYN_SEM_BYTES * hw->pf_id), hh_lock);
2263
2264 if (i == MAX_HH_CTL_LOCK_TRIES)
2265 return -ETIMEDOUT;
2266
2267 return 0;
2268 }
2269
2270 /**
2271 * ice_ptp_getcrosststamp_e82x - Capture a device cross timestamp
2272 * @info: the driver's PTP info structure
2273 * @cts: The memory to fill the cross timestamp info
2274 *
2275 * Capture a cross timestamp between the ART and the device PTP hardware
2276 * clock. Fill the cross timestamp information and report it back to the
2277 * caller.
2278 *
2279 * This is only valid for E822 and E823 devices which have support for
2280 * generating the cross timestamp via PCIe PTM.
2281 *
2282 * In order to correctly correlate the ART timestamp back to the TSC time, the
2283 * CPU must have X86_FEATURE_TSC_KNOWN_FREQ.
2284 */
2285 static int
ice_ptp_getcrosststamp_e82x(struct ptp_clock_info * info,struct system_device_crosststamp * cts)2286 ice_ptp_getcrosststamp_e82x(struct ptp_clock_info *info,
2287 struct system_device_crosststamp *cts)
2288 {
2289 struct ice_pf *pf = ptp_info_to_pf(info);
2290
2291 return get_device_system_crosststamp(ice_ptp_get_syncdevicetime,
2292 pf, NULL, cts);
2293 }
2294 #endif /* CONFIG_ICE_HWTS */
2295
2296 /**
2297 * ice_ptp_get_ts_config - ioctl interface to read the timestamping config
2298 * @pf: Board private structure
2299 * @ifr: ioctl data
2300 *
2301 * Copy the timestamping config to user buffer
2302 */
ice_ptp_get_ts_config(struct ice_pf * pf,struct ifreq * ifr)2303 int ice_ptp_get_ts_config(struct ice_pf *pf, struct ifreq *ifr)
2304 {
2305 struct hwtstamp_config *config;
2306
2307 if (pf->ptp.state != ICE_PTP_READY)
2308 return -EIO;
2309
2310 config = &pf->ptp.tstamp_config;
2311
2312 return copy_to_user(ifr->ifr_data, config, sizeof(*config)) ?
2313 -EFAULT : 0;
2314 }
2315
2316 /**
2317 * ice_ptp_set_timestamp_mode - Setup driver for requested timestamp mode
2318 * @pf: Board private structure
2319 * @config: hwtstamp settings requested or saved
2320 */
2321 static int
ice_ptp_set_timestamp_mode(struct ice_pf * pf,struct hwtstamp_config * config)2322 ice_ptp_set_timestamp_mode(struct ice_pf *pf, struct hwtstamp_config *config)
2323 {
2324 switch (config->tx_type) {
2325 case HWTSTAMP_TX_OFF:
2326 pf->ptp.tstamp_config.tx_type = HWTSTAMP_TX_OFF;
2327 break;
2328 case HWTSTAMP_TX_ON:
2329 pf->ptp.tstamp_config.tx_type = HWTSTAMP_TX_ON;
2330 break;
2331 default:
2332 return -ERANGE;
2333 }
2334
2335 switch (config->rx_filter) {
2336 case HWTSTAMP_FILTER_NONE:
2337 pf->ptp.tstamp_config.rx_filter = HWTSTAMP_FILTER_NONE;
2338 break;
2339 case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
2340 case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
2341 case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
2342 case HWTSTAMP_FILTER_PTP_V2_EVENT:
2343 case HWTSTAMP_FILTER_PTP_V2_L2_EVENT:
2344 case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
2345 case HWTSTAMP_FILTER_PTP_V2_SYNC:
2346 case HWTSTAMP_FILTER_PTP_V2_L2_SYNC:
2347 case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
2348 case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
2349 case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ:
2350 case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
2351 case HWTSTAMP_FILTER_NTP_ALL:
2352 case HWTSTAMP_FILTER_ALL:
2353 pf->ptp.tstamp_config.rx_filter = HWTSTAMP_FILTER_ALL;
2354 break;
2355 default:
2356 return -ERANGE;
2357 }
2358
2359 /* Immediately update the device timestamping mode */
2360 ice_ptp_restore_timestamp_mode(pf);
2361
2362 return 0;
2363 }
2364
2365 /**
2366 * ice_ptp_set_ts_config - ioctl interface to control the timestamping
2367 * @pf: Board private structure
2368 * @ifr: ioctl data
2369 *
2370 * Get the user config and store it
2371 */
ice_ptp_set_ts_config(struct ice_pf * pf,struct ifreq * ifr)2372 int ice_ptp_set_ts_config(struct ice_pf *pf, struct ifreq *ifr)
2373 {
2374 struct hwtstamp_config config;
2375 int err;
2376
2377 if (pf->ptp.state != ICE_PTP_READY)
2378 return -EAGAIN;
2379
2380 if (copy_from_user(&config, ifr->ifr_data, sizeof(config)))
2381 return -EFAULT;
2382
2383 err = ice_ptp_set_timestamp_mode(pf, &config);
2384 if (err)
2385 return err;
2386
2387 /* Return the actual configuration set */
2388 config = pf->ptp.tstamp_config;
2389
2390 return copy_to_user(ifr->ifr_data, &config, sizeof(config)) ?
2391 -EFAULT : 0;
2392 }
2393
2394 /**
2395 * ice_ptp_get_rx_hwts - Get packet Rx timestamp in ns
2396 * @rx_desc: Receive descriptor
2397 * @pkt_ctx: Packet context to get the cached time
2398 *
2399 * The driver receives a notification in the receive descriptor with timestamp.
2400 */
ice_ptp_get_rx_hwts(const union ice_32b_rx_flex_desc * rx_desc,const struct ice_pkt_ctx * pkt_ctx)2401 u64 ice_ptp_get_rx_hwts(const union ice_32b_rx_flex_desc *rx_desc,
2402 const struct ice_pkt_ctx *pkt_ctx)
2403 {
2404 u64 ts_ns, cached_time;
2405 u32 ts_high;
2406
2407 if (!(rx_desc->wb.time_stamp_low & ICE_PTP_TS_VALID))
2408 return 0;
2409
2410 cached_time = READ_ONCE(pkt_ctx->cached_phctime);
2411
2412 /* Do not report a timestamp if we don't have a cached PHC time */
2413 if (!cached_time)
2414 return 0;
2415
2416 /* Use ice_ptp_extend_32b_ts directly, using the ring-specific cached
2417 * PHC value, rather than accessing the PF. This also allows us to
2418 * simply pass the upper 32bits of nanoseconds directly. Calling
2419 * ice_ptp_extend_40b_ts is unnecessary as it would just discard these
2420 * bits itself.
2421 */
2422 ts_high = le32_to_cpu(rx_desc->wb.flex_ts.ts_high);
2423 ts_ns = ice_ptp_extend_32b_ts(cached_time, ts_high);
2424
2425 return ts_ns;
2426 }
2427
2428 /**
2429 * ice_ptp_setup_pin_cfg - setup PTP pin_config structure
2430 * @pf: Board private structure
2431 */
ice_ptp_setup_pin_cfg(struct ice_pf * pf)2432 static void ice_ptp_setup_pin_cfg(struct ice_pf *pf)
2433 {
2434 for (unsigned int i = 0; i < pf->ptp.info.n_pins; i++) {
2435 const struct ice_ptp_pin_desc *desc = &pf->ptp.ice_pin_desc[i];
2436 struct ptp_pin_desc *pin = &pf->ptp.pin_desc[i];
2437 const char *name = NULL;
2438
2439 if (!ice_is_feature_supported(pf, ICE_F_SMA_CTRL))
2440 name = ice_pin_names[desc->name_idx];
2441 else if (desc->name_idx != GPIO_NA)
2442 name = ice_pin_names_nvm[desc->name_idx];
2443 if (name)
2444 strscpy(pin->name, name, sizeof(pin->name));
2445
2446 pin->index = i;
2447 }
2448
2449 pf->ptp.info.pin_config = pf->ptp.pin_desc;
2450 }
2451
2452 /**
2453 * ice_ptp_disable_pins - Disable PTP pins
2454 * @pf: pointer to the PF structure
2455 *
2456 * Disable the OS access to the SMA pins. Called to clear out the OS
2457 * indications of pin support when we fail to setup the SMA control register.
2458 */
ice_ptp_disable_pins(struct ice_pf * pf)2459 static void ice_ptp_disable_pins(struct ice_pf *pf)
2460 {
2461 struct ptp_clock_info *info = &pf->ptp.info;
2462
2463 dev_warn(ice_pf_to_dev(pf), "Failed to configure PTP pin control\n");
2464
2465 info->enable = NULL;
2466 info->verify = NULL;
2467 info->n_pins = 0;
2468 info->n_ext_ts = 0;
2469 info->n_per_out = 0;
2470 }
2471
2472 /**
2473 * ice_ptp_parse_sdp_entries - update ice_ptp_pin_desc structure from NVM
2474 * @pf: pointer to the PF structure
2475 * @entries: SDP connection section from NVM
2476 * @num_entries: number of valid entries in sdp_entries
2477 * @pins: PTP pins array to update
2478 *
2479 * Return: 0 on success, negative error code otherwise.
2480 */
ice_ptp_parse_sdp_entries(struct ice_pf * pf,__le16 * entries,unsigned int num_entries,struct ice_ptp_pin_desc * pins)2481 static int ice_ptp_parse_sdp_entries(struct ice_pf *pf, __le16 *entries,
2482 unsigned int num_entries,
2483 struct ice_ptp_pin_desc *pins)
2484 {
2485 unsigned int n_pins = 0;
2486 unsigned int i;
2487
2488 /* Setup ice_pin_desc array */
2489 for (i = 0; i < ICE_N_PINS_MAX; i++) {
2490 pins[i].name_idx = -1;
2491 pins[i].gpio[0] = -1;
2492 pins[i].gpio[1] = -1;
2493 }
2494
2495 for (i = 0; i < num_entries; i++) {
2496 u16 entry = le16_to_cpu(entries[i]);
2497 DECLARE_BITMAP(bitmap, GPIO_NA);
2498 unsigned int bitmap_idx;
2499 bool dir;
2500 u16 gpio;
2501
2502 *bitmap = FIELD_GET(ICE_AQC_NVM_SDP_AC_PIN_M, entry);
2503 dir = !!FIELD_GET(ICE_AQC_NVM_SDP_AC_DIR_M, entry);
2504 gpio = FIELD_GET(ICE_AQC_NVM_SDP_AC_SDP_NUM_M, entry);
2505 for_each_set_bit(bitmap_idx, bitmap, GPIO_NA + 1) {
2506 unsigned int idx;
2507
2508 /* Check if entry's pin bit is valid */
2509 if (bitmap_idx >= NUM_PTP_PINS_NVM &&
2510 bitmap_idx != GPIO_NA)
2511 continue;
2512
2513 /* Check if pin already exists */
2514 for (idx = 0; idx < ICE_N_PINS_MAX; idx++)
2515 if (pins[idx].name_idx == bitmap_idx)
2516 break;
2517
2518 if (idx == ICE_N_PINS_MAX) {
2519 /* Pin not found, setup its entry and name */
2520 idx = n_pins++;
2521 pins[idx].name_idx = bitmap_idx;
2522 if (bitmap_idx == GPIO_NA)
2523 strscpy(pf->ptp.pin_desc[idx].name,
2524 ice_pin_names[gpio],
2525 sizeof(pf->ptp.pin_desc[idx]
2526 .name));
2527 }
2528
2529 /* Setup in/out GPIO number */
2530 pins[idx].gpio[dir] = gpio;
2531 }
2532 }
2533
2534 for (i = 0; i < n_pins; i++) {
2535 dev_dbg(ice_pf_to_dev(pf),
2536 "NVM pin entry[%d] : name_idx %d gpio_out %d gpio_in %d\n",
2537 i, pins[i].name_idx, pins[i].gpio[1], pins[i].gpio[0]);
2538 }
2539
2540 pf->ptp.info.n_pins = n_pins;
2541 return 0;
2542 }
2543
2544 /**
2545 * ice_ptp_set_funcs_e82x - Set specialized functions for E82X support
2546 * @pf: Board private structure
2547 *
2548 * Assign functions to the PTP capabilities structure for E82X devices.
2549 * Functions which operate across all device families should be set directly
2550 * in ice_ptp_set_caps. Only add functions here which are distinct for E82X
2551 * devices.
2552 */
ice_ptp_set_funcs_e82x(struct ice_pf * pf)2553 static void ice_ptp_set_funcs_e82x(struct ice_pf *pf)
2554 {
2555 #ifdef CONFIG_ICE_HWTS
2556 if (boot_cpu_has(X86_FEATURE_ART) &&
2557 boot_cpu_has(X86_FEATURE_TSC_KNOWN_FREQ))
2558 pf->ptp.info.getcrosststamp = ice_ptp_getcrosststamp_e82x;
2559
2560 #endif /* CONFIG_ICE_HWTS */
2561 if (ice_is_e825c(&pf->hw)) {
2562 pf->ptp.ice_pin_desc = ice_pin_desc_e825c;
2563 pf->ptp.info.n_pins = ICE_PIN_DESC_ARR_LEN(ice_pin_desc_e825c);
2564 } else {
2565 pf->ptp.ice_pin_desc = ice_pin_desc_e82x;
2566 pf->ptp.info.n_pins = ICE_PIN_DESC_ARR_LEN(ice_pin_desc_e82x);
2567 }
2568 ice_ptp_setup_pin_cfg(pf);
2569 }
2570
2571 /**
2572 * ice_ptp_set_funcs_e810 - Set specialized functions for E810 support
2573 * @pf: Board private structure
2574 *
2575 * Assign functions to the PTP capabiltiies structure for E810 devices.
2576 * Functions which operate across all device families should be set directly
2577 * in ice_ptp_set_caps. Only add functions here which are distinct for E810
2578 * devices.
2579 */
ice_ptp_set_funcs_e810(struct ice_pf * pf)2580 static void ice_ptp_set_funcs_e810(struct ice_pf *pf)
2581 {
2582 __le16 entries[ICE_AQC_NVM_SDP_AC_MAX_SIZE];
2583 struct ice_ptp_pin_desc *desc = NULL;
2584 struct ice_ptp *ptp = &pf->ptp;
2585 unsigned int num_entries;
2586 int err;
2587
2588 err = ice_ptp_read_sdp_ac(&pf->hw, entries, &num_entries);
2589 if (err) {
2590 /* SDP section does not exist in NVM or is corrupted */
2591 if (ice_is_feature_supported(pf, ICE_F_SMA_CTRL)) {
2592 ptp->ice_pin_desc = ice_pin_desc_e810_sma;
2593 ptp->info.n_pins =
2594 ICE_PIN_DESC_ARR_LEN(ice_pin_desc_e810_sma);
2595 } else {
2596 pf->ptp.ice_pin_desc = ice_pin_desc_e810;
2597 pf->ptp.info.n_pins =
2598 ICE_PIN_DESC_ARR_LEN(ice_pin_desc_e810);
2599 err = 0;
2600 }
2601 } else {
2602 desc = devm_kcalloc(ice_pf_to_dev(pf), ICE_N_PINS_MAX,
2603 sizeof(struct ice_ptp_pin_desc),
2604 GFP_KERNEL);
2605 if (!desc)
2606 goto err;
2607
2608 err = ice_ptp_parse_sdp_entries(pf, entries, num_entries, desc);
2609 if (err)
2610 goto err;
2611
2612 ptp->ice_pin_desc = (const struct ice_ptp_pin_desc *)desc;
2613 }
2614
2615 ptp->info.pin_config = ptp->pin_desc;
2616 ice_ptp_setup_pin_cfg(pf);
2617
2618 if (ice_is_feature_supported(pf, ICE_F_SMA_CTRL))
2619 err = ice_ptp_set_sma_cfg(pf);
2620 err:
2621 if (err) {
2622 devm_kfree(ice_pf_to_dev(pf), desc);
2623 ice_ptp_disable_pins(pf);
2624 }
2625 }
2626
2627 /**
2628 * ice_ptp_set_caps - Set PTP capabilities
2629 * @pf: Board private structure
2630 */
ice_ptp_set_caps(struct ice_pf * pf)2631 static void ice_ptp_set_caps(struct ice_pf *pf)
2632 {
2633 struct ptp_clock_info *info = &pf->ptp.info;
2634 struct device *dev = ice_pf_to_dev(pf);
2635
2636 snprintf(info->name, sizeof(info->name) - 1, "%s-%s-clk",
2637 dev_driver_string(dev), dev_name(dev));
2638 info->owner = THIS_MODULE;
2639 info->max_adj = 100000000;
2640 info->adjtime = ice_ptp_adjtime;
2641 info->adjfine = ice_ptp_adjfine;
2642 info->gettimex64 = ice_ptp_gettimex64;
2643 info->settime64 = ice_ptp_settime64;
2644 info->n_per_out = GLTSYN_TGT_H_IDX_MAX;
2645 info->n_ext_ts = GLTSYN_EVNT_H_IDX_MAX;
2646 info->enable = ice_ptp_gpio_enable;
2647 info->verify = ice_verify_pin;
2648
2649 if (ice_is_e810(&pf->hw))
2650 ice_ptp_set_funcs_e810(pf);
2651 else
2652 ice_ptp_set_funcs_e82x(pf);
2653 }
2654
2655 /**
2656 * ice_ptp_create_clock - Create PTP clock device for userspace
2657 * @pf: Board private structure
2658 *
2659 * This function creates a new PTP clock device. It only creates one if we
2660 * don't already have one. Will return error if it can't create one, but success
2661 * if we already have a device. Should be used by ice_ptp_init to create clock
2662 * initially, and prevent global resets from creating new clock devices.
2663 */
ice_ptp_create_clock(struct ice_pf * pf)2664 static long ice_ptp_create_clock(struct ice_pf *pf)
2665 {
2666 struct ptp_clock_info *info;
2667 struct device *dev;
2668
2669 /* No need to create a clock device if we already have one */
2670 if (pf->ptp.clock)
2671 return 0;
2672
2673 ice_ptp_set_caps(pf);
2674
2675 info = &pf->ptp.info;
2676 dev = ice_pf_to_dev(pf);
2677
2678 /* Attempt to register the clock before enabling the hardware. */
2679 pf->ptp.clock = ptp_clock_register(info, dev);
2680 if (IS_ERR(pf->ptp.clock)) {
2681 dev_err(ice_pf_to_dev(pf), "Failed to register PTP clock device");
2682 return PTR_ERR(pf->ptp.clock);
2683 }
2684
2685 return 0;
2686 }
2687
2688 /**
2689 * ice_ptp_request_ts - Request an available Tx timestamp index
2690 * @tx: the PTP Tx timestamp tracker to request from
2691 * @skb: the SKB to associate with this timestamp request
2692 */
ice_ptp_request_ts(struct ice_ptp_tx * tx,struct sk_buff * skb)2693 s8 ice_ptp_request_ts(struct ice_ptp_tx *tx, struct sk_buff *skb)
2694 {
2695 unsigned long flags;
2696 u8 idx;
2697
2698 spin_lock_irqsave(&tx->lock, flags);
2699
2700 /* Check that this tracker is accepting new timestamp requests */
2701 if (!ice_ptp_is_tx_tracker_up(tx)) {
2702 spin_unlock_irqrestore(&tx->lock, flags);
2703 return -1;
2704 }
2705
2706 /* Find and set the first available index */
2707 idx = find_next_zero_bit(tx->in_use, tx->len,
2708 tx->last_ll_ts_idx_read + 1);
2709 if (idx == tx->len)
2710 idx = find_first_zero_bit(tx->in_use, tx->len);
2711
2712 if (idx < tx->len) {
2713 /* We got a valid index that no other thread could have set. Store
2714 * a reference to the skb and the start time to allow discarding old
2715 * requests.
2716 */
2717 set_bit(idx, tx->in_use);
2718 clear_bit(idx, tx->stale);
2719 tx->tstamps[idx].start = jiffies;
2720 tx->tstamps[idx].skb = skb_get(skb);
2721 skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
2722 ice_trace(tx_tstamp_request, skb, idx);
2723 }
2724
2725 spin_unlock_irqrestore(&tx->lock, flags);
2726
2727 /* return the appropriate PHY timestamp register index, -1 if no
2728 * indexes were available.
2729 */
2730 if (idx >= tx->len)
2731 return -1;
2732 else
2733 return idx + tx->offset;
2734 }
2735
2736 /**
2737 * ice_ptp_process_ts - Process the PTP Tx timestamps
2738 * @pf: Board private structure
2739 *
2740 * Returns: ICE_TX_TSTAMP_WORK_PENDING if there are any outstanding Tx
2741 * timestamps that need processing, and ICE_TX_TSTAMP_WORK_DONE otherwise.
2742 */
ice_ptp_process_ts(struct ice_pf * pf)2743 enum ice_tx_tstamp_work ice_ptp_process_ts(struct ice_pf *pf)
2744 {
2745 switch (pf->ptp.tx_interrupt_mode) {
2746 case ICE_PTP_TX_INTERRUPT_NONE:
2747 /* This device has the clock owner handle timestamps for it */
2748 return ICE_TX_TSTAMP_WORK_DONE;
2749 case ICE_PTP_TX_INTERRUPT_SELF:
2750 /* This device handles its own timestamps */
2751 return ice_ptp_tx_tstamp(&pf->ptp.port.tx);
2752 case ICE_PTP_TX_INTERRUPT_ALL:
2753 /* This device handles timestamps for all ports */
2754 return ice_ptp_tx_tstamp_owner(pf);
2755 default:
2756 WARN_ONCE(1, "Unexpected Tx timestamp interrupt mode %u\n",
2757 pf->ptp.tx_interrupt_mode);
2758 return ICE_TX_TSTAMP_WORK_DONE;
2759 }
2760 }
2761
2762 /**
2763 * ice_ptp_maybe_trigger_tx_interrupt - Trigger Tx timstamp interrupt
2764 * @pf: Board private structure
2765 *
2766 * The device PHY issues Tx timestamp interrupts to the driver for processing
2767 * timestamp data from the PHY. It will not interrupt again until all
2768 * current timestamp data is read. In rare circumstances, it is possible that
2769 * the driver fails to read all outstanding data.
2770 *
2771 * To avoid getting permanently stuck, periodically check if the PHY has
2772 * outstanding timestamp data. If so, trigger an interrupt from software to
2773 * process this data.
2774 */
ice_ptp_maybe_trigger_tx_interrupt(struct ice_pf * pf)2775 static void ice_ptp_maybe_trigger_tx_interrupt(struct ice_pf *pf)
2776 {
2777 struct device *dev = ice_pf_to_dev(pf);
2778 struct ice_hw *hw = &pf->hw;
2779 bool trigger_oicr = false;
2780 unsigned int i;
2781
2782 if (ice_is_e810(hw))
2783 return;
2784
2785 if (!ice_pf_src_tmr_owned(pf))
2786 return;
2787
2788 for (i = 0; i < ICE_GET_QUAD_NUM(hw->ptp.num_lports); i++) {
2789 u64 tstamp_ready;
2790 int err;
2791
2792 err = ice_get_phy_tx_tstamp_ready(&pf->hw, i, &tstamp_ready);
2793 if (!err && tstamp_ready) {
2794 trigger_oicr = true;
2795 break;
2796 }
2797 }
2798
2799 if (trigger_oicr) {
2800 /* Trigger a software interrupt, to ensure this data
2801 * gets processed.
2802 */
2803 dev_dbg(dev, "PTP periodic task detected waiting timestamps. Triggering Tx timestamp interrupt now.\n");
2804
2805 wr32(hw, PFINT_OICR, PFINT_OICR_TSYN_TX_M);
2806 ice_flush(hw);
2807 }
2808 }
2809
ice_ptp_periodic_work(struct kthread_work * work)2810 static void ice_ptp_periodic_work(struct kthread_work *work)
2811 {
2812 struct ice_ptp *ptp = container_of(work, struct ice_ptp, work.work);
2813 struct ice_pf *pf = container_of(ptp, struct ice_pf, ptp);
2814 int err;
2815
2816 if (pf->ptp.state != ICE_PTP_READY)
2817 return;
2818
2819 err = ice_ptp_update_cached_phctime(pf);
2820
2821 ice_ptp_maybe_trigger_tx_interrupt(pf);
2822
2823 /* Run twice a second or reschedule if phc update failed */
2824 kthread_queue_delayed_work(ptp->kworker, &ptp->work,
2825 msecs_to_jiffies(err ? 10 : 500));
2826 }
2827
2828 /**
2829 * ice_ptp_prepare_for_reset - Prepare PTP for reset
2830 * @pf: Board private structure
2831 * @reset_type: the reset type being performed
2832 */
ice_ptp_prepare_for_reset(struct ice_pf * pf,enum ice_reset_req reset_type)2833 void ice_ptp_prepare_for_reset(struct ice_pf *pf, enum ice_reset_req reset_type)
2834 {
2835 struct ice_ptp *ptp = &pf->ptp;
2836 u8 src_tmr;
2837
2838 if (ptp->state != ICE_PTP_READY)
2839 return;
2840
2841 ptp->state = ICE_PTP_RESETTING;
2842
2843 /* Disable timestamping for both Tx and Rx */
2844 ice_ptp_disable_timestamp_mode(pf);
2845
2846 kthread_cancel_delayed_work_sync(&ptp->work);
2847
2848 if (reset_type == ICE_RESET_PFR)
2849 return;
2850
2851 ice_ptp_release_tx_tracker(pf, &pf->ptp.port.tx);
2852
2853 /* Disable periodic outputs */
2854 ice_ptp_disable_all_perout(pf);
2855
2856 src_tmr = ice_get_ptp_src_clock_index(&pf->hw);
2857
2858 /* Disable source clock */
2859 wr32(&pf->hw, GLTSYN_ENA(src_tmr), (u32)~GLTSYN_ENA_TSYN_ENA_M);
2860
2861 /* Acquire PHC and system timer to restore after reset */
2862 ptp->reset_time = ktime_get_real_ns();
2863 }
2864
2865 /**
2866 * ice_ptp_rebuild_owner - Initialize PTP clock owner after reset
2867 * @pf: Board private structure
2868 *
2869 * Companion function for ice_ptp_rebuild() which handles tasks that only the
2870 * PTP clock owner instance should perform.
2871 */
ice_ptp_rebuild_owner(struct ice_pf * pf)2872 static int ice_ptp_rebuild_owner(struct ice_pf *pf)
2873 {
2874 struct ice_ptp *ptp = &pf->ptp;
2875 struct ice_hw *hw = &pf->hw;
2876 struct timespec64 ts;
2877 u64 time_diff;
2878 int err;
2879
2880 err = ice_ptp_init_phc(hw);
2881 if (err)
2882 return err;
2883
2884 /* Acquire the global hardware lock */
2885 if (!ice_ptp_lock(hw)) {
2886 err = -EBUSY;
2887 return err;
2888 }
2889
2890 /* Write the increment time value to PHY and LAN */
2891 err = ice_ptp_write_incval(hw, ice_base_incval(pf));
2892 if (err)
2893 goto err_unlock;
2894
2895 /* Write the initial Time value to PHY and LAN using the cached PHC
2896 * time before the reset and time difference between stopping and
2897 * starting the clock.
2898 */
2899 if (ptp->cached_phc_time) {
2900 time_diff = ktime_get_real_ns() - ptp->reset_time;
2901 ts = ns_to_timespec64(ptp->cached_phc_time + time_diff);
2902 } else {
2903 ts = ktime_to_timespec64(ktime_get_real());
2904 }
2905 err = ice_ptp_write_init(pf, &ts);
2906 if (err)
2907 goto err_unlock;
2908
2909 /* Release the global hardware lock */
2910 ice_ptp_unlock(hw);
2911
2912 /* Flush software tracking of any outstanding timestamps since we're
2913 * about to flush the PHY timestamp block.
2914 */
2915 ice_ptp_flush_all_tx_tracker(pf);
2916
2917 if (!ice_is_e810(hw)) {
2918 /* Enable quad interrupts */
2919 err = ice_ptp_cfg_phy_interrupt(pf, true, 1);
2920 if (err)
2921 return err;
2922
2923 ice_ptp_restart_all_phy(pf);
2924 }
2925
2926 /* Re-enable all periodic outputs and external timestamp events */
2927 ice_ptp_enable_all_perout(pf);
2928 ice_ptp_enable_all_extts(pf);
2929
2930 return 0;
2931
2932 err_unlock:
2933 ice_ptp_unlock(hw);
2934 return err;
2935 }
2936
2937 /**
2938 * ice_ptp_rebuild - Initialize PTP hardware clock support after reset
2939 * @pf: Board private structure
2940 * @reset_type: the reset type being performed
2941 */
ice_ptp_rebuild(struct ice_pf * pf,enum ice_reset_req reset_type)2942 void ice_ptp_rebuild(struct ice_pf *pf, enum ice_reset_req reset_type)
2943 {
2944 struct ice_ptp *ptp = &pf->ptp;
2945 int err;
2946
2947 if (ptp->state == ICE_PTP_READY) {
2948 ice_ptp_prepare_for_reset(pf, reset_type);
2949 } else if (ptp->state != ICE_PTP_RESETTING) {
2950 err = -EINVAL;
2951 dev_err(ice_pf_to_dev(pf), "PTP was not initialized\n");
2952 goto err;
2953 }
2954
2955 if (ice_pf_src_tmr_owned(pf) && reset_type != ICE_RESET_PFR) {
2956 err = ice_ptp_rebuild_owner(pf);
2957 if (err)
2958 goto err;
2959 }
2960
2961 ptp->state = ICE_PTP_READY;
2962
2963 /* Start periodic work going */
2964 kthread_queue_delayed_work(ptp->kworker, &ptp->work, 0);
2965
2966 dev_info(ice_pf_to_dev(pf), "PTP reset successful\n");
2967 return;
2968
2969 err:
2970 ptp->state = ICE_PTP_ERROR;
2971 dev_err(ice_pf_to_dev(pf), "PTP reset failed %d\n", err);
2972 }
2973
ice_is_primary(struct ice_hw * hw)2974 static bool ice_is_primary(struct ice_hw *hw)
2975 {
2976 return ice_is_e825c(hw) && ice_is_dual(hw) ?
2977 !!(hw->dev_caps.nac_topo.mode & ICE_NAC_TOPO_PRIMARY_M) : true;
2978 }
2979
ice_ptp_setup_adapter(struct ice_pf * pf)2980 static int ice_ptp_setup_adapter(struct ice_pf *pf)
2981 {
2982 if (!ice_pf_src_tmr_owned(pf) || !ice_is_primary(&pf->hw))
2983 return -EPERM;
2984
2985 pf->adapter->ctrl_pf = pf;
2986
2987 return 0;
2988 }
2989
ice_ptp_setup_pf(struct ice_pf * pf)2990 static int ice_ptp_setup_pf(struct ice_pf *pf)
2991 {
2992 struct ice_ptp *ctrl_ptp = ice_get_ctrl_ptp(pf);
2993 struct ice_ptp *ptp = &pf->ptp;
2994
2995 if (WARN_ON(!ctrl_ptp) || ice_get_phy_model(&pf->hw) == ICE_PHY_UNSUP)
2996 return -ENODEV;
2997
2998 INIT_LIST_HEAD(&ptp->port.list_node);
2999 mutex_lock(&pf->adapter->ports.lock);
3000
3001 list_add(&ptp->port.list_node,
3002 &pf->adapter->ports.ports);
3003 mutex_unlock(&pf->adapter->ports.lock);
3004
3005 return 0;
3006 }
3007
ice_ptp_cleanup_pf(struct ice_pf * pf)3008 static void ice_ptp_cleanup_pf(struct ice_pf *pf)
3009 {
3010 struct ice_ptp *ptp = &pf->ptp;
3011
3012 if (ice_get_phy_model(&pf->hw) != ICE_PHY_UNSUP) {
3013 mutex_lock(&pf->adapter->ports.lock);
3014 list_del(&ptp->port.list_node);
3015 mutex_unlock(&pf->adapter->ports.lock);
3016 }
3017 }
3018
3019 /**
3020 * ice_ptp_clock_index - Get the PTP clock index for this device
3021 * @pf: Board private structure
3022 *
3023 * Returns: the PTP clock index associated with this PF, or -1 if no PTP clock
3024 * is associated.
3025 */
ice_ptp_clock_index(struct ice_pf * pf)3026 int ice_ptp_clock_index(struct ice_pf *pf)
3027 {
3028 struct ice_ptp *ctrl_ptp = ice_get_ctrl_ptp(pf);
3029 struct ptp_clock *clock;
3030
3031 if (!ctrl_ptp)
3032 return -1;
3033 clock = ctrl_ptp->clock;
3034
3035 return clock ? ptp_clock_index(clock) : -1;
3036 }
3037
3038 /**
3039 * ice_ptp_init_owner - Initialize PTP_1588_CLOCK device
3040 * @pf: Board private structure
3041 *
3042 * Setup and initialize a PTP clock device that represents the device hardware
3043 * clock. Save the clock index for other functions connected to the same
3044 * hardware resource.
3045 */
ice_ptp_init_owner(struct ice_pf * pf)3046 static int ice_ptp_init_owner(struct ice_pf *pf)
3047 {
3048 struct ice_hw *hw = &pf->hw;
3049 struct timespec64 ts;
3050 int err;
3051
3052 err = ice_ptp_init_phc(hw);
3053 if (err) {
3054 dev_err(ice_pf_to_dev(pf), "Failed to initialize PHC, err %d\n",
3055 err);
3056 return err;
3057 }
3058
3059 /* Acquire the global hardware lock */
3060 if (!ice_ptp_lock(hw)) {
3061 err = -EBUSY;
3062 goto err_exit;
3063 }
3064
3065 /* Write the increment time value to PHY and LAN */
3066 err = ice_ptp_write_incval(hw, ice_base_incval(pf));
3067 if (err)
3068 goto err_unlock;
3069
3070 ts = ktime_to_timespec64(ktime_get_real());
3071 /* Write the initial Time value to PHY and LAN */
3072 err = ice_ptp_write_init(pf, &ts);
3073 if (err)
3074 goto err_unlock;
3075
3076 /* Release the global hardware lock */
3077 ice_ptp_unlock(hw);
3078
3079 /* Configure PHY interrupt settings */
3080 err = ice_ptp_cfg_phy_interrupt(pf, true, 1);
3081 if (err)
3082 goto err_exit;
3083
3084 /* Ensure we have a clock device */
3085 err = ice_ptp_create_clock(pf);
3086 if (err)
3087 goto err_clk;
3088
3089 return 0;
3090 err_clk:
3091 pf->ptp.clock = NULL;
3092 err_exit:
3093 return err;
3094
3095 err_unlock:
3096 ice_ptp_unlock(hw);
3097 return err;
3098 }
3099
3100 /**
3101 * ice_ptp_init_work - Initialize PTP work threads
3102 * @pf: Board private structure
3103 * @ptp: PF PTP structure
3104 */
ice_ptp_init_work(struct ice_pf * pf,struct ice_ptp * ptp)3105 static int ice_ptp_init_work(struct ice_pf *pf, struct ice_ptp *ptp)
3106 {
3107 struct kthread_worker *kworker;
3108
3109 /* Initialize work functions */
3110 kthread_init_delayed_work(&ptp->work, ice_ptp_periodic_work);
3111
3112 /* Allocate a kworker for handling work required for the ports
3113 * connected to the PTP hardware clock.
3114 */
3115 kworker = kthread_run_worker(0, "ice-ptp-%s",
3116 dev_name(ice_pf_to_dev(pf)));
3117 if (IS_ERR(kworker))
3118 return PTR_ERR(kworker);
3119
3120 ptp->kworker = kworker;
3121
3122 /* Start periodic work going */
3123 kthread_queue_delayed_work(ptp->kworker, &ptp->work, 0);
3124
3125 return 0;
3126 }
3127
3128 /**
3129 * ice_ptp_init_port - Initialize PTP port structure
3130 * @pf: Board private structure
3131 * @ptp_port: PTP port structure
3132 */
ice_ptp_init_port(struct ice_pf * pf,struct ice_ptp_port * ptp_port)3133 static int ice_ptp_init_port(struct ice_pf *pf, struct ice_ptp_port *ptp_port)
3134 {
3135 struct ice_hw *hw = &pf->hw;
3136
3137 mutex_init(&ptp_port->ps_lock);
3138
3139 switch (ice_get_phy_model(hw)) {
3140 case ICE_PHY_ETH56G:
3141 return ice_ptp_init_tx_eth56g(pf, &ptp_port->tx,
3142 ptp_port->port_num);
3143 case ICE_PHY_E810:
3144 return ice_ptp_init_tx_e810(pf, &ptp_port->tx);
3145 case ICE_PHY_E82X:
3146 kthread_init_delayed_work(&ptp_port->ov_work,
3147 ice_ptp_wait_for_offsets);
3148
3149 return ice_ptp_init_tx_e82x(pf, &ptp_port->tx,
3150 ptp_port->port_num);
3151 default:
3152 return -ENODEV;
3153 }
3154 }
3155
3156 /**
3157 * ice_ptp_init_tx_interrupt_mode - Initialize device Tx interrupt mode
3158 * @pf: Board private structure
3159 *
3160 * Initialize the Tx timestamp interrupt mode for this device. For most device
3161 * types, each PF processes the interrupt and manages its own timestamps. For
3162 * E822-based devices, only the clock owner processes the timestamps. Other
3163 * PFs disable the interrupt and do not process their own timestamps.
3164 */
ice_ptp_init_tx_interrupt_mode(struct ice_pf * pf)3165 static void ice_ptp_init_tx_interrupt_mode(struct ice_pf *pf)
3166 {
3167 switch (ice_get_phy_model(&pf->hw)) {
3168 case ICE_PHY_E82X:
3169 /* E822 based PHY has the clock owner process the interrupt
3170 * for all ports.
3171 */
3172 if (ice_pf_src_tmr_owned(pf))
3173 pf->ptp.tx_interrupt_mode = ICE_PTP_TX_INTERRUPT_ALL;
3174 else
3175 pf->ptp.tx_interrupt_mode = ICE_PTP_TX_INTERRUPT_NONE;
3176 break;
3177 default:
3178 /* other PHY types handle their own Tx interrupt */
3179 pf->ptp.tx_interrupt_mode = ICE_PTP_TX_INTERRUPT_SELF;
3180 }
3181 }
3182
3183 /**
3184 * ice_ptp_init - Initialize PTP hardware clock support
3185 * @pf: Board private structure
3186 *
3187 * Set up the device for interacting with the PTP hardware clock for all
3188 * functions, both the function that owns the clock hardware, and the
3189 * functions connected to the clock hardware.
3190 *
3191 * The clock owner will allocate and register a ptp_clock with the
3192 * PTP_1588_CLOCK infrastructure. All functions allocate a kthread and work
3193 * items used for asynchronous work such as Tx timestamps and periodic work.
3194 */
ice_ptp_init(struct ice_pf * pf)3195 void ice_ptp_init(struct ice_pf *pf)
3196 {
3197 struct ice_ptp *ptp = &pf->ptp;
3198 struct ice_hw *hw = &pf->hw;
3199 int lane_num, err;
3200
3201 ptp->state = ICE_PTP_INITIALIZING;
3202
3203 lane_num = ice_get_phy_lane_number(hw);
3204 if (lane_num < 0) {
3205 err = lane_num;
3206 goto err_exit;
3207 }
3208
3209 ptp->port.port_num = (u8)lane_num;
3210 ice_ptp_init_hw(hw);
3211
3212 ice_ptp_init_tx_interrupt_mode(pf);
3213
3214 /* If this function owns the clock hardware, it must allocate and
3215 * configure the PTP clock device to represent it.
3216 */
3217 if (ice_pf_src_tmr_owned(pf) && ice_is_primary(hw)) {
3218 err = ice_ptp_setup_adapter(pf);
3219 if (err)
3220 goto err_exit;
3221 err = ice_ptp_init_owner(pf);
3222 if (err)
3223 goto err_exit;
3224 }
3225
3226 err = ice_ptp_setup_pf(pf);
3227 if (err)
3228 goto err_exit;
3229
3230 err = ice_ptp_init_port(pf, &ptp->port);
3231 if (err)
3232 goto err_exit;
3233
3234 /* Start the PHY timestamping block */
3235 ice_ptp_reset_phy_timestamping(pf);
3236
3237 /* Configure initial Tx interrupt settings */
3238 ice_ptp_cfg_tx_interrupt(pf);
3239
3240 ptp->state = ICE_PTP_READY;
3241
3242 err = ice_ptp_init_work(pf, ptp);
3243 if (err)
3244 goto err_exit;
3245
3246 dev_info(ice_pf_to_dev(pf), "PTP init successful\n");
3247 return;
3248
3249 err_exit:
3250 /* If we registered a PTP clock, release it */
3251 if (pf->ptp.clock) {
3252 ptp_clock_unregister(ptp->clock);
3253 pf->ptp.clock = NULL;
3254 }
3255 ptp->state = ICE_PTP_ERROR;
3256 dev_err(ice_pf_to_dev(pf), "PTP failed %d\n", err);
3257 }
3258
3259 /**
3260 * ice_ptp_release - Disable the driver/HW support and unregister the clock
3261 * @pf: Board private structure
3262 *
3263 * This function handles the cleanup work required from the initialization by
3264 * clearing out the important information and unregistering the clock
3265 */
ice_ptp_release(struct ice_pf * pf)3266 void ice_ptp_release(struct ice_pf *pf)
3267 {
3268 if (pf->ptp.state != ICE_PTP_READY)
3269 return;
3270
3271 pf->ptp.state = ICE_PTP_UNINIT;
3272
3273 /* Disable timestamping for both Tx and Rx */
3274 ice_ptp_disable_timestamp_mode(pf);
3275
3276 ice_ptp_cleanup_pf(pf);
3277
3278 ice_ptp_release_tx_tracker(pf, &pf->ptp.port.tx);
3279
3280 ice_ptp_disable_all_extts(pf);
3281
3282 kthread_cancel_delayed_work_sync(&pf->ptp.work);
3283
3284 ice_ptp_port_phy_stop(&pf->ptp.port);
3285 mutex_destroy(&pf->ptp.port.ps_lock);
3286 if (pf->ptp.kworker) {
3287 kthread_destroy_worker(pf->ptp.kworker);
3288 pf->ptp.kworker = NULL;
3289 }
3290
3291 if (!pf->ptp.clock)
3292 return;
3293
3294 /* Disable periodic outputs */
3295 ice_ptp_disable_all_perout(pf);
3296
3297 ptp_clock_unregister(pf->ptp.clock);
3298 pf->ptp.clock = NULL;
3299
3300 dev_info(ice_pf_to_dev(pf), "Removed PTP clock\n");
3301 }
3302