1 // SPDX-License-Identifier: GPL-2.0
2 /* Marvell Octeon EP (EndPoint) VF Ethernet Driver
3  *
4  * Copyright (C) 2020 Marvell.
5  *
6  */
7 
8 #include <linux/pci.h>
9 #include <linux/etherdevice.h>
10 #include <linux/vmalloc.h>
11 
12 #include "octep_vf_config.h"
13 #include "octep_vf_main.h"
14 
octep_vf_oq_reset_indices(struct octep_vf_oq * oq)15 static void octep_vf_oq_reset_indices(struct octep_vf_oq *oq)
16 {
17 	oq->host_read_idx = 0;
18 	oq->host_refill_idx = 0;
19 	oq->refill_count = 0;
20 	oq->last_pkt_count = 0;
21 	oq->pkts_pending = 0;
22 }
23 
24 /**
25  * octep_vf_oq_fill_ring_buffers() - fill initial receive buffers for Rx ring.
26  *
27  * @oq: Octeon Rx queue data structure.
28  *
29  * Return: 0, if successfully filled receive buffers for all descriptors.
30  *         -ENOMEM, if failed to allocate a buffer or failed to map for DMA.
31  */
octep_vf_oq_fill_ring_buffers(struct octep_vf_oq * oq)32 static int octep_vf_oq_fill_ring_buffers(struct octep_vf_oq *oq)
33 {
34 	struct octep_vf_oq_desc_hw *desc_ring = oq->desc_ring;
35 	struct page *page;
36 	u32 i;
37 
38 	for (i = 0; i < oq->max_count; i++) {
39 		page = dev_alloc_page();
40 		if (unlikely(!page)) {
41 			dev_err(oq->dev, "Rx buffer alloc failed\n");
42 			goto rx_buf_alloc_err;
43 		}
44 		desc_ring[i].buffer_ptr = dma_map_page(oq->dev, page, 0,
45 						       PAGE_SIZE,
46 						       DMA_FROM_DEVICE);
47 		if (dma_mapping_error(oq->dev, desc_ring[i].buffer_ptr)) {
48 			dev_err(oq->dev,
49 				"OQ-%d buffer alloc: DMA mapping error!\n",
50 				oq->q_no);
51 			goto dma_map_err;
52 		}
53 		oq->buff_info[i].page = page;
54 	}
55 
56 	return 0;
57 
58 dma_map_err:
59 	put_page(page);
60 rx_buf_alloc_err:
61 	while (i) {
62 		i--;
63 		dma_unmap_page(oq->dev, desc_ring[i].buffer_ptr, PAGE_SIZE, DMA_FROM_DEVICE);
64 		put_page(oq->buff_info[i].page);
65 		oq->buff_info[i].page = NULL;
66 	}
67 
68 	return -ENOMEM;
69 }
70 
71 /**
72  * octep_vf_oq_refill() - refill buffers for used Rx ring descriptors.
73  *
74  * @oct: Octeon device private data structure.
75  * @oq: Octeon Rx queue data structure.
76  *
77  * Return: number of descriptors successfully refilled with receive buffers.
78  */
octep_vf_oq_refill(struct octep_vf_device * oct,struct octep_vf_oq * oq)79 static int octep_vf_oq_refill(struct octep_vf_device *oct, struct octep_vf_oq *oq)
80 {
81 	struct octep_vf_oq_desc_hw *desc_ring = oq->desc_ring;
82 	struct page *page;
83 	u32 refill_idx, i;
84 
85 	refill_idx = oq->host_refill_idx;
86 	for (i = 0; i < oq->refill_count; i++) {
87 		page = dev_alloc_page();
88 		if (unlikely(!page)) {
89 			dev_err(oq->dev, "refill: rx buffer alloc failed\n");
90 			oq->stats->alloc_failures++;
91 			break;
92 		}
93 
94 		desc_ring[refill_idx].buffer_ptr = dma_map_page(oq->dev, page, 0,
95 								PAGE_SIZE, DMA_FROM_DEVICE);
96 		if (dma_mapping_error(oq->dev, desc_ring[refill_idx].buffer_ptr)) {
97 			dev_err(oq->dev,
98 				"OQ-%d buffer refill: DMA mapping error!\n",
99 				oq->q_no);
100 			put_page(page);
101 			oq->stats->alloc_failures++;
102 			break;
103 		}
104 		oq->buff_info[refill_idx].page = page;
105 		refill_idx++;
106 		if (refill_idx == oq->max_count)
107 			refill_idx = 0;
108 	}
109 	oq->host_refill_idx = refill_idx;
110 	oq->refill_count -= i;
111 
112 	return i;
113 }
114 
115 /**
116  * octep_vf_setup_oq() - Setup a Rx queue.
117  *
118  * @oct: Octeon device private data structure.
119  * @q_no: Rx queue number to be setup.
120  *
121  * Allocate resources for a Rx queue.
122  */
octep_vf_setup_oq(struct octep_vf_device * oct,int q_no)123 static int octep_vf_setup_oq(struct octep_vf_device *oct, int q_no)
124 {
125 	struct octep_vf_oq *oq;
126 	u32 desc_ring_size;
127 
128 	oq = vzalloc(sizeof(*oq));
129 	if (!oq)
130 		goto create_oq_fail;
131 	oct->oq[q_no] = oq;
132 
133 	oq->octep_vf_dev = oct;
134 	oq->netdev = oct->netdev;
135 	oq->dev = &oct->pdev->dev;
136 	oq->q_no = q_no;
137 	oq->stats = &oct->stats_oq[q_no];
138 	oq->max_count = CFG_GET_OQ_NUM_DESC(oct->conf);
139 	oq->ring_size_mask = oq->max_count - 1;
140 	oq->buffer_size = CFG_GET_OQ_BUF_SIZE(oct->conf);
141 	oq->max_single_buffer_size = oq->buffer_size - OCTEP_VF_OQ_RESP_HW_SIZE;
142 
143 	/* When the hardware/firmware supports additional capabilities,
144 	 * additional header is filled-in by Octeon after length field in
145 	 * Rx packets. this header contains additional packet information.
146 	 */
147 	if (oct->fw_info.rx_ol_flags)
148 		oq->max_single_buffer_size -= OCTEP_VF_OQ_RESP_HW_EXT_SIZE;
149 
150 	oq->refill_threshold = CFG_GET_OQ_REFILL_THRESHOLD(oct->conf);
151 
152 	desc_ring_size = oq->max_count * OCTEP_VF_OQ_DESC_SIZE;
153 	oq->desc_ring = dma_alloc_coherent(oq->dev, desc_ring_size,
154 					   &oq->desc_ring_dma, GFP_KERNEL);
155 
156 	if (unlikely(!oq->desc_ring)) {
157 		dev_err(oq->dev,
158 			"Failed to allocate DMA memory for OQ-%d !!\n", q_no);
159 		goto desc_dma_alloc_err;
160 	}
161 
162 	oq->buff_info = vzalloc(oq->max_count * OCTEP_VF_OQ_RECVBUF_SIZE);
163 
164 	if (unlikely(!oq->buff_info)) {
165 		dev_err(&oct->pdev->dev,
166 			"Failed to allocate buffer info for OQ-%d\n", q_no);
167 		goto buf_list_err;
168 	}
169 
170 	if (octep_vf_oq_fill_ring_buffers(oq))
171 		goto oq_fill_buff_err;
172 
173 	octep_vf_oq_reset_indices(oq);
174 	oct->hw_ops.setup_oq_regs(oct, q_no);
175 	oct->num_oqs++;
176 
177 	return 0;
178 
179 oq_fill_buff_err:
180 	vfree(oq->buff_info);
181 	oq->buff_info = NULL;
182 buf_list_err:
183 	dma_free_coherent(oq->dev, desc_ring_size,
184 			  oq->desc_ring, oq->desc_ring_dma);
185 	oq->desc_ring = NULL;
186 desc_dma_alloc_err:
187 	vfree(oq);
188 	oct->oq[q_no] = NULL;
189 create_oq_fail:
190 	return -ENOMEM;
191 }
192 
193 /**
194  * octep_vf_oq_free_ring_buffers() - Free ring buffers.
195  *
196  * @oq: Octeon Rx queue data structure.
197  *
198  * Free receive buffers in unused Rx queue descriptors.
199  */
octep_vf_oq_free_ring_buffers(struct octep_vf_oq * oq)200 static void octep_vf_oq_free_ring_buffers(struct octep_vf_oq *oq)
201 {
202 	struct octep_vf_oq_desc_hw *desc_ring = oq->desc_ring;
203 	int  i;
204 
205 	if (!oq->desc_ring || !oq->buff_info)
206 		return;
207 
208 	for (i = 0; i < oq->max_count; i++)  {
209 		if (oq->buff_info[i].page) {
210 			dma_unmap_page(oq->dev, desc_ring[i].buffer_ptr,
211 				       PAGE_SIZE, DMA_FROM_DEVICE);
212 			put_page(oq->buff_info[i].page);
213 			oq->buff_info[i].page = NULL;
214 			desc_ring[i].buffer_ptr = 0;
215 		}
216 	}
217 	octep_vf_oq_reset_indices(oq);
218 }
219 
220 /**
221  * octep_vf_free_oq() - Free Rx queue resources.
222  *
223  * @oq: Octeon Rx queue data structure.
224  *
225  * Free all resources of a Rx queue.
226  */
octep_vf_free_oq(struct octep_vf_oq * oq)227 static int octep_vf_free_oq(struct octep_vf_oq *oq)
228 {
229 	struct octep_vf_device *oct = oq->octep_vf_dev;
230 	int q_no = oq->q_no;
231 
232 	octep_vf_oq_free_ring_buffers(oq);
233 
234 	vfree(oq->buff_info);
235 
236 	if (oq->desc_ring)
237 		dma_free_coherent(oq->dev,
238 				  oq->max_count * OCTEP_VF_OQ_DESC_SIZE,
239 				  oq->desc_ring, oq->desc_ring_dma);
240 
241 	vfree(oq);
242 	oct->oq[q_no] = NULL;
243 	oct->num_oqs--;
244 	return 0;
245 }
246 
247 /**
248  * octep_vf_setup_oqs() - setup resources for all Rx queues.
249  *
250  * @oct: Octeon device private data structure.
251  */
octep_vf_setup_oqs(struct octep_vf_device * oct)252 int octep_vf_setup_oqs(struct octep_vf_device *oct)
253 {
254 	int i, retval = 0;
255 
256 	oct->num_oqs = 0;
257 	for (i = 0; i < CFG_GET_PORTS_ACTIVE_IO_RINGS(oct->conf); i++) {
258 		retval = octep_vf_setup_oq(oct, i);
259 		if (retval) {
260 			dev_err(&oct->pdev->dev,
261 				"Failed to setup OQ(RxQ)-%d.\n", i);
262 			goto oq_setup_err;
263 		}
264 		dev_dbg(&oct->pdev->dev, "Successfully setup OQ(RxQ)-%d.\n", i);
265 	}
266 
267 	return 0;
268 
269 oq_setup_err:
270 	while (i) {
271 		i--;
272 		octep_vf_free_oq(oct->oq[i]);
273 	}
274 	return retval;
275 }
276 
277 /**
278  * octep_vf_oq_dbell_init() - Initialize Rx queue doorbell.
279  *
280  * @oct: Octeon device private data structure.
281  *
282  * Write number of descriptors to Rx queue doorbell register.
283  */
octep_vf_oq_dbell_init(struct octep_vf_device * oct)284 void octep_vf_oq_dbell_init(struct octep_vf_device *oct)
285 {
286 	int i;
287 
288 	for (i = 0; i < oct->num_oqs; i++)
289 		writel(oct->oq[i]->max_count, oct->oq[i]->pkts_credit_reg);
290 }
291 
292 /**
293  * octep_vf_free_oqs() - Free resources of all Rx queues.
294  *
295  * @oct: Octeon device private data structure.
296  */
octep_vf_free_oqs(struct octep_vf_device * oct)297 void octep_vf_free_oqs(struct octep_vf_device *oct)
298 {
299 	int i;
300 
301 	for (i = 0; i < CFG_GET_PORTS_ACTIVE_IO_RINGS(oct->conf); i++) {
302 		if (!oct->oq[i])
303 			continue;
304 		octep_vf_free_oq(oct->oq[i]);
305 		dev_dbg(&oct->pdev->dev,
306 			"Successfully freed OQ(RxQ)-%d.\n", i);
307 	}
308 }
309 
310 /**
311  * octep_vf_oq_check_hw_for_pkts() - Check for new Rx packets.
312  *
313  * @oct: Octeon device private data structure.
314  * @oq: Octeon Rx queue data structure.
315  *
316  * Return: packets received after previous check.
317  */
octep_vf_oq_check_hw_for_pkts(struct octep_vf_device * oct,struct octep_vf_oq * oq)318 static int octep_vf_oq_check_hw_for_pkts(struct octep_vf_device *oct,
319 					 struct octep_vf_oq *oq)
320 {
321 	u32 pkt_count, new_pkts;
322 
323 	pkt_count = readl(oq->pkts_sent_reg);
324 	new_pkts = pkt_count - oq->last_pkt_count;
325 
326 	/* Clear the hardware packets counter register if the rx queue is
327 	 * being processed continuously with-in a single interrupt and
328 	 * reached half its max value.
329 	 * this counter is not cleared every time read, to save write cycles.
330 	 */
331 	if (unlikely(pkt_count > 0xF0000000U)) {
332 		writel(pkt_count, oq->pkts_sent_reg);
333 		pkt_count = readl(oq->pkts_sent_reg);
334 		new_pkts += pkt_count;
335 	}
336 	oq->last_pkt_count = pkt_count;
337 	oq->pkts_pending += new_pkts;
338 	return new_pkts;
339 }
340 
341 /**
342  * __octep_vf_oq_process_rx() - Process hardware Rx queue and push to stack.
343  *
344  * @oct: Octeon device private data structure.
345  * @oq: Octeon Rx queue data structure.
346  * @pkts_to_process: number of packets to be processed.
347  *
348  * Process the new packets in Rx queue.
349  * Packets larger than single Rx buffer arrive in consecutive descriptors.
350  * But, count returned by the API only accounts full packets, not fragments.
351  *
352  * Return: number of packets processed and pushed to stack.
353  */
__octep_vf_oq_process_rx(struct octep_vf_device * oct,struct octep_vf_oq * oq,u16 pkts_to_process)354 static int __octep_vf_oq_process_rx(struct octep_vf_device *oct,
355 				    struct octep_vf_oq *oq, u16 pkts_to_process)
356 {
357 	struct octep_vf_oq_resp_hw_ext *resp_hw_ext = NULL;
358 	netdev_features_t feat = oq->netdev->features;
359 	struct octep_vf_rx_buffer *buff_info;
360 	struct octep_vf_oq_resp_hw *resp_hw;
361 	u32 pkt, rx_bytes, desc_used;
362 	u16 data_offset, rx_ol_flags;
363 	struct sk_buff *skb;
364 	u32 read_idx;
365 
366 	read_idx = oq->host_read_idx;
367 	rx_bytes = 0;
368 	desc_used = 0;
369 	for (pkt = 0; pkt < pkts_to_process; pkt++) {
370 		buff_info = (struct octep_vf_rx_buffer *)&oq->buff_info[read_idx];
371 		dma_unmap_page(oq->dev, oq->desc_ring[read_idx].buffer_ptr,
372 			       PAGE_SIZE, DMA_FROM_DEVICE);
373 		resp_hw = page_address(buff_info->page);
374 		buff_info->page = NULL;
375 
376 		/* Swap the length field that is in Big-Endian to CPU */
377 		buff_info->len = be64_to_cpu(resp_hw->length);
378 		if (oct->fw_info.rx_ol_flags) {
379 			/* Extended response header is immediately after
380 			 * response header (resp_hw)
381 			 */
382 			resp_hw_ext = (struct octep_vf_oq_resp_hw_ext *)
383 				      (resp_hw + 1);
384 			buff_info->len -= OCTEP_VF_OQ_RESP_HW_EXT_SIZE;
385 			/* Packet Data is immediately after
386 			 * extended response header.
387 			 */
388 			data_offset = OCTEP_VF_OQ_RESP_HW_SIZE +
389 				      OCTEP_VF_OQ_RESP_HW_EXT_SIZE;
390 			rx_ol_flags = resp_hw_ext->rx_ol_flags;
391 		} else {
392 			/* Data is immediately after
393 			 * Hardware Rx response header.
394 			 */
395 			data_offset = OCTEP_VF_OQ_RESP_HW_SIZE;
396 			rx_ol_flags = 0;
397 		}
398 		rx_bytes += buff_info->len;
399 
400 		if (buff_info->len <= oq->max_single_buffer_size) {
401 			skb = napi_build_skb((void *)resp_hw, PAGE_SIZE);
402 			skb_reserve(skb, data_offset);
403 			skb_put(skb, buff_info->len);
404 			read_idx++;
405 			desc_used++;
406 			if (read_idx == oq->max_count)
407 				read_idx = 0;
408 		} else {
409 			struct skb_shared_info *shinfo;
410 			u16 data_len;
411 
412 			skb = napi_build_skb((void *)resp_hw, PAGE_SIZE);
413 			skb_reserve(skb, data_offset);
414 			/* Head fragment includes response header(s);
415 			 * subsequent fragments contains only data.
416 			 */
417 			skb_put(skb, oq->max_single_buffer_size);
418 			read_idx++;
419 			desc_used++;
420 			if (read_idx == oq->max_count)
421 				read_idx = 0;
422 
423 			shinfo = skb_shinfo(skb);
424 			data_len = buff_info->len - oq->max_single_buffer_size;
425 			while (data_len) {
426 				dma_unmap_page(oq->dev, oq->desc_ring[read_idx].buffer_ptr,
427 					       PAGE_SIZE, DMA_FROM_DEVICE);
428 				buff_info = (struct octep_vf_rx_buffer *)
429 					    &oq->buff_info[read_idx];
430 				if (data_len < oq->buffer_size) {
431 					buff_info->len = data_len;
432 					data_len = 0;
433 				} else {
434 					buff_info->len = oq->buffer_size;
435 					data_len -= oq->buffer_size;
436 				}
437 
438 				skb_add_rx_frag(skb, shinfo->nr_frags,
439 						buff_info->page, 0,
440 						buff_info->len,
441 						buff_info->len);
442 				buff_info->page = NULL;
443 				read_idx++;
444 				desc_used++;
445 				if (read_idx == oq->max_count)
446 					read_idx = 0;
447 			}
448 		}
449 
450 		skb->dev = oq->netdev;
451 		skb->protocol = eth_type_trans(skb, skb->dev);
452 		if (feat & NETIF_F_RXCSUM &&
453 		    OCTEP_VF_RX_CSUM_VERIFIED(rx_ol_flags))
454 			skb->ip_summed = CHECKSUM_UNNECESSARY;
455 		else
456 			skb->ip_summed = CHECKSUM_NONE;
457 		napi_gro_receive(oq->napi, skb);
458 	}
459 
460 	oq->host_read_idx = read_idx;
461 	oq->refill_count += desc_used;
462 	oq->stats->packets += pkt;
463 	oq->stats->bytes += rx_bytes;
464 
465 	return pkt;
466 }
467 
468 /**
469  * octep_vf_oq_process_rx() - Process Rx queue.
470  *
471  * @oq: Octeon Rx queue data structure.
472  * @budget: max number of packets can be processed in one invocation.
473  *
474  * Check for newly received packets and process them.
475  * Keeps checking for new packets until budget is used or no new packets seen.
476  *
477  * Return: number of packets processed.
478  */
octep_vf_oq_process_rx(struct octep_vf_oq * oq,int budget)479 int octep_vf_oq_process_rx(struct octep_vf_oq *oq, int budget)
480 {
481 	u32 pkts_available, pkts_processed, total_pkts_processed;
482 	struct octep_vf_device *oct = oq->octep_vf_dev;
483 
484 	pkts_available = 0;
485 	pkts_processed = 0;
486 	total_pkts_processed = 0;
487 	while (total_pkts_processed < budget) {
488 		 /* update pending count only when current one exhausted */
489 		if (oq->pkts_pending == 0)
490 			octep_vf_oq_check_hw_for_pkts(oct, oq);
491 		pkts_available = min(budget - total_pkts_processed,
492 				     oq->pkts_pending);
493 		if (!pkts_available)
494 			break;
495 
496 		pkts_processed = __octep_vf_oq_process_rx(oct, oq,
497 							  pkts_available);
498 		oq->pkts_pending -= pkts_processed;
499 		total_pkts_processed += pkts_processed;
500 	}
501 
502 	if (oq->refill_count >= oq->refill_threshold) {
503 		u32 desc_refilled = octep_vf_oq_refill(oct, oq);
504 
505 		/* flush pending writes before updating credits */
506 		smp_wmb();
507 		writel(desc_refilled, oq->pkts_credit_reg);
508 	}
509 
510 	return total_pkts_processed;
511 }
512