1 // SPDX-License-Identifier: GPL-2.0
2 #include <linux/debugfs.h>
3 #include <linux/delay.h>
4 #include <linux/gpio/consumer.h>
5 #include <linux/hwmon.h>
6 #include <linux/i2c.h>
7 #include <linux/interrupt.h>
8 #include <linux/jiffies.h>
9 #include <linux/mdio/mdio-i2c.h>
10 #include <linux/module.h>
11 #include <linux/mutex.h>
12 #include <linux/of.h>
13 #include <linux/phy.h>
14 #include <linux/platform_device.h>
15 #include <linux/rtnetlink.h>
16 #include <linux/slab.h>
17 #include <linux/workqueue.h>
18 
19 #include "sfp.h"
20 #include "swphy.h"
21 
22 enum {
23 	GPIO_MODDEF0,
24 	GPIO_LOS,
25 	GPIO_TX_FAULT,
26 	GPIO_TX_DISABLE,
27 	GPIO_RS0,
28 	GPIO_RS1,
29 	GPIO_MAX,
30 
31 	SFP_F_PRESENT = BIT(GPIO_MODDEF0),
32 	SFP_F_LOS = BIT(GPIO_LOS),
33 	SFP_F_TX_FAULT = BIT(GPIO_TX_FAULT),
34 	SFP_F_TX_DISABLE = BIT(GPIO_TX_DISABLE),
35 	SFP_F_RS0 = BIT(GPIO_RS0),
36 	SFP_F_RS1 = BIT(GPIO_RS1),
37 
38 	SFP_F_OUTPUTS = SFP_F_TX_DISABLE | SFP_F_RS0 | SFP_F_RS1,
39 
40 	SFP_E_INSERT = 0,
41 	SFP_E_REMOVE,
42 	SFP_E_DEV_ATTACH,
43 	SFP_E_DEV_DETACH,
44 	SFP_E_DEV_DOWN,
45 	SFP_E_DEV_UP,
46 	SFP_E_TX_FAULT,
47 	SFP_E_TX_CLEAR,
48 	SFP_E_LOS_HIGH,
49 	SFP_E_LOS_LOW,
50 	SFP_E_TIMEOUT,
51 
52 	SFP_MOD_EMPTY = 0,
53 	SFP_MOD_ERROR,
54 	SFP_MOD_PROBE,
55 	SFP_MOD_WAITDEV,
56 	SFP_MOD_HPOWER,
57 	SFP_MOD_WAITPWR,
58 	SFP_MOD_PRESENT,
59 
60 	SFP_DEV_DETACHED = 0,
61 	SFP_DEV_DOWN,
62 	SFP_DEV_UP,
63 
64 	SFP_S_DOWN = 0,
65 	SFP_S_FAIL,
66 	SFP_S_WAIT,
67 	SFP_S_INIT,
68 	SFP_S_INIT_PHY,
69 	SFP_S_INIT_TX_FAULT,
70 	SFP_S_WAIT_LOS,
71 	SFP_S_LINK_UP,
72 	SFP_S_TX_FAULT,
73 	SFP_S_REINIT,
74 	SFP_S_TX_DISABLE,
75 };
76 
77 static const char  * const mod_state_strings[] = {
78 	[SFP_MOD_EMPTY] = "empty",
79 	[SFP_MOD_ERROR] = "error",
80 	[SFP_MOD_PROBE] = "probe",
81 	[SFP_MOD_WAITDEV] = "waitdev",
82 	[SFP_MOD_HPOWER] = "hpower",
83 	[SFP_MOD_WAITPWR] = "waitpwr",
84 	[SFP_MOD_PRESENT] = "present",
85 };
86 
mod_state_to_str(unsigned short mod_state)87 static const char *mod_state_to_str(unsigned short mod_state)
88 {
89 	if (mod_state >= ARRAY_SIZE(mod_state_strings))
90 		return "Unknown module state";
91 	return mod_state_strings[mod_state];
92 }
93 
94 static const char * const dev_state_strings[] = {
95 	[SFP_DEV_DETACHED] = "detached",
96 	[SFP_DEV_DOWN] = "down",
97 	[SFP_DEV_UP] = "up",
98 };
99 
dev_state_to_str(unsigned short dev_state)100 static const char *dev_state_to_str(unsigned short dev_state)
101 {
102 	if (dev_state >= ARRAY_SIZE(dev_state_strings))
103 		return "Unknown device state";
104 	return dev_state_strings[dev_state];
105 }
106 
107 static const char * const event_strings[] = {
108 	[SFP_E_INSERT] = "insert",
109 	[SFP_E_REMOVE] = "remove",
110 	[SFP_E_DEV_ATTACH] = "dev_attach",
111 	[SFP_E_DEV_DETACH] = "dev_detach",
112 	[SFP_E_DEV_DOWN] = "dev_down",
113 	[SFP_E_DEV_UP] = "dev_up",
114 	[SFP_E_TX_FAULT] = "tx_fault",
115 	[SFP_E_TX_CLEAR] = "tx_clear",
116 	[SFP_E_LOS_HIGH] = "los_high",
117 	[SFP_E_LOS_LOW] = "los_low",
118 	[SFP_E_TIMEOUT] = "timeout",
119 };
120 
event_to_str(unsigned short event)121 static const char *event_to_str(unsigned short event)
122 {
123 	if (event >= ARRAY_SIZE(event_strings))
124 		return "Unknown event";
125 	return event_strings[event];
126 }
127 
128 static const char * const sm_state_strings[] = {
129 	[SFP_S_DOWN] = "down",
130 	[SFP_S_FAIL] = "fail",
131 	[SFP_S_WAIT] = "wait",
132 	[SFP_S_INIT] = "init",
133 	[SFP_S_INIT_PHY] = "init_phy",
134 	[SFP_S_INIT_TX_FAULT] = "init_tx_fault",
135 	[SFP_S_WAIT_LOS] = "wait_los",
136 	[SFP_S_LINK_UP] = "link_up",
137 	[SFP_S_TX_FAULT] = "tx_fault",
138 	[SFP_S_REINIT] = "reinit",
139 	[SFP_S_TX_DISABLE] = "tx_disable",
140 };
141 
sm_state_to_str(unsigned short sm_state)142 static const char *sm_state_to_str(unsigned short sm_state)
143 {
144 	if (sm_state >= ARRAY_SIZE(sm_state_strings))
145 		return "Unknown state";
146 	return sm_state_strings[sm_state];
147 }
148 
149 static const char *gpio_names[] = {
150 	"mod-def0",
151 	"los",
152 	"tx-fault",
153 	"tx-disable",
154 	"rate-select0",
155 	"rate-select1",
156 };
157 
158 static const enum gpiod_flags gpio_flags[] = {
159 	GPIOD_IN,
160 	GPIOD_IN,
161 	GPIOD_IN,
162 	GPIOD_ASIS,
163 	GPIOD_ASIS,
164 	GPIOD_ASIS,
165 };
166 
167 /* t_start_up (SFF-8431) or t_init (SFF-8472) is the time required for a
168  * non-cooled module to initialise its laser safety circuitry. We wait
169  * an initial T_WAIT period before we check the tx fault to give any PHY
170  * on board (for a copper SFP) time to initialise.
171  */
172 #define T_WAIT			msecs_to_jiffies(50)
173 #define T_START_UP		msecs_to_jiffies(300)
174 #define T_START_UP_BAD_GPON	msecs_to_jiffies(60000)
175 
176 /* t_reset is the time required to assert the TX_DISABLE signal to reset
177  * an indicated TX_FAULT.
178  */
179 #define T_RESET_US		10
180 #define T_FAULT_RECOVER		msecs_to_jiffies(1000)
181 
182 /* N_FAULT_INIT is the number of recovery attempts at module initialisation
183  * time. If the TX_FAULT signal is not deasserted after this number of
184  * attempts at clearing it, we decide that the module is faulty.
185  * N_FAULT is the same but after the module has initialised.
186  */
187 #define N_FAULT_INIT		5
188 #define N_FAULT			5
189 
190 /* T_PHY_RETRY is the time interval between attempts to probe the PHY.
191  * R_PHY_RETRY is the number of attempts.
192  */
193 #define T_PHY_RETRY		msecs_to_jiffies(50)
194 #define R_PHY_RETRY		25
195 
196 /* SFP module presence detection is poor: the three MOD DEF signals are
197  * the same length on the PCB, which means it's possible for MOD DEF 0 to
198  * connect before the I2C bus on MOD DEF 1/2.
199  *
200  * The SFF-8472 specifies t_serial ("Time from power on until module is
201  * ready for data transmission over the two wire serial bus.") as 300ms.
202  */
203 #define T_SERIAL		msecs_to_jiffies(300)
204 #define T_HPOWER_LEVEL		msecs_to_jiffies(300)
205 #define T_PROBE_RETRY_INIT	msecs_to_jiffies(100)
206 #define R_PROBE_RETRY_INIT	10
207 #define T_PROBE_RETRY_SLOW	msecs_to_jiffies(5000)
208 #define R_PROBE_RETRY_SLOW	12
209 
210 /* SFP modules appear to always have their PHY configured for bus address
211  * 0x56 (which with mdio-i2c, translates to a PHY address of 22).
212  * RollBall SFPs access phy via SFP Enhanced Digital Diagnostic Interface
213  * via address 0x51 (mdio-i2c will use RollBall protocol on this address).
214  */
215 #define SFP_PHY_ADDR		22
216 #define SFP_PHY_ADDR_ROLLBALL	17
217 
218 /* SFP_EEPROM_BLOCK_SIZE is the size of data chunk to read the EEPROM
219  * at a time. Some SFP modules and also some Linux I2C drivers do not like
220  * reads longer than 16 bytes.
221  */
222 #define SFP_EEPROM_BLOCK_SIZE	16
223 
224 struct sff_data {
225 	unsigned int gpios;
226 	bool (*module_supported)(const struct sfp_eeprom_id *id);
227 };
228 
229 struct sfp {
230 	struct device *dev;
231 	struct i2c_adapter *i2c;
232 	struct mii_bus *i2c_mii;
233 	struct sfp_bus *sfp_bus;
234 	enum mdio_i2c_proto mdio_protocol;
235 	struct phy_device *mod_phy;
236 	const struct sff_data *type;
237 	size_t i2c_block_size;
238 	u32 max_power_mW;
239 
240 	unsigned int (*get_state)(struct sfp *);
241 	void (*set_state)(struct sfp *, unsigned int);
242 	int (*read)(struct sfp *, bool, u8, void *, size_t);
243 	int (*write)(struct sfp *, bool, u8, void *, size_t);
244 
245 	struct gpio_desc *gpio[GPIO_MAX];
246 	int gpio_irq[GPIO_MAX];
247 
248 	bool need_poll;
249 
250 	/* Access rules:
251 	 * state_hw_drive: st_mutex held
252 	 * state_hw_mask: st_mutex held
253 	 * state_soft_mask: st_mutex held
254 	 * state: st_mutex held unless reading input bits
255 	 */
256 	struct mutex st_mutex;			/* Protects state */
257 	unsigned int state_hw_drive;
258 	unsigned int state_hw_mask;
259 	unsigned int state_soft_mask;
260 	unsigned int state_ignore_mask;
261 	unsigned int state;
262 
263 	struct delayed_work poll;
264 	struct delayed_work timeout;
265 	struct mutex sm_mutex;			/* Protects state machine */
266 	unsigned char sm_mod_state;
267 	unsigned char sm_mod_tries_init;
268 	unsigned char sm_mod_tries;
269 	unsigned char sm_dev_state;
270 	unsigned short sm_state;
271 	unsigned char sm_fault_retries;
272 	unsigned char sm_phy_retries;
273 
274 	struct sfp_eeprom_id id;
275 	unsigned int module_power_mW;
276 	unsigned int module_t_start_up;
277 	unsigned int module_t_wait;
278 	unsigned int phy_t_retry;
279 
280 	unsigned int rate_kbd;
281 	unsigned int rs_threshold_kbd;
282 	unsigned int rs_state_mask;
283 
284 	bool have_a2;
285 
286 	const struct sfp_quirk *quirk;
287 
288 #if IS_ENABLED(CONFIG_HWMON)
289 	struct sfp_diag diag;
290 	struct delayed_work hwmon_probe;
291 	unsigned int hwmon_tries;
292 	struct device *hwmon_dev;
293 	char *hwmon_name;
294 #endif
295 
296 #if IS_ENABLED(CONFIG_DEBUG_FS)
297 	struct dentry *debugfs_dir;
298 #endif
299 };
300 
sff_module_supported(const struct sfp_eeprom_id * id)301 static bool sff_module_supported(const struct sfp_eeprom_id *id)
302 {
303 	return id->base.phys_id == SFF8024_ID_SFF_8472 &&
304 	       id->base.phys_ext_id == SFP_PHYS_EXT_ID_SFP;
305 }
306 
307 static const struct sff_data sff_data = {
308 	.gpios = SFP_F_LOS | SFP_F_TX_FAULT | SFP_F_TX_DISABLE,
309 	.module_supported = sff_module_supported,
310 };
311 
sfp_module_supported(const struct sfp_eeprom_id * id)312 static bool sfp_module_supported(const struct sfp_eeprom_id *id)
313 {
314 	if (id->base.phys_id == SFF8024_ID_SFP &&
315 	    id->base.phys_ext_id == SFP_PHYS_EXT_ID_SFP)
316 		return true;
317 
318 	/* SFP GPON module Ubiquiti U-Fiber Instant has in its EEPROM stored
319 	 * phys id SFF instead of SFP. Therefore mark this module explicitly
320 	 * as supported based on vendor name and pn match.
321 	 */
322 	if (id->base.phys_id == SFF8024_ID_SFF_8472 &&
323 	    id->base.phys_ext_id == SFP_PHYS_EXT_ID_SFP &&
324 	    !memcmp(id->base.vendor_name, "UBNT            ", 16) &&
325 	    !memcmp(id->base.vendor_pn, "UF-INSTANT      ", 16))
326 		return true;
327 
328 	return false;
329 }
330 
331 static const struct sff_data sfp_data = {
332 	.gpios = SFP_F_PRESENT | SFP_F_LOS | SFP_F_TX_FAULT |
333 		 SFP_F_TX_DISABLE | SFP_F_RS0 | SFP_F_RS1,
334 	.module_supported = sfp_module_supported,
335 };
336 
337 static const struct of_device_id sfp_of_match[] = {
338 	{ .compatible = "sff,sff", .data = &sff_data, },
339 	{ .compatible = "sff,sfp", .data = &sfp_data, },
340 	{ },
341 };
342 MODULE_DEVICE_TABLE(of, sfp_of_match);
343 
sfp_fixup_long_startup(struct sfp * sfp)344 static void sfp_fixup_long_startup(struct sfp *sfp)
345 {
346 	sfp->module_t_start_up = T_START_UP_BAD_GPON;
347 }
348 
sfp_fixup_ignore_los(struct sfp * sfp)349 static void sfp_fixup_ignore_los(struct sfp *sfp)
350 {
351 	/* This forces LOS to zero, so we ignore transitions */
352 	sfp->state_ignore_mask |= SFP_F_LOS;
353 	/* Make sure that LOS options are clear */
354 	sfp->id.ext.options &= ~cpu_to_be16(SFP_OPTIONS_LOS_INVERTED |
355 					    SFP_OPTIONS_LOS_NORMAL);
356 }
357 
sfp_fixup_ignore_tx_fault(struct sfp * sfp)358 static void sfp_fixup_ignore_tx_fault(struct sfp *sfp)
359 {
360 	sfp->state_ignore_mask |= SFP_F_TX_FAULT;
361 }
362 
sfp_fixup_nokia(struct sfp * sfp)363 static void sfp_fixup_nokia(struct sfp *sfp)
364 {
365 	sfp_fixup_long_startup(sfp);
366 	sfp_fixup_ignore_los(sfp);
367 }
368 
369 // For 10GBASE-T short-reach modules
sfp_fixup_10gbaset_30m(struct sfp * sfp)370 static void sfp_fixup_10gbaset_30m(struct sfp *sfp)
371 {
372 	sfp->id.base.connector = SFF8024_CONNECTOR_RJ45;
373 	sfp->id.base.extended_cc = SFF8024_ECC_10GBASE_T_SR;
374 }
375 
sfp_fixup_rollball(struct sfp * sfp)376 static void sfp_fixup_rollball(struct sfp *sfp)
377 {
378 	sfp->mdio_protocol = MDIO_I2C_ROLLBALL;
379 
380 	/* RollBall modules may disallow access to PHY registers for up to 25
381 	 * seconds, and the reads return 0xffff before that. Increase the time
382 	 * between PHY probe retries from 50ms to 1s so that we will wait for
383 	 * the PHY for a sufficient amount of time.
384 	 */
385 	sfp->phy_t_retry = msecs_to_jiffies(1000);
386 }
387 
sfp_fixup_rollball_wait4s(struct sfp * sfp)388 static void sfp_fixup_rollball_wait4s(struct sfp *sfp)
389 {
390 	sfp_fixup_rollball(sfp);
391 
392 	/* The RollBall fixup is not enough for FS modules, the PHY chip inside
393 	 * them does not return 0xffff for PHY ID registers in all MMDs for the
394 	 * while initializing. They need a 4 second wait before accessing PHY.
395 	 */
396 	sfp->module_t_wait = msecs_to_jiffies(4000);
397 }
398 
sfp_fixup_fs_10gt(struct sfp * sfp)399 static void sfp_fixup_fs_10gt(struct sfp *sfp)
400 {
401 	sfp_fixup_10gbaset_30m(sfp);
402 	sfp_fixup_rollball_wait4s(sfp);
403 }
404 
sfp_fixup_halny_gsfp(struct sfp * sfp)405 static void sfp_fixup_halny_gsfp(struct sfp *sfp)
406 {
407 	/* Ignore the TX_FAULT and LOS signals on this module.
408 	 * these are possibly used for other purposes on this
409 	 * module, e.g. a serial port.
410 	 */
411 	sfp->state_hw_mask &= ~(SFP_F_TX_FAULT | SFP_F_LOS);
412 }
413 
sfp_fixup_rollball_cc(struct sfp * sfp)414 static void sfp_fixup_rollball_cc(struct sfp *sfp)
415 {
416 	sfp_fixup_rollball(sfp);
417 
418 	/* Some RollBall SFPs may have wrong (zero) extended compliance code
419 	 * burned in EEPROM. For PHY probing we need the correct one.
420 	 */
421 	sfp->id.base.extended_cc = SFF8024_ECC_10GBASE_T_SFI;
422 }
423 
sfp_quirk_2500basex(const struct sfp_eeprom_id * id,unsigned long * modes,unsigned long * interfaces)424 static void sfp_quirk_2500basex(const struct sfp_eeprom_id *id,
425 				unsigned long *modes,
426 				unsigned long *interfaces)
427 {
428 	linkmode_set_bit(ETHTOOL_LINK_MODE_2500baseX_Full_BIT, modes);
429 	__set_bit(PHY_INTERFACE_MODE_2500BASEX, interfaces);
430 }
431 
sfp_quirk_disable_autoneg(const struct sfp_eeprom_id * id,unsigned long * modes,unsigned long * interfaces)432 static void sfp_quirk_disable_autoneg(const struct sfp_eeprom_id *id,
433 				      unsigned long *modes,
434 				      unsigned long *interfaces)
435 {
436 	linkmode_clear_bit(ETHTOOL_LINK_MODE_Autoneg_BIT, modes);
437 }
438 
sfp_quirk_oem_2_5g(const struct sfp_eeprom_id * id,unsigned long * modes,unsigned long * interfaces)439 static void sfp_quirk_oem_2_5g(const struct sfp_eeprom_id *id,
440 			       unsigned long *modes,
441 			       unsigned long *interfaces)
442 {
443 	/* Copper 2.5G SFP */
444 	linkmode_set_bit(ETHTOOL_LINK_MODE_2500baseT_Full_BIT, modes);
445 	__set_bit(PHY_INTERFACE_MODE_2500BASEX, interfaces);
446 	sfp_quirk_disable_autoneg(id, modes, interfaces);
447 }
448 
sfp_quirk_ubnt_uf_instant(const struct sfp_eeprom_id * id,unsigned long * modes,unsigned long * interfaces)449 static void sfp_quirk_ubnt_uf_instant(const struct sfp_eeprom_id *id,
450 				      unsigned long *modes,
451 				      unsigned long *interfaces)
452 {
453 	/* Ubiquiti U-Fiber Instant module claims that support all transceiver
454 	 * types including 10G Ethernet which is not truth. So clear all claimed
455 	 * modes and set only one mode which module supports: 1000baseX_Full.
456 	 */
457 	linkmode_zero(modes);
458 	linkmode_set_bit(ETHTOOL_LINK_MODE_1000baseX_Full_BIT, modes);
459 }
460 
461 #define SFP_QUIRK(_v, _p, _m, _f) \
462 	{ .vendor = _v, .part = _p, .modes = _m, .fixup = _f, }
463 #define SFP_QUIRK_M(_v, _p, _m) SFP_QUIRK(_v, _p, _m, NULL)
464 #define SFP_QUIRK_F(_v, _p, _f) SFP_QUIRK(_v, _p, NULL, _f)
465 
466 static const struct sfp_quirk sfp_quirks[] = {
467 	// Alcatel Lucent G-010S-P can operate at 2500base-X, but incorrectly
468 	// report 2500MBd NRZ in their EEPROM
469 	SFP_QUIRK("ALCATELLUCENT", "G010SP", sfp_quirk_2500basex,
470 		  sfp_fixup_ignore_tx_fault),
471 
472 	// Alcatel Lucent G-010S-A can operate at 2500base-X, but report 3.2GBd
473 	// NRZ in their EEPROM
474 	SFP_QUIRK("ALCATELLUCENT", "3FE46541AA", sfp_quirk_2500basex,
475 		  sfp_fixup_nokia),
476 
477 	// Fiberstore SFP-10G-T doesn't identify as copper, uses the Rollball
478 	// protocol to talk to the PHY and needs 4 sec wait before probing the
479 	// PHY.
480 	SFP_QUIRK_F("FS", "SFP-10G-T", sfp_fixup_fs_10gt),
481 
482 	// Fiberstore SFP-2.5G-T and SFP-10GM-T uses Rollball protocol to talk
483 	// to the PHY and needs 4 sec wait before probing the PHY.
484 	SFP_QUIRK_F("FS", "SFP-2.5G-T", sfp_fixup_rollball_wait4s),
485 	SFP_QUIRK_F("FS", "SFP-10GM-T", sfp_fixup_rollball_wait4s),
486 
487 	// Fiberstore GPON-ONU-34-20BI can operate at 2500base-X, but report 1.2GBd
488 	// NRZ in their EEPROM
489 	SFP_QUIRK("FS", "GPON-ONU-34-20BI", sfp_quirk_2500basex,
490 		  sfp_fixup_ignore_tx_fault),
491 
492 	SFP_QUIRK_F("HALNy", "HL-GSFP", sfp_fixup_halny_gsfp),
493 
494 	// HG MXPD-483II-F 2.5G supports 2500Base-X, but incorrectly reports
495 	// 2600MBd in their EERPOM
496 	SFP_QUIRK_M("HG GENUINE", "MXPD-483II", sfp_quirk_2500basex),
497 
498 	// Huawei MA5671A can operate at 2500base-X, but report 1.2GBd NRZ in
499 	// their EEPROM
500 	SFP_QUIRK("HUAWEI", "MA5671A", sfp_quirk_2500basex,
501 		  sfp_fixup_ignore_tx_fault),
502 
503 	// Lantech 8330-262D-E can operate at 2500base-X, but incorrectly report
504 	// 2500MBd NRZ in their EEPROM
505 	SFP_QUIRK_M("Lantech", "8330-262D-E", sfp_quirk_2500basex),
506 
507 	SFP_QUIRK_M("UBNT", "UF-INSTANT", sfp_quirk_ubnt_uf_instant),
508 
509 	// Walsun HXSX-ATR[CI]-1 don't identify as copper, and use the
510 	// Rollball protocol to talk to the PHY.
511 	SFP_QUIRK_F("Walsun", "HXSX-ATRC-1", sfp_fixup_fs_10gt),
512 	SFP_QUIRK_F("Walsun", "HXSX-ATRI-1", sfp_fixup_fs_10gt),
513 
514 	// OEM SFP-GE-T is a 1000Base-T module with broken TX_FAULT indicator
515 	SFP_QUIRK_F("OEM", "SFP-GE-T", sfp_fixup_ignore_tx_fault),
516 
517 	SFP_QUIRK_F("OEM", "SFP-10G-T", sfp_fixup_rollball_cc),
518 	SFP_QUIRK_M("OEM", "SFP-2.5G-T", sfp_quirk_oem_2_5g),
519 	SFP_QUIRK_M("OEM", "SFP-2.5G-BX10-D", sfp_quirk_2500basex),
520 	SFP_QUIRK_M("OEM", "SFP-2.5G-BX10-U", sfp_quirk_2500basex),
521 	SFP_QUIRK_F("OEM", "RTSFP-10", sfp_fixup_rollball_cc),
522 	SFP_QUIRK_F("OEM", "RTSFP-10G", sfp_fixup_rollball_cc),
523 	SFP_QUIRK_F("Turris", "RTSFP-2.5G", sfp_fixup_rollball),
524 	SFP_QUIRK_F("Turris", "RTSFP-10", sfp_fixup_rollball),
525 	SFP_QUIRK_F("Turris", "RTSFP-10G", sfp_fixup_rollball),
526 };
527 
sfp_strlen(const char * str,size_t maxlen)528 static size_t sfp_strlen(const char *str, size_t maxlen)
529 {
530 	size_t size, i;
531 
532 	/* Trailing characters should be filled with space chars, but
533 	 * some manufacturers can't read SFF-8472 and use NUL.
534 	 */
535 	for (i = 0, size = 0; i < maxlen; i++)
536 		if (str[i] != ' ' && str[i] != '\0')
537 			size = i + 1;
538 
539 	return size;
540 }
541 
sfp_match(const char * qs,const char * str,size_t len)542 static bool sfp_match(const char *qs, const char *str, size_t len)
543 {
544 	if (!qs)
545 		return true;
546 	if (strlen(qs) != len)
547 		return false;
548 	return !strncmp(qs, str, len);
549 }
550 
sfp_lookup_quirk(const struct sfp_eeprom_id * id)551 static const struct sfp_quirk *sfp_lookup_quirk(const struct sfp_eeprom_id *id)
552 {
553 	const struct sfp_quirk *q;
554 	unsigned int i;
555 	size_t vs, ps;
556 
557 	vs = sfp_strlen(id->base.vendor_name, ARRAY_SIZE(id->base.vendor_name));
558 	ps = sfp_strlen(id->base.vendor_pn, ARRAY_SIZE(id->base.vendor_pn));
559 
560 	for (i = 0, q = sfp_quirks; i < ARRAY_SIZE(sfp_quirks); i++, q++)
561 		if (sfp_match(q->vendor, id->base.vendor_name, vs) &&
562 		    sfp_match(q->part, id->base.vendor_pn, ps))
563 			return q;
564 
565 	return NULL;
566 }
567 
568 static unsigned long poll_jiffies;
569 
sfp_gpio_get_state(struct sfp * sfp)570 static unsigned int sfp_gpio_get_state(struct sfp *sfp)
571 {
572 	unsigned int i, state, v;
573 
574 	for (i = state = 0; i < GPIO_MAX; i++) {
575 		if (gpio_flags[i] != GPIOD_IN || !sfp->gpio[i])
576 			continue;
577 
578 		v = gpiod_get_value_cansleep(sfp->gpio[i]);
579 		if (v)
580 			state |= BIT(i);
581 	}
582 
583 	return state;
584 }
585 
sff_gpio_get_state(struct sfp * sfp)586 static unsigned int sff_gpio_get_state(struct sfp *sfp)
587 {
588 	return sfp_gpio_get_state(sfp) | SFP_F_PRESENT;
589 }
590 
sfp_gpio_set_state(struct sfp * sfp,unsigned int state)591 static void sfp_gpio_set_state(struct sfp *sfp, unsigned int state)
592 {
593 	unsigned int drive;
594 
595 	if (state & SFP_F_PRESENT)
596 		/* If the module is present, drive the requested signals */
597 		drive = sfp->state_hw_drive;
598 	else
599 		/* Otherwise, let them float to the pull-ups */
600 		drive = 0;
601 
602 	if (sfp->gpio[GPIO_TX_DISABLE]) {
603 		if (drive & SFP_F_TX_DISABLE)
604 			gpiod_direction_output(sfp->gpio[GPIO_TX_DISABLE],
605 					       state & SFP_F_TX_DISABLE);
606 		else
607 			gpiod_direction_input(sfp->gpio[GPIO_TX_DISABLE]);
608 	}
609 
610 	if (sfp->gpio[GPIO_RS0]) {
611 		if (drive & SFP_F_RS0)
612 			gpiod_direction_output(sfp->gpio[GPIO_RS0],
613 					       state & SFP_F_RS0);
614 		else
615 			gpiod_direction_input(sfp->gpio[GPIO_RS0]);
616 	}
617 
618 	if (sfp->gpio[GPIO_RS1]) {
619 		if (drive & SFP_F_RS1)
620 			gpiod_direction_output(sfp->gpio[GPIO_RS1],
621 					       state & SFP_F_RS1);
622 		else
623 			gpiod_direction_input(sfp->gpio[GPIO_RS1]);
624 	}
625 }
626 
sfp_i2c_read(struct sfp * sfp,bool a2,u8 dev_addr,void * buf,size_t len)627 static int sfp_i2c_read(struct sfp *sfp, bool a2, u8 dev_addr, void *buf,
628 			size_t len)
629 {
630 	struct i2c_msg msgs[2];
631 	u8 bus_addr = a2 ? 0x51 : 0x50;
632 	size_t block_size = sfp->i2c_block_size;
633 	size_t this_len;
634 	int ret;
635 
636 	msgs[0].addr = bus_addr;
637 	msgs[0].flags = 0;
638 	msgs[0].len = 1;
639 	msgs[0].buf = &dev_addr;
640 	msgs[1].addr = bus_addr;
641 	msgs[1].flags = I2C_M_RD;
642 	msgs[1].len = len;
643 	msgs[1].buf = buf;
644 
645 	while (len) {
646 		this_len = len;
647 		if (this_len > block_size)
648 			this_len = block_size;
649 
650 		msgs[1].len = this_len;
651 
652 		ret = i2c_transfer(sfp->i2c, msgs, ARRAY_SIZE(msgs));
653 		if (ret < 0)
654 			return ret;
655 
656 		if (ret != ARRAY_SIZE(msgs))
657 			break;
658 
659 		msgs[1].buf += this_len;
660 		dev_addr += this_len;
661 		len -= this_len;
662 	}
663 
664 	return msgs[1].buf - (u8 *)buf;
665 }
666 
sfp_i2c_write(struct sfp * sfp,bool a2,u8 dev_addr,void * buf,size_t len)667 static int sfp_i2c_write(struct sfp *sfp, bool a2, u8 dev_addr, void *buf,
668 	size_t len)
669 {
670 	struct i2c_msg msgs[1];
671 	u8 bus_addr = a2 ? 0x51 : 0x50;
672 	int ret;
673 
674 	msgs[0].addr = bus_addr;
675 	msgs[0].flags = 0;
676 	msgs[0].len = 1 + len;
677 	msgs[0].buf = kmalloc(1 + len, GFP_KERNEL);
678 	if (!msgs[0].buf)
679 		return -ENOMEM;
680 
681 	msgs[0].buf[0] = dev_addr;
682 	memcpy(&msgs[0].buf[1], buf, len);
683 
684 	ret = i2c_transfer(sfp->i2c, msgs, ARRAY_SIZE(msgs));
685 
686 	kfree(msgs[0].buf);
687 
688 	if (ret < 0)
689 		return ret;
690 
691 	return ret == ARRAY_SIZE(msgs) ? len : 0;
692 }
693 
sfp_i2c_configure(struct sfp * sfp,struct i2c_adapter * i2c)694 static int sfp_i2c_configure(struct sfp *sfp, struct i2c_adapter *i2c)
695 {
696 	if (!i2c_check_functionality(i2c, I2C_FUNC_I2C))
697 		return -EINVAL;
698 
699 	sfp->i2c = i2c;
700 	sfp->read = sfp_i2c_read;
701 	sfp->write = sfp_i2c_write;
702 
703 	return 0;
704 }
705 
sfp_i2c_mdiobus_create(struct sfp * sfp)706 static int sfp_i2c_mdiobus_create(struct sfp *sfp)
707 {
708 	struct mii_bus *i2c_mii;
709 	int ret;
710 
711 	i2c_mii = mdio_i2c_alloc(sfp->dev, sfp->i2c, sfp->mdio_protocol);
712 	if (IS_ERR(i2c_mii))
713 		return PTR_ERR(i2c_mii);
714 
715 	i2c_mii->name = "SFP I2C Bus";
716 	i2c_mii->phy_mask = ~0;
717 
718 	ret = mdiobus_register(i2c_mii);
719 	if (ret < 0) {
720 		mdiobus_free(i2c_mii);
721 		return ret;
722 	}
723 
724 	sfp->i2c_mii = i2c_mii;
725 
726 	return 0;
727 }
728 
sfp_i2c_mdiobus_destroy(struct sfp * sfp)729 static void sfp_i2c_mdiobus_destroy(struct sfp *sfp)
730 {
731 	mdiobus_unregister(sfp->i2c_mii);
732 	sfp->i2c_mii = NULL;
733 }
734 
735 /* Interface */
sfp_read(struct sfp * sfp,bool a2,u8 addr,void * buf,size_t len)736 static int sfp_read(struct sfp *sfp, bool a2, u8 addr, void *buf, size_t len)
737 {
738 	return sfp->read(sfp, a2, addr, buf, len);
739 }
740 
sfp_write(struct sfp * sfp,bool a2,u8 addr,void * buf,size_t len)741 static int sfp_write(struct sfp *sfp, bool a2, u8 addr, void *buf, size_t len)
742 {
743 	return sfp->write(sfp, a2, addr, buf, len);
744 }
745 
sfp_modify_u8(struct sfp * sfp,bool a2,u8 addr,u8 mask,u8 val)746 static int sfp_modify_u8(struct sfp *sfp, bool a2, u8 addr, u8 mask, u8 val)
747 {
748 	int ret;
749 	u8 old, v;
750 
751 	ret = sfp_read(sfp, a2, addr, &old, sizeof(old));
752 	if (ret != sizeof(old))
753 		return ret;
754 
755 	v = (old & ~mask) | (val & mask);
756 	if (v == old)
757 		return sizeof(v);
758 
759 	return sfp_write(sfp, a2, addr, &v, sizeof(v));
760 }
761 
sfp_soft_get_state(struct sfp * sfp)762 static unsigned int sfp_soft_get_state(struct sfp *sfp)
763 {
764 	unsigned int state = 0;
765 	u8 status;
766 	int ret;
767 
768 	ret = sfp_read(sfp, true, SFP_STATUS, &status, sizeof(status));
769 	if (ret == sizeof(status)) {
770 		if (status & SFP_STATUS_RX_LOS)
771 			state |= SFP_F_LOS;
772 		if (status & SFP_STATUS_TX_FAULT)
773 			state |= SFP_F_TX_FAULT;
774 	} else {
775 		dev_err_ratelimited(sfp->dev,
776 				    "failed to read SFP soft status: %pe\n",
777 				    ERR_PTR(ret));
778 		/* Preserve the current state */
779 		state = sfp->state;
780 	}
781 
782 	return state & sfp->state_soft_mask;
783 }
784 
sfp_soft_set_state(struct sfp * sfp,unsigned int state,unsigned int soft)785 static void sfp_soft_set_state(struct sfp *sfp, unsigned int state,
786 			       unsigned int soft)
787 {
788 	u8 mask = 0;
789 	u8 val = 0;
790 
791 	if (soft & SFP_F_TX_DISABLE)
792 		mask |= SFP_STATUS_TX_DISABLE_FORCE;
793 	if (state & SFP_F_TX_DISABLE)
794 		val |= SFP_STATUS_TX_DISABLE_FORCE;
795 
796 	if (soft & SFP_F_RS0)
797 		mask |= SFP_STATUS_RS0_SELECT;
798 	if (state & SFP_F_RS0)
799 		val |= SFP_STATUS_RS0_SELECT;
800 
801 	if (mask)
802 		sfp_modify_u8(sfp, true, SFP_STATUS, mask, val);
803 
804 	val = mask = 0;
805 	if (soft & SFP_F_RS1)
806 		mask |= SFP_EXT_STATUS_RS1_SELECT;
807 	if (state & SFP_F_RS1)
808 		val |= SFP_EXT_STATUS_RS1_SELECT;
809 
810 	if (mask)
811 		sfp_modify_u8(sfp, true, SFP_EXT_STATUS, mask, val);
812 }
813 
sfp_soft_start_poll(struct sfp * sfp)814 static void sfp_soft_start_poll(struct sfp *sfp)
815 {
816 	const struct sfp_eeprom_id *id = &sfp->id;
817 	unsigned int mask = 0;
818 
819 	if (id->ext.enhopts & SFP_ENHOPTS_SOFT_TX_DISABLE)
820 		mask |= SFP_F_TX_DISABLE;
821 	if (id->ext.enhopts & SFP_ENHOPTS_SOFT_TX_FAULT)
822 		mask |= SFP_F_TX_FAULT;
823 	if (id->ext.enhopts & SFP_ENHOPTS_SOFT_RX_LOS)
824 		mask |= SFP_F_LOS;
825 	if (id->ext.enhopts & SFP_ENHOPTS_SOFT_RATE_SELECT)
826 		mask |= sfp->rs_state_mask;
827 
828 	mutex_lock(&sfp->st_mutex);
829 	// Poll the soft state for hardware pins we want to ignore
830 	sfp->state_soft_mask = ~sfp->state_hw_mask & ~sfp->state_ignore_mask &
831 			       mask;
832 
833 	if (sfp->state_soft_mask & (SFP_F_LOS | SFP_F_TX_FAULT) &&
834 	    !sfp->need_poll)
835 		mod_delayed_work(system_wq, &sfp->poll, poll_jiffies);
836 	mutex_unlock(&sfp->st_mutex);
837 }
838 
sfp_soft_stop_poll(struct sfp * sfp)839 static void sfp_soft_stop_poll(struct sfp *sfp)
840 {
841 	mutex_lock(&sfp->st_mutex);
842 	sfp->state_soft_mask = 0;
843 	mutex_unlock(&sfp->st_mutex);
844 }
845 
846 /* sfp_get_state() - must be called with st_mutex held, or in the
847  * initialisation path.
848  */
sfp_get_state(struct sfp * sfp)849 static unsigned int sfp_get_state(struct sfp *sfp)
850 {
851 	unsigned int soft = sfp->state_soft_mask & (SFP_F_LOS | SFP_F_TX_FAULT);
852 	unsigned int state;
853 
854 	state = sfp->get_state(sfp) & sfp->state_hw_mask;
855 	if (state & SFP_F_PRESENT && soft)
856 		state |= sfp_soft_get_state(sfp);
857 
858 	return state;
859 }
860 
861 /* sfp_set_state() - must be called with st_mutex held, or in the
862  * initialisation path.
863  */
sfp_set_state(struct sfp * sfp,unsigned int state)864 static void sfp_set_state(struct sfp *sfp, unsigned int state)
865 {
866 	unsigned int soft;
867 
868 	sfp->set_state(sfp, state);
869 
870 	soft = sfp->state_soft_mask & SFP_F_OUTPUTS;
871 	if (state & SFP_F_PRESENT && soft)
872 		sfp_soft_set_state(sfp, state, soft);
873 }
874 
sfp_mod_state(struct sfp * sfp,unsigned int mask,unsigned int set)875 static void sfp_mod_state(struct sfp *sfp, unsigned int mask, unsigned int set)
876 {
877 	mutex_lock(&sfp->st_mutex);
878 	sfp->state = (sfp->state & ~mask) | set;
879 	sfp_set_state(sfp, sfp->state);
880 	mutex_unlock(&sfp->st_mutex);
881 }
882 
sfp_check(void * buf,size_t len)883 static unsigned int sfp_check(void *buf, size_t len)
884 {
885 	u8 *p, check;
886 
887 	for (p = buf, check = 0; len; p++, len--)
888 		check += *p;
889 
890 	return check;
891 }
892 
893 /* hwmon */
894 #if IS_ENABLED(CONFIG_HWMON)
sfp_hwmon_is_visible(const void * data,enum hwmon_sensor_types type,u32 attr,int channel)895 static umode_t sfp_hwmon_is_visible(const void *data,
896 				    enum hwmon_sensor_types type,
897 				    u32 attr, int channel)
898 {
899 	const struct sfp *sfp = data;
900 
901 	switch (type) {
902 	case hwmon_temp:
903 		switch (attr) {
904 		case hwmon_temp_min_alarm:
905 		case hwmon_temp_max_alarm:
906 		case hwmon_temp_lcrit_alarm:
907 		case hwmon_temp_crit_alarm:
908 		case hwmon_temp_min:
909 		case hwmon_temp_max:
910 		case hwmon_temp_lcrit:
911 		case hwmon_temp_crit:
912 			if (!(sfp->id.ext.enhopts & SFP_ENHOPTS_ALARMWARN))
913 				return 0;
914 			fallthrough;
915 		case hwmon_temp_input:
916 		case hwmon_temp_label:
917 			return 0444;
918 		default:
919 			return 0;
920 		}
921 	case hwmon_in:
922 		switch (attr) {
923 		case hwmon_in_min_alarm:
924 		case hwmon_in_max_alarm:
925 		case hwmon_in_lcrit_alarm:
926 		case hwmon_in_crit_alarm:
927 		case hwmon_in_min:
928 		case hwmon_in_max:
929 		case hwmon_in_lcrit:
930 		case hwmon_in_crit:
931 			if (!(sfp->id.ext.enhopts & SFP_ENHOPTS_ALARMWARN))
932 				return 0;
933 			fallthrough;
934 		case hwmon_in_input:
935 		case hwmon_in_label:
936 			return 0444;
937 		default:
938 			return 0;
939 		}
940 	case hwmon_curr:
941 		switch (attr) {
942 		case hwmon_curr_min_alarm:
943 		case hwmon_curr_max_alarm:
944 		case hwmon_curr_lcrit_alarm:
945 		case hwmon_curr_crit_alarm:
946 		case hwmon_curr_min:
947 		case hwmon_curr_max:
948 		case hwmon_curr_lcrit:
949 		case hwmon_curr_crit:
950 			if (!(sfp->id.ext.enhopts & SFP_ENHOPTS_ALARMWARN))
951 				return 0;
952 			fallthrough;
953 		case hwmon_curr_input:
954 		case hwmon_curr_label:
955 			return 0444;
956 		default:
957 			return 0;
958 		}
959 	case hwmon_power:
960 		/* External calibration of receive power requires
961 		 * floating point arithmetic. Doing that in the kernel
962 		 * is not easy, so just skip it. If the module does
963 		 * not require external calibration, we can however
964 		 * show receiver power, since FP is then not needed.
965 		 */
966 		if (sfp->id.ext.diagmon & SFP_DIAGMON_EXT_CAL &&
967 		    channel == 1)
968 			return 0;
969 		switch (attr) {
970 		case hwmon_power_min_alarm:
971 		case hwmon_power_max_alarm:
972 		case hwmon_power_lcrit_alarm:
973 		case hwmon_power_crit_alarm:
974 		case hwmon_power_min:
975 		case hwmon_power_max:
976 		case hwmon_power_lcrit:
977 		case hwmon_power_crit:
978 			if (!(sfp->id.ext.enhopts & SFP_ENHOPTS_ALARMWARN))
979 				return 0;
980 			fallthrough;
981 		case hwmon_power_input:
982 		case hwmon_power_label:
983 			return 0444;
984 		default:
985 			return 0;
986 		}
987 	default:
988 		return 0;
989 	}
990 }
991 
sfp_hwmon_read_sensor(struct sfp * sfp,int reg,long * value)992 static int sfp_hwmon_read_sensor(struct sfp *sfp, int reg, long *value)
993 {
994 	__be16 val;
995 	int err;
996 
997 	err = sfp_read(sfp, true, reg, &val, sizeof(val));
998 	if (err < 0)
999 		return err;
1000 
1001 	*value = be16_to_cpu(val);
1002 
1003 	return 0;
1004 }
1005 
sfp_hwmon_to_rx_power(long * value)1006 static void sfp_hwmon_to_rx_power(long *value)
1007 {
1008 	*value = DIV_ROUND_CLOSEST(*value, 10);
1009 }
1010 
sfp_hwmon_calibrate(struct sfp * sfp,unsigned int slope,int offset,long * value)1011 static void sfp_hwmon_calibrate(struct sfp *sfp, unsigned int slope, int offset,
1012 				long *value)
1013 {
1014 	if (sfp->id.ext.diagmon & SFP_DIAGMON_EXT_CAL)
1015 		*value = DIV_ROUND_CLOSEST(*value * slope, 256) + offset;
1016 }
1017 
sfp_hwmon_calibrate_temp(struct sfp * sfp,long * value)1018 static void sfp_hwmon_calibrate_temp(struct sfp *sfp, long *value)
1019 {
1020 	sfp_hwmon_calibrate(sfp, be16_to_cpu(sfp->diag.cal_t_slope),
1021 			    be16_to_cpu(sfp->diag.cal_t_offset), value);
1022 
1023 	if (*value >= 0x8000)
1024 		*value -= 0x10000;
1025 
1026 	*value = DIV_ROUND_CLOSEST(*value * 1000, 256);
1027 }
1028 
sfp_hwmon_calibrate_vcc(struct sfp * sfp,long * value)1029 static void sfp_hwmon_calibrate_vcc(struct sfp *sfp, long *value)
1030 {
1031 	sfp_hwmon_calibrate(sfp, be16_to_cpu(sfp->diag.cal_v_slope),
1032 			    be16_to_cpu(sfp->diag.cal_v_offset), value);
1033 
1034 	*value = DIV_ROUND_CLOSEST(*value, 10);
1035 }
1036 
sfp_hwmon_calibrate_bias(struct sfp * sfp,long * value)1037 static void sfp_hwmon_calibrate_bias(struct sfp *sfp, long *value)
1038 {
1039 	sfp_hwmon_calibrate(sfp, be16_to_cpu(sfp->diag.cal_txi_slope),
1040 			    be16_to_cpu(sfp->diag.cal_txi_offset), value);
1041 
1042 	*value = DIV_ROUND_CLOSEST(*value, 500);
1043 }
1044 
sfp_hwmon_calibrate_tx_power(struct sfp * sfp,long * value)1045 static void sfp_hwmon_calibrate_tx_power(struct sfp *sfp, long *value)
1046 {
1047 	sfp_hwmon_calibrate(sfp, be16_to_cpu(sfp->diag.cal_txpwr_slope),
1048 			    be16_to_cpu(sfp->diag.cal_txpwr_offset), value);
1049 
1050 	*value = DIV_ROUND_CLOSEST(*value, 10);
1051 }
1052 
sfp_hwmon_read_temp(struct sfp * sfp,int reg,long * value)1053 static int sfp_hwmon_read_temp(struct sfp *sfp, int reg, long *value)
1054 {
1055 	int err;
1056 
1057 	err = sfp_hwmon_read_sensor(sfp, reg, value);
1058 	if (err < 0)
1059 		return err;
1060 
1061 	sfp_hwmon_calibrate_temp(sfp, value);
1062 
1063 	return 0;
1064 }
1065 
sfp_hwmon_read_vcc(struct sfp * sfp,int reg,long * value)1066 static int sfp_hwmon_read_vcc(struct sfp *sfp, int reg, long *value)
1067 {
1068 	int err;
1069 
1070 	err = sfp_hwmon_read_sensor(sfp, reg, value);
1071 	if (err < 0)
1072 		return err;
1073 
1074 	sfp_hwmon_calibrate_vcc(sfp, value);
1075 
1076 	return 0;
1077 }
1078 
sfp_hwmon_read_bias(struct sfp * sfp,int reg,long * value)1079 static int sfp_hwmon_read_bias(struct sfp *sfp, int reg, long *value)
1080 {
1081 	int err;
1082 
1083 	err = sfp_hwmon_read_sensor(sfp, reg, value);
1084 	if (err < 0)
1085 		return err;
1086 
1087 	sfp_hwmon_calibrate_bias(sfp, value);
1088 
1089 	return 0;
1090 }
1091 
sfp_hwmon_read_tx_power(struct sfp * sfp,int reg,long * value)1092 static int sfp_hwmon_read_tx_power(struct sfp *sfp, int reg, long *value)
1093 {
1094 	int err;
1095 
1096 	err = sfp_hwmon_read_sensor(sfp, reg, value);
1097 	if (err < 0)
1098 		return err;
1099 
1100 	sfp_hwmon_calibrate_tx_power(sfp, value);
1101 
1102 	return 0;
1103 }
1104 
sfp_hwmon_read_rx_power(struct sfp * sfp,int reg,long * value)1105 static int sfp_hwmon_read_rx_power(struct sfp *sfp, int reg, long *value)
1106 {
1107 	int err;
1108 
1109 	err = sfp_hwmon_read_sensor(sfp, reg, value);
1110 	if (err < 0)
1111 		return err;
1112 
1113 	sfp_hwmon_to_rx_power(value);
1114 
1115 	return 0;
1116 }
1117 
sfp_hwmon_temp(struct sfp * sfp,u32 attr,long * value)1118 static int sfp_hwmon_temp(struct sfp *sfp, u32 attr, long *value)
1119 {
1120 	u8 status;
1121 	int err;
1122 
1123 	switch (attr) {
1124 	case hwmon_temp_input:
1125 		return sfp_hwmon_read_temp(sfp, SFP_TEMP, value);
1126 
1127 	case hwmon_temp_lcrit:
1128 		*value = be16_to_cpu(sfp->diag.temp_low_alarm);
1129 		sfp_hwmon_calibrate_temp(sfp, value);
1130 		return 0;
1131 
1132 	case hwmon_temp_min:
1133 		*value = be16_to_cpu(sfp->diag.temp_low_warn);
1134 		sfp_hwmon_calibrate_temp(sfp, value);
1135 		return 0;
1136 	case hwmon_temp_max:
1137 		*value = be16_to_cpu(sfp->diag.temp_high_warn);
1138 		sfp_hwmon_calibrate_temp(sfp, value);
1139 		return 0;
1140 
1141 	case hwmon_temp_crit:
1142 		*value = be16_to_cpu(sfp->diag.temp_high_alarm);
1143 		sfp_hwmon_calibrate_temp(sfp, value);
1144 		return 0;
1145 
1146 	case hwmon_temp_lcrit_alarm:
1147 		err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status));
1148 		if (err < 0)
1149 			return err;
1150 
1151 		*value = !!(status & SFP_ALARM0_TEMP_LOW);
1152 		return 0;
1153 
1154 	case hwmon_temp_min_alarm:
1155 		err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status));
1156 		if (err < 0)
1157 			return err;
1158 
1159 		*value = !!(status & SFP_WARN0_TEMP_LOW);
1160 		return 0;
1161 
1162 	case hwmon_temp_max_alarm:
1163 		err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status));
1164 		if (err < 0)
1165 			return err;
1166 
1167 		*value = !!(status & SFP_WARN0_TEMP_HIGH);
1168 		return 0;
1169 
1170 	case hwmon_temp_crit_alarm:
1171 		err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status));
1172 		if (err < 0)
1173 			return err;
1174 
1175 		*value = !!(status & SFP_ALARM0_TEMP_HIGH);
1176 		return 0;
1177 	default:
1178 		return -EOPNOTSUPP;
1179 	}
1180 
1181 	return -EOPNOTSUPP;
1182 }
1183 
sfp_hwmon_vcc(struct sfp * sfp,u32 attr,long * value)1184 static int sfp_hwmon_vcc(struct sfp *sfp, u32 attr, long *value)
1185 {
1186 	u8 status;
1187 	int err;
1188 
1189 	switch (attr) {
1190 	case hwmon_in_input:
1191 		return sfp_hwmon_read_vcc(sfp, SFP_VCC, value);
1192 
1193 	case hwmon_in_lcrit:
1194 		*value = be16_to_cpu(sfp->diag.volt_low_alarm);
1195 		sfp_hwmon_calibrate_vcc(sfp, value);
1196 		return 0;
1197 
1198 	case hwmon_in_min:
1199 		*value = be16_to_cpu(sfp->diag.volt_low_warn);
1200 		sfp_hwmon_calibrate_vcc(sfp, value);
1201 		return 0;
1202 
1203 	case hwmon_in_max:
1204 		*value = be16_to_cpu(sfp->diag.volt_high_warn);
1205 		sfp_hwmon_calibrate_vcc(sfp, value);
1206 		return 0;
1207 
1208 	case hwmon_in_crit:
1209 		*value = be16_to_cpu(sfp->diag.volt_high_alarm);
1210 		sfp_hwmon_calibrate_vcc(sfp, value);
1211 		return 0;
1212 
1213 	case hwmon_in_lcrit_alarm:
1214 		err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status));
1215 		if (err < 0)
1216 			return err;
1217 
1218 		*value = !!(status & SFP_ALARM0_VCC_LOW);
1219 		return 0;
1220 
1221 	case hwmon_in_min_alarm:
1222 		err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status));
1223 		if (err < 0)
1224 			return err;
1225 
1226 		*value = !!(status & SFP_WARN0_VCC_LOW);
1227 		return 0;
1228 
1229 	case hwmon_in_max_alarm:
1230 		err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status));
1231 		if (err < 0)
1232 			return err;
1233 
1234 		*value = !!(status & SFP_WARN0_VCC_HIGH);
1235 		return 0;
1236 
1237 	case hwmon_in_crit_alarm:
1238 		err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status));
1239 		if (err < 0)
1240 			return err;
1241 
1242 		*value = !!(status & SFP_ALARM0_VCC_HIGH);
1243 		return 0;
1244 	default:
1245 		return -EOPNOTSUPP;
1246 	}
1247 
1248 	return -EOPNOTSUPP;
1249 }
1250 
sfp_hwmon_bias(struct sfp * sfp,u32 attr,long * value)1251 static int sfp_hwmon_bias(struct sfp *sfp, u32 attr, long *value)
1252 {
1253 	u8 status;
1254 	int err;
1255 
1256 	switch (attr) {
1257 	case hwmon_curr_input:
1258 		return sfp_hwmon_read_bias(sfp, SFP_TX_BIAS, value);
1259 
1260 	case hwmon_curr_lcrit:
1261 		*value = be16_to_cpu(sfp->diag.bias_low_alarm);
1262 		sfp_hwmon_calibrate_bias(sfp, value);
1263 		return 0;
1264 
1265 	case hwmon_curr_min:
1266 		*value = be16_to_cpu(sfp->diag.bias_low_warn);
1267 		sfp_hwmon_calibrate_bias(sfp, value);
1268 		return 0;
1269 
1270 	case hwmon_curr_max:
1271 		*value = be16_to_cpu(sfp->diag.bias_high_warn);
1272 		sfp_hwmon_calibrate_bias(sfp, value);
1273 		return 0;
1274 
1275 	case hwmon_curr_crit:
1276 		*value = be16_to_cpu(sfp->diag.bias_high_alarm);
1277 		sfp_hwmon_calibrate_bias(sfp, value);
1278 		return 0;
1279 
1280 	case hwmon_curr_lcrit_alarm:
1281 		err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status));
1282 		if (err < 0)
1283 			return err;
1284 
1285 		*value = !!(status & SFP_ALARM0_TX_BIAS_LOW);
1286 		return 0;
1287 
1288 	case hwmon_curr_min_alarm:
1289 		err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status));
1290 		if (err < 0)
1291 			return err;
1292 
1293 		*value = !!(status & SFP_WARN0_TX_BIAS_LOW);
1294 		return 0;
1295 
1296 	case hwmon_curr_max_alarm:
1297 		err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status));
1298 		if (err < 0)
1299 			return err;
1300 
1301 		*value = !!(status & SFP_WARN0_TX_BIAS_HIGH);
1302 		return 0;
1303 
1304 	case hwmon_curr_crit_alarm:
1305 		err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status));
1306 		if (err < 0)
1307 			return err;
1308 
1309 		*value = !!(status & SFP_ALARM0_TX_BIAS_HIGH);
1310 		return 0;
1311 	default:
1312 		return -EOPNOTSUPP;
1313 	}
1314 
1315 	return -EOPNOTSUPP;
1316 }
1317 
sfp_hwmon_tx_power(struct sfp * sfp,u32 attr,long * value)1318 static int sfp_hwmon_tx_power(struct sfp *sfp, u32 attr, long *value)
1319 {
1320 	u8 status;
1321 	int err;
1322 
1323 	switch (attr) {
1324 	case hwmon_power_input:
1325 		return sfp_hwmon_read_tx_power(sfp, SFP_TX_POWER, value);
1326 
1327 	case hwmon_power_lcrit:
1328 		*value = be16_to_cpu(sfp->diag.txpwr_low_alarm);
1329 		sfp_hwmon_calibrate_tx_power(sfp, value);
1330 		return 0;
1331 
1332 	case hwmon_power_min:
1333 		*value = be16_to_cpu(sfp->diag.txpwr_low_warn);
1334 		sfp_hwmon_calibrate_tx_power(sfp, value);
1335 		return 0;
1336 
1337 	case hwmon_power_max:
1338 		*value = be16_to_cpu(sfp->diag.txpwr_high_warn);
1339 		sfp_hwmon_calibrate_tx_power(sfp, value);
1340 		return 0;
1341 
1342 	case hwmon_power_crit:
1343 		*value = be16_to_cpu(sfp->diag.txpwr_high_alarm);
1344 		sfp_hwmon_calibrate_tx_power(sfp, value);
1345 		return 0;
1346 
1347 	case hwmon_power_lcrit_alarm:
1348 		err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status));
1349 		if (err < 0)
1350 			return err;
1351 
1352 		*value = !!(status & SFP_ALARM0_TXPWR_LOW);
1353 		return 0;
1354 
1355 	case hwmon_power_min_alarm:
1356 		err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status));
1357 		if (err < 0)
1358 			return err;
1359 
1360 		*value = !!(status & SFP_WARN0_TXPWR_LOW);
1361 		return 0;
1362 
1363 	case hwmon_power_max_alarm:
1364 		err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status));
1365 		if (err < 0)
1366 			return err;
1367 
1368 		*value = !!(status & SFP_WARN0_TXPWR_HIGH);
1369 		return 0;
1370 
1371 	case hwmon_power_crit_alarm:
1372 		err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status));
1373 		if (err < 0)
1374 			return err;
1375 
1376 		*value = !!(status & SFP_ALARM0_TXPWR_HIGH);
1377 		return 0;
1378 	default:
1379 		return -EOPNOTSUPP;
1380 	}
1381 
1382 	return -EOPNOTSUPP;
1383 }
1384 
sfp_hwmon_rx_power(struct sfp * sfp,u32 attr,long * value)1385 static int sfp_hwmon_rx_power(struct sfp *sfp, u32 attr, long *value)
1386 {
1387 	u8 status;
1388 	int err;
1389 
1390 	switch (attr) {
1391 	case hwmon_power_input:
1392 		return sfp_hwmon_read_rx_power(sfp, SFP_RX_POWER, value);
1393 
1394 	case hwmon_power_lcrit:
1395 		*value = be16_to_cpu(sfp->diag.rxpwr_low_alarm);
1396 		sfp_hwmon_to_rx_power(value);
1397 		return 0;
1398 
1399 	case hwmon_power_min:
1400 		*value = be16_to_cpu(sfp->diag.rxpwr_low_warn);
1401 		sfp_hwmon_to_rx_power(value);
1402 		return 0;
1403 
1404 	case hwmon_power_max:
1405 		*value = be16_to_cpu(sfp->diag.rxpwr_high_warn);
1406 		sfp_hwmon_to_rx_power(value);
1407 		return 0;
1408 
1409 	case hwmon_power_crit:
1410 		*value = be16_to_cpu(sfp->diag.rxpwr_high_alarm);
1411 		sfp_hwmon_to_rx_power(value);
1412 		return 0;
1413 
1414 	case hwmon_power_lcrit_alarm:
1415 		err = sfp_read(sfp, true, SFP_ALARM1, &status, sizeof(status));
1416 		if (err < 0)
1417 			return err;
1418 
1419 		*value = !!(status & SFP_ALARM1_RXPWR_LOW);
1420 		return 0;
1421 
1422 	case hwmon_power_min_alarm:
1423 		err = sfp_read(sfp, true, SFP_WARN1, &status, sizeof(status));
1424 		if (err < 0)
1425 			return err;
1426 
1427 		*value = !!(status & SFP_WARN1_RXPWR_LOW);
1428 		return 0;
1429 
1430 	case hwmon_power_max_alarm:
1431 		err = sfp_read(sfp, true, SFP_WARN1, &status, sizeof(status));
1432 		if (err < 0)
1433 			return err;
1434 
1435 		*value = !!(status & SFP_WARN1_RXPWR_HIGH);
1436 		return 0;
1437 
1438 	case hwmon_power_crit_alarm:
1439 		err = sfp_read(sfp, true, SFP_ALARM1, &status, sizeof(status));
1440 		if (err < 0)
1441 			return err;
1442 
1443 		*value = !!(status & SFP_ALARM1_RXPWR_HIGH);
1444 		return 0;
1445 	default:
1446 		return -EOPNOTSUPP;
1447 	}
1448 
1449 	return -EOPNOTSUPP;
1450 }
1451 
sfp_hwmon_read(struct device * dev,enum hwmon_sensor_types type,u32 attr,int channel,long * value)1452 static int sfp_hwmon_read(struct device *dev, enum hwmon_sensor_types type,
1453 			  u32 attr, int channel, long *value)
1454 {
1455 	struct sfp *sfp = dev_get_drvdata(dev);
1456 
1457 	switch (type) {
1458 	case hwmon_temp:
1459 		return sfp_hwmon_temp(sfp, attr, value);
1460 	case hwmon_in:
1461 		return sfp_hwmon_vcc(sfp, attr, value);
1462 	case hwmon_curr:
1463 		return sfp_hwmon_bias(sfp, attr, value);
1464 	case hwmon_power:
1465 		switch (channel) {
1466 		case 0:
1467 			return sfp_hwmon_tx_power(sfp, attr, value);
1468 		case 1:
1469 			return sfp_hwmon_rx_power(sfp, attr, value);
1470 		default:
1471 			return -EOPNOTSUPP;
1472 		}
1473 	default:
1474 		return -EOPNOTSUPP;
1475 	}
1476 }
1477 
1478 static const char *const sfp_hwmon_power_labels[] = {
1479 	"TX_power",
1480 	"RX_power",
1481 };
1482 
sfp_hwmon_read_string(struct device * dev,enum hwmon_sensor_types type,u32 attr,int channel,const char ** str)1483 static int sfp_hwmon_read_string(struct device *dev,
1484 				 enum hwmon_sensor_types type,
1485 				 u32 attr, int channel, const char **str)
1486 {
1487 	switch (type) {
1488 	case hwmon_curr:
1489 		switch (attr) {
1490 		case hwmon_curr_label:
1491 			*str = "bias";
1492 			return 0;
1493 		default:
1494 			return -EOPNOTSUPP;
1495 		}
1496 		break;
1497 	case hwmon_temp:
1498 		switch (attr) {
1499 		case hwmon_temp_label:
1500 			*str = "temperature";
1501 			return 0;
1502 		default:
1503 			return -EOPNOTSUPP;
1504 		}
1505 		break;
1506 	case hwmon_in:
1507 		switch (attr) {
1508 		case hwmon_in_label:
1509 			*str = "VCC";
1510 			return 0;
1511 		default:
1512 			return -EOPNOTSUPP;
1513 		}
1514 		break;
1515 	case hwmon_power:
1516 		switch (attr) {
1517 		case hwmon_power_label:
1518 			*str = sfp_hwmon_power_labels[channel];
1519 			return 0;
1520 		default:
1521 			return -EOPNOTSUPP;
1522 		}
1523 		break;
1524 	default:
1525 		return -EOPNOTSUPP;
1526 	}
1527 
1528 	return -EOPNOTSUPP;
1529 }
1530 
1531 static const struct hwmon_ops sfp_hwmon_ops = {
1532 	.is_visible = sfp_hwmon_is_visible,
1533 	.read = sfp_hwmon_read,
1534 	.read_string = sfp_hwmon_read_string,
1535 };
1536 
1537 static const struct hwmon_channel_info * const sfp_hwmon_info[] = {
1538 	HWMON_CHANNEL_INFO(chip,
1539 			   HWMON_C_REGISTER_TZ),
1540 	HWMON_CHANNEL_INFO(in,
1541 			   HWMON_I_INPUT |
1542 			   HWMON_I_MAX | HWMON_I_MIN |
1543 			   HWMON_I_MAX_ALARM | HWMON_I_MIN_ALARM |
1544 			   HWMON_I_CRIT | HWMON_I_LCRIT |
1545 			   HWMON_I_CRIT_ALARM | HWMON_I_LCRIT_ALARM |
1546 			   HWMON_I_LABEL),
1547 	HWMON_CHANNEL_INFO(temp,
1548 			   HWMON_T_INPUT |
1549 			   HWMON_T_MAX | HWMON_T_MIN |
1550 			   HWMON_T_MAX_ALARM | HWMON_T_MIN_ALARM |
1551 			   HWMON_T_CRIT | HWMON_T_LCRIT |
1552 			   HWMON_T_CRIT_ALARM | HWMON_T_LCRIT_ALARM |
1553 			   HWMON_T_LABEL),
1554 	HWMON_CHANNEL_INFO(curr,
1555 			   HWMON_C_INPUT |
1556 			   HWMON_C_MAX | HWMON_C_MIN |
1557 			   HWMON_C_MAX_ALARM | HWMON_C_MIN_ALARM |
1558 			   HWMON_C_CRIT | HWMON_C_LCRIT |
1559 			   HWMON_C_CRIT_ALARM | HWMON_C_LCRIT_ALARM |
1560 			   HWMON_C_LABEL),
1561 	HWMON_CHANNEL_INFO(power,
1562 			   /* Transmit power */
1563 			   HWMON_P_INPUT |
1564 			   HWMON_P_MAX | HWMON_P_MIN |
1565 			   HWMON_P_MAX_ALARM | HWMON_P_MIN_ALARM |
1566 			   HWMON_P_CRIT | HWMON_P_LCRIT |
1567 			   HWMON_P_CRIT_ALARM | HWMON_P_LCRIT_ALARM |
1568 			   HWMON_P_LABEL,
1569 			   /* Receive power */
1570 			   HWMON_P_INPUT |
1571 			   HWMON_P_MAX | HWMON_P_MIN |
1572 			   HWMON_P_MAX_ALARM | HWMON_P_MIN_ALARM |
1573 			   HWMON_P_CRIT | HWMON_P_LCRIT |
1574 			   HWMON_P_CRIT_ALARM | HWMON_P_LCRIT_ALARM |
1575 			   HWMON_P_LABEL),
1576 	NULL,
1577 };
1578 
1579 static const struct hwmon_chip_info sfp_hwmon_chip_info = {
1580 	.ops = &sfp_hwmon_ops,
1581 	.info = sfp_hwmon_info,
1582 };
1583 
sfp_hwmon_probe(struct work_struct * work)1584 static void sfp_hwmon_probe(struct work_struct *work)
1585 {
1586 	struct sfp *sfp = container_of(work, struct sfp, hwmon_probe.work);
1587 	int err;
1588 
1589 	/* hwmon interface needs to access 16bit registers in atomic way to
1590 	 * guarantee coherency of the diagnostic monitoring data. If it is not
1591 	 * possible to guarantee coherency because EEPROM is broken in such way
1592 	 * that does not support atomic 16bit read operation then we have to
1593 	 * skip registration of hwmon device.
1594 	 */
1595 	if (sfp->i2c_block_size < 2) {
1596 		dev_info(sfp->dev,
1597 			 "skipping hwmon device registration due to broken EEPROM\n");
1598 		dev_info(sfp->dev,
1599 			 "diagnostic EEPROM area cannot be read atomically to guarantee data coherency\n");
1600 		return;
1601 	}
1602 
1603 	err = sfp_read(sfp, true, 0, &sfp->diag, sizeof(sfp->diag));
1604 	if (err < 0) {
1605 		if (sfp->hwmon_tries--) {
1606 			mod_delayed_work(system_wq, &sfp->hwmon_probe,
1607 					 T_PROBE_RETRY_SLOW);
1608 		} else {
1609 			dev_warn(sfp->dev, "hwmon probe failed: %pe\n",
1610 				 ERR_PTR(err));
1611 		}
1612 		return;
1613 	}
1614 
1615 	sfp->hwmon_name = hwmon_sanitize_name(dev_name(sfp->dev));
1616 	if (IS_ERR(sfp->hwmon_name)) {
1617 		dev_err(sfp->dev, "out of memory for hwmon name\n");
1618 		return;
1619 	}
1620 
1621 	sfp->hwmon_dev = hwmon_device_register_with_info(sfp->dev,
1622 							 sfp->hwmon_name, sfp,
1623 							 &sfp_hwmon_chip_info,
1624 							 NULL);
1625 	if (IS_ERR(sfp->hwmon_dev))
1626 		dev_err(sfp->dev, "failed to register hwmon device: %ld\n",
1627 			PTR_ERR(sfp->hwmon_dev));
1628 }
1629 
sfp_hwmon_insert(struct sfp * sfp)1630 static int sfp_hwmon_insert(struct sfp *sfp)
1631 {
1632 	if (sfp->have_a2 && sfp->id.ext.diagmon & SFP_DIAGMON_DDM) {
1633 		mod_delayed_work(system_wq, &sfp->hwmon_probe, 1);
1634 		sfp->hwmon_tries = R_PROBE_RETRY_SLOW;
1635 	}
1636 
1637 	return 0;
1638 }
1639 
sfp_hwmon_remove(struct sfp * sfp)1640 static void sfp_hwmon_remove(struct sfp *sfp)
1641 {
1642 	cancel_delayed_work_sync(&sfp->hwmon_probe);
1643 	if (!IS_ERR_OR_NULL(sfp->hwmon_dev)) {
1644 		hwmon_device_unregister(sfp->hwmon_dev);
1645 		sfp->hwmon_dev = NULL;
1646 		kfree(sfp->hwmon_name);
1647 	}
1648 }
1649 
sfp_hwmon_init(struct sfp * sfp)1650 static int sfp_hwmon_init(struct sfp *sfp)
1651 {
1652 	INIT_DELAYED_WORK(&sfp->hwmon_probe, sfp_hwmon_probe);
1653 
1654 	return 0;
1655 }
1656 
sfp_hwmon_exit(struct sfp * sfp)1657 static void sfp_hwmon_exit(struct sfp *sfp)
1658 {
1659 	cancel_delayed_work_sync(&sfp->hwmon_probe);
1660 }
1661 #else
sfp_hwmon_insert(struct sfp * sfp)1662 static int sfp_hwmon_insert(struct sfp *sfp)
1663 {
1664 	return 0;
1665 }
1666 
sfp_hwmon_remove(struct sfp * sfp)1667 static void sfp_hwmon_remove(struct sfp *sfp)
1668 {
1669 }
1670 
sfp_hwmon_init(struct sfp * sfp)1671 static int sfp_hwmon_init(struct sfp *sfp)
1672 {
1673 	return 0;
1674 }
1675 
sfp_hwmon_exit(struct sfp * sfp)1676 static void sfp_hwmon_exit(struct sfp *sfp)
1677 {
1678 }
1679 #endif
1680 
1681 /* Helpers */
sfp_module_tx_disable(struct sfp * sfp)1682 static void sfp_module_tx_disable(struct sfp *sfp)
1683 {
1684 	dev_dbg(sfp->dev, "tx disable %u -> %u\n",
1685 		sfp->state & SFP_F_TX_DISABLE ? 1 : 0, 1);
1686 	sfp_mod_state(sfp, SFP_F_TX_DISABLE, SFP_F_TX_DISABLE);
1687 }
1688 
sfp_module_tx_enable(struct sfp * sfp)1689 static void sfp_module_tx_enable(struct sfp *sfp)
1690 {
1691 	dev_dbg(sfp->dev, "tx disable %u -> %u\n",
1692 		sfp->state & SFP_F_TX_DISABLE ? 1 : 0, 0);
1693 	sfp_mod_state(sfp, SFP_F_TX_DISABLE, 0);
1694 }
1695 
1696 #if IS_ENABLED(CONFIG_DEBUG_FS)
sfp_debug_state_show(struct seq_file * s,void * data)1697 static int sfp_debug_state_show(struct seq_file *s, void *data)
1698 {
1699 	struct sfp *sfp = s->private;
1700 
1701 	seq_printf(s, "Module state: %s\n",
1702 		   mod_state_to_str(sfp->sm_mod_state));
1703 	seq_printf(s, "Module probe attempts: %d %d\n",
1704 		   R_PROBE_RETRY_INIT - sfp->sm_mod_tries_init,
1705 		   R_PROBE_RETRY_SLOW - sfp->sm_mod_tries);
1706 	seq_printf(s, "Device state: %s\n",
1707 		   dev_state_to_str(sfp->sm_dev_state));
1708 	seq_printf(s, "Main state: %s\n",
1709 		   sm_state_to_str(sfp->sm_state));
1710 	seq_printf(s, "Fault recovery remaining retries: %d\n",
1711 		   sfp->sm_fault_retries);
1712 	seq_printf(s, "PHY probe remaining retries: %d\n",
1713 		   sfp->sm_phy_retries);
1714 	seq_printf(s, "Signalling rate: %u kBd\n", sfp->rate_kbd);
1715 	seq_printf(s, "Rate select threshold: %u kBd\n",
1716 		   sfp->rs_threshold_kbd);
1717 	seq_printf(s, "moddef0: %d\n", !!(sfp->state & SFP_F_PRESENT));
1718 	seq_printf(s, "rx_los: %d\n", !!(sfp->state & SFP_F_LOS));
1719 	seq_printf(s, "tx_fault: %d\n", !!(sfp->state & SFP_F_TX_FAULT));
1720 	seq_printf(s, "tx_disable: %d\n", !!(sfp->state & SFP_F_TX_DISABLE));
1721 	seq_printf(s, "rs0: %d\n", !!(sfp->state & SFP_F_RS0));
1722 	seq_printf(s, "rs1: %d\n", !!(sfp->state & SFP_F_RS1));
1723 	return 0;
1724 }
1725 DEFINE_SHOW_ATTRIBUTE(sfp_debug_state);
1726 
sfp_debugfs_init(struct sfp * sfp)1727 static void sfp_debugfs_init(struct sfp *sfp)
1728 {
1729 	sfp->debugfs_dir = debugfs_create_dir(dev_name(sfp->dev), NULL);
1730 
1731 	debugfs_create_file("state", 0600, sfp->debugfs_dir, sfp,
1732 			    &sfp_debug_state_fops);
1733 }
1734 
sfp_debugfs_exit(struct sfp * sfp)1735 static void sfp_debugfs_exit(struct sfp *sfp)
1736 {
1737 	debugfs_remove_recursive(sfp->debugfs_dir);
1738 }
1739 #else
sfp_debugfs_init(struct sfp * sfp)1740 static void sfp_debugfs_init(struct sfp *sfp)
1741 {
1742 }
1743 
sfp_debugfs_exit(struct sfp * sfp)1744 static void sfp_debugfs_exit(struct sfp *sfp)
1745 {
1746 }
1747 #endif
1748 
sfp_module_tx_fault_reset(struct sfp * sfp)1749 static void sfp_module_tx_fault_reset(struct sfp *sfp)
1750 {
1751 	unsigned int state;
1752 
1753 	mutex_lock(&sfp->st_mutex);
1754 	state = sfp->state;
1755 	if (!(state & SFP_F_TX_DISABLE)) {
1756 		sfp_set_state(sfp, state | SFP_F_TX_DISABLE);
1757 
1758 		udelay(T_RESET_US);
1759 
1760 		sfp_set_state(sfp, state);
1761 	}
1762 	mutex_unlock(&sfp->st_mutex);
1763 }
1764 
1765 /* SFP state machine */
sfp_sm_set_timer(struct sfp * sfp,unsigned int timeout)1766 static void sfp_sm_set_timer(struct sfp *sfp, unsigned int timeout)
1767 {
1768 	if (timeout)
1769 		mod_delayed_work(system_power_efficient_wq, &sfp->timeout,
1770 				 timeout);
1771 	else
1772 		cancel_delayed_work(&sfp->timeout);
1773 }
1774 
sfp_sm_next(struct sfp * sfp,unsigned int state,unsigned int timeout)1775 static void sfp_sm_next(struct sfp *sfp, unsigned int state,
1776 			unsigned int timeout)
1777 {
1778 	sfp->sm_state = state;
1779 	sfp_sm_set_timer(sfp, timeout);
1780 }
1781 
sfp_sm_mod_next(struct sfp * sfp,unsigned int state,unsigned int timeout)1782 static void sfp_sm_mod_next(struct sfp *sfp, unsigned int state,
1783 			    unsigned int timeout)
1784 {
1785 	sfp->sm_mod_state = state;
1786 	sfp_sm_set_timer(sfp, timeout);
1787 }
1788 
sfp_sm_phy_detach(struct sfp * sfp)1789 static void sfp_sm_phy_detach(struct sfp *sfp)
1790 {
1791 	sfp_remove_phy(sfp->sfp_bus);
1792 	phy_device_remove(sfp->mod_phy);
1793 	phy_device_free(sfp->mod_phy);
1794 	sfp->mod_phy = NULL;
1795 }
1796 
sfp_sm_probe_phy(struct sfp * sfp,int addr,bool is_c45)1797 static int sfp_sm_probe_phy(struct sfp *sfp, int addr, bool is_c45)
1798 {
1799 	struct phy_device *phy;
1800 	int err;
1801 
1802 	phy = get_phy_device(sfp->i2c_mii, addr, is_c45);
1803 	if (phy == ERR_PTR(-ENODEV))
1804 		return PTR_ERR(phy);
1805 	if (IS_ERR(phy)) {
1806 		dev_err(sfp->dev, "mdiobus scan returned %pe\n", phy);
1807 		return PTR_ERR(phy);
1808 	}
1809 
1810 	/* Mark this PHY as being on a SFP module */
1811 	phy->is_on_sfp_module = true;
1812 
1813 	err = phy_device_register(phy);
1814 	if (err) {
1815 		phy_device_free(phy);
1816 		dev_err(sfp->dev, "phy_device_register failed: %pe\n",
1817 			ERR_PTR(err));
1818 		return err;
1819 	}
1820 
1821 	err = sfp_add_phy(sfp->sfp_bus, phy);
1822 	if (err) {
1823 		phy_device_remove(phy);
1824 		phy_device_free(phy);
1825 		dev_err(sfp->dev, "sfp_add_phy failed: %pe\n", ERR_PTR(err));
1826 		return err;
1827 	}
1828 
1829 	sfp->mod_phy = phy;
1830 
1831 	return 0;
1832 }
1833 
sfp_sm_link_up(struct sfp * sfp)1834 static void sfp_sm_link_up(struct sfp *sfp)
1835 {
1836 	sfp_link_up(sfp->sfp_bus);
1837 	sfp_sm_next(sfp, SFP_S_LINK_UP, 0);
1838 }
1839 
sfp_sm_link_down(struct sfp * sfp)1840 static void sfp_sm_link_down(struct sfp *sfp)
1841 {
1842 	sfp_link_down(sfp->sfp_bus);
1843 }
1844 
sfp_sm_link_check_los(struct sfp * sfp)1845 static void sfp_sm_link_check_los(struct sfp *sfp)
1846 {
1847 	const __be16 los_inverted = cpu_to_be16(SFP_OPTIONS_LOS_INVERTED);
1848 	const __be16 los_normal = cpu_to_be16(SFP_OPTIONS_LOS_NORMAL);
1849 	__be16 los_options = sfp->id.ext.options & (los_inverted | los_normal);
1850 	bool los = false;
1851 
1852 	/* If neither SFP_OPTIONS_LOS_INVERTED nor SFP_OPTIONS_LOS_NORMAL
1853 	 * are set, we assume that no LOS signal is available. If both are
1854 	 * set, we assume LOS is not implemented (and is meaningless.)
1855 	 */
1856 	if (los_options == los_inverted)
1857 		los = !(sfp->state & SFP_F_LOS);
1858 	else if (los_options == los_normal)
1859 		los = !!(sfp->state & SFP_F_LOS);
1860 
1861 	if (los)
1862 		sfp_sm_next(sfp, SFP_S_WAIT_LOS, 0);
1863 	else
1864 		sfp_sm_link_up(sfp);
1865 }
1866 
sfp_los_event_active(struct sfp * sfp,unsigned int event)1867 static bool sfp_los_event_active(struct sfp *sfp, unsigned int event)
1868 {
1869 	const __be16 los_inverted = cpu_to_be16(SFP_OPTIONS_LOS_INVERTED);
1870 	const __be16 los_normal = cpu_to_be16(SFP_OPTIONS_LOS_NORMAL);
1871 	__be16 los_options = sfp->id.ext.options & (los_inverted | los_normal);
1872 
1873 	return (los_options == los_inverted && event == SFP_E_LOS_LOW) ||
1874 	       (los_options == los_normal && event == SFP_E_LOS_HIGH);
1875 }
1876 
sfp_los_event_inactive(struct sfp * sfp,unsigned int event)1877 static bool sfp_los_event_inactive(struct sfp *sfp, unsigned int event)
1878 {
1879 	const __be16 los_inverted = cpu_to_be16(SFP_OPTIONS_LOS_INVERTED);
1880 	const __be16 los_normal = cpu_to_be16(SFP_OPTIONS_LOS_NORMAL);
1881 	__be16 los_options = sfp->id.ext.options & (los_inverted | los_normal);
1882 
1883 	return (los_options == los_inverted && event == SFP_E_LOS_HIGH) ||
1884 	       (los_options == los_normal && event == SFP_E_LOS_LOW);
1885 }
1886 
sfp_sm_fault(struct sfp * sfp,unsigned int next_state,bool warn)1887 static void sfp_sm_fault(struct sfp *sfp, unsigned int next_state, bool warn)
1888 {
1889 	if (sfp->sm_fault_retries && !--sfp->sm_fault_retries) {
1890 		dev_err(sfp->dev,
1891 			"module persistently indicates fault, disabling\n");
1892 		sfp_sm_next(sfp, SFP_S_TX_DISABLE, 0);
1893 	} else {
1894 		if (warn)
1895 			dev_err(sfp->dev, "module transmit fault indicated\n");
1896 
1897 		sfp_sm_next(sfp, next_state, T_FAULT_RECOVER);
1898 	}
1899 }
1900 
sfp_sm_add_mdio_bus(struct sfp * sfp)1901 static int sfp_sm_add_mdio_bus(struct sfp *sfp)
1902 {
1903 	if (sfp->mdio_protocol != MDIO_I2C_NONE)
1904 		return sfp_i2c_mdiobus_create(sfp);
1905 
1906 	return 0;
1907 }
1908 
1909 /* Probe a SFP for a PHY device if the module supports copper - the PHY
1910  * normally sits at I2C bus address 0x56, and may either be a clause 22
1911  * or clause 45 PHY.
1912  *
1913  * Clause 22 copper SFP modules normally operate in Cisco SGMII mode with
1914  * negotiation enabled, but some may be in 1000base-X - which is for the
1915  * PHY driver to determine.
1916  *
1917  * Clause 45 copper SFP+ modules (10G) appear to switch their interface
1918  * mode according to the negotiated line speed.
1919  */
sfp_sm_probe_for_phy(struct sfp * sfp)1920 static int sfp_sm_probe_for_phy(struct sfp *sfp)
1921 {
1922 	int err = 0;
1923 
1924 	switch (sfp->mdio_protocol) {
1925 	case MDIO_I2C_NONE:
1926 		break;
1927 
1928 	case MDIO_I2C_MARVELL_C22:
1929 		err = sfp_sm_probe_phy(sfp, SFP_PHY_ADDR, false);
1930 		break;
1931 
1932 	case MDIO_I2C_C45:
1933 		err = sfp_sm_probe_phy(sfp, SFP_PHY_ADDR, true);
1934 		break;
1935 
1936 	case MDIO_I2C_ROLLBALL:
1937 		err = sfp_sm_probe_phy(sfp, SFP_PHY_ADDR_ROLLBALL, true);
1938 		break;
1939 	}
1940 
1941 	return err;
1942 }
1943 
sfp_module_parse_power(struct sfp * sfp)1944 static int sfp_module_parse_power(struct sfp *sfp)
1945 {
1946 	u32 power_mW = 1000;
1947 	bool supports_a2;
1948 
1949 	if (sfp->id.ext.sff8472_compliance >= SFP_SFF8472_COMPLIANCE_REV10_2 &&
1950 	    sfp->id.ext.options & cpu_to_be16(SFP_OPTIONS_POWER_DECL))
1951 		power_mW = 1500;
1952 	/* Added in Rev 11.9, but there is no compliance code for this */
1953 	if (sfp->id.ext.sff8472_compliance >= SFP_SFF8472_COMPLIANCE_REV11_4 &&
1954 	    sfp->id.ext.options & cpu_to_be16(SFP_OPTIONS_HIGH_POWER_LEVEL))
1955 		power_mW = 2000;
1956 
1957 	/* Power level 1 modules (max. 1W) are always supported. */
1958 	if (power_mW <= 1000) {
1959 		sfp->module_power_mW = power_mW;
1960 		return 0;
1961 	}
1962 
1963 	supports_a2 = sfp->id.ext.sff8472_compliance !=
1964 				SFP_SFF8472_COMPLIANCE_NONE ||
1965 		      sfp->id.ext.diagmon & SFP_DIAGMON_DDM;
1966 
1967 	if (power_mW > sfp->max_power_mW) {
1968 		/* Module power specification exceeds the allowed maximum. */
1969 		if (!supports_a2) {
1970 			/* The module appears not to implement bus address
1971 			 * 0xa2, so assume that the module powers up in the
1972 			 * indicated mode.
1973 			 */
1974 			dev_err(sfp->dev,
1975 				"Host does not support %u.%uW modules\n",
1976 				power_mW / 1000, (power_mW / 100) % 10);
1977 			return -EINVAL;
1978 		} else {
1979 			dev_warn(sfp->dev,
1980 				 "Host does not support %u.%uW modules, module left in power mode 1\n",
1981 				 power_mW / 1000, (power_mW / 100) % 10);
1982 			return 0;
1983 		}
1984 	}
1985 
1986 	if (!supports_a2) {
1987 		/* The module power level is below the host maximum and the
1988 		 * module appears not to implement bus address 0xa2, so assume
1989 		 * that the module powers up in the indicated mode.
1990 		 */
1991 		return 0;
1992 	}
1993 
1994 	/* If the module requires a higher power mode, but also requires
1995 	 * an address change sequence, warn the user that the module may
1996 	 * not be functional.
1997 	 */
1998 	if (sfp->id.ext.diagmon & SFP_DIAGMON_ADDRMODE) {
1999 		dev_warn(sfp->dev,
2000 			 "Address Change Sequence not supported but module requires %u.%uW, module may not be functional\n",
2001 			 power_mW / 1000, (power_mW / 100) % 10);
2002 		return 0;
2003 	}
2004 
2005 	sfp->module_power_mW = power_mW;
2006 
2007 	return 0;
2008 }
2009 
sfp_sm_mod_hpower(struct sfp * sfp,bool enable)2010 static int sfp_sm_mod_hpower(struct sfp *sfp, bool enable)
2011 {
2012 	int err;
2013 
2014 	err = sfp_modify_u8(sfp, true, SFP_EXT_STATUS,
2015 			    SFP_EXT_STATUS_PWRLVL_SELECT,
2016 			    enable ? SFP_EXT_STATUS_PWRLVL_SELECT : 0);
2017 	if (err != sizeof(u8)) {
2018 		dev_err(sfp->dev, "failed to %sable high power: %pe\n",
2019 			enable ? "en" : "dis", ERR_PTR(err));
2020 		return -EAGAIN;
2021 	}
2022 
2023 	if (enable)
2024 		dev_info(sfp->dev, "Module switched to %u.%uW power level\n",
2025 			 sfp->module_power_mW / 1000,
2026 			 (sfp->module_power_mW / 100) % 10);
2027 
2028 	return 0;
2029 }
2030 
sfp_module_parse_rate_select(struct sfp * sfp)2031 static void sfp_module_parse_rate_select(struct sfp *sfp)
2032 {
2033 	u8 rate_id;
2034 
2035 	sfp->rs_threshold_kbd = 0;
2036 	sfp->rs_state_mask = 0;
2037 
2038 	if (!(sfp->id.ext.options & cpu_to_be16(SFP_OPTIONS_RATE_SELECT)))
2039 		/* No support for RateSelect */
2040 		return;
2041 
2042 	/* Default to INF-8074 RateSelect operation. The signalling threshold
2043 	 * rate is not well specified, so always select "Full Bandwidth", but
2044 	 * SFF-8079 reveals that it is understood that RS0 will be low for
2045 	 * 1.0625Gb/s and high for 2.125Gb/s. Choose a value half-way between.
2046 	 * This method exists prior to SFF-8472.
2047 	 */
2048 	sfp->rs_state_mask = SFP_F_RS0;
2049 	sfp->rs_threshold_kbd = 1594;
2050 
2051 	/* Parse the rate identifier, which is complicated due to history:
2052 	 * SFF-8472 rev 9.5 marks this field as reserved.
2053 	 * SFF-8079 references SFF-8472 rev 9.5 and defines bit 0. SFF-8472
2054 	 *  compliance is not required.
2055 	 * SFF-8472 rev 10.2 defines this field using values 0..4
2056 	 * SFF-8472 rev 11.0 redefines this field with bit 0 for SFF-8079
2057 	 * and even values.
2058 	 */
2059 	rate_id = sfp->id.base.rate_id;
2060 	if (rate_id == 0)
2061 		/* Unspecified */
2062 		return;
2063 
2064 	/* SFF-8472 rev 10.0..10.4 did not account for SFF-8079 using bit 0,
2065 	 * and allocated value 3 to SFF-8431 independent tx/rx rate select.
2066 	 * Convert this to a SFF-8472 rev 11.0 rate identifier.
2067 	 */
2068 	if (sfp->id.ext.sff8472_compliance >= SFP_SFF8472_COMPLIANCE_REV10_2 &&
2069 	    sfp->id.ext.sff8472_compliance < SFP_SFF8472_COMPLIANCE_REV11_0 &&
2070 	    rate_id == 3)
2071 		rate_id = SFF_RID_8431;
2072 
2073 	if (rate_id & SFF_RID_8079) {
2074 		/* SFF-8079 RateSelect / Application Select in conjunction with
2075 		 * SFF-8472 rev 9.5. SFF-8079 defines rate_id as a bitfield
2076 		 * with only bit 0 used, which takes precedence over SFF-8472.
2077 		 */
2078 		if (!(sfp->id.ext.enhopts & SFP_ENHOPTS_APP_SELECT_SFF8079)) {
2079 			/* SFF-8079 Part 1 - rate selection between Fibre
2080 			 * Channel 1.0625/2.125/4.25 Gbd modes. Note that RS0
2081 			 * is high for 2125, so we have to subtract 1 to
2082 			 * include it.
2083 			 */
2084 			sfp->rs_threshold_kbd = 2125 - 1;
2085 			sfp->rs_state_mask = SFP_F_RS0;
2086 		}
2087 		return;
2088 	}
2089 
2090 	/* SFF-8472 rev 9.5 does not define the rate identifier */
2091 	if (sfp->id.ext.sff8472_compliance <= SFP_SFF8472_COMPLIANCE_REV9_5)
2092 		return;
2093 
2094 	/* SFF-8472 rev 11.0 defines rate_id as a numerical value which will
2095 	 * always have bit 0 clear due to SFF-8079's bitfield usage of rate_id.
2096 	 */
2097 	switch (rate_id) {
2098 	case SFF_RID_8431_RX_ONLY:
2099 		sfp->rs_threshold_kbd = 4250;
2100 		sfp->rs_state_mask = SFP_F_RS0;
2101 		break;
2102 
2103 	case SFF_RID_8431_TX_ONLY:
2104 		sfp->rs_threshold_kbd = 4250;
2105 		sfp->rs_state_mask = SFP_F_RS1;
2106 		break;
2107 
2108 	case SFF_RID_8431:
2109 		sfp->rs_threshold_kbd = 4250;
2110 		sfp->rs_state_mask = SFP_F_RS0 | SFP_F_RS1;
2111 		break;
2112 
2113 	case SFF_RID_10G8G:
2114 		sfp->rs_threshold_kbd = 9000;
2115 		sfp->rs_state_mask = SFP_F_RS0 | SFP_F_RS1;
2116 		break;
2117 	}
2118 }
2119 
2120 /* GPON modules based on Realtek RTL8672 and RTL9601C chips (e.g. V-SOL
2121  * V2801F, CarlitoxxPro CPGOS03-0490, Ubiquiti U-Fiber Instant, ...) do
2122  * not support multibyte reads from the EEPROM. Each multi-byte read
2123  * operation returns just one byte of EEPROM followed by zeros. There is
2124  * no way to identify which modules are using Realtek RTL8672 and RTL9601C
2125  * chips. Moreover every OEM of V-SOL V2801F module puts its own vendor
2126  * name and vendor id into EEPROM, so there is even no way to detect if
2127  * module is V-SOL V2801F. Therefore check for those zeros in the read
2128  * data and then based on check switch to reading EEPROM to one byte
2129  * at a time.
2130  */
sfp_id_needs_byte_io(struct sfp * sfp,void * buf,size_t len)2131 static bool sfp_id_needs_byte_io(struct sfp *sfp, void *buf, size_t len)
2132 {
2133 	size_t i, block_size = sfp->i2c_block_size;
2134 
2135 	/* Already using byte IO */
2136 	if (block_size == 1)
2137 		return false;
2138 
2139 	for (i = 1; i < len; i += block_size) {
2140 		if (memchr_inv(buf + i, '\0', min(block_size - 1, len - i)))
2141 			return false;
2142 	}
2143 	return true;
2144 }
2145 
sfp_cotsworks_fixup_check(struct sfp * sfp,struct sfp_eeprom_id * id)2146 static int sfp_cotsworks_fixup_check(struct sfp *sfp, struct sfp_eeprom_id *id)
2147 {
2148 	u8 check;
2149 	int err;
2150 
2151 	if (id->base.phys_id != SFF8024_ID_SFF_8472 ||
2152 	    id->base.phys_ext_id != SFP_PHYS_EXT_ID_SFP ||
2153 	    id->base.connector != SFF8024_CONNECTOR_LC) {
2154 		dev_warn(sfp->dev, "Rewriting fiber module EEPROM with corrected values\n");
2155 		id->base.phys_id = SFF8024_ID_SFF_8472;
2156 		id->base.phys_ext_id = SFP_PHYS_EXT_ID_SFP;
2157 		id->base.connector = SFF8024_CONNECTOR_LC;
2158 		err = sfp_write(sfp, false, SFP_PHYS_ID, &id->base, 3);
2159 		if (err != 3) {
2160 			dev_err(sfp->dev,
2161 				"Failed to rewrite module EEPROM: %pe\n",
2162 				ERR_PTR(err));
2163 			return err;
2164 		}
2165 
2166 		/* Cotsworks modules have been found to require a delay between write operations. */
2167 		mdelay(50);
2168 
2169 		/* Update base structure checksum */
2170 		check = sfp_check(&id->base, sizeof(id->base) - 1);
2171 		err = sfp_write(sfp, false, SFP_CC_BASE, &check, 1);
2172 		if (err != 1) {
2173 			dev_err(sfp->dev,
2174 				"Failed to update base structure checksum in fiber module EEPROM: %pe\n",
2175 				ERR_PTR(err));
2176 			return err;
2177 		}
2178 	}
2179 	return 0;
2180 }
2181 
sfp_module_parse_sff8472(struct sfp * sfp)2182 static int sfp_module_parse_sff8472(struct sfp *sfp)
2183 {
2184 	/* If the module requires address swap mode, warn about it */
2185 	if (sfp->id.ext.diagmon & SFP_DIAGMON_ADDRMODE)
2186 		dev_warn(sfp->dev,
2187 			 "module address swap to access page 0xA2 is not supported.\n");
2188 	else
2189 		sfp->have_a2 = true;
2190 
2191 	return 0;
2192 }
2193 
sfp_sm_mod_probe(struct sfp * sfp,bool report)2194 static int sfp_sm_mod_probe(struct sfp *sfp, bool report)
2195 {
2196 	/* SFP module inserted - read I2C data */
2197 	struct sfp_eeprom_id id;
2198 	bool cotsworks_sfbg;
2199 	unsigned int mask;
2200 	bool cotsworks;
2201 	u8 check;
2202 	int ret;
2203 
2204 	sfp->i2c_block_size = SFP_EEPROM_BLOCK_SIZE;
2205 
2206 	ret = sfp_read(sfp, false, 0, &id.base, sizeof(id.base));
2207 	if (ret < 0) {
2208 		if (report)
2209 			dev_err(sfp->dev, "failed to read EEPROM: %pe\n",
2210 				ERR_PTR(ret));
2211 		return -EAGAIN;
2212 	}
2213 
2214 	if (ret != sizeof(id.base)) {
2215 		dev_err(sfp->dev, "EEPROM short read: %pe\n", ERR_PTR(ret));
2216 		return -EAGAIN;
2217 	}
2218 
2219 	/* Some SFP modules (e.g. Nokia 3FE46541AA) lock up if read from
2220 	 * address 0x51 is just one byte at a time. Also SFF-8472 requires
2221 	 * that EEPROM supports atomic 16bit read operation for diagnostic
2222 	 * fields, so do not switch to one byte reading at a time unless it
2223 	 * is really required and we have no other option.
2224 	 */
2225 	if (sfp_id_needs_byte_io(sfp, &id.base, sizeof(id.base))) {
2226 		dev_info(sfp->dev,
2227 			 "Detected broken RTL8672/RTL9601C emulated EEPROM\n");
2228 		dev_info(sfp->dev,
2229 			 "Switching to reading EEPROM to one byte at a time\n");
2230 		sfp->i2c_block_size = 1;
2231 
2232 		ret = sfp_read(sfp, false, 0, &id.base, sizeof(id.base));
2233 		if (ret < 0) {
2234 			if (report)
2235 				dev_err(sfp->dev,
2236 					"failed to read EEPROM: %pe\n",
2237 					ERR_PTR(ret));
2238 			return -EAGAIN;
2239 		}
2240 
2241 		if (ret != sizeof(id.base)) {
2242 			dev_err(sfp->dev, "EEPROM short read: %pe\n",
2243 				ERR_PTR(ret));
2244 			return -EAGAIN;
2245 		}
2246 	}
2247 
2248 	/* Cotsworks do not seem to update the checksums when they
2249 	 * do the final programming with the final module part number,
2250 	 * serial number and date code.
2251 	 */
2252 	cotsworks = !memcmp(id.base.vendor_name, "COTSWORKS       ", 16);
2253 	cotsworks_sfbg = !memcmp(id.base.vendor_pn, "SFBG", 4);
2254 
2255 	/* Cotsworks SFF module EEPROM do not always have valid phys_id,
2256 	 * phys_ext_id, and connector bytes.  Rewrite SFF EEPROM bytes if
2257 	 * Cotsworks PN matches and bytes are not correct.
2258 	 */
2259 	if (cotsworks && cotsworks_sfbg) {
2260 		ret = sfp_cotsworks_fixup_check(sfp, &id);
2261 		if (ret < 0)
2262 			return ret;
2263 	}
2264 
2265 	/* Validate the checksum over the base structure */
2266 	check = sfp_check(&id.base, sizeof(id.base) - 1);
2267 	if (check != id.base.cc_base) {
2268 		if (cotsworks) {
2269 			dev_warn(sfp->dev,
2270 				 "EEPROM base structure checksum failure (0x%02x != 0x%02x)\n",
2271 				 check, id.base.cc_base);
2272 		} else {
2273 			dev_err(sfp->dev,
2274 				"EEPROM base structure checksum failure: 0x%02x != 0x%02x\n",
2275 				check, id.base.cc_base);
2276 			print_hex_dump(KERN_ERR, "sfp EE: ", DUMP_PREFIX_OFFSET,
2277 				       16, 1, &id, sizeof(id), true);
2278 			return -EINVAL;
2279 		}
2280 	}
2281 
2282 	ret = sfp_read(sfp, false, SFP_CC_BASE + 1, &id.ext, sizeof(id.ext));
2283 	if (ret < 0) {
2284 		if (report)
2285 			dev_err(sfp->dev, "failed to read EEPROM: %pe\n",
2286 				ERR_PTR(ret));
2287 		return -EAGAIN;
2288 	}
2289 
2290 	if (ret != sizeof(id.ext)) {
2291 		dev_err(sfp->dev, "EEPROM short read: %pe\n", ERR_PTR(ret));
2292 		return -EAGAIN;
2293 	}
2294 
2295 	check = sfp_check(&id.ext, sizeof(id.ext) - 1);
2296 	if (check != id.ext.cc_ext) {
2297 		if (cotsworks) {
2298 			dev_warn(sfp->dev,
2299 				 "EEPROM extended structure checksum failure (0x%02x != 0x%02x)\n",
2300 				 check, id.ext.cc_ext);
2301 		} else {
2302 			dev_err(sfp->dev,
2303 				"EEPROM extended structure checksum failure: 0x%02x != 0x%02x\n",
2304 				check, id.ext.cc_ext);
2305 			print_hex_dump(KERN_ERR, "sfp EE: ", DUMP_PREFIX_OFFSET,
2306 				       16, 1, &id, sizeof(id), true);
2307 			memset(&id.ext, 0, sizeof(id.ext));
2308 		}
2309 	}
2310 
2311 	sfp->id = id;
2312 
2313 	dev_info(sfp->dev, "module %.*s %.*s rev %.*s sn %.*s dc %.*s\n",
2314 		 (int)sizeof(id.base.vendor_name), id.base.vendor_name,
2315 		 (int)sizeof(id.base.vendor_pn), id.base.vendor_pn,
2316 		 (int)sizeof(id.base.vendor_rev), id.base.vendor_rev,
2317 		 (int)sizeof(id.ext.vendor_sn), id.ext.vendor_sn,
2318 		 (int)sizeof(id.ext.datecode), id.ext.datecode);
2319 
2320 	/* Check whether we support this module */
2321 	if (!sfp->type->module_supported(&id)) {
2322 		dev_err(sfp->dev,
2323 			"module is not supported - phys id 0x%02x 0x%02x\n",
2324 			sfp->id.base.phys_id, sfp->id.base.phys_ext_id);
2325 		return -EINVAL;
2326 	}
2327 
2328 	if (sfp->id.ext.sff8472_compliance != SFP_SFF8472_COMPLIANCE_NONE) {
2329 		ret = sfp_module_parse_sff8472(sfp);
2330 		if (ret < 0)
2331 			return ret;
2332 	}
2333 
2334 	/* Parse the module power requirement */
2335 	ret = sfp_module_parse_power(sfp);
2336 	if (ret < 0)
2337 		return ret;
2338 
2339 	sfp_module_parse_rate_select(sfp);
2340 
2341 	mask = SFP_F_PRESENT;
2342 	if (sfp->gpio[GPIO_TX_DISABLE])
2343 		mask |= SFP_F_TX_DISABLE;
2344 	if (sfp->gpio[GPIO_TX_FAULT])
2345 		mask |= SFP_F_TX_FAULT;
2346 	if (sfp->gpio[GPIO_LOS])
2347 		mask |= SFP_F_LOS;
2348 	if (sfp->gpio[GPIO_RS0])
2349 		mask |= SFP_F_RS0;
2350 	if (sfp->gpio[GPIO_RS1])
2351 		mask |= SFP_F_RS1;
2352 
2353 	sfp->module_t_start_up = T_START_UP;
2354 	sfp->module_t_wait = T_WAIT;
2355 	sfp->phy_t_retry = T_PHY_RETRY;
2356 
2357 	sfp->state_ignore_mask = 0;
2358 
2359 	if (sfp->id.base.extended_cc == SFF8024_ECC_10GBASE_T_SFI ||
2360 	    sfp->id.base.extended_cc == SFF8024_ECC_10GBASE_T_SR ||
2361 	    sfp->id.base.extended_cc == SFF8024_ECC_5GBASE_T ||
2362 	    sfp->id.base.extended_cc == SFF8024_ECC_2_5GBASE_T)
2363 		sfp->mdio_protocol = MDIO_I2C_C45;
2364 	else if (sfp->id.base.e1000_base_t)
2365 		sfp->mdio_protocol = MDIO_I2C_MARVELL_C22;
2366 	else
2367 		sfp->mdio_protocol = MDIO_I2C_NONE;
2368 
2369 	sfp->quirk = sfp_lookup_quirk(&id);
2370 
2371 	mutex_lock(&sfp->st_mutex);
2372 	/* Initialise state bits to use from hardware */
2373 	sfp->state_hw_mask = mask;
2374 
2375 	/* We want to drive the rate select pins that the module is using */
2376 	sfp->state_hw_drive |= sfp->rs_state_mask;
2377 
2378 	if (sfp->quirk && sfp->quirk->fixup)
2379 		sfp->quirk->fixup(sfp);
2380 
2381 	sfp->state_hw_mask &= ~sfp->state_ignore_mask;
2382 	mutex_unlock(&sfp->st_mutex);
2383 
2384 	return 0;
2385 }
2386 
sfp_sm_mod_remove(struct sfp * sfp)2387 static void sfp_sm_mod_remove(struct sfp *sfp)
2388 {
2389 	if (sfp->sm_mod_state > SFP_MOD_WAITDEV)
2390 		sfp_module_remove(sfp->sfp_bus);
2391 
2392 	sfp_hwmon_remove(sfp);
2393 
2394 	memset(&sfp->id, 0, sizeof(sfp->id));
2395 	sfp->module_power_mW = 0;
2396 	sfp->state_hw_drive = SFP_F_TX_DISABLE;
2397 	sfp->have_a2 = false;
2398 
2399 	dev_info(sfp->dev, "module removed\n");
2400 }
2401 
2402 /* This state machine tracks the upstream's state */
sfp_sm_device(struct sfp * sfp,unsigned int event)2403 static void sfp_sm_device(struct sfp *sfp, unsigned int event)
2404 {
2405 	switch (sfp->sm_dev_state) {
2406 	default:
2407 		if (event == SFP_E_DEV_ATTACH)
2408 			sfp->sm_dev_state = SFP_DEV_DOWN;
2409 		break;
2410 
2411 	case SFP_DEV_DOWN:
2412 		if (event == SFP_E_DEV_DETACH)
2413 			sfp->sm_dev_state = SFP_DEV_DETACHED;
2414 		else if (event == SFP_E_DEV_UP)
2415 			sfp->sm_dev_state = SFP_DEV_UP;
2416 		break;
2417 
2418 	case SFP_DEV_UP:
2419 		if (event == SFP_E_DEV_DETACH)
2420 			sfp->sm_dev_state = SFP_DEV_DETACHED;
2421 		else if (event == SFP_E_DEV_DOWN)
2422 			sfp->sm_dev_state = SFP_DEV_DOWN;
2423 		break;
2424 	}
2425 }
2426 
2427 /* This state machine tracks the insert/remove state of the module, probes
2428  * the on-board EEPROM, and sets up the power level.
2429  */
sfp_sm_module(struct sfp * sfp,unsigned int event)2430 static void sfp_sm_module(struct sfp *sfp, unsigned int event)
2431 {
2432 	int err;
2433 
2434 	/* Handle remove event globally, it resets this state machine */
2435 	if (event == SFP_E_REMOVE) {
2436 		sfp_sm_mod_remove(sfp);
2437 		sfp_sm_mod_next(sfp, SFP_MOD_EMPTY, 0);
2438 		return;
2439 	}
2440 
2441 	/* Handle device detach globally */
2442 	if (sfp->sm_dev_state < SFP_DEV_DOWN &&
2443 	    sfp->sm_mod_state > SFP_MOD_WAITDEV) {
2444 		if (sfp->module_power_mW > 1000 &&
2445 		    sfp->sm_mod_state > SFP_MOD_HPOWER)
2446 			sfp_sm_mod_hpower(sfp, false);
2447 		sfp_sm_mod_next(sfp, SFP_MOD_WAITDEV, 0);
2448 		return;
2449 	}
2450 
2451 	switch (sfp->sm_mod_state) {
2452 	default:
2453 		if (event == SFP_E_INSERT) {
2454 			sfp_sm_mod_next(sfp, SFP_MOD_PROBE, T_SERIAL);
2455 			sfp->sm_mod_tries_init = R_PROBE_RETRY_INIT;
2456 			sfp->sm_mod_tries = R_PROBE_RETRY_SLOW;
2457 		}
2458 		break;
2459 
2460 	case SFP_MOD_PROBE:
2461 		/* Wait for T_PROBE_INIT to time out */
2462 		if (event != SFP_E_TIMEOUT)
2463 			break;
2464 
2465 		err = sfp_sm_mod_probe(sfp, sfp->sm_mod_tries == 1);
2466 		if (err == -EAGAIN) {
2467 			if (sfp->sm_mod_tries_init &&
2468 			   --sfp->sm_mod_tries_init) {
2469 				sfp_sm_set_timer(sfp, T_PROBE_RETRY_INIT);
2470 				break;
2471 			} else if (sfp->sm_mod_tries && --sfp->sm_mod_tries) {
2472 				if (sfp->sm_mod_tries == R_PROBE_RETRY_SLOW - 1)
2473 					dev_warn(sfp->dev,
2474 						 "please wait, module slow to respond\n");
2475 				sfp_sm_set_timer(sfp, T_PROBE_RETRY_SLOW);
2476 				break;
2477 			}
2478 		}
2479 		if (err < 0) {
2480 			sfp_sm_mod_next(sfp, SFP_MOD_ERROR, 0);
2481 			break;
2482 		}
2483 
2484 		/* Force a poll to re-read the hardware signal state after
2485 		 * sfp_sm_mod_probe() changed state_hw_mask.
2486 		 */
2487 		mod_delayed_work(system_wq, &sfp->poll, 1);
2488 
2489 		err = sfp_hwmon_insert(sfp);
2490 		if (err)
2491 			dev_warn(sfp->dev, "hwmon probe failed: %pe\n",
2492 				 ERR_PTR(err));
2493 
2494 		sfp_sm_mod_next(sfp, SFP_MOD_WAITDEV, 0);
2495 		fallthrough;
2496 	case SFP_MOD_WAITDEV:
2497 		/* Ensure that the device is attached before proceeding */
2498 		if (sfp->sm_dev_state < SFP_DEV_DOWN)
2499 			break;
2500 
2501 		/* Report the module insertion to the upstream device */
2502 		err = sfp_module_insert(sfp->sfp_bus, &sfp->id,
2503 					sfp->quirk);
2504 		if (err < 0) {
2505 			sfp_sm_mod_next(sfp, SFP_MOD_ERROR, 0);
2506 			break;
2507 		}
2508 
2509 		/* If this is a power level 1 module, we are done */
2510 		if (sfp->module_power_mW <= 1000)
2511 			goto insert;
2512 
2513 		sfp_sm_mod_next(sfp, SFP_MOD_HPOWER, 0);
2514 		fallthrough;
2515 	case SFP_MOD_HPOWER:
2516 		/* Enable high power mode */
2517 		err = sfp_sm_mod_hpower(sfp, true);
2518 		if (err < 0) {
2519 			if (err != -EAGAIN) {
2520 				sfp_module_remove(sfp->sfp_bus);
2521 				sfp_sm_mod_next(sfp, SFP_MOD_ERROR, 0);
2522 			} else {
2523 				sfp_sm_set_timer(sfp, T_PROBE_RETRY_INIT);
2524 			}
2525 			break;
2526 		}
2527 
2528 		sfp_sm_mod_next(sfp, SFP_MOD_WAITPWR, T_HPOWER_LEVEL);
2529 		break;
2530 
2531 	case SFP_MOD_WAITPWR:
2532 		/* Wait for T_HPOWER_LEVEL to time out */
2533 		if (event != SFP_E_TIMEOUT)
2534 			break;
2535 
2536 	insert:
2537 		sfp_sm_mod_next(sfp, SFP_MOD_PRESENT, 0);
2538 		break;
2539 
2540 	case SFP_MOD_PRESENT:
2541 	case SFP_MOD_ERROR:
2542 		break;
2543 	}
2544 }
2545 
sfp_sm_main(struct sfp * sfp,unsigned int event)2546 static void sfp_sm_main(struct sfp *sfp, unsigned int event)
2547 {
2548 	unsigned long timeout;
2549 	int ret;
2550 
2551 	/* Some events are global */
2552 	if (sfp->sm_state != SFP_S_DOWN &&
2553 	    (sfp->sm_mod_state != SFP_MOD_PRESENT ||
2554 	     sfp->sm_dev_state != SFP_DEV_UP)) {
2555 		if (sfp->sm_state == SFP_S_LINK_UP &&
2556 		    sfp->sm_dev_state == SFP_DEV_UP)
2557 			sfp_sm_link_down(sfp);
2558 		if (sfp->sm_state > SFP_S_INIT)
2559 			sfp_module_stop(sfp->sfp_bus);
2560 		if (sfp->mod_phy)
2561 			sfp_sm_phy_detach(sfp);
2562 		if (sfp->i2c_mii)
2563 			sfp_i2c_mdiobus_destroy(sfp);
2564 		sfp_module_tx_disable(sfp);
2565 		sfp_soft_stop_poll(sfp);
2566 		sfp_sm_next(sfp, SFP_S_DOWN, 0);
2567 		return;
2568 	}
2569 
2570 	/* The main state machine */
2571 	switch (sfp->sm_state) {
2572 	case SFP_S_DOWN:
2573 		if (sfp->sm_mod_state != SFP_MOD_PRESENT ||
2574 		    sfp->sm_dev_state != SFP_DEV_UP)
2575 			break;
2576 
2577 		/* Only use the soft state bits if we have access to the A2h
2578 		 * memory, which implies that we have some level of SFF-8472
2579 		 * compliance.
2580 		 */
2581 		if (sfp->have_a2)
2582 			sfp_soft_start_poll(sfp);
2583 
2584 		sfp_module_tx_enable(sfp);
2585 
2586 		/* Initialise the fault clearance retries */
2587 		sfp->sm_fault_retries = N_FAULT_INIT;
2588 
2589 		/* We need to check the TX_FAULT state, which is not defined
2590 		 * while TX_DISABLE is asserted. The earliest we want to do
2591 		 * anything (such as probe for a PHY) is 50ms (or more on
2592 		 * specific modules).
2593 		 */
2594 		sfp_sm_next(sfp, SFP_S_WAIT, sfp->module_t_wait);
2595 		break;
2596 
2597 	case SFP_S_WAIT:
2598 		if (event != SFP_E_TIMEOUT)
2599 			break;
2600 
2601 		if (sfp->state & SFP_F_TX_FAULT) {
2602 			/* Wait up to t_init (SFF-8472) or t_start_up (SFF-8431)
2603 			 * from the TX_DISABLE deassertion for the module to
2604 			 * initialise, which is indicated by TX_FAULT
2605 			 * deasserting.
2606 			 */
2607 			timeout = sfp->module_t_start_up;
2608 			if (timeout > sfp->module_t_wait)
2609 				timeout -= sfp->module_t_wait;
2610 			else
2611 				timeout = 1;
2612 
2613 			sfp_sm_next(sfp, SFP_S_INIT, timeout);
2614 		} else {
2615 			/* TX_FAULT is not asserted, assume the module has
2616 			 * finished initialising.
2617 			 */
2618 			goto init_done;
2619 		}
2620 		break;
2621 
2622 	case SFP_S_INIT:
2623 		if (event == SFP_E_TIMEOUT && sfp->state & SFP_F_TX_FAULT) {
2624 			/* TX_FAULT is still asserted after t_init
2625 			 * or t_start_up, so assume there is a fault.
2626 			 */
2627 			sfp_sm_fault(sfp, SFP_S_INIT_TX_FAULT,
2628 				     sfp->sm_fault_retries == N_FAULT_INIT);
2629 		} else if (event == SFP_E_TIMEOUT || event == SFP_E_TX_CLEAR) {
2630 	init_done:
2631 			/* Create mdiobus and start trying for PHY */
2632 			ret = sfp_sm_add_mdio_bus(sfp);
2633 			if (ret < 0) {
2634 				sfp_sm_next(sfp, SFP_S_FAIL, 0);
2635 				break;
2636 			}
2637 			sfp->sm_phy_retries = R_PHY_RETRY;
2638 			goto phy_probe;
2639 		}
2640 		break;
2641 
2642 	case SFP_S_INIT_PHY:
2643 		if (event != SFP_E_TIMEOUT)
2644 			break;
2645 	phy_probe:
2646 		/* TX_FAULT deasserted or we timed out with TX_FAULT
2647 		 * clear.  Probe for the PHY and check the LOS state.
2648 		 */
2649 		ret = sfp_sm_probe_for_phy(sfp);
2650 		if (ret == -ENODEV) {
2651 			if (--sfp->sm_phy_retries) {
2652 				sfp_sm_next(sfp, SFP_S_INIT_PHY,
2653 					    sfp->phy_t_retry);
2654 				dev_dbg(sfp->dev,
2655 					"no PHY detected, %u tries left\n",
2656 					sfp->sm_phy_retries);
2657 				break;
2658 			} else {
2659 				dev_info(sfp->dev, "no PHY detected\n");
2660 			}
2661 		} else if (ret) {
2662 			sfp_sm_next(sfp, SFP_S_FAIL, 0);
2663 			break;
2664 		}
2665 		if (sfp_module_start(sfp->sfp_bus)) {
2666 			sfp_sm_next(sfp, SFP_S_FAIL, 0);
2667 			break;
2668 		}
2669 		sfp_sm_link_check_los(sfp);
2670 
2671 		/* Reset the fault retry count */
2672 		sfp->sm_fault_retries = N_FAULT;
2673 		break;
2674 
2675 	case SFP_S_INIT_TX_FAULT:
2676 		if (event == SFP_E_TIMEOUT) {
2677 			sfp_module_tx_fault_reset(sfp);
2678 			sfp_sm_next(sfp, SFP_S_INIT, sfp->module_t_start_up);
2679 		}
2680 		break;
2681 
2682 	case SFP_S_WAIT_LOS:
2683 		if (event == SFP_E_TX_FAULT)
2684 			sfp_sm_fault(sfp, SFP_S_TX_FAULT, true);
2685 		else if (sfp_los_event_inactive(sfp, event))
2686 			sfp_sm_link_up(sfp);
2687 		break;
2688 
2689 	case SFP_S_LINK_UP:
2690 		if (event == SFP_E_TX_FAULT) {
2691 			sfp_sm_link_down(sfp);
2692 			sfp_sm_fault(sfp, SFP_S_TX_FAULT, true);
2693 		} else if (sfp_los_event_active(sfp, event)) {
2694 			sfp_sm_link_down(sfp);
2695 			sfp_sm_next(sfp, SFP_S_WAIT_LOS, 0);
2696 		}
2697 		break;
2698 
2699 	case SFP_S_TX_FAULT:
2700 		if (event == SFP_E_TIMEOUT) {
2701 			sfp_module_tx_fault_reset(sfp);
2702 			sfp_sm_next(sfp, SFP_S_REINIT, sfp->module_t_start_up);
2703 		}
2704 		break;
2705 
2706 	case SFP_S_REINIT:
2707 		if (event == SFP_E_TIMEOUT && sfp->state & SFP_F_TX_FAULT) {
2708 			sfp_sm_fault(sfp, SFP_S_TX_FAULT, false);
2709 		} else if (event == SFP_E_TIMEOUT || event == SFP_E_TX_CLEAR) {
2710 			dev_info(sfp->dev, "module transmit fault recovered\n");
2711 			sfp_sm_link_check_los(sfp);
2712 		}
2713 		break;
2714 
2715 	case SFP_S_TX_DISABLE:
2716 		break;
2717 	}
2718 }
2719 
__sfp_sm_event(struct sfp * sfp,unsigned int event)2720 static void __sfp_sm_event(struct sfp *sfp, unsigned int event)
2721 {
2722 	dev_dbg(sfp->dev, "SM: enter %s:%s:%s event %s\n",
2723 		mod_state_to_str(sfp->sm_mod_state),
2724 		dev_state_to_str(sfp->sm_dev_state),
2725 		sm_state_to_str(sfp->sm_state),
2726 		event_to_str(event));
2727 
2728 	sfp_sm_device(sfp, event);
2729 	sfp_sm_module(sfp, event);
2730 	sfp_sm_main(sfp, event);
2731 
2732 	dev_dbg(sfp->dev, "SM: exit %s:%s:%s\n",
2733 		mod_state_to_str(sfp->sm_mod_state),
2734 		dev_state_to_str(sfp->sm_dev_state),
2735 		sm_state_to_str(sfp->sm_state));
2736 }
2737 
sfp_sm_event(struct sfp * sfp,unsigned int event)2738 static void sfp_sm_event(struct sfp *sfp, unsigned int event)
2739 {
2740 	mutex_lock(&sfp->sm_mutex);
2741 	__sfp_sm_event(sfp, event);
2742 	mutex_unlock(&sfp->sm_mutex);
2743 }
2744 
sfp_attach(struct sfp * sfp)2745 static void sfp_attach(struct sfp *sfp)
2746 {
2747 	sfp_sm_event(sfp, SFP_E_DEV_ATTACH);
2748 }
2749 
sfp_detach(struct sfp * sfp)2750 static void sfp_detach(struct sfp *sfp)
2751 {
2752 	sfp_sm_event(sfp, SFP_E_DEV_DETACH);
2753 }
2754 
sfp_start(struct sfp * sfp)2755 static void sfp_start(struct sfp *sfp)
2756 {
2757 	sfp_sm_event(sfp, SFP_E_DEV_UP);
2758 }
2759 
sfp_stop(struct sfp * sfp)2760 static void sfp_stop(struct sfp *sfp)
2761 {
2762 	sfp_sm_event(sfp, SFP_E_DEV_DOWN);
2763 }
2764 
sfp_set_signal_rate(struct sfp * sfp,unsigned int rate_kbd)2765 static void sfp_set_signal_rate(struct sfp *sfp, unsigned int rate_kbd)
2766 {
2767 	unsigned int set;
2768 
2769 	sfp->rate_kbd = rate_kbd;
2770 
2771 	if (rate_kbd > sfp->rs_threshold_kbd)
2772 		set = sfp->rs_state_mask;
2773 	else
2774 		set = 0;
2775 
2776 	sfp_mod_state(sfp, SFP_F_RS0 | SFP_F_RS1, set);
2777 }
2778 
sfp_module_info(struct sfp * sfp,struct ethtool_modinfo * modinfo)2779 static int sfp_module_info(struct sfp *sfp, struct ethtool_modinfo *modinfo)
2780 {
2781 	/* locking... and check module is present */
2782 
2783 	if (sfp->id.ext.sff8472_compliance &&
2784 	    !(sfp->id.ext.diagmon & SFP_DIAGMON_ADDRMODE)) {
2785 		modinfo->type = ETH_MODULE_SFF_8472;
2786 		modinfo->eeprom_len = ETH_MODULE_SFF_8472_LEN;
2787 	} else {
2788 		modinfo->type = ETH_MODULE_SFF_8079;
2789 		modinfo->eeprom_len = ETH_MODULE_SFF_8079_LEN;
2790 	}
2791 	return 0;
2792 }
2793 
sfp_module_eeprom(struct sfp * sfp,struct ethtool_eeprom * ee,u8 * data)2794 static int sfp_module_eeprom(struct sfp *sfp, struct ethtool_eeprom *ee,
2795 			     u8 *data)
2796 {
2797 	unsigned int first, last, len;
2798 	int ret;
2799 
2800 	if (!(sfp->state & SFP_F_PRESENT))
2801 		return -ENODEV;
2802 
2803 	if (ee->len == 0)
2804 		return -EINVAL;
2805 
2806 	first = ee->offset;
2807 	last = ee->offset + ee->len;
2808 	if (first < ETH_MODULE_SFF_8079_LEN) {
2809 		len = min_t(unsigned int, last, ETH_MODULE_SFF_8079_LEN);
2810 		len -= first;
2811 
2812 		ret = sfp_read(sfp, false, first, data, len);
2813 		if (ret < 0)
2814 			return ret;
2815 
2816 		first += len;
2817 		data += len;
2818 	}
2819 	if (first < ETH_MODULE_SFF_8472_LEN && last > ETH_MODULE_SFF_8079_LEN) {
2820 		len = min_t(unsigned int, last, ETH_MODULE_SFF_8472_LEN);
2821 		len -= first;
2822 		first -= ETH_MODULE_SFF_8079_LEN;
2823 
2824 		ret = sfp_read(sfp, true, first, data, len);
2825 		if (ret < 0)
2826 			return ret;
2827 	}
2828 	return 0;
2829 }
2830 
sfp_module_eeprom_by_page(struct sfp * sfp,const struct ethtool_module_eeprom * page,struct netlink_ext_ack * extack)2831 static int sfp_module_eeprom_by_page(struct sfp *sfp,
2832 				     const struct ethtool_module_eeprom *page,
2833 				     struct netlink_ext_ack *extack)
2834 {
2835 	if (!(sfp->state & SFP_F_PRESENT))
2836 		return -ENODEV;
2837 
2838 	if (page->bank) {
2839 		NL_SET_ERR_MSG(extack, "Banks not supported");
2840 		return -EOPNOTSUPP;
2841 	}
2842 
2843 	if (page->page) {
2844 		NL_SET_ERR_MSG(extack, "Only page 0 supported");
2845 		return -EOPNOTSUPP;
2846 	}
2847 
2848 	if (page->i2c_address != 0x50 &&
2849 	    page->i2c_address != 0x51) {
2850 		NL_SET_ERR_MSG(extack, "Only address 0x50 and 0x51 supported");
2851 		return -EOPNOTSUPP;
2852 	}
2853 
2854 	return sfp_read(sfp, page->i2c_address == 0x51, page->offset,
2855 			page->data, page->length);
2856 };
2857 
2858 static const struct sfp_socket_ops sfp_module_ops = {
2859 	.attach = sfp_attach,
2860 	.detach = sfp_detach,
2861 	.start = sfp_start,
2862 	.stop = sfp_stop,
2863 	.set_signal_rate = sfp_set_signal_rate,
2864 	.module_info = sfp_module_info,
2865 	.module_eeprom = sfp_module_eeprom,
2866 	.module_eeprom_by_page = sfp_module_eeprom_by_page,
2867 };
2868 
sfp_timeout(struct work_struct * work)2869 static void sfp_timeout(struct work_struct *work)
2870 {
2871 	struct sfp *sfp = container_of(work, struct sfp, timeout.work);
2872 
2873 	rtnl_lock();
2874 	sfp_sm_event(sfp, SFP_E_TIMEOUT);
2875 	rtnl_unlock();
2876 }
2877 
sfp_check_state(struct sfp * sfp)2878 static void sfp_check_state(struct sfp *sfp)
2879 {
2880 	unsigned int state, i, changed;
2881 
2882 	rtnl_lock();
2883 	mutex_lock(&sfp->st_mutex);
2884 	state = sfp_get_state(sfp);
2885 	changed = state ^ sfp->state;
2886 	changed &= SFP_F_PRESENT | SFP_F_LOS | SFP_F_TX_FAULT;
2887 
2888 	for (i = 0; i < GPIO_MAX; i++)
2889 		if (changed & BIT(i))
2890 			dev_dbg(sfp->dev, "%s %u -> %u\n", gpio_names[i],
2891 				!!(sfp->state & BIT(i)), !!(state & BIT(i)));
2892 
2893 	state |= sfp->state & SFP_F_OUTPUTS;
2894 	sfp->state = state;
2895 	mutex_unlock(&sfp->st_mutex);
2896 
2897 	mutex_lock(&sfp->sm_mutex);
2898 	if (changed & SFP_F_PRESENT)
2899 		__sfp_sm_event(sfp, state & SFP_F_PRESENT ?
2900 				    SFP_E_INSERT : SFP_E_REMOVE);
2901 
2902 	if (changed & SFP_F_TX_FAULT)
2903 		__sfp_sm_event(sfp, state & SFP_F_TX_FAULT ?
2904 				    SFP_E_TX_FAULT : SFP_E_TX_CLEAR);
2905 
2906 	if (changed & SFP_F_LOS)
2907 		__sfp_sm_event(sfp, state & SFP_F_LOS ?
2908 				    SFP_E_LOS_HIGH : SFP_E_LOS_LOW);
2909 	mutex_unlock(&sfp->sm_mutex);
2910 	rtnl_unlock();
2911 }
2912 
sfp_irq(int irq,void * data)2913 static irqreturn_t sfp_irq(int irq, void *data)
2914 {
2915 	struct sfp *sfp = data;
2916 
2917 	sfp_check_state(sfp);
2918 
2919 	return IRQ_HANDLED;
2920 }
2921 
sfp_poll(struct work_struct * work)2922 static void sfp_poll(struct work_struct *work)
2923 {
2924 	struct sfp *sfp = container_of(work, struct sfp, poll.work);
2925 
2926 	sfp_check_state(sfp);
2927 
2928 	// st_mutex doesn't need to be held here for state_soft_mask,
2929 	// it's unimportant if we race while reading this.
2930 	if (sfp->state_soft_mask & (SFP_F_LOS | SFP_F_TX_FAULT) ||
2931 	    sfp->need_poll)
2932 		mod_delayed_work(system_wq, &sfp->poll, poll_jiffies);
2933 }
2934 
sfp_alloc(struct device * dev)2935 static struct sfp *sfp_alloc(struct device *dev)
2936 {
2937 	struct sfp *sfp;
2938 
2939 	sfp = kzalloc(sizeof(*sfp), GFP_KERNEL);
2940 	if (!sfp)
2941 		return ERR_PTR(-ENOMEM);
2942 
2943 	sfp->dev = dev;
2944 	sfp->i2c_block_size = SFP_EEPROM_BLOCK_SIZE;
2945 
2946 	mutex_init(&sfp->sm_mutex);
2947 	mutex_init(&sfp->st_mutex);
2948 	INIT_DELAYED_WORK(&sfp->poll, sfp_poll);
2949 	INIT_DELAYED_WORK(&sfp->timeout, sfp_timeout);
2950 
2951 	sfp_hwmon_init(sfp);
2952 
2953 	return sfp;
2954 }
2955 
sfp_cleanup(void * data)2956 static void sfp_cleanup(void *data)
2957 {
2958 	struct sfp *sfp = data;
2959 
2960 	sfp_hwmon_exit(sfp);
2961 
2962 	cancel_delayed_work_sync(&sfp->poll);
2963 	cancel_delayed_work_sync(&sfp->timeout);
2964 	if (sfp->i2c_mii) {
2965 		mdiobus_unregister(sfp->i2c_mii);
2966 		mdiobus_free(sfp->i2c_mii);
2967 	}
2968 	if (sfp->i2c)
2969 		i2c_put_adapter(sfp->i2c);
2970 	kfree(sfp);
2971 }
2972 
sfp_i2c_get(struct sfp * sfp)2973 static int sfp_i2c_get(struct sfp *sfp)
2974 {
2975 	struct fwnode_handle *h;
2976 	struct i2c_adapter *i2c;
2977 	int err;
2978 
2979 	h = fwnode_find_reference(dev_fwnode(sfp->dev), "i2c-bus", 0);
2980 	if (IS_ERR(h)) {
2981 		dev_err(sfp->dev, "missing 'i2c-bus' property\n");
2982 		return -ENODEV;
2983 	}
2984 
2985 	i2c = i2c_get_adapter_by_fwnode(h);
2986 	if (!i2c) {
2987 		err = -EPROBE_DEFER;
2988 		goto put;
2989 	}
2990 
2991 	err = sfp_i2c_configure(sfp, i2c);
2992 	if (err)
2993 		i2c_put_adapter(i2c);
2994 put:
2995 	fwnode_handle_put(h);
2996 	return err;
2997 }
2998 
sfp_probe(struct platform_device * pdev)2999 static int sfp_probe(struct platform_device *pdev)
3000 {
3001 	const struct sff_data *sff;
3002 	char *sfp_irq_name;
3003 	struct sfp *sfp;
3004 	int err, i;
3005 
3006 	sfp = sfp_alloc(&pdev->dev);
3007 	if (IS_ERR(sfp))
3008 		return PTR_ERR(sfp);
3009 
3010 	platform_set_drvdata(pdev, sfp);
3011 
3012 	err = devm_add_action_or_reset(sfp->dev, sfp_cleanup, sfp);
3013 	if (err < 0)
3014 		return err;
3015 
3016 	sff = device_get_match_data(sfp->dev);
3017 	if (!sff)
3018 		sff = &sfp_data;
3019 
3020 	sfp->type = sff;
3021 
3022 	err = sfp_i2c_get(sfp);
3023 	if (err)
3024 		return err;
3025 
3026 	for (i = 0; i < GPIO_MAX; i++)
3027 		if (sff->gpios & BIT(i)) {
3028 			sfp->gpio[i] = devm_gpiod_get_optional(sfp->dev,
3029 					   gpio_names[i], gpio_flags[i]);
3030 			if (IS_ERR(sfp->gpio[i]))
3031 				return PTR_ERR(sfp->gpio[i]);
3032 		}
3033 
3034 	sfp->state_hw_mask = SFP_F_PRESENT;
3035 	sfp->state_hw_drive = SFP_F_TX_DISABLE;
3036 
3037 	sfp->get_state = sfp_gpio_get_state;
3038 	sfp->set_state = sfp_gpio_set_state;
3039 
3040 	/* Modules that have no detect signal are always present */
3041 	if (!(sfp->gpio[GPIO_MODDEF0]))
3042 		sfp->get_state = sff_gpio_get_state;
3043 
3044 	device_property_read_u32(&pdev->dev, "maximum-power-milliwatt",
3045 				 &sfp->max_power_mW);
3046 	if (sfp->max_power_mW < 1000) {
3047 		if (sfp->max_power_mW)
3048 			dev_warn(sfp->dev,
3049 				 "Firmware bug: host maximum power should be at least 1W\n");
3050 		sfp->max_power_mW = 1000;
3051 	}
3052 
3053 	dev_info(sfp->dev, "Host maximum power %u.%uW\n",
3054 		 sfp->max_power_mW / 1000, (sfp->max_power_mW / 100) % 10);
3055 
3056 	/* Get the initial state, and always signal TX disable,
3057 	 * since the network interface will not be up.
3058 	 */
3059 	sfp->state = sfp_get_state(sfp) | SFP_F_TX_DISABLE;
3060 
3061 	if (sfp->gpio[GPIO_RS0] &&
3062 	    gpiod_get_value_cansleep(sfp->gpio[GPIO_RS0]))
3063 		sfp->state |= SFP_F_RS0;
3064 	sfp_set_state(sfp, sfp->state);
3065 	sfp_module_tx_disable(sfp);
3066 	if (sfp->state & SFP_F_PRESENT) {
3067 		rtnl_lock();
3068 		sfp_sm_event(sfp, SFP_E_INSERT);
3069 		rtnl_unlock();
3070 	}
3071 
3072 	for (i = 0; i < GPIO_MAX; i++) {
3073 		if (gpio_flags[i] != GPIOD_IN || !sfp->gpio[i])
3074 			continue;
3075 
3076 		sfp->gpio_irq[i] = gpiod_to_irq(sfp->gpio[i]);
3077 		if (sfp->gpio_irq[i] < 0) {
3078 			sfp->gpio_irq[i] = 0;
3079 			sfp->need_poll = true;
3080 			continue;
3081 		}
3082 
3083 		sfp_irq_name = devm_kasprintf(sfp->dev, GFP_KERNEL,
3084 					      "%s-%s", dev_name(sfp->dev),
3085 					      gpio_names[i]);
3086 
3087 		if (!sfp_irq_name)
3088 			return -ENOMEM;
3089 
3090 		err = devm_request_threaded_irq(sfp->dev, sfp->gpio_irq[i],
3091 						NULL, sfp_irq,
3092 						IRQF_ONESHOT |
3093 						IRQF_TRIGGER_RISING |
3094 						IRQF_TRIGGER_FALLING,
3095 						sfp_irq_name, sfp);
3096 		if (err) {
3097 			sfp->gpio_irq[i] = 0;
3098 			sfp->need_poll = true;
3099 		}
3100 	}
3101 
3102 	if (sfp->need_poll)
3103 		mod_delayed_work(system_wq, &sfp->poll, poll_jiffies);
3104 
3105 	/* We could have an issue in cases no Tx disable pin is available or
3106 	 * wired as modules using a laser as their light source will continue to
3107 	 * be active when the fiber is removed. This could be a safety issue and
3108 	 * we should at least warn the user about that.
3109 	 */
3110 	if (!sfp->gpio[GPIO_TX_DISABLE])
3111 		dev_warn(sfp->dev,
3112 			 "No tx_disable pin: SFP modules will always be emitting.\n");
3113 
3114 	sfp->sfp_bus = sfp_register_socket(sfp->dev, sfp, &sfp_module_ops);
3115 	if (!sfp->sfp_bus)
3116 		return -ENOMEM;
3117 
3118 	sfp_debugfs_init(sfp);
3119 
3120 	return 0;
3121 }
3122 
sfp_remove(struct platform_device * pdev)3123 static void sfp_remove(struct platform_device *pdev)
3124 {
3125 	struct sfp *sfp = platform_get_drvdata(pdev);
3126 
3127 	sfp_debugfs_exit(sfp);
3128 	sfp_unregister_socket(sfp->sfp_bus);
3129 
3130 	rtnl_lock();
3131 	sfp_sm_event(sfp, SFP_E_REMOVE);
3132 	rtnl_unlock();
3133 }
3134 
sfp_shutdown(struct platform_device * pdev)3135 static void sfp_shutdown(struct platform_device *pdev)
3136 {
3137 	struct sfp *sfp = platform_get_drvdata(pdev);
3138 	int i;
3139 
3140 	for (i = 0; i < GPIO_MAX; i++) {
3141 		if (!sfp->gpio_irq[i])
3142 			continue;
3143 
3144 		devm_free_irq(sfp->dev, sfp->gpio_irq[i], sfp);
3145 	}
3146 
3147 	cancel_delayed_work_sync(&sfp->poll);
3148 	cancel_delayed_work_sync(&sfp->timeout);
3149 }
3150 
3151 static struct platform_driver sfp_driver = {
3152 	.probe = sfp_probe,
3153 	.remove = sfp_remove,
3154 	.shutdown = sfp_shutdown,
3155 	.driver = {
3156 		.name = "sfp",
3157 		.of_match_table = sfp_of_match,
3158 	},
3159 };
3160 
sfp_init(void)3161 static int sfp_init(void)
3162 {
3163 	poll_jiffies = msecs_to_jiffies(100);
3164 
3165 	return platform_driver_register(&sfp_driver);
3166 }
3167 module_init(sfp_init);
3168 
sfp_exit(void)3169 static void sfp_exit(void)
3170 {
3171 	platform_driver_unregister(&sfp_driver);
3172 }
3173 module_exit(sfp_exit);
3174 
3175 MODULE_ALIAS("platform:sfp");
3176 MODULE_AUTHOR("Russell King");
3177 MODULE_LICENSE("GPL v2");
3178 MODULE_DESCRIPTION("SFP cage support");
3179