1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * PCI Endpoint *Controller* (EPC) library
4 *
5 * Copyright (C) 2017 Texas Instruments
6 * Author: Kishon Vijay Abraham I <[email protected]>
7 */
8
9 #include <linux/device.h>
10 #include <linux/slab.h>
11 #include <linux/module.h>
12
13 #include <linux/pci-epc.h>
14 #include <linux/pci-epf.h>
15 #include <linux/pci-ep-cfs.h>
16
17 static const struct class pci_epc_class = {
18 .name = "pci_epc",
19 };
20
devm_pci_epc_release(struct device * dev,void * res)21 static void devm_pci_epc_release(struct device *dev, void *res)
22 {
23 struct pci_epc *epc = *(struct pci_epc **)res;
24
25 pci_epc_destroy(epc);
26 }
27
devm_pci_epc_match(struct device * dev,void * res,void * match_data)28 static int devm_pci_epc_match(struct device *dev, void *res, void *match_data)
29 {
30 struct pci_epc **epc = res;
31
32 return *epc == match_data;
33 }
34
35 /**
36 * pci_epc_put() - release the PCI endpoint controller
37 * @epc: epc returned by pci_epc_get()
38 *
39 * release the refcount the caller obtained by invoking pci_epc_get()
40 */
pci_epc_put(struct pci_epc * epc)41 void pci_epc_put(struct pci_epc *epc)
42 {
43 if (IS_ERR_OR_NULL(epc))
44 return;
45
46 module_put(epc->ops->owner);
47 put_device(&epc->dev);
48 }
49 EXPORT_SYMBOL_GPL(pci_epc_put);
50
51 /**
52 * pci_epc_get() - get the PCI endpoint controller
53 * @epc_name: device name of the endpoint controller
54 *
55 * Invoke to get struct pci_epc * corresponding to the device name of the
56 * endpoint controller
57 */
pci_epc_get(const char * epc_name)58 struct pci_epc *pci_epc_get(const char *epc_name)
59 {
60 int ret = -EINVAL;
61 struct pci_epc *epc;
62 struct device *dev;
63
64 dev = class_find_device_by_name(&pci_epc_class, epc_name);
65 if (!dev)
66 goto err;
67
68 epc = to_pci_epc(dev);
69 if (try_module_get(epc->ops->owner))
70 return epc;
71
72 err:
73 put_device(dev);
74 return ERR_PTR(ret);
75 }
76 EXPORT_SYMBOL_GPL(pci_epc_get);
77
78 /**
79 * pci_epc_get_first_free_bar() - helper to get first unreserved BAR
80 * @epc_features: pci_epc_features structure that holds the reserved bar bitmap
81 *
82 * Invoke to get the first unreserved BAR that can be used by the endpoint
83 * function.
84 */
85 enum pci_barno
pci_epc_get_first_free_bar(const struct pci_epc_features * epc_features)86 pci_epc_get_first_free_bar(const struct pci_epc_features *epc_features)
87 {
88 return pci_epc_get_next_free_bar(epc_features, BAR_0);
89 }
90 EXPORT_SYMBOL_GPL(pci_epc_get_first_free_bar);
91
92 /**
93 * pci_epc_get_next_free_bar() - helper to get unreserved BAR starting from @bar
94 * @epc_features: pci_epc_features structure that holds the reserved bar bitmap
95 * @bar: the starting BAR number from where unreserved BAR should be searched
96 *
97 * Invoke to get the next unreserved BAR starting from @bar that can be used
98 * for endpoint function.
99 */
pci_epc_get_next_free_bar(const struct pci_epc_features * epc_features,enum pci_barno bar)100 enum pci_barno pci_epc_get_next_free_bar(const struct pci_epc_features
101 *epc_features, enum pci_barno bar)
102 {
103 int i;
104
105 if (!epc_features)
106 return BAR_0;
107
108 /* If 'bar - 1' is a 64-bit BAR, move to the next BAR */
109 if (bar > 0 && epc_features->bar[bar - 1].only_64bit)
110 bar++;
111
112 for (i = bar; i < PCI_STD_NUM_BARS; i++) {
113 /* If the BAR is not reserved, return it. */
114 if (epc_features->bar[i].type != BAR_RESERVED)
115 return i;
116 }
117
118 return NO_BAR;
119 }
120 EXPORT_SYMBOL_GPL(pci_epc_get_next_free_bar);
121
pci_epc_function_is_valid(struct pci_epc * epc,u8 func_no,u8 vfunc_no)122 static bool pci_epc_function_is_valid(struct pci_epc *epc,
123 u8 func_no, u8 vfunc_no)
124 {
125 if (IS_ERR_OR_NULL(epc) || func_no >= epc->max_functions)
126 return false;
127
128 if (vfunc_no > 0 && (!epc->max_vfs || vfunc_no > epc->max_vfs[func_no]))
129 return false;
130
131 return true;
132 }
133
134 /**
135 * pci_epc_get_features() - get the features supported by EPC
136 * @epc: the features supported by *this* EPC device will be returned
137 * @func_no: the features supported by the EPC device specific to the
138 * endpoint function with func_no will be returned
139 * @vfunc_no: the features supported by the EPC device specific to the
140 * virtual endpoint function with vfunc_no will be returned
141 *
142 * Invoke to get the features provided by the EPC which may be
143 * specific to an endpoint function. Returns pci_epc_features on success
144 * and NULL for any failures.
145 */
pci_epc_get_features(struct pci_epc * epc,u8 func_no,u8 vfunc_no)146 const struct pci_epc_features *pci_epc_get_features(struct pci_epc *epc,
147 u8 func_no, u8 vfunc_no)
148 {
149 const struct pci_epc_features *epc_features;
150
151 if (!pci_epc_function_is_valid(epc, func_no, vfunc_no))
152 return NULL;
153
154 if (!epc->ops->get_features)
155 return NULL;
156
157 mutex_lock(&epc->lock);
158 epc_features = epc->ops->get_features(epc, func_no, vfunc_no);
159 mutex_unlock(&epc->lock);
160
161 return epc_features;
162 }
163 EXPORT_SYMBOL_GPL(pci_epc_get_features);
164
165 /**
166 * pci_epc_stop() - stop the PCI link
167 * @epc: the link of the EPC device that has to be stopped
168 *
169 * Invoke to stop the PCI link
170 */
pci_epc_stop(struct pci_epc * epc)171 void pci_epc_stop(struct pci_epc *epc)
172 {
173 if (IS_ERR(epc) || !epc->ops->stop)
174 return;
175
176 mutex_lock(&epc->lock);
177 epc->ops->stop(epc);
178 mutex_unlock(&epc->lock);
179 }
180 EXPORT_SYMBOL_GPL(pci_epc_stop);
181
182 /**
183 * pci_epc_start() - start the PCI link
184 * @epc: the link of *this* EPC device has to be started
185 *
186 * Invoke to start the PCI link
187 */
pci_epc_start(struct pci_epc * epc)188 int pci_epc_start(struct pci_epc *epc)
189 {
190 int ret;
191
192 if (IS_ERR(epc))
193 return -EINVAL;
194
195 if (!epc->ops->start)
196 return 0;
197
198 mutex_lock(&epc->lock);
199 ret = epc->ops->start(epc);
200 mutex_unlock(&epc->lock);
201
202 return ret;
203 }
204 EXPORT_SYMBOL_GPL(pci_epc_start);
205
206 /**
207 * pci_epc_raise_irq() - interrupt the host system
208 * @epc: the EPC device which has to interrupt the host
209 * @func_no: the physical endpoint function number in the EPC device
210 * @vfunc_no: the virtual endpoint function number in the physical function
211 * @type: specify the type of interrupt; INTX, MSI or MSI-X
212 * @interrupt_num: the MSI or MSI-X interrupt number with range (1-N)
213 *
214 * Invoke to raise an INTX, MSI or MSI-X interrupt
215 */
pci_epc_raise_irq(struct pci_epc * epc,u8 func_no,u8 vfunc_no,unsigned int type,u16 interrupt_num)216 int pci_epc_raise_irq(struct pci_epc *epc, u8 func_no, u8 vfunc_no,
217 unsigned int type, u16 interrupt_num)
218 {
219 int ret;
220
221 if (!pci_epc_function_is_valid(epc, func_no, vfunc_no))
222 return -EINVAL;
223
224 if (!epc->ops->raise_irq)
225 return 0;
226
227 mutex_lock(&epc->lock);
228 ret = epc->ops->raise_irq(epc, func_no, vfunc_no, type, interrupt_num);
229 mutex_unlock(&epc->lock);
230
231 return ret;
232 }
233 EXPORT_SYMBOL_GPL(pci_epc_raise_irq);
234
235 /**
236 * pci_epc_map_msi_irq() - Map physical address to MSI address and return
237 * MSI data
238 * @epc: the EPC device which has the MSI capability
239 * @func_no: the physical endpoint function number in the EPC device
240 * @vfunc_no: the virtual endpoint function number in the physical function
241 * @phys_addr: the physical address of the outbound region
242 * @interrupt_num: the MSI interrupt number with range (1-N)
243 * @entry_size: Size of Outbound address region for each interrupt
244 * @msi_data: the data that should be written in order to raise MSI interrupt
245 * with interrupt number as 'interrupt num'
246 * @msi_addr_offset: Offset of MSI address from the aligned outbound address
247 * to which the MSI address is mapped
248 *
249 * Invoke to map physical address to MSI address and return MSI data. The
250 * physical address should be an address in the outbound region. This is
251 * required to implement doorbell functionality of NTB wherein EPC on either
252 * side of the interface (primary and secondary) can directly write to the
253 * physical address (in outbound region) of the other interface to ring
254 * doorbell.
255 */
pci_epc_map_msi_irq(struct pci_epc * epc,u8 func_no,u8 vfunc_no,phys_addr_t phys_addr,u8 interrupt_num,u32 entry_size,u32 * msi_data,u32 * msi_addr_offset)256 int pci_epc_map_msi_irq(struct pci_epc *epc, u8 func_no, u8 vfunc_no,
257 phys_addr_t phys_addr, u8 interrupt_num, u32 entry_size,
258 u32 *msi_data, u32 *msi_addr_offset)
259 {
260 int ret;
261
262 if (!pci_epc_function_is_valid(epc, func_no, vfunc_no))
263 return -EINVAL;
264
265 if (!epc->ops->map_msi_irq)
266 return -EINVAL;
267
268 mutex_lock(&epc->lock);
269 ret = epc->ops->map_msi_irq(epc, func_no, vfunc_no, phys_addr,
270 interrupt_num, entry_size, msi_data,
271 msi_addr_offset);
272 mutex_unlock(&epc->lock);
273
274 return ret;
275 }
276 EXPORT_SYMBOL_GPL(pci_epc_map_msi_irq);
277
278 /**
279 * pci_epc_get_msi() - get the number of MSI interrupt numbers allocated
280 * @epc: the EPC device to which MSI interrupts was requested
281 * @func_no: the physical endpoint function number in the EPC device
282 * @vfunc_no: the virtual endpoint function number in the physical function
283 *
284 * Invoke to get the number of MSI interrupts allocated by the RC
285 */
pci_epc_get_msi(struct pci_epc * epc,u8 func_no,u8 vfunc_no)286 int pci_epc_get_msi(struct pci_epc *epc, u8 func_no, u8 vfunc_no)
287 {
288 int interrupt;
289
290 if (!pci_epc_function_is_valid(epc, func_no, vfunc_no))
291 return 0;
292
293 if (!epc->ops->get_msi)
294 return 0;
295
296 mutex_lock(&epc->lock);
297 interrupt = epc->ops->get_msi(epc, func_no, vfunc_no);
298 mutex_unlock(&epc->lock);
299
300 if (interrupt < 0)
301 return 0;
302
303 interrupt = 1 << interrupt;
304
305 return interrupt;
306 }
307 EXPORT_SYMBOL_GPL(pci_epc_get_msi);
308
309 /**
310 * pci_epc_set_msi() - set the number of MSI interrupt numbers required
311 * @epc: the EPC device on which MSI has to be configured
312 * @func_no: the physical endpoint function number in the EPC device
313 * @vfunc_no: the virtual endpoint function number in the physical function
314 * @interrupts: number of MSI interrupts required by the EPF
315 *
316 * Invoke to set the required number of MSI interrupts.
317 */
pci_epc_set_msi(struct pci_epc * epc,u8 func_no,u8 vfunc_no,u8 interrupts)318 int pci_epc_set_msi(struct pci_epc *epc, u8 func_no, u8 vfunc_no, u8 interrupts)
319 {
320 int ret;
321 u8 encode_int;
322
323 if (!pci_epc_function_is_valid(epc, func_no, vfunc_no))
324 return -EINVAL;
325
326 if (interrupts < 1 || interrupts > 32)
327 return -EINVAL;
328
329 if (!epc->ops->set_msi)
330 return 0;
331
332 encode_int = order_base_2(interrupts);
333
334 mutex_lock(&epc->lock);
335 ret = epc->ops->set_msi(epc, func_no, vfunc_no, encode_int);
336 mutex_unlock(&epc->lock);
337
338 return ret;
339 }
340 EXPORT_SYMBOL_GPL(pci_epc_set_msi);
341
342 /**
343 * pci_epc_get_msix() - get the number of MSI-X interrupt numbers allocated
344 * @epc: the EPC device to which MSI-X interrupts was requested
345 * @func_no: the physical endpoint function number in the EPC device
346 * @vfunc_no: the virtual endpoint function number in the physical function
347 *
348 * Invoke to get the number of MSI-X interrupts allocated by the RC
349 */
pci_epc_get_msix(struct pci_epc * epc,u8 func_no,u8 vfunc_no)350 int pci_epc_get_msix(struct pci_epc *epc, u8 func_no, u8 vfunc_no)
351 {
352 int interrupt;
353
354 if (!pci_epc_function_is_valid(epc, func_no, vfunc_no))
355 return 0;
356
357 if (!epc->ops->get_msix)
358 return 0;
359
360 mutex_lock(&epc->lock);
361 interrupt = epc->ops->get_msix(epc, func_no, vfunc_no);
362 mutex_unlock(&epc->lock);
363
364 if (interrupt < 0)
365 return 0;
366
367 return interrupt + 1;
368 }
369 EXPORT_SYMBOL_GPL(pci_epc_get_msix);
370
371 /**
372 * pci_epc_set_msix() - set the number of MSI-X interrupt numbers required
373 * @epc: the EPC device on which MSI-X has to be configured
374 * @func_no: the physical endpoint function number in the EPC device
375 * @vfunc_no: the virtual endpoint function number in the physical function
376 * @interrupts: number of MSI-X interrupts required by the EPF
377 * @bir: BAR where the MSI-X table resides
378 * @offset: Offset pointing to the start of MSI-X table
379 *
380 * Invoke to set the required number of MSI-X interrupts.
381 */
pci_epc_set_msix(struct pci_epc * epc,u8 func_no,u8 vfunc_no,u16 interrupts,enum pci_barno bir,u32 offset)382 int pci_epc_set_msix(struct pci_epc *epc, u8 func_no, u8 vfunc_no,
383 u16 interrupts, enum pci_barno bir, u32 offset)
384 {
385 int ret;
386
387 if (!pci_epc_function_is_valid(epc, func_no, vfunc_no))
388 return -EINVAL;
389
390 if (interrupts < 1 || interrupts > 2048)
391 return -EINVAL;
392
393 if (!epc->ops->set_msix)
394 return 0;
395
396 mutex_lock(&epc->lock);
397 ret = epc->ops->set_msix(epc, func_no, vfunc_no, interrupts - 1, bir,
398 offset);
399 mutex_unlock(&epc->lock);
400
401 return ret;
402 }
403 EXPORT_SYMBOL_GPL(pci_epc_set_msix);
404
405 /**
406 * pci_epc_unmap_addr() - unmap CPU address from PCI address
407 * @epc: the EPC device on which address is allocated
408 * @func_no: the physical endpoint function number in the EPC device
409 * @vfunc_no: the virtual endpoint function number in the physical function
410 * @phys_addr: physical address of the local system
411 *
412 * Invoke to unmap the CPU address from PCI address.
413 */
pci_epc_unmap_addr(struct pci_epc * epc,u8 func_no,u8 vfunc_no,phys_addr_t phys_addr)414 void pci_epc_unmap_addr(struct pci_epc *epc, u8 func_no, u8 vfunc_no,
415 phys_addr_t phys_addr)
416 {
417 if (!pci_epc_function_is_valid(epc, func_no, vfunc_no))
418 return;
419
420 if (!epc->ops->unmap_addr)
421 return;
422
423 mutex_lock(&epc->lock);
424 epc->ops->unmap_addr(epc, func_no, vfunc_no, phys_addr);
425 mutex_unlock(&epc->lock);
426 }
427 EXPORT_SYMBOL_GPL(pci_epc_unmap_addr);
428
429 /**
430 * pci_epc_map_addr() - map CPU address to PCI address
431 * @epc: the EPC device on which address is allocated
432 * @func_no: the physical endpoint function number in the EPC device
433 * @vfunc_no: the virtual endpoint function number in the physical function
434 * @phys_addr: physical address of the local system
435 * @pci_addr: PCI address to which the physical address should be mapped
436 * @size: the size of the allocation
437 *
438 * Invoke to map CPU address with PCI address.
439 */
pci_epc_map_addr(struct pci_epc * epc,u8 func_no,u8 vfunc_no,phys_addr_t phys_addr,u64 pci_addr,size_t size)440 int pci_epc_map_addr(struct pci_epc *epc, u8 func_no, u8 vfunc_no,
441 phys_addr_t phys_addr, u64 pci_addr, size_t size)
442 {
443 int ret;
444
445 if (!pci_epc_function_is_valid(epc, func_no, vfunc_no))
446 return -EINVAL;
447
448 if (!epc->ops->map_addr)
449 return 0;
450
451 mutex_lock(&epc->lock);
452 ret = epc->ops->map_addr(epc, func_no, vfunc_no, phys_addr, pci_addr,
453 size);
454 mutex_unlock(&epc->lock);
455
456 return ret;
457 }
458 EXPORT_SYMBOL_GPL(pci_epc_map_addr);
459
460 /**
461 * pci_epc_mem_map() - allocate and map a PCI address to a CPU address
462 * @epc: the EPC device on which the CPU address is to be allocated and mapped
463 * @func_no: the physical endpoint function number in the EPC device
464 * @vfunc_no: the virtual endpoint function number in the physical function
465 * @pci_addr: PCI address to which the CPU address should be mapped
466 * @pci_size: the number of bytes to map starting from @pci_addr
467 * @map: where to return the mapping information
468 *
469 * Allocate a controller memory address region and map it to a RC PCI address
470 * region, taking into account the controller physical address mapping
471 * constraints using the controller operation align_addr(). If this operation is
472 * not defined, we assume that there are no alignment constraints for the
473 * mapping.
474 *
475 * The effective size of the PCI address range mapped from @pci_addr is
476 * indicated by @map->pci_size. This size may be less than the requested
477 * @pci_size. The local virtual CPU address for the mapping is indicated by
478 * @map->virt_addr (@map->phys_addr indicates the physical address).
479 * The size and CPU address of the controller memory allocated and mapped are
480 * respectively indicated by @map->map_size and @map->virt_base (and
481 * @map->phys_base for the physical address of @map->virt_base).
482 *
483 * Returns 0 on success and a negative error code in case of error.
484 */
pci_epc_mem_map(struct pci_epc * epc,u8 func_no,u8 vfunc_no,u64 pci_addr,size_t pci_size,struct pci_epc_map * map)485 int pci_epc_mem_map(struct pci_epc *epc, u8 func_no, u8 vfunc_no,
486 u64 pci_addr, size_t pci_size, struct pci_epc_map *map)
487 {
488 size_t map_size = pci_size;
489 size_t map_offset = 0;
490 int ret;
491
492 if (!pci_epc_function_is_valid(epc, func_no, vfunc_no))
493 return -EINVAL;
494
495 if (!pci_size || !map)
496 return -EINVAL;
497
498 /*
499 * Align the PCI address to map. If the controller defines the
500 * .align_addr() operation, use it to determine the PCI address to map
501 * and the size of the mapping. Otherwise, assume that the controller
502 * has no alignment constraint.
503 */
504 memset(map, 0, sizeof(*map));
505 map->pci_addr = pci_addr;
506 if (epc->ops->align_addr)
507 map->map_pci_addr =
508 epc->ops->align_addr(epc, pci_addr,
509 &map_size, &map_offset);
510 else
511 map->map_pci_addr = pci_addr;
512 map->map_size = map_size;
513 if (map->map_pci_addr + map->map_size < pci_addr + pci_size)
514 map->pci_size = map->map_pci_addr + map->map_size - pci_addr;
515 else
516 map->pci_size = pci_size;
517
518 map->virt_base = pci_epc_mem_alloc_addr(epc, &map->phys_base,
519 map->map_size);
520 if (!map->virt_base)
521 return -ENOMEM;
522
523 map->phys_addr = map->phys_base + map_offset;
524 map->virt_addr = map->virt_base + map_offset;
525
526 ret = pci_epc_map_addr(epc, func_no, vfunc_no, map->phys_base,
527 map->map_pci_addr, map->map_size);
528 if (ret) {
529 pci_epc_mem_free_addr(epc, map->phys_base, map->virt_base,
530 map->map_size);
531 return ret;
532 }
533
534 return 0;
535 }
536 EXPORT_SYMBOL_GPL(pci_epc_mem_map);
537
538 /**
539 * pci_epc_mem_unmap() - unmap and free a CPU address region
540 * @epc: the EPC device on which the CPU address is allocated and mapped
541 * @func_no: the physical endpoint function number in the EPC device
542 * @vfunc_no: the virtual endpoint function number in the physical function
543 * @map: the mapping information
544 *
545 * Unmap and free a CPU address region that was allocated and mapped with
546 * pci_epc_mem_map().
547 */
pci_epc_mem_unmap(struct pci_epc * epc,u8 func_no,u8 vfunc_no,struct pci_epc_map * map)548 void pci_epc_mem_unmap(struct pci_epc *epc, u8 func_no, u8 vfunc_no,
549 struct pci_epc_map *map)
550 {
551 if (!pci_epc_function_is_valid(epc, func_no, vfunc_no))
552 return;
553
554 if (!map || !map->virt_base)
555 return;
556
557 pci_epc_unmap_addr(epc, func_no, vfunc_no, map->phys_base);
558 pci_epc_mem_free_addr(epc, map->phys_base, map->virt_base,
559 map->map_size);
560 }
561 EXPORT_SYMBOL_GPL(pci_epc_mem_unmap);
562
563 /**
564 * pci_epc_clear_bar() - reset the BAR
565 * @epc: the EPC device for which the BAR has to be cleared
566 * @func_no: the physical endpoint function number in the EPC device
567 * @vfunc_no: the virtual endpoint function number in the physical function
568 * @epf_bar: the struct epf_bar that contains the BAR information
569 *
570 * Invoke to reset the BAR of the endpoint device.
571 */
pci_epc_clear_bar(struct pci_epc * epc,u8 func_no,u8 vfunc_no,struct pci_epf_bar * epf_bar)572 void pci_epc_clear_bar(struct pci_epc *epc, u8 func_no, u8 vfunc_no,
573 struct pci_epf_bar *epf_bar)
574 {
575 if (!pci_epc_function_is_valid(epc, func_no, vfunc_no))
576 return;
577
578 if (epf_bar->barno == BAR_5 &&
579 epf_bar->flags & PCI_BASE_ADDRESS_MEM_TYPE_64)
580 return;
581
582 if (!epc->ops->clear_bar)
583 return;
584
585 mutex_lock(&epc->lock);
586 epc->ops->clear_bar(epc, func_no, vfunc_no, epf_bar);
587 mutex_unlock(&epc->lock);
588 }
589 EXPORT_SYMBOL_GPL(pci_epc_clear_bar);
590
591 /**
592 * pci_epc_set_bar() - configure BAR in order for host to assign PCI addr space
593 * @epc: the EPC device on which BAR has to be configured
594 * @func_no: the physical endpoint function number in the EPC device
595 * @vfunc_no: the virtual endpoint function number in the physical function
596 * @epf_bar: the struct epf_bar that contains the BAR information
597 *
598 * Invoke to configure the BAR of the endpoint device.
599 */
pci_epc_set_bar(struct pci_epc * epc,u8 func_no,u8 vfunc_no,struct pci_epf_bar * epf_bar)600 int pci_epc_set_bar(struct pci_epc *epc, u8 func_no, u8 vfunc_no,
601 struct pci_epf_bar *epf_bar)
602 {
603 const struct pci_epc_features *epc_features;
604 enum pci_barno bar = epf_bar->barno;
605 int flags = epf_bar->flags;
606 int ret;
607
608 epc_features = pci_epc_get_features(epc, func_no, vfunc_no);
609 if (!epc_features)
610 return -EINVAL;
611
612 if (epc_features->bar[bar].type == BAR_FIXED &&
613 (epc_features->bar[bar].fixed_size != epf_bar->size))
614 return -EINVAL;
615
616 if (!is_power_of_2(epf_bar->size))
617 return -EINVAL;
618
619 if ((epf_bar->barno == BAR_5 && flags & PCI_BASE_ADDRESS_MEM_TYPE_64) ||
620 (flags & PCI_BASE_ADDRESS_SPACE_IO &&
621 flags & PCI_BASE_ADDRESS_IO_MASK) ||
622 (upper_32_bits(epf_bar->size) &&
623 !(flags & PCI_BASE_ADDRESS_MEM_TYPE_64)))
624 return -EINVAL;
625
626 if (!epc->ops->set_bar)
627 return 0;
628
629 mutex_lock(&epc->lock);
630 ret = epc->ops->set_bar(epc, func_no, vfunc_no, epf_bar);
631 mutex_unlock(&epc->lock);
632
633 return ret;
634 }
635 EXPORT_SYMBOL_GPL(pci_epc_set_bar);
636
637 /**
638 * pci_epc_write_header() - write standard configuration header
639 * @epc: the EPC device to which the configuration header should be written
640 * @func_no: the physical endpoint function number in the EPC device
641 * @vfunc_no: the virtual endpoint function number in the physical function
642 * @header: standard configuration header fields
643 *
644 * Invoke to write the configuration header to the endpoint controller. Every
645 * endpoint controller will have a dedicated location to which the standard
646 * configuration header would be written. The callback function should write
647 * the header fields to this dedicated location.
648 */
pci_epc_write_header(struct pci_epc * epc,u8 func_no,u8 vfunc_no,struct pci_epf_header * header)649 int pci_epc_write_header(struct pci_epc *epc, u8 func_no, u8 vfunc_no,
650 struct pci_epf_header *header)
651 {
652 int ret;
653
654 if (!pci_epc_function_is_valid(epc, func_no, vfunc_no))
655 return -EINVAL;
656
657 /* Only Virtual Function #1 has deviceID */
658 if (vfunc_no > 1)
659 return -EINVAL;
660
661 if (!epc->ops->write_header)
662 return 0;
663
664 mutex_lock(&epc->lock);
665 ret = epc->ops->write_header(epc, func_no, vfunc_no, header);
666 mutex_unlock(&epc->lock);
667
668 return ret;
669 }
670 EXPORT_SYMBOL_GPL(pci_epc_write_header);
671
672 /**
673 * pci_epc_add_epf() - bind PCI endpoint function to an endpoint controller
674 * @epc: the EPC device to which the endpoint function should be added
675 * @epf: the endpoint function to be added
676 * @type: Identifies if the EPC is connected to the primary or secondary
677 * interface of EPF
678 *
679 * A PCI endpoint device can have one or more functions. In the case of PCIe,
680 * the specification allows up to 8 PCIe endpoint functions. Invoke
681 * pci_epc_add_epf() to add a PCI endpoint function to an endpoint controller.
682 */
pci_epc_add_epf(struct pci_epc * epc,struct pci_epf * epf,enum pci_epc_interface_type type)683 int pci_epc_add_epf(struct pci_epc *epc, struct pci_epf *epf,
684 enum pci_epc_interface_type type)
685 {
686 struct list_head *list;
687 u32 func_no;
688 int ret = 0;
689
690 if (IS_ERR_OR_NULL(epc) || epf->is_vf)
691 return -EINVAL;
692
693 if (type == PRIMARY_INTERFACE && epf->epc)
694 return -EBUSY;
695
696 if (type == SECONDARY_INTERFACE && epf->sec_epc)
697 return -EBUSY;
698
699 mutex_lock(&epc->list_lock);
700 func_no = find_first_zero_bit(&epc->function_num_map,
701 BITS_PER_LONG);
702 if (func_no >= BITS_PER_LONG) {
703 ret = -EINVAL;
704 goto ret;
705 }
706
707 if (func_no > epc->max_functions - 1) {
708 dev_err(&epc->dev, "Exceeding max supported Function Number\n");
709 ret = -EINVAL;
710 goto ret;
711 }
712
713 set_bit(func_no, &epc->function_num_map);
714 if (type == PRIMARY_INTERFACE) {
715 epf->func_no = func_no;
716 epf->epc = epc;
717 list = &epf->list;
718 } else {
719 epf->sec_epc_func_no = func_no;
720 epf->sec_epc = epc;
721 list = &epf->sec_epc_list;
722 }
723
724 list_add_tail(list, &epc->pci_epf);
725 ret:
726 mutex_unlock(&epc->list_lock);
727
728 return ret;
729 }
730 EXPORT_SYMBOL_GPL(pci_epc_add_epf);
731
732 /**
733 * pci_epc_remove_epf() - remove PCI endpoint function from endpoint controller
734 * @epc: the EPC device from which the endpoint function should be removed
735 * @epf: the endpoint function to be removed
736 * @type: identifies if the EPC is connected to the primary or secondary
737 * interface of EPF
738 *
739 * Invoke to remove PCI endpoint function from the endpoint controller.
740 */
pci_epc_remove_epf(struct pci_epc * epc,struct pci_epf * epf,enum pci_epc_interface_type type)741 void pci_epc_remove_epf(struct pci_epc *epc, struct pci_epf *epf,
742 enum pci_epc_interface_type type)
743 {
744 struct list_head *list;
745 u32 func_no = 0;
746
747 if (IS_ERR_OR_NULL(epc) || !epf)
748 return;
749
750 mutex_lock(&epc->list_lock);
751 if (type == PRIMARY_INTERFACE) {
752 func_no = epf->func_no;
753 list = &epf->list;
754 epf->epc = NULL;
755 } else {
756 func_no = epf->sec_epc_func_no;
757 list = &epf->sec_epc_list;
758 epf->sec_epc = NULL;
759 }
760 clear_bit(func_no, &epc->function_num_map);
761 list_del(list);
762 mutex_unlock(&epc->list_lock);
763 }
764 EXPORT_SYMBOL_GPL(pci_epc_remove_epf);
765
766 /**
767 * pci_epc_linkup() - Notify the EPF device that EPC device has established a
768 * connection with the Root Complex.
769 * @epc: the EPC device which has established link with the host
770 *
771 * Invoke to Notify the EPF device that the EPC device has established a
772 * connection with the Root Complex.
773 */
pci_epc_linkup(struct pci_epc * epc)774 void pci_epc_linkup(struct pci_epc *epc)
775 {
776 struct pci_epf *epf;
777
778 if (IS_ERR_OR_NULL(epc))
779 return;
780
781 mutex_lock(&epc->list_lock);
782 list_for_each_entry(epf, &epc->pci_epf, list) {
783 mutex_lock(&epf->lock);
784 if (epf->event_ops && epf->event_ops->link_up)
785 epf->event_ops->link_up(epf);
786 mutex_unlock(&epf->lock);
787 }
788 mutex_unlock(&epc->list_lock);
789 }
790 EXPORT_SYMBOL_GPL(pci_epc_linkup);
791
792 /**
793 * pci_epc_linkdown() - Notify the EPF device that EPC device has dropped the
794 * connection with the Root Complex.
795 * @epc: the EPC device which has dropped the link with the host
796 *
797 * Invoke to Notify the EPF device that the EPC device has dropped the
798 * connection with the Root Complex.
799 */
pci_epc_linkdown(struct pci_epc * epc)800 void pci_epc_linkdown(struct pci_epc *epc)
801 {
802 struct pci_epf *epf;
803
804 if (IS_ERR_OR_NULL(epc))
805 return;
806
807 mutex_lock(&epc->list_lock);
808 list_for_each_entry(epf, &epc->pci_epf, list) {
809 mutex_lock(&epf->lock);
810 if (epf->event_ops && epf->event_ops->link_down)
811 epf->event_ops->link_down(epf);
812 mutex_unlock(&epf->lock);
813 }
814 mutex_unlock(&epc->list_lock);
815 }
816 EXPORT_SYMBOL_GPL(pci_epc_linkdown);
817
818 /**
819 * pci_epc_init_notify() - Notify the EPF device that EPC device initialization
820 * is completed.
821 * @epc: the EPC device whose initialization is completed
822 *
823 * Invoke to Notify the EPF device that the EPC device's initialization
824 * is completed.
825 */
pci_epc_init_notify(struct pci_epc * epc)826 void pci_epc_init_notify(struct pci_epc *epc)
827 {
828 struct pci_epf *epf;
829
830 if (IS_ERR_OR_NULL(epc))
831 return;
832
833 mutex_lock(&epc->list_lock);
834 list_for_each_entry(epf, &epc->pci_epf, list) {
835 mutex_lock(&epf->lock);
836 if (epf->event_ops && epf->event_ops->epc_init)
837 epf->event_ops->epc_init(epf);
838 mutex_unlock(&epf->lock);
839 }
840 epc->init_complete = true;
841 mutex_unlock(&epc->list_lock);
842 }
843 EXPORT_SYMBOL_GPL(pci_epc_init_notify);
844
845 /**
846 * pci_epc_notify_pending_init() - Notify the pending EPC device initialization
847 * complete to the EPF device
848 * @epc: the EPC device whose initialization is pending to be notified
849 * @epf: the EPF device to be notified
850 *
851 * Invoke to notify the pending EPC device initialization complete to the EPF
852 * device. This is used to deliver the notification if the EPC initialization
853 * got completed before the EPF driver bind.
854 */
pci_epc_notify_pending_init(struct pci_epc * epc,struct pci_epf * epf)855 void pci_epc_notify_pending_init(struct pci_epc *epc, struct pci_epf *epf)
856 {
857 if (epc->init_complete) {
858 mutex_lock(&epf->lock);
859 if (epf->event_ops && epf->event_ops->epc_init)
860 epf->event_ops->epc_init(epf);
861 mutex_unlock(&epf->lock);
862 }
863 }
864 EXPORT_SYMBOL_GPL(pci_epc_notify_pending_init);
865
866 /**
867 * pci_epc_deinit_notify() - Notify the EPF device about EPC deinitialization
868 * @epc: the EPC device whose deinitialization is completed
869 *
870 * Invoke to notify the EPF device that the EPC deinitialization is completed.
871 */
pci_epc_deinit_notify(struct pci_epc * epc)872 void pci_epc_deinit_notify(struct pci_epc *epc)
873 {
874 struct pci_epf *epf;
875
876 if (IS_ERR_OR_NULL(epc))
877 return;
878
879 mutex_lock(&epc->list_lock);
880 list_for_each_entry(epf, &epc->pci_epf, list) {
881 mutex_lock(&epf->lock);
882 if (epf->event_ops && epf->event_ops->epc_deinit)
883 epf->event_ops->epc_deinit(epf);
884 mutex_unlock(&epf->lock);
885 }
886 epc->init_complete = false;
887 mutex_unlock(&epc->list_lock);
888 }
889 EXPORT_SYMBOL_GPL(pci_epc_deinit_notify);
890
891 /**
892 * pci_epc_bus_master_enable_notify() - Notify the EPF device that the EPC
893 * device has received the Bus Master
894 * Enable event from the Root complex
895 * @epc: the EPC device that received the Bus Master Enable event
896 *
897 * Notify the EPF device that the EPC device has generated the Bus Master Enable
898 * event due to host setting the Bus Master Enable bit in the Command register.
899 */
pci_epc_bus_master_enable_notify(struct pci_epc * epc)900 void pci_epc_bus_master_enable_notify(struct pci_epc *epc)
901 {
902 struct pci_epf *epf;
903
904 if (IS_ERR_OR_NULL(epc))
905 return;
906
907 mutex_lock(&epc->list_lock);
908 list_for_each_entry(epf, &epc->pci_epf, list) {
909 mutex_lock(&epf->lock);
910 if (epf->event_ops && epf->event_ops->bus_master_enable)
911 epf->event_ops->bus_master_enable(epf);
912 mutex_unlock(&epf->lock);
913 }
914 mutex_unlock(&epc->list_lock);
915 }
916 EXPORT_SYMBOL_GPL(pci_epc_bus_master_enable_notify);
917
918 /**
919 * pci_epc_destroy() - destroy the EPC device
920 * @epc: the EPC device that has to be destroyed
921 *
922 * Invoke to destroy the PCI EPC device
923 */
pci_epc_destroy(struct pci_epc * epc)924 void pci_epc_destroy(struct pci_epc *epc)
925 {
926 pci_ep_cfs_remove_epc_group(epc->group);
927 #ifdef CONFIG_PCI_DOMAINS_GENERIC
928 pci_bus_release_domain_nr(epc->dev.parent, epc->domain_nr);
929 #endif
930 device_unregister(&epc->dev);
931 }
932 EXPORT_SYMBOL_GPL(pci_epc_destroy);
933
934 /**
935 * devm_pci_epc_destroy() - destroy the EPC device
936 * @dev: device that wants to destroy the EPC
937 * @epc: the EPC device that has to be destroyed
938 *
939 * Invoke to destroy the devres associated with this
940 * pci_epc and destroy the EPC device.
941 */
devm_pci_epc_destroy(struct device * dev,struct pci_epc * epc)942 void devm_pci_epc_destroy(struct device *dev, struct pci_epc *epc)
943 {
944 int r;
945
946 r = devres_release(dev, devm_pci_epc_release, devm_pci_epc_match,
947 epc);
948 dev_WARN_ONCE(dev, r, "couldn't find PCI EPC resource\n");
949 }
950 EXPORT_SYMBOL_GPL(devm_pci_epc_destroy);
951
pci_epc_release(struct device * dev)952 static void pci_epc_release(struct device *dev)
953 {
954 kfree(to_pci_epc(dev));
955 }
956
957 /**
958 * __pci_epc_create() - create a new endpoint controller (EPC) device
959 * @dev: device that is creating the new EPC
960 * @ops: function pointers for performing EPC operations
961 * @owner: the owner of the module that creates the EPC device
962 *
963 * Invoke to create a new EPC device and add it to pci_epc class.
964 */
965 struct pci_epc *
__pci_epc_create(struct device * dev,const struct pci_epc_ops * ops,struct module * owner)966 __pci_epc_create(struct device *dev, const struct pci_epc_ops *ops,
967 struct module *owner)
968 {
969 int ret;
970 struct pci_epc *epc;
971
972 if (WARN_ON(!dev)) {
973 ret = -EINVAL;
974 goto err_ret;
975 }
976
977 epc = kzalloc(sizeof(*epc), GFP_KERNEL);
978 if (!epc) {
979 ret = -ENOMEM;
980 goto err_ret;
981 }
982
983 mutex_init(&epc->lock);
984 mutex_init(&epc->list_lock);
985 INIT_LIST_HEAD(&epc->pci_epf);
986
987 device_initialize(&epc->dev);
988 epc->dev.class = &pci_epc_class;
989 epc->dev.parent = dev;
990 epc->dev.release = pci_epc_release;
991 epc->ops = ops;
992
993 #ifdef CONFIG_PCI_DOMAINS_GENERIC
994 epc->domain_nr = pci_bus_find_domain_nr(NULL, dev);
995 #else
996 /*
997 * TODO: If the architecture doesn't support generic PCI
998 * domains, then a custom implementation has to be used.
999 */
1000 WARN_ONCE(1, "This architecture doesn't support generic PCI domains\n");
1001 #endif
1002
1003 ret = dev_set_name(&epc->dev, "%s", dev_name(dev));
1004 if (ret)
1005 goto put_dev;
1006
1007 ret = device_add(&epc->dev);
1008 if (ret)
1009 goto put_dev;
1010
1011 epc->group = pci_ep_cfs_add_epc_group(dev_name(dev));
1012
1013 return epc;
1014
1015 put_dev:
1016 put_device(&epc->dev);
1017
1018 err_ret:
1019 return ERR_PTR(ret);
1020 }
1021 EXPORT_SYMBOL_GPL(__pci_epc_create);
1022
1023 /**
1024 * __devm_pci_epc_create() - create a new endpoint controller (EPC) device
1025 * @dev: device that is creating the new EPC
1026 * @ops: function pointers for performing EPC operations
1027 * @owner: the owner of the module that creates the EPC device
1028 *
1029 * Invoke to create a new EPC device and add it to pci_epc class.
1030 * While at that, it also associates the device with the pci_epc using devres.
1031 * On driver detach, release function is invoked on the devres data,
1032 * then, devres data is freed.
1033 */
1034 struct pci_epc *
__devm_pci_epc_create(struct device * dev,const struct pci_epc_ops * ops,struct module * owner)1035 __devm_pci_epc_create(struct device *dev, const struct pci_epc_ops *ops,
1036 struct module *owner)
1037 {
1038 struct pci_epc **ptr, *epc;
1039
1040 ptr = devres_alloc(devm_pci_epc_release, sizeof(*ptr), GFP_KERNEL);
1041 if (!ptr)
1042 return ERR_PTR(-ENOMEM);
1043
1044 epc = __pci_epc_create(dev, ops, owner);
1045 if (!IS_ERR(epc)) {
1046 *ptr = epc;
1047 devres_add(dev, ptr);
1048 } else {
1049 devres_free(ptr);
1050 }
1051
1052 return epc;
1053 }
1054 EXPORT_SYMBOL_GPL(__devm_pci_epc_create);
1055
pci_epc_init(void)1056 static int __init pci_epc_init(void)
1057 {
1058 return class_register(&pci_epc_class);
1059 }
1060 module_init(pci_epc_init);
1061
pci_epc_exit(void)1062 static void __exit pci_epc_exit(void)
1063 {
1064 class_unregister(&pci_epc_class);
1065 }
1066 module_exit(pci_epc_exit);
1067
1068 MODULE_DESCRIPTION("PCI EPC Library");
1069 MODULE_AUTHOR("Kishon Vijay Abraham I <[email protected]>");
1070