1 // SPDX-License-Identifier: GPL-2.0-only
2 #undef DEBUG
3
4 /*
5 * ARM performance counter support.
6 *
7 * Copyright (C) 2009 picoChip Designs, Ltd., Jamie Iles
8 * Copyright (C) 2010 ARM Ltd., Will Deacon <[email protected]>
9 *
10 * This code is based on the sparc64 perf event code, which is in turn based
11 * on the x86 code.
12 */
13 #define pr_fmt(fmt) "hw perfevents: " fmt
14
15 #include <linux/bitmap.h>
16 #include <linux/cpumask.h>
17 #include <linux/cpu_pm.h>
18 #include <linux/export.h>
19 #include <linux/kernel.h>
20 #include <linux/perf/arm_pmu.h>
21 #include <linux/slab.h>
22 #include <linux/sched/clock.h>
23 #include <linux/spinlock.h>
24 #include <linux/irq.h>
25 #include <linux/irqdesc.h>
26
27 #include <asm/irq_regs.h>
28
29 static int armpmu_count_irq_users(const int irq);
30
31 struct pmu_irq_ops {
32 void (*enable_pmuirq)(unsigned int irq);
33 void (*disable_pmuirq)(unsigned int irq);
34 void (*free_pmuirq)(unsigned int irq, int cpu, void __percpu *devid);
35 };
36
armpmu_free_pmuirq(unsigned int irq,int cpu,void __percpu * devid)37 static void armpmu_free_pmuirq(unsigned int irq, int cpu, void __percpu *devid)
38 {
39 free_irq(irq, per_cpu_ptr(devid, cpu));
40 }
41
42 static const struct pmu_irq_ops pmuirq_ops = {
43 .enable_pmuirq = enable_irq,
44 .disable_pmuirq = disable_irq_nosync,
45 .free_pmuirq = armpmu_free_pmuirq
46 };
47
armpmu_free_pmunmi(unsigned int irq,int cpu,void __percpu * devid)48 static void armpmu_free_pmunmi(unsigned int irq, int cpu, void __percpu *devid)
49 {
50 free_nmi(irq, per_cpu_ptr(devid, cpu));
51 }
52
53 static const struct pmu_irq_ops pmunmi_ops = {
54 .enable_pmuirq = enable_nmi,
55 .disable_pmuirq = disable_nmi_nosync,
56 .free_pmuirq = armpmu_free_pmunmi
57 };
58
armpmu_enable_percpu_pmuirq(unsigned int irq)59 static void armpmu_enable_percpu_pmuirq(unsigned int irq)
60 {
61 enable_percpu_irq(irq, IRQ_TYPE_NONE);
62 }
63
armpmu_free_percpu_pmuirq(unsigned int irq,int cpu,void __percpu * devid)64 static void armpmu_free_percpu_pmuirq(unsigned int irq, int cpu,
65 void __percpu *devid)
66 {
67 if (armpmu_count_irq_users(irq) == 1)
68 free_percpu_irq(irq, devid);
69 }
70
71 static const struct pmu_irq_ops percpu_pmuirq_ops = {
72 .enable_pmuirq = armpmu_enable_percpu_pmuirq,
73 .disable_pmuirq = disable_percpu_irq,
74 .free_pmuirq = armpmu_free_percpu_pmuirq
75 };
76
armpmu_enable_percpu_pmunmi(unsigned int irq)77 static void armpmu_enable_percpu_pmunmi(unsigned int irq)
78 {
79 if (!prepare_percpu_nmi(irq))
80 enable_percpu_nmi(irq, IRQ_TYPE_NONE);
81 }
82
armpmu_disable_percpu_pmunmi(unsigned int irq)83 static void armpmu_disable_percpu_pmunmi(unsigned int irq)
84 {
85 disable_percpu_nmi(irq);
86 teardown_percpu_nmi(irq);
87 }
88
armpmu_free_percpu_pmunmi(unsigned int irq,int cpu,void __percpu * devid)89 static void armpmu_free_percpu_pmunmi(unsigned int irq, int cpu,
90 void __percpu *devid)
91 {
92 if (armpmu_count_irq_users(irq) == 1)
93 free_percpu_nmi(irq, devid);
94 }
95
96 static const struct pmu_irq_ops percpu_pmunmi_ops = {
97 .enable_pmuirq = armpmu_enable_percpu_pmunmi,
98 .disable_pmuirq = armpmu_disable_percpu_pmunmi,
99 .free_pmuirq = armpmu_free_percpu_pmunmi
100 };
101
102 static DEFINE_PER_CPU(struct arm_pmu *, cpu_armpmu);
103 static DEFINE_PER_CPU(int, cpu_irq);
104 static DEFINE_PER_CPU(const struct pmu_irq_ops *, cpu_irq_ops);
105
106 static bool has_nmi;
107
arm_pmu_event_max_period(struct perf_event * event)108 static inline u64 arm_pmu_event_max_period(struct perf_event *event)
109 {
110 if (event->hw.flags & ARMPMU_EVT_64BIT)
111 return GENMASK_ULL(63, 0);
112 else if (event->hw.flags & ARMPMU_EVT_63BIT)
113 return GENMASK_ULL(62, 0);
114 else if (event->hw.flags & ARMPMU_EVT_47BIT)
115 return GENMASK_ULL(46, 0);
116 else
117 return GENMASK_ULL(31, 0);
118 }
119
120 static int
armpmu_map_cache_event(const unsigned (* cache_map)[PERF_COUNT_HW_CACHE_MAX][PERF_COUNT_HW_CACHE_OP_MAX][PERF_COUNT_HW_CACHE_RESULT_MAX],u64 config)121 armpmu_map_cache_event(const unsigned (*cache_map)
122 [PERF_COUNT_HW_CACHE_MAX]
123 [PERF_COUNT_HW_CACHE_OP_MAX]
124 [PERF_COUNT_HW_CACHE_RESULT_MAX],
125 u64 config)
126 {
127 unsigned int cache_type, cache_op, cache_result, ret;
128
129 cache_type = (config >> 0) & 0xff;
130 if (cache_type >= PERF_COUNT_HW_CACHE_MAX)
131 return -EINVAL;
132
133 cache_op = (config >> 8) & 0xff;
134 if (cache_op >= PERF_COUNT_HW_CACHE_OP_MAX)
135 return -EINVAL;
136
137 cache_result = (config >> 16) & 0xff;
138 if (cache_result >= PERF_COUNT_HW_CACHE_RESULT_MAX)
139 return -EINVAL;
140
141 if (!cache_map)
142 return -ENOENT;
143
144 ret = (int)(*cache_map)[cache_type][cache_op][cache_result];
145
146 if (ret == CACHE_OP_UNSUPPORTED)
147 return -ENOENT;
148
149 return ret;
150 }
151
152 static int
armpmu_map_hw_event(const unsigned (* event_map)[PERF_COUNT_HW_MAX],u64 config)153 armpmu_map_hw_event(const unsigned (*event_map)[PERF_COUNT_HW_MAX], u64 config)
154 {
155 int mapping;
156
157 if (config >= PERF_COUNT_HW_MAX)
158 return -EINVAL;
159
160 if (!event_map)
161 return -ENOENT;
162
163 mapping = (*event_map)[config];
164 return mapping == HW_OP_UNSUPPORTED ? -ENOENT : mapping;
165 }
166
167 static int
armpmu_map_raw_event(u32 raw_event_mask,u64 config)168 armpmu_map_raw_event(u32 raw_event_mask, u64 config)
169 {
170 return (int)(config & raw_event_mask);
171 }
172
173 int
armpmu_map_event(struct perf_event * event,const unsigned (* event_map)[PERF_COUNT_HW_MAX],const unsigned (* cache_map)[PERF_COUNT_HW_CACHE_MAX][PERF_COUNT_HW_CACHE_OP_MAX][PERF_COUNT_HW_CACHE_RESULT_MAX],u32 raw_event_mask)174 armpmu_map_event(struct perf_event *event,
175 const unsigned (*event_map)[PERF_COUNT_HW_MAX],
176 const unsigned (*cache_map)
177 [PERF_COUNT_HW_CACHE_MAX]
178 [PERF_COUNT_HW_CACHE_OP_MAX]
179 [PERF_COUNT_HW_CACHE_RESULT_MAX],
180 u32 raw_event_mask)
181 {
182 u64 config = event->attr.config;
183 int type = event->attr.type;
184
185 if (type == event->pmu->type)
186 return armpmu_map_raw_event(raw_event_mask, config);
187
188 switch (type) {
189 case PERF_TYPE_HARDWARE:
190 return armpmu_map_hw_event(event_map, config);
191 case PERF_TYPE_HW_CACHE:
192 return armpmu_map_cache_event(cache_map, config);
193 case PERF_TYPE_RAW:
194 return armpmu_map_raw_event(raw_event_mask, config);
195 }
196
197 return -ENOENT;
198 }
199
armpmu_event_set_period(struct perf_event * event)200 int armpmu_event_set_period(struct perf_event *event)
201 {
202 struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
203 struct hw_perf_event *hwc = &event->hw;
204 s64 left = local64_read(&hwc->period_left);
205 s64 period = hwc->sample_period;
206 u64 max_period;
207 int ret = 0;
208
209 max_period = arm_pmu_event_max_period(event);
210 if (unlikely(left <= -period)) {
211 left = period;
212 local64_set(&hwc->period_left, left);
213 hwc->last_period = period;
214 ret = 1;
215 }
216
217 if (unlikely(left <= 0)) {
218 left += period;
219 local64_set(&hwc->period_left, left);
220 hwc->last_period = period;
221 ret = 1;
222 }
223
224 /*
225 * Limit the maximum period to prevent the counter value
226 * from overtaking the one we are about to program. In
227 * effect we are reducing max_period to account for
228 * interrupt latency (and we are being very conservative).
229 */
230 if (left > (max_period >> 1))
231 left = (max_period >> 1);
232
233 local64_set(&hwc->prev_count, (u64)-left);
234
235 armpmu->write_counter(event, (u64)(-left) & max_period);
236
237 perf_event_update_userpage(event);
238
239 return ret;
240 }
241
armpmu_event_update(struct perf_event * event)242 u64 armpmu_event_update(struct perf_event *event)
243 {
244 struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
245 struct hw_perf_event *hwc = &event->hw;
246 u64 delta, prev_raw_count, new_raw_count;
247 u64 max_period = arm_pmu_event_max_period(event);
248
249 again:
250 prev_raw_count = local64_read(&hwc->prev_count);
251 new_raw_count = armpmu->read_counter(event);
252
253 if (local64_cmpxchg(&hwc->prev_count, prev_raw_count,
254 new_raw_count) != prev_raw_count)
255 goto again;
256
257 delta = (new_raw_count - prev_raw_count) & max_period;
258
259 local64_add(delta, &event->count);
260 local64_sub(delta, &hwc->period_left);
261
262 return new_raw_count;
263 }
264
265 static void
armpmu_read(struct perf_event * event)266 armpmu_read(struct perf_event *event)
267 {
268 armpmu_event_update(event);
269 }
270
271 static void
armpmu_stop(struct perf_event * event,int flags)272 armpmu_stop(struct perf_event *event, int flags)
273 {
274 struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
275 struct hw_perf_event *hwc = &event->hw;
276
277 /*
278 * ARM pmu always has to update the counter, so ignore
279 * PERF_EF_UPDATE, see comments in armpmu_start().
280 */
281 if (!(hwc->state & PERF_HES_STOPPED)) {
282 armpmu->disable(event);
283 armpmu_event_update(event);
284 hwc->state |= PERF_HES_STOPPED | PERF_HES_UPTODATE;
285 }
286 }
287
armpmu_start(struct perf_event * event,int flags)288 static void armpmu_start(struct perf_event *event, int flags)
289 {
290 struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
291 struct hw_perf_event *hwc = &event->hw;
292
293 /*
294 * ARM pmu always has to reprogram the period, so ignore
295 * PERF_EF_RELOAD, see the comment below.
296 */
297 if (flags & PERF_EF_RELOAD)
298 WARN_ON_ONCE(!(hwc->state & PERF_HES_UPTODATE));
299
300 hwc->state = 0;
301 /*
302 * Set the period again. Some counters can't be stopped, so when we
303 * were stopped we simply disabled the IRQ source and the counter
304 * may have been left counting. If we don't do this step then we may
305 * get an interrupt too soon or *way* too late if the overflow has
306 * happened since disabling.
307 */
308 armpmu_event_set_period(event);
309 armpmu->enable(event);
310 }
311
312 static void
armpmu_del(struct perf_event * event,int flags)313 armpmu_del(struct perf_event *event, int flags)
314 {
315 struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
316 struct pmu_hw_events *hw_events = this_cpu_ptr(armpmu->hw_events);
317 struct hw_perf_event *hwc = &event->hw;
318 int idx = hwc->idx;
319
320 armpmu_stop(event, PERF_EF_UPDATE);
321 hw_events->events[idx] = NULL;
322 armpmu->clear_event_idx(hw_events, event);
323 perf_event_update_userpage(event);
324 /* Clear the allocated counter */
325 hwc->idx = -1;
326 }
327
328 static int
armpmu_add(struct perf_event * event,int flags)329 armpmu_add(struct perf_event *event, int flags)
330 {
331 struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
332 struct pmu_hw_events *hw_events = this_cpu_ptr(armpmu->hw_events);
333 struct hw_perf_event *hwc = &event->hw;
334 int idx;
335
336 /* An event following a process won't be stopped earlier */
337 if (!cpumask_test_cpu(smp_processor_id(), &armpmu->supported_cpus))
338 return -ENOENT;
339
340 /* If we don't have a space for the counter then finish early. */
341 idx = armpmu->get_event_idx(hw_events, event);
342 if (idx < 0)
343 return idx;
344
345 /* The newly-allocated counter should be empty */
346 WARN_ON_ONCE(hw_events->events[idx]);
347
348 event->hw.idx = idx;
349 hw_events->events[idx] = event;
350
351 hwc->state = PERF_HES_STOPPED | PERF_HES_UPTODATE;
352 if (flags & PERF_EF_START)
353 armpmu_start(event, PERF_EF_RELOAD);
354
355 /* Propagate our changes to the userspace mapping. */
356 perf_event_update_userpage(event);
357
358 return 0;
359 }
360
361 static int
validate_event(struct pmu * pmu,struct pmu_hw_events * hw_events,struct perf_event * event)362 validate_event(struct pmu *pmu, struct pmu_hw_events *hw_events,
363 struct perf_event *event)
364 {
365 struct arm_pmu *armpmu;
366
367 if (is_software_event(event))
368 return 1;
369
370 /*
371 * Reject groups spanning multiple HW PMUs (e.g. CPU + CCI). The
372 * core perf code won't check that the pmu->ctx == leader->ctx
373 * until after pmu->event_init(event).
374 */
375 if (event->pmu != pmu)
376 return 0;
377
378 if (event->state < PERF_EVENT_STATE_OFF)
379 return 1;
380
381 if (event->state == PERF_EVENT_STATE_OFF && !event->attr.enable_on_exec)
382 return 1;
383
384 armpmu = to_arm_pmu(event->pmu);
385 return armpmu->get_event_idx(hw_events, event) >= 0;
386 }
387
388 static int
validate_group(struct perf_event * event)389 validate_group(struct perf_event *event)
390 {
391 struct perf_event *sibling, *leader = event->group_leader;
392 struct pmu_hw_events fake_pmu;
393
394 /*
395 * Initialise the fake PMU. We only need to populate the
396 * used_mask for the purposes of validation.
397 */
398 memset(&fake_pmu.used_mask, 0, sizeof(fake_pmu.used_mask));
399
400 if (!validate_event(event->pmu, &fake_pmu, leader))
401 return -EINVAL;
402
403 if (event == leader)
404 return 0;
405
406 for_each_sibling_event(sibling, leader) {
407 if (!validate_event(event->pmu, &fake_pmu, sibling))
408 return -EINVAL;
409 }
410
411 if (!validate_event(event->pmu, &fake_pmu, event))
412 return -EINVAL;
413
414 return 0;
415 }
416
armpmu_dispatch_irq(int irq,void * dev)417 static irqreturn_t armpmu_dispatch_irq(int irq, void *dev)
418 {
419 struct arm_pmu *armpmu;
420 int ret;
421 u64 start_clock, finish_clock;
422
423 /*
424 * we request the IRQ with a (possibly percpu) struct arm_pmu**, but
425 * the handlers expect a struct arm_pmu*. The percpu_irq framework will
426 * do any necessary shifting, we just need to perform the first
427 * dereference.
428 */
429 armpmu = *(void **)dev;
430 if (WARN_ON_ONCE(!armpmu))
431 return IRQ_NONE;
432
433 start_clock = sched_clock();
434 ret = armpmu->handle_irq(armpmu);
435 finish_clock = sched_clock();
436
437 perf_sample_event_took(finish_clock - start_clock);
438 return ret;
439 }
440
441 static int
__hw_perf_event_init(struct perf_event * event)442 __hw_perf_event_init(struct perf_event *event)
443 {
444 struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
445 struct hw_perf_event *hwc = &event->hw;
446 int mapping, ret;
447
448 hwc->flags = 0;
449 mapping = armpmu->map_event(event);
450
451 if (mapping < 0) {
452 pr_debug("event %x:%llx not supported\n", event->attr.type,
453 event->attr.config);
454 return mapping;
455 }
456
457 /*
458 * We don't assign an index until we actually place the event onto
459 * hardware. Use -1 to signify that we haven't decided where to put it
460 * yet. For SMP systems, each core has it's own PMU so we can't do any
461 * clever allocation or constraints checking at this point.
462 */
463 hwc->idx = -1;
464 hwc->config_base = 0;
465 hwc->config = 0;
466 hwc->event_base = 0;
467
468 /*
469 * Check whether we need to exclude the counter from certain modes.
470 */
471 if (armpmu->set_event_filter) {
472 ret = armpmu->set_event_filter(hwc, &event->attr);
473 if (ret)
474 return ret;
475 }
476
477 /*
478 * Store the event encoding into the config_base field.
479 */
480 hwc->config_base |= (unsigned long)mapping;
481
482 if (!is_sampling_event(event)) {
483 /*
484 * For non-sampling runs, limit the sample_period to half
485 * of the counter width. That way, the new counter value
486 * is far less likely to overtake the previous one unless
487 * you have some serious IRQ latency issues.
488 */
489 hwc->sample_period = arm_pmu_event_max_period(event) >> 1;
490 hwc->last_period = hwc->sample_period;
491 local64_set(&hwc->period_left, hwc->sample_period);
492 }
493
494 return validate_group(event);
495 }
496
armpmu_event_init(struct perf_event * event)497 static int armpmu_event_init(struct perf_event *event)
498 {
499 struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
500
501 /*
502 * Reject CPU-affine events for CPUs that are of a different class to
503 * that which this PMU handles. Process-following events (where
504 * event->cpu == -1) can be migrated between CPUs, and thus we have to
505 * reject them later (in armpmu_add) if they're scheduled on a
506 * different class of CPU.
507 */
508 if (event->cpu != -1 &&
509 !cpumask_test_cpu(event->cpu, &armpmu->supported_cpus))
510 return -ENOENT;
511
512 /* does not support taken branch sampling */
513 if (has_branch_stack(event))
514 return -EOPNOTSUPP;
515
516 return __hw_perf_event_init(event);
517 }
518
armpmu_enable(struct pmu * pmu)519 static void armpmu_enable(struct pmu *pmu)
520 {
521 struct arm_pmu *armpmu = to_arm_pmu(pmu);
522 struct pmu_hw_events *hw_events = this_cpu_ptr(armpmu->hw_events);
523 bool enabled = !bitmap_empty(hw_events->used_mask, ARMPMU_MAX_HWEVENTS);
524
525 /* For task-bound events we may be called on other CPUs */
526 if (!cpumask_test_cpu(smp_processor_id(), &armpmu->supported_cpus))
527 return;
528
529 if (enabled)
530 armpmu->start(armpmu);
531 }
532
armpmu_disable(struct pmu * pmu)533 static void armpmu_disable(struct pmu *pmu)
534 {
535 struct arm_pmu *armpmu = to_arm_pmu(pmu);
536
537 /* For task-bound events we may be called on other CPUs */
538 if (!cpumask_test_cpu(smp_processor_id(), &armpmu->supported_cpus))
539 return;
540
541 armpmu->stop(armpmu);
542 }
543
544 /*
545 * In heterogeneous systems, events are specific to a particular
546 * microarchitecture, and aren't suitable for another. Thus, only match CPUs of
547 * the same microarchitecture.
548 */
armpmu_filter(struct pmu * pmu,int cpu)549 static bool armpmu_filter(struct pmu *pmu, int cpu)
550 {
551 struct arm_pmu *armpmu = to_arm_pmu(pmu);
552 return !cpumask_test_cpu(cpu, &armpmu->supported_cpus);
553 }
554
cpus_show(struct device * dev,struct device_attribute * attr,char * buf)555 static ssize_t cpus_show(struct device *dev,
556 struct device_attribute *attr, char *buf)
557 {
558 struct arm_pmu *armpmu = to_arm_pmu(dev_get_drvdata(dev));
559 return cpumap_print_to_pagebuf(true, buf, &armpmu->supported_cpus);
560 }
561
562 static DEVICE_ATTR_RO(cpus);
563
564 static struct attribute *armpmu_common_attrs[] = {
565 &dev_attr_cpus.attr,
566 NULL,
567 };
568
569 static const struct attribute_group armpmu_common_attr_group = {
570 .attrs = armpmu_common_attrs,
571 };
572
armpmu_count_irq_users(const int irq)573 static int armpmu_count_irq_users(const int irq)
574 {
575 int cpu, count = 0;
576
577 for_each_possible_cpu(cpu) {
578 if (per_cpu(cpu_irq, cpu) == irq)
579 count++;
580 }
581
582 return count;
583 }
584
armpmu_find_irq_ops(int irq)585 static const struct pmu_irq_ops *armpmu_find_irq_ops(int irq)
586 {
587 const struct pmu_irq_ops *ops = NULL;
588 int cpu;
589
590 for_each_possible_cpu(cpu) {
591 if (per_cpu(cpu_irq, cpu) != irq)
592 continue;
593
594 ops = per_cpu(cpu_irq_ops, cpu);
595 if (ops)
596 break;
597 }
598
599 return ops;
600 }
601
armpmu_free_irq(int irq,int cpu)602 void armpmu_free_irq(int irq, int cpu)
603 {
604 if (per_cpu(cpu_irq, cpu) == 0)
605 return;
606 if (WARN_ON(irq != per_cpu(cpu_irq, cpu)))
607 return;
608
609 per_cpu(cpu_irq_ops, cpu)->free_pmuirq(irq, cpu, &cpu_armpmu);
610
611 per_cpu(cpu_irq, cpu) = 0;
612 per_cpu(cpu_irq_ops, cpu) = NULL;
613 }
614
armpmu_request_irq(int irq,int cpu)615 int armpmu_request_irq(int irq, int cpu)
616 {
617 int err = 0;
618 const irq_handler_t handler = armpmu_dispatch_irq;
619 const struct pmu_irq_ops *irq_ops;
620
621 if (!irq)
622 return 0;
623
624 if (!irq_is_percpu_devid(irq)) {
625 unsigned long irq_flags;
626
627 err = irq_force_affinity(irq, cpumask_of(cpu));
628
629 if (err && num_possible_cpus() > 1) {
630 pr_warn("unable to set irq affinity (irq=%d, cpu=%u)\n",
631 irq, cpu);
632 goto err_out;
633 }
634
635 irq_flags = IRQF_PERCPU |
636 IRQF_NOBALANCING | IRQF_NO_AUTOEN |
637 IRQF_NO_THREAD;
638
639 err = request_nmi(irq, handler, irq_flags, "arm-pmu",
640 per_cpu_ptr(&cpu_armpmu, cpu));
641
642 /* If cannot get an NMI, get a normal interrupt */
643 if (err) {
644 err = request_irq(irq, handler, irq_flags, "arm-pmu",
645 per_cpu_ptr(&cpu_armpmu, cpu));
646 irq_ops = &pmuirq_ops;
647 } else {
648 has_nmi = true;
649 irq_ops = &pmunmi_ops;
650 }
651 } else if (armpmu_count_irq_users(irq) == 0) {
652 err = request_percpu_nmi(irq, handler, "arm-pmu", &cpu_armpmu);
653
654 /* If cannot get an NMI, get a normal interrupt */
655 if (err) {
656 err = request_percpu_irq(irq, handler, "arm-pmu",
657 &cpu_armpmu);
658 irq_ops = &percpu_pmuirq_ops;
659 } else {
660 has_nmi = true;
661 irq_ops = &percpu_pmunmi_ops;
662 }
663 } else {
664 /* Per cpudevid irq was already requested by another CPU */
665 irq_ops = armpmu_find_irq_ops(irq);
666
667 if (WARN_ON(!irq_ops))
668 err = -EINVAL;
669 }
670
671 if (err)
672 goto err_out;
673
674 per_cpu(cpu_irq, cpu) = irq;
675 per_cpu(cpu_irq_ops, cpu) = irq_ops;
676 return 0;
677
678 err_out:
679 pr_err("unable to request IRQ%d for ARM PMU counters\n", irq);
680 return err;
681 }
682
armpmu_get_cpu_irq(struct arm_pmu * pmu,int cpu)683 static int armpmu_get_cpu_irq(struct arm_pmu *pmu, int cpu)
684 {
685 struct pmu_hw_events __percpu *hw_events = pmu->hw_events;
686 return per_cpu(hw_events->irq, cpu);
687 }
688
arm_pmu_irq_is_nmi(void)689 bool arm_pmu_irq_is_nmi(void)
690 {
691 return has_nmi;
692 }
693
694 /*
695 * PMU hardware loses all context when a CPU goes offline.
696 * When a CPU is hotplugged back in, since some hardware registers are
697 * UNKNOWN at reset, the PMU must be explicitly reset to avoid reading
698 * junk values out of them.
699 */
arm_perf_starting_cpu(unsigned int cpu,struct hlist_node * node)700 static int arm_perf_starting_cpu(unsigned int cpu, struct hlist_node *node)
701 {
702 struct arm_pmu *pmu = hlist_entry_safe(node, struct arm_pmu, node);
703 int irq;
704
705 if (!cpumask_test_cpu(cpu, &pmu->supported_cpus))
706 return 0;
707 if (pmu->reset)
708 pmu->reset(pmu);
709
710 per_cpu(cpu_armpmu, cpu) = pmu;
711
712 irq = armpmu_get_cpu_irq(pmu, cpu);
713 if (irq)
714 per_cpu(cpu_irq_ops, cpu)->enable_pmuirq(irq);
715
716 return 0;
717 }
718
arm_perf_teardown_cpu(unsigned int cpu,struct hlist_node * node)719 static int arm_perf_teardown_cpu(unsigned int cpu, struct hlist_node *node)
720 {
721 struct arm_pmu *pmu = hlist_entry_safe(node, struct arm_pmu, node);
722 int irq;
723
724 if (!cpumask_test_cpu(cpu, &pmu->supported_cpus))
725 return 0;
726
727 irq = armpmu_get_cpu_irq(pmu, cpu);
728 if (irq)
729 per_cpu(cpu_irq_ops, cpu)->disable_pmuirq(irq);
730
731 per_cpu(cpu_armpmu, cpu) = NULL;
732
733 return 0;
734 }
735
736 #ifdef CONFIG_CPU_PM
cpu_pm_pmu_setup(struct arm_pmu * armpmu,unsigned long cmd)737 static void cpu_pm_pmu_setup(struct arm_pmu *armpmu, unsigned long cmd)
738 {
739 struct pmu_hw_events *hw_events = this_cpu_ptr(armpmu->hw_events);
740 struct perf_event *event;
741 int idx;
742
743 for_each_set_bit(idx, armpmu->cntr_mask, ARMPMU_MAX_HWEVENTS) {
744 event = hw_events->events[idx];
745 if (!event)
746 continue;
747
748 switch (cmd) {
749 case CPU_PM_ENTER:
750 /*
751 * Stop and update the counter
752 */
753 armpmu_stop(event, PERF_EF_UPDATE);
754 break;
755 case CPU_PM_EXIT:
756 case CPU_PM_ENTER_FAILED:
757 /*
758 * Restore and enable the counter.
759 */
760 armpmu_start(event, PERF_EF_RELOAD);
761 break;
762 default:
763 break;
764 }
765 }
766 }
767
cpu_pm_pmu_notify(struct notifier_block * b,unsigned long cmd,void * v)768 static int cpu_pm_pmu_notify(struct notifier_block *b, unsigned long cmd,
769 void *v)
770 {
771 struct arm_pmu *armpmu = container_of(b, struct arm_pmu, cpu_pm_nb);
772 struct pmu_hw_events *hw_events = this_cpu_ptr(armpmu->hw_events);
773 bool enabled = !bitmap_empty(hw_events->used_mask, ARMPMU_MAX_HWEVENTS);
774
775 if (!cpumask_test_cpu(smp_processor_id(), &armpmu->supported_cpus))
776 return NOTIFY_DONE;
777
778 /*
779 * Always reset the PMU registers on power-up even if
780 * there are no events running.
781 */
782 if (cmd == CPU_PM_EXIT && armpmu->reset)
783 armpmu->reset(armpmu);
784
785 if (!enabled)
786 return NOTIFY_OK;
787
788 switch (cmd) {
789 case CPU_PM_ENTER:
790 armpmu->stop(armpmu);
791 cpu_pm_pmu_setup(armpmu, cmd);
792 break;
793 case CPU_PM_EXIT:
794 case CPU_PM_ENTER_FAILED:
795 cpu_pm_pmu_setup(armpmu, cmd);
796 armpmu->start(armpmu);
797 break;
798 default:
799 return NOTIFY_DONE;
800 }
801
802 return NOTIFY_OK;
803 }
804
cpu_pm_pmu_register(struct arm_pmu * cpu_pmu)805 static int cpu_pm_pmu_register(struct arm_pmu *cpu_pmu)
806 {
807 cpu_pmu->cpu_pm_nb.notifier_call = cpu_pm_pmu_notify;
808 return cpu_pm_register_notifier(&cpu_pmu->cpu_pm_nb);
809 }
810
cpu_pm_pmu_unregister(struct arm_pmu * cpu_pmu)811 static void cpu_pm_pmu_unregister(struct arm_pmu *cpu_pmu)
812 {
813 cpu_pm_unregister_notifier(&cpu_pmu->cpu_pm_nb);
814 }
815 #else
cpu_pm_pmu_register(struct arm_pmu * cpu_pmu)816 static inline int cpu_pm_pmu_register(struct arm_pmu *cpu_pmu) { return 0; }
cpu_pm_pmu_unregister(struct arm_pmu * cpu_pmu)817 static inline void cpu_pm_pmu_unregister(struct arm_pmu *cpu_pmu) { }
818 #endif
819
cpu_pmu_init(struct arm_pmu * cpu_pmu)820 static int cpu_pmu_init(struct arm_pmu *cpu_pmu)
821 {
822 int err;
823
824 err = cpuhp_state_add_instance(CPUHP_AP_PERF_ARM_STARTING,
825 &cpu_pmu->node);
826 if (err)
827 goto out;
828
829 err = cpu_pm_pmu_register(cpu_pmu);
830 if (err)
831 goto out_unregister;
832
833 return 0;
834
835 out_unregister:
836 cpuhp_state_remove_instance_nocalls(CPUHP_AP_PERF_ARM_STARTING,
837 &cpu_pmu->node);
838 out:
839 return err;
840 }
841
cpu_pmu_destroy(struct arm_pmu * cpu_pmu)842 static void cpu_pmu_destroy(struct arm_pmu *cpu_pmu)
843 {
844 cpu_pm_pmu_unregister(cpu_pmu);
845 cpuhp_state_remove_instance_nocalls(CPUHP_AP_PERF_ARM_STARTING,
846 &cpu_pmu->node);
847 }
848
armpmu_alloc(void)849 struct arm_pmu *armpmu_alloc(void)
850 {
851 struct arm_pmu *pmu;
852 int cpu;
853
854 pmu = kzalloc(sizeof(*pmu), GFP_KERNEL);
855 if (!pmu)
856 goto out;
857
858 pmu->hw_events = alloc_percpu_gfp(struct pmu_hw_events, GFP_KERNEL);
859 if (!pmu->hw_events) {
860 pr_info("failed to allocate per-cpu PMU data.\n");
861 goto out_free_pmu;
862 }
863
864 pmu->pmu = (struct pmu) {
865 .pmu_enable = armpmu_enable,
866 .pmu_disable = armpmu_disable,
867 .event_init = armpmu_event_init,
868 .add = armpmu_add,
869 .del = armpmu_del,
870 .start = armpmu_start,
871 .stop = armpmu_stop,
872 .read = armpmu_read,
873 .filter = armpmu_filter,
874 .attr_groups = pmu->attr_groups,
875 /*
876 * This is a CPU PMU potentially in a heterogeneous
877 * configuration (e.g. big.LITTLE) so
878 * PERF_PMU_CAP_EXTENDED_HW_TYPE is required to open
879 * PERF_TYPE_HARDWARE and PERF_TYPE_HW_CACHE events on a
880 * specific PMU.
881 */
882 .capabilities = PERF_PMU_CAP_EXTENDED_REGS |
883 PERF_PMU_CAP_EXTENDED_HW_TYPE,
884 };
885
886 pmu->attr_groups[ARMPMU_ATTR_GROUP_COMMON] =
887 &armpmu_common_attr_group;
888
889 for_each_possible_cpu(cpu) {
890 struct pmu_hw_events *events;
891
892 events = per_cpu_ptr(pmu->hw_events, cpu);
893 events->percpu_pmu = pmu;
894 }
895
896 return pmu;
897
898 out_free_pmu:
899 kfree(pmu);
900 out:
901 return NULL;
902 }
903
armpmu_free(struct arm_pmu * pmu)904 void armpmu_free(struct arm_pmu *pmu)
905 {
906 free_percpu(pmu->hw_events);
907 kfree(pmu);
908 }
909
armpmu_register(struct arm_pmu * pmu)910 int armpmu_register(struct arm_pmu *pmu)
911 {
912 int ret;
913
914 ret = cpu_pmu_init(pmu);
915 if (ret)
916 return ret;
917
918 if (!pmu->set_event_filter)
919 pmu->pmu.capabilities |= PERF_PMU_CAP_NO_EXCLUDE;
920
921 ret = perf_pmu_register(&pmu->pmu, pmu->name, -1);
922 if (ret)
923 goto out_destroy;
924
925 pr_info("enabled with %s PMU driver, %d (%*pb) counters available%s\n",
926 pmu->name, bitmap_weight(pmu->cntr_mask, ARMPMU_MAX_HWEVENTS),
927 ARMPMU_MAX_HWEVENTS, &pmu->cntr_mask,
928 has_nmi ? ", using NMIs" : "");
929
930 kvm_host_pmu_init(pmu);
931
932 return 0;
933
934 out_destroy:
935 cpu_pmu_destroy(pmu);
936 return ret;
937 }
938
arm_pmu_hp_init(void)939 static int arm_pmu_hp_init(void)
940 {
941 int ret;
942
943 ret = cpuhp_setup_state_multi(CPUHP_AP_PERF_ARM_STARTING,
944 "perf/arm/pmu:starting",
945 arm_perf_starting_cpu,
946 arm_perf_teardown_cpu);
947 if (ret)
948 pr_err("CPU hotplug notifier for ARM PMU could not be registered: %d\n",
949 ret);
950 return ret;
951 }
952 subsys_initcall(arm_pmu_hp_init);
953