1 // SPDX-License-Identifier: GPL-2.0-only
2 #undef DEBUG
3 
4 /*
5  * ARM performance counter support.
6  *
7  * Copyright (C) 2009 picoChip Designs, Ltd., Jamie Iles
8  * Copyright (C) 2010 ARM Ltd., Will Deacon <[email protected]>
9  *
10  * This code is based on the sparc64 perf event code, which is in turn based
11  * on the x86 code.
12  */
13 #define pr_fmt(fmt) "hw perfevents: " fmt
14 
15 #include <linux/bitmap.h>
16 #include <linux/cpumask.h>
17 #include <linux/cpu_pm.h>
18 #include <linux/export.h>
19 #include <linux/kernel.h>
20 #include <linux/perf/arm_pmu.h>
21 #include <linux/slab.h>
22 #include <linux/sched/clock.h>
23 #include <linux/spinlock.h>
24 #include <linux/irq.h>
25 #include <linux/irqdesc.h>
26 
27 #include <asm/irq_regs.h>
28 
29 static int armpmu_count_irq_users(const int irq);
30 
31 struct pmu_irq_ops {
32 	void (*enable_pmuirq)(unsigned int irq);
33 	void (*disable_pmuirq)(unsigned int irq);
34 	void (*free_pmuirq)(unsigned int irq, int cpu, void __percpu *devid);
35 };
36 
armpmu_free_pmuirq(unsigned int irq,int cpu,void __percpu * devid)37 static void armpmu_free_pmuirq(unsigned int irq, int cpu, void __percpu *devid)
38 {
39 	free_irq(irq, per_cpu_ptr(devid, cpu));
40 }
41 
42 static const struct pmu_irq_ops pmuirq_ops = {
43 	.enable_pmuirq = enable_irq,
44 	.disable_pmuirq = disable_irq_nosync,
45 	.free_pmuirq = armpmu_free_pmuirq
46 };
47 
armpmu_free_pmunmi(unsigned int irq,int cpu,void __percpu * devid)48 static void armpmu_free_pmunmi(unsigned int irq, int cpu, void __percpu *devid)
49 {
50 	free_nmi(irq, per_cpu_ptr(devid, cpu));
51 }
52 
53 static const struct pmu_irq_ops pmunmi_ops = {
54 	.enable_pmuirq = enable_nmi,
55 	.disable_pmuirq = disable_nmi_nosync,
56 	.free_pmuirq = armpmu_free_pmunmi
57 };
58 
armpmu_enable_percpu_pmuirq(unsigned int irq)59 static void armpmu_enable_percpu_pmuirq(unsigned int irq)
60 {
61 	enable_percpu_irq(irq, IRQ_TYPE_NONE);
62 }
63 
armpmu_free_percpu_pmuirq(unsigned int irq,int cpu,void __percpu * devid)64 static void armpmu_free_percpu_pmuirq(unsigned int irq, int cpu,
65 				   void __percpu *devid)
66 {
67 	if (armpmu_count_irq_users(irq) == 1)
68 		free_percpu_irq(irq, devid);
69 }
70 
71 static const struct pmu_irq_ops percpu_pmuirq_ops = {
72 	.enable_pmuirq = armpmu_enable_percpu_pmuirq,
73 	.disable_pmuirq = disable_percpu_irq,
74 	.free_pmuirq = armpmu_free_percpu_pmuirq
75 };
76 
armpmu_enable_percpu_pmunmi(unsigned int irq)77 static void armpmu_enable_percpu_pmunmi(unsigned int irq)
78 {
79 	if (!prepare_percpu_nmi(irq))
80 		enable_percpu_nmi(irq, IRQ_TYPE_NONE);
81 }
82 
armpmu_disable_percpu_pmunmi(unsigned int irq)83 static void armpmu_disable_percpu_pmunmi(unsigned int irq)
84 {
85 	disable_percpu_nmi(irq);
86 	teardown_percpu_nmi(irq);
87 }
88 
armpmu_free_percpu_pmunmi(unsigned int irq,int cpu,void __percpu * devid)89 static void armpmu_free_percpu_pmunmi(unsigned int irq, int cpu,
90 				      void __percpu *devid)
91 {
92 	if (armpmu_count_irq_users(irq) == 1)
93 		free_percpu_nmi(irq, devid);
94 }
95 
96 static const struct pmu_irq_ops percpu_pmunmi_ops = {
97 	.enable_pmuirq = armpmu_enable_percpu_pmunmi,
98 	.disable_pmuirq = armpmu_disable_percpu_pmunmi,
99 	.free_pmuirq = armpmu_free_percpu_pmunmi
100 };
101 
102 static DEFINE_PER_CPU(struct arm_pmu *, cpu_armpmu);
103 static DEFINE_PER_CPU(int, cpu_irq);
104 static DEFINE_PER_CPU(const struct pmu_irq_ops *, cpu_irq_ops);
105 
106 static bool has_nmi;
107 
arm_pmu_event_max_period(struct perf_event * event)108 static inline u64 arm_pmu_event_max_period(struct perf_event *event)
109 {
110 	if (event->hw.flags & ARMPMU_EVT_64BIT)
111 		return GENMASK_ULL(63, 0);
112 	else if (event->hw.flags & ARMPMU_EVT_63BIT)
113 		return GENMASK_ULL(62, 0);
114 	else if (event->hw.flags & ARMPMU_EVT_47BIT)
115 		return GENMASK_ULL(46, 0);
116 	else
117 		return GENMASK_ULL(31, 0);
118 }
119 
120 static int
armpmu_map_cache_event(const unsigned (* cache_map)[PERF_COUNT_HW_CACHE_MAX][PERF_COUNT_HW_CACHE_OP_MAX][PERF_COUNT_HW_CACHE_RESULT_MAX],u64 config)121 armpmu_map_cache_event(const unsigned (*cache_map)
122 				      [PERF_COUNT_HW_CACHE_MAX]
123 				      [PERF_COUNT_HW_CACHE_OP_MAX]
124 				      [PERF_COUNT_HW_CACHE_RESULT_MAX],
125 		       u64 config)
126 {
127 	unsigned int cache_type, cache_op, cache_result, ret;
128 
129 	cache_type = (config >>  0) & 0xff;
130 	if (cache_type >= PERF_COUNT_HW_CACHE_MAX)
131 		return -EINVAL;
132 
133 	cache_op = (config >>  8) & 0xff;
134 	if (cache_op >= PERF_COUNT_HW_CACHE_OP_MAX)
135 		return -EINVAL;
136 
137 	cache_result = (config >> 16) & 0xff;
138 	if (cache_result >= PERF_COUNT_HW_CACHE_RESULT_MAX)
139 		return -EINVAL;
140 
141 	if (!cache_map)
142 		return -ENOENT;
143 
144 	ret = (int)(*cache_map)[cache_type][cache_op][cache_result];
145 
146 	if (ret == CACHE_OP_UNSUPPORTED)
147 		return -ENOENT;
148 
149 	return ret;
150 }
151 
152 static int
armpmu_map_hw_event(const unsigned (* event_map)[PERF_COUNT_HW_MAX],u64 config)153 armpmu_map_hw_event(const unsigned (*event_map)[PERF_COUNT_HW_MAX], u64 config)
154 {
155 	int mapping;
156 
157 	if (config >= PERF_COUNT_HW_MAX)
158 		return -EINVAL;
159 
160 	if (!event_map)
161 		return -ENOENT;
162 
163 	mapping = (*event_map)[config];
164 	return mapping == HW_OP_UNSUPPORTED ? -ENOENT : mapping;
165 }
166 
167 static int
armpmu_map_raw_event(u32 raw_event_mask,u64 config)168 armpmu_map_raw_event(u32 raw_event_mask, u64 config)
169 {
170 	return (int)(config & raw_event_mask);
171 }
172 
173 int
armpmu_map_event(struct perf_event * event,const unsigned (* event_map)[PERF_COUNT_HW_MAX],const unsigned (* cache_map)[PERF_COUNT_HW_CACHE_MAX][PERF_COUNT_HW_CACHE_OP_MAX][PERF_COUNT_HW_CACHE_RESULT_MAX],u32 raw_event_mask)174 armpmu_map_event(struct perf_event *event,
175 		 const unsigned (*event_map)[PERF_COUNT_HW_MAX],
176 		 const unsigned (*cache_map)
177 				[PERF_COUNT_HW_CACHE_MAX]
178 				[PERF_COUNT_HW_CACHE_OP_MAX]
179 				[PERF_COUNT_HW_CACHE_RESULT_MAX],
180 		 u32 raw_event_mask)
181 {
182 	u64 config = event->attr.config;
183 	int type = event->attr.type;
184 
185 	if (type == event->pmu->type)
186 		return armpmu_map_raw_event(raw_event_mask, config);
187 
188 	switch (type) {
189 	case PERF_TYPE_HARDWARE:
190 		return armpmu_map_hw_event(event_map, config);
191 	case PERF_TYPE_HW_CACHE:
192 		return armpmu_map_cache_event(cache_map, config);
193 	case PERF_TYPE_RAW:
194 		return armpmu_map_raw_event(raw_event_mask, config);
195 	}
196 
197 	return -ENOENT;
198 }
199 
armpmu_event_set_period(struct perf_event * event)200 int armpmu_event_set_period(struct perf_event *event)
201 {
202 	struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
203 	struct hw_perf_event *hwc = &event->hw;
204 	s64 left = local64_read(&hwc->period_left);
205 	s64 period = hwc->sample_period;
206 	u64 max_period;
207 	int ret = 0;
208 
209 	max_period = arm_pmu_event_max_period(event);
210 	if (unlikely(left <= -period)) {
211 		left = period;
212 		local64_set(&hwc->period_left, left);
213 		hwc->last_period = period;
214 		ret = 1;
215 	}
216 
217 	if (unlikely(left <= 0)) {
218 		left += period;
219 		local64_set(&hwc->period_left, left);
220 		hwc->last_period = period;
221 		ret = 1;
222 	}
223 
224 	/*
225 	 * Limit the maximum period to prevent the counter value
226 	 * from overtaking the one we are about to program. In
227 	 * effect we are reducing max_period to account for
228 	 * interrupt latency (and we are being very conservative).
229 	 */
230 	if (left > (max_period >> 1))
231 		left = (max_period >> 1);
232 
233 	local64_set(&hwc->prev_count, (u64)-left);
234 
235 	armpmu->write_counter(event, (u64)(-left) & max_period);
236 
237 	perf_event_update_userpage(event);
238 
239 	return ret;
240 }
241 
armpmu_event_update(struct perf_event * event)242 u64 armpmu_event_update(struct perf_event *event)
243 {
244 	struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
245 	struct hw_perf_event *hwc = &event->hw;
246 	u64 delta, prev_raw_count, new_raw_count;
247 	u64 max_period = arm_pmu_event_max_period(event);
248 
249 again:
250 	prev_raw_count = local64_read(&hwc->prev_count);
251 	new_raw_count = armpmu->read_counter(event);
252 
253 	if (local64_cmpxchg(&hwc->prev_count, prev_raw_count,
254 			     new_raw_count) != prev_raw_count)
255 		goto again;
256 
257 	delta = (new_raw_count - prev_raw_count) & max_period;
258 
259 	local64_add(delta, &event->count);
260 	local64_sub(delta, &hwc->period_left);
261 
262 	return new_raw_count;
263 }
264 
265 static void
armpmu_read(struct perf_event * event)266 armpmu_read(struct perf_event *event)
267 {
268 	armpmu_event_update(event);
269 }
270 
271 static void
armpmu_stop(struct perf_event * event,int flags)272 armpmu_stop(struct perf_event *event, int flags)
273 {
274 	struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
275 	struct hw_perf_event *hwc = &event->hw;
276 
277 	/*
278 	 * ARM pmu always has to update the counter, so ignore
279 	 * PERF_EF_UPDATE, see comments in armpmu_start().
280 	 */
281 	if (!(hwc->state & PERF_HES_STOPPED)) {
282 		armpmu->disable(event);
283 		armpmu_event_update(event);
284 		hwc->state |= PERF_HES_STOPPED | PERF_HES_UPTODATE;
285 	}
286 }
287 
armpmu_start(struct perf_event * event,int flags)288 static void armpmu_start(struct perf_event *event, int flags)
289 {
290 	struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
291 	struct hw_perf_event *hwc = &event->hw;
292 
293 	/*
294 	 * ARM pmu always has to reprogram the period, so ignore
295 	 * PERF_EF_RELOAD, see the comment below.
296 	 */
297 	if (flags & PERF_EF_RELOAD)
298 		WARN_ON_ONCE(!(hwc->state & PERF_HES_UPTODATE));
299 
300 	hwc->state = 0;
301 	/*
302 	 * Set the period again. Some counters can't be stopped, so when we
303 	 * were stopped we simply disabled the IRQ source and the counter
304 	 * may have been left counting. If we don't do this step then we may
305 	 * get an interrupt too soon or *way* too late if the overflow has
306 	 * happened since disabling.
307 	 */
308 	armpmu_event_set_period(event);
309 	armpmu->enable(event);
310 }
311 
312 static void
armpmu_del(struct perf_event * event,int flags)313 armpmu_del(struct perf_event *event, int flags)
314 {
315 	struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
316 	struct pmu_hw_events *hw_events = this_cpu_ptr(armpmu->hw_events);
317 	struct hw_perf_event *hwc = &event->hw;
318 	int idx = hwc->idx;
319 
320 	armpmu_stop(event, PERF_EF_UPDATE);
321 	hw_events->events[idx] = NULL;
322 	armpmu->clear_event_idx(hw_events, event);
323 	perf_event_update_userpage(event);
324 	/* Clear the allocated counter */
325 	hwc->idx = -1;
326 }
327 
328 static int
armpmu_add(struct perf_event * event,int flags)329 armpmu_add(struct perf_event *event, int flags)
330 {
331 	struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
332 	struct pmu_hw_events *hw_events = this_cpu_ptr(armpmu->hw_events);
333 	struct hw_perf_event *hwc = &event->hw;
334 	int idx;
335 
336 	/* An event following a process won't be stopped earlier */
337 	if (!cpumask_test_cpu(smp_processor_id(), &armpmu->supported_cpus))
338 		return -ENOENT;
339 
340 	/* If we don't have a space for the counter then finish early. */
341 	idx = armpmu->get_event_idx(hw_events, event);
342 	if (idx < 0)
343 		return idx;
344 
345 	/* The newly-allocated counter should be empty */
346 	WARN_ON_ONCE(hw_events->events[idx]);
347 
348 	event->hw.idx = idx;
349 	hw_events->events[idx] = event;
350 
351 	hwc->state = PERF_HES_STOPPED | PERF_HES_UPTODATE;
352 	if (flags & PERF_EF_START)
353 		armpmu_start(event, PERF_EF_RELOAD);
354 
355 	/* Propagate our changes to the userspace mapping. */
356 	perf_event_update_userpage(event);
357 
358 	return 0;
359 }
360 
361 static int
validate_event(struct pmu * pmu,struct pmu_hw_events * hw_events,struct perf_event * event)362 validate_event(struct pmu *pmu, struct pmu_hw_events *hw_events,
363 			       struct perf_event *event)
364 {
365 	struct arm_pmu *armpmu;
366 
367 	if (is_software_event(event))
368 		return 1;
369 
370 	/*
371 	 * Reject groups spanning multiple HW PMUs (e.g. CPU + CCI). The
372 	 * core perf code won't check that the pmu->ctx == leader->ctx
373 	 * until after pmu->event_init(event).
374 	 */
375 	if (event->pmu != pmu)
376 		return 0;
377 
378 	if (event->state < PERF_EVENT_STATE_OFF)
379 		return 1;
380 
381 	if (event->state == PERF_EVENT_STATE_OFF && !event->attr.enable_on_exec)
382 		return 1;
383 
384 	armpmu = to_arm_pmu(event->pmu);
385 	return armpmu->get_event_idx(hw_events, event) >= 0;
386 }
387 
388 static int
validate_group(struct perf_event * event)389 validate_group(struct perf_event *event)
390 {
391 	struct perf_event *sibling, *leader = event->group_leader;
392 	struct pmu_hw_events fake_pmu;
393 
394 	/*
395 	 * Initialise the fake PMU. We only need to populate the
396 	 * used_mask for the purposes of validation.
397 	 */
398 	memset(&fake_pmu.used_mask, 0, sizeof(fake_pmu.used_mask));
399 
400 	if (!validate_event(event->pmu, &fake_pmu, leader))
401 		return -EINVAL;
402 
403 	if (event == leader)
404 		return 0;
405 
406 	for_each_sibling_event(sibling, leader) {
407 		if (!validate_event(event->pmu, &fake_pmu, sibling))
408 			return -EINVAL;
409 	}
410 
411 	if (!validate_event(event->pmu, &fake_pmu, event))
412 		return -EINVAL;
413 
414 	return 0;
415 }
416 
armpmu_dispatch_irq(int irq,void * dev)417 static irqreturn_t armpmu_dispatch_irq(int irq, void *dev)
418 {
419 	struct arm_pmu *armpmu;
420 	int ret;
421 	u64 start_clock, finish_clock;
422 
423 	/*
424 	 * we request the IRQ with a (possibly percpu) struct arm_pmu**, but
425 	 * the handlers expect a struct arm_pmu*. The percpu_irq framework will
426 	 * do any necessary shifting, we just need to perform the first
427 	 * dereference.
428 	 */
429 	armpmu = *(void **)dev;
430 	if (WARN_ON_ONCE(!armpmu))
431 		return IRQ_NONE;
432 
433 	start_clock = sched_clock();
434 	ret = armpmu->handle_irq(armpmu);
435 	finish_clock = sched_clock();
436 
437 	perf_sample_event_took(finish_clock - start_clock);
438 	return ret;
439 }
440 
441 static int
__hw_perf_event_init(struct perf_event * event)442 __hw_perf_event_init(struct perf_event *event)
443 {
444 	struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
445 	struct hw_perf_event *hwc = &event->hw;
446 	int mapping, ret;
447 
448 	hwc->flags = 0;
449 	mapping = armpmu->map_event(event);
450 
451 	if (mapping < 0) {
452 		pr_debug("event %x:%llx not supported\n", event->attr.type,
453 			 event->attr.config);
454 		return mapping;
455 	}
456 
457 	/*
458 	 * We don't assign an index until we actually place the event onto
459 	 * hardware. Use -1 to signify that we haven't decided where to put it
460 	 * yet. For SMP systems, each core has it's own PMU so we can't do any
461 	 * clever allocation or constraints checking at this point.
462 	 */
463 	hwc->idx		= -1;
464 	hwc->config_base	= 0;
465 	hwc->config		= 0;
466 	hwc->event_base		= 0;
467 
468 	/*
469 	 * Check whether we need to exclude the counter from certain modes.
470 	 */
471 	if (armpmu->set_event_filter) {
472 		ret = armpmu->set_event_filter(hwc, &event->attr);
473 		if (ret)
474 			return ret;
475 	}
476 
477 	/*
478 	 * Store the event encoding into the config_base field.
479 	 */
480 	hwc->config_base	    |= (unsigned long)mapping;
481 
482 	if (!is_sampling_event(event)) {
483 		/*
484 		 * For non-sampling runs, limit the sample_period to half
485 		 * of the counter width. That way, the new counter value
486 		 * is far less likely to overtake the previous one unless
487 		 * you have some serious IRQ latency issues.
488 		 */
489 		hwc->sample_period  = arm_pmu_event_max_period(event) >> 1;
490 		hwc->last_period    = hwc->sample_period;
491 		local64_set(&hwc->period_left, hwc->sample_period);
492 	}
493 
494 	return validate_group(event);
495 }
496 
armpmu_event_init(struct perf_event * event)497 static int armpmu_event_init(struct perf_event *event)
498 {
499 	struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
500 
501 	/*
502 	 * Reject CPU-affine events for CPUs that are of a different class to
503 	 * that which this PMU handles. Process-following events (where
504 	 * event->cpu == -1) can be migrated between CPUs, and thus we have to
505 	 * reject them later (in armpmu_add) if they're scheduled on a
506 	 * different class of CPU.
507 	 */
508 	if (event->cpu != -1 &&
509 		!cpumask_test_cpu(event->cpu, &armpmu->supported_cpus))
510 		return -ENOENT;
511 
512 	/* does not support taken branch sampling */
513 	if (has_branch_stack(event))
514 		return -EOPNOTSUPP;
515 
516 	return __hw_perf_event_init(event);
517 }
518 
armpmu_enable(struct pmu * pmu)519 static void armpmu_enable(struct pmu *pmu)
520 {
521 	struct arm_pmu *armpmu = to_arm_pmu(pmu);
522 	struct pmu_hw_events *hw_events = this_cpu_ptr(armpmu->hw_events);
523 	bool enabled = !bitmap_empty(hw_events->used_mask, ARMPMU_MAX_HWEVENTS);
524 
525 	/* For task-bound events we may be called on other CPUs */
526 	if (!cpumask_test_cpu(smp_processor_id(), &armpmu->supported_cpus))
527 		return;
528 
529 	if (enabled)
530 		armpmu->start(armpmu);
531 }
532 
armpmu_disable(struct pmu * pmu)533 static void armpmu_disable(struct pmu *pmu)
534 {
535 	struct arm_pmu *armpmu = to_arm_pmu(pmu);
536 
537 	/* For task-bound events we may be called on other CPUs */
538 	if (!cpumask_test_cpu(smp_processor_id(), &armpmu->supported_cpus))
539 		return;
540 
541 	armpmu->stop(armpmu);
542 }
543 
544 /*
545  * In heterogeneous systems, events are specific to a particular
546  * microarchitecture, and aren't suitable for another. Thus, only match CPUs of
547  * the same microarchitecture.
548  */
armpmu_filter(struct pmu * pmu,int cpu)549 static bool armpmu_filter(struct pmu *pmu, int cpu)
550 {
551 	struct arm_pmu *armpmu = to_arm_pmu(pmu);
552 	return !cpumask_test_cpu(cpu, &armpmu->supported_cpus);
553 }
554 
cpus_show(struct device * dev,struct device_attribute * attr,char * buf)555 static ssize_t cpus_show(struct device *dev,
556 			 struct device_attribute *attr, char *buf)
557 {
558 	struct arm_pmu *armpmu = to_arm_pmu(dev_get_drvdata(dev));
559 	return cpumap_print_to_pagebuf(true, buf, &armpmu->supported_cpus);
560 }
561 
562 static DEVICE_ATTR_RO(cpus);
563 
564 static struct attribute *armpmu_common_attrs[] = {
565 	&dev_attr_cpus.attr,
566 	NULL,
567 };
568 
569 static const struct attribute_group armpmu_common_attr_group = {
570 	.attrs = armpmu_common_attrs,
571 };
572 
armpmu_count_irq_users(const int irq)573 static int armpmu_count_irq_users(const int irq)
574 {
575 	int cpu, count = 0;
576 
577 	for_each_possible_cpu(cpu) {
578 		if (per_cpu(cpu_irq, cpu) == irq)
579 			count++;
580 	}
581 
582 	return count;
583 }
584 
armpmu_find_irq_ops(int irq)585 static const struct pmu_irq_ops *armpmu_find_irq_ops(int irq)
586 {
587 	const struct pmu_irq_ops *ops = NULL;
588 	int cpu;
589 
590 	for_each_possible_cpu(cpu) {
591 		if (per_cpu(cpu_irq, cpu) != irq)
592 			continue;
593 
594 		ops = per_cpu(cpu_irq_ops, cpu);
595 		if (ops)
596 			break;
597 	}
598 
599 	return ops;
600 }
601 
armpmu_free_irq(int irq,int cpu)602 void armpmu_free_irq(int irq, int cpu)
603 {
604 	if (per_cpu(cpu_irq, cpu) == 0)
605 		return;
606 	if (WARN_ON(irq != per_cpu(cpu_irq, cpu)))
607 		return;
608 
609 	per_cpu(cpu_irq_ops, cpu)->free_pmuirq(irq, cpu, &cpu_armpmu);
610 
611 	per_cpu(cpu_irq, cpu) = 0;
612 	per_cpu(cpu_irq_ops, cpu) = NULL;
613 }
614 
armpmu_request_irq(int irq,int cpu)615 int armpmu_request_irq(int irq, int cpu)
616 {
617 	int err = 0;
618 	const irq_handler_t handler = armpmu_dispatch_irq;
619 	const struct pmu_irq_ops *irq_ops;
620 
621 	if (!irq)
622 		return 0;
623 
624 	if (!irq_is_percpu_devid(irq)) {
625 		unsigned long irq_flags;
626 
627 		err = irq_force_affinity(irq, cpumask_of(cpu));
628 
629 		if (err && num_possible_cpus() > 1) {
630 			pr_warn("unable to set irq affinity (irq=%d, cpu=%u)\n",
631 				irq, cpu);
632 			goto err_out;
633 		}
634 
635 		irq_flags = IRQF_PERCPU |
636 			    IRQF_NOBALANCING | IRQF_NO_AUTOEN |
637 			    IRQF_NO_THREAD;
638 
639 		err = request_nmi(irq, handler, irq_flags, "arm-pmu",
640 				  per_cpu_ptr(&cpu_armpmu, cpu));
641 
642 		/* If cannot get an NMI, get a normal interrupt */
643 		if (err) {
644 			err = request_irq(irq, handler, irq_flags, "arm-pmu",
645 					  per_cpu_ptr(&cpu_armpmu, cpu));
646 			irq_ops = &pmuirq_ops;
647 		} else {
648 			has_nmi = true;
649 			irq_ops = &pmunmi_ops;
650 		}
651 	} else if (armpmu_count_irq_users(irq) == 0) {
652 		err = request_percpu_nmi(irq, handler, "arm-pmu", &cpu_armpmu);
653 
654 		/* If cannot get an NMI, get a normal interrupt */
655 		if (err) {
656 			err = request_percpu_irq(irq, handler, "arm-pmu",
657 						 &cpu_armpmu);
658 			irq_ops = &percpu_pmuirq_ops;
659 		} else {
660 			has_nmi = true;
661 			irq_ops = &percpu_pmunmi_ops;
662 		}
663 	} else {
664 		/* Per cpudevid irq was already requested by another CPU */
665 		irq_ops = armpmu_find_irq_ops(irq);
666 
667 		if (WARN_ON(!irq_ops))
668 			err = -EINVAL;
669 	}
670 
671 	if (err)
672 		goto err_out;
673 
674 	per_cpu(cpu_irq, cpu) = irq;
675 	per_cpu(cpu_irq_ops, cpu) = irq_ops;
676 	return 0;
677 
678 err_out:
679 	pr_err("unable to request IRQ%d for ARM PMU counters\n", irq);
680 	return err;
681 }
682 
armpmu_get_cpu_irq(struct arm_pmu * pmu,int cpu)683 static int armpmu_get_cpu_irq(struct arm_pmu *pmu, int cpu)
684 {
685 	struct pmu_hw_events __percpu *hw_events = pmu->hw_events;
686 	return per_cpu(hw_events->irq, cpu);
687 }
688 
arm_pmu_irq_is_nmi(void)689 bool arm_pmu_irq_is_nmi(void)
690 {
691 	return has_nmi;
692 }
693 
694 /*
695  * PMU hardware loses all context when a CPU goes offline.
696  * When a CPU is hotplugged back in, since some hardware registers are
697  * UNKNOWN at reset, the PMU must be explicitly reset to avoid reading
698  * junk values out of them.
699  */
arm_perf_starting_cpu(unsigned int cpu,struct hlist_node * node)700 static int arm_perf_starting_cpu(unsigned int cpu, struct hlist_node *node)
701 {
702 	struct arm_pmu *pmu = hlist_entry_safe(node, struct arm_pmu, node);
703 	int irq;
704 
705 	if (!cpumask_test_cpu(cpu, &pmu->supported_cpus))
706 		return 0;
707 	if (pmu->reset)
708 		pmu->reset(pmu);
709 
710 	per_cpu(cpu_armpmu, cpu) = pmu;
711 
712 	irq = armpmu_get_cpu_irq(pmu, cpu);
713 	if (irq)
714 		per_cpu(cpu_irq_ops, cpu)->enable_pmuirq(irq);
715 
716 	return 0;
717 }
718 
arm_perf_teardown_cpu(unsigned int cpu,struct hlist_node * node)719 static int arm_perf_teardown_cpu(unsigned int cpu, struct hlist_node *node)
720 {
721 	struct arm_pmu *pmu = hlist_entry_safe(node, struct arm_pmu, node);
722 	int irq;
723 
724 	if (!cpumask_test_cpu(cpu, &pmu->supported_cpus))
725 		return 0;
726 
727 	irq = armpmu_get_cpu_irq(pmu, cpu);
728 	if (irq)
729 		per_cpu(cpu_irq_ops, cpu)->disable_pmuirq(irq);
730 
731 	per_cpu(cpu_armpmu, cpu) = NULL;
732 
733 	return 0;
734 }
735 
736 #ifdef CONFIG_CPU_PM
cpu_pm_pmu_setup(struct arm_pmu * armpmu,unsigned long cmd)737 static void cpu_pm_pmu_setup(struct arm_pmu *armpmu, unsigned long cmd)
738 {
739 	struct pmu_hw_events *hw_events = this_cpu_ptr(armpmu->hw_events);
740 	struct perf_event *event;
741 	int idx;
742 
743 	for_each_set_bit(idx, armpmu->cntr_mask, ARMPMU_MAX_HWEVENTS) {
744 		event = hw_events->events[idx];
745 		if (!event)
746 			continue;
747 
748 		switch (cmd) {
749 		case CPU_PM_ENTER:
750 			/*
751 			 * Stop and update the counter
752 			 */
753 			armpmu_stop(event, PERF_EF_UPDATE);
754 			break;
755 		case CPU_PM_EXIT:
756 		case CPU_PM_ENTER_FAILED:
757 			 /*
758 			  * Restore and enable the counter.
759 			  */
760 			armpmu_start(event, PERF_EF_RELOAD);
761 			break;
762 		default:
763 			break;
764 		}
765 	}
766 }
767 
cpu_pm_pmu_notify(struct notifier_block * b,unsigned long cmd,void * v)768 static int cpu_pm_pmu_notify(struct notifier_block *b, unsigned long cmd,
769 			     void *v)
770 {
771 	struct arm_pmu *armpmu = container_of(b, struct arm_pmu, cpu_pm_nb);
772 	struct pmu_hw_events *hw_events = this_cpu_ptr(armpmu->hw_events);
773 	bool enabled = !bitmap_empty(hw_events->used_mask, ARMPMU_MAX_HWEVENTS);
774 
775 	if (!cpumask_test_cpu(smp_processor_id(), &armpmu->supported_cpus))
776 		return NOTIFY_DONE;
777 
778 	/*
779 	 * Always reset the PMU registers on power-up even if
780 	 * there are no events running.
781 	 */
782 	if (cmd == CPU_PM_EXIT && armpmu->reset)
783 		armpmu->reset(armpmu);
784 
785 	if (!enabled)
786 		return NOTIFY_OK;
787 
788 	switch (cmd) {
789 	case CPU_PM_ENTER:
790 		armpmu->stop(armpmu);
791 		cpu_pm_pmu_setup(armpmu, cmd);
792 		break;
793 	case CPU_PM_EXIT:
794 	case CPU_PM_ENTER_FAILED:
795 		cpu_pm_pmu_setup(armpmu, cmd);
796 		armpmu->start(armpmu);
797 		break;
798 	default:
799 		return NOTIFY_DONE;
800 	}
801 
802 	return NOTIFY_OK;
803 }
804 
cpu_pm_pmu_register(struct arm_pmu * cpu_pmu)805 static int cpu_pm_pmu_register(struct arm_pmu *cpu_pmu)
806 {
807 	cpu_pmu->cpu_pm_nb.notifier_call = cpu_pm_pmu_notify;
808 	return cpu_pm_register_notifier(&cpu_pmu->cpu_pm_nb);
809 }
810 
cpu_pm_pmu_unregister(struct arm_pmu * cpu_pmu)811 static void cpu_pm_pmu_unregister(struct arm_pmu *cpu_pmu)
812 {
813 	cpu_pm_unregister_notifier(&cpu_pmu->cpu_pm_nb);
814 }
815 #else
cpu_pm_pmu_register(struct arm_pmu * cpu_pmu)816 static inline int cpu_pm_pmu_register(struct arm_pmu *cpu_pmu) { return 0; }
cpu_pm_pmu_unregister(struct arm_pmu * cpu_pmu)817 static inline void cpu_pm_pmu_unregister(struct arm_pmu *cpu_pmu) { }
818 #endif
819 
cpu_pmu_init(struct arm_pmu * cpu_pmu)820 static int cpu_pmu_init(struct arm_pmu *cpu_pmu)
821 {
822 	int err;
823 
824 	err = cpuhp_state_add_instance(CPUHP_AP_PERF_ARM_STARTING,
825 				       &cpu_pmu->node);
826 	if (err)
827 		goto out;
828 
829 	err = cpu_pm_pmu_register(cpu_pmu);
830 	if (err)
831 		goto out_unregister;
832 
833 	return 0;
834 
835 out_unregister:
836 	cpuhp_state_remove_instance_nocalls(CPUHP_AP_PERF_ARM_STARTING,
837 					    &cpu_pmu->node);
838 out:
839 	return err;
840 }
841 
cpu_pmu_destroy(struct arm_pmu * cpu_pmu)842 static void cpu_pmu_destroy(struct arm_pmu *cpu_pmu)
843 {
844 	cpu_pm_pmu_unregister(cpu_pmu);
845 	cpuhp_state_remove_instance_nocalls(CPUHP_AP_PERF_ARM_STARTING,
846 					    &cpu_pmu->node);
847 }
848 
armpmu_alloc(void)849 struct arm_pmu *armpmu_alloc(void)
850 {
851 	struct arm_pmu *pmu;
852 	int cpu;
853 
854 	pmu = kzalloc(sizeof(*pmu), GFP_KERNEL);
855 	if (!pmu)
856 		goto out;
857 
858 	pmu->hw_events = alloc_percpu_gfp(struct pmu_hw_events, GFP_KERNEL);
859 	if (!pmu->hw_events) {
860 		pr_info("failed to allocate per-cpu PMU data.\n");
861 		goto out_free_pmu;
862 	}
863 
864 	pmu->pmu = (struct pmu) {
865 		.pmu_enable	= armpmu_enable,
866 		.pmu_disable	= armpmu_disable,
867 		.event_init	= armpmu_event_init,
868 		.add		= armpmu_add,
869 		.del		= armpmu_del,
870 		.start		= armpmu_start,
871 		.stop		= armpmu_stop,
872 		.read		= armpmu_read,
873 		.filter		= armpmu_filter,
874 		.attr_groups	= pmu->attr_groups,
875 		/*
876 		 * This is a CPU PMU potentially in a heterogeneous
877 		 * configuration (e.g. big.LITTLE) so
878 		 * PERF_PMU_CAP_EXTENDED_HW_TYPE is required to open
879 		 * PERF_TYPE_HARDWARE and PERF_TYPE_HW_CACHE events on a
880 		 * specific PMU.
881 		 */
882 		.capabilities	= PERF_PMU_CAP_EXTENDED_REGS |
883 				  PERF_PMU_CAP_EXTENDED_HW_TYPE,
884 	};
885 
886 	pmu->attr_groups[ARMPMU_ATTR_GROUP_COMMON] =
887 		&armpmu_common_attr_group;
888 
889 	for_each_possible_cpu(cpu) {
890 		struct pmu_hw_events *events;
891 
892 		events = per_cpu_ptr(pmu->hw_events, cpu);
893 		events->percpu_pmu = pmu;
894 	}
895 
896 	return pmu;
897 
898 out_free_pmu:
899 	kfree(pmu);
900 out:
901 	return NULL;
902 }
903 
armpmu_free(struct arm_pmu * pmu)904 void armpmu_free(struct arm_pmu *pmu)
905 {
906 	free_percpu(pmu->hw_events);
907 	kfree(pmu);
908 }
909 
armpmu_register(struct arm_pmu * pmu)910 int armpmu_register(struct arm_pmu *pmu)
911 {
912 	int ret;
913 
914 	ret = cpu_pmu_init(pmu);
915 	if (ret)
916 		return ret;
917 
918 	if (!pmu->set_event_filter)
919 		pmu->pmu.capabilities |= PERF_PMU_CAP_NO_EXCLUDE;
920 
921 	ret = perf_pmu_register(&pmu->pmu, pmu->name, -1);
922 	if (ret)
923 		goto out_destroy;
924 
925 	pr_info("enabled with %s PMU driver, %d (%*pb) counters available%s\n",
926 		pmu->name, bitmap_weight(pmu->cntr_mask, ARMPMU_MAX_HWEVENTS),
927 		ARMPMU_MAX_HWEVENTS, &pmu->cntr_mask,
928 		has_nmi ? ", using NMIs" : "");
929 
930 	kvm_host_pmu_init(pmu);
931 
932 	return 0;
933 
934 out_destroy:
935 	cpu_pmu_destroy(pmu);
936 	return ret;
937 }
938 
arm_pmu_hp_init(void)939 static int arm_pmu_hp_init(void)
940 {
941 	int ret;
942 
943 	ret = cpuhp_setup_state_multi(CPUHP_AP_PERF_ARM_STARTING,
944 				      "perf/arm/pmu:starting",
945 				      arm_perf_starting_cpu,
946 				      arm_perf_teardown_cpu);
947 	if (ret)
948 		pr_err("CPU hotplug notifier for ARM PMU could not be registered: %d\n",
949 		       ret);
950 	return ret;
951 }
952 subsys_initcall(arm_pmu_hp_init);
953