1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Core driver for the pin control subsystem
4 *
5 * Copyright (C) 2011-2012 ST-Ericsson SA
6 * Written on behalf of Linaro for ST-Ericsson
7 * Based on bits of regulator core, gpio core and clk core
8 *
9 * Author: Linus Walleij <[email protected]>
10 *
11 * Copyright (C) 2012 NVIDIA CORPORATION. All rights reserved.
12 */
13 #define pr_fmt(fmt) "pinctrl core: " fmt
14
15 #include <linux/array_size.h>
16 #include <linux/cleanup.h>
17 #include <linux/debugfs.h>
18 #include <linux/device.h>
19 #include <linux/err.h>
20 #include <linux/export.h>
21 #include <linux/init.h>
22 #include <linux/kref.h>
23 #include <linux/list.h>
24 #include <linux/seq_file.h>
25 #include <linux/slab.h>
26
27 #include <linux/gpio.h>
28 #include <linux/gpio/driver.h>
29
30 #include <linux/pinctrl/consumer.h>
31 #include <linux/pinctrl/devinfo.h>
32 #include <linux/pinctrl/machine.h>
33 #include <linux/pinctrl/pinctrl.h>
34
35 #include "core.h"
36 #include "devicetree.h"
37 #include "pinconf.h"
38 #include "pinmux.h"
39
40 static bool pinctrl_dummy_state;
41
42 /* Mutex taken to protect pinctrl_list */
43 static DEFINE_MUTEX(pinctrl_list_mutex);
44
45 /* Mutex taken to protect pinctrl_maps */
46 DEFINE_MUTEX(pinctrl_maps_mutex);
47
48 /* Mutex taken to protect pinctrldev_list */
49 static DEFINE_MUTEX(pinctrldev_list_mutex);
50
51 /* Global list of pin control devices (struct pinctrl_dev) */
52 static LIST_HEAD(pinctrldev_list);
53
54 /* List of pin controller handles (struct pinctrl) */
55 static LIST_HEAD(pinctrl_list);
56
57 /* List of pinctrl maps (struct pinctrl_maps) */
58 LIST_HEAD(pinctrl_maps);
59
60
61 /**
62 * pinctrl_provide_dummies() - indicate if pinctrl provides dummy state support
63 *
64 * Usually this function is called by platforms without pinctrl driver support
65 * but run with some shared drivers using pinctrl APIs.
66 * After calling this function, the pinctrl core will return successfully
67 * with creating a dummy state for the driver to keep going smoothly.
68 */
pinctrl_provide_dummies(void)69 void pinctrl_provide_dummies(void)
70 {
71 pinctrl_dummy_state = true;
72 }
73
pinctrl_dev_get_name(struct pinctrl_dev * pctldev)74 const char *pinctrl_dev_get_name(struct pinctrl_dev *pctldev)
75 {
76 /* We're not allowed to register devices without name */
77 return pctldev->desc->name;
78 }
79 EXPORT_SYMBOL_GPL(pinctrl_dev_get_name);
80
pinctrl_dev_get_devname(struct pinctrl_dev * pctldev)81 const char *pinctrl_dev_get_devname(struct pinctrl_dev *pctldev)
82 {
83 return dev_name(pctldev->dev);
84 }
85 EXPORT_SYMBOL_GPL(pinctrl_dev_get_devname);
86
pinctrl_dev_get_drvdata(struct pinctrl_dev * pctldev)87 void *pinctrl_dev_get_drvdata(struct pinctrl_dev *pctldev)
88 {
89 return pctldev->driver_data;
90 }
91 EXPORT_SYMBOL_GPL(pinctrl_dev_get_drvdata);
92
93 /**
94 * get_pinctrl_dev_from_devname() - look up pin controller device
95 * @devname: the name of a device instance, as returned by dev_name()
96 *
97 * Looks up a pin control device matching a certain device name or pure device
98 * pointer, the pure device pointer will take precedence.
99 */
get_pinctrl_dev_from_devname(const char * devname)100 struct pinctrl_dev *get_pinctrl_dev_from_devname(const char *devname)
101 {
102 struct pinctrl_dev *pctldev;
103
104 if (!devname)
105 return NULL;
106
107 mutex_lock(&pinctrldev_list_mutex);
108
109 list_for_each_entry(pctldev, &pinctrldev_list, node) {
110 if (!strcmp(dev_name(pctldev->dev), devname)) {
111 /* Matched on device name */
112 mutex_unlock(&pinctrldev_list_mutex);
113 return pctldev;
114 }
115 }
116
117 mutex_unlock(&pinctrldev_list_mutex);
118
119 return NULL;
120 }
121
get_pinctrl_dev_from_of_node(struct device_node * np)122 struct pinctrl_dev *get_pinctrl_dev_from_of_node(struct device_node *np)
123 {
124 struct pinctrl_dev *pctldev;
125
126 mutex_lock(&pinctrldev_list_mutex);
127
128 list_for_each_entry(pctldev, &pinctrldev_list, node)
129 if (device_match_of_node(pctldev->dev, np)) {
130 mutex_unlock(&pinctrldev_list_mutex);
131 return pctldev;
132 }
133
134 mutex_unlock(&pinctrldev_list_mutex);
135
136 return NULL;
137 }
138
139 /**
140 * pin_get_from_name() - look up a pin number from a name
141 * @pctldev: the pin control device to lookup the pin on
142 * @name: the name of the pin to look up
143 */
pin_get_from_name(struct pinctrl_dev * pctldev,const char * name)144 int pin_get_from_name(struct pinctrl_dev *pctldev, const char *name)
145 {
146 unsigned int i, pin;
147
148 /* The pin number can be retrived from the pin controller descriptor */
149 for (i = 0; i < pctldev->desc->npins; i++) {
150 struct pin_desc *desc;
151
152 pin = pctldev->desc->pins[i].number;
153 desc = pin_desc_get(pctldev, pin);
154 /* Pin space may be sparse */
155 if (desc && !strcmp(name, desc->name))
156 return pin;
157 }
158
159 return -EINVAL;
160 }
161
162 /**
163 * pin_get_name() - look up a pin name from a pin id
164 * @pctldev: the pin control device to lookup the pin on
165 * @pin: pin number/id to look up
166 */
pin_get_name(struct pinctrl_dev * pctldev,const unsigned int pin)167 const char *pin_get_name(struct pinctrl_dev *pctldev, const unsigned int pin)
168 {
169 const struct pin_desc *desc;
170
171 desc = pin_desc_get(pctldev, pin);
172 if (!desc) {
173 dev_err(pctldev->dev, "failed to get pin(%d) name\n",
174 pin);
175 return NULL;
176 }
177
178 return desc->name;
179 }
180 EXPORT_SYMBOL_GPL(pin_get_name);
181
182 /* Deletes a range of pin descriptors */
pinctrl_free_pindescs(struct pinctrl_dev * pctldev,const struct pinctrl_pin_desc * pins,unsigned int num_pins)183 static void pinctrl_free_pindescs(struct pinctrl_dev *pctldev,
184 const struct pinctrl_pin_desc *pins,
185 unsigned int num_pins)
186 {
187 int i;
188
189 for (i = 0; i < num_pins; i++) {
190 struct pin_desc *pindesc;
191
192 pindesc = radix_tree_lookup(&pctldev->pin_desc_tree,
193 pins[i].number);
194 if (pindesc) {
195 radix_tree_delete(&pctldev->pin_desc_tree,
196 pins[i].number);
197 if (pindesc->dynamic_name)
198 kfree(pindesc->name);
199 }
200 kfree(pindesc);
201 }
202 }
203
pinctrl_register_one_pin(struct pinctrl_dev * pctldev,const struct pinctrl_pin_desc * pin)204 static int pinctrl_register_one_pin(struct pinctrl_dev *pctldev,
205 const struct pinctrl_pin_desc *pin)
206 {
207 struct pin_desc *pindesc;
208 int error;
209
210 pindesc = pin_desc_get(pctldev, pin->number);
211 if (pindesc) {
212 dev_err(pctldev->dev, "pin %d already registered\n",
213 pin->number);
214 return -EINVAL;
215 }
216
217 pindesc = kzalloc(sizeof(*pindesc), GFP_KERNEL);
218 if (!pindesc)
219 return -ENOMEM;
220
221 /* Set owner */
222 pindesc->pctldev = pctldev;
223 #ifdef CONFIG_PINMUX
224 mutex_init(&pindesc->mux_lock);
225 #endif
226
227 /* Copy basic pin info */
228 if (pin->name) {
229 pindesc->name = pin->name;
230 } else {
231 pindesc->name = kasprintf(GFP_KERNEL, "PIN%u", pin->number);
232 if (!pindesc->name) {
233 error = -ENOMEM;
234 goto failed;
235 }
236 pindesc->dynamic_name = true;
237 }
238
239 pindesc->drv_data = pin->drv_data;
240
241 error = radix_tree_insert(&pctldev->pin_desc_tree, pin->number, pindesc);
242 if (error)
243 goto failed;
244
245 pr_debug("registered pin %d (%s) on %s\n",
246 pin->number, pindesc->name, pctldev->desc->name);
247 return 0;
248
249 failed:
250 kfree(pindesc);
251 return error;
252 }
253
pinctrl_register_pins(struct pinctrl_dev * pctldev,const struct pinctrl_pin_desc * pins,unsigned int num_descs)254 static int pinctrl_register_pins(struct pinctrl_dev *pctldev,
255 const struct pinctrl_pin_desc *pins,
256 unsigned int num_descs)
257 {
258 unsigned int i;
259 int ret = 0;
260
261 for (i = 0; i < num_descs; i++) {
262 ret = pinctrl_register_one_pin(pctldev, &pins[i]);
263 if (ret)
264 return ret;
265 }
266
267 return 0;
268 }
269
270 /**
271 * gpio_to_pin() - GPIO range GPIO number to pin number translation
272 * @range: GPIO range used for the translation
273 * @gc: GPIO chip structure from the GPIO subsystem
274 * @offset: hardware offset of the GPIO relative to the controller
275 *
276 * Finds the pin number for a given GPIO using the specified GPIO range
277 * as a base for translation. The distinction between linear GPIO ranges
278 * and pin list based GPIO ranges is managed correctly by this function.
279 *
280 * This function assumes the gpio is part of the specified GPIO range, use
281 * only after making sure this is the case (e.g. by calling it on the
282 * result of successful pinctrl_get_device_gpio_range calls)!
283 */
gpio_to_pin(struct pinctrl_gpio_range * range,struct gpio_chip * gc,unsigned int offset)284 static inline int gpio_to_pin(struct pinctrl_gpio_range *range,
285 struct gpio_chip *gc, unsigned int offset)
286 {
287 unsigned int pin = gc->base + offset - range->base;
288 if (range->pins)
289 return range->pins[pin];
290 else
291 return range->pin_base + pin;
292 }
293
294 /**
295 * pinctrl_match_gpio_range() - check if a certain GPIO pin is in range
296 * @pctldev: pin controller device to check
297 * @gc: GPIO chip structure from the GPIO subsystem
298 * @offset: hardware offset of the GPIO relative to the controller
299 *
300 * Tries to match a GPIO pin number to the ranges handled by a certain pin
301 * controller, return the range or NULL
302 */
303 static struct pinctrl_gpio_range *
pinctrl_match_gpio_range(struct pinctrl_dev * pctldev,struct gpio_chip * gc,unsigned int offset)304 pinctrl_match_gpio_range(struct pinctrl_dev *pctldev, struct gpio_chip *gc,
305 unsigned int offset)
306 {
307 struct pinctrl_gpio_range *range;
308
309 mutex_lock(&pctldev->mutex);
310 /* Loop over the ranges */
311 list_for_each_entry(range, &pctldev->gpio_ranges, node) {
312 /* Check if we're in the valid range */
313 if ((gc->base + offset) >= range->base &&
314 (gc->base + offset) < range->base + range->npins) {
315 mutex_unlock(&pctldev->mutex);
316 return range;
317 }
318 }
319 mutex_unlock(&pctldev->mutex);
320 return NULL;
321 }
322
323 /**
324 * pinctrl_ready_for_gpio_range() - check if other GPIO pins of
325 * the same GPIO chip are in range
326 * @gc: GPIO chip structure from the GPIO subsystem
327 * @offset: hardware offset of the GPIO relative to the controller
328 *
329 * This function is complement of pinctrl_match_gpio_range(). If the return
330 * value of pinctrl_match_gpio_range() is NULL, this function could be used
331 * to check whether pinctrl device is ready or not. Maybe some GPIO pins
332 * of the same GPIO chip don't have back-end pinctrl interface.
333 * If the return value is true, it means that pinctrl device is ready & the
334 * certain GPIO pin doesn't have back-end pinctrl device. If the return value
335 * is false, it means that pinctrl device may not be ready.
336 */
337 #ifdef CONFIG_GPIOLIB
pinctrl_ready_for_gpio_range(struct gpio_chip * gc,unsigned int offset)338 static bool pinctrl_ready_for_gpio_range(struct gpio_chip *gc,
339 unsigned int offset)
340 {
341 struct pinctrl_dev *pctldev;
342 struct pinctrl_gpio_range *range = NULL;
343
344 mutex_lock(&pinctrldev_list_mutex);
345
346 /* Loop over the pin controllers */
347 list_for_each_entry(pctldev, &pinctrldev_list, node) {
348 /* Loop over the ranges */
349 mutex_lock(&pctldev->mutex);
350 list_for_each_entry(range, &pctldev->gpio_ranges, node) {
351 /* Check if any gpio range overlapped with gpio chip */
352 if (range->base + range->npins - 1 < gc->base ||
353 range->base > gc->base + gc->ngpio - 1)
354 continue;
355 mutex_unlock(&pctldev->mutex);
356 mutex_unlock(&pinctrldev_list_mutex);
357 return true;
358 }
359 mutex_unlock(&pctldev->mutex);
360 }
361
362 mutex_unlock(&pinctrldev_list_mutex);
363
364 return false;
365 }
366 #else
367 static inline bool
pinctrl_ready_for_gpio_range(struct gpio_chip * gc,unsigned int offset)368 pinctrl_ready_for_gpio_range(struct gpio_chip *gc, unsigned int offset)
369 {
370 return true;
371 }
372 #endif
373
374 /**
375 * pinctrl_get_device_gpio_range() - find device for GPIO range
376 * @gc: GPIO chip structure from the GPIO subsystem
377 * @offset: hardware offset of the GPIO relative to the controller
378 * @outdev: the pin control device if found
379 * @outrange: the GPIO range if found
380 *
381 * Find the pin controller handling a certain GPIO pin from the pinspace of
382 * the GPIO subsystem, return the device and the matching GPIO range. Returns
383 * -EPROBE_DEFER if the GPIO range could not be found in any device since it
384 * may still have not been registered.
385 */
pinctrl_get_device_gpio_range(struct gpio_chip * gc,unsigned int offset,struct pinctrl_dev ** outdev,struct pinctrl_gpio_range ** outrange)386 static int pinctrl_get_device_gpio_range(struct gpio_chip *gc,
387 unsigned int offset,
388 struct pinctrl_dev **outdev,
389 struct pinctrl_gpio_range **outrange)
390 {
391 struct pinctrl_dev *pctldev;
392
393 mutex_lock(&pinctrldev_list_mutex);
394
395 /* Loop over the pin controllers */
396 list_for_each_entry(pctldev, &pinctrldev_list, node) {
397 struct pinctrl_gpio_range *range;
398
399 range = pinctrl_match_gpio_range(pctldev, gc, offset);
400 if (range) {
401 *outdev = pctldev;
402 *outrange = range;
403 mutex_unlock(&pinctrldev_list_mutex);
404 return 0;
405 }
406 }
407
408 mutex_unlock(&pinctrldev_list_mutex);
409
410 return -EPROBE_DEFER;
411 }
412
413 /**
414 * pinctrl_add_gpio_range() - register a GPIO range for a controller
415 * @pctldev: pin controller device to add the range to
416 * @range: the GPIO range to add
417 *
418 * DEPRECATED: Don't use this function in new code. See section 2 of
419 * Documentation/devicetree/bindings/gpio/gpio.txt on how to bind pinctrl and
420 * gpio drivers.
421 *
422 * This adds a range of GPIOs to be handled by a certain pin controller. Call
423 * this to register handled ranges after registering your pin controller.
424 */
pinctrl_add_gpio_range(struct pinctrl_dev * pctldev,struct pinctrl_gpio_range * range)425 void pinctrl_add_gpio_range(struct pinctrl_dev *pctldev,
426 struct pinctrl_gpio_range *range)
427 {
428 mutex_lock(&pctldev->mutex);
429 list_add_tail(&range->node, &pctldev->gpio_ranges);
430 mutex_unlock(&pctldev->mutex);
431 }
432 EXPORT_SYMBOL_GPL(pinctrl_add_gpio_range);
433
pinctrl_add_gpio_ranges(struct pinctrl_dev * pctldev,struct pinctrl_gpio_range * ranges,unsigned int nranges)434 void pinctrl_add_gpio_ranges(struct pinctrl_dev *pctldev,
435 struct pinctrl_gpio_range *ranges,
436 unsigned int nranges)
437 {
438 int i;
439
440 for (i = 0; i < nranges; i++)
441 pinctrl_add_gpio_range(pctldev, &ranges[i]);
442 }
443 EXPORT_SYMBOL_GPL(pinctrl_add_gpio_ranges);
444
pinctrl_find_and_add_gpio_range(const char * devname,struct pinctrl_gpio_range * range)445 struct pinctrl_dev *pinctrl_find_and_add_gpio_range(const char *devname,
446 struct pinctrl_gpio_range *range)
447 {
448 struct pinctrl_dev *pctldev;
449
450 pctldev = get_pinctrl_dev_from_devname(devname);
451
452 /*
453 * If we can't find this device, let's assume that is because
454 * it has not probed yet, so the driver trying to register this
455 * range need to defer probing.
456 */
457 if (!pctldev)
458 return ERR_PTR(-EPROBE_DEFER);
459
460 pinctrl_add_gpio_range(pctldev, range);
461
462 return pctldev;
463 }
464 EXPORT_SYMBOL_GPL(pinctrl_find_and_add_gpio_range);
465
pinctrl_get_group_pins(struct pinctrl_dev * pctldev,const char * pin_group,const unsigned int ** pins,unsigned int * num_pins)466 int pinctrl_get_group_pins(struct pinctrl_dev *pctldev, const char *pin_group,
467 const unsigned int **pins, unsigned int *num_pins)
468 {
469 const struct pinctrl_ops *pctlops = pctldev->desc->pctlops;
470 int gs;
471
472 if (!pctlops->get_group_pins)
473 return -EINVAL;
474
475 gs = pinctrl_get_group_selector(pctldev, pin_group);
476 if (gs < 0)
477 return gs;
478
479 return pctlops->get_group_pins(pctldev, gs, pins, num_pins);
480 }
481 EXPORT_SYMBOL_GPL(pinctrl_get_group_pins);
482
483 struct pinctrl_gpio_range *
pinctrl_find_gpio_range_from_pin_nolock(struct pinctrl_dev * pctldev,unsigned int pin)484 pinctrl_find_gpio_range_from_pin_nolock(struct pinctrl_dev *pctldev,
485 unsigned int pin)
486 {
487 struct pinctrl_gpio_range *range;
488
489 /* Loop over the ranges */
490 list_for_each_entry(range, &pctldev->gpio_ranges, node) {
491 /* Check if we're in the valid range */
492 if (range->pins) {
493 int a;
494 for (a = 0; a < range->npins; a++) {
495 if (range->pins[a] == pin)
496 return range;
497 }
498 } else if (pin >= range->pin_base &&
499 pin < range->pin_base + range->npins)
500 return range;
501 }
502
503 return NULL;
504 }
505 EXPORT_SYMBOL_GPL(pinctrl_find_gpio_range_from_pin_nolock);
506
507 /**
508 * pinctrl_find_gpio_range_from_pin() - locate the GPIO range for a pin
509 * @pctldev: the pin controller device to look in
510 * @pin: a controller-local number to find the range for
511 */
512 struct pinctrl_gpio_range *
pinctrl_find_gpio_range_from_pin(struct pinctrl_dev * pctldev,unsigned int pin)513 pinctrl_find_gpio_range_from_pin(struct pinctrl_dev *pctldev,
514 unsigned int pin)
515 {
516 struct pinctrl_gpio_range *range;
517
518 mutex_lock(&pctldev->mutex);
519 range = pinctrl_find_gpio_range_from_pin_nolock(pctldev, pin);
520 mutex_unlock(&pctldev->mutex);
521
522 return range;
523 }
524 EXPORT_SYMBOL_GPL(pinctrl_find_gpio_range_from_pin);
525
526 /**
527 * pinctrl_remove_gpio_range() - remove a range of GPIOs from a pin controller
528 * @pctldev: pin controller device to remove the range from
529 * @range: the GPIO range to remove
530 */
pinctrl_remove_gpio_range(struct pinctrl_dev * pctldev,struct pinctrl_gpio_range * range)531 void pinctrl_remove_gpio_range(struct pinctrl_dev *pctldev,
532 struct pinctrl_gpio_range *range)
533 {
534 mutex_lock(&pctldev->mutex);
535 list_del(&range->node);
536 mutex_unlock(&pctldev->mutex);
537 }
538 EXPORT_SYMBOL_GPL(pinctrl_remove_gpio_range);
539
540 #ifdef CONFIG_GENERIC_PINCTRL_GROUPS
541
542 /**
543 * pinctrl_generic_get_group_count() - returns the number of pin groups
544 * @pctldev: pin controller device
545 */
pinctrl_generic_get_group_count(struct pinctrl_dev * pctldev)546 int pinctrl_generic_get_group_count(struct pinctrl_dev *pctldev)
547 {
548 return pctldev->num_groups;
549 }
550 EXPORT_SYMBOL_GPL(pinctrl_generic_get_group_count);
551
552 /**
553 * pinctrl_generic_get_group_name() - returns the name of a pin group
554 * @pctldev: pin controller device
555 * @selector: group number
556 */
pinctrl_generic_get_group_name(struct pinctrl_dev * pctldev,unsigned int selector)557 const char *pinctrl_generic_get_group_name(struct pinctrl_dev *pctldev,
558 unsigned int selector)
559 {
560 struct group_desc *group;
561
562 group = radix_tree_lookup(&pctldev->pin_group_tree,
563 selector);
564 if (!group)
565 return NULL;
566
567 return group->grp.name;
568 }
569 EXPORT_SYMBOL_GPL(pinctrl_generic_get_group_name);
570
571 /**
572 * pinctrl_generic_get_group_pins() - gets the pin group pins
573 * @pctldev: pin controller device
574 * @selector: group number
575 * @pins: pins in the group
576 * @num_pins: number of pins in the group
577 */
pinctrl_generic_get_group_pins(struct pinctrl_dev * pctldev,unsigned int selector,const unsigned int ** pins,unsigned int * num_pins)578 int pinctrl_generic_get_group_pins(struct pinctrl_dev *pctldev,
579 unsigned int selector,
580 const unsigned int **pins,
581 unsigned int *num_pins)
582 {
583 struct group_desc *group;
584
585 group = radix_tree_lookup(&pctldev->pin_group_tree,
586 selector);
587 if (!group) {
588 dev_err(pctldev->dev, "%s could not find pingroup%i\n",
589 __func__, selector);
590 return -EINVAL;
591 }
592
593 *pins = group->grp.pins;
594 *num_pins = group->grp.npins;
595
596 return 0;
597 }
598 EXPORT_SYMBOL_GPL(pinctrl_generic_get_group_pins);
599
600 /**
601 * pinctrl_generic_get_group() - returns a pin group based on the number
602 * @pctldev: pin controller device
603 * @selector: group number
604 */
pinctrl_generic_get_group(struct pinctrl_dev * pctldev,unsigned int selector)605 struct group_desc *pinctrl_generic_get_group(struct pinctrl_dev *pctldev,
606 unsigned int selector)
607 {
608 struct group_desc *group;
609
610 group = radix_tree_lookup(&pctldev->pin_group_tree,
611 selector);
612 if (!group)
613 return NULL;
614
615 return group;
616 }
617 EXPORT_SYMBOL_GPL(pinctrl_generic_get_group);
618
pinctrl_generic_group_name_to_selector(struct pinctrl_dev * pctldev,const char * function)619 static int pinctrl_generic_group_name_to_selector(struct pinctrl_dev *pctldev,
620 const char *function)
621 {
622 const struct pinctrl_ops *ops = pctldev->desc->pctlops;
623 int ngroups = ops->get_groups_count(pctldev);
624 int selector = 0;
625
626 /* See if this pctldev has this group */
627 while (selector < ngroups) {
628 const char *gname = ops->get_group_name(pctldev, selector);
629
630 if (gname && !strcmp(function, gname))
631 return selector;
632
633 selector++;
634 }
635
636 return -EINVAL;
637 }
638
639 /**
640 * pinctrl_generic_add_group() - adds a new pin group
641 * @pctldev: pin controller device
642 * @name: name of the pin group
643 * @pins: pins in the pin group
644 * @num_pins: number of pins in the pin group
645 * @data: pin controller driver specific data
646 *
647 * Note that the caller must take care of locking.
648 */
pinctrl_generic_add_group(struct pinctrl_dev * pctldev,const char * name,const unsigned int * pins,int num_pins,void * data)649 int pinctrl_generic_add_group(struct pinctrl_dev *pctldev, const char *name,
650 const unsigned int *pins, int num_pins, void *data)
651 {
652 struct group_desc *group;
653 int selector, error;
654
655 if (!name)
656 return -EINVAL;
657
658 selector = pinctrl_generic_group_name_to_selector(pctldev, name);
659 if (selector >= 0)
660 return selector;
661
662 selector = pctldev->num_groups;
663
664 group = devm_kzalloc(pctldev->dev, sizeof(*group), GFP_KERNEL);
665 if (!group)
666 return -ENOMEM;
667
668 *group = PINCTRL_GROUP_DESC(name, pins, num_pins, data);
669
670 error = radix_tree_insert(&pctldev->pin_group_tree, selector, group);
671 if (error)
672 return error;
673
674 pctldev->num_groups++;
675
676 return selector;
677 }
678 EXPORT_SYMBOL_GPL(pinctrl_generic_add_group);
679
680 /**
681 * pinctrl_generic_remove_group() - removes a numbered pin group
682 * @pctldev: pin controller device
683 * @selector: group number
684 *
685 * Note that the caller must take care of locking.
686 */
pinctrl_generic_remove_group(struct pinctrl_dev * pctldev,unsigned int selector)687 int pinctrl_generic_remove_group(struct pinctrl_dev *pctldev,
688 unsigned int selector)
689 {
690 struct group_desc *group;
691
692 group = radix_tree_lookup(&pctldev->pin_group_tree,
693 selector);
694 if (!group)
695 return -ENOENT;
696
697 radix_tree_delete(&pctldev->pin_group_tree, selector);
698 devm_kfree(pctldev->dev, group);
699
700 pctldev->num_groups--;
701
702 return 0;
703 }
704 EXPORT_SYMBOL_GPL(pinctrl_generic_remove_group);
705
706 /**
707 * pinctrl_generic_free_groups() - removes all pin groups
708 * @pctldev: pin controller device
709 *
710 * Note that the caller must take care of locking. The pinctrl groups
711 * are allocated with devm_kzalloc() so no need to free them here.
712 */
pinctrl_generic_free_groups(struct pinctrl_dev * pctldev)713 static void pinctrl_generic_free_groups(struct pinctrl_dev *pctldev)
714 {
715 struct radix_tree_iter iter;
716 void __rcu **slot;
717
718 radix_tree_for_each_slot(slot, &pctldev->pin_group_tree, &iter, 0)
719 radix_tree_delete(&pctldev->pin_group_tree, iter.index);
720
721 pctldev->num_groups = 0;
722 }
723
724 #else
pinctrl_generic_free_groups(struct pinctrl_dev * pctldev)725 static inline void pinctrl_generic_free_groups(struct pinctrl_dev *pctldev)
726 {
727 }
728 #endif /* CONFIG_GENERIC_PINCTRL_GROUPS */
729
730 /**
731 * pinctrl_get_group_selector() - returns the group selector for a group
732 * @pctldev: the pin controller handling the group
733 * @pin_group: the pin group to look up
734 */
pinctrl_get_group_selector(struct pinctrl_dev * pctldev,const char * pin_group)735 int pinctrl_get_group_selector(struct pinctrl_dev *pctldev,
736 const char *pin_group)
737 {
738 const struct pinctrl_ops *pctlops = pctldev->desc->pctlops;
739 unsigned int ngroups = pctlops->get_groups_count(pctldev);
740 unsigned int group_selector = 0;
741
742 while (group_selector < ngroups) {
743 const char *gname = pctlops->get_group_name(pctldev,
744 group_selector);
745 if (gname && !strcmp(gname, pin_group)) {
746 dev_dbg(pctldev->dev,
747 "found group selector %u for %s\n",
748 group_selector,
749 pin_group);
750 return group_selector;
751 }
752
753 group_selector++;
754 }
755
756 dev_err(pctldev->dev, "does not have pin group %s\n",
757 pin_group);
758
759 return -EINVAL;
760 }
761
pinctrl_gpio_can_use_line(struct gpio_chip * gc,unsigned int offset)762 bool pinctrl_gpio_can_use_line(struct gpio_chip *gc, unsigned int offset)
763 {
764 struct pinctrl_dev *pctldev;
765 struct pinctrl_gpio_range *range;
766 bool result;
767 int pin;
768
769 /*
770 * Try to obtain GPIO range, if it fails
771 * we're probably dealing with GPIO driver
772 * without a backing pin controller - bail out.
773 */
774 if (pinctrl_get_device_gpio_range(gc, offset, &pctldev, &range))
775 return true;
776
777 mutex_lock(&pctldev->mutex);
778
779 /* Convert to the pin controllers number space */
780 pin = gpio_to_pin(range, gc, offset);
781
782 result = pinmux_can_be_used_for_gpio(pctldev, pin);
783
784 mutex_unlock(&pctldev->mutex);
785
786 return result;
787 }
788 EXPORT_SYMBOL_GPL(pinctrl_gpio_can_use_line);
789
790 /**
791 * pinctrl_gpio_request() - request a single pin to be used as GPIO
792 * @gc: GPIO chip structure from the GPIO subsystem
793 * @offset: hardware offset of the GPIO relative to the controller
794 *
795 * This function should *ONLY* be used from gpiolib-based GPIO drivers,
796 * as part of their gpio_request() semantics, platforms and individual drivers
797 * shall *NOT* request GPIO pins to be muxed in.
798 */
pinctrl_gpio_request(struct gpio_chip * gc,unsigned int offset)799 int pinctrl_gpio_request(struct gpio_chip *gc, unsigned int offset)
800 {
801 struct pinctrl_gpio_range *range;
802 struct pinctrl_dev *pctldev;
803 int ret, pin;
804
805 ret = pinctrl_get_device_gpio_range(gc, offset, &pctldev, &range);
806 if (ret) {
807 if (pinctrl_ready_for_gpio_range(gc, offset))
808 ret = 0;
809 return ret;
810 }
811
812 mutex_lock(&pctldev->mutex);
813
814 /* Convert to the pin controllers number space */
815 pin = gpio_to_pin(range, gc, offset);
816
817 ret = pinmux_request_gpio(pctldev, range, pin, gc->base + offset);
818
819 mutex_unlock(&pctldev->mutex);
820
821 return ret;
822 }
823 EXPORT_SYMBOL_GPL(pinctrl_gpio_request);
824
825 /**
826 * pinctrl_gpio_free() - free control on a single pin, currently used as GPIO
827 * @gc: GPIO chip structure from the GPIO subsystem
828 * @offset: hardware offset of the GPIO relative to the controller
829 *
830 * This function should *ONLY* be used from gpiolib-based GPIO drivers,
831 * as part of their gpio_request() semantics, platforms and individual drivers
832 * shall *NOT* request GPIO pins to be muxed in.
833 */
pinctrl_gpio_free(struct gpio_chip * gc,unsigned int offset)834 void pinctrl_gpio_free(struct gpio_chip *gc, unsigned int offset)
835 {
836 struct pinctrl_gpio_range *range;
837 struct pinctrl_dev *pctldev;
838 int ret, pin;
839
840 ret = pinctrl_get_device_gpio_range(gc, offset, &pctldev, &range);
841 if (ret)
842 return;
843
844 mutex_lock(&pctldev->mutex);
845
846 /* Convert to the pin controllers number space */
847 pin = gpio_to_pin(range, gc, offset);
848
849 pinmux_free_gpio(pctldev, pin, range);
850
851 mutex_unlock(&pctldev->mutex);
852 }
853 EXPORT_SYMBOL_GPL(pinctrl_gpio_free);
854
pinctrl_gpio_direction(struct gpio_chip * gc,unsigned int offset,bool input)855 static int pinctrl_gpio_direction(struct gpio_chip *gc, unsigned int offset,
856 bool input)
857 {
858 struct pinctrl_dev *pctldev;
859 struct pinctrl_gpio_range *range;
860 int ret;
861 int pin;
862
863 ret = pinctrl_get_device_gpio_range(gc, offset, &pctldev, &range);
864 if (ret) {
865 return ret;
866 }
867
868 mutex_lock(&pctldev->mutex);
869
870 /* Convert to the pin controllers number space */
871 pin = gpio_to_pin(range, gc, offset);
872 ret = pinmux_gpio_direction(pctldev, range, pin, input);
873
874 mutex_unlock(&pctldev->mutex);
875
876 return ret;
877 }
878
879 /**
880 * pinctrl_gpio_direction_input() - request a GPIO pin to go into input mode
881 * @gc: GPIO chip structure from the GPIO subsystem
882 * @offset: hardware offset of the GPIO relative to the controller
883 *
884 * This function should *ONLY* be used from gpiolib-based GPIO drivers,
885 * as part of their gpio_direction_input() semantics, platforms and individual
886 * drivers shall *NOT* touch pin control GPIO calls.
887 */
pinctrl_gpio_direction_input(struct gpio_chip * gc,unsigned int offset)888 int pinctrl_gpio_direction_input(struct gpio_chip *gc, unsigned int offset)
889 {
890 return pinctrl_gpio_direction(gc, offset, true);
891 }
892 EXPORT_SYMBOL_GPL(pinctrl_gpio_direction_input);
893
894 /**
895 * pinctrl_gpio_direction_output() - request a GPIO pin to go into output mode
896 * @gc: GPIO chip structure from the GPIO subsystem
897 * @offset: hardware offset of the GPIO relative to the controller
898 *
899 * This function should *ONLY* be used from gpiolib-based GPIO drivers,
900 * as part of their gpio_direction_output() semantics, platforms and individual
901 * drivers shall *NOT* touch pin control GPIO calls.
902 */
pinctrl_gpio_direction_output(struct gpio_chip * gc,unsigned int offset)903 int pinctrl_gpio_direction_output(struct gpio_chip *gc, unsigned int offset)
904 {
905 return pinctrl_gpio_direction(gc, offset, false);
906 }
907 EXPORT_SYMBOL_GPL(pinctrl_gpio_direction_output);
908
909 /**
910 * pinctrl_gpio_set_config() - Apply config to given GPIO pin
911 * @gc: GPIO chip structure from the GPIO subsystem
912 * @offset: hardware offset of the GPIO relative to the controller
913 * @config: the configuration to apply to the GPIO
914 *
915 * This function should *ONLY* be used from gpiolib-based GPIO drivers, if
916 * they need to call the underlying pin controller to change GPIO config
917 * (for example set debounce time).
918 */
pinctrl_gpio_set_config(struct gpio_chip * gc,unsigned int offset,unsigned long config)919 int pinctrl_gpio_set_config(struct gpio_chip *gc, unsigned int offset,
920 unsigned long config)
921 {
922 unsigned long configs[] = { config };
923 struct pinctrl_gpio_range *range;
924 struct pinctrl_dev *pctldev;
925 int ret, pin;
926
927 ret = pinctrl_get_device_gpio_range(gc, offset, &pctldev, &range);
928 if (ret)
929 return ret;
930
931 mutex_lock(&pctldev->mutex);
932 pin = gpio_to_pin(range, gc, offset);
933 ret = pinconf_set_config(pctldev, pin, configs, ARRAY_SIZE(configs));
934 mutex_unlock(&pctldev->mutex);
935
936 return ret;
937 }
938 EXPORT_SYMBOL_GPL(pinctrl_gpio_set_config);
939
find_state(struct pinctrl * p,const char * name)940 static struct pinctrl_state *find_state(struct pinctrl *p,
941 const char *name)
942 {
943 struct pinctrl_state *state;
944
945 list_for_each_entry(state, &p->states, node)
946 if (!strcmp(state->name, name))
947 return state;
948
949 return NULL;
950 }
951
create_state(struct pinctrl * p,const char * name)952 static struct pinctrl_state *create_state(struct pinctrl *p,
953 const char *name)
954 {
955 struct pinctrl_state *state;
956
957 state = kzalloc(sizeof(*state), GFP_KERNEL);
958 if (!state)
959 return ERR_PTR(-ENOMEM);
960
961 state->name = name;
962 INIT_LIST_HEAD(&state->settings);
963
964 list_add_tail(&state->node, &p->states);
965
966 return state;
967 }
968
add_setting(struct pinctrl * p,struct pinctrl_dev * pctldev,const struct pinctrl_map * map)969 static int add_setting(struct pinctrl *p, struct pinctrl_dev *pctldev,
970 const struct pinctrl_map *map)
971 {
972 struct pinctrl_state *state;
973 struct pinctrl_setting *setting;
974 int ret;
975
976 state = find_state(p, map->name);
977 if (!state)
978 state = create_state(p, map->name);
979 if (IS_ERR(state))
980 return PTR_ERR(state);
981
982 if (map->type == PIN_MAP_TYPE_DUMMY_STATE)
983 return 0;
984
985 setting = kzalloc(sizeof(*setting), GFP_KERNEL);
986 if (!setting)
987 return -ENOMEM;
988
989 setting->type = map->type;
990
991 if (pctldev)
992 setting->pctldev = pctldev;
993 else
994 setting->pctldev =
995 get_pinctrl_dev_from_devname(map->ctrl_dev_name);
996 if (!setting->pctldev) {
997 kfree(setting);
998 /* Do not defer probing of hogs (circular loop) */
999 if (!strcmp(map->ctrl_dev_name, map->dev_name))
1000 return -ENODEV;
1001 /*
1002 * OK let us guess that the driver is not there yet, and
1003 * let's defer obtaining this pinctrl handle to later...
1004 */
1005 dev_info(p->dev, "unknown pinctrl device %s in map entry, deferring probe",
1006 map->ctrl_dev_name);
1007 return -EPROBE_DEFER;
1008 }
1009
1010 setting->dev_name = map->dev_name;
1011
1012 switch (map->type) {
1013 case PIN_MAP_TYPE_MUX_GROUP:
1014 ret = pinmux_map_to_setting(map, setting);
1015 break;
1016 case PIN_MAP_TYPE_CONFIGS_PIN:
1017 case PIN_MAP_TYPE_CONFIGS_GROUP:
1018 ret = pinconf_map_to_setting(map, setting);
1019 break;
1020 default:
1021 ret = -EINVAL;
1022 break;
1023 }
1024 if (ret < 0) {
1025 kfree(setting);
1026 return ret;
1027 }
1028
1029 list_add_tail(&setting->node, &state->settings);
1030
1031 return 0;
1032 }
1033
find_pinctrl(struct device * dev)1034 static struct pinctrl *find_pinctrl(struct device *dev)
1035 {
1036 struct pinctrl *p;
1037
1038 mutex_lock(&pinctrl_list_mutex);
1039 list_for_each_entry(p, &pinctrl_list, node)
1040 if (p->dev == dev) {
1041 mutex_unlock(&pinctrl_list_mutex);
1042 return p;
1043 }
1044
1045 mutex_unlock(&pinctrl_list_mutex);
1046 return NULL;
1047 }
1048
1049 static void pinctrl_free(struct pinctrl *p, bool inlist);
1050
create_pinctrl(struct device * dev,struct pinctrl_dev * pctldev)1051 static struct pinctrl *create_pinctrl(struct device *dev,
1052 struct pinctrl_dev *pctldev)
1053 {
1054 struct pinctrl *p;
1055 const char *devname;
1056 struct pinctrl_maps *maps_node;
1057 const struct pinctrl_map *map;
1058 int ret;
1059
1060 /*
1061 * create the state cookie holder struct pinctrl for each
1062 * mapping, this is what consumers will get when requesting
1063 * a pin control handle with pinctrl_get()
1064 */
1065 p = kzalloc(sizeof(*p), GFP_KERNEL);
1066 if (!p)
1067 return ERR_PTR(-ENOMEM);
1068 p->dev = dev;
1069 INIT_LIST_HEAD(&p->states);
1070 INIT_LIST_HEAD(&p->dt_maps);
1071
1072 ret = pinctrl_dt_to_map(p, pctldev);
1073 if (ret < 0) {
1074 kfree(p);
1075 return ERR_PTR(ret);
1076 }
1077
1078 devname = dev_name(dev);
1079
1080 mutex_lock(&pinctrl_maps_mutex);
1081 /* Iterate over the pin control maps to locate the right ones */
1082 for_each_pin_map(maps_node, map) {
1083 /* Map must be for this device */
1084 if (strcmp(map->dev_name, devname))
1085 continue;
1086 /*
1087 * If pctldev is not null, we are claiming hog for it,
1088 * that means, setting that is served by pctldev by itself.
1089 *
1090 * Thus we must skip map that is for this device but is served
1091 * by other device.
1092 */
1093 if (pctldev &&
1094 strcmp(dev_name(pctldev->dev), map->ctrl_dev_name))
1095 continue;
1096
1097 ret = add_setting(p, pctldev, map);
1098 /*
1099 * At this point the adding of a setting may:
1100 *
1101 * - Defer, if the pinctrl device is not yet available
1102 * - Fail, if the pinctrl device is not yet available,
1103 * AND the setting is a hog. We cannot defer that, since
1104 * the hog will kick in immediately after the device
1105 * is registered.
1106 *
1107 * If the error returned was not -EPROBE_DEFER then we
1108 * accumulate the errors to see if we end up with
1109 * an -EPROBE_DEFER later, as that is the worst case.
1110 */
1111 if (ret == -EPROBE_DEFER) {
1112 mutex_unlock(&pinctrl_maps_mutex);
1113 pinctrl_free(p, false);
1114 return ERR_PTR(ret);
1115 }
1116 }
1117 mutex_unlock(&pinctrl_maps_mutex);
1118
1119 if (ret < 0) {
1120 /* If some other error than deferral occurred, return here */
1121 pinctrl_free(p, false);
1122 return ERR_PTR(ret);
1123 }
1124
1125 kref_init(&p->users);
1126
1127 /* Add the pinctrl handle to the global list */
1128 mutex_lock(&pinctrl_list_mutex);
1129 list_add_tail(&p->node, &pinctrl_list);
1130 mutex_unlock(&pinctrl_list_mutex);
1131
1132 return p;
1133 }
1134
1135 /**
1136 * pinctrl_get() - retrieves the pinctrl handle for a device
1137 * @dev: the device to obtain the handle for
1138 */
pinctrl_get(struct device * dev)1139 struct pinctrl *pinctrl_get(struct device *dev)
1140 {
1141 struct pinctrl *p;
1142
1143 if (WARN_ON(!dev))
1144 return ERR_PTR(-EINVAL);
1145
1146 /*
1147 * See if somebody else (such as the device core) has already
1148 * obtained a handle to the pinctrl for this device. In that case,
1149 * return another pointer to it.
1150 */
1151 p = find_pinctrl(dev);
1152 if (p) {
1153 dev_dbg(dev, "obtain a copy of previously claimed pinctrl\n");
1154 kref_get(&p->users);
1155 return p;
1156 }
1157
1158 return create_pinctrl(dev, NULL);
1159 }
1160 EXPORT_SYMBOL_GPL(pinctrl_get);
1161
pinctrl_free_setting(bool disable_setting,struct pinctrl_setting * setting)1162 static void pinctrl_free_setting(bool disable_setting,
1163 struct pinctrl_setting *setting)
1164 {
1165 switch (setting->type) {
1166 case PIN_MAP_TYPE_MUX_GROUP:
1167 if (disable_setting)
1168 pinmux_disable_setting(setting);
1169 pinmux_free_setting(setting);
1170 break;
1171 case PIN_MAP_TYPE_CONFIGS_PIN:
1172 case PIN_MAP_TYPE_CONFIGS_GROUP:
1173 pinconf_free_setting(setting);
1174 break;
1175 default:
1176 break;
1177 }
1178 }
1179
pinctrl_free(struct pinctrl * p,bool inlist)1180 static void pinctrl_free(struct pinctrl *p, bool inlist)
1181 {
1182 struct pinctrl_state *state, *n1;
1183 struct pinctrl_setting *setting, *n2;
1184
1185 mutex_lock(&pinctrl_list_mutex);
1186 list_for_each_entry_safe(state, n1, &p->states, node) {
1187 list_for_each_entry_safe(setting, n2, &state->settings, node) {
1188 pinctrl_free_setting(state == p->state, setting);
1189 list_del(&setting->node);
1190 kfree(setting);
1191 }
1192 list_del(&state->node);
1193 kfree(state);
1194 }
1195
1196 pinctrl_dt_free_maps(p);
1197
1198 if (inlist)
1199 list_del(&p->node);
1200 kfree(p);
1201 mutex_unlock(&pinctrl_list_mutex);
1202 }
1203
1204 /**
1205 * pinctrl_release() - release the pinctrl handle
1206 * @kref: the kref in the pinctrl being released
1207 */
pinctrl_release(struct kref * kref)1208 static void pinctrl_release(struct kref *kref)
1209 {
1210 struct pinctrl *p = container_of(kref, struct pinctrl, users);
1211
1212 pinctrl_free(p, true);
1213 }
1214
1215 /**
1216 * pinctrl_put() - decrease use count on a previously claimed pinctrl handle
1217 * @p: the pinctrl handle to release
1218 */
pinctrl_put(struct pinctrl * p)1219 void pinctrl_put(struct pinctrl *p)
1220 {
1221 kref_put(&p->users, pinctrl_release);
1222 }
1223 EXPORT_SYMBOL_GPL(pinctrl_put);
1224
1225 /**
1226 * pinctrl_lookup_state() - retrieves a state handle from a pinctrl handle
1227 * @p: the pinctrl handle to retrieve the state from
1228 * @name: the state name to retrieve
1229 */
pinctrl_lookup_state(struct pinctrl * p,const char * name)1230 struct pinctrl_state *pinctrl_lookup_state(struct pinctrl *p,
1231 const char *name)
1232 {
1233 struct pinctrl_state *state;
1234
1235 state = find_state(p, name);
1236 if (!state) {
1237 if (pinctrl_dummy_state) {
1238 /* create dummy state */
1239 dev_dbg(p->dev, "using pinctrl dummy state (%s)\n",
1240 name);
1241 state = create_state(p, name);
1242 } else
1243 state = ERR_PTR(-ENODEV);
1244 }
1245
1246 return state;
1247 }
1248 EXPORT_SYMBOL_GPL(pinctrl_lookup_state);
1249
pinctrl_link_add(struct pinctrl_dev * pctldev,struct device * consumer)1250 static void pinctrl_link_add(struct pinctrl_dev *pctldev,
1251 struct device *consumer)
1252 {
1253 if (pctldev->desc->link_consumers)
1254 device_link_add(consumer, pctldev->dev,
1255 DL_FLAG_PM_RUNTIME |
1256 DL_FLAG_AUTOREMOVE_CONSUMER);
1257 }
1258
pinctrl_cond_disable_mux_setting(struct pinctrl_state * state,struct pinctrl_setting * target_setting)1259 static void pinctrl_cond_disable_mux_setting(struct pinctrl_state *state,
1260 struct pinctrl_setting *target_setting)
1261 {
1262 struct pinctrl_setting *setting;
1263
1264 list_for_each_entry(setting, &state->settings, node) {
1265 if (target_setting && (&setting->node == &target_setting->node))
1266 break;
1267
1268 if (setting->type == PIN_MAP_TYPE_MUX_GROUP)
1269 pinmux_disable_setting(setting);
1270 }
1271 }
1272
1273 /**
1274 * pinctrl_commit_state() - select/activate/program a pinctrl state to HW
1275 * @p: the pinctrl handle for the device that requests configuration
1276 * @state: the state handle to select/activate/program
1277 */
pinctrl_commit_state(struct pinctrl * p,struct pinctrl_state * state)1278 static int pinctrl_commit_state(struct pinctrl *p, struct pinctrl_state *state)
1279 {
1280 struct pinctrl_setting *setting;
1281 struct pinctrl_state *old_state = READ_ONCE(p->state);
1282 int ret;
1283
1284 if (old_state) {
1285 /*
1286 * For each pinmux setting in the old state, forget SW's record
1287 * of mux owner for that pingroup. Any pingroups which are
1288 * still owned by the new state will be re-acquired by the call
1289 * to pinmux_enable_setting() in the loop below.
1290 */
1291 pinctrl_cond_disable_mux_setting(old_state, NULL);
1292 }
1293
1294 p->state = NULL;
1295
1296 /* Apply all the settings for the new state - pinmux first */
1297 list_for_each_entry(setting, &state->settings, node) {
1298 switch (setting->type) {
1299 case PIN_MAP_TYPE_MUX_GROUP:
1300 ret = pinmux_enable_setting(setting);
1301 break;
1302 case PIN_MAP_TYPE_CONFIGS_PIN:
1303 case PIN_MAP_TYPE_CONFIGS_GROUP:
1304 ret = 0;
1305 break;
1306 default:
1307 ret = -EINVAL;
1308 break;
1309 }
1310
1311 if (ret < 0)
1312 goto unapply_new_state;
1313
1314 /* Do not link hogs (circular dependency) */
1315 if (p != setting->pctldev->p)
1316 pinctrl_link_add(setting->pctldev, p->dev);
1317 }
1318
1319 /* Apply all the settings for the new state - pinconf after */
1320 list_for_each_entry(setting, &state->settings, node) {
1321 switch (setting->type) {
1322 case PIN_MAP_TYPE_MUX_GROUP:
1323 ret = 0;
1324 break;
1325 case PIN_MAP_TYPE_CONFIGS_PIN:
1326 case PIN_MAP_TYPE_CONFIGS_GROUP:
1327 ret = pinconf_apply_setting(setting);
1328 break;
1329 default:
1330 ret = -EINVAL;
1331 break;
1332 }
1333
1334 if (ret < 0) {
1335 goto unapply_mux_setting;
1336 }
1337
1338 /* Do not link hogs (circular dependency) */
1339 if (p != setting->pctldev->p)
1340 pinctrl_link_add(setting->pctldev, p->dev);
1341 }
1342
1343 p->state = state;
1344
1345 return 0;
1346
1347 unapply_mux_setting:
1348 pinctrl_cond_disable_mux_setting(state, NULL);
1349 goto restore_old_state;
1350
1351 unapply_new_state:
1352 dev_err(p->dev, "Error applying setting, reverse things back\n");
1353
1354 /*
1355 * All we can do here is pinmux_disable_setting.
1356 * That means that some pins are muxed differently now
1357 * than they were before applying the setting (We can't
1358 * "unmux a pin"!), but it's not a big deal since the pins
1359 * are free to be muxed by another apply_setting.
1360 */
1361 pinctrl_cond_disable_mux_setting(state, setting);
1362
1363 restore_old_state:
1364 /* There's no infinite recursive loop here because p->state is NULL */
1365 if (old_state)
1366 pinctrl_select_state(p, old_state);
1367
1368 return ret;
1369 }
1370
1371 /**
1372 * pinctrl_select_state() - select/activate/program a pinctrl state to HW
1373 * @p: the pinctrl handle for the device that requests configuration
1374 * @state: the state handle to select/activate/program
1375 */
pinctrl_select_state(struct pinctrl * p,struct pinctrl_state * state)1376 int pinctrl_select_state(struct pinctrl *p, struct pinctrl_state *state)
1377 {
1378 if (p->state == state)
1379 return 0;
1380
1381 return pinctrl_commit_state(p, state);
1382 }
1383 EXPORT_SYMBOL_GPL(pinctrl_select_state);
1384
devm_pinctrl_release(struct device * dev,void * res)1385 static void devm_pinctrl_release(struct device *dev, void *res)
1386 {
1387 pinctrl_put(*(struct pinctrl **)res);
1388 }
1389
1390 /**
1391 * devm_pinctrl_get() - Resource managed pinctrl_get()
1392 * @dev: the device to obtain the handle for
1393 *
1394 * If there is a need to explicitly destroy the returned struct pinctrl,
1395 * devm_pinctrl_put() should be used, rather than plain pinctrl_put().
1396 */
devm_pinctrl_get(struct device * dev)1397 struct pinctrl *devm_pinctrl_get(struct device *dev)
1398 {
1399 struct pinctrl **ptr, *p;
1400
1401 ptr = devres_alloc(devm_pinctrl_release, sizeof(*ptr), GFP_KERNEL);
1402 if (!ptr)
1403 return ERR_PTR(-ENOMEM);
1404
1405 p = pinctrl_get(dev);
1406 if (!IS_ERR(p)) {
1407 *ptr = p;
1408 devres_add(dev, ptr);
1409 } else {
1410 devres_free(ptr);
1411 }
1412
1413 return p;
1414 }
1415 EXPORT_SYMBOL_GPL(devm_pinctrl_get);
1416
devm_pinctrl_match(struct device * dev,void * res,void * data)1417 static int devm_pinctrl_match(struct device *dev, void *res, void *data)
1418 {
1419 struct pinctrl **p = res;
1420
1421 return *p == data;
1422 }
1423
1424 /**
1425 * devm_pinctrl_put() - Resource managed pinctrl_put()
1426 * @p: the pinctrl handle to release
1427 *
1428 * Deallocate a struct pinctrl obtained via devm_pinctrl_get(). Normally
1429 * this function will not need to be called and the resource management
1430 * code will ensure that the resource is freed.
1431 */
devm_pinctrl_put(struct pinctrl * p)1432 void devm_pinctrl_put(struct pinctrl *p)
1433 {
1434 WARN_ON(devres_release(p->dev, devm_pinctrl_release,
1435 devm_pinctrl_match, p));
1436 }
1437 EXPORT_SYMBOL_GPL(devm_pinctrl_put);
1438
1439 /**
1440 * pinctrl_register_mappings() - register a set of pin controller mappings
1441 * @maps: the pincontrol mappings table to register. Note the pinctrl-core
1442 * keeps a reference to the passed in maps, so they should _not_ be
1443 * marked with __initdata.
1444 * @num_maps: the number of maps in the mapping table
1445 */
pinctrl_register_mappings(const struct pinctrl_map * maps,unsigned int num_maps)1446 int pinctrl_register_mappings(const struct pinctrl_map *maps,
1447 unsigned int num_maps)
1448 {
1449 int i, ret;
1450 struct pinctrl_maps *maps_node;
1451
1452 pr_debug("add %u pinctrl maps\n", num_maps);
1453
1454 /* First sanity check the new mapping */
1455 for (i = 0; i < num_maps; i++) {
1456 if (!maps[i].dev_name) {
1457 pr_err("failed to register map %s (%d): no device given\n",
1458 maps[i].name, i);
1459 return -EINVAL;
1460 }
1461
1462 if (!maps[i].name) {
1463 pr_err("failed to register map %d: no map name given\n",
1464 i);
1465 return -EINVAL;
1466 }
1467
1468 if (maps[i].type != PIN_MAP_TYPE_DUMMY_STATE &&
1469 !maps[i].ctrl_dev_name) {
1470 pr_err("failed to register map %s (%d): no pin control device given\n",
1471 maps[i].name, i);
1472 return -EINVAL;
1473 }
1474
1475 switch (maps[i].type) {
1476 case PIN_MAP_TYPE_DUMMY_STATE:
1477 break;
1478 case PIN_MAP_TYPE_MUX_GROUP:
1479 ret = pinmux_validate_map(&maps[i], i);
1480 if (ret < 0)
1481 return ret;
1482 break;
1483 case PIN_MAP_TYPE_CONFIGS_PIN:
1484 case PIN_MAP_TYPE_CONFIGS_GROUP:
1485 ret = pinconf_validate_map(&maps[i], i);
1486 if (ret < 0)
1487 return ret;
1488 break;
1489 default:
1490 pr_err("failed to register map %s (%d): invalid type given\n",
1491 maps[i].name, i);
1492 return -EINVAL;
1493 }
1494 }
1495
1496 maps_node = kzalloc(sizeof(*maps_node), GFP_KERNEL);
1497 if (!maps_node)
1498 return -ENOMEM;
1499
1500 maps_node->maps = maps;
1501 maps_node->num_maps = num_maps;
1502
1503 mutex_lock(&pinctrl_maps_mutex);
1504 list_add_tail(&maps_node->node, &pinctrl_maps);
1505 mutex_unlock(&pinctrl_maps_mutex);
1506
1507 return 0;
1508 }
1509 EXPORT_SYMBOL_GPL(pinctrl_register_mappings);
1510
1511 /**
1512 * pinctrl_unregister_mappings() - unregister a set of pin controller mappings
1513 * @map: the pincontrol mappings table passed to pinctrl_register_mappings()
1514 * when registering the mappings.
1515 */
pinctrl_unregister_mappings(const struct pinctrl_map * map)1516 void pinctrl_unregister_mappings(const struct pinctrl_map *map)
1517 {
1518 struct pinctrl_maps *maps_node;
1519
1520 mutex_lock(&pinctrl_maps_mutex);
1521 list_for_each_entry(maps_node, &pinctrl_maps, node) {
1522 if (maps_node->maps == map) {
1523 list_del(&maps_node->node);
1524 kfree(maps_node);
1525 mutex_unlock(&pinctrl_maps_mutex);
1526 return;
1527 }
1528 }
1529 mutex_unlock(&pinctrl_maps_mutex);
1530 }
1531 EXPORT_SYMBOL_GPL(pinctrl_unregister_mappings);
1532
1533 /**
1534 * pinctrl_force_sleep() - turn a given controller device into sleep state
1535 * @pctldev: pin controller device
1536 */
pinctrl_force_sleep(struct pinctrl_dev * pctldev)1537 int pinctrl_force_sleep(struct pinctrl_dev *pctldev)
1538 {
1539 if (!IS_ERR(pctldev->p) && !IS_ERR(pctldev->hog_sleep))
1540 return pinctrl_commit_state(pctldev->p, pctldev->hog_sleep);
1541 return 0;
1542 }
1543 EXPORT_SYMBOL_GPL(pinctrl_force_sleep);
1544
1545 /**
1546 * pinctrl_force_default() - turn a given controller device into default state
1547 * @pctldev: pin controller device
1548 */
pinctrl_force_default(struct pinctrl_dev * pctldev)1549 int pinctrl_force_default(struct pinctrl_dev *pctldev)
1550 {
1551 if (!IS_ERR(pctldev->p) && !IS_ERR(pctldev->hog_default))
1552 return pinctrl_commit_state(pctldev->p, pctldev->hog_default);
1553 return 0;
1554 }
1555 EXPORT_SYMBOL_GPL(pinctrl_force_default);
1556
1557 /**
1558 * pinctrl_init_done() - tell pinctrl probe is done
1559 *
1560 * We'll use this time to switch the pins from "init" to "default" unless the
1561 * driver selected some other state.
1562 *
1563 * @dev: device to that's done probing
1564 */
pinctrl_init_done(struct device * dev)1565 int pinctrl_init_done(struct device *dev)
1566 {
1567 struct dev_pin_info *pins = dev->pins;
1568 int ret;
1569
1570 if (!pins)
1571 return 0;
1572
1573 if (IS_ERR(pins->init_state))
1574 return 0; /* No such state */
1575
1576 if (pins->p->state != pins->init_state)
1577 return 0; /* Not at init anyway */
1578
1579 if (IS_ERR(pins->default_state))
1580 return 0; /* No default state */
1581
1582 ret = pinctrl_select_state(pins->p, pins->default_state);
1583 if (ret)
1584 dev_err(dev, "failed to activate default pinctrl state\n");
1585
1586 return ret;
1587 }
1588
pinctrl_select_bound_state(struct device * dev,struct pinctrl_state * state)1589 static int pinctrl_select_bound_state(struct device *dev,
1590 struct pinctrl_state *state)
1591 {
1592 struct dev_pin_info *pins = dev->pins;
1593 int ret;
1594
1595 if (IS_ERR(state))
1596 return 0; /* No such state */
1597 ret = pinctrl_select_state(pins->p, state);
1598 if (ret)
1599 dev_err(dev, "failed to activate pinctrl state %s\n",
1600 state->name);
1601 return ret;
1602 }
1603
1604 /**
1605 * pinctrl_select_default_state() - select default pinctrl state
1606 * @dev: device to select default state for
1607 */
pinctrl_select_default_state(struct device * dev)1608 int pinctrl_select_default_state(struct device *dev)
1609 {
1610 if (!dev->pins)
1611 return 0;
1612
1613 return pinctrl_select_bound_state(dev, dev->pins->default_state);
1614 }
1615 EXPORT_SYMBOL_GPL(pinctrl_select_default_state);
1616
1617 #ifdef CONFIG_PM
1618
1619 /**
1620 * pinctrl_pm_select_default_state() - select default pinctrl state for PM
1621 * @dev: device to select default state for
1622 */
pinctrl_pm_select_default_state(struct device * dev)1623 int pinctrl_pm_select_default_state(struct device *dev)
1624 {
1625 return pinctrl_select_default_state(dev);
1626 }
1627 EXPORT_SYMBOL_GPL(pinctrl_pm_select_default_state);
1628
1629 /**
1630 * pinctrl_pm_select_sleep_state() - select sleep pinctrl state for PM
1631 * @dev: device to select sleep state for
1632 */
pinctrl_pm_select_sleep_state(struct device * dev)1633 int pinctrl_pm_select_sleep_state(struct device *dev)
1634 {
1635 if (!dev->pins)
1636 return 0;
1637
1638 return pinctrl_select_bound_state(dev, dev->pins->sleep_state);
1639 }
1640 EXPORT_SYMBOL_GPL(pinctrl_pm_select_sleep_state);
1641
1642 /**
1643 * pinctrl_pm_select_idle_state() - select idle pinctrl state for PM
1644 * @dev: device to select idle state for
1645 */
pinctrl_pm_select_idle_state(struct device * dev)1646 int pinctrl_pm_select_idle_state(struct device *dev)
1647 {
1648 if (!dev->pins)
1649 return 0;
1650
1651 return pinctrl_select_bound_state(dev, dev->pins->idle_state);
1652 }
1653 EXPORT_SYMBOL_GPL(pinctrl_pm_select_idle_state);
1654 #endif
1655
1656 #ifdef CONFIG_DEBUG_FS
1657
pinctrl_pins_show(struct seq_file * s,void * what)1658 static int pinctrl_pins_show(struct seq_file *s, void *what)
1659 {
1660 struct pinctrl_dev *pctldev = s->private;
1661 const struct pinctrl_ops *ops = pctldev->desc->pctlops;
1662 unsigned int i, pin;
1663 #ifdef CONFIG_GPIOLIB
1664 struct gpio_device *gdev = NULL;
1665 struct pinctrl_gpio_range *range;
1666 int gpio_num;
1667 #endif
1668
1669 seq_printf(s, "registered pins: %d\n", pctldev->desc->npins);
1670
1671 mutex_lock(&pctldev->mutex);
1672
1673 /* The pin number can be retrived from the pin controller descriptor */
1674 for (i = 0; i < pctldev->desc->npins; i++) {
1675 struct pin_desc *desc;
1676
1677 pin = pctldev->desc->pins[i].number;
1678 desc = pin_desc_get(pctldev, pin);
1679 /* Pin space may be sparse */
1680 if (!desc)
1681 continue;
1682
1683 seq_printf(s, "pin %d (%s) ", pin, desc->name);
1684
1685 #ifdef CONFIG_GPIOLIB
1686 gdev = NULL;
1687 gpio_num = -1;
1688 list_for_each_entry(range, &pctldev->gpio_ranges, node) {
1689 if (range->pins != NULL) {
1690 for (int i = 0; i < range->npins; ++i) {
1691 if (range->pins[i] == pin) {
1692 gpio_num = range->base + i;
1693 break;
1694 }
1695 }
1696 } else if ((pin >= range->pin_base) &&
1697 (pin < (range->pin_base + range->npins))) {
1698 gpio_num =
1699 range->base + (pin - range->pin_base);
1700 }
1701 if (gpio_num != -1)
1702 break;
1703 }
1704 if (gpio_num >= 0)
1705 /*
1706 * FIXME: gpio_num comes from the global GPIO numberspace.
1707 * we need to get rid of the range->base eventually and
1708 * get the descriptor directly from the gpio_chip.
1709 */
1710 gdev = gpiod_to_gpio_device(gpio_to_desc(gpio_num));
1711 if (gdev)
1712 seq_printf(s, "%u:%s ",
1713 gpio_num - gpio_device_get_base(gdev),
1714 gpio_device_get_label(gdev));
1715 else
1716 seq_puts(s, "0:? ");
1717 #endif
1718
1719 /* Driver-specific info per pin */
1720 if (ops->pin_dbg_show)
1721 ops->pin_dbg_show(pctldev, s, pin);
1722
1723 seq_puts(s, "\n");
1724 }
1725
1726 mutex_unlock(&pctldev->mutex);
1727
1728 return 0;
1729 }
1730 DEFINE_SHOW_ATTRIBUTE(pinctrl_pins);
1731
pinctrl_groups_show(struct seq_file * s,void * what)1732 static int pinctrl_groups_show(struct seq_file *s, void *what)
1733 {
1734 struct pinctrl_dev *pctldev = s->private;
1735 const struct pinctrl_ops *ops = pctldev->desc->pctlops;
1736 unsigned int ngroups, selector = 0;
1737
1738 mutex_lock(&pctldev->mutex);
1739
1740 ngroups = ops->get_groups_count(pctldev);
1741
1742 seq_puts(s, "registered pin groups:\n");
1743 while (selector < ngroups) {
1744 const unsigned int *pins = NULL;
1745 unsigned int num_pins = 0;
1746 const char *gname = ops->get_group_name(pctldev, selector);
1747 const char *pname;
1748 int ret = 0;
1749 int i;
1750
1751 if (ops->get_group_pins)
1752 ret = ops->get_group_pins(pctldev, selector,
1753 &pins, &num_pins);
1754 if (ret)
1755 seq_printf(s, "%s [ERROR GETTING PINS]\n",
1756 gname);
1757 else {
1758 seq_printf(s, "group: %s\n", gname);
1759 for (i = 0; i < num_pins; i++) {
1760 pname = pin_get_name(pctldev, pins[i]);
1761 if (WARN_ON(!pname)) {
1762 mutex_unlock(&pctldev->mutex);
1763 return -EINVAL;
1764 }
1765 seq_printf(s, "pin %d (%s)\n", pins[i], pname);
1766 }
1767 seq_puts(s, "\n");
1768 }
1769 selector++;
1770 }
1771
1772 mutex_unlock(&pctldev->mutex);
1773
1774 return 0;
1775 }
1776 DEFINE_SHOW_ATTRIBUTE(pinctrl_groups);
1777
pinctrl_gpioranges_show(struct seq_file * s,void * what)1778 static int pinctrl_gpioranges_show(struct seq_file *s, void *what)
1779 {
1780 struct pinctrl_dev *pctldev = s->private;
1781 struct pinctrl_gpio_range *range;
1782
1783 seq_puts(s, "GPIO ranges handled:\n");
1784
1785 mutex_lock(&pctldev->mutex);
1786
1787 /* Loop over the ranges */
1788 list_for_each_entry(range, &pctldev->gpio_ranges, node) {
1789 if (range->pins) {
1790 int a;
1791 seq_printf(s, "%u: %s GPIOS [%u - %u] PINS {",
1792 range->id, range->name,
1793 range->base, (range->base + range->npins - 1));
1794 for (a = 0; a < range->npins - 1; a++)
1795 seq_printf(s, "%u, ", range->pins[a]);
1796 seq_printf(s, "%u}\n", range->pins[a]);
1797 }
1798 else
1799 seq_printf(s, "%u: %s GPIOS [%u - %u] PINS [%u - %u]\n",
1800 range->id, range->name,
1801 range->base, (range->base + range->npins - 1),
1802 range->pin_base,
1803 (range->pin_base + range->npins - 1));
1804 }
1805
1806 mutex_unlock(&pctldev->mutex);
1807
1808 return 0;
1809 }
1810 DEFINE_SHOW_ATTRIBUTE(pinctrl_gpioranges);
1811
pinctrl_devices_show(struct seq_file * s,void * what)1812 static int pinctrl_devices_show(struct seq_file *s, void *what)
1813 {
1814 struct pinctrl_dev *pctldev;
1815
1816 seq_puts(s, "name [pinmux] [pinconf]\n");
1817
1818 mutex_lock(&pinctrldev_list_mutex);
1819
1820 list_for_each_entry(pctldev, &pinctrldev_list, node) {
1821 seq_printf(s, "%s ", pctldev->desc->name);
1822 if (pctldev->desc->pmxops)
1823 seq_puts(s, "yes ");
1824 else
1825 seq_puts(s, "no ");
1826 if (pctldev->desc->confops)
1827 seq_puts(s, "yes");
1828 else
1829 seq_puts(s, "no");
1830 seq_puts(s, "\n");
1831 }
1832
1833 mutex_unlock(&pinctrldev_list_mutex);
1834
1835 return 0;
1836 }
1837 DEFINE_SHOW_ATTRIBUTE(pinctrl_devices);
1838
map_type(enum pinctrl_map_type type)1839 static inline const char *map_type(enum pinctrl_map_type type)
1840 {
1841 static const char * const names[] = {
1842 "INVALID",
1843 "DUMMY_STATE",
1844 "MUX_GROUP",
1845 "CONFIGS_PIN",
1846 "CONFIGS_GROUP",
1847 };
1848
1849 if (type >= ARRAY_SIZE(names))
1850 return "UNKNOWN";
1851
1852 return names[type];
1853 }
1854
pinctrl_maps_show(struct seq_file * s,void * what)1855 static int pinctrl_maps_show(struct seq_file *s, void *what)
1856 {
1857 struct pinctrl_maps *maps_node;
1858 const struct pinctrl_map *map;
1859
1860 seq_puts(s, "Pinctrl maps:\n");
1861
1862 mutex_lock(&pinctrl_maps_mutex);
1863 for_each_pin_map(maps_node, map) {
1864 seq_printf(s, "device %s\nstate %s\ntype %s (%d)\n",
1865 map->dev_name, map->name, map_type(map->type),
1866 map->type);
1867
1868 if (map->type != PIN_MAP_TYPE_DUMMY_STATE)
1869 seq_printf(s, "controlling device %s\n",
1870 map->ctrl_dev_name);
1871
1872 switch (map->type) {
1873 case PIN_MAP_TYPE_MUX_GROUP:
1874 pinmux_show_map(s, map);
1875 break;
1876 case PIN_MAP_TYPE_CONFIGS_PIN:
1877 case PIN_MAP_TYPE_CONFIGS_GROUP:
1878 pinconf_show_map(s, map);
1879 break;
1880 default:
1881 break;
1882 }
1883
1884 seq_putc(s, '\n');
1885 }
1886 mutex_unlock(&pinctrl_maps_mutex);
1887
1888 return 0;
1889 }
1890 DEFINE_SHOW_ATTRIBUTE(pinctrl_maps);
1891
pinctrl_show(struct seq_file * s,void * what)1892 static int pinctrl_show(struct seq_file *s, void *what)
1893 {
1894 struct pinctrl *p;
1895 struct pinctrl_state *state;
1896 struct pinctrl_setting *setting;
1897
1898 seq_puts(s, "Requested pin control handlers their pinmux maps:\n");
1899
1900 mutex_lock(&pinctrl_list_mutex);
1901
1902 list_for_each_entry(p, &pinctrl_list, node) {
1903 seq_printf(s, "device: %s current state: %s\n",
1904 dev_name(p->dev),
1905 p->state ? p->state->name : "none");
1906
1907 list_for_each_entry(state, &p->states, node) {
1908 seq_printf(s, " state: %s\n", state->name);
1909
1910 list_for_each_entry(setting, &state->settings, node) {
1911 struct pinctrl_dev *pctldev = setting->pctldev;
1912
1913 seq_printf(s, " type: %s controller %s ",
1914 map_type(setting->type),
1915 pinctrl_dev_get_name(pctldev));
1916
1917 switch (setting->type) {
1918 case PIN_MAP_TYPE_MUX_GROUP:
1919 pinmux_show_setting(s, setting);
1920 break;
1921 case PIN_MAP_TYPE_CONFIGS_PIN:
1922 case PIN_MAP_TYPE_CONFIGS_GROUP:
1923 pinconf_show_setting(s, setting);
1924 break;
1925 default:
1926 break;
1927 }
1928 }
1929 }
1930 }
1931
1932 mutex_unlock(&pinctrl_list_mutex);
1933
1934 return 0;
1935 }
1936 DEFINE_SHOW_ATTRIBUTE(pinctrl);
1937
1938 static struct dentry *debugfs_root;
1939
pinctrl_init_device_debugfs(struct pinctrl_dev * pctldev)1940 static void pinctrl_init_device_debugfs(struct pinctrl_dev *pctldev)
1941 {
1942 struct dentry *device_root;
1943 const char *debugfs_name;
1944
1945 if (pctldev->desc->name &&
1946 strcmp(dev_name(pctldev->dev), pctldev->desc->name)) {
1947 debugfs_name = devm_kasprintf(pctldev->dev, GFP_KERNEL,
1948 "%s-%s", dev_name(pctldev->dev),
1949 pctldev->desc->name);
1950 if (!debugfs_name) {
1951 pr_warn("failed to determine debugfs dir name for %s\n",
1952 dev_name(pctldev->dev));
1953 return;
1954 }
1955 } else {
1956 debugfs_name = dev_name(pctldev->dev);
1957 }
1958
1959 device_root = debugfs_create_dir(debugfs_name, debugfs_root);
1960 pctldev->device_root = device_root;
1961
1962 if (IS_ERR(device_root) || !device_root) {
1963 pr_warn("failed to create debugfs directory for %s\n",
1964 dev_name(pctldev->dev));
1965 return;
1966 }
1967 debugfs_create_file("pins", 0444,
1968 device_root, pctldev, &pinctrl_pins_fops);
1969 debugfs_create_file("pingroups", 0444,
1970 device_root, pctldev, &pinctrl_groups_fops);
1971 debugfs_create_file("gpio-ranges", 0444,
1972 device_root, pctldev, &pinctrl_gpioranges_fops);
1973 if (pctldev->desc->pmxops)
1974 pinmux_init_device_debugfs(device_root, pctldev);
1975 if (pctldev->desc->confops)
1976 pinconf_init_device_debugfs(device_root, pctldev);
1977 }
1978
pinctrl_remove_device_debugfs(struct pinctrl_dev * pctldev)1979 static void pinctrl_remove_device_debugfs(struct pinctrl_dev *pctldev)
1980 {
1981 debugfs_remove_recursive(pctldev->device_root);
1982 }
1983
pinctrl_init_debugfs(void)1984 static void pinctrl_init_debugfs(void)
1985 {
1986 debugfs_root = debugfs_create_dir("pinctrl", NULL);
1987 if (IS_ERR(debugfs_root)) {
1988 pr_warn("failed to create debugfs directory\n");
1989 debugfs_root = NULL;
1990 return;
1991 }
1992
1993 debugfs_create_file("pinctrl-devices", 0444,
1994 debugfs_root, NULL, &pinctrl_devices_fops);
1995 debugfs_create_file("pinctrl-maps", 0444,
1996 debugfs_root, NULL, &pinctrl_maps_fops);
1997 debugfs_create_file("pinctrl-handles", 0444,
1998 debugfs_root, NULL, &pinctrl_fops);
1999 }
2000
2001 #else /* CONFIG_DEBUG_FS */
2002
pinctrl_init_device_debugfs(struct pinctrl_dev * pctldev)2003 static void pinctrl_init_device_debugfs(struct pinctrl_dev *pctldev)
2004 {
2005 }
2006
pinctrl_init_debugfs(void)2007 static void pinctrl_init_debugfs(void)
2008 {
2009 }
2010
pinctrl_remove_device_debugfs(struct pinctrl_dev * pctldev)2011 static void pinctrl_remove_device_debugfs(struct pinctrl_dev *pctldev)
2012 {
2013 }
2014
2015 #endif
2016
pinctrl_check_ops(struct pinctrl_dev * pctldev)2017 static int pinctrl_check_ops(struct pinctrl_dev *pctldev)
2018 {
2019 const struct pinctrl_ops *ops = pctldev->desc->pctlops;
2020
2021 if (!ops ||
2022 !ops->get_groups_count ||
2023 !ops->get_group_name)
2024 return -EINVAL;
2025
2026 return 0;
2027 }
2028
2029 /**
2030 * pinctrl_init_controller() - init a pin controller device
2031 * @pctldesc: descriptor for this pin controller
2032 * @dev: parent device for this pin controller
2033 * @driver_data: private pin controller data for this pin controller
2034 */
2035 static struct pinctrl_dev *
pinctrl_init_controller(struct pinctrl_desc * pctldesc,struct device * dev,void * driver_data)2036 pinctrl_init_controller(struct pinctrl_desc *pctldesc, struct device *dev,
2037 void *driver_data)
2038 {
2039 struct pinctrl_dev *pctldev;
2040 int ret;
2041
2042 if (!pctldesc)
2043 return ERR_PTR(-EINVAL);
2044 if (!pctldesc->name)
2045 return ERR_PTR(-EINVAL);
2046
2047 pctldev = kzalloc(sizeof(*pctldev), GFP_KERNEL);
2048 if (!pctldev)
2049 return ERR_PTR(-ENOMEM);
2050
2051 /* Initialize pin control device struct */
2052 pctldev->owner = pctldesc->owner;
2053 pctldev->desc = pctldesc;
2054 pctldev->driver_data = driver_data;
2055 INIT_RADIX_TREE(&pctldev->pin_desc_tree, GFP_KERNEL);
2056 #ifdef CONFIG_GENERIC_PINCTRL_GROUPS
2057 INIT_RADIX_TREE(&pctldev->pin_group_tree, GFP_KERNEL);
2058 #endif
2059 #ifdef CONFIG_GENERIC_PINMUX_FUNCTIONS
2060 INIT_RADIX_TREE(&pctldev->pin_function_tree, GFP_KERNEL);
2061 #endif
2062 INIT_LIST_HEAD(&pctldev->gpio_ranges);
2063 INIT_LIST_HEAD(&pctldev->node);
2064 pctldev->dev = dev;
2065 mutex_init(&pctldev->mutex);
2066
2067 /* check core ops for sanity */
2068 ret = pinctrl_check_ops(pctldev);
2069 if (ret) {
2070 dev_err(dev, "pinctrl ops lacks necessary functions\n");
2071 goto out_err;
2072 }
2073
2074 /* If we're implementing pinmuxing, check the ops for sanity */
2075 if (pctldesc->pmxops) {
2076 ret = pinmux_check_ops(pctldev);
2077 if (ret)
2078 goto out_err;
2079 }
2080
2081 /* If we're implementing pinconfig, check the ops for sanity */
2082 if (pctldesc->confops) {
2083 ret = pinconf_check_ops(pctldev);
2084 if (ret)
2085 goto out_err;
2086 }
2087
2088 /* Register all the pins */
2089 dev_dbg(dev, "try to register %d pins ...\n", pctldesc->npins);
2090 ret = pinctrl_register_pins(pctldev, pctldesc->pins, pctldesc->npins);
2091 if (ret) {
2092 dev_err(dev, "error during pin registration\n");
2093 pinctrl_free_pindescs(pctldev, pctldesc->pins,
2094 pctldesc->npins);
2095 goto out_err;
2096 }
2097
2098 return pctldev;
2099
2100 out_err:
2101 mutex_destroy(&pctldev->mutex);
2102 kfree(pctldev);
2103 return ERR_PTR(ret);
2104 }
2105
pinctrl_uninit_controller(struct pinctrl_dev * pctldev,struct pinctrl_desc * pctldesc)2106 static void pinctrl_uninit_controller(struct pinctrl_dev *pctldev, struct pinctrl_desc *pctldesc)
2107 {
2108 pinctrl_free_pindescs(pctldev, pctldesc->pins,
2109 pctldesc->npins);
2110 mutex_destroy(&pctldev->mutex);
2111 kfree(pctldev);
2112 }
2113
pinctrl_claim_hogs(struct pinctrl_dev * pctldev)2114 static int pinctrl_claim_hogs(struct pinctrl_dev *pctldev)
2115 {
2116 pctldev->p = create_pinctrl(pctldev->dev, pctldev);
2117 if (PTR_ERR(pctldev->p) == -ENODEV) {
2118 dev_dbg(pctldev->dev, "no hogs found\n");
2119
2120 return 0;
2121 }
2122
2123 if (IS_ERR(pctldev->p)) {
2124 dev_err(pctldev->dev, "error claiming hogs: %li\n",
2125 PTR_ERR(pctldev->p));
2126
2127 return PTR_ERR(pctldev->p);
2128 }
2129
2130 pctldev->hog_default =
2131 pinctrl_lookup_state(pctldev->p, PINCTRL_STATE_DEFAULT);
2132 if (IS_ERR(pctldev->hog_default)) {
2133 dev_dbg(pctldev->dev,
2134 "failed to lookup the default state\n");
2135 } else {
2136 if (pinctrl_select_state(pctldev->p,
2137 pctldev->hog_default))
2138 dev_err(pctldev->dev,
2139 "failed to select default state\n");
2140 }
2141
2142 pctldev->hog_sleep =
2143 pinctrl_lookup_state(pctldev->p,
2144 PINCTRL_STATE_SLEEP);
2145 if (IS_ERR(pctldev->hog_sleep))
2146 dev_dbg(pctldev->dev,
2147 "failed to lookup the sleep state\n");
2148
2149 return 0;
2150 }
2151
pinctrl_enable(struct pinctrl_dev * pctldev)2152 int pinctrl_enable(struct pinctrl_dev *pctldev)
2153 {
2154 int error;
2155
2156 error = pinctrl_claim_hogs(pctldev);
2157 if (error) {
2158 dev_err(pctldev->dev, "could not claim hogs: %i\n", error);
2159 return error;
2160 }
2161
2162 mutex_lock(&pinctrldev_list_mutex);
2163 list_add_tail(&pctldev->node, &pinctrldev_list);
2164 mutex_unlock(&pinctrldev_list_mutex);
2165
2166 pinctrl_init_device_debugfs(pctldev);
2167
2168 return 0;
2169 }
2170 EXPORT_SYMBOL_GPL(pinctrl_enable);
2171
2172 /**
2173 * pinctrl_register() - register a pin controller device
2174 * @pctldesc: descriptor for this pin controller
2175 * @dev: parent device for this pin controller
2176 * @driver_data: private pin controller data for this pin controller
2177 *
2178 * Note that pinctrl_register() is known to have problems as the pin
2179 * controller driver functions are called before the driver has a
2180 * struct pinctrl_dev handle. To avoid issues later on, please use the
2181 * new pinctrl_register_and_init() below instead.
2182 */
pinctrl_register(struct pinctrl_desc * pctldesc,struct device * dev,void * driver_data)2183 struct pinctrl_dev *pinctrl_register(struct pinctrl_desc *pctldesc,
2184 struct device *dev, void *driver_data)
2185 {
2186 struct pinctrl_dev *pctldev;
2187 int error;
2188
2189 pctldev = pinctrl_init_controller(pctldesc, dev, driver_data);
2190 if (IS_ERR(pctldev))
2191 return pctldev;
2192
2193 error = pinctrl_enable(pctldev);
2194 if (error) {
2195 pinctrl_uninit_controller(pctldev, pctldesc);
2196 return ERR_PTR(error);
2197 }
2198
2199 return pctldev;
2200 }
2201 EXPORT_SYMBOL_GPL(pinctrl_register);
2202
2203 /**
2204 * pinctrl_register_and_init() - register and init pin controller device
2205 * @pctldesc: descriptor for this pin controller
2206 * @dev: parent device for this pin controller
2207 * @driver_data: private pin controller data for this pin controller
2208 * @pctldev: pin controller device
2209 *
2210 * Note that pinctrl_enable() still needs to be manually called after
2211 * this once the driver is ready.
2212 */
pinctrl_register_and_init(struct pinctrl_desc * pctldesc,struct device * dev,void * driver_data,struct pinctrl_dev ** pctldev)2213 int pinctrl_register_and_init(struct pinctrl_desc *pctldesc,
2214 struct device *dev, void *driver_data,
2215 struct pinctrl_dev **pctldev)
2216 {
2217 struct pinctrl_dev *p;
2218
2219 p = pinctrl_init_controller(pctldesc, dev, driver_data);
2220 if (IS_ERR(p))
2221 return PTR_ERR(p);
2222
2223 /*
2224 * We have pinctrl_start() call functions in the pin controller
2225 * driver with create_pinctrl() for at least dt_node_to_map(). So
2226 * let's make sure pctldev is properly initialized for the
2227 * pin controller driver before we do anything.
2228 */
2229 *pctldev = p;
2230
2231 return 0;
2232 }
2233 EXPORT_SYMBOL_GPL(pinctrl_register_and_init);
2234
2235 /**
2236 * pinctrl_unregister() - unregister pinmux
2237 * @pctldev: pin controller to unregister
2238 *
2239 * Called by pinmux drivers to unregister a pinmux.
2240 */
pinctrl_unregister(struct pinctrl_dev * pctldev)2241 void pinctrl_unregister(struct pinctrl_dev *pctldev)
2242 {
2243 struct pinctrl_gpio_range *range, *n;
2244
2245 if (!pctldev)
2246 return;
2247
2248 mutex_lock(&pctldev->mutex);
2249 pinctrl_remove_device_debugfs(pctldev);
2250 mutex_unlock(&pctldev->mutex);
2251
2252 if (!IS_ERR_OR_NULL(pctldev->p))
2253 pinctrl_put(pctldev->p);
2254
2255 mutex_lock(&pinctrldev_list_mutex);
2256 mutex_lock(&pctldev->mutex);
2257 /* TODO: check that no pinmuxes are still active? */
2258 list_del(&pctldev->node);
2259 pinmux_generic_free_functions(pctldev);
2260 pinctrl_generic_free_groups(pctldev);
2261 /* Destroy descriptor tree */
2262 pinctrl_free_pindescs(pctldev, pctldev->desc->pins,
2263 pctldev->desc->npins);
2264 /* remove gpio ranges map */
2265 list_for_each_entry_safe(range, n, &pctldev->gpio_ranges, node)
2266 list_del(&range->node);
2267
2268 mutex_unlock(&pctldev->mutex);
2269 mutex_destroy(&pctldev->mutex);
2270 kfree(pctldev);
2271 mutex_unlock(&pinctrldev_list_mutex);
2272 }
2273 EXPORT_SYMBOL_GPL(pinctrl_unregister);
2274
devm_pinctrl_dev_release(struct device * dev,void * res)2275 static void devm_pinctrl_dev_release(struct device *dev, void *res)
2276 {
2277 struct pinctrl_dev *pctldev = *(struct pinctrl_dev **)res;
2278
2279 pinctrl_unregister(pctldev);
2280 }
2281
devm_pinctrl_dev_match(struct device * dev,void * res,void * data)2282 static int devm_pinctrl_dev_match(struct device *dev, void *res, void *data)
2283 {
2284 struct pctldev **r = res;
2285
2286 if (WARN_ON(!r || !*r))
2287 return 0;
2288
2289 return *r == data;
2290 }
2291
2292 /**
2293 * devm_pinctrl_register() - Resource managed version of pinctrl_register().
2294 * @dev: parent device for this pin controller
2295 * @pctldesc: descriptor for this pin controller
2296 * @driver_data: private pin controller data for this pin controller
2297 *
2298 * Returns an error pointer if pincontrol register failed. Otherwise
2299 * it returns valid pinctrl handle.
2300 *
2301 * The pinctrl device will be automatically released when the device is unbound.
2302 */
devm_pinctrl_register(struct device * dev,struct pinctrl_desc * pctldesc,void * driver_data)2303 struct pinctrl_dev *devm_pinctrl_register(struct device *dev,
2304 struct pinctrl_desc *pctldesc,
2305 void *driver_data)
2306 {
2307 struct pinctrl_dev **ptr, *pctldev;
2308
2309 ptr = devres_alloc(devm_pinctrl_dev_release, sizeof(*ptr), GFP_KERNEL);
2310 if (!ptr)
2311 return ERR_PTR(-ENOMEM);
2312
2313 pctldev = pinctrl_register(pctldesc, dev, driver_data);
2314 if (IS_ERR(pctldev)) {
2315 devres_free(ptr);
2316 return pctldev;
2317 }
2318
2319 *ptr = pctldev;
2320 devres_add(dev, ptr);
2321
2322 return pctldev;
2323 }
2324 EXPORT_SYMBOL_GPL(devm_pinctrl_register);
2325
2326 /**
2327 * devm_pinctrl_register_and_init() - Resource managed pinctrl register and init
2328 * @dev: parent device for this pin controller
2329 * @pctldesc: descriptor for this pin controller
2330 * @driver_data: private pin controller data for this pin controller
2331 * @pctldev: pin controller device
2332 *
2333 * Returns zero on success or an error number on failure.
2334 *
2335 * The pinctrl device will be automatically released when the device is unbound.
2336 */
devm_pinctrl_register_and_init(struct device * dev,struct pinctrl_desc * pctldesc,void * driver_data,struct pinctrl_dev ** pctldev)2337 int devm_pinctrl_register_and_init(struct device *dev,
2338 struct pinctrl_desc *pctldesc,
2339 void *driver_data,
2340 struct pinctrl_dev **pctldev)
2341 {
2342 struct pinctrl_dev **ptr;
2343 int error;
2344
2345 ptr = devres_alloc(devm_pinctrl_dev_release, sizeof(*ptr), GFP_KERNEL);
2346 if (!ptr)
2347 return -ENOMEM;
2348
2349 error = pinctrl_register_and_init(pctldesc, dev, driver_data, pctldev);
2350 if (error) {
2351 devres_free(ptr);
2352 return error;
2353 }
2354
2355 *ptr = *pctldev;
2356 devres_add(dev, ptr);
2357
2358 return 0;
2359 }
2360 EXPORT_SYMBOL_GPL(devm_pinctrl_register_and_init);
2361
2362 /**
2363 * devm_pinctrl_unregister() - Resource managed version of pinctrl_unregister().
2364 * @dev: device for which resource was allocated
2365 * @pctldev: the pinctrl device to unregister.
2366 */
devm_pinctrl_unregister(struct device * dev,struct pinctrl_dev * pctldev)2367 void devm_pinctrl_unregister(struct device *dev, struct pinctrl_dev *pctldev)
2368 {
2369 WARN_ON(devres_release(dev, devm_pinctrl_dev_release,
2370 devm_pinctrl_dev_match, pctldev));
2371 }
2372 EXPORT_SYMBOL_GPL(devm_pinctrl_unregister);
2373
pinctrl_init(void)2374 static int __init pinctrl_init(void)
2375 {
2376 pr_info("initialized pinctrl subsystem\n");
2377 pinctrl_init_debugfs();
2378 return 0;
2379 }
2380
2381 /* init early since many drivers really need to initialized pinmux early */
2382 core_initcall(pinctrl_init);
2383