1 // SPDX-License-Identifier: (GPL-2.0 OR BSD-3-Clause)
2 // Copyright(c) 2015-17 Intel Corporation.
3
4 #include <linux/acpi.h>
5 #include <linux/delay.h>
6 #include <linux/mod_devicetable.h>
7 #include <linux/pm_runtime.h>
8 #include <linux/soundwire/sdw_registers.h>
9 #include <linux/soundwire/sdw.h>
10 #include <linux/soundwire/sdw_type.h>
11 #include "bus.h"
12 #include "irq.h"
13 #include "sysfs_local.h"
14
15 static DEFINE_IDA(sdw_bus_ida);
16
sdw_get_id(struct sdw_bus * bus)17 static int sdw_get_id(struct sdw_bus *bus)
18 {
19 int rc = ida_alloc(&sdw_bus_ida, GFP_KERNEL);
20
21 if (rc < 0)
22 return rc;
23
24 bus->id = rc;
25
26 if (bus->controller_id == -1)
27 bus->controller_id = rc;
28
29 return 0;
30 }
31
32 /**
33 * sdw_bus_master_add() - add a bus Master instance
34 * @bus: bus instance
35 * @parent: parent device
36 * @fwnode: firmware node handle
37 *
38 * Initializes the bus instance, read properties and create child
39 * devices.
40 */
sdw_bus_master_add(struct sdw_bus * bus,struct device * parent,struct fwnode_handle * fwnode)41 int sdw_bus_master_add(struct sdw_bus *bus, struct device *parent,
42 struct fwnode_handle *fwnode)
43 {
44 struct sdw_master_prop *prop = NULL;
45 int ret;
46
47 if (!parent) {
48 pr_err("SoundWire parent device is not set\n");
49 return -ENODEV;
50 }
51
52 ret = sdw_get_id(bus);
53 if (ret < 0) {
54 dev_err(parent, "Failed to get bus id\n");
55 return ret;
56 }
57
58 ret = sdw_master_device_add(bus, parent, fwnode);
59 if (ret < 0) {
60 dev_err(parent, "Failed to add master device at link %d\n",
61 bus->link_id);
62 return ret;
63 }
64
65 if (!bus->ops) {
66 dev_err(bus->dev, "SoundWire Bus ops are not set\n");
67 return -EINVAL;
68 }
69
70 if (!bus->compute_params) {
71 dev_err(bus->dev,
72 "Bandwidth allocation not configured, compute_params no set\n");
73 return -EINVAL;
74 }
75
76 /*
77 * Give each bus_lock and msg_lock a unique key so that lockdep won't
78 * trigger a deadlock warning when the locks of several buses are
79 * grabbed during configuration of a multi-bus stream.
80 */
81 lockdep_register_key(&bus->msg_lock_key);
82 __mutex_init(&bus->msg_lock, "msg_lock", &bus->msg_lock_key);
83
84 lockdep_register_key(&bus->bus_lock_key);
85 __mutex_init(&bus->bus_lock, "bus_lock", &bus->bus_lock_key);
86
87 INIT_LIST_HEAD(&bus->slaves);
88 INIT_LIST_HEAD(&bus->m_rt_list);
89
90 /*
91 * Initialize multi_link flag
92 */
93 bus->multi_link = false;
94 if (bus->ops->read_prop) {
95 ret = bus->ops->read_prop(bus);
96 if (ret < 0) {
97 dev_err(bus->dev,
98 "Bus read properties failed:%d\n", ret);
99 return ret;
100 }
101 }
102
103 sdw_bus_debugfs_init(bus);
104
105 /*
106 * Device numbers in SoundWire are 0 through 15. Enumeration device
107 * number (0), Broadcast device number (15), Group numbers (12 and
108 * 13) and Master device number (14) are not used for assignment so
109 * mask these and other higher bits.
110 */
111
112 /* Set higher order bits */
113 *bus->assigned = ~GENMASK(SDW_BROADCAST_DEV_NUM, SDW_ENUM_DEV_NUM);
114
115 /* Set enumeration device number and broadcast device number */
116 set_bit(SDW_ENUM_DEV_NUM, bus->assigned);
117 set_bit(SDW_BROADCAST_DEV_NUM, bus->assigned);
118
119 /* Set group device numbers and master device number */
120 set_bit(SDW_GROUP12_DEV_NUM, bus->assigned);
121 set_bit(SDW_GROUP13_DEV_NUM, bus->assigned);
122 set_bit(SDW_MASTER_DEV_NUM, bus->assigned);
123
124 /*
125 * SDW is an enumerable bus, but devices can be powered off. So,
126 * they won't be able to report as present.
127 *
128 * Create Slave devices based on Slaves described in
129 * the respective firmware (ACPI/DT)
130 */
131 if (IS_ENABLED(CONFIG_ACPI) && ACPI_HANDLE(bus->dev))
132 ret = sdw_acpi_find_slaves(bus);
133 else if (IS_ENABLED(CONFIG_OF) && bus->dev->of_node)
134 ret = sdw_of_find_slaves(bus);
135 else
136 ret = -ENOTSUPP; /* No ACPI/DT so error out */
137
138 if (ret < 0) {
139 dev_err(bus->dev, "Finding slaves failed:%d\n", ret);
140 return ret;
141 }
142
143 /*
144 * Initialize clock values based on Master properties. The max
145 * frequency is read from max_clk_freq property. Current assumption
146 * is that the bus will start at highest clock frequency when
147 * powered on.
148 *
149 * Default active bank will be 0 as out of reset the Slaves have
150 * to start with bank 0 (Table 40 of Spec)
151 */
152 prop = &bus->prop;
153 bus->params.max_dr_freq = prop->max_clk_freq * SDW_DOUBLE_RATE_FACTOR;
154 bus->params.curr_dr_freq = bus->params.max_dr_freq;
155 bus->params.curr_bank = SDW_BANK0;
156 bus->params.next_bank = SDW_BANK1;
157
158 ret = sdw_irq_create(bus, fwnode);
159 if (ret)
160 return ret;
161
162 return 0;
163 }
164 EXPORT_SYMBOL(sdw_bus_master_add);
165
sdw_delete_slave(struct device * dev,void * data)166 static int sdw_delete_slave(struct device *dev, void *data)
167 {
168 struct sdw_slave *slave = dev_to_sdw_dev(dev);
169 struct sdw_bus *bus = slave->bus;
170
171 pm_runtime_disable(dev);
172
173 sdw_slave_debugfs_exit(slave);
174
175 mutex_lock(&bus->bus_lock);
176
177 if (slave->dev_num) { /* clear dev_num if assigned */
178 clear_bit(slave->dev_num, bus->assigned);
179 if (bus->ops && bus->ops->put_device_num)
180 bus->ops->put_device_num(bus, slave);
181 }
182 list_del_init(&slave->node);
183 mutex_unlock(&bus->bus_lock);
184
185 device_unregister(dev);
186 return 0;
187 }
188
189 /**
190 * sdw_bus_master_delete() - delete the bus master instance
191 * @bus: bus to be deleted
192 *
193 * Remove the instance, delete the child devices.
194 */
sdw_bus_master_delete(struct sdw_bus * bus)195 void sdw_bus_master_delete(struct sdw_bus *bus)
196 {
197 device_for_each_child(bus->dev, NULL, sdw_delete_slave);
198
199 sdw_irq_delete(bus);
200
201 sdw_master_device_del(bus);
202
203 sdw_bus_debugfs_exit(bus);
204 lockdep_unregister_key(&bus->bus_lock_key);
205 lockdep_unregister_key(&bus->msg_lock_key);
206 ida_free(&sdw_bus_ida, bus->id);
207 }
208 EXPORT_SYMBOL(sdw_bus_master_delete);
209
210 /*
211 * SDW IO Calls
212 */
213
find_response_code(enum sdw_command_response resp)214 static inline int find_response_code(enum sdw_command_response resp)
215 {
216 switch (resp) {
217 case SDW_CMD_OK:
218 return 0;
219
220 case SDW_CMD_IGNORED:
221 return -ENODATA;
222
223 case SDW_CMD_TIMEOUT:
224 return -ETIMEDOUT;
225
226 default:
227 return -EIO;
228 }
229 }
230
do_transfer(struct sdw_bus * bus,struct sdw_msg * msg)231 static inline int do_transfer(struct sdw_bus *bus, struct sdw_msg *msg)
232 {
233 int retry = bus->prop.err_threshold;
234 enum sdw_command_response resp;
235 int ret = 0, i;
236
237 for (i = 0; i <= retry; i++) {
238 resp = bus->ops->xfer_msg(bus, msg);
239 ret = find_response_code(resp);
240
241 /* if cmd is ok or ignored return */
242 if (ret == 0 || ret == -ENODATA)
243 return ret;
244 }
245
246 return ret;
247 }
248
do_transfer_defer(struct sdw_bus * bus,struct sdw_msg * msg)249 static inline int do_transfer_defer(struct sdw_bus *bus,
250 struct sdw_msg *msg)
251 {
252 struct sdw_defer *defer = &bus->defer_msg;
253 int retry = bus->prop.err_threshold;
254 enum sdw_command_response resp;
255 int ret = 0, i;
256
257 defer->msg = msg;
258 defer->length = msg->len;
259 init_completion(&defer->complete);
260
261 for (i = 0; i <= retry; i++) {
262 resp = bus->ops->xfer_msg_defer(bus);
263 ret = find_response_code(resp);
264 /* if cmd is ok or ignored return */
265 if (ret == 0 || ret == -ENODATA)
266 return ret;
267 }
268
269 return ret;
270 }
271
sdw_transfer_unlocked(struct sdw_bus * bus,struct sdw_msg * msg)272 static int sdw_transfer_unlocked(struct sdw_bus *bus, struct sdw_msg *msg)
273 {
274 int ret;
275
276 ret = do_transfer(bus, msg);
277 if (ret != 0 && ret != -ENODATA)
278 dev_err(bus->dev, "trf on Slave %d failed:%d %s addr %x count %d\n",
279 msg->dev_num, ret,
280 (msg->flags & SDW_MSG_FLAG_WRITE) ? "write" : "read",
281 msg->addr, msg->len);
282
283 return ret;
284 }
285
286 /**
287 * sdw_transfer() - Synchronous transfer message to a SDW Slave device
288 * @bus: SDW bus
289 * @msg: SDW message to be xfered
290 */
sdw_transfer(struct sdw_bus * bus,struct sdw_msg * msg)291 int sdw_transfer(struct sdw_bus *bus, struct sdw_msg *msg)
292 {
293 int ret;
294
295 mutex_lock(&bus->msg_lock);
296
297 ret = sdw_transfer_unlocked(bus, msg);
298
299 mutex_unlock(&bus->msg_lock);
300
301 return ret;
302 }
303
304 /**
305 * sdw_show_ping_status() - Direct report of PING status, to be used by Peripheral drivers
306 * @bus: SDW bus
307 * @sync_delay: Delay before reading status
308 */
sdw_show_ping_status(struct sdw_bus * bus,bool sync_delay)309 void sdw_show_ping_status(struct sdw_bus *bus, bool sync_delay)
310 {
311 u32 status;
312
313 if (!bus->ops->read_ping_status)
314 return;
315
316 /*
317 * wait for peripheral to sync if desired. 10-15ms should be more than
318 * enough in most cases.
319 */
320 if (sync_delay)
321 usleep_range(10000, 15000);
322
323 mutex_lock(&bus->msg_lock);
324
325 status = bus->ops->read_ping_status(bus);
326
327 mutex_unlock(&bus->msg_lock);
328
329 if (!status)
330 dev_warn(bus->dev, "%s: no peripherals attached\n", __func__);
331 else
332 dev_dbg(bus->dev, "PING status: %#x\n", status);
333 }
334 EXPORT_SYMBOL(sdw_show_ping_status);
335
336 /**
337 * sdw_transfer_defer() - Asynchronously transfer message to a SDW Slave device
338 * @bus: SDW bus
339 * @msg: SDW message to be xfered
340 *
341 * Caller needs to hold the msg_lock lock while calling this
342 */
sdw_transfer_defer(struct sdw_bus * bus,struct sdw_msg * msg)343 int sdw_transfer_defer(struct sdw_bus *bus, struct sdw_msg *msg)
344 {
345 int ret;
346
347 if (!bus->ops->xfer_msg_defer)
348 return -ENOTSUPP;
349
350 ret = do_transfer_defer(bus, msg);
351 if (ret != 0 && ret != -ENODATA)
352 dev_err(bus->dev, "Defer trf on Slave %d failed:%d\n",
353 msg->dev_num, ret);
354
355 return ret;
356 }
357
sdw_fill_msg(struct sdw_msg * msg,struct sdw_slave * slave,u32 addr,size_t count,u16 dev_num,u8 flags,u8 * buf)358 int sdw_fill_msg(struct sdw_msg *msg, struct sdw_slave *slave,
359 u32 addr, size_t count, u16 dev_num, u8 flags, u8 *buf)
360 {
361 memset(msg, 0, sizeof(*msg));
362 msg->addr = addr; /* addr is 16 bit and truncated here */
363 msg->len = count;
364 msg->dev_num = dev_num;
365 msg->flags = flags;
366 msg->buf = buf;
367
368 if (addr < SDW_REG_NO_PAGE) /* no paging area */
369 return 0;
370
371 if (addr >= SDW_REG_MAX) { /* illegal addr */
372 pr_err("SDW: Invalid address %x passed\n", addr);
373 return -EINVAL;
374 }
375
376 if (addr < SDW_REG_OPTIONAL_PAGE) { /* 32k but no page */
377 if (slave && !slave->prop.paging_support)
378 return 0;
379 /* no need for else as that will fall-through to paging */
380 }
381
382 /* paging mandatory */
383 if (dev_num == SDW_ENUM_DEV_NUM || dev_num == SDW_BROADCAST_DEV_NUM) {
384 pr_err("SDW: Invalid device for paging :%d\n", dev_num);
385 return -EINVAL;
386 }
387
388 if (!slave) {
389 pr_err("SDW: No slave for paging addr\n");
390 return -EINVAL;
391 }
392
393 if (!slave->prop.paging_support) {
394 dev_err(&slave->dev,
395 "address %x needs paging but no support\n", addr);
396 return -EINVAL;
397 }
398
399 msg->addr_page1 = FIELD_GET(SDW_SCP_ADDRPAGE1_MASK, addr);
400 msg->addr_page2 = FIELD_GET(SDW_SCP_ADDRPAGE2_MASK, addr);
401 msg->addr |= BIT(15);
402 msg->page = true;
403
404 return 0;
405 }
406
407 /*
408 * Read/Write IO functions.
409 */
410
sdw_ntransfer_no_pm(struct sdw_slave * slave,u32 addr,u8 flags,size_t count,u8 * val)411 static int sdw_ntransfer_no_pm(struct sdw_slave *slave, u32 addr, u8 flags,
412 size_t count, u8 *val)
413 {
414 struct sdw_msg msg;
415 size_t size;
416 int ret;
417
418 while (count) {
419 // Only handle bytes up to next page boundary
420 size = min_t(size_t, count, (SDW_REGADDR + 1) - (addr & SDW_REGADDR));
421
422 ret = sdw_fill_msg(&msg, slave, addr, size, slave->dev_num, flags, val);
423 if (ret < 0)
424 return ret;
425
426 ret = sdw_transfer(slave->bus, &msg);
427 if (ret < 0 && !slave->is_mockup_device)
428 return ret;
429
430 addr += size;
431 val += size;
432 count -= size;
433 }
434
435 return 0;
436 }
437
438 /**
439 * sdw_nread_no_pm() - Read "n" contiguous SDW Slave registers with no PM
440 * @slave: SDW Slave
441 * @addr: Register address
442 * @count: length
443 * @val: Buffer for values to be read
444 *
445 * Note that if the message crosses a page boundary each page will be
446 * transferred under a separate invocation of the msg_lock.
447 */
sdw_nread_no_pm(struct sdw_slave * slave,u32 addr,size_t count,u8 * val)448 int sdw_nread_no_pm(struct sdw_slave *slave, u32 addr, size_t count, u8 *val)
449 {
450 return sdw_ntransfer_no_pm(slave, addr, SDW_MSG_FLAG_READ, count, val);
451 }
452 EXPORT_SYMBOL(sdw_nread_no_pm);
453
454 /**
455 * sdw_nwrite_no_pm() - Write "n" contiguous SDW Slave registers with no PM
456 * @slave: SDW Slave
457 * @addr: Register address
458 * @count: length
459 * @val: Buffer for values to be written
460 *
461 * Note that if the message crosses a page boundary each page will be
462 * transferred under a separate invocation of the msg_lock.
463 */
sdw_nwrite_no_pm(struct sdw_slave * slave,u32 addr,size_t count,const u8 * val)464 int sdw_nwrite_no_pm(struct sdw_slave *slave, u32 addr, size_t count, const u8 *val)
465 {
466 return sdw_ntransfer_no_pm(slave, addr, SDW_MSG_FLAG_WRITE, count, (u8 *)val);
467 }
468 EXPORT_SYMBOL(sdw_nwrite_no_pm);
469
470 /**
471 * sdw_write_no_pm() - Write a SDW Slave register with no PM
472 * @slave: SDW Slave
473 * @addr: Register address
474 * @value: Register value
475 */
sdw_write_no_pm(struct sdw_slave * slave,u32 addr,u8 value)476 int sdw_write_no_pm(struct sdw_slave *slave, u32 addr, u8 value)
477 {
478 return sdw_nwrite_no_pm(slave, addr, 1, &value);
479 }
480 EXPORT_SYMBOL(sdw_write_no_pm);
481
482 static int
sdw_bread_no_pm(struct sdw_bus * bus,u16 dev_num,u32 addr)483 sdw_bread_no_pm(struct sdw_bus *bus, u16 dev_num, u32 addr)
484 {
485 struct sdw_msg msg;
486 u8 buf;
487 int ret;
488
489 ret = sdw_fill_msg(&msg, NULL, addr, 1, dev_num,
490 SDW_MSG_FLAG_READ, &buf);
491 if (ret < 0)
492 return ret;
493
494 ret = sdw_transfer(bus, &msg);
495 if (ret < 0)
496 return ret;
497
498 return buf;
499 }
500
501 static int
sdw_bwrite_no_pm(struct sdw_bus * bus,u16 dev_num,u32 addr,u8 value)502 sdw_bwrite_no_pm(struct sdw_bus *bus, u16 dev_num, u32 addr, u8 value)
503 {
504 struct sdw_msg msg;
505 int ret;
506
507 ret = sdw_fill_msg(&msg, NULL, addr, 1, dev_num,
508 SDW_MSG_FLAG_WRITE, &value);
509 if (ret < 0)
510 return ret;
511
512 return sdw_transfer(bus, &msg);
513 }
514
sdw_bread_no_pm_unlocked(struct sdw_bus * bus,u16 dev_num,u32 addr)515 int sdw_bread_no_pm_unlocked(struct sdw_bus *bus, u16 dev_num, u32 addr)
516 {
517 struct sdw_msg msg;
518 u8 buf;
519 int ret;
520
521 ret = sdw_fill_msg(&msg, NULL, addr, 1, dev_num,
522 SDW_MSG_FLAG_READ, &buf);
523 if (ret < 0)
524 return ret;
525
526 ret = sdw_transfer_unlocked(bus, &msg);
527 if (ret < 0)
528 return ret;
529
530 return buf;
531 }
532 EXPORT_SYMBOL(sdw_bread_no_pm_unlocked);
533
sdw_bwrite_no_pm_unlocked(struct sdw_bus * bus,u16 dev_num,u32 addr,u8 value)534 int sdw_bwrite_no_pm_unlocked(struct sdw_bus *bus, u16 dev_num, u32 addr, u8 value)
535 {
536 struct sdw_msg msg;
537 int ret;
538
539 ret = sdw_fill_msg(&msg, NULL, addr, 1, dev_num,
540 SDW_MSG_FLAG_WRITE, &value);
541 if (ret < 0)
542 return ret;
543
544 return sdw_transfer_unlocked(bus, &msg);
545 }
546 EXPORT_SYMBOL(sdw_bwrite_no_pm_unlocked);
547
548 /**
549 * sdw_read_no_pm() - Read a SDW Slave register with no PM
550 * @slave: SDW Slave
551 * @addr: Register address
552 */
sdw_read_no_pm(struct sdw_slave * slave,u32 addr)553 int sdw_read_no_pm(struct sdw_slave *slave, u32 addr)
554 {
555 u8 buf;
556 int ret;
557
558 ret = sdw_nread_no_pm(slave, addr, 1, &buf);
559 if (ret < 0)
560 return ret;
561 else
562 return buf;
563 }
564 EXPORT_SYMBOL(sdw_read_no_pm);
565
sdw_update_no_pm(struct sdw_slave * slave,u32 addr,u8 mask,u8 val)566 int sdw_update_no_pm(struct sdw_slave *slave, u32 addr, u8 mask, u8 val)
567 {
568 int tmp;
569
570 tmp = sdw_read_no_pm(slave, addr);
571 if (tmp < 0)
572 return tmp;
573
574 tmp = (tmp & ~mask) | val;
575 return sdw_write_no_pm(slave, addr, tmp);
576 }
577 EXPORT_SYMBOL(sdw_update_no_pm);
578
579 /* Read-Modify-Write Slave register */
sdw_update(struct sdw_slave * slave,u32 addr,u8 mask,u8 val)580 int sdw_update(struct sdw_slave *slave, u32 addr, u8 mask, u8 val)
581 {
582 int tmp;
583
584 tmp = sdw_read(slave, addr);
585 if (tmp < 0)
586 return tmp;
587
588 tmp = (tmp & ~mask) | val;
589 return sdw_write(slave, addr, tmp);
590 }
591 EXPORT_SYMBOL(sdw_update);
592
593 /**
594 * sdw_nread() - Read "n" contiguous SDW Slave registers
595 * @slave: SDW Slave
596 * @addr: Register address
597 * @count: length
598 * @val: Buffer for values to be read
599 *
600 * This version of the function will take a PM reference to the slave
601 * device.
602 * Note that if the message crosses a page boundary each page will be
603 * transferred under a separate invocation of the msg_lock.
604 */
sdw_nread(struct sdw_slave * slave,u32 addr,size_t count,u8 * val)605 int sdw_nread(struct sdw_slave *slave, u32 addr, size_t count, u8 *val)
606 {
607 int ret;
608
609 ret = pm_runtime_get_sync(&slave->dev);
610 if (ret < 0 && ret != -EACCES) {
611 pm_runtime_put_noidle(&slave->dev);
612 return ret;
613 }
614
615 ret = sdw_nread_no_pm(slave, addr, count, val);
616
617 pm_runtime_mark_last_busy(&slave->dev);
618 pm_runtime_put(&slave->dev);
619
620 return ret;
621 }
622 EXPORT_SYMBOL(sdw_nread);
623
624 /**
625 * sdw_nwrite() - Write "n" contiguous SDW Slave registers
626 * @slave: SDW Slave
627 * @addr: Register address
628 * @count: length
629 * @val: Buffer for values to be written
630 *
631 * This version of the function will take a PM reference to the slave
632 * device.
633 * Note that if the message crosses a page boundary each page will be
634 * transferred under a separate invocation of the msg_lock.
635 */
sdw_nwrite(struct sdw_slave * slave,u32 addr,size_t count,const u8 * val)636 int sdw_nwrite(struct sdw_slave *slave, u32 addr, size_t count, const u8 *val)
637 {
638 int ret;
639
640 ret = pm_runtime_get_sync(&slave->dev);
641 if (ret < 0 && ret != -EACCES) {
642 pm_runtime_put_noidle(&slave->dev);
643 return ret;
644 }
645
646 ret = sdw_nwrite_no_pm(slave, addr, count, val);
647
648 pm_runtime_mark_last_busy(&slave->dev);
649 pm_runtime_put(&slave->dev);
650
651 return ret;
652 }
653 EXPORT_SYMBOL(sdw_nwrite);
654
655 /**
656 * sdw_read() - Read a SDW Slave register
657 * @slave: SDW Slave
658 * @addr: Register address
659 *
660 * This version of the function will take a PM reference to the slave
661 * device.
662 */
sdw_read(struct sdw_slave * slave,u32 addr)663 int sdw_read(struct sdw_slave *slave, u32 addr)
664 {
665 u8 buf;
666 int ret;
667
668 ret = sdw_nread(slave, addr, 1, &buf);
669 if (ret < 0)
670 return ret;
671
672 return buf;
673 }
674 EXPORT_SYMBOL(sdw_read);
675
676 /**
677 * sdw_write() - Write a SDW Slave register
678 * @slave: SDW Slave
679 * @addr: Register address
680 * @value: Register value
681 *
682 * This version of the function will take a PM reference to the slave
683 * device.
684 */
sdw_write(struct sdw_slave * slave,u32 addr,u8 value)685 int sdw_write(struct sdw_slave *slave, u32 addr, u8 value)
686 {
687 return sdw_nwrite(slave, addr, 1, &value);
688 }
689 EXPORT_SYMBOL(sdw_write);
690
691 /*
692 * SDW alert handling
693 */
694
695 /* called with bus_lock held */
sdw_get_slave(struct sdw_bus * bus,int i)696 static struct sdw_slave *sdw_get_slave(struct sdw_bus *bus, int i)
697 {
698 struct sdw_slave *slave;
699
700 list_for_each_entry(slave, &bus->slaves, node) {
701 if (slave->dev_num == i)
702 return slave;
703 }
704
705 return NULL;
706 }
707
sdw_compare_devid(struct sdw_slave * slave,struct sdw_slave_id id)708 int sdw_compare_devid(struct sdw_slave *slave, struct sdw_slave_id id)
709 {
710 if (slave->id.mfg_id != id.mfg_id ||
711 slave->id.part_id != id.part_id ||
712 slave->id.class_id != id.class_id ||
713 (slave->id.unique_id != SDW_IGNORED_UNIQUE_ID &&
714 slave->id.unique_id != id.unique_id))
715 return -ENODEV;
716
717 return 0;
718 }
719 EXPORT_SYMBOL(sdw_compare_devid);
720
721 /* called with bus_lock held */
sdw_get_device_num(struct sdw_slave * slave)722 static int sdw_get_device_num(struct sdw_slave *slave)
723 {
724 struct sdw_bus *bus = slave->bus;
725 int bit;
726
727 if (bus->ops && bus->ops->get_device_num) {
728 bit = bus->ops->get_device_num(bus, slave);
729 if (bit < 0)
730 goto err;
731 } else {
732 bit = find_first_zero_bit(bus->assigned, SDW_MAX_DEVICES);
733 if (bit == SDW_MAX_DEVICES) {
734 bit = -ENODEV;
735 goto err;
736 }
737 }
738
739 /*
740 * Do not update dev_num in Slave data structure here,
741 * Update once program dev_num is successful
742 */
743 set_bit(bit, bus->assigned);
744
745 err:
746 return bit;
747 }
748
sdw_assign_device_num(struct sdw_slave * slave)749 static int sdw_assign_device_num(struct sdw_slave *slave)
750 {
751 struct sdw_bus *bus = slave->bus;
752 int ret, dev_num;
753 bool new_device = false;
754
755 /* check first if device number is assigned, if so reuse that */
756 if (!slave->dev_num) {
757 if (!slave->dev_num_sticky) {
758 mutex_lock(&slave->bus->bus_lock);
759 dev_num = sdw_get_device_num(slave);
760 mutex_unlock(&slave->bus->bus_lock);
761 if (dev_num < 0) {
762 dev_err(bus->dev, "Get dev_num failed: %d\n",
763 dev_num);
764 return dev_num;
765 }
766 slave->dev_num = dev_num;
767 slave->dev_num_sticky = dev_num;
768 new_device = true;
769 } else {
770 slave->dev_num = slave->dev_num_sticky;
771 }
772 }
773
774 if (!new_device)
775 dev_dbg(bus->dev,
776 "Slave already registered, reusing dev_num:%d\n",
777 slave->dev_num);
778
779 /* Clear the slave->dev_num to transfer message on device 0 */
780 dev_num = slave->dev_num;
781 slave->dev_num = 0;
782
783 ret = sdw_write_no_pm(slave, SDW_SCP_DEVNUMBER, dev_num);
784 if (ret < 0) {
785 dev_err(bus->dev, "Program device_num %d failed: %d\n",
786 dev_num, ret);
787 return ret;
788 }
789
790 /* After xfer of msg, restore dev_num */
791 slave->dev_num = slave->dev_num_sticky;
792
793 if (bus->ops && bus->ops->new_peripheral_assigned)
794 bus->ops->new_peripheral_assigned(bus, slave, dev_num);
795
796 return 0;
797 }
798
sdw_extract_slave_id(struct sdw_bus * bus,u64 addr,struct sdw_slave_id * id)799 void sdw_extract_slave_id(struct sdw_bus *bus,
800 u64 addr, struct sdw_slave_id *id)
801 {
802 dev_dbg(bus->dev, "SDW Slave Addr: %llx\n", addr);
803
804 id->sdw_version = SDW_VERSION(addr);
805 id->unique_id = SDW_UNIQUE_ID(addr);
806 id->mfg_id = SDW_MFG_ID(addr);
807 id->part_id = SDW_PART_ID(addr);
808 id->class_id = SDW_CLASS_ID(addr);
809
810 dev_dbg(bus->dev,
811 "SDW Slave class_id 0x%02x, mfg_id 0x%04x, part_id 0x%04x, unique_id 0x%x, version 0x%x\n",
812 id->class_id, id->mfg_id, id->part_id, id->unique_id, id->sdw_version);
813 }
814 EXPORT_SYMBOL(sdw_extract_slave_id);
815
is_clock_scaling_supported_by_slave(struct sdw_slave * slave)816 bool is_clock_scaling_supported_by_slave(struct sdw_slave *slave)
817 {
818 /*
819 * Dynamic scaling is a defined by SDCA. However, some devices expose the class ID but
820 * can't support dynamic scaling. We might need a quirk to handle such devices.
821 */
822 return slave->id.class_id;
823 }
824 EXPORT_SYMBOL(is_clock_scaling_supported_by_slave);
825
sdw_program_device_num(struct sdw_bus * bus,bool * programmed)826 static int sdw_program_device_num(struct sdw_bus *bus, bool *programmed)
827 {
828 u8 buf[SDW_NUM_DEV_ID_REGISTERS] = {0};
829 struct sdw_slave *slave, *_s;
830 struct sdw_slave_id id;
831 struct sdw_msg msg;
832 bool found;
833 int count = 0, ret;
834 u64 addr;
835
836 *programmed = false;
837
838 /* No Slave, so use raw xfer api */
839 ret = sdw_fill_msg(&msg, NULL, SDW_SCP_DEVID_0,
840 SDW_NUM_DEV_ID_REGISTERS, 0, SDW_MSG_FLAG_READ, buf);
841 if (ret < 0)
842 return ret;
843
844 do {
845 ret = sdw_transfer(bus, &msg);
846 if (ret == -ENODATA) { /* end of device id reads */
847 dev_dbg(bus->dev, "No more devices to enumerate\n");
848 ret = 0;
849 break;
850 }
851 if (ret < 0) {
852 dev_err(bus->dev, "DEVID read fail:%d\n", ret);
853 break;
854 }
855
856 /*
857 * Construct the addr and extract. Cast the higher shift
858 * bits to avoid truncation due to size limit.
859 */
860 addr = buf[5] | (buf[4] << 8) | (buf[3] << 16) |
861 ((u64)buf[2] << 24) | ((u64)buf[1] << 32) |
862 ((u64)buf[0] << 40);
863
864 sdw_extract_slave_id(bus, addr, &id);
865
866 found = false;
867 /* Now compare with entries */
868 list_for_each_entry_safe(slave, _s, &bus->slaves, node) {
869 if (sdw_compare_devid(slave, id) == 0) {
870 found = true;
871
872 /*
873 * To prevent skipping state-machine stages don't
874 * program a device until we've seen it UNATTACH.
875 * Must return here because no other device on #0
876 * can be detected until this one has been
877 * assigned a device ID.
878 */
879 if (slave->status != SDW_SLAVE_UNATTACHED)
880 return 0;
881
882 /*
883 * Assign a new dev_num to this Slave and
884 * not mark it present. It will be marked
885 * present after it reports ATTACHED on new
886 * dev_num
887 */
888 ret = sdw_assign_device_num(slave);
889 if (ret < 0) {
890 dev_err(bus->dev,
891 "Assign dev_num failed:%d\n",
892 ret);
893 return ret;
894 }
895
896 *programmed = true;
897
898 break;
899 }
900 }
901
902 if (!found) {
903 /* TODO: Park this device in Group 13 */
904
905 /*
906 * add Slave device even if there is no platform
907 * firmware description. There will be no driver probe
908 * but the user/integration will be able to see the
909 * device, enumeration status and device number in sysfs
910 */
911 sdw_slave_add(bus, &id, NULL);
912
913 dev_err(bus->dev, "Slave Entry not found\n");
914 }
915
916 count++;
917
918 /*
919 * Check till error out or retry (count) exhausts.
920 * Device can drop off and rejoin during enumeration
921 * so count till twice the bound.
922 */
923
924 } while (ret == 0 && count < (SDW_MAX_DEVICES * 2));
925
926 return ret;
927 }
928
sdw_modify_slave_status(struct sdw_slave * slave,enum sdw_slave_status status)929 static void sdw_modify_slave_status(struct sdw_slave *slave,
930 enum sdw_slave_status status)
931 {
932 struct sdw_bus *bus = slave->bus;
933
934 mutex_lock(&bus->bus_lock);
935
936 dev_vdbg(bus->dev,
937 "changing status slave %d status %d new status %d\n",
938 slave->dev_num, slave->status, status);
939
940 if (status == SDW_SLAVE_UNATTACHED) {
941 dev_dbg(&slave->dev,
942 "initializing enumeration and init completion for Slave %d\n",
943 slave->dev_num);
944
945 reinit_completion(&slave->enumeration_complete);
946 reinit_completion(&slave->initialization_complete);
947
948 } else if ((status == SDW_SLAVE_ATTACHED) &&
949 (slave->status == SDW_SLAVE_UNATTACHED)) {
950 dev_dbg(&slave->dev,
951 "signaling enumeration completion for Slave %d\n",
952 slave->dev_num);
953
954 complete_all(&slave->enumeration_complete);
955 }
956 slave->status = status;
957 mutex_unlock(&bus->bus_lock);
958 }
959
sdw_slave_clk_stop_callback(struct sdw_slave * slave,enum sdw_clk_stop_mode mode,enum sdw_clk_stop_type type)960 static int sdw_slave_clk_stop_callback(struct sdw_slave *slave,
961 enum sdw_clk_stop_mode mode,
962 enum sdw_clk_stop_type type)
963 {
964 int ret = 0;
965
966 mutex_lock(&slave->sdw_dev_lock);
967
968 if (slave->probed) {
969 struct device *dev = &slave->dev;
970 struct sdw_driver *drv = drv_to_sdw_driver(dev->driver);
971
972 if (drv->ops && drv->ops->clk_stop)
973 ret = drv->ops->clk_stop(slave, mode, type);
974 }
975
976 mutex_unlock(&slave->sdw_dev_lock);
977
978 return ret;
979 }
980
sdw_slave_clk_stop_prepare(struct sdw_slave * slave,enum sdw_clk_stop_mode mode,bool prepare)981 static int sdw_slave_clk_stop_prepare(struct sdw_slave *slave,
982 enum sdw_clk_stop_mode mode,
983 bool prepare)
984 {
985 bool wake_en;
986 u32 val = 0;
987 int ret;
988
989 wake_en = slave->prop.wake_capable;
990
991 if (prepare) {
992 val = SDW_SCP_SYSTEMCTRL_CLK_STP_PREP;
993
994 if (mode == SDW_CLK_STOP_MODE1)
995 val |= SDW_SCP_SYSTEMCTRL_CLK_STP_MODE1;
996
997 if (wake_en)
998 val |= SDW_SCP_SYSTEMCTRL_WAKE_UP_EN;
999 } else {
1000 ret = sdw_read_no_pm(slave, SDW_SCP_SYSTEMCTRL);
1001 if (ret < 0) {
1002 if (ret != -ENODATA)
1003 dev_err(&slave->dev, "SDW_SCP_SYSTEMCTRL read failed:%d\n", ret);
1004 return ret;
1005 }
1006 val = ret;
1007 val &= ~(SDW_SCP_SYSTEMCTRL_CLK_STP_PREP);
1008 }
1009
1010 ret = sdw_write_no_pm(slave, SDW_SCP_SYSTEMCTRL, val);
1011
1012 if (ret < 0 && ret != -ENODATA)
1013 dev_err(&slave->dev, "SDW_SCP_SYSTEMCTRL write failed:%d\n", ret);
1014
1015 return ret;
1016 }
1017
sdw_bus_wait_for_clk_prep_deprep(struct sdw_bus * bus,u16 dev_num,bool prepare)1018 static int sdw_bus_wait_for_clk_prep_deprep(struct sdw_bus *bus, u16 dev_num, bool prepare)
1019 {
1020 int retry = bus->clk_stop_timeout;
1021 int val;
1022
1023 do {
1024 val = sdw_bread_no_pm(bus, dev_num, SDW_SCP_STAT);
1025 if (val < 0) {
1026 if (val != -ENODATA)
1027 dev_err(bus->dev, "SDW_SCP_STAT bread failed:%d\n", val);
1028 return val;
1029 }
1030 val &= SDW_SCP_STAT_CLK_STP_NF;
1031 if (!val) {
1032 dev_dbg(bus->dev, "clock stop %s done slave:%d\n",
1033 prepare ? "prepare" : "deprepare",
1034 dev_num);
1035 return 0;
1036 }
1037
1038 usleep_range(1000, 1500);
1039 retry--;
1040 } while (retry);
1041
1042 dev_dbg(bus->dev, "clock stop %s did not complete for slave:%d\n",
1043 prepare ? "prepare" : "deprepare",
1044 dev_num);
1045
1046 return -ETIMEDOUT;
1047 }
1048
1049 /**
1050 * sdw_bus_prep_clk_stop: prepare Slave(s) for clock stop
1051 *
1052 * @bus: SDW bus instance
1053 *
1054 * Query Slave for clock stop mode and prepare for that mode.
1055 */
sdw_bus_prep_clk_stop(struct sdw_bus * bus)1056 int sdw_bus_prep_clk_stop(struct sdw_bus *bus)
1057 {
1058 bool simple_clk_stop = true;
1059 struct sdw_slave *slave;
1060 bool is_slave = false;
1061 int ret = 0;
1062
1063 /*
1064 * In order to save on transition time, prepare
1065 * each Slave and then wait for all Slave(s) to be
1066 * prepared for clock stop.
1067 * If one of the Slave devices has lost sync and
1068 * replies with Command Ignored/-ENODATA, we continue
1069 * the loop
1070 */
1071 list_for_each_entry(slave, &bus->slaves, node) {
1072 if (!slave->dev_num)
1073 continue;
1074
1075 if (slave->status != SDW_SLAVE_ATTACHED &&
1076 slave->status != SDW_SLAVE_ALERT)
1077 continue;
1078
1079 /* Identify if Slave(s) are available on Bus */
1080 is_slave = true;
1081
1082 ret = sdw_slave_clk_stop_callback(slave,
1083 SDW_CLK_STOP_MODE0,
1084 SDW_CLK_PRE_PREPARE);
1085 if (ret < 0 && ret != -ENODATA) {
1086 dev_err(&slave->dev, "clock stop pre-prepare cb failed:%d\n", ret);
1087 return ret;
1088 }
1089
1090 /* Only prepare a Slave device if needed */
1091 if (!slave->prop.simple_clk_stop_capable) {
1092 simple_clk_stop = false;
1093
1094 ret = sdw_slave_clk_stop_prepare(slave,
1095 SDW_CLK_STOP_MODE0,
1096 true);
1097 if (ret < 0 && ret != -ENODATA) {
1098 dev_err(&slave->dev, "clock stop prepare failed:%d\n", ret);
1099 return ret;
1100 }
1101 }
1102 }
1103
1104 /* Skip remaining clock stop preparation if no Slave is attached */
1105 if (!is_slave)
1106 return 0;
1107
1108 /*
1109 * Don't wait for all Slaves to be ready if they follow the simple
1110 * state machine
1111 */
1112 if (!simple_clk_stop) {
1113 ret = sdw_bus_wait_for_clk_prep_deprep(bus,
1114 SDW_BROADCAST_DEV_NUM, true);
1115 /*
1116 * if there are no Slave devices present and the reply is
1117 * Command_Ignored/-ENODATA, we don't need to continue with the
1118 * flow and can just return here. The error code is not modified
1119 * and its handling left as an exercise for the caller.
1120 */
1121 if (ret < 0)
1122 return ret;
1123 }
1124
1125 /* Inform slaves that prep is done */
1126 list_for_each_entry(slave, &bus->slaves, node) {
1127 if (!slave->dev_num)
1128 continue;
1129
1130 if (slave->status != SDW_SLAVE_ATTACHED &&
1131 slave->status != SDW_SLAVE_ALERT)
1132 continue;
1133
1134 ret = sdw_slave_clk_stop_callback(slave,
1135 SDW_CLK_STOP_MODE0,
1136 SDW_CLK_POST_PREPARE);
1137
1138 if (ret < 0 && ret != -ENODATA) {
1139 dev_err(&slave->dev, "clock stop post-prepare cb failed:%d\n", ret);
1140 return ret;
1141 }
1142 }
1143
1144 return 0;
1145 }
1146 EXPORT_SYMBOL(sdw_bus_prep_clk_stop);
1147
1148 /**
1149 * sdw_bus_clk_stop: stop bus clock
1150 *
1151 * @bus: SDW bus instance
1152 *
1153 * After preparing the Slaves for clock stop, stop the clock by broadcasting
1154 * write to SCP_CTRL register.
1155 */
sdw_bus_clk_stop(struct sdw_bus * bus)1156 int sdw_bus_clk_stop(struct sdw_bus *bus)
1157 {
1158 int ret;
1159
1160 /*
1161 * broadcast clock stop now, attached Slaves will ACK this,
1162 * unattached will ignore
1163 */
1164 ret = sdw_bwrite_no_pm(bus, SDW_BROADCAST_DEV_NUM,
1165 SDW_SCP_CTRL, SDW_SCP_CTRL_CLK_STP_NOW);
1166 if (ret < 0) {
1167 if (ret != -ENODATA)
1168 dev_err(bus->dev, "ClockStopNow Broadcast msg failed %d\n", ret);
1169 return ret;
1170 }
1171
1172 return 0;
1173 }
1174 EXPORT_SYMBOL(sdw_bus_clk_stop);
1175
1176 /**
1177 * sdw_bus_exit_clk_stop: Exit clock stop mode
1178 *
1179 * @bus: SDW bus instance
1180 *
1181 * This De-prepares the Slaves by exiting Clock Stop Mode 0. For the Slaves
1182 * exiting Clock Stop Mode 1, they will be de-prepared after they enumerate
1183 * back.
1184 */
sdw_bus_exit_clk_stop(struct sdw_bus * bus)1185 int sdw_bus_exit_clk_stop(struct sdw_bus *bus)
1186 {
1187 bool simple_clk_stop = true;
1188 struct sdw_slave *slave;
1189 bool is_slave = false;
1190 int ret;
1191
1192 /*
1193 * In order to save on transition time, de-prepare
1194 * each Slave and then wait for all Slave(s) to be
1195 * de-prepared after clock resume.
1196 */
1197 list_for_each_entry(slave, &bus->slaves, node) {
1198 if (!slave->dev_num)
1199 continue;
1200
1201 if (slave->status != SDW_SLAVE_ATTACHED &&
1202 slave->status != SDW_SLAVE_ALERT)
1203 continue;
1204
1205 /* Identify if Slave(s) are available on Bus */
1206 is_slave = true;
1207
1208 ret = sdw_slave_clk_stop_callback(slave, SDW_CLK_STOP_MODE0,
1209 SDW_CLK_PRE_DEPREPARE);
1210 if (ret < 0)
1211 dev_warn(&slave->dev, "clock stop pre-deprepare cb failed:%d\n", ret);
1212
1213 /* Only de-prepare a Slave device if needed */
1214 if (!slave->prop.simple_clk_stop_capable) {
1215 simple_clk_stop = false;
1216
1217 ret = sdw_slave_clk_stop_prepare(slave, SDW_CLK_STOP_MODE0,
1218 false);
1219
1220 if (ret < 0)
1221 dev_warn(&slave->dev, "clock stop deprepare failed:%d\n", ret);
1222 }
1223 }
1224
1225 /* Skip remaining clock stop de-preparation if no Slave is attached */
1226 if (!is_slave)
1227 return 0;
1228
1229 /*
1230 * Don't wait for all Slaves to be ready if they follow the simple
1231 * state machine
1232 */
1233 if (!simple_clk_stop) {
1234 ret = sdw_bus_wait_for_clk_prep_deprep(bus, SDW_BROADCAST_DEV_NUM, false);
1235 if (ret < 0)
1236 dev_warn(bus->dev, "clock stop deprepare wait failed:%d\n", ret);
1237 }
1238
1239 list_for_each_entry(slave, &bus->slaves, node) {
1240 if (!slave->dev_num)
1241 continue;
1242
1243 if (slave->status != SDW_SLAVE_ATTACHED &&
1244 slave->status != SDW_SLAVE_ALERT)
1245 continue;
1246
1247 ret = sdw_slave_clk_stop_callback(slave, SDW_CLK_STOP_MODE0,
1248 SDW_CLK_POST_DEPREPARE);
1249 if (ret < 0)
1250 dev_warn(&slave->dev, "clock stop post-deprepare cb failed:%d\n", ret);
1251 }
1252
1253 return 0;
1254 }
1255 EXPORT_SYMBOL(sdw_bus_exit_clk_stop);
1256
sdw_configure_dpn_intr(struct sdw_slave * slave,int port,bool enable,int mask)1257 int sdw_configure_dpn_intr(struct sdw_slave *slave,
1258 int port, bool enable, int mask)
1259 {
1260 u32 addr;
1261 int ret;
1262 u8 val = 0;
1263
1264 if (slave->bus->params.s_data_mode != SDW_PORT_DATA_MODE_NORMAL) {
1265 dev_dbg(&slave->dev, "TEST FAIL interrupt %s\n",
1266 enable ? "on" : "off");
1267 mask |= SDW_DPN_INT_TEST_FAIL;
1268 }
1269
1270 addr = SDW_DPN_INTMASK(port);
1271
1272 /* Set/Clear port ready interrupt mask */
1273 if (enable) {
1274 val |= mask;
1275 val |= SDW_DPN_INT_PORT_READY;
1276 } else {
1277 val &= ~(mask);
1278 val &= ~SDW_DPN_INT_PORT_READY;
1279 }
1280
1281 ret = sdw_update_no_pm(slave, addr, (mask | SDW_DPN_INT_PORT_READY), val);
1282 if (ret < 0)
1283 dev_err(&slave->dev,
1284 "SDW_DPN_INTMASK write failed:%d\n", val);
1285
1286 return ret;
1287 }
1288
sdw_slave_get_scale_index(struct sdw_slave * slave,u8 * base)1289 int sdw_slave_get_scale_index(struct sdw_slave *slave, u8 *base)
1290 {
1291 u32 mclk_freq = slave->bus->prop.mclk_freq;
1292 u32 curr_freq = slave->bus->params.curr_dr_freq >> 1;
1293 unsigned int scale;
1294 u8 scale_index;
1295
1296 if (!mclk_freq) {
1297 dev_err(&slave->dev,
1298 "no bus MCLK, cannot set SDW_SCP_BUS_CLOCK_BASE\n");
1299 return -EINVAL;
1300 }
1301
1302 /*
1303 * map base frequency using Table 89 of SoundWire 1.2 spec.
1304 * The order of the tests just follows the specification, this
1305 * is not a selection between possible values or a search for
1306 * the best value but just a mapping. Only one case per platform
1307 * is relevant.
1308 * Some BIOS have inconsistent values for mclk_freq but a
1309 * correct root so we force the mclk_freq to avoid variations.
1310 */
1311 if (!(19200000 % mclk_freq)) {
1312 mclk_freq = 19200000;
1313 *base = SDW_SCP_BASE_CLOCK_19200000_HZ;
1314 } else if (!(22579200 % mclk_freq)) {
1315 mclk_freq = 22579200;
1316 *base = SDW_SCP_BASE_CLOCK_22579200_HZ;
1317 } else if (!(24576000 % mclk_freq)) {
1318 mclk_freq = 24576000;
1319 *base = SDW_SCP_BASE_CLOCK_24576000_HZ;
1320 } else if (!(32000000 % mclk_freq)) {
1321 mclk_freq = 32000000;
1322 *base = SDW_SCP_BASE_CLOCK_32000000_HZ;
1323 } else if (!(96000000 % mclk_freq)) {
1324 mclk_freq = 24000000;
1325 *base = SDW_SCP_BASE_CLOCK_24000000_HZ;
1326 } else {
1327 dev_err(&slave->dev,
1328 "Unsupported clock base, mclk %d\n",
1329 mclk_freq);
1330 return -EINVAL;
1331 }
1332
1333 if (mclk_freq % curr_freq) {
1334 dev_err(&slave->dev,
1335 "mclk %d is not multiple of bus curr_freq %d\n",
1336 mclk_freq, curr_freq);
1337 return -EINVAL;
1338 }
1339
1340 scale = mclk_freq / curr_freq;
1341
1342 /*
1343 * map scale to Table 90 of SoundWire 1.2 spec - and check
1344 * that the scale is a power of two and maximum 64
1345 */
1346 scale_index = ilog2(scale);
1347
1348 if (BIT(scale_index) != scale || scale_index > 6) {
1349 dev_err(&slave->dev,
1350 "No match found for scale %d, bus mclk %d curr_freq %d\n",
1351 scale, mclk_freq, curr_freq);
1352 return -EINVAL;
1353 }
1354 scale_index++;
1355
1356 dev_dbg(&slave->dev,
1357 "Configured bus base %d, scale %d, mclk %d, curr_freq %d\n",
1358 *base, scale_index, mclk_freq, curr_freq);
1359
1360 return scale_index;
1361 }
1362 EXPORT_SYMBOL(sdw_slave_get_scale_index);
1363
sdw_slave_set_frequency(struct sdw_slave * slave)1364 static int sdw_slave_set_frequency(struct sdw_slave *slave)
1365 {
1366 int scale_index;
1367 u8 base;
1368 int ret;
1369
1370 /*
1371 * frequency base and scale registers are required for SDCA
1372 * devices. They may also be used for 1.2+/non-SDCA devices.
1373 * Driver can set the property directly, for now there's no
1374 * DisCo property to discover support for the scaling registers
1375 * from platform firmware.
1376 */
1377 if (!slave->id.class_id && !slave->prop.clock_reg_supported)
1378 return 0;
1379
1380 scale_index = sdw_slave_get_scale_index(slave, &base);
1381 if (scale_index < 0)
1382 return scale_index;
1383
1384 ret = sdw_write_no_pm(slave, SDW_SCP_BUS_CLOCK_BASE, base);
1385 if (ret < 0) {
1386 dev_err(&slave->dev,
1387 "SDW_SCP_BUS_CLOCK_BASE write failed:%d\n", ret);
1388 return ret;
1389 }
1390
1391 /* initialize scale for both banks */
1392 ret = sdw_write_no_pm(slave, SDW_SCP_BUSCLOCK_SCALE_B0, scale_index);
1393 if (ret < 0) {
1394 dev_err(&slave->dev,
1395 "SDW_SCP_BUSCLOCK_SCALE_B0 write failed:%d\n", ret);
1396 return ret;
1397 }
1398 ret = sdw_write_no_pm(slave, SDW_SCP_BUSCLOCK_SCALE_B1, scale_index);
1399 if (ret < 0)
1400 dev_err(&slave->dev,
1401 "SDW_SCP_BUSCLOCK_SCALE_B1 write failed:%d\n", ret);
1402
1403 return ret;
1404 }
1405
sdw_initialize_slave(struct sdw_slave * slave)1406 static int sdw_initialize_slave(struct sdw_slave *slave)
1407 {
1408 struct sdw_slave_prop *prop = &slave->prop;
1409 int status;
1410 int ret;
1411 u8 val;
1412
1413 ret = sdw_slave_set_frequency(slave);
1414 if (ret < 0)
1415 return ret;
1416
1417 if (slave->bus->prop.quirks & SDW_MASTER_QUIRKS_CLEAR_INITIAL_CLASH) {
1418 /* Clear bus clash interrupt before enabling interrupt mask */
1419 status = sdw_read_no_pm(slave, SDW_SCP_INT1);
1420 if (status < 0) {
1421 dev_err(&slave->dev,
1422 "SDW_SCP_INT1 (BUS_CLASH) read failed:%d\n", status);
1423 return status;
1424 }
1425 if (status & SDW_SCP_INT1_BUS_CLASH) {
1426 dev_warn(&slave->dev, "Bus clash detected before INT mask is enabled\n");
1427 ret = sdw_write_no_pm(slave, SDW_SCP_INT1, SDW_SCP_INT1_BUS_CLASH);
1428 if (ret < 0) {
1429 dev_err(&slave->dev,
1430 "SDW_SCP_INT1 (BUS_CLASH) write failed:%d\n", ret);
1431 return ret;
1432 }
1433 }
1434 }
1435 if ((slave->bus->prop.quirks & SDW_MASTER_QUIRKS_CLEAR_INITIAL_PARITY) &&
1436 !(prop->quirks & SDW_SLAVE_QUIRKS_INVALID_INITIAL_PARITY)) {
1437 /* Clear parity interrupt before enabling interrupt mask */
1438 status = sdw_read_no_pm(slave, SDW_SCP_INT1);
1439 if (status < 0) {
1440 dev_err(&slave->dev,
1441 "SDW_SCP_INT1 (PARITY) read failed:%d\n", status);
1442 return status;
1443 }
1444 if (status & SDW_SCP_INT1_PARITY) {
1445 dev_warn(&slave->dev, "PARITY error detected before INT mask is enabled\n");
1446 ret = sdw_write_no_pm(slave, SDW_SCP_INT1, SDW_SCP_INT1_PARITY);
1447 if (ret < 0) {
1448 dev_err(&slave->dev,
1449 "SDW_SCP_INT1 (PARITY) write failed:%d\n", ret);
1450 return ret;
1451 }
1452 }
1453 }
1454
1455 /*
1456 * Set SCP_INT1_MASK register, typically bus clash and
1457 * implementation-defined interrupt mask. The Parity detection
1458 * may not always be correct on startup so its use is
1459 * device-dependent, it might e.g. only be enabled in
1460 * steady-state after a couple of frames.
1461 */
1462 val = prop->scp_int1_mask;
1463
1464 /* Enable SCP interrupts */
1465 ret = sdw_update_no_pm(slave, SDW_SCP_INTMASK1, val, val);
1466 if (ret < 0) {
1467 dev_err(&slave->dev,
1468 "SDW_SCP_INTMASK1 write failed:%d\n", ret);
1469 return ret;
1470 }
1471
1472 /* No need to continue if DP0 is not present */
1473 if (!prop->dp0_prop)
1474 return 0;
1475
1476 /* Enable DP0 interrupts */
1477 val = prop->dp0_prop->imp_def_interrupts;
1478 val |= SDW_DP0_INT_PORT_READY | SDW_DP0_INT_BRA_FAILURE;
1479
1480 ret = sdw_update_no_pm(slave, SDW_DP0_INTMASK, val, val);
1481 if (ret < 0)
1482 dev_err(&slave->dev,
1483 "SDW_DP0_INTMASK read failed:%d\n", ret);
1484 return ret;
1485 }
1486
sdw_handle_dp0_interrupt(struct sdw_slave * slave,u8 * slave_status)1487 static int sdw_handle_dp0_interrupt(struct sdw_slave *slave, u8 *slave_status)
1488 {
1489 u8 clear, impl_int_mask;
1490 int status, status2, ret, count = 0;
1491
1492 status = sdw_read_no_pm(slave, SDW_DP0_INT);
1493 if (status < 0) {
1494 dev_err(&slave->dev,
1495 "SDW_DP0_INT read failed:%d\n", status);
1496 return status;
1497 }
1498
1499 do {
1500 clear = status & ~(SDW_DP0_INTERRUPTS | SDW_DP0_SDCA_CASCADE);
1501
1502 if (status & SDW_DP0_INT_TEST_FAIL) {
1503 dev_err(&slave->dev, "Test fail for port 0\n");
1504 clear |= SDW_DP0_INT_TEST_FAIL;
1505 }
1506
1507 /*
1508 * Assumption: PORT_READY interrupt will be received only for
1509 * ports implementing Channel Prepare state machine (CP_SM)
1510 */
1511
1512 if (status & SDW_DP0_INT_PORT_READY) {
1513 complete(&slave->port_ready[0]);
1514 clear |= SDW_DP0_INT_PORT_READY;
1515 }
1516
1517 if (status & SDW_DP0_INT_BRA_FAILURE) {
1518 dev_err(&slave->dev, "BRA failed\n");
1519 clear |= SDW_DP0_INT_BRA_FAILURE;
1520 }
1521
1522 impl_int_mask = SDW_DP0_INT_IMPDEF1 |
1523 SDW_DP0_INT_IMPDEF2 | SDW_DP0_INT_IMPDEF3;
1524
1525 if (status & impl_int_mask) {
1526 clear |= impl_int_mask;
1527 *slave_status = clear;
1528 }
1529
1530 /* clear the interrupts but don't touch reserved and SDCA_CASCADE fields */
1531 ret = sdw_write_no_pm(slave, SDW_DP0_INT, clear);
1532 if (ret < 0) {
1533 dev_err(&slave->dev,
1534 "SDW_DP0_INT write failed:%d\n", ret);
1535 return ret;
1536 }
1537
1538 /* Read DP0 interrupt again */
1539 status2 = sdw_read_no_pm(slave, SDW_DP0_INT);
1540 if (status2 < 0) {
1541 dev_err(&slave->dev,
1542 "SDW_DP0_INT read failed:%d\n", status2);
1543 return status2;
1544 }
1545 /* filter to limit loop to interrupts identified in the first status read */
1546 status &= status2;
1547
1548 count++;
1549
1550 /* we can get alerts while processing so keep retrying */
1551 } while ((status & SDW_DP0_INTERRUPTS) && (count < SDW_READ_INTR_CLEAR_RETRY));
1552
1553 if (count == SDW_READ_INTR_CLEAR_RETRY)
1554 dev_warn(&slave->dev, "Reached MAX_RETRY on DP0 read\n");
1555
1556 return ret;
1557 }
1558
sdw_handle_port_interrupt(struct sdw_slave * slave,int port,u8 * slave_status)1559 static int sdw_handle_port_interrupt(struct sdw_slave *slave,
1560 int port, u8 *slave_status)
1561 {
1562 u8 clear, impl_int_mask;
1563 int status, status2, ret, count = 0;
1564 u32 addr;
1565
1566 if (port == 0)
1567 return sdw_handle_dp0_interrupt(slave, slave_status);
1568
1569 addr = SDW_DPN_INT(port);
1570 status = sdw_read_no_pm(slave, addr);
1571 if (status < 0) {
1572 dev_err(&slave->dev,
1573 "SDW_DPN_INT read failed:%d\n", status);
1574
1575 return status;
1576 }
1577
1578 do {
1579 clear = status & ~SDW_DPN_INTERRUPTS;
1580
1581 if (status & SDW_DPN_INT_TEST_FAIL) {
1582 dev_err(&slave->dev, "Test fail for port:%d\n", port);
1583 clear |= SDW_DPN_INT_TEST_FAIL;
1584 }
1585
1586 /*
1587 * Assumption: PORT_READY interrupt will be received only
1588 * for ports implementing CP_SM.
1589 */
1590 if (status & SDW_DPN_INT_PORT_READY) {
1591 complete(&slave->port_ready[port]);
1592 clear |= SDW_DPN_INT_PORT_READY;
1593 }
1594
1595 impl_int_mask = SDW_DPN_INT_IMPDEF1 |
1596 SDW_DPN_INT_IMPDEF2 | SDW_DPN_INT_IMPDEF3;
1597
1598 if (status & impl_int_mask) {
1599 clear |= impl_int_mask;
1600 *slave_status = clear;
1601 }
1602
1603 /* clear the interrupt but don't touch reserved fields */
1604 ret = sdw_write_no_pm(slave, addr, clear);
1605 if (ret < 0) {
1606 dev_err(&slave->dev,
1607 "SDW_DPN_INT write failed:%d\n", ret);
1608 return ret;
1609 }
1610
1611 /* Read DPN interrupt again */
1612 status2 = sdw_read_no_pm(slave, addr);
1613 if (status2 < 0) {
1614 dev_err(&slave->dev,
1615 "SDW_DPN_INT read failed:%d\n", status2);
1616 return status2;
1617 }
1618 /* filter to limit loop to interrupts identified in the first status read */
1619 status &= status2;
1620
1621 count++;
1622
1623 /* we can get alerts while processing so keep retrying */
1624 } while ((status & SDW_DPN_INTERRUPTS) && (count < SDW_READ_INTR_CLEAR_RETRY));
1625
1626 if (count == SDW_READ_INTR_CLEAR_RETRY)
1627 dev_warn(&slave->dev, "Reached MAX_RETRY on port read");
1628
1629 return ret;
1630 }
1631
sdw_handle_slave_alerts(struct sdw_slave * slave)1632 static int sdw_handle_slave_alerts(struct sdw_slave *slave)
1633 {
1634 struct sdw_slave_intr_status slave_intr;
1635 u8 clear = 0, bit, port_status[15] = {0};
1636 int port_num, stat, ret, count = 0;
1637 unsigned long port;
1638 bool slave_notify;
1639 u8 sdca_cascade = 0;
1640 u8 buf, buf2[2];
1641 bool parity_check;
1642 bool parity_quirk;
1643
1644 sdw_modify_slave_status(slave, SDW_SLAVE_ALERT);
1645
1646 ret = pm_runtime_get_sync(&slave->dev);
1647 if (ret < 0 && ret != -EACCES) {
1648 dev_err(&slave->dev, "Failed to resume device: %d\n", ret);
1649 pm_runtime_put_noidle(&slave->dev);
1650 return ret;
1651 }
1652
1653 /* Read Intstat 1, Intstat 2 and Intstat 3 registers */
1654 ret = sdw_read_no_pm(slave, SDW_SCP_INT1);
1655 if (ret < 0) {
1656 dev_err(&slave->dev,
1657 "SDW_SCP_INT1 read failed:%d\n", ret);
1658 goto io_err;
1659 }
1660 buf = ret;
1661
1662 ret = sdw_nread_no_pm(slave, SDW_SCP_INTSTAT2, 2, buf2);
1663 if (ret < 0) {
1664 dev_err(&slave->dev,
1665 "SDW_SCP_INT2/3 read failed:%d\n", ret);
1666 goto io_err;
1667 }
1668
1669 if (slave->id.class_id) {
1670 ret = sdw_read_no_pm(slave, SDW_DP0_INT);
1671 if (ret < 0) {
1672 dev_err(&slave->dev,
1673 "SDW_DP0_INT read failed:%d\n", ret);
1674 goto io_err;
1675 }
1676 sdca_cascade = ret & SDW_DP0_SDCA_CASCADE;
1677 }
1678
1679 do {
1680 slave_notify = false;
1681
1682 /*
1683 * Check parity, bus clash and Slave (impl defined)
1684 * interrupt
1685 */
1686 if (buf & SDW_SCP_INT1_PARITY) {
1687 parity_check = slave->prop.scp_int1_mask & SDW_SCP_INT1_PARITY;
1688 parity_quirk = !slave->first_interrupt_done &&
1689 (slave->prop.quirks & SDW_SLAVE_QUIRKS_INVALID_INITIAL_PARITY);
1690
1691 if (parity_check && !parity_quirk)
1692 dev_err(&slave->dev, "Parity error detected\n");
1693 clear |= SDW_SCP_INT1_PARITY;
1694 }
1695
1696 if (buf & SDW_SCP_INT1_BUS_CLASH) {
1697 if (slave->prop.scp_int1_mask & SDW_SCP_INT1_BUS_CLASH)
1698 dev_err(&slave->dev, "Bus clash detected\n");
1699 clear |= SDW_SCP_INT1_BUS_CLASH;
1700 }
1701
1702 /*
1703 * When bus clash or parity errors are detected, such errors
1704 * are unlikely to be recoverable errors.
1705 * TODO: In such scenario, reset bus. Make this configurable
1706 * via sysfs property with bus reset being the default.
1707 */
1708
1709 if (buf & SDW_SCP_INT1_IMPL_DEF) {
1710 if (slave->prop.scp_int1_mask & SDW_SCP_INT1_IMPL_DEF) {
1711 dev_dbg(&slave->dev, "Slave impl defined interrupt\n");
1712 slave_notify = true;
1713 }
1714 clear |= SDW_SCP_INT1_IMPL_DEF;
1715 }
1716
1717 /* the SDCA interrupts are cleared in the codec driver .interrupt_callback() */
1718 if (sdca_cascade)
1719 slave_notify = true;
1720
1721 /* Check port 0 - 3 interrupts */
1722 port = buf & SDW_SCP_INT1_PORT0_3;
1723
1724 /* To get port number corresponding to bits, shift it */
1725 port = FIELD_GET(SDW_SCP_INT1_PORT0_3, port);
1726 for_each_set_bit(bit, &port, 8) {
1727 sdw_handle_port_interrupt(slave, bit,
1728 &port_status[bit]);
1729 }
1730
1731 /* Check if cascade 2 interrupt is present */
1732 if (buf & SDW_SCP_INT1_SCP2_CASCADE) {
1733 port = buf2[0] & SDW_SCP_INTSTAT2_PORT4_10;
1734 for_each_set_bit(bit, &port, 8) {
1735 /* scp2 ports start from 4 */
1736 port_num = bit + 4;
1737 sdw_handle_port_interrupt(slave,
1738 port_num,
1739 &port_status[port_num]);
1740 }
1741 }
1742
1743 /* now check last cascade */
1744 if (buf2[0] & SDW_SCP_INTSTAT2_SCP3_CASCADE) {
1745 port = buf2[1] & SDW_SCP_INTSTAT3_PORT11_14;
1746 for_each_set_bit(bit, &port, 8) {
1747 /* scp3 ports start from 11 */
1748 port_num = bit + 11;
1749 sdw_handle_port_interrupt(slave,
1750 port_num,
1751 &port_status[port_num]);
1752 }
1753 }
1754
1755 /* Update the Slave driver */
1756 if (slave_notify) {
1757 mutex_lock(&slave->sdw_dev_lock);
1758
1759 if (slave->probed) {
1760 struct device *dev = &slave->dev;
1761 struct sdw_driver *drv = drv_to_sdw_driver(dev->driver);
1762
1763 if (slave->prop.use_domain_irq && slave->irq)
1764 handle_nested_irq(slave->irq);
1765
1766 if (drv->ops && drv->ops->interrupt_callback) {
1767 slave_intr.sdca_cascade = sdca_cascade;
1768 slave_intr.control_port = clear;
1769 memcpy(slave_intr.port, &port_status,
1770 sizeof(slave_intr.port));
1771
1772 drv->ops->interrupt_callback(slave, &slave_intr);
1773 }
1774 }
1775
1776 mutex_unlock(&slave->sdw_dev_lock);
1777 }
1778
1779 /* Ack interrupt */
1780 ret = sdw_write_no_pm(slave, SDW_SCP_INT1, clear);
1781 if (ret < 0) {
1782 dev_err(&slave->dev,
1783 "SDW_SCP_INT1 write failed:%d\n", ret);
1784 goto io_err;
1785 }
1786
1787 /* at this point all initial interrupt sources were handled */
1788 slave->first_interrupt_done = true;
1789
1790 /*
1791 * Read status again to ensure no new interrupts arrived
1792 * while servicing interrupts.
1793 */
1794 ret = sdw_read_no_pm(slave, SDW_SCP_INT1);
1795 if (ret < 0) {
1796 dev_err(&slave->dev,
1797 "SDW_SCP_INT1 recheck read failed:%d\n", ret);
1798 goto io_err;
1799 }
1800 buf = ret;
1801
1802 ret = sdw_nread_no_pm(slave, SDW_SCP_INTSTAT2, 2, buf2);
1803 if (ret < 0) {
1804 dev_err(&slave->dev,
1805 "SDW_SCP_INT2/3 recheck read failed:%d\n", ret);
1806 goto io_err;
1807 }
1808
1809 if (slave->id.class_id) {
1810 ret = sdw_read_no_pm(slave, SDW_DP0_INT);
1811 if (ret < 0) {
1812 dev_err(&slave->dev,
1813 "SDW_DP0_INT recheck read failed:%d\n", ret);
1814 goto io_err;
1815 }
1816 sdca_cascade = ret & SDW_DP0_SDCA_CASCADE;
1817 }
1818
1819 /*
1820 * Make sure no interrupts are pending
1821 */
1822 stat = buf || buf2[0] || buf2[1] || sdca_cascade;
1823
1824 /*
1825 * Exit loop if Slave is continuously in ALERT state even
1826 * after servicing the interrupt multiple times.
1827 */
1828 count++;
1829
1830 /* we can get alerts while processing so keep retrying */
1831 } while (stat != 0 && count < SDW_READ_INTR_CLEAR_RETRY);
1832
1833 if (count == SDW_READ_INTR_CLEAR_RETRY)
1834 dev_warn(&slave->dev, "Reached MAX_RETRY on alert read\n");
1835
1836 io_err:
1837 pm_runtime_mark_last_busy(&slave->dev);
1838 pm_runtime_put_autosuspend(&slave->dev);
1839
1840 return ret;
1841 }
1842
sdw_update_slave_status(struct sdw_slave * slave,enum sdw_slave_status status)1843 static int sdw_update_slave_status(struct sdw_slave *slave,
1844 enum sdw_slave_status status)
1845 {
1846 int ret = 0;
1847
1848 mutex_lock(&slave->sdw_dev_lock);
1849
1850 if (slave->probed) {
1851 struct device *dev = &slave->dev;
1852 struct sdw_driver *drv = drv_to_sdw_driver(dev->driver);
1853
1854 if (drv->ops && drv->ops->update_status)
1855 ret = drv->ops->update_status(slave, status);
1856 }
1857
1858 mutex_unlock(&slave->sdw_dev_lock);
1859
1860 return ret;
1861 }
1862
1863 /**
1864 * sdw_handle_slave_status() - Handle Slave status
1865 * @bus: SDW bus instance
1866 * @status: Status for all Slave(s)
1867 */
sdw_handle_slave_status(struct sdw_bus * bus,enum sdw_slave_status status[])1868 int sdw_handle_slave_status(struct sdw_bus *bus,
1869 enum sdw_slave_status status[])
1870 {
1871 enum sdw_slave_status prev_status;
1872 struct sdw_slave *slave;
1873 bool attached_initializing, id_programmed;
1874 int i, ret = 0;
1875
1876 /* first check if any Slaves fell off the bus */
1877 for (i = 1; i <= SDW_MAX_DEVICES; i++) {
1878 mutex_lock(&bus->bus_lock);
1879 if (test_bit(i, bus->assigned) == false) {
1880 mutex_unlock(&bus->bus_lock);
1881 continue;
1882 }
1883 mutex_unlock(&bus->bus_lock);
1884
1885 slave = sdw_get_slave(bus, i);
1886 if (!slave)
1887 continue;
1888
1889 if (status[i] == SDW_SLAVE_UNATTACHED &&
1890 slave->status != SDW_SLAVE_UNATTACHED) {
1891 dev_warn(&slave->dev, "Slave %d state check1: UNATTACHED, status was %d\n",
1892 i, slave->status);
1893 sdw_modify_slave_status(slave, SDW_SLAVE_UNATTACHED);
1894
1895 /* Ensure driver knows that peripheral unattached */
1896 ret = sdw_update_slave_status(slave, status[i]);
1897 if (ret < 0)
1898 dev_warn(&slave->dev, "Update Slave status failed:%d\n", ret);
1899 }
1900 }
1901
1902 if (status[0] == SDW_SLAVE_ATTACHED) {
1903 dev_dbg(bus->dev, "Slave attached, programming device number\n");
1904
1905 /*
1906 * Programming a device number will have side effects,
1907 * so we deal with other devices at a later time.
1908 * This relies on those devices reporting ATTACHED, which will
1909 * trigger another call to this function. This will only
1910 * happen if at least one device ID was programmed.
1911 * Error returns from sdw_program_device_num() are currently
1912 * ignored because there's no useful recovery that can be done.
1913 * Returning the error here could result in the current status
1914 * of other devices not being handled, because if no device IDs
1915 * were programmed there's nothing to guarantee a status change
1916 * to trigger another call to this function.
1917 */
1918 sdw_program_device_num(bus, &id_programmed);
1919 if (id_programmed)
1920 return 0;
1921 }
1922
1923 /* Continue to check other slave statuses */
1924 for (i = 1; i <= SDW_MAX_DEVICES; i++) {
1925 mutex_lock(&bus->bus_lock);
1926 if (test_bit(i, bus->assigned) == false) {
1927 mutex_unlock(&bus->bus_lock);
1928 continue;
1929 }
1930 mutex_unlock(&bus->bus_lock);
1931
1932 slave = sdw_get_slave(bus, i);
1933 if (!slave)
1934 continue;
1935
1936 attached_initializing = false;
1937
1938 switch (status[i]) {
1939 case SDW_SLAVE_UNATTACHED:
1940 if (slave->status == SDW_SLAVE_UNATTACHED)
1941 break;
1942
1943 dev_warn(&slave->dev, "Slave %d state check2: UNATTACHED, status was %d\n",
1944 i, slave->status);
1945
1946 sdw_modify_slave_status(slave, SDW_SLAVE_UNATTACHED);
1947 break;
1948
1949 case SDW_SLAVE_ALERT:
1950 ret = sdw_handle_slave_alerts(slave);
1951 if (ret < 0)
1952 dev_err(&slave->dev,
1953 "Slave %d alert handling failed: %d\n",
1954 i, ret);
1955 break;
1956
1957 case SDW_SLAVE_ATTACHED:
1958 if (slave->status == SDW_SLAVE_ATTACHED)
1959 break;
1960
1961 prev_status = slave->status;
1962 sdw_modify_slave_status(slave, SDW_SLAVE_ATTACHED);
1963
1964 if (prev_status == SDW_SLAVE_ALERT)
1965 break;
1966
1967 attached_initializing = true;
1968
1969 ret = sdw_initialize_slave(slave);
1970 if (ret < 0)
1971 dev_err(&slave->dev,
1972 "Slave %d initialization failed: %d\n",
1973 i, ret);
1974
1975 break;
1976
1977 default:
1978 dev_err(&slave->dev, "Invalid slave %d status:%d\n",
1979 i, status[i]);
1980 break;
1981 }
1982
1983 ret = sdw_update_slave_status(slave, status[i]);
1984 if (ret < 0)
1985 dev_err(&slave->dev,
1986 "Update Slave status failed:%d\n", ret);
1987 if (attached_initializing) {
1988 dev_dbg(&slave->dev,
1989 "signaling initialization completion for Slave %d\n",
1990 slave->dev_num);
1991
1992 complete_all(&slave->initialization_complete);
1993
1994 /*
1995 * If the manager became pm_runtime active, the peripherals will be
1996 * restarted and attach, but their pm_runtime status may remain
1997 * suspended. If the 'update_slave_status' callback initiates
1998 * any sort of deferred processing, this processing would not be
1999 * cancelled on pm_runtime suspend.
2000 * To avoid such zombie states, we queue a request to resume.
2001 * This would be a no-op in case the peripheral was being resumed
2002 * by e.g. the ALSA/ASoC framework.
2003 */
2004 pm_request_resume(&slave->dev);
2005 }
2006 }
2007
2008 return ret;
2009 }
2010 EXPORT_SYMBOL(sdw_handle_slave_status);
2011
sdw_clear_slave_status(struct sdw_bus * bus,u32 request)2012 void sdw_clear_slave_status(struct sdw_bus *bus, u32 request)
2013 {
2014 struct sdw_slave *slave;
2015 int i;
2016
2017 /* Check all non-zero devices */
2018 for (i = 1; i <= SDW_MAX_DEVICES; i++) {
2019 mutex_lock(&bus->bus_lock);
2020 if (test_bit(i, bus->assigned) == false) {
2021 mutex_unlock(&bus->bus_lock);
2022 continue;
2023 }
2024 mutex_unlock(&bus->bus_lock);
2025
2026 slave = sdw_get_slave(bus, i);
2027 if (!slave)
2028 continue;
2029
2030 if (slave->status != SDW_SLAVE_UNATTACHED) {
2031 sdw_modify_slave_status(slave, SDW_SLAVE_UNATTACHED);
2032 slave->first_interrupt_done = false;
2033 sdw_update_slave_status(slave, SDW_SLAVE_UNATTACHED);
2034 }
2035
2036 /* keep track of request, used in pm_runtime resume */
2037 slave->unattach_request = request;
2038 }
2039 }
2040 EXPORT_SYMBOL(sdw_clear_slave_status);
2041