1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * AD9832 SPI DDS driver
4  *
5  * Copyright 2011 Analog Devices Inc.
6  */
7 
8 #include <asm/div64.h>
9 
10 #include <linux/clk.h>
11 #include <linux/device.h>
12 #include <linux/err.h>
13 #include <linux/kernel.h>
14 #include <linux/module.h>
15 #include <linux/regulator/consumer.h>
16 #include <linux/slab.h>
17 #include <linux/spi/spi.h>
18 #include <linux/sysfs.h>
19 
20 #include <linux/iio/iio.h>
21 #include <linux/iio/sysfs.h>
22 
23 #include "ad9832.h"
24 
25 #include "dds.h"
26 
27 /* Registers */
28 
29 #define AD9832_FREQ0LL		0x0
30 #define AD9832_FREQ0HL		0x1
31 #define AD9832_FREQ0LM		0x2
32 #define AD9832_FREQ0HM		0x3
33 #define AD9832_FREQ1LL		0x4
34 #define AD9832_FREQ1HL		0x5
35 #define AD9832_FREQ1LM		0x6
36 #define AD9832_FREQ1HM		0x7
37 #define AD9832_PHASE0L		0x8
38 #define AD9832_PHASE0H		0x9
39 #define AD9832_PHASE1L		0xA
40 #define AD9832_PHASE1H		0xB
41 #define AD9832_PHASE2L		0xC
42 #define AD9832_PHASE2H		0xD
43 #define AD9832_PHASE3L		0xE
44 #define AD9832_PHASE3H		0xF
45 
46 #define AD9832_PHASE_SYM	0x10
47 #define AD9832_FREQ_SYM		0x11
48 #define AD9832_PINCTRL_EN	0x12
49 #define AD9832_OUTPUT_EN	0x13
50 
51 /* Command Control Bits */
52 
53 #define AD9832_CMD_PHA8BITSW	0x1
54 #define AD9832_CMD_PHA16BITSW	0x0
55 #define AD9832_CMD_FRE8BITSW	0x3
56 #define AD9832_CMD_FRE16BITSW	0x2
57 #define AD9832_CMD_FPSELECT	0x6
58 #define AD9832_CMD_SYNCSELSRC	0x8
59 #define AD9832_CMD_SLEEPRESCLR	0xC
60 
61 #define AD9832_FREQ		BIT(11)
62 #define AD9832_PHASE(x)		(((x) & 3) << 9)
63 #define AD9832_SYNC		BIT(13)
64 #define AD9832_SELSRC		BIT(12)
65 #define AD9832_SLEEP		BIT(13)
66 #define AD9832_RESET		BIT(12)
67 #define AD9832_CLR		BIT(11)
68 #define CMD_SHIFT		12
69 #define ADD_SHIFT		8
70 #define AD9832_FREQ_BITS	32
71 #define AD9832_PHASE_BITS	12
72 #define RES_MASK(bits)		((1 << (bits)) - 1)
73 
74 /**
75  * struct ad9832_state - driver instance specific data
76  * @spi:		spi_device
77  * @avdd:		supply regulator for the analog section
78  * @dvdd:		supply regulator for the digital section
79  * @mclk:		external master clock
80  * @ctrl_fp:		cached frequency/phase control word
81  * @ctrl_ss:		cached sync/selsrc control word
82  * @ctrl_src:		cached sleep/reset/clr word
83  * @xfer:		default spi transfer
84  * @msg:		default spi message
85  * @freq_xfer:		tuning word spi transfer
86  * @freq_msg:		tuning word spi message
87  * @phase_xfer:		tuning word spi transfer
88  * @phase_msg:		tuning word spi message
89  * @lock:		protect sensor state
90  * @data:		spi transmit buffer
91  * @phase_data:		tuning word spi transmit buffer
92  * @freq_data:		tuning word spi transmit buffer
93  */
94 
95 struct ad9832_state {
96 	struct spi_device		*spi;
97 	struct regulator		*avdd;
98 	struct regulator		*dvdd;
99 	struct clk			*mclk;
100 	unsigned short			ctrl_fp;
101 	unsigned short			ctrl_ss;
102 	unsigned short			ctrl_src;
103 	struct spi_transfer		xfer;
104 	struct spi_message		msg;
105 	struct spi_transfer		freq_xfer[4];
106 	struct spi_message		freq_msg;
107 	struct spi_transfer		phase_xfer[2];
108 	struct spi_message		phase_msg;
109 	struct mutex			lock;	/* protect sensor state */
110 	/*
111 	 * DMA (thus cache coherency maintenance) requires the
112 	 * transfer buffers to live in their own cache lines.
113 	 */
114 	union {
115 		__be16			freq_data[4];
116 		__be16			phase_data[2];
117 		__be16			data;
118 	} __aligned(IIO_DMA_MINALIGN);
119 };
120 
ad9832_calc_freqreg(unsigned long mclk,unsigned long fout)121 static unsigned long ad9832_calc_freqreg(unsigned long mclk, unsigned long fout)
122 {
123 	unsigned long long freqreg = (u64)fout *
124 				     (u64)((u64)1L << AD9832_FREQ_BITS);
125 	do_div(freqreg, mclk);
126 	return freqreg;
127 }
128 
ad9832_write_frequency(struct ad9832_state * st,unsigned int addr,unsigned long fout)129 static int ad9832_write_frequency(struct ad9832_state *st,
130 				  unsigned int addr, unsigned long fout)
131 {
132 	unsigned long clk_freq;
133 	unsigned long regval;
134 
135 	clk_freq = clk_get_rate(st->mclk);
136 
137 	if (!clk_freq || fout > (clk_freq / 2))
138 		return -EINVAL;
139 
140 	regval = ad9832_calc_freqreg(clk_freq, fout);
141 
142 	st->freq_data[0] = cpu_to_be16((AD9832_CMD_FRE8BITSW << CMD_SHIFT) |
143 					(addr << ADD_SHIFT) |
144 					((regval >> 24) & 0xFF));
145 	st->freq_data[1] = cpu_to_be16((AD9832_CMD_FRE16BITSW << CMD_SHIFT) |
146 					((addr - 1) << ADD_SHIFT) |
147 					((regval >> 16) & 0xFF));
148 	st->freq_data[2] = cpu_to_be16((AD9832_CMD_FRE8BITSW << CMD_SHIFT) |
149 					((addr - 2) << ADD_SHIFT) |
150 					((regval >> 8) & 0xFF));
151 	st->freq_data[3] = cpu_to_be16((AD9832_CMD_FRE16BITSW << CMD_SHIFT) |
152 					((addr - 3) << ADD_SHIFT) |
153 					((regval >> 0) & 0xFF));
154 
155 	return spi_sync(st->spi, &st->freq_msg);
156 }
157 
ad9832_write_phase(struct ad9832_state * st,unsigned long addr,unsigned long phase)158 static int ad9832_write_phase(struct ad9832_state *st,
159 			      unsigned long addr, unsigned long phase)
160 {
161 	if (phase >= BIT(AD9832_PHASE_BITS))
162 		return -EINVAL;
163 
164 	st->phase_data[0] = cpu_to_be16((AD9832_CMD_PHA8BITSW << CMD_SHIFT) |
165 					(addr << ADD_SHIFT) |
166 					((phase >> 8) & 0xFF));
167 	st->phase_data[1] = cpu_to_be16((AD9832_CMD_PHA16BITSW << CMD_SHIFT) |
168 					((addr - 1) << ADD_SHIFT) |
169 					(phase & 0xFF));
170 
171 	return spi_sync(st->spi, &st->phase_msg);
172 }
173 
ad9832_write(struct device * dev,struct device_attribute * attr,const char * buf,size_t len)174 static ssize_t ad9832_write(struct device *dev, struct device_attribute *attr,
175 			    const char *buf, size_t len)
176 {
177 	struct iio_dev *indio_dev = dev_to_iio_dev(dev);
178 	struct ad9832_state *st = iio_priv(indio_dev);
179 	struct iio_dev_attr *this_attr = to_iio_dev_attr(attr);
180 	int ret;
181 	unsigned long val;
182 
183 	ret = kstrtoul(buf, 10, &val);
184 	if (ret)
185 		goto error_ret;
186 
187 	mutex_lock(&st->lock);
188 	switch ((u32)this_attr->address) {
189 	case AD9832_FREQ0HM:
190 	case AD9832_FREQ1HM:
191 		ret = ad9832_write_frequency(st, this_attr->address, val);
192 		break;
193 	case AD9832_PHASE0H:
194 	case AD9832_PHASE1H:
195 	case AD9832_PHASE2H:
196 	case AD9832_PHASE3H:
197 		ret = ad9832_write_phase(st, this_attr->address, val);
198 		break;
199 	case AD9832_PINCTRL_EN:
200 		if (val)
201 			st->ctrl_ss &= ~AD9832_SELSRC;
202 		else
203 			st->ctrl_ss |= AD9832_SELSRC;
204 		st->data = cpu_to_be16((AD9832_CMD_SYNCSELSRC << CMD_SHIFT) |
205 					st->ctrl_ss);
206 		ret = spi_sync(st->spi, &st->msg);
207 		break;
208 	case AD9832_FREQ_SYM:
209 		if (val == 1) {
210 			st->ctrl_fp |= AD9832_FREQ;
211 		} else if (val == 0) {
212 			st->ctrl_fp &= ~AD9832_FREQ;
213 		} else {
214 			ret = -EINVAL;
215 			break;
216 		}
217 		st->data = cpu_to_be16((AD9832_CMD_FPSELECT << CMD_SHIFT) |
218 					st->ctrl_fp);
219 		ret = spi_sync(st->spi, &st->msg);
220 		break;
221 	case AD9832_PHASE_SYM:
222 		if (val > 3) {
223 			ret = -EINVAL;
224 			break;
225 		}
226 
227 		st->ctrl_fp &= ~AD9832_PHASE(3);
228 		st->ctrl_fp |= AD9832_PHASE(val);
229 
230 		st->data = cpu_to_be16((AD9832_CMD_FPSELECT << CMD_SHIFT) |
231 					st->ctrl_fp);
232 		ret = spi_sync(st->spi, &st->msg);
233 		break;
234 	case AD9832_OUTPUT_EN:
235 		if (val)
236 			st->ctrl_src &= ~(AD9832_RESET | AD9832_SLEEP |
237 					AD9832_CLR);
238 		else
239 			st->ctrl_src |= AD9832_RESET;
240 
241 		st->data = cpu_to_be16((AD9832_CMD_SLEEPRESCLR << CMD_SHIFT) |
242 					st->ctrl_src);
243 		ret = spi_sync(st->spi, &st->msg);
244 		break;
245 	default:
246 		ret = -ENODEV;
247 	}
248 	mutex_unlock(&st->lock);
249 
250 error_ret:
251 	return ret ? ret : len;
252 }
253 
254 /*
255  * see dds.h for further information
256  */
257 
258 static IIO_DEV_ATTR_FREQ(0, 0, 0200, NULL, ad9832_write, AD9832_FREQ0HM);
259 static IIO_DEV_ATTR_FREQ(0, 1, 0200, NULL, ad9832_write, AD9832_FREQ1HM);
260 static IIO_DEV_ATTR_FREQSYMBOL(0, 0200, NULL, ad9832_write, AD9832_FREQ_SYM);
261 static IIO_CONST_ATTR_FREQ_SCALE(0, "1"); /* 1Hz */
262 
263 static IIO_DEV_ATTR_PHASE(0, 0, 0200, NULL, ad9832_write, AD9832_PHASE0H);
264 static IIO_DEV_ATTR_PHASE(0, 1, 0200, NULL, ad9832_write, AD9832_PHASE1H);
265 static IIO_DEV_ATTR_PHASE(0, 2, 0200, NULL, ad9832_write, AD9832_PHASE2H);
266 static IIO_DEV_ATTR_PHASE(0, 3, 0200, NULL, ad9832_write, AD9832_PHASE3H);
267 static IIO_DEV_ATTR_PHASESYMBOL(0, 0200, NULL,
268 				ad9832_write, AD9832_PHASE_SYM);
269 static IIO_CONST_ATTR_PHASE_SCALE(0, "0.0015339808"); /* 2PI/2^12 rad*/
270 
271 static IIO_DEV_ATTR_PINCONTROL_EN(0, 0200, NULL,
272 				ad9832_write, AD9832_PINCTRL_EN);
273 static IIO_DEV_ATTR_OUT_ENABLE(0, 0200, NULL,
274 				ad9832_write, AD9832_OUTPUT_EN);
275 
276 static struct attribute *ad9832_attributes[] = {
277 	&iio_dev_attr_out_altvoltage0_frequency0.dev_attr.attr,
278 	&iio_dev_attr_out_altvoltage0_frequency1.dev_attr.attr,
279 	&iio_const_attr_out_altvoltage0_frequency_scale.dev_attr.attr,
280 	&iio_dev_attr_out_altvoltage0_phase0.dev_attr.attr,
281 	&iio_dev_attr_out_altvoltage0_phase1.dev_attr.attr,
282 	&iio_dev_attr_out_altvoltage0_phase2.dev_attr.attr,
283 	&iio_dev_attr_out_altvoltage0_phase3.dev_attr.attr,
284 	&iio_const_attr_out_altvoltage0_phase_scale.dev_attr.attr,
285 	&iio_dev_attr_out_altvoltage0_pincontrol_en.dev_attr.attr,
286 	&iio_dev_attr_out_altvoltage0_frequencysymbol.dev_attr.attr,
287 	&iio_dev_attr_out_altvoltage0_phasesymbol.dev_attr.attr,
288 	&iio_dev_attr_out_altvoltage0_out_enable.dev_attr.attr,
289 	NULL,
290 };
291 
292 static const struct attribute_group ad9832_attribute_group = {
293 	.attrs = ad9832_attributes,
294 };
295 
296 static const struct iio_info ad9832_info = {
297 	.attrs = &ad9832_attribute_group,
298 };
299 
ad9832_reg_disable(void * reg)300 static void ad9832_reg_disable(void *reg)
301 {
302 	regulator_disable(reg);
303 }
304 
ad9832_probe(struct spi_device * spi)305 static int ad9832_probe(struct spi_device *spi)
306 {
307 	struct ad9832_platform_data *pdata = dev_get_platdata(&spi->dev);
308 	struct iio_dev *indio_dev;
309 	struct ad9832_state *st;
310 	int ret;
311 
312 	if (!pdata) {
313 		dev_dbg(&spi->dev, "no platform data?\n");
314 		return -ENODEV;
315 	}
316 
317 	indio_dev = devm_iio_device_alloc(&spi->dev, sizeof(*st));
318 	if (!indio_dev)
319 		return -ENOMEM;
320 
321 	st = iio_priv(indio_dev);
322 
323 	st->avdd = devm_regulator_get(&spi->dev, "avdd");
324 	if (IS_ERR(st->avdd))
325 		return PTR_ERR(st->avdd);
326 
327 	ret = regulator_enable(st->avdd);
328 	if (ret) {
329 		dev_err(&spi->dev, "Failed to enable specified AVDD supply\n");
330 		return ret;
331 	}
332 
333 	ret = devm_add_action_or_reset(&spi->dev, ad9832_reg_disable, st->avdd);
334 	if (ret)
335 		return ret;
336 
337 	st->dvdd = devm_regulator_get(&spi->dev, "dvdd");
338 	if (IS_ERR(st->dvdd))
339 		return PTR_ERR(st->dvdd);
340 
341 	ret = regulator_enable(st->dvdd);
342 	if (ret) {
343 		dev_err(&spi->dev, "Failed to enable specified DVDD supply\n");
344 		return ret;
345 	}
346 
347 	ret = devm_add_action_or_reset(&spi->dev, ad9832_reg_disable, st->dvdd);
348 	if (ret)
349 		return ret;
350 
351 	st->mclk = devm_clk_get_enabled(&spi->dev, "mclk");
352 	if (IS_ERR(st->mclk))
353 		return PTR_ERR(st->mclk);
354 
355 	st->spi = spi;
356 	mutex_init(&st->lock);
357 
358 	indio_dev->name = spi_get_device_id(spi)->name;
359 	indio_dev->info = &ad9832_info;
360 	indio_dev->modes = INDIO_DIRECT_MODE;
361 
362 	/* Setup default messages */
363 
364 	st->xfer.tx_buf = &st->data;
365 	st->xfer.len = 2;
366 
367 	spi_message_init(&st->msg);
368 	spi_message_add_tail(&st->xfer, &st->msg);
369 
370 	st->freq_xfer[0].tx_buf = &st->freq_data[0];
371 	st->freq_xfer[0].len = 2;
372 	st->freq_xfer[0].cs_change = 1;
373 	st->freq_xfer[1].tx_buf = &st->freq_data[1];
374 	st->freq_xfer[1].len = 2;
375 	st->freq_xfer[1].cs_change = 1;
376 	st->freq_xfer[2].tx_buf = &st->freq_data[2];
377 	st->freq_xfer[2].len = 2;
378 	st->freq_xfer[2].cs_change = 1;
379 	st->freq_xfer[3].tx_buf = &st->freq_data[3];
380 	st->freq_xfer[3].len = 2;
381 
382 	spi_message_init(&st->freq_msg);
383 	spi_message_add_tail(&st->freq_xfer[0], &st->freq_msg);
384 	spi_message_add_tail(&st->freq_xfer[1], &st->freq_msg);
385 	spi_message_add_tail(&st->freq_xfer[2], &st->freq_msg);
386 	spi_message_add_tail(&st->freq_xfer[3], &st->freq_msg);
387 
388 	st->phase_xfer[0].tx_buf = &st->phase_data[0];
389 	st->phase_xfer[0].len = 2;
390 	st->phase_xfer[0].cs_change = 1;
391 	st->phase_xfer[1].tx_buf = &st->phase_data[1];
392 	st->phase_xfer[1].len = 2;
393 
394 	spi_message_init(&st->phase_msg);
395 	spi_message_add_tail(&st->phase_xfer[0], &st->phase_msg);
396 	spi_message_add_tail(&st->phase_xfer[1], &st->phase_msg);
397 
398 	st->ctrl_src = AD9832_SLEEP | AD9832_RESET | AD9832_CLR;
399 	st->data = cpu_to_be16((AD9832_CMD_SLEEPRESCLR << CMD_SHIFT) |
400 					st->ctrl_src);
401 	ret = spi_sync(st->spi, &st->msg);
402 	if (ret) {
403 		dev_err(&spi->dev, "device init failed\n");
404 		return ret;
405 	}
406 
407 	ret = ad9832_write_frequency(st, AD9832_FREQ0HM, pdata->freq0);
408 	if (ret)
409 		return ret;
410 
411 	ret = ad9832_write_frequency(st, AD9832_FREQ1HM, pdata->freq1);
412 	if (ret)
413 		return ret;
414 
415 	ret = ad9832_write_phase(st, AD9832_PHASE0H, pdata->phase0);
416 	if (ret)
417 		return ret;
418 
419 	ret = ad9832_write_phase(st, AD9832_PHASE1H, pdata->phase1);
420 	if (ret)
421 		return ret;
422 
423 	ret = ad9832_write_phase(st, AD9832_PHASE2H, pdata->phase2);
424 	if (ret)
425 		return ret;
426 
427 	ret = ad9832_write_phase(st, AD9832_PHASE3H, pdata->phase3);
428 	if (ret)
429 		return ret;
430 
431 	return devm_iio_device_register(&spi->dev, indio_dev);
432 }
433 
434 static const struct spi_device_id ad9832_id[] = {
435 	{"ad9832", 0},
436 	{"ad9835", 0},
437 	{}
438 };
439 MODULE_DEVICE_TABLE(spi, ad9832_id);
440 
441 static struct spi_driver ad9832_driver = {
442 	.driver = {
443 		.name	= "ad9832",
444 	},
445 	.probe		= ad9832_probe,
446 	.id_table	= ad9832_id,
447 };
448 module_spi_driver(ad9832_driver);
449 
450 MODULE_AUTHOR("Michael Hennerich <[email protected]>");
451 MODULE_DESCRIPTION("Analog Devices AD9832/AD9835 DDS");
452 MODULE_LICENSE("GPL v2");
453