1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (C) 2007 Oracle. All rights reserved.
4 */
5
6 #include <linux/sched.h>
7 #include <linux/sched/signal.h>
8 #include <linux/pagemap.h>
9 #include <linux/writeback.h>
10 #include <linux/blkdev.h>
11 #include <linux/sort.h>
12 #include <linux/rcupdate.h>
13 #include <linux/kthread.h>
14 #include <linux/slab.h>
15 #include <linux/ratelimit.h>
16 #include <linux/percpu_counter.h>
17 #include <linux/lockdep.h>
18 #include <linux/crc32c.h>
19 #include "ctree.h"
20 #include "extent-tree.h"
21 #include "transaction.h"
22 #include "disk-io.h"
23 #include "print-tree.h"
24 #include "volumes.h"
25 #include "raid56.h"
26 #include "locking.h"
27 #include "free-space-cache.h"
28 #include "free-space-tree.h"
29 #include "qgroup.h"
30 #include "ref-verify.h"
31 #include "space-info.h"
32 #include "block-rsv.h"
33 #include "discard.h"
34 #include "zoned.h"
35 #include "dev-replace.h"
36 #include "fs.h"
37 #include "accessors.h"
38 #include "root-tree.h"
39 #include "file-item.h"
40 #include "orphan.h"
41 #include "tree-checker.h"
42 #include "raid-stripe-tree.h"
43
44 #undef SCRAMBLE_DELAYED_REFS
45
46
47 static int __btrfs_free_extent(struct btrfs_trans_handle *trans,
48 struct btrfs_delayed_ref_head *href,
49 struct btrfs_delayed_ref_node *node,
50 struct btrfs_delayed_extent_op *extra_op);
51 static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op,
52 struct extent_buffer *leaf,
53 struct btrfs_extent_item *ei);
54 static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
55 u64 parent, u64 root_objectid,
56 u64 flags, u64 owner, u64 offset,
57 struct btrfs_key *ins, int ref_mod, u64 oref_root);
58 static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans,
59 struct btrfs_delayed_ref_node *node,
60 struct btrfs_delayed_extent_op *extent_op);
61 static int find_next_key(struct btrfs_path *path, int level,
62 struct btrfs_key *key);
63
block_group_bits(struct btrfs_block_group * cache,u64 bits)64 static int block_group_bits(struct btrfs_block_group *cache, u64 bits)
65 {
66 return (cache->flags & bits) == bits;
67 }
68
69 /* simple helper to search for an existing data extent at a given offset */
btrfs_lookup_data_extent(struct btrfs_fs_info * fs_info,u64 start,u64 len)70 int btrfs_lookup_data_extent(struct btrfs_fs_info *fs_info, u64 start, u64 len)
71 {
72 struct btrfs_root *root = btrfs_extent_root(fs_info, start);
73 int ret;
74 struct btrfs_key key;
75 struct btrfs_path *path;
76
77 path = btrfs_alloc_path();
78 if (!path)
79 return -ENOMEM;
80
81 key.objectid = start;
82 key.offset = len;
83 key.type = BTRFS_EXTENT_ITEM_KEY;
84 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
85 btrfs_free_path(path);
86 return ret;
87 }
88
89 /*
90 * helper function to lookup reference count and flags of a tree block.
91 *
92 * the head node for delayed ref is used to store the sum of all the
93 * reference count modifications queued up in the rbtree. the head
94 * node may also store the extent flags to set. This way you can check
95 * to see what the reference count and extent flags would be if all of
96 * the delayed refs are not processed.
97 */
btrfs_lookup_extent_info(struct btrfs_trans_handle * trans,struct btrfs_fs_info * fs_info,u64 bytenr,u64 offset,int metadata,u64 * refs,u64 * flags,u64 * owning_root)98 int btrfs_lookup_extent_info(struct btrfs_trans_handle *trans,
99 struct btrfs_fs_info *fs_info, u64 bytenr,
100 u64 offset, int metadata, u64 *refs, u64 *flags,
101 u64 *owning_root)
102 {
103 struct btrfs_root *extent_root;
104 struct btrfs_delayed_ref_head *head;
105 struct btrfs_delayed_ref_root *delayed_refs;
106 struct btrfs_path *path;
107 struct btrfs_key key;
108 u64 num_refs;
109 u64 extent_flags;
110 u64 owner = 0;
111 int ret;
112
113 /*
114 * If we don't have skinny metadata, don't bother doing anything
115 * different
116 */
117 if (metadata && !btrfs_fs_incompat(fs_info, SKINNY_METADATA)) {
118 offset = fs_info->nodesize;
119 metadata = 0;
120 }
121
122 path = btrfs_alloc_path();
123 if (!path)
124 return -ENOMEM;
125
126 search_again:
127 key.objectid = bytenr;
128 key.offset = offset;
129 if (metadata)
130 key.type = BTRFS_METADATA_ITEM_KEY;
131 else
132 key.type = BTRFS_EXTENT_ITEM_KEY;
133
134 extent_root = btrfs_extent_root(fs_info, bytenr);
135 ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
136 if (ret < 0)
137 goto out_free;
138
139 if (ret > 0 && key.type == BTRFS_METADATA_ITEM_KEY) {
140 if (path->slots[0]) {
141 path->slots[0]--;
142 btrfs_item_key_to_cpu(path->nodes[0], &key,
143 path->slots[0]);
144 if (key.objectid == bytenr &&
145 key.type == BTRFS_EXTENT_ITEM_KEY &&
146 key.offset == fs_info->nodesize)
147 ret = 0;
148 }
149 }
150
151 if (ret == 0) {
152 struct extent_buffer *leaf = path->nodes[0];
153 struct btrfs_extent_item *ei;
154 const u32 item_size = btrfs_item_size(leaf, path->slots[0]);
155
156 if (unlikely(item_size < sizeof(*ei))) {
157 ret = -EUCLEAN;
158 btrfs_err(fs_info,
159 "unexpected extent item size, has %u expect >= %zu",
160 item_size, sizeof(*ei));
161 btrfs_abort_transaction(trans, ret);
162 goto out_free;
163 }
164
165 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
166 num_refs = btrfs_extent_refs(leaf, ei);
167 if (unlikely(num_refs == 0)) {
168 ret = -EUCLEAN;
169 btrfs_err(fs_info,
170 "unexpected zero reference count for extent item (%llu %u %llu)",
171 key.objectid, key.type, key.offset);
172 btrfs_abort_transaction(trans, ret);
173 goto out_free;
174 }
175 extent_flags = btrfs_extent_flags(leaf, ei);
176 owner = btrfs_get_extent_owner_root(fs_info, leaf, path->slots[0]);
177 } else {
178 num_refs = 0;
179 extent_flags = 0;
180 ret = 0;
181 }
182
183 delayed_refs = &trans->transaction->delayed_refs;
184 spin_lock(&delayed_refs->lock);
185 head = btrfs_find_delayed_ref_head(fs_info, delayed_refs, bytenr);
186 if (head) {
187 if (!mutex_trylock(&head->mutex)) {
188 refcount_inc(&head->refs);
189 spin_unlock(&delayed_refs->lock);
190
191 btrfs_release_path(path);
192
193 /*
194 * Mutex was contended, block until it's released and try
195 * again
196 */
197 mutex_lock(&head->mutex);
198 mutex_unlock(&head->mutex);
199 btrfs_put_delayed_ref_head(head);
200 goto search_again;
201 }
202 spin_lock(&head->lock);
203 if (head->extent_op && head->extent_op->update_flags)
204 extent_flags |= head->extent_op->flags_to_set;
205
206 num_refs += head->ref_mod;
207 spin_unlock(&head->lock);
208 mutex_unlock(&head->mutex);
209 }
210 spin_unlock(&delayed_refs->lock);
211
212 WARN_ON(num_refs == 0);
213 if (refs)
214 *refs = num_refs;
215 if (flags)
216 *flags = extent_flags;
217 if (owning_root)
218 *owning_root = owner;
219 out_free:
220 btrfs_free_path(path);
221 return ret;
222 }
223
224 /*
225 * Back reference rules. Back refs have three main goals:
226 *
227 * 1) differentiate between all holders of references to an extent so that
228 * when a reference is dropped we can make sure it was a valid reference
229 * before freeing the extent.
230 *
231 * 2) Provide enough information to quickly find the holders of an extent
232 * if we notice a given block is corrupted or bad.
233 *
234 * 3) Make it easy to migrate blocks for FS shrinking or storage pool
235 * maintenance. This is actually the same as #2, but with a slightly
236 * different use case.
237 *
238 * There are two kinds of back refs. The implicit back refs is optimized
239 * for pointers in non-shared tree blocks. For a given pointer in a block,
240 * back refs of this kind provide information about the block's owner tree
241 * and the pointer's key. These information allow us to find the block by
242 * b-tree searching. The full back refs is for pointers in tree blocks not
243 * referenced by their owner trees. The location of tree block is recorded
244 * in the back refs. Actually the full back refs is generic, and can be
245 * used in all cases the implicit back refs is used. The major shortcoming
246 * of the full back refs is its overhead. Every time a tree block gets
247 * COWed, we have to update back refs entry for all pointers in it.
248 *
249 * For a newly allocated tree block, we use implicit back refs for
250 * pointers in it. This means most tree related operations only involve
251 * implicit back refs. For a tree block created in old transaction, the
252 * only way to drop a reference to it is COW it. So we can detect the
253 * event that tree block loses its owner tree's reference and do the
254 * back refs conversion.
255 *
256 * When a tree block is COWed through a tree, there are four cases:
257 *
258 * The reference count of the block is one and the tree is the block's
259 * owner tree. Nothing to do in this case.
260 *
261 * The reference count of the block is one and the tree is not the
262 * block's owner tree. In this case, full back refs is used for pointers
263 * in the block. Remove these full back refs, add implicit back refs for
264 * every pointers in the new block.
265 *
266 * The reference count of the block is greater than one and the tree is
267 * the block's owner tree. In this case, implicit back refs is used for
268 * pointers in the block. Add full back refs for every pointers in the
269 * block, increase lower level extents' reference counts. The original
270 * implicit back refs are entailed to the new block.
271 *
272 * The reference count of the block is greater than one and the tree is
273 * not the block's owner tree. Add implicit back refs for every pointer in
274 * the new block, increase lower level extents' reference count.
275 *
276 * Back Reference Key composing:
277 *
278 * The key objectid corresponds to the first byte in the extent,
279 * The key type is used to differentiate between types of back refs.
280 * There are different meanings of the key offset for different types
281 * of back refs.
282 *
283 * File extents can be referenced by:
284 *
285 * - multiple snapshots, subvolumes, or different generations in one subvol
286 * - different files inside a single subvolume
287 * - different offsets inside a file (bookend extents in file.c)
288 *
289 * The extent ref structure for the implicit back refs has fields for:
290 *
291 * - Objectid of the subvolume root
292 * - objectid of the file holding the reference
293 * - original offset in the file
294 * - how many bookend extents
295 *
296 * The key offset for the implicit back refs is hash of the first
297 * three fields.
298 *
299 * The extent ref structure for the full back refs has field for:
300 *
301 * - number of pointers in the tree leaf
302 *
303 * The key offset for the implicit back refs is the first byte of
304 * the tree leaf
305 *
306 * When a file extent is allocated, The implicit back refs is used.
307 * the fields are filled in:
308 *
309 * (root_key.objectid, inode objectid, offset in file, 1)
310 *
311 * When a file extent is removed file truncation, we find the
312 * corresponding implicit back refs and check the following fields:
313 *
314 * (btrfs_header_owner(leaf), inode objectid, offset in file)
315 *
316 * Btree extents can be referenced by:
317 *
318 * - Different subvolumes
319 *
320 * Both the implicit back refs and the full back refs for tree blocks
321 * only consist of key. The key offset for the implicit back refs is
322 * objectid of block's owner tree. The key offset for the full back refs
323 * is the first byte of parent block.
324 *
325 * When implicit back refs is used, information about the lowest key and
326 * level of the tree block are required. These information are stored in
327 * tree block info structure.
328 */
329
330 /*
331 * is_data == BTRFS_REF_TYPE_BLOCK, tree block type is required,
332 * is_data == BTRFS_REF_TYPE_DATA, data type is requiried,
333 * is_data == BTRFS_REF_TYPE_ANY, either type is OK.
334 */
btrfs_get_extent_inline_ref_type(const struct extent_buffer * eb,struct btrfs_extent_inline_ref * iref,enum btrfs_inline_ref_type is_data)335 int btrfs_get_extent_inline_ref_type(const struct extent_buffer *eb,
336 struct btrfs_extent_inline_ref *iref,
337 enum btrfs_inline_ref_type is_data)
338 {
339 struct btrfs_fs_info *fs_info = eb->fs_info;
340 int type = btrfs_extent_inline_ref_type(eb, iref);
341 u64 offset = btrfs_extent_inline_ref_offset(eb, iref);
342
343 if (type == BTRFS_EXTENT_OWNER_REF_KEY) {
344 ASSERT(btrfs_fs_incompat(fs_info, SIMPLE_QUOTA));
345 return type;
346 }
347
348 if (type == BTRFS_TREE_BLOCK_REF_KEY ||
349 type == BTRFS_SHARED_BLOCK_REF_KEY ||
350 type == BTRFS_SHARED_DATA_REF_KEY ||
351 type == BTRFS_EXTENT_DATA_REF_KEY) {
352 if (is_data == BTRFS_REF_TYPE_BLOCK) {
353 if (type == BTRFS_TREE_BLOCK_REF_KEY)
354 return type;
355 if (type == BTRFS_SHARED_BLOCK_REF_KEY) {
356 ASSERT(fs_info);
357 /*
358 * Every shared one has parent tree block,
359 * which must be aligned to sector size.
360 */
361 if (offset && IS_ALIGNED(offset, fs_info->sectorsize))
362 return type;
363 }
364 } else if (is_data == BTRFS_REF_TYPE_DATA) {
365 if (type == BTRFS_EXTENT_DATA_REF_KEY)
366 return type;
367 if (type == BTRFS_SHARED_DATA_REF_KEY) {
368 ASSERT(fs_info);
369 /*
370 * Every shared one has parent tree block,
371 * which must be aligned to sector size.
372 */
373 if (offset &&
374 IS_ALIGNED(offset, fs_info->sectorsize))
375 return type;
376 }
377 } else {
378 ASSERT(is_data == BTRFS_REF_TYPE_ANY);
379 return type;
380 }
381 }
382
383 WARN_ON(1);
384 btrfs_print_leaf(eb);
385 btrfs_err(fs_info,
386 "eb %llu iref 0x%lx invalid extent inline ref type %d",
387 eb->start, (unsigned long)iref, type);
388
389 return BTRFS_REF_TYPE_INVALID;
390 }
391
hash_extent_data_ref(u64 root_objectid,u64 owner,u64 offset)392 u64 hash_extent_data_ref(u64 root_objectid, u64 owner, u64 offset)
393 {
394 u32 high_crc = ~(u32)0;
395 u32 low_crc = ~(u32)0;
396 __le64 lenum;
397
398 lenum = cpu_to_le64(root_objectid);
399 high_crc = crc32c(high_crc, &lenum, sizeof(lenum));
400 lenum = cpu_to_le64(owner);
401 low_crc = crc32c(low_crc, &lenum, sizeof(lenum));
402 lenum = cpu_to_le64(offset);
403 low_crc = crc32c(low_crc, &lenum, sizeof(lenum));
404
405 return ((u64)high_crc << 31) ^ (u64)low_crc;
406 }
407
hash_extent_data_ref_item(struct extent_buffer * leaf,struct btrfs_extent_data_ref * ref)408 static u64 hash_extent_data_ref_item(struct extent_buffer *leaf,
409 struct btrfs_extent_data_ref *ref)
410 {
411 return hash_extent_data_ref(btrfs_extent_data_ref_root(leaf, ref),
412 btrfs_extent_data_ref_objectid(leaf, ref),
413 btrfs_extent_data_ref_offset(leaf, ref));
414 }
415
match_extent_data_ref(struct extent_buffer * leaf,struct btrfs_extent_data_ref * ref,u64 root_objectid,u64 owner,u64 offset)416 static int match_extent_data_ref(struct extent_buffer *leaf,
417 struct btrfs_extent_data_ref *ref,
418 u64 root_objectid, u64 owner, u64 offset)
419 {
420 if (btrfs_extent_data_ref_root(leaf, ref) != root_objectid ||
421 btrfs_extent_data_ref_objectid(leaf, ref) != owner ||
422 btrfs_extent_data_ref_offset(leaf, ref) != offset)
423 return 0;
424 return 1;
425 }
426
lookup_extent_data_ref(struct btrfs_trans_handle * trans,struct btrfs_path * path,u64 bytenr,u64 parent,u64 root_objectid,u64 owner,u64 offset)427 static noinline int lookup_extent_data_ref(struct btrfs_trans_handle *trans,
428 struct btrfs_path *path,
429 u64 bytenr, u64 parent,
430 u64 root_objectid,
431 u64 owner, u64 offset)
432 {
433 struct btrfs_root *root = btrfs_extent_root(trans->fs_info, bytenr);
434 struct btrfs_key key;
435 struct btrfs_extent_data_ref *ref;
436 struct extent_buffer *leaf;
437 u32 nritems;
438 int recow;
439 int ret;
440
441 key.objectid = bytenr;
442 if (parent) {
443 key.type = BTRFS_SHARED_DATA_REF_KEY;
444 key.offset = parent;
445 } else {
446 key.type = BTRFS_EXTENT_DATA_REF_KEY;
447 key.offset = hash_extent_data_ref(root_objectid,
448 owner, offset);
449 }
450 again:
451 recow = 0;
452 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
453 if (ret < 0)
454 return ret;
455
456 if (parent) {
457 if (ret)
458 return -ENOENT;
459 return 0;
460 }
461
462 ret = -ENOENT;
463 leaf = path->nodes[0];
464 nritems = btrfs_header_nritems(leaf);
465 while (1) {
466 if (path->slots[0] >= nritems) {
467 ret = btrfs_next_leaf(root, path);
468 if (ret) {
469 if (ret > 0)
470 return -ENOENT;
471 return ret;
472 }
473
474 leaf = path->nodes[0];
475 nritems = btrfs_header_nritems(leaf);
476 recow = 1;
477 }
478
479 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
480 if (key.objectid != bytenr ||
481 key.type != BTRFS_EXTENT_DATA_REF_KEY)
482 goto fail;
483
484 ref = btrfs_item_ptr(leaf, path->slots[0],
485 struct btrfs_extent_data_ref);
486
487 if (match_extent_data_ref(leaf, ref, root_objectid,
488 owner, offset)) {
489 if (recow) {
490 btrfs_release_path(path);
491 goto again;
492 }
493 ret = 0;
494 break;
495 }
496 path->slots[0]++;
497 }
498 fail:
499 return ret;
500 }
501
insert_extent_data_ref(struct btrfs_trans_handle * trans,struct btrfs_path * path,struct btrfs_delayed_ref_node * node,u64 bytenr)502 static noinline int insert_extent_data_ref(struct btrfs_trans_handle *trans,
503 struct btrfs_path *path,
504 struct btrfs_delayed_ref_node *node,
505 u64 bytenr)
506 {
507 struct btrfs_root *root = btrfs_extent_root(trans->fs_info, bytenr);
508 struct btrfs_key key;
509 struct extent_buffer *leaf;
510 u64 owner = btrfs_delayed_ref_owner(node);
511 u64 offset = btrfs_delayed_ref_offset(node);
512 u32 size;
513 u32 num_refs;
514 int ret;
515
516 key.objectid = bytenr;
517 if (node->parent) {
518 key.type = BTRFS_SHARED_DATA_REF_KEY;
519 key.offset = node->parent;
520 size = sizeof(struct btrfs_shared_data_ref);
521 } else {
522 key.type = BTRFS_EXTENT_DATA_REF_KEY;
523 key.offset = hash_extent_data_ref(node->ref_root, owner, offset);
524 size = sizeof(struct btrfs_extent_data_ref);
525 }
526
527 ret = btrfs_insert_empty_item(trans, root, path, &key, size);
528 if (ret && ret != -EEXIST)
529 goto fail;
530
531 leaf = path->nodes[0];
532 if (node->parent) {
533 struct btrfs_shared_data_ref *ref;
534 ref = btrfs_item_ptr(leaf, path->slots[0],
535 struct btrfs_shared_data_ref);
536 if (ret == 0) {
537 btrfs_set_shared_data_ref_count(leaf, ref, node->ref_mod);
538 } else {
539 num_refs = btrfs_shared_data_ref_count(leaf, ref);
540 num_refs += node->ref_mod;
541 btrfs_set_shared_data_ref_count(leaf, ref, num_refs);
542 }
543 } else {
544 struct btrfs_extent_data_ref *ref;
545 while (ret == -EEXIST) {
546 ref = btrfs_item_ptr(leaf, path->slots[0],
547 struct btrfs_extent_data_ref);
548 if (match_extent_data_ref(leaf, ref, node->ref_root,
549 owner, offset))
550 break;
551 btrfs_release_path(path);
552 key.offset++;
553 ret = btrfs_insert_empty_item(trans, root, path, &key,
554 size);
555 if (ret && ret != -EEXIST)
556 goto fail;
557
558 leaf = path->nodes[0];
559 }
560 ref = btrfs_item_ptr(leaf, path->slots[0],
561 struct btrfs_extent_data_ref);
562 if (ret == 0) {
563 btrfs_set_extent_data_ref_root(leaf, ref, node->ref_root);
564 btrfs_set_extent_data_ref_objectid(leaf, ref, owner);
565 btrfs_set_extent_data_ref_offset(leaf, ref, offset);
566 btrfs_set_extent_data_ref_count(leaf, ref, node->ref_mod);
567 } else {
568 num_refs = btrfs_extent_data_ref_count(leaf, ref);
569 num_refs += node->ref_mod;
570 btrfs_set_extent_data_ref_count(leaf, ref, num_refs);
571 }
572 }
573 ret = 0;
574 fail:
575 btrfs_release_path(path);
576 return ret;
577 }
578
remove_extent_data_ref(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,int refs_to_drop)579 static noinline int remove_extent_data_ref(struct btrfs_trans_handle *trans,
580 struct btrfs_root *root,
581 struct btrfs_path *path,
582 int refs_to_drop)
583 {
584 struct btrfs_key key;
585 struct btrfs_extent_data_ref *ref1 = NULL;
586 struct btrfs_shared_data_ref *ref2 = NULL;
587 struct extent_buffer *leaf;
588 u32 num_refs = 0;
589 int ret = 0;
590
591 leaf = path->nodes[0];
592 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
593
594 if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
595 ref1 = btrfs_item_ptr(leaf, path->slots[0],
596 struct btrfs_extent_data_ref);
597 num_refs = btrfs_extent_data_ref_count(leaf, ref1);
598 } else if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
599 ref2 = btrfs_item_ptr(leaf, path->slots[0],
600 struct btrfs_shared_data_ref);
601 num_refs = btrfs_shared_data_ref_count(leaf, ref2);
602 } else {
603 btrfs_err(trans->fs_info,
604 "unrecognized backref key (%llu %u %llu)",
605 key.objectid, key.type, key.offset);
606 btrfs_abort_transaction(trans, -EUCLEAN);
607 return -EUCLEAN;
608 }
609
610 BUG_ON(num_refs < refs_to_drop);
611 num_refs -= refs_to_drop;
612
613 if (num_refs == 0) {
614 ret = btrfs_del_item(trans, root, path);
615 } else {
616 if (key.type == BTRFS_EXTENT_DATA_REF_KEY)
617 btrfs_set_extent_data_ref_count(leaf, ref1, num_refs);
618 else if (key.type == BTRFS_SHARED_DATA_REF_KEY)
619 btrfs_set_shared_data_ref_count(leaf, ref2, num_refs);
620 }
621 return ret;
622 }
623
extent_data_ref_count(struct btrfs_path * path,struct btrfs_extent_inline_ref * iref)624 static noinline u32 extent_data_ref_count(struct btrfs_path *path,
625 struct btrfs_extent_inline_ref *iref)
626 {
627 struct btrfs_key key;
628 struct extent_buffer *leaf;
629 struct btrfs_extent_data_ref *ref1;
630 struct btrfs_shared_data_ref *ref2;
631 u32 num_refs = 0;
632 int type;
633
634 leaf = path->nodes[0];
635 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
636
637 if (iref) {
638 /*
639 * If type is invalid, we should have bailed out earlier than
640 * this call.
641 */
642 type = btrfs_get_extent_inline_ref_type(leaf, iref, BTRFS_REF_TYPE_DATA);
643 ASSERT(type != BTRFS_REF_TYPE_INVALID);
644 if (type == BTRFS_EXTENT_DATA_REF_KEY) {
645 ref1 = (struct btrfs_extent_data_ref *)(&iref->offset);
646 num_refs = btrfs_extent_data_ref_count(leaf, ref1);
647 } else {
648 ref2 = (struct btrfs_shared_data_ref *)(iref + 1);
649 num_refs = btrfs_shared_data_ref_count(leaf, ref2);
650 }
651 } else if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
652 ref1 = btrfs_item_ptr(leaf, path->slots[0],
653 struct btrfs_extent_data_ref);
654 num_refs = btrfs_extent_data_ref_count(leaf, ref1);
655 } else if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
656 ref2 = btrfs_item_ptr(leaf, path->slots[0],
657 struct btrfs_shared_data_ref);
658 num_refs = btrfs_shared_data_ref_count(leaf, ref2);
659 } else {
660 WARN_ON(1);
661 }
662 return num_refs;
663 }
664
lookup_tree_block_ref(struct btrfs_trans_handle * trans,struct btrfs_path * path,u64 bytenr,u64 parent,u64 root_objectid)665 static noinline int lookup_tree_block_ref(struct btrfs_trans_handle *trans,
666 struct btrfs_path *path,
667 u64 bytenr, u64 parent,
668 u64 root_objectid)
669 {
670 struct btrfs_root *root = btrfs_extent_root(trans->fs_info, bytenr);
671 struct btrfs_key key;
672 int ret;
673
674 key.objectid = bytenr;
675 if (parent) {
676 key.type = BTRFS_SHARED_BLOCK_REF_KEY;
677 key.offset = parent;
678 } else {
679 key.type = BTRFS_TREE_BLOCK_REF_KEY;
680 key.offset = root_objectid;
681 }
682
683 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
684 if (ret > 0)
685 ret = -ENOENT;
686 return ret;
687 }
688
insert_tree_block_ref(struct btrfs_trans_handle * trans,struct btrfs_path * path,struct btrfs_delayed_ref_node * node,u64 bytenr)689 static noinline int insert_tree_block_ref(struct btrfs_trans_handle *trans,
690 struct btrfs_path *path,
691 struct btrfs_delayed_ref_node *node,
692 u64 bytenr)
693 {
694 struct btrfs_root *root = btrfs_extent_root(trans->fs_info, bytenr);
695 struct btrfs_key key;
696 int ret;
697
698 key.objectid = bytenr;
699 if (node->parent) {
700 key.type = BTRFS_SHARED_BLOCK_REF_KEY;
701 key.offset = node->parent;
702 } else {
703 key.type = BTRFS_TREE_BLOCK_REF_KEY;
704 key.offset = node->ref_root;
705 }
706
707 ret = btrfs_insert_empty_item(trans, root, path, &key, 0);
708 btrfs_release_path(path);
709 return ret;
710 }
711
extent_ref_type(u64 parent,u64 owner)712 static inline int extent_ref_type(u64 parent, u64 owner)
713 {
714 int type;
715 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
716 if (parent > 0)
717 type = BTRFS_SHARED_BLOCK_REF_KEY;
718 else
719 type = BTRFS_TREE_BLOCK_REF_KEY;
720 } else {
721 if (parent > 0)
722 type = BTRFS_SHARED_DATA_REF_KEY;
723 else
724 type = BTRFS_EXTENT_DATA_REF_KEY;
725 }
726 return type;
727 }
728
find_next_key(struct btrfs_path * path,int level,struct btrfs_key * key)729 static int find_next_key(struct btrfs_path *path, int level,
730 struct btrfs_key *key)
731
732 {
733 for (; level < BTRFS_MAX_LEVEL; level++) {
734 if (!path->nodes[level])
735 break;
736 if (path->slots[level] + 1 >=
737 btrfs_header_nritems(path->nodes[level]))
738 continue;
739 if (level == 0)
740 btrfs_item_key_to_cpu(path->nodes[level], key,
741 path->slots[level] + 1);
742 else
743 btrfs_node_key_to_cpu(path->nodes[level], key,
744 path->slots[level] + 1);
745 return 0;
746 }
747 return 1;
748 }
749
750 /*
751 * look for inline back ref. if back ref is found, *ref_ret is set
752 * to the address of inline back ref, and 0 is returned.
753 *
754 * if back ref isn't found, *ref_ret is set to the address where it
755 * should be inserted, and -ENOENT is returned.
756 *
757 * if insert is true and there are too many inline back refs, the path
758 * points to the extent item, and -EAGAIN is returned.
759 *
760 * NOTE: inline back refs are ordered in the same way that back ref
761 * items in the tree are ordered.
762 */
763 static noinline_for_stack
lookup_inline_extent_backref(struct btrfs_trans_handle * trans,struct btrfs_path * path,struct btrfs_extent_inline_ref ** ref_ret,u64 bytenr,u64 num_bytes,u64 parent,u64 root_objectid,u64 owner,u64 offset,int insert)764 int lookup_inline_extent_backref(struct btrfs_trans_handle *trans,
765 struct btrfs_path *path,
766 struct btrfs_extent_inline_ref **ref_ret,
767 u64 bytenr, u64 num_bytes,
768 u64 parent, u64 root_objectid,
769 u64 owner, u64 offset, int insert)
770 {
771 struct btrfs_fs_info *fs_info = trans->fs_info;
772 struct btrfs_root *root = btrfs_extent_root(fs_info, bytenr);
773 struct btrfs_key key;
774 struct extent_buffer *leaf;
775 struct btrfs_extent_item *ei;
776 struct btrfs_extent_inline_ref *iref;
777 u64 flags;
778 u64 item_size;
779 unsigned long ptr;
780 unsigned long end;
781 int extra_size;
782 int type;
783 int want;
784 int ret;
785 bool skinny_metadata = btrfs_fs_incompat(fs_info, SKINNY_METADATA);
786 int needed;
787
788 key.objectid = bytenr;
789 key.type = BTRFS_EXTENT_ITEM_KEY;
790 key.offset = num_bytes;
791
792 want = extent_ref_type(parent, owner);
793 if (insert) {
794 extra_size = btrfs_extent_inline_ref_size(want);
795 path->search_for_extension = 1;
796 } else
797 extra_size = -1;
798
799 /*
800 * Owner is our level, so we can just add one to get the level for the
801 * block we are interested in.
802 */
803 if (skinny_metadata && owner < BTRFS_FIRST_FREE_OBJECTID) {
804 key.type = BTRFS_METADATA_ITEM_KEY;
805 key.offset = owner;
806 }
807
808 again:
809 ret = btrfs_search_slot(trans, root, &key, path, extra_size, 1);
810 if (ret < 0)
811 goto out;
812
813 /*
814 * We may be a newly converted file system which still has the old fat
815 * extent entries for metadata, so try and see if we have one of those.
816 */
817 if (ret > 0 && skinny_metadata) {
818 skinny_metadata = false;
819 if (path->slots[0]) {
820 path->slots[0]--;
821 btrfs_item_key_to_cpu(path->nodes[0], &key,
822 path->slots[0]);
823 if (key.objectid == bytenr &&
824 key.type == BTRFS_EXTENT_ITEM_KEY &&
825 key.offset == num_bytes)
826 ret = 0;
827 }
828 if (ret) {
829 key.objectid = bytenr;
830 key.type = BTRFS_EXTENT_ITEM_KEY;
831 key.offset = num_bytes;
832 btrfs_release_path(path);
833 goto again;
834 }
835 }
836
837 if (ret && !insert) {
838 ret = -ENOENT;
839 goto out;
840 } else if (WARN_ON(ret)) {
841 btrfs_print_leaf(path->nodes[0]);
842 btrfs_err(fs_info,
843 "extent item not found for insert, bytenr %llu num_bytes %llu parent %llu root_objectid %llu owner %llu offset %llu",
844 bytenr, num_bytes, parent, root_objectid, owner,
845 offset);
846 ret = -EUCLEAN;
847 goto out;
848 }
849
850 leaf = path->nodes[0];
851 item_size = btrfs_item_size(leaf, path->slots[0]);
852 if (unlikely(item_size < sizeof(*ei))) {
853 ret = -EUCLEAN;
854 btrfs_err(fs_info,
855 "unexpected extent item size, has %llu expect >= %zu",
856 item_size, sizeof(*ei));
857 btrfs_abort_transaction(trans, ret);
858 goto out;
859 }
860
861 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
862 flags = btrfs_extent_flags(leaf, ei);
863
864 ptr = (unsigned long)(ei + 1);
865 end = (unsigned long)ei + item_size;
866
867 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK && !skinny_metadata) {
868 ptr += sizeof(struct btrfs_tree_block_info);
869 BUG_ON(ptr > end);
870 }
871
872 if (owner >= BTRFS_FIRST_FREE_OBJECTID)
873 needed = BTRFS_REF_TYPE_DATA;
874 else
875 needed = BTRFS_REF_TYPE_BLOCK;
876
877 ret = -ENOENT;
878 while (ptr < end) {
879 iref = (struct btrfs_extent_inline_ref *)ptr;
880 type = btrfs_get_extent_inline_ref_type(leaf, iref, needed);
881 if (type == BTRFS_EXTENT_OWNER_REF_KEY) {
882 ASSERT(btrfs_fs_incompat(fs_info, SIMPLE_QUOTA));
883 ptr += btrfs_extent_inline_ref_size(type);
884 continue;
885 }
886 if (type == BTRFS_REF_TYPE_INVALID) {
887 ret = -EUCLEAN;
888 goto out;
889 }
890
891 if (want < type)
892 break;
893 if (want > type) {
894 ptr += btrfs_extent_inline_ref_size(type);
895 continue;
896 }
897
898 if (type == BTRFS_EXTENT_DATA_REF_KEY) {
899 struct btrfs_extent_data_ref *dref;
900 dref = (struct btrfs_extent_data_ref *)(&iref->offset);
901 if (match_extent_data_ref(leaf, dref, root_objectid,
902 owner, offset)) {
903 ret = 0;
904 break;
905 }
906 if (hash_extent_data_ref_item(leaf, dref) <
907 hash_extent_data_ref(root_objectid, owner, offset))
908 break;
909 } else {
910 u64 ref_offset;
911 ref_offset = btrfs_extent_inline_ref_offset(leaf, iref);
912 if (parent > 0) {
913 if (parent == ref_offset) {
914 ret = 0;
915 break;
916 }
917 if (ref_offset < parent)
918 break;
919 } else {
920 if (root_objectid == ref_offset) {
921 ret = 0;
922 break;
923 }
924 if (ref_offset < root_objectid)
925 break;
926 }
927 }
928 ptr += btrfs_extent_inline_ref_size(type);
929 }
930
931 if (unlikely(ptr > end)) {
932 ret = -EUCLEAN;
933 btrfs_print_leaf(path->nodes[0]);
934 btrfs_crit(fs_info,
935 "overrun extent record at slot %d while looking for inline extent for root %llu owner %llu offset %llu parent %llu",
936 path->slots[0], root_objectid, owner, offset, parent);
937 goto out;
938 }
939
940 if (ret == -ENOENT && insert) {
941 if (item_size + extra_size >=
942 BTRFS_MAX_EXTENT_ITEM_SIZE(root)) {
943 ret = -EAGAIN;
944 goto out;
945 }
946
947 if (path->slots[0] + 1 < btrfs_header_nritems(path->nodes[0])) {
948 struct btrfs_key tmp_key;
949
950 btrfs_item_key_to_cpu(path->nodes[0], &tmp_key, path->slots[0] + 1);
951 if (tmp_key.objectid == bytenr &&
952 tmp_key.type < BTRFS_BLOCK_GROUP_ITEM_KEY) {
953 ret = -EAGAIN;
954 goto out;
955 }
956 goto out_no_entry;
957 }
958
959 if (!path->keep_locks) {
960 btrfs_release_path(path);
961 path->keep_locks = 1;
962 goto again;
963 }
964
965 /*
966 * To add new inline back ref, we have to make sure
967 * there is no corresponding back ref item.
968 * For simplicity, we just do not add new inline back
969 * ref if there is any kind of item for this block
970 */
971 if (find_next_key(path, 0, &key) == 0 &&
972 key.objectid == bytenr &&
973 key.type < BTRFS_BLOCK_GROUP_ITEM_KEY) {
974 ret = -EAGAIN;
975 goto out;
976 }
977 }
978 out_no_entry:
979 *ref_ret = (struct btrfs_extent_inline_ref *)ptr;
980 out:
981 if (path->keep_locks) {
982 path->keep_locks = 0;
983 btrfs_unlock_up_safe(path, 1);
984 }
985 if (insert)
986 path->search_for_extension = 0;
987 return ret;
988 }
989
990 /*
991 * helper to add new inline back ref
992 */
993 static noinline_for_stack
setup_inline_extent_backref(struct btrfs_trans_handle * trans,struct btrfs_path * path,struct btrfs_extent_inline_ref * iref,u64 parent,u64 root_objectid,u64 owner,u64 offset,int refs_to_add,struct btrfs_delayed_extent_op * extent_op)994 void setup_inline_extent_backref(struct btrfs_trans_handle *trans,
995 struct btrfs_path *path,
996 struct btrfs_extent_inline_ref *iref,
997 u64 parent, u64 root_objectid,
998 u64 owner, u64 offset, int refs_to_add,
999 struct btrfs_delayed_extent_op *extent_op)
1000 {
1001 struct extent_buffer *leaf;
1002 struct btrfs_extent_item *ei;
1003 unsigned long ptr;
1004 unsigned long end;
1005 unsigned long item_offset;
1006 u64 refs;
1007 int size;
1008 int type;
1009
1010 leaf = path->nodes[0];
1011 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1012 item_offset = (unsigned long)iref - (unsigned long)ei;
1013
1014 type = extent_ref_type(parent, owner);
1015 size = btrfs_extent_inline_ref_size(type);
1016
1017 btrfs_extend_item(trans, path, size);
1018
1019 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1020 refs = btrfs_extent_refs(leaf, ei);
1021 refs += refs_to_add;
1022 btrfs_set_extent_refs(leaf, ei, refs);
1023 if (extent_op)
1024 __run_delayed_extent_op(extent_op, leaf, ei);
1025
1026 ptr = (unsigned long)ei + item_offset;
1027 end = (unsigned long)ei + btrfs_item_size(leaf, path->slots[0]);
1028 if (ptr < end - size)
1029 memmove_extent_buffer(leaf, ptr + size, ptr,
1030 end - size - ptr);
1031
1032 iref = (struct btrfs_extent_inline_ref *)ptr;
1033 btrfs_set_extent_inline_ref_type(leaf, iref, type);
1034 if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1035 struct btrfs_extent_data_ref *dref;
1036 dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1037 btrfs_set_extent_data_ref_root(leaf, dref, root_objectid);
1038 btrfs_set_extent_data_ref_objectid(leaf, dref, owner);
1039 btrfs_set_extent_data_ref_offset(leaf, dref, offset);
1040 btrfs_set_extent_data_ref_count(leaf, dref, refs_to_add);
1041 } else if (type == BTRFS_SHARED_DATA_REF_KEY) {
1042 struct btrfs_shared_data_ref *sref;
1043 sref = (struct btrfs_shared_data_ref *)(iref + 1);
1044 btrfs_set_shared_data_ref_count(leaf, sref, refs_to_add);
1045 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
1046 } else if (type == BTRFS_SHARED_BLOCK_REF_KEY) {
1047 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
1048 } else {
1049 btrfs_set_extent_inline_ref_offset(leaf, iref, root_objectid);
1050 }
1051 }
1052
lookup_extent_backref(struct btrfs_trans_handle * trans,struct btrfs_path * path,struct btrfs_extent_inline_ref ** ref_ret,u64 bytenr,u64 num_bytes,u64 parent,u64 root_objectid,u64 owner,u64 offset)1053 static int lookup_extent_backref(struct btrfs_trans_handle *trans,
1054 struct btrfs_path *path,
1055 struct btrfs_extent_inline_ref **ref_ret,
1056 u64 bytenr, u64 num_bytes, u64 parent,
1057 u64 root_objectid, u64 owner, u64 offset)
1058 {
1059 int ret;
1060
1061 ret = lookup_inline_extent_backref(trans, path, ref_ret, bytenr,
1062 num_bytes, parent, root_objectid,
1063 owner, offset, 0);
1064 if (ret != -ENOENT)
1065 return ret;
1066
1067 btrfs_release_path(path);
1068 *ref_ret = NULL;
1069
1070 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1071 ret = lookup_tree_block_ref(trans, path, bytenr, parent,
1072 root_objectid);
1073 } else {
1074 ret = lookup_extent_data_ref(trans, path, bytenr, parent,
1075 root_objectid, owner, offset);
1076 }
1077 return ret;
1078 }
1079
1080 /*
1081 * helper to update/remove inline back ref
1082 */
update_inline_extent_backref(struct btrfs_trans_handle * trans,struct btrfs_path * path,struct btrfs_extent_inline_ref * iref,int refs_to_mod,struct btrfs_delayed_extent_op * extent_op)1083 static noinline_for_stack int update_inline_extent_backref(
1084 struct btrfs_trans_handle *trans,
1085 struct btrfs_path *path,
1086 struct btrfs_extent_inline_ref *iref,
1087 int refs_to_mod,
1088 struct btrfs_delayed_extent_op *extent_op)
1089 {
1090 struct extent_buffer *leaf = path->nodes[0];
1091 struct btrfs_fs_info *fs_info = leaf->fs_info;
1092 struct btrfs_extent_item *ei;
1093 struct btrfs_extent_data_ref *dref = NULL;
1094 struct btrfs_shared_data_ref *sref = NULL;
1095 unsigned long ptr;
1096 unsigned long end;
1097 u32 item_size;
1098 int size;
1099 int type;
1100 u64 refs;
1101
1102 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1103 refs = btrfs_extent_refs(leaf, ei);
1104 if (unlikely(refs_to_mod < 0 && refs + refs_to_mod <= 0)) {
1105 struct btrfs_key key;
1106 u32 extent_size;
1107
1108 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1109 if (key.type == BTRFS_METADATA_ITEM_KEY)
1110 extent_size = fs_info->nodesize;
1111 else
1112 extent_size = key.offset;
1113 btrfs_print_leaf(leaf);
1114 btrfs_err(fs_info,
1115 "invalid refs_to_mod for extent %llu num_bytes %u, has %d expect >= -%llu",
1116 key.objectid, extent_size, refs_to_mod, refs);
1117 return -EUCLEAN;
1118 }
1119 refs += refs_to_mod;
1120 btrfs_set_extent_refs(leaf, ei, refs);
1121 if (extent_op)
1122 __run_delayed_extent_op(extent_op, leaf, ei);
1123
1124 type = btrfs_get_extent_inline_ref_type(leaf, iref, BTRFS_REF_TYPE_ANY);
1125 /*
1126 * Function btrfs_get_extent_inline_ref_type() has already printed
1127 * error messages.
1128 */
1129 if (unlikely(type == BTRFS_REF_TYPE_INVALID))
1130 return -EUCLEAN;
1131
1132 if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1133 dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1134 refs = btrfs_extent_data_ref_count(leaf, dref);
1135 } else if (type == BTRFS_SHARED_DATA_REF_KEY) {
1136 sref = (struct btrfs_shared_data_ref *)(iref + 1);
1137 refs = btrfs_shared_data_ref_count(leaf, sref);
1138 } else {
1139 refs = 1;
1140 /*
1141 * For tree blocks we can only drop one ref for it, and tree
1142 * blocks should not have refs > 1.
1143 *
1144 * Furthermore if we're inserting a new inline backref, we
1145 * won't reach this path either. That would be
1146 * setup_inline_extent_backref().
1147 */
1148 if (unlikely(refs_to_mod != -1)) {
1149 struct btrfs_key key;
1150
1151 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1152
1153 btrfs_print_leaf(leaf);
1154 btrfs_err(fs_info,
1155 "invalid refs_to_mod for tree block %llu, has %d expect -1",
1156 key.objectid, refs_to_mod);
1157 return -EUCLEAN;
1158 }
1159 }
1160
1161 if (unlikely(refs_to_mod < 0 && refs < -refs_to_mod)) {
1162 struct btrfs_key key;
1163 u32 extent_size;
1164
1165 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1166 if (key.type == BTRFS_METADATA_ITEM_KEY)
1167 extent_size = fs_info->nodesize;
1168 else
1169 extent_size = key.offset;
1170 btrfs_print_leaf(leaf);
1171 btrfs_err(fs_info,
1172 "invalid refs_to_mod for backref entry, iref %lu extent %llu num_bytes %u, has %d expect >= -%llu",
1173 (unsigned long)iref, key.objectid, extent_size,
1174 refs_to_mod, refs);
1175 return -EUCLEAN;
1176 }
1177 refs += refs_to_mod;
1178
1179 if (refs > 0) {
1180 if (type == BTRFS_EXTENT_DATA_REF_KEY)
1181 btrfs_set_extent_data_ref_count(leaf, dref, refs);
1182 else
1183 btrfs_set_shared_data_ref_count(leaf, sref, refs);
1184 } else {
1185 size = btrfs_extent_inline_ref_size(type);
1186 item_size = btrfs_item_size(leaf, path->slots[0]);
1187 ptr = (unsigned long)iref;
1188 end = (unsigned long)ei + item_size;
1189 if (ptr + size < end)
1190 memmove_extent_buffer(leaf, ptr, ptr + size,
1191 end - ptr - size);
1192 item_size -= size;
1193 btrfs_truncate_item(trans, path, item_size, 1);
1194 }
1195 return 0;
1196 }
1197
1198 static noinline_for_stack
insert_inline_extent_backref(struct btrfs_trans_handle * trans,struct btrfs_path * path,u64 bytenr,u64 num_bytes,u64 parent,u64 root_objectid,u64 owner,u64 offset,int refs_to_add,struct btrfs_delayed_extent_op * extent_op)1199 int insert_inline_extent_backref(struct btrfs_trans_handle *trans,
1200 struct btrfs_path *path,
1201 u64 bytenr, u64 num_bytes, u64 parent,
1202 u64 root_objectid, u64 owner,
1203 u64 offset, int refs_to_add,
1204 struct btrfs_delayed_extent_op *extent_op)
1205 {
1206 struct btrfs_extent_inline_ref *iref;
1207 int ret;
1208
1209 ret = lookup_inline_extent_backref(trans, path, &iref, bytenr,
1210 num_bytes, parent, root_objectid,
1211 owner, offset, 1);
1212 if (ret == 0) {
1213 /*
1214 * We're adding refs to a tree block we already own, this
1215 * should not happen at all.
1216 */
1217 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1218 btrfs_print_leaf(path->nodes[0]);
1219 btrfs_crit(trans->fs_info,
1220 "adding refs to an existing tree ref, bytenr %llu num_bytes %llu root_objectid %llu slot %u",
1221 bytenr, num_bytes, root_objectid, path->slots[0]);
1222 return -EUCLEAN;
1223 }
1224 ret = update_inline_extent_backref(trans, path, iref,
1225 refs_to_add, extent_op);
1226 } else if (ret == -ENOENT) {
1227 setup_inline_extent_backref(trans, path, iref, parent,
1228 root_objectid, owner, offset,
1229 refs_to_add, extent_op);
1230 ret = 0;
1231 }
1232 return ret;
1233 }
1234
remove_extent_backref(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,struct btrfs_extent_inline_ref * iref,int refs_to_drop,int is_data)1235 static int remove_extent_backref(struct btrfs_trans_handle *trans,
1236 struct btrfs_root *root,
1237 struct btrfs_path *path,
1238 struct btrfs_extent_inline_ref *iref,
1239 int refs_to_drop, int is_data)
1240 {
1241 int ret = 0;
1242
1243 BUG_ON(!is_data && refs_to_drop != 1);
1244 if (iref)
1245 ret = update_inline_extent_backref(trans, path, iref,
1246 -refs_to_drop, NULL);
1247 else if (is_data)
1248 ret = remove_extent_data_ref(trans, root, path, refs_to_drop);
1249 else
1250 ret = btrfs_del_item(trans, root, path);
1251 return ret;
1252 }
1253
btrfs_issue_discard(struct block_device * bdev,u64 start,u64 len,u64 * discarded_bytes)1254 static int btrfs_issue_discard(struct block_device *bdev, u64 start, u64 len,
1255 u64 *discarded_bytes)
1256 {
1257 int j, ret = 0;
1258 u64 bytes_left, end;
1259 u64 aligned_start = ALIGN(start, SECTOR_SIZE);
1260
1261 /* Adjust the range to be aligned to 512B sectors if necessary. */
1262 if (start != aligned_start) {
1263 len -= aligned_start - start;
1264 len = round_down(len, SECTOR_SIZE);
1265 start = aligned_start;
1266 }
1267
1268 *discarded_bytes = 0;
1269
1270 if (!len)
1271 return 0;
1272
1273 end = start + len;
1274 bytes_left = len;
1275
1276 /* Skip any superblocks on this device. */
1277 for (j = 0; j < BTRFS_SUPER_MIRROR_MAX; j++) {
1278 u64 sb_start = btrfs_sb_offset(j);
1279 u64 sb_end = sb_start + BTRFS_SUPER_INFO_SIZE;
1280 u64 size = sb_start - start;
1281
1282 if (!in_range(sb_start, start, bytes_left) &&
1283 !in_range(sb_end, start, bytes_left) &&
1284 !in_range(start, sb_start, BTRFS_SUPER_INFO_SIZE))
1285 continue;
1286
1287 /*
1288 * Superblock spans beginning of range. Adjust start and
1289 * try again.
1290 */
1291 if (sb_start <= start) {
1292 start += sb_end - start;
1293 if (start > end) {
1294 bytes_left = 0;
1295 break;
1296 }
1297 bytes_left = end - start;
1298 continue;
1299 }
1300
1301 if (size) {
1302 ret = blkdev_issue_discard(bdev, start >> SECTOR_SHIFT,
1303 size >> SECTOR_SHIFT,
1304 GFP_NOFS);
1305 if (!ret)
1306 *discarded_bytes += size;
1307 else if (ret != -EOPNOTSUPP)
1308 return ret;
1309 }
1310
1311 start = sb_end;
1312 if (start > end) {
1313 bytes_left = 0;
1314 break;
1315 }
1316 bytes_left = end - start;
1317 }
1318
1319 while (bytes_left) {
1320 u64 bytes_to_discard = min(BTRFS_MAX_DISCARD_CHUNK_SIZE, bytes_left);
1321
1322 ret = blkdev_issue_discard(bdev, start >> SECTOR_SHIFT,
1323 bytes_to_discard >> SECTOR_SHIFT,
1324 GFP_NOFS);
1325
1326 if (ret) {
1327 if (ret != -EOPNOTSUPP)
1328 break;
1329 continue;
1330 }
1331
1332 start += bytes_to_discard;
1333 bytes_left -= bytes_to_discard;
1334 *discarded_bytes += bytes_to_discard;
1335
1336 if (btrfs_trim_interrupted()) {
1337 ret = -ERESTARTSYS;
1338 break;
1339 }
1340 }
1341
1342 return ret;
1343 }
1344
do_discard_extent(struct btrfs_discard_stripe * stripe,u64 * bytes)1345 static int do_discard_extent(struct btrfs_discard_stripe *stripe, u64 *bytes)
1346 {
1347 struct btrfs_device *dev = stripe->dev;
1348 struct btrfs_fs_info *fs_info = dev->fs_info;
1349 struct btrfs_dev_replace *dev_replace = &fs_info->dev_replace;
1350 u64 phys = stripe->physical;
1351 u64 len = stripe->length;
1352 u64 discarded = 0;
1353 int ret = 0;
1354
1355 /* Zone reset on a zoned filesystem */
1356 if (btrfs_can_zone_reset(dev, phys, len)) {
1357 u64 src_disc;
1358
1359 ret = btrfs_reset_device_zone(dev, phys, len, &discarded);
1360 if (ret)
1361 goto out;
1362
1363 if (!btrfs_dev_replace_is_ongoing(dev_replace) ||
1364 dev != dev_replace->srcdev)
1365 goto out;
1366
1367 src_disc = discarded;
1368
1369 /* Send to replace target as well */
1370 ret = btrfs_reset_device_zone(dev_replace->tgtdev, phys, len,
1371 &discarded);
1372 discarded += src_disc;
1373 } else if (bdev_max_discard_sectors(stripe->dev->bdev)) {
1374 ret = btrfs_issue_discard(dev->bdev, phys, len, &discarded);
1375 } else {
1376 ret = 0;
1377 *bytes = 0;
1378 }
1379
1380 out:
1381 *bytes = discarded;
1382 return ret;
1383 }
1384
btrfs_discard_extent(struct btrfs_fs_info * fs_info,u64 bytenr,u64 num_bytes,u64 * actual_bytes)1385 int btrfs_discard_extent(struct btrfs_fs_info *fs_info, u64 bytenr,
1386 u64 num_bytes, u64 *actual_bytes)
1387 {
1388 int ret = 0;
1389 u64 discarded_bytes = 0;
1390 u64 end = bytenr + num_bytes;
1391 u64 cur = bytenr;
1392
1393 /*
1394 * Avoid races with device replace and make sure the devices in the
1395 * stripes don't go away while we are discarding.
1396 */
1397 btrfs_bio_counter_inc_blocked(fs_info);
1398 while (cur < end) {
1399 struct btrfs_discard_stripe *stripes;
1400 unsigned int num_stripes;
1401 int i;
1402
1403 num_bytes = end - cur;
1404 stripes = btrfs_map_discard(fs_info, cur, &num_bytes, &num_stripes);
1405 if (IS_ERR(stripes)) {
1406 ret = PTR_ERR(stripes);
1407 if (ret == -EOPNOTSUPP)
1408 ret = 0;
1409 break;
1410 }
1411
1412 for (i = 0; i < num_stripes; i++) {
1413 struct btrfs_discard_stripe *stripe = stripes + i;
1414 u64 bytes;
1415
1416 if (!stripe->dev->bdev) {
1417 ASSERT(btrfs_test_opt(fs_info, DEGRADED));
1418 continue;
1419 }
1420
1421 if (!test_bit(BTRFS_DEV_STATE_WRITEABLE,
1422 &stripe->dev->dev_state))
1423 continue;
1424
1425 ret = do_discard_extent(stripe, &bytes);
1426 if (ret) {
1427 /*
1428 * Keep going if discard is not supported by the
1429 * device.
1430 */
1431 if (ret != -EOPNOTSUPP)
1432 break;
1433 ret = 0;
1434 } else {
1435 discarded_bytes += bytes;
1436 }
1437 }
1438 kfree(stripes);
1439 if (ret)
1440 break;
1441 cur += num_bytes;
1442 }
1443 btrfs_bio_counter_dec(fs_info);
1444 if (actual_bytes)
1445 *actual_bytes = discarded_bytes;
1446 return ret;
1447 }
1448
1449 /* Can return -ENOMEM */
btrfs_inc_extent_ref(struct btrfs_trans_handle * trans,struct btrfs_ref * generic_ref)1450 int btrfs_inc_extent_ref(struct btrfs_trans_handle *trans,
1451 struct btrfs_ref *generic_ref)
1452 {
1453 struct btrfs_fs_info *fs_info = trans->fs_info;
1454 int ret;
1455
1456 ASSERT(generic_ref->type != BTRFS_REF_NOT_SET &&
1457 generic_ref->action);
1458 BUG_ON(generic_ref->type == BTRFS_REF_METADATA &&
1459 generic_ref->ref_root == BTRFS_TREE_LOG_OBJECTID);
1460
1461 if (generic_ref->type == BTRFS_REF_METADATA)
1462 ret = btrfs_add_delayed_tree_ref(trans, generic_ref, NULL);
1463 else
1464 ret = btrfs_add_delayed_data_ref(trans, generic_ref, 0);
1465
1466 btrfs_ref_tree_mod(fs_info, generic_ref);
1467
1468 return ret;
1469 }
1470
1471 /*
1472 * Insert backreference for a given extent.
1473 *
1474 * The counterpart is in __btrfs_free_extent(), with examples and more details
1475 * how it works.
1476 *
1477 * @trans: Handle of transaction
1478 *
1479 * @node: The delayed ref node used to get the bytenr/length for
1480 * extent whose references are incremented.
1481 *
1482 * @extent_op Pointer to a structure, holding information necessary when
1483 * updating a tree block's flags
1484 *
1485 */
__btrfs_inc_extent_ref(struct btrfs_trans_handle * trans,struct btrfs_delayed_ref_node * node,struct btrfs_delayed_extent_op * extent_op)1486 static int __btrfs_inc_extent_ref(struct btrfs_trans_handle *trans,
1487 struct btrfs_delayed_ref_node *node,
1488 struct btrfs_delayed_extent_op *extent_op)
1489 {
1490 struct btrfs_path *path;
1491 struct extent_buffer *leaf;
1492 struct btrfs_extent_item *item;
1493 struct btrfs_key key;
1494 u64 bytenr = node->bytenr;
1495 u64 num_bytes = node->num_bytes;
1496 u64 owner = btrfs_delayed_ref_owner(node);
1497 u64 offset = btrfs_delayed_ref_offset(node);
1498 u64 refs;
1499 int refs_to_add = node->ref_mod;
1500 int ret;
1501
1502 path = btrfs_alloc_path();
1503 if (!path)
1504 return -ENOMEM;
1505
1506 /* this will setup the path even if it fails to insert the back ref */
1507 ret = insert_inline_extent_backref(trans, path, bytenr, num_bytes,
1508 node->parent, node->ref_root, owner,
1509 offset, refs_to_add, extent_op);
1510 if ((ret < 0 && ret != -EAGAIN) || !ret)
1511 goto out;
1512
1513 /*
1514 * Ok we had -EAGAIN which means we didn't have space to insert and
1515 * inline extent ref, so just update the reference count and add a
1516 * normal backref.
1517 */
1518 leaf = path->nodes[0];
1519 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1520 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1521 refs = btrfs_extent_refs(leaf, item);
1522 btrfs_set_extent_refs(leaf, item, refs + refs_to_add);
1523 if (extent_op)
1524 __run_delayed_extent_op(extent_op, leaf, item);
1525
1526 btrfs_release_path(path);
1527
1528 /* now insert the actual backref */
1529 if (owner < BTRFS_FIRST_FREE_OBJECTID)
1530 ret = insert_tree_block_ref(trans, path, node, bytenr);
1531 else
1532 ret = insert_extent_data_ref(trans, path, node, bytenr);
1533
1534 if (ret)
1535 btrfs_abort_transaction(trans, ret);
1536 out:
1537 btrfs_free_path(path);
1538 return ret;
1539 }
1540
free_head_ref_squota_rsv(struct btrfs_fs_info * fs_info,struct btrfs_delayed_ref_head * href)1541 static void free_head_ref_squota_rsv(struct btrfs_fs_info *fs_info,
1542 struct btrfs_delayed_ref_head *href)
1543 {
1544 u64 root = href->owning_root;
1545
1546 /*
1547 * Don't check must_insert_reserved, as this is called from contexts
1548 * where it has already been unset.
1549 */
1550 if (btrfs_qgroup_mode(fs_info) != BTRFS_QGROUP_MODE_SIMPLE ||
1551 !href->is_data || !is_fstree(root))
1552 return;
1553
1554 btrfs_qgroup_free_refroot(fs_info, root, href->reserved_bytes,
1555 BTRFS_QGROUP_RSV_DATA);
1556 }
1557
run_delayed_data_ref(struct btrfs_trans_handle * trans,struct btrfs_delayed_ref_head * href,struct btrfs_delayed_ref_node * node,struct btrfs_delayed_extent_op * extent_op,bool insert_reserved)1558 static int run_delayed_data_ref(struct btrfs_trans_handle *trans,
1559 struct btrfs_delayed_ref_head *href,
1560 struct btrfs_delayed_ref_node *node,
1561 struct btrfs_delayed_extent_op *extent_op,
1562 bool insert_reserved)
1563 {
1564 int ret = 0;
1565 u64 parent = 0;
1566 u64 flags = 0;
1567
1568 trace_run_delayed_data_ref(trans->fs_info, node);
1569
1570 if (node->type == BTRFS_SHARED_DATA_REF_KEY)
1571 parent = node->parent;
1572
1573 if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) {
1574 struct btrfs_key key;
1575 struct btrfs_squota_delta delta = {
1576 .root = href->owning_root,
1577 .num_bytes = node->num_bytes,
1578 .is_data = true,
1579 .is_inc = true,
1580 .generation = trans->transid,
1581 };
1582 u64 owner = btrfs_delayed_ref_owner(node);
1583 u64 offset = btrfs_delayed_ref_offset(node);
1584
1585 if (extent_op)
1586 flags |= extent_op->flags_to_set;
1587
1588 key.objectid = node->bytenr;
1589 key.type = BTRFS_EXTENT_ITEM_KEY;
1590 key.offset = node->num_bytes;
1591
1592 ret = alloc_reserved_file_extent(trans, parent, node->ref_root,
1593 flags, owner, offset, &key,
1594 node->ref_mod,
1595 href->owning_root);
1596 free_head_ref_squota_rsv(trans->fs_info, href);
1597 if (!ret)
1598 ret = btrfs_record_squota_delta(trans->fs_info, &delta);
1599 } else if (node->action == BTRFS_ADD_DELAYED_REF) {
1600 ret = __btrfs_inc_extent_ref(trans, node, extent_op);
1601 } else if (node->action == BTRFS_DROP_DELAYED_REF) {
1602 ret = __btrfs_free_extent(trans, href, node, extent_op);
1603 } else {
1604 BUG();
1605 }
1606 return ret;
1607 }
1608
__run_delayed_extent_op(struct btrfs_delayed_extent_op * extent_op,struct extent_buffer * leaf,struct btrfs_extent_item * ei)1609 static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op,
1610 struct extent_buffer *leaf,
1611 struct btrfs_extent_item *ei)
1612 {
1613 u64 flags = btrfs_extent_flags(leaf, ei);
1614 if (extent_op->update_flags) {
1615 flags |= extent_op->flags_to_set;
1616 btrfs_set_extent_flags(leaf, ei, flags);
1617 }
1618
1619 if (extent_op->update_key) {
1620 struct btrfs_tree_block_info *bi;
1621 BUG_ON(!(flags & BTRFS_EXTENT_FLAG_TREE_BLOCK));
1622 bi = (struct btrfs_tree_block_info *)(ei + 1);
1623 btrfs_set_tree_block_key(leaf, bi, &extent_op->key);
1624 }
1625 }
1626
run_delayed_extent_op(struct btrfs_trans_handle * trans,struct btrfs_delayed_ref_head * head,struct btrfs_delayed_extent_op * extent_op)1627 static int run_delayed_extent_op(struct btrfs_trans_handle *trans,
1628 struct btrfs_delayed_ref_head *head,
1629 struct btrfs_delayed_extent_op *extent_op)
1630 {
1631 struct btrfs_fs_info *fs_info = trans->fs_info;
1632 struct btrfs_root *root;
1633 struct btrfs_key key;
1634 struct btrfs_path *path;
1635 struct btrfs_extent_item *ei;
1636 struct extent_buffer *leaf;
1637 u32 item_size;
1638 int ret;
1639 int metadata = 1;
1640
1641 if (TRANS_ABORTED(trans))
1642 return 0;
1643
1644 if (!btrfs_fs_incompat(fs_info, SKINNY_METADATA))
1645 metadata = 0;
1646
1647 path = btrfs_alloc_path();
1648 if (!path)
1649 return -ENOMEM;
1650
1651 key.objectid = head->bytenr;
1652
1653 if (metadata) {
1654 key.type = BTRFS_METADATA_ITEM_KEY;
1655 key.offset = head->level;
1656 } else {
1657 key.type = BTRFS_EXTENT_ITEM_KEY;
1658 key.offset = head->num_bytes;
1659 }
1660
1661 root = btrfs_extent_root(fs_info, key.objectid);
1662 again:
1663 ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
1664 if (ret < 0) {
1665 goto out;
1666 } else if (ret > 0) {
1667 if (metadata) {
1668 if (path->slots[0] > 0) {
1669 path->slots[0]--;
1670 btrfs_item_key_to_cpu(path->nodes[0], &key,
1671 path->slots[0]);
1672 if (key.objectid == head->bytenr &&
1673 key.type == BTRFS_EXTENT_ITEM_KEY &&
1674 key.offset == head->num_bytes)
1675 ret = 0;
1676 }
1677 if (ret > 0) {
1678 btrfs_release_path(path);
1679 metadata = 0;
1680
1681 key.objectid = head->bytenr;
1682 key.offset = head->num_bytes;
1683 key.type = BTRFS_EXTENT_ITEM_KEY;
1684 goto again;
1685 }
1686 } else {
1687 ret = -EUCLEAN;
1688 btrfs_err(fs_info,
1689 "missing extent item for extent %llu num_bytes %llu level %d",
1690 head->bytenr, head->num_bytes, head->level);
1691 goto out;
1692 }
1693 }
1694
1695 leaf = path->nodes[0];
1696 item_size = btrfs_item_size(leaf, path->slots[0]);
1697
1698 if (unlikely(item_size < sizeof(*ei))) {
1699 ret = -EUCLEAN;
1700 btrfs_err(fs_info,
1701 "unexpected extent item size, has %u expect >= %zu",
1702 item_size, sizeof(*ei));
1703 btrfs_abort_transaction(trans, ret);
1704 goto out;
1705 }
1706
1707 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1708 __run_delayed_extent_op(extent_op, leaf, ei);
1709 out:
1710 btrfs_free_path(path);
1711 return ret;
1712 }
1713
run_delayed_tree_ref(struct btrfs_trans_handle * trans,struct btrfs_delayed_ref_head * href,struct btrfs_delayed_ref_node * node,struct btrfs_delayed_extent_op * extent_op,bool insert_reserved)1714 static int run_delayed_tree_ref(struct btrfs_trans_handle *trans,
1715 struct btrfs_delayed_ref_head *href,
1716 struct btrfs_delayed_ref_node *node,
1717 struct btrfs_delayed_extent_op *extent_op,
1718 bool insert_reserved)
1719 {
1720 int ret = 0;
1721 struct btrfs_fs_info *fs_info = trans->fs_info;
1722 u64 parent = 0;
1723 u64 ref_root = 0;
1724
1725 trace_run_delayed_tree_ref(trans->fs_info, node);
1726
1727 if (node->type == BTRFS_SHARED_BLOCK_REF_KEY)
1728 parent = node->parent;
1729 ref_root = node->ref_root;
1730
1731 if (unlikely(node->ref_mod != 1)) {
1732 btrfs_err(trans->fs_info,
1733 "btree block %llu has %d references rather than 1: action %d ref_root %llu parent %llu",
1734 node->bytenr, node->ref_mod, node->action, ref_root,
1735 parent);
1736 return -EUCLEAN;
1737 }
1738 if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) {
1739 struct btrfs_squota_delta delta = {
1740 .root = href->owning_root,
1741 .num_bytes = fs_info->nodesize,
1742 .is_data = false,
1743 .is_inc = true,
1744 .generation = trans->transid,
1745 };
1746
1747 ret = alloc_reserved_tree_block(trans, node, extent_op);
1748 if (!ret)
1749 btrfs_record_squota_delta(fs_info, &delta);
1750 } else if (node->action == BTRFS_ADD_DELAYED_REF) {
1751 ret = __btrfs_inc_extent_ref(trans, node, extent_op);
1752 } else if (node->action == BTRFS_DROP_DELAYED_REF) {
1753 ret = __btrfs_free_extent(trans, href, node, extent_op);
1754 } else {
1755 BUG();
1756 }
1757 return ret;
1758 }
1759
1760 /* helper function to actually process a single delayed ref entry */
run_one_delayed_ref(struct btrfs_trans_handle * trans,struct btrfs_delayed_ref_head * href,struct btrfs_delayed_ref_node * node,struct btrfs_delayed_extent_op * extent_op,bool insert_reserved)1761 static int run_one_delayed_ref(struct btrfs_trans_handle *trans,
1762 struct btrfs_delayed_ref_head *href,
1763 struct btrfs_delayed_ref_node *node,
1764 struct btrfs_delayed_extent_op *extent_op,
1765 bool insert_reserved)
1766 {
1767 int ret = 0;
1768
1769 if (TRANS_ABORTED(trans)) {
1770 if (insert_reserved) {
1771 btrfs_pin_extent(trans, node->bytenr, node->num_bytes, 1);
1772 free_head_ref_squota_rsv(trans->fs_info, href);
1773 }
1774 return 0;
1775 }
1776
1777 if (node->type == BTRFS_TREE_BLOCK_REF_KEY ||
1778 node->type == BTRFS_SHARED_BLOCK_REF_KEY)
1779 ret = run_delayed_tree_ref(trans, href, node, extent_op,
1780 insert_reserved);
1781 else if (node->type == BTRFS_EXTENT_DATA_REF_KEY ||
1782 node->type == BTRFS_SHARED_DATA_REF_KEY)
1783 ret = run_delayed_data_ref(trans, href, node, extent_op,
1784 insert_reserved);
1785 else if (node->type == BTRFS_EXTENT_OWNER_REF_KEY)
1786 ret = 0;
1787 else
1788 BUG();
1789 if (ret && insert_reserved)
1790 btrfs_pin_extent(trans, node->bytenr, node->num_bytes, 1);
1791 if (ret < 0)
1792 btrfs_err(trans->fs_info,
1793 "failed to run delayed ref for logical %llu num_bytes %llu type %u action %u ref_mod %d: %d",
1794 node->bytenr, node->num_bytes, node->type,
1795 node->action, node->ref_mod, ret);
1796 return ret;
1797 }
1798
cleanup_extent_op(struct btrfs_delayed_ref_head * head)1799 static struct btrfs_delayed_extent_op *cleanup_extent_op(
1800 struct btrfs_delayed_ref_head *head)
1801 {
1802 struct btrfs_delayed_extent_op *extent_op = head->extent_op;
1803
1804 if (!extent_op)
1805 return NULL;
1806
1807 if (head->must_insert_reserved) {
1808 head->extent_op = NULL;
1809 btrfs_free_delayed_extent_op(extent_op);
1810 return NULL;
1811 }
1812 return extent_op;
1813 }
1814
run_and_cleanup_extent_op(struct btrfs_trans_handle * trans,struct btrfs_delayed_ref_head * head)1815 static int run_and_cleanup_extent_op(struct btrfs_trans_handle *trans,
1816 struct btrfs_delayed_ref_head *head)
1817 {
1818 struct btrfs_delayed_extent_op *extent_op;
1819 int ret;
1820
1821 extent_op = cleanup_extent_op(head);
1822 if (!extent_op)
1823 return 0;
1824 head->extent_op = NULL;
1825 spin_unlock(&head->lock);
1826 ret = run_delayed_extent_op(trans, head, extent_op);
1827 btrfs_free_delayed_extent_op(extent_op);
1828 return ret ? ret : 1;
1829 }
1830
btrfs_cleanup_ref_head_accounting(struct btrfs_fs_info * fs_info,struct btrfs_delayed_ref_root * delayed_refs,struct btrfs_delayed_ref_head * head)1831 u64 btrfs_cleanup_ref_head_accounting(struct btrfs_fs_info *fs_info,
1832 struct btrfs_delayed_ref_root *delayed_refs,
1833 struct btrfs_delayed_ref_head *head)
1834 {
1835 u64 ret = 0;
1836
1837 /*
1838 * We had csum deletions accounted for in our delayed refs rsv, we need
1839 * to drop the csum leaves for this update from our delayed_refs_rsv.
1840 */
1841 if (head->total_ref_mod < 0 && head->is_data) {
1842 int nr_csums;
1843
1844 spin_lock(&delayed_refs->lock);
1845 delayed_refs->pending_csums -= head->num_bytes;
1846 spin_unlock(&delayed_refs->lock);
1847 nr_csums = btrfs_csum_bytes_to_leaves(fs_info, head->num_bytes);
1848
1849 btrfs_delayed_refs_rsv_release(fs_info, 0, nr_csums);
1850
1851 ret = btrfs_calc_delayed_ref_csum_bytes(fs_info, nr_csums);
1852 }
1853 /* must_insert_reserved can be set only if we didn't run the head ref. */
1854 if (head->must_insert_reserved)
1855 free_head_ref_squota_rsv(fs_info, head);
1856
1857 return ret;
1858 }
1859
cleanup_ref_head(struct btrfs_trans_handle * trans,struct btrfs_delayed_ref_head * head,u64 * bytes_released)1860 static int cleanup_ref_head(struct btrfs_trans_handle *trans,
1861 struct btrfs_delayed_ref_head *head,
1862 u64 *bytes_released)
1863 {
1864
1865 struct btrfs_fs_info *fs_info = trans->fs_info;
1866 struct btrfs_delayed_ref_root *delayed_refs;
1867 int ret;
1868
1869 delayed_refs = &trans->transaction->delayed_refs;
1870
1871 ret = run_and_cleanup_extent_op(trans, head);
1872 if (ret < 0) {
1873 btrfs_unselect_ref_head(delayed_refs, head);
1874 btrfs_debug(fs_info, "run_delayed_extent_op returned %d", ret);
1875 return ret;
1876 } else if (ret) {
1877 return ret;
1878 }
1879
1880 /*
1881 * Need to drop our head ref lock and re-acquire the delayed ref lock
1882 * and then re-check to make sure nobody got added.
1883 */
1884 spin_unlock(&head->lock);
1885 spin_lock(&delayed_refs->lock);
1886 spin_lock(&head->lock);
1887 if (!RB_EMPTY_ROOT(&head->ref_tree.rb_root) || head->extent_op) {
1888 spin_unlock(&head->lock);
1889 spin_unlock(&delayed_refs->lock);
1890 return 1;
1891 }
1892 btrfs_delete_ref_head(fs_info, delayed_refs, head);
1893 spin_unlock(&head->lock);
1894 spin_unlock(&delayed_refs->lock);
1895
1896 if (head->must_insert_reserved) {
1897 btrfs_pin_extent(trans, head->bytenr, head->num_bytes, 1);
1898 if (head->is_data) {
1899 struct btrfs_root *csum_root;
1900
1901 csum_root = btrfs_csum_root(fs_info, head->bytenr);
1902 ret = btrfs_del_csums(trans, csum_root, head->bytenr,
1903 head->num_bytes);
1904 }
1905 }
1906
1907 *bytes_released += btrfs_cleanup_ref_head_accounting(fs_info, delayed_refs, head);
1908
1909 trace_run_delayed_ref_head(fs_info, head, 0);
1910 btrfs_delayed_ref_unlock(head);
1911 btrfs_put_delayed_ref_head(head);
1912 return ret;
1913 }
1914
btrfs_run_delayed_refs_for_head(struct btrfs_trans_handle * trans,struct btrfs_delayed_ref_head * locked_ref,u64 * bytes_released)1915 static int btrfs_run_delayed_refs_for_head(struct btrfs_trans_handle *trans,
1916 struct btrfs_delayed_ref_head *locked_ref,
1917 u64 *bytes_released)
1918 {
1919 struct btrfs_fs_info *fs_info = trans->fs_info;
1920 struct btrfs_delayed_ref_root *delayed_refs;
1921 struct btrfs_delayed_extent_op *extent_op;
1922 struct btrfs_delayed_ref_node *ref;
1923 bool must_insert_reserved;
1924 int ret;
1925
1926 delayed_refs = &trans->transaction->delayed_refs;
1927
1928 lockdep_assert_held(&locked_ref->mutex);
1929 lockdep_assert_held(&locked_ref->lock);
1930
1931 while ((ref = btrfs_select_delayed_ref(locked_ref))) {
1932 if (ref->seq &&
1933 btrfs_check_delayed_seq(fs_info, ref->seq)) {
1934 spin_unlock(&locked_ref->lock);
1935 btrfs_unselect_ref_head(delayed_refs, locked_ref);
1936 return -EAGAIN;
1937 }
1938
1939 rb_erase_cached(&ref->ref_node, &locked_ref->ref_tree);
1940 RB_CLEAR_NODE(&ref->ref_node);
1941 if (!list_empty(&ref->add_list))
1942 list_del(&ref->add_list);
1943 /*
1944 * When we play the delayed ref, also correct the ref_mod on
1945 * head
1946 */
1947 switch (ref->action) {
1948 case BTRFS_ADD_DELAYED_REF:
1949 case BTRFS_ADD_DELAYED_EXTENT:
1950 locked_ref->ref_mod -= ref->ref_mod;
1951 break;
1952 case BTRFS_DROP_DELAYED_REF:
1953 locked_ref->ref_mod += ref->ref_mod;
1954 break;
1955 default:
1956 WARN_ON(1);
1957 }
1958
1959 /*
1960 * Record the must_insert_reserved flag before we drop the
1961 * spin lock.
1962 */
1963 must_insert_reserved = locked_ref->must_insert_reserved;
1964 /*
1965 * Unsetting this on the head ref relinquishes ownership of
1966 * the rsv_bytes, so it is critical that every possible code
1967 * path from here forward frees all reserves including qgroup
1968 * reserve.
1969 */
1970 locked_ref->must_insert_reserved = false;
1971
1972 extent_op = locked_ref->extent_op;
1973 locked_ref->extent_op = NULL;
1974 spin_unlock(&locked_ref->lock);
1975
1976 ret = run_one_delayed_ref(trans, locked_ref, ref, extent_op,
1977 must_insert_reserved);
1978 btrfs_delayed_refs_rsv_release(fs_info, 1, 0);
1979 *bytes_released += btrfs_calc_delayed_ref_bytes(fs_info, 1);
1980
1981 btrfs_free_delayed_extent_op(extent_op);
1982 if (ret) {
1983 btrfs_unselect_ref_head(delayed_refs, locked_ref);
1984 btrfs_put_delayed_ref(ref);
1985 return ret;
1986 }
1987
1988 btrfs_put_delayed_ref(ref);
1989 cond_resched();
1990
1991 spin_lock(&locked_ref->lock);
1992 btrfs_merge_delayed_refs(fs_info, delayed_refs, locked_ref);
1993 }
1994
1995 return 0;
1996 }
1997
1998 /*
1999 * Returns 0 on success or if called with an already aborted transaction.
2000 * Returns -ENOMEM or -EIO on failure and will abort the transaction.
2001 */
__btrfs_run_delayed_refs(struct btrfs_trans_handle * trans,u64 min_bytes)2002 static noinline int __btrfs_run_delayed_refs(struct btrfs_trans_handle *trans,
2003 u64 min_bytes)
2004 {
2005 struct btrfs_fs_info *fs_info = trans->fs_info;
2006 struct btrfs_delayed_ref_root *delayed_refs;
2007 struct btrfs_delayed_ref_head *locked_ref = NULL;
2008 int ret;
2009 unsigned long count = 0;
2010 unsigned long max_count = 0;
2011 u64 bytes_processed = 0;
2012
2013 delayed_refs = &trans->transaction->delayed_refs;
2014 if (min_bytes == 0) {
2015 max_count = delayed_refs->num_heads_ready;
2016 min_bytes = U64_MAX;
2017 }
2018
2019 do {
2020 if (!locked_ref) {
2021 locked_ref = btrfs_select_ref_head(fs_info, delayed_refs);
2022 if (IS_ERR_OR_NULL(locked_ref)) {
2023 if (PTR_ERR(locked_ref) == -EAGAIN) {
2024 continue;
2025 } else {
2026 break;
2027 }
2028 }
2029 count++;
2030 }
2031 /*
2032 * We need to try and merge add/drops of the same ref since we
2033 * can run into issues with relocate dropping the implicit ref
2034 * and then it being added back again before the drop can
2035 * finish. If we merged anything we need to re-loop so we can
2036 * get a good ref.
2037 * Or we can get node references of the same type that weren't
2038 * merged when created due to bumps in the tree mod seq, and
2039 * we need to merge them to prevent adding an inline extent
2040 * backref before dropping it (triggering a BUG_ON at
2041 * insert_inline_extent_backref()).
2042 */
2043 spin_lock(&locked_ref->lock);
2044 btrfs_merge_delayed_refs(fs_info, delayed_refs, locked_ref);
2045
2046 ret = btrfs_run_delayed_refs_for_head(trans, locked_ref, &bytes_processed);
2047 if (ret < 0 && ret != -EAGAIN) {
2048 /*
2049 * Error, btrfs_run_delayed_refs_for_head already
2050 * unlocked everything so just bail out
2051 */
2052 return ret;
2053 } else if (!ret) {
2054 /*
2055 * Success, perform the usual cleanup of a processed
2056 * head
2057 */
2058 ret = cleanup_ref_head(trans, locked_ref, &bytes_processed);
2059 if (ret > 0 ) {
2060 /* We dropped our lock, we need to loop. */
2061 ret = 0;
2062 continue;
2063 } else if (ret) {
2064 return ret;
2065 }
2066 }
2067
2068 /*
2069 * Either success case or btrfs_run_delayed_refs_for_head
2070 * returned -EAGAIN, meaning we need to select another head
2071 */
2072
2073 locked_ref = NULL;
2074 cond_resched();
2075 } while ((min_bytes != U64_MAX && bytes_processed < min_bytes) ||
2076 (max_count > 0 && count < max_count) ||
2077 locked_ref);
2078
2079 return 0;
2080 }
2081
2082 #ifdef SCRAMBLE_DELAYED_REFS
2083 /*
2084 * Normally delayed refs get processed in ascending bytenr order. This
2085 * correlates in most cases to the order added. To expose dependencies on this
2086 * order, we start to process the tree in the middle instead of the beginning
2087 */
find_middle(struct rb_root * root)2088 static u64 find_middle(struct rb_root *root)
2089 {
2090 struct rb_node *n = root->rb_node;
2091 struct btrfs_delayed_ref_node *entry;
2092 int alt = 1;
2093 u64 middle;
2094 u64 first = 0, last = 0;
2095
2096 n = rb_first(root);
2097 if (n) {
2098 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2099 first = entry->bytenr;
2100 }
2101 n = rb_last(root);
2102 if (n) {
2103 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2104 last = entry->bytenr;
2105 }
2106 n = root->rb_node;
2107
2108 while (n) {
2109 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2110 WARN_ON(!entry->in_tree);
2111
2112 middle = entry->bytenr;
2113
2114 if (alt)
2115 n = n->rb_left;
2116 else
2117 n = n->rb_right;
2118
2119 alt = 1 - alt;
2120 }
2121 return middle;
2122 }
2123 #endif
2124
2125 /*
2126 * Start processing the delayed reference count updates and extent insertions
2127 * we have queued up so far.
2128 *
2129 * @trans: Transaction handle.
2130 * @min_bytes: How many bytes of delayed references to process. After this
2131 * many bytes we stop processing delayed references if there are
2132 * any more. If 0 it means to run all existing delayed references,
2133 * but not new ones added after running all existing ones.
2134 * Use (u64)-1 (U64_MAX) to run all existing delayed references
2135 * plus any new ones that are added.
2136 *
2137 * Returns 0 on success or if called with an aborted transaction
2138 * Returns <0 on error and aborts the transaction
2139 */
btrfs_run_delayed_refs(struct btrfs_trans_handle * trans,u64 min_bytes)2140 int btrfs_run_delayed_refs(struct btrfs_trans_handle *trans, u64 min_bytes)
2141 {
2142 struct btrfs_fs_info *fs_info = trans->fs_info;
2143 struct btrfs_delayed_ref_root *delayed_refs;
2144 int ret;
2145
2146 /* We'll clean this up in btrfs_cleanup_transaction */
2147 if (TRANS_ABORTED(trans))
2148 return 0;
2149
2150 if (test_bit(BTRFS_FS_CREATING_FREE_SPACE_TREE, &fs_info->flags))
2151 return 0;
2152
2153 delayed_refs = &trans->transaction->delayed_refs;
2154 again:
2155 #ifdef SCRAMBLE_DELAYED_REFS
2156 delayed_refs->run_delayed_start = find_middle(&delayed_refs->root);
2157 #endif
2158 ret = __btrfs_run_delayed_refs(trans, min_bytes);
2159 if (ret < 0) {
2160 btrfs_abort_transaction(trans, ret);
2161 return ret;
2162 }
2163
2164 if (min_bytes == U64_MAX) {
2165 btrfs_create_pending_block_groups(trans);
2166
2167 spin_lock(&delayed_refs->lock);
2168 if (xa_empty(&delayed_refs->head_refs)) {
2169 spin_unlock(&delayed_refs->lock);
2170 return 0;
2171 }
2172 spin_unlock(&delayed_refs->lock);
2173
2174 cond_resched();
2175 goto again;
2176 }
2177
2178 return 0;
2179 }
2180
btrfs_set_disk_extent_flags(struct btrfs_trans_handle * trans,struct extent_buffer * eb,u64 flags)2181 int btrfs_set_disk_extent_flags(struct btrfs_trans_handle *trans,
2182 struct extent_buffer *eb, u64 flags)
2183 {
2184 struct btrfs_delayed_extent_op *extent_op;
2185 int ret;
2186
2187 extent_op = btrfs_alloc_delayed_extent_op();
2188 if (!extent_op)
2189 return -ENOMEM;
2190
2191 extent_op->flags_to_set = flags;
2192 extent_op->update_flags = true;
2193 extent_op->update_key = false;
2194
2195 ret = btrfs_add_delayed_extent_op(trans, eb->start, eb->len,
2196 btrfs_header_level(eb), extent_op);
2197 if (ret)
2198 btrfs_free_delayed_extent_op(extent_op);
2199 return ret;
2200 }
2201
check_delayed_ref(struct btrfs_inode * inode,struct btrfs_path * path,u64 offset,u64 bytenr)2202 static noinline int check_delayed_ref(struct btrfs_inode *inode,
2203 struct btrfs_path *path,
2204 u64 offset, u64 bytenr)
2205 {
2206 struct btrfs_root *root = inode->root;
2207 struct btrfs_delayed_ref_head *head;
2208 struct btrfs_delayed_ref_node *ref;
2209 struct btrfs_delayed_ref_root *delayed_refs;
2210 struct btrfs_transaction *cur_trans;
2211 struct rb_node *node;
2212 int ret = 0;
2213
2214 spin_lock(&root->fs_info->trans_lock);
2215 cur_trans = root->fs_info->running_transaction;
2216 if (cur_trans)
2217 refcount_inc(&cur_trans->use_count);
2218 spin_unlock(&root->fs_info->trans_lock);
2219 if (!cur_trans)
2220 return 0;
2221
2222 delayed_refs = &cur_trans->delayed_refs;
2223 spin_lock(&delayed_refs->lock);
2224 head = btrfs_find_delayed_ref_head(root->fs_info, delayed_refs, bytenr);
2225 if (!head) {
2226 spin_unlock(&delayed_refs->lock);
2227 btrfs_put_transaction(cur_trans);
2228 return 0;
2229 }
2230
2231 if (!mutex_trylock(&head->mutex)) {
2232 if (path->nowait) {
2233 spin_unlock(&delayed_refs->lock);
2234 btrfs_put_transaction(cur_trans);
2235 return -EAGAIN;
2236 }
2237
2238 refcount_inc(&head->refs);
2239 spin_unlock(&delayed_refs->lock);
2240
2241 btrfs_release_path(path);
2242
2243 /*
2244 * Mutex was contended, block until it's released and let
2245 * caller try again
2246 */
2247 mutex_lock(&head->mutex);
2248 mutex_unlock(&head->mutex);
2249 btrfs_put_delayed_ref_head(head);
2250 btrfs_put_transaction(cur_trans);
2251 return -EAGAIN;
2252 }
2253 spin_unlock(&delayed_refs->lock);
2254
2255 spin_lock(&head->lock);
2256 /*
2257 * XXX: We should replace this with a proper search function in the
2258 * future.
2259 */
2260 for (node = rb_first_cached(&head->ref_tree); node;
2261 node = rb_next(node)) {
2262 u64 ref_owner;
2263 u64 ref_offset;
2264
2265 ref = rb_entry(node, struct btrfs_delayed_ref_node, ref_node);
2266 /* If it's a shared ref we know a cross reference exists */
2267 if (ref->type != BTRFS_EXTENT_DATA_REF_KEY) {
2268 ret = 1;
2269 break;
2270 }
2271
2272 ref_owner = btrfs_delayed_ref_owner(ref);
2273 ref_offset = btrfs_delayed_ref_offset(ref);
2274
2275 /*
2276 * If our ref doesn't match the one we're currently looking at
2277 * then we have a cross reference.
2278 */
2279 if (ref->ref_root != btrfs_root_id(root) ||
2280 ref_owner != btrfs_ino(inode) || ref_offset != offset) {
2281 ret = 1;
2282 break;
2283 }
2284 }
2285 spin_unlock(&head->lock);
2286 mutex_unlock(&head->mutex);
2287 btrfs_put_transaction(cur_trans);
2288 return ret;
2289 }
2290
2291 /*
2292 * Check if there are references for a data extent other than the one belonging
2293 * to the given inode and offset.
2294 *
2295 * @inode: The only inode we expect to find associated with the data extent.
2296 * @path: A path to use for searching the extent tree.
2297 * @offset: The only offset we expect to find associated with the data extent.
2298 * @bytenr: The logical address of the data extent.
2299 *
2300 * When the extent does not have any other references other than the one we
2301 * expect to find, we always return a value of 0 with the path having a locked
2302 * leaf that contains the extent's extent item - this is necessary to ensure
2303 * we don't race with a task running delayed references, and our caller must
2304 * have such a path when calling check_delayed_ref() - it must lock a delayed
2305 * ref head while holding the leaf locked. In case the extent item is not found
2306 * in the extent tree, we return -ENOENT with the path having the leaf (locked)
2307 * where the extent item should be, in order to prevent races with another task
2308 * running delayed references, so that we don't miss any reference when calling
2309 * check_delayed_ref().
2310 *
2311 * Note: this may return false positives, and this is because we want to be
2312 * quick here as we're called in write paths (when flushing delalloc and
2313 * in the direct IO write path). For example we can have an extent with
2314 * a single reference but that reference is not inlined, or we may have
2315 * many references in the extent tree but we also have delayed references
2316 * that cancel all the reference except the one for our inode and offset,
2317 * but it would be expensive to do such checks and complex due to all
2318 * locking to avoid races between the checks and flushing delayed refs,
2319 * plus non-inline references may be located on leaves other than the one
2320 * that contains the extent item in the extent tree. The important thing
2321 * here is to not return false negatives and that the false positives are
2322 * not very common.
2323 *
2324 * Returns: 0 if there are no cross references and with the path having a locked
2325 * leaf from the extent tree that contains the extent's extent item.
2326 *
2327 * 1 if there are cross references (false positives can happen).
2328 *
2329 * < 0 in case of an error. In case of -ENOENT the leaf in the extent
2330 * tree where the extent item should be located at is read locked and
2331 * accessible in the given path.
2332 */
check_committed_ref(struct btrfs_inode * inode,struct btrfs_path * path,u64 offset,u64 bytenr)2333 static noinline int check_committed_ref(struct btrfs_inode *inode,
2334 struct btrfs_path *path,
2335 u64 offset, u64 bytenr)
2336 {
2337 struct btrfs_root *root = inode->root;
2338 struct btrfs_fs_info *fs_info = root->fs_info;
2339 struct btrfs_root *extent_root = btrfs_extent_root(fs_info, bytenr);
2340 struct extent_buffer *leaf;
2341 struct btrfs_extent_data_ref *ref;
2342 struct btrfs_extent_inline_ref *iref;
2343 struct btrfs_extent_item *ei;
2344 struct btrfs_key key;
2345 u32 item_size;
2346 u32 expected_size;
2347 int type;
2348 int ret;
2349
2350 key.objectid = bytenr;
2351 key.offset = (u64)-1;
2352 key.type = BTRFS_EXTENT_ITEM_KEY;
2353
2354 ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
2355 if (ret < 0)
2356 return ret;
2357 if (ret == 0) {
2358 /*
2359 * Key with offset -1 found, there would have to exist an extent
2360 * item with such offset, but this is out of the valid range.
2361 */
2362 return -EUCLEAN;
2363 }
2364
2365 if (path->slots[0] == 0)
2366 return -ENOENT;
2367
2368 path->slots[0]--;
2369 leaf = path->nodes[0];
2370 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2371
2372 if (key.objectid != bytenr || key.type != BTRFS_EXTENT_ITEM_KEY)
2373 return -ENOENT;
2374
2375 item_size = btrfs_item_size(leaf, path->slots[0]);
2376 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
2377 expected_size = sizeof(*ei) + btrfs_extent_inline_ref_size(BTRFS_EXTENT_DATA_REF_KEY);
2378
2379 /* No inline refs; we need to bail before checking for owner ref. */
2380 if (item_size == sizeof(*ei))
2381 return 1;
2382
2383 /* Check for an owner ref; skip over it to the real inline refs. */
2384 iref = (struct btrfs_extent_inline_ref *)(ei + 1);
2385 type = btrfs_get_extent_inline_ref_type(leaf, iref, BTRFS_REF_TYPE_DATA);
2386 if (btrfs_fs_incompat(fs_info, SIMPLE_QUOTA) && type == BTRFS_EXTENT_OWNER_REF_KEY) {
2387 expected_size += btrfs_extent_inline_ref_size(BTRFS_EXTENT_OWNER_REF_KEY);
2388 iref = (struct btrfs_extent_inline_ref *)(iref + 1);
2389 type = btrfs_get_extent_inline_ref_type(leaf, iref, BTRFS_REF_TYPE_DATA);
2390 }
2391
2392 /* If extent item has more than 1 inline ref then it's shared */
2393 if (item_size != expected_size)
2394 return 1;
2395
2396 /* If this extent has SHARED_DATA_REF then it's shared */
2397 if (type != BTRFS_EXTENT_DATA_REF_KEY)
2398 return 1;
2399
2400 ref = (struct btrfs_extent_data_ref *)(&iref->offset);
2401 if (btrfs_extent_refs(leaf, ei) !=
2402 btrfs_extent_data_ref_count(leaf, ref) ||
2403 btrfs_extent_data_ref_root(leaf, ref) != btrfs_root_id(root) ||
2404 btrfs_extent_data_ref_objectid(leaf, ref) != btrfs_ino(inode) ||
2405 btrfs_extent_data_ref_offset(leaf, ref) != offset)
2406 return 1;
2407
2408 return 0;
2409 }
2410
btrfs_cross_ref_exist(struct btrfs_inode * inode,u64 offset,u64 bytenr,struct btrfs_path * path)2411 int btrfs_cross_ref_exist(struct btrfs_inode *inode, u64 offset,
2412 u64 bytenr, struct btrfs_path *path)
2413 {
2414 int ret;
2415
2416 do {
2417 ret = check_committed_ref(inode, path, offset, bytenr);
2418 if (ret && ret != -ENOENT)
2419 goto out;
2420
2421 /*
2422 * The path must have a locked leaf from the extent tree where
2423 * the extent item for our extent is located, in case it exists,
2424 * or where it should be located in case it doesn't exist yet
2425 * because it's new and its delayed ref was not yet flushed.
2426 * We need to lock the delayed ref head at check_delayed_ref(),
2427 * if one exists, while holding the leaf locked in order to not
2428 * race with delayed ref flushing, missing references and
2429 * incorrectly reporting that the extent is not shared.
2430 */
2431 if (IS_ENABLED(CONFIG_BTRFS_ASSERT)) {
2432 struct extent_buffer *leaf = path->nodes[0];
2433
2434 ASSERT(leaf != NULL);
2435 btrfs_assert_tree_read_locked(leaf);
2436
2437 if (ret != -ENOENT) {
2438 struct btrfs_key key;
2439
2440 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2441 ASSERT(key.objectid == bytenr);
2442 ASSERT(key.type == BTRFS_EXTENT_ITEM_KEY);
2443 }
2444 }
2445
2446 ret = check_delayed_ref(inode, path, offset, bytenr);
2447 } while (ret == -EAGAIN && !path->nowait);
2448
2449 out:
2450 btrfs_release_path(path);
2451 if (btrfs_is_data_reloc_root(inode->root))
2452 WARN_ON(ret > 0);
2453 return ret;
2454 }
2455
__btrfs_mod_ref(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct extent_buffer * buf,int full_backref,int inc)2456 static int __btrfs_mod_ref(struct btrfs_trans_handle *trans,
2457 struct btrfs_root *root,
2458 struct extent_buffer *buf,
2459 int full_backref, int inc)
2460 {
2461 struct btrfs_fs_info *fs_info = root->fs_info;
2462 u64 parent;
2463 u64 ref_root;
2464 u32 nritems;
2465 struct btrfs_key key;
2466 struct btrfs_file_extent_item *fi;
2467 bool for_reloc = btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC);
2468 int i;
2469 int action;
2470 int level;
2471 int ret = 0;
2472
2473 if (btrfs_is_testing(fs_info))
2474 return 0;
2475
2476 ref_root = btrfs_header_owner(buf);
2477 nritems = btrfs_header_nritems(buf);
2478 level = btrfs_header_level(buf);
2479
2480 if (!test_bit(BTRFS_ROOT_SHAREABLE, &root->state) && level == 0)
2481 return 0;
2482
2483 if (full_backref)
2484 parent = buf->start;
2485 else
2486 parent = 0;
2487 if (inc)
2488 action = BTRFS_ADD_DELAYED_REF;
2489 else
2490 action = BTRFS_DROP_DELAYED_REF;
2491
2492 for (i = 0; i < nritems; i++) {
2493 struct btrfs_ref ref = {
2494 .action = action,
2495 .parent = parent,
2496 .ref_root = ref_root,
2497 };
2498
2499 if (level == 0) {
2500 btrfs_item_key_to_cpu(buf, &key, i);
2501 if (key.type != BTRFS_EXTENT_DATA_KEY)
2502 continue;
2503 fi = btrfs_item_ptr(buf, i,
2504 struct btrfs_file_extent_item);
2505 if (btrfs_file_extent_type(buf, fi) ==
2506 BTRFS_FILE_EXTENT_INLINE)
2507 continue;
2508 ref.bytenr = btrfs_file_extent_disk_bytenr(buf, fi);
2509 if (ref.bytenr == 0)
2510 continue;
2511
2512 ref.num_bytes = btrfs_file_extent_disk_num_bytes(buf, fi);
2513 ref.owning_root = ref_root;
2514
2515 key.offset -= btrfs_file_extent_offset(buf, fi);
2516 btrfs_init_data_ref(&ref, key.objectid, key.offset,
2517 btrfs_root_id(root), for_reloc);
2518 if (inc)
2519 ret = btrfs_inc_extent_ref(trans, &ref);
2520 else
2521 ret = btrfs_free_extent(trans, &ref);
2522 if (ret)
2523 goto fail;
2524 } else {
2525 /* We don't know the owning_root, leave as 0. */
2526 ref.bytenr = btrfs_node_blockptr(buf, i);
2527 ref.num_bytes = fs_info->nodesize;
2528
2529 btrfs_init_tree_ref(&ref, level - 1,
2530 btrfs_root_id(root), for_reloc);
2531 if (inc)
2532 ret = btrfs_inc_extent_ref(trans, &ref);
2533 else
2534 ret = btrfs_free_extent(trans, &ref);
2535 if (ret)
2536 goto fail;
2537 }
2538 }
2539 return 0;
2540 fail:
2541 return ret;
2542 }
2543
btrfs_inc_ref(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct extent_buffer * buf,int full_backref)2544 int btrfs_inc_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
2545 struct extent_buffer *buf, int full_backref)
2546 {
2547 return __btrfs_mod_ref(trans, root, buf, full_backref, 1);
2548 }
2549
btrfs_dec_ref(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct extent_buffer * buf,int full_backref)2550 int btrfs_dec_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
2551 struct extent_buffer *buf, int full_backref)
2552 {
2553 return __btrfs_mod_ref(trans, root, buf, full_backref, 0);
2554 }
2555
get_alloc_profile_by_root(struct btrfs_root * root,int data)2556 static u64 get_alloc_profile_by_root(struct btrfs_root *root, int data)
2557 {
2558 struct btrfs_fs_info *fs_info = root->fs_info;
2559 u64 flags;
2560 u64 ret;
2561
2562 if (data)
2563 flags = BTRFS_BLOCK_GROUP_DATA;
2564 else if (root == fs_info->chunk_root)
2565 flags = BTRFS_BLOCK_GROUP_SYSTEM;
2566 else
2567 flags = BTRFS_BLOCK_GROUP_METADATA;
2568
2569 ret = btrfs_get_alloc_profile(fs_info, flags);
2570 return ret;
2571 }
2572
first_logical_byte(struct btrfs_fs_info * fs_info)2573 static u64 first_logical_byte(struct btrfs_fs_info *fs_info)
2574 {
2575 struct rb_node *leftmost;
2576 u64 bytenr = 0;
2577
2578 read_lock(&fs_info->block_group_cache_lock);
2579 /* Get the block group with the lowest logical start address. */
2580 leftmost = rb_first_cached(&fs_info->block_group_cache_tree);
2581 if (leftmost) {
2582 struct btrfs_block_group *bg;
2583
2584 bg = rb_entry(leftmost, struct btrfs_block_group, cache_node);
2585 bytenr = bg->start;
2586 }
2587 read_unlock(&fs_info->block_group_cache_lock);
2588
2589 return bytenr;
2590 }
2591
pin_down_extent(struct btrfs_trans_handle * trans,struct btrfs_block_group * cache,u64 bytenr,u64 num_bytes,int reserved)2592 static int pin_down_extent(struct btrfs_trans_handle *trans,
2593 struct btrfs_block_group *cache,
2594 u64 bytenr, u64 num_bytes, int reserved)
2595 {
2596 spin_lock(&cache->space_info->lock);
2597 spin_lock(&cache->lock);
2598 cache->pinned += num_bytes;
2599 btrfs_space_info_update_bytes_pinned(cache->space_info, num_bytes);
2600 if (reserved) {
2601 cache->reserved -= num_bytes;
2602 cache->space_info->bytes_reserved -= num_bytes;
2603 }
2604 spin_unlock(&cache->lock);
2605 spin_unlock(&cache->space_info->lock);
2606
2607 set_extent_bit(&trans->transaction->pinned_extents, bytenr,
2608 bytenr + num_bytes - 1, EXTENT_DIRTY, NULL);
2609 return 0;
2610 }
2611
btrfs_pin_extent(struct btrfs_trans_handle * trans,u64 bytenr,u64 num_bytes,int reserved)2612 int btrfs_pin_extent(struct btrfs_trans_handle *trans,
2613 u64 bytenr, u64 num_bytes, int reserved)
2614 {
2615 struct btrfs_block_group *cache;
2616
2617 cache = btrfs_lookup_block_group(trans->fs_info, bytenr);
2618 BUG_ON(!cache); /* Logic error */
2619
2620 pin_down_extent(trans, cache, bytenr, num_bytes, reserved);
2621
2622 btrfs_put_block_group(cache);
2623 return 0;
2624 }
2625
btrfs_pin_extent_for_log_replay(struct btrfs_trans_handle * trans,const struct extent_buffer * eb)2626 int btrfs_pin_extent_for_log_replay(struct btrfs_trans_handle *trans,
2627 const struct extent_buffer *eb)
2628 {
2629 struct btrfs_block_group *cache;
2630 int ret;
2631
2632 cache = btrfs_lookup_block_group(trans->fs_info, eb->start);
2633 if (!cache)
2634 return -EINVAL;
2635
2636 /*
2637 * Fully cache the free space first so that our pin removes the free space
2638 * from the cache.
2639 */
2640 ret = btrfs_cache_block_group(cache, true);
2641 if (ret)
2642 goto out;
2643
2644 pin_down_extent(trans, cache, eb->start, eb->len, 0);
2645
2646 /* remove us from the free space cache (if we're there at all) */
2647 ret = btrfs_remove_free_space(cache, eb->start, eb->len);
2648 out:
2649 btrfs_put_block_group(cache);
2650 return ret;
2651 }
2652
__exclude_logged_extent(struct btrfs_fs_info * fs_info,u64 start,u64 num_bytes)2653 static int __exclude_logged_extent(struct btrfs_fs_info *fs_info,
2654 u64 start, u64 num_bytes)
2655 {
2656 int ret;
2657 struct btrfs_block_group *block_group;
2658
2659 block_group = btrfs_lookup_block_group(fs_info, start);
2660 if (!block_group)
2661 return -EINVAL;
2662
2663 ret = btrfs_cache_block_group(block_group, true);
2664 if (ret)
2665 goto out;
2666
2667 ret = btrfs_remove_free_space(block_group, start, num_bytes);
2668 out:
2669 btrfs_put_block_group(block_group);
2670 return ret;
2671 }
2672
btrfs_exclude_logged_extents(struct extent_buffer * eb)2673 int btrfs_exclude_logged_extents(struct extent_buffer *eb)
2674 {
2675 struct btrfs_fs_info *fs_info = eb->fs_info;
2676 struct btrfs_file_extent_item *item;
2677 struct btrfs_key key;
2678 int found_type;
2679 int i;
2680 int ret = 0;
2681
2682 if (!btrfs_fs_incompat(fs_info, MIXED_GROUPS))
2683 return 0;
2684
2685 for (i = 0; i < btrfs_header_nritems(eb); i++) {
2686 btrfs_item_key_to_cpu(eb, &key, i);
2687 if (key.type != BTRFS_EXTENT_DATA_KEY)
2688 continue;
2689 item = btrfs_item_ptr(eb, i, struct btrfs_file_extent_item);
2690 found_type = btrfs_file_extent_type(eb, item);
2691 if (found_type == BTRFS_FILE_EXTENT_INLINE)
2692 continue;
2693 if (btrfs_file_extent_disk_bytenr(eb, item) == 0)
2694 continue;
2695 key.objectid = btrfs_file_extent_disk_bytenr(eb, item);
2696 key.offset = btrfs_file_extent_disk_num_bytes(eb, item);
2697 ret = __exclude_logged_extent(fs_info, key.objectid, key.offset);
2698 if (ret)
2699 break;
2700 }
2701
2702 return ret;
2703 }
2704
2705 static void
btrfs_inc_block_group_reservations(struct btrfs_block_group * bg)2706 btrfs_inc_block_group_reservations(struct btrfs_block_group *bg)
2707 {
2708 atomic_inc(&bg->reservations);
2709 }
2710
2711 /*
2712 * Returns the free cluster for the given space info and sets empty_cluster to
2713 * what it should be based on the mount options.
2714 */
2715 static struct btrfs_free_cluster *
fetch_cluster_info(struct btrfs_fs_info * fs_info,struct btrfs_space_info * space_info,u64 * empty_cluster)2716 fetch_cluster_info(struct btrfs_fs_info *fs_info,
2717 struct btrfs_space_info *space_info, u64 *empty_cluster)
2718 {
2719 struct btrfs_free_cluster *ret = NULL;
2720
2721 *empty_cluster = 0;
2722 if (btrfs_mixed_space_info(space_info))
2723 return ret;
2724
2725 if (space_info->flags & BTRFS_BLOCK_GROUP_METADATA) {
2726 ret = &fs_info->meta_alloc_cluster;
2727 if (btrfs_test_opt(fs_info, SSD))
2728 *empty_cluster = SZ_2M;
2729 else
2730 *empty_cluster = SZ_64K;
2731 } else if ((space_info->flags & BTRFS_BLOCK_GROUP_DATA) &&
2732 btrfs_test_opt(fs_info, SSD_SPREAD)) {
2733 *empty_cluster = SZ_2M;
2734 ret = &fs_info->data_alloc_cluster;
2735 }
2736
2737 return ret;
2738 }
2739
unpin_extent_range(struct btrfs_fs_info * fs_info,u64 start,u64 end,const bool return_free_space)2740 static int unpin_extent_range(struct btrfs_fs_info *fs_info,
2741 u64 start, u64 end,
2742 const bool return_free_space)
2743 {
2744 struct btrfs_block_group *cache = NULL;
2745 struct btrfs_space_info *space_info;
2746 struct btrfs_free_cluster *cluster = NULL;
2747 u64 total_unpinned = 0;
2748 u64 empty_cluster = 0;
2749 bool readonly;
2750 int ret = 0;
2751
2752 while (start <= end) {
2753 u64 len;
2754
2755 readonly = false;
2756 if (!cache ||
2757 start >= cache->start + cache->length) {
2758 if (cache)
2759 btrfs_put_block_group(cache);
2760 total_unpinned = 0;
2761 cache = btrfs_lookup_block_group(fs_info, start);
2762 if (cache == NULL) {
2763 /* Logic error, something removed the block group. */
2764 ret = -EUCLEAN;
2765 goto out;
2766 }
2767
2768 cluster = fetch_cluster_info(fs_info,
2769 cache->space_info,
2770 &empty_cluster);
2771 empty_cluster <<= 1;
2772 }
2773
2774 len = cache->start + cache->length - start;
2775 len = min(len, end + 1 - start);
2776
2777 if (return_free_space)
2778 btrfs_add_free_space(cache, start, len);
2779
2780 start += len;
2781 total_unpinned += len;
2782 space_info = cache->space_info;
2783
2784 /*
2785 * If this space cluster has been marked as fragmented and we've
2786 * unpinned enough in this block group to potentially allow a
2787 * cluster to be created inside of it go ahead and clear the
2788 * fragmented check.
2789 */
2790 if (cluster && cluster->fragmented &&
2791 total_unpinned > empty_cluster) {
2792 spin_lock(&cluster->lock);
2793 cluster->fragmented = 0;
2794 spin_unlock(&cluster->lock);
2795 }
2796
2797 spin_lock(&space_info->lock);
2798 spin_lock(&cache->lock);
2799 cache->pinned -= len;
2800 btrfs_space_info_update_bytes_pinned(space_info, -len);
2801 space_info->max_extent_size = 0;
2802 if (cache->ro) {
2803 space_info->bytes_readonly += len;
2804 readonly = true;
2805 } else if (btrfs_is_zoned(fs_info)) {
2806 /* Need reset before reusing in a zoned block group */
2807 btrfs_space_info_update_bytes_zone_unusable(space_info, len);
2808 readonly = true;
2809 }
2810 spin_unlock(&cache->lock);
2811 if (!readonly && return_free_space)
2812 btrfs_return_free_space(space_info, len);
2813 spin_unlock(&space_info->lock);
2814 }
2815
2816 if (cache)
2817 btrfs_put_block_group(cache);
2818 out:
2819 return ret;
2820 }
2821
btrfs_finish_extent_commit(struct btrfs_trans_handle * trans)2822 int btrfs_finish_extent_commit(struct btrfs_trans_handle *trans)
2823 {
2824 struct btrfs_fs_info *fs_info = trans->fs_info;
2825 struct btrfs_block_group *block_group, *tmp;
2826 struct list_head *deleted_bgs;
2827 struct extent_io_tree *unpin;
2828 u64 start;
2829 u64 end;
2830 int ret;
2831
2832 unpin = &trans->transaction->pinned_extents;
2833
2834 while (!TRANS_ABORTED(trans)) {
2835 struct extent_state *cached_state = NULL;
2836
2837 mutex_lock(&fs_info->unused_bg_unpin_mutex);
2838 if (!find_first_extent_bit(unpin, 0, &start, &end,
2839 EXTENT_DIRTY, &cached_state)) {
2840 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
2841 break;
2842 }
2843
2844 if (btrfs_test_opt(fs_info, DISCARD_SYNC))
2845 ret = btrfs_discard_extent(fs_info, start,
2846 end + 1 - start, NULL);
2847
2848 clear_extent_dirty(unpin, start, end, &cached_state);
2849 ret = unpin_extent_range(fs_info, start, end, true);
2850 BUG_ON(ret);
2851 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
2852 free_extent_state(cached_state);
2853 cond_resched();
2854 }
2855
2856 if (btrfs_test_opt(fs_info, DISCARD_ASYNC)) {
2857 btrfs_discard_calc_delay(&fs_info->discard_ctl);
2858 btrfs_discard_schedule_work(&fs_info->discard_ctl, true);
2859 }
2860
2861 /*
2862 * Transaction is finished. We don't need the lock anymore. We
2863 * do need to clean up the block groups in case of a transaction
2864 * abort.
2865 */
2866 deleted_bgs = &trans->transaction->deleted_bgs;
2867 list_for_each_entry_safe(block_group, tmp, deleted_bgs, bg_list) {
2868 u64 trimmed = 0;
2869
2870 ret = -EROFS;
2871 if (!TRANS_ABORTED(trans))
2872 ret = btrfs_discard_extent(fs_info,
2873 block_group->start,
2874 block_group->length,
2875 &trimmed);
2876
2877 /*
2878 * Not strictly necessary to lock, as the block_group should be
2879 * read-only from btrfs_delete_unused_bgs().
2880 */
2881 ASSERT(block_group->ro);
2882 spin_lock(&fs_info->unused_bgs_lock);
2883 list_del_init(&block_group->bg_list);
2884 spin_unlock(&fs_info->unused_bgs_lock);
2885
2886 btrfs_unfreeze_block_group(block_group);
2887 btrfs_put_block_group(block_group);
2888
2889 if (ret) {
2890 const char *errstr = btrfs_decode_error(ret);
2891 btrfs_warn(fs_info,
2892 "discard failed while removing blockgroup: errno=%d %s",
2893 ret, errstr);
2894 }
2895 }
2896
2897 return 0;
2898 }
2899
2900 /*
2901 * Parse an extent item's inline extents looking for a simple quotas owner ref.
2902 *
2903 * @fs_info: the btrfs_fs_info for this mount
2904 * @leaf: a leaf in the extent tree containing the extent item
2905 * @slot: the slot in the leaf where the extent item is found
2906 *
2907 * Returns the objectid of the root that originally allocated the extent item
2908 * if the inline owner ref is expected and present, otherwise 0.
2909 *
2910 * If an extent item has an owner ref item, it will be the first inline ref
2911 * item. Therefore the logic is to check whether there are any inline ref
2912 * items, then check the type of the first one.
2913 */
btrfs_get_extent_owner_root(struct btrfs_fs_info * fs_info,struct extent_buffer * leaf,int slot)2914 u64 btrfs_get_extent_owner_root(struct btrfs_fs_info *fs_info,
2915 struct extent_buffer *leaf, int slot)
2916 {
2917 struct btrfs_extent_item *ei;
2918 struct btrfs_extent_inline_ref *iref;
2919 struct btrfs_extent_owner_ref *oref;
2920 unsigned long ptr;
2921 unsigned long end;
2922 int type;
2923
2924 if (!btrfs_fs_incompat(fs_info, SIMPLE_QUOTA))
2925 return 0;
2926
2927 ei = btrfs_item_ptr(leaf, slot, struct btrfs_extent_item);
2928 ptr = (unsigned long)(ei + 1);
2929 end = (unsigned long)ei + btrfs_item_size(leaf, slot);
2930
2931 /* No inline ref items of any kind, can't check type. */
2932 if (ptr == end)
2933 return 0;
2934
2935 iref = (struct btrfs_extent_inline_ref *)ptr;
2936 type = btrfs_get_extent_inline_ref_type(leaf, iref, BTRFS_REF_TYPE_ANY);
2937
2938 /* We found an owner ref, get the root out of it. */
2939 if (type == BTRFS_EXTENT_OWNER_REF_KEY) {
2940 oref = (struct btrfs_extent_owner_ref *)(&iref->offset);
2941 return btrfs_extent_owner_ref_root_id(leaf, oref);
2942 }
2943
2944 /* We have inline refs, but not an owner ref. */
2945 return 0;
2946 }
2947
do_free_extent_accounting(struct btrfs_trans_handle * trans,u64 bytenr,struct btrfs_squota_delta * delta)2948 static int do_free_extent_accounting(struct btrfs_trans_handle *trans,
2949 u64 bytenr, struct btrfs_squota_delta *delta)
2950 {
2951 int ret;
2952 u64 num_bytes = delta->num_bytes;
2953
2954 if (delta->is_data) {
2955 struct btrfs_root *csum_root;
2956
2957 csum_root = btrfs_csum_root(trans->fs_info, bytenr);
2958 ret = btrfs_del_csums(trans, csum_root, bytenr, num_bytes);
2959 if (ret) {
2960 btrfs_abort_transaction(trans, ret);
2961 return ret;
2962 }
2963
2964 ret = btrfs_delete_raid_extent(trans, bytenr, num_bytes);
2965 if (ret) {
2966 btrfs_abort_transaction(trans, ret);
2967 return ret;
2968 }
2969 }
2970
2971 ret = btrfs_record_squota_delta(trans->fs_info, delta);
2972 if (ret) {
2973 btrfs_abort_transaction(trans, ret);
2974 return ret;
2975 }
2976
2977 ret = add_to_free_space_tree(trans, bytenr, num_bytes);
2978 if (ret) {
2979 btrfs_abort_transaction(trans, ret);
2980 return ret;
2981 }
2982
2983 ret = btrfs_update_block_group(trans, bytenr, num_bytes, false);
2984 if (ret)
2985 btrfs_abort_transaction(trans, ret);
2986
2987 return ret;
2988 }
2989
2990 #define abort_and_dump(trans, path, fmt, args...) \
2991 ({ \
2992 btrfs_abort_transaction(trans, -EUCLEAN); \
2993 btrfs_print_leaf(path->nodes[0]); \
2994 btrfs_crit(trans->fs_info, fmt, ##args); \
2995 })
2996
2997 /*
2998 * Drop one or more refs of @node.
2999 *
3000 * 1. Locate the extent refs.
3001 * It's either inline in EXTENT/METADATA_ITEM or in keyed SHARED_* item.
3002 * Locate it, then reduce the refs number or remove the ref line completely.
3003 *
3004 * 2. Update the refs count in EXTENT/METADATA_ITEM
3005 *
3006 * Inline backref case:
3007 *
3008 * in extent tree we have:
3009 *
3010 * item 0 key (13631488 EXTENT_ITEM 1048576) itemoff 16201 itemsize 82
3011 * refs 2 gen 6 flags DATA
3012 * extent data backref root FS_TREE objectid 258 offset 0 count 1
3013 * extent data backref root FS_TREE objectid 257 offset 0 count 1
3014 *
3015 * This function gets called with:
3016 *
3017 * node->bytenr = 13631488
3018 * node->num_bytes = 1048576
3019 * root_objectid = FS_TREE
3020 * owner_objectid = 257
3021 * owner_offset = 0
3022 * refs_to_drop = 1
3023 *
3024 * Then we should get some like:
3025 *
3026 * item 0 key (13631488 EXTENT_ITEM 1048576) itemoff 16201 itemsize 82
3027 * refs 1 gen 6 flags DATA
3028 * extent data backref root FS_TREE objectid 258 offset 0 count 1
3029 *
3030 * Keyed backref case:
3031 *
3032 * in extent tree we have:
3033 *
3034 * item 0 key (13631488 EXTENT_ITEM 1048576) itemoff 3971 itemsize 24
3035 * refs 754 gen 6 flags DATA
3036 * [...]
3037 * item 2 key (13631488 EXTENT_DATA_REF <HASH>) itemoff 3915 itemsize 28
3038 * extent data backref root FS_TREE objectid 866 offset 0 count 1
3039 *
3040 * This function get called with:
3041 *
3042 * node->bytenr = 13631488
3043 * node->num_bytes = 1048576
3044 * root_objectid = FS_TREE
3045 * owner_objectid = 866
3046 * owner_offset = 0
3047 * refs_to_drop = 1
3048 *
3049 * Then we should get some like:
3050 *
3051 * item 0 key (13631488 EXTENT_ITEM 1048576) itemoff 3971 itemsize 24
3052 * refs 753 gen 6 flags DATA
3053 *
3054 * And that (13631488 EXTENT_DATA_REF <HASH>) gets removed.
3055 */
__btrfs_free_extent(struct btrfs_trans_handle * trans,struct btrfs_delayed_ref_head * href,struct btrfs_delayed_ref_node * node,struct btrfs_delayed_extent_op * extent_op)3056 static int __btrfs_free_extent(struct btrfs_trans_handle *trans,
3057 struct btrfs_delayed_ref_head *href,
3058 struct btrfs_delayed_ref_node *node,
3059 struct btrfs_delayed_extent_op *extent_op)
3060 {
3061 struct btrfs_fs_info *info = trans->fs_info;
3062 struct btrfs_key key;
3063 struct btrfs_path *path;
3064 struct btrfs_root *extent_root;
3065 struct extent_buffer *leaf;
3066 struct btrfs_extent_item *ei;
3067 struct btrfs_extent_inline_ref *iref;
3068 int ret;
3069 int is_data;
3070 int extent_slot = 0;
3071 int found_extent = 0;
3072 int num_to_del = 1;
3073 int refs_to_drop = node->ref_mod;
3074 u32 item_size;
3075 u64 refs;
3076 u64 bytenr = node->bytenr;
3077 u64 num_bytes = node->num_bytes;
3078 u64 owner_objectid = btrfs_delayed_ref_owner(node);
3079 u64 owner_offset = btrfs_delayed_ref_offset(node);
3080 bool skinny_metadata = btrfs_fs_incompat(info, SKINNY_METADATA);
3081 u64 delayed_ref_root = href->owning_root;
3082
3083 extent_root = btrfs_extent_root(info, bytenr);
3084 ASSERT(extent_root);
3085
3086 path = btrfs_alloc_path();
3087 if (!path)
3088 return -ENOMEM;
3089
3090 is_data = owner_objectid >= BTRFS_FIRST_FREE_OBJECTID;
3091
3092 if (!is_data && refs_to_drop != 1) {
3093 btrfs_crit(info,
3094 "invalid refs_to_drop, dropping more than 1 refs for tree block %llu refs_to_drop %u",
3095 node->bytenr, refs_to_drop);
3096 ret = -EINVAL;
3097 btrfs_abort_transaction(trans, ret);
3098 goto out;
3099 }
3100
3101 if (is_data)
3102 skinny_metadata = false;
3103
3104 ret = lookup_extent_backref(trans, path, &iref, bytenr, num_bytes,
3105 node->parent, node->ref_root, owner_objectid,
3106 owner_offset);
3107 if (ret == 0) {
3108 /*
3109 * Either the inline backref or the SHARED_DATA_REF/
3110 * SHARED_BLOCK_REF is found
3111 *
3112 * Here is a quick path to locate EXTENT/METADATA_ITEM.
3113 * It's possible the EXTENT/METADATA_ITEM is near current slot.
3114 */
3115 extent_slot = path->slots[0];
3116 while (extent_slot >= 0) {
3117 btrfs_item_key_to_cpu(path->nodes[0], &key,
3118 extent_slot);
3119 if (key.objectid != bytenr)
3120 break;
3121 if (key.type == BTRFS_EXTENT_ITEM_KEY &&
3122 key.offset == num_bytes) {
3123 found_extent = 1;
3124 break;
3125 }
3126 if (key.type == BTRFS_METADATA_ITEM_KEY &&
3127 key.offset == owner_objectid) {
3128 found_extent = 1;
3129 break;
3130 }
3131
3132 /* Quick path didn't find the EXTENT/METADATA_ITEM */
3133 if (path->slots[0] - extent_slot > 5)
3134 break;
3135 extent_slot--;
3136 }
3137
3138 if (!found_extent) {
3139 if (iref) {
3140 abort_and_dump(trans, path,
3141 "invalid iref slot %u, no EXTENT/METADATA_ITEM found but has inline extent ref",
3142 path->slots[0]);
3143 ret = -EUCLEAN;
3144 goto out;
3145 }
3146 /* Must be SHARED_* item, remove the backref first */
3147 ret = remove_extent_backref(trans, extent_root, path,
3148 NULL, refs_to_drop, is_data);
3149 if (ret) {
3150 btrfs_abort_transaction(trans, ret);
3151 goto out;
3152 }
3153 btrfs_release_path(path);
3154
3155 /* Slow path to locate EXTENT/METADATA_ITEM */
3156 key.objectid = bytenr;
3157 key.type = BTRFS_EXTENT_ITEM_KEY;
3158 key.offset = num_bytes;
3159
3160 if (!is_data && skinny_metadata) {
3161 key.type = BTRFS_METADATA_ITEM_KEY;
3162 key.offset = owner_objectid;
3163 }
3164
3165 ret = btrfs_search_slot(trans, extent_root,
3166 &key, path, -1, 1);
3167 if (ret > 0 && skinny_metadata && path->slots[0]) {
3168 /*
3169 * Couldn't find our skinny metadata item,
3170 * see if we have ye olde extent item.
3171 */
3172 path->slots[0]--;
3173 btrfs_item_key_to_cpu(path->nodes[0], &key,
3174 path->slots[0]);
3175 if (key.objectid == bytenr &&
3176 key.type == BTRFS_EXTENT_ITEM_KEY &&
3177 key.offset == num_bytes)
3178 ret = 0;
3179 }
3180
3181 if (ret > 0 && skinny_metadata) {
3182 skinny_metadata = false;
3183 key.objectid = bytenr;
3184 key.type = BTRFS_EXTENT_ITEM_KEY;
3185 key.offset = num_bytes;
3186 btrfs_release_path(path);
3187 ret = btrfs_search_slot(trans, extent_root,
3188 &key, path, -1, 1);
3189 }
3190
3191 if (ret) {
3192 if (ret > 0)
3193 btrfs_print_leaf(path->nodes[0]);
3194 btrfs_err(info,
3195 "umm, got %d back from search, was looking for %llu, slot %d",
3196 ret, bytenr, path->slots[0]);
3197 }
3198 if (ret < 0) {
3199 btrfs_abort_transaction(trans, ret);
3200 goto out;
3201 }
3202 extent_slot = path->slots[0];
3203 }
3204 } else if (WARN_ON(ret == -ENOENT)) {
3205 abort_and_dump(trans, path,
3206 "unable to find ref byte nr %llu parent %llu root %llu owner %llu offset %llu slot %d",
3207 bytenr, node->parent, node->ref_root, owner_objectid,
3208 owner_offset, path->slots[0]);
3209 goto out;
3210 } else {
3211 btrfs_abort_transaction(trans, ret);
3212 goto out;
3213 }
3214
3215 leaf = path->nodes[0];
3216 item_size = btrfs_item_size(leaf, extent_slot);
3217 if (unlikely(item_size < sizeof(*ei))) {
3218 ret = -EUCLEAN;
3219 btrfs_err(trans->fs_info,
3220 "unexpected extent item size, has %u expect >= %zu",
3221 item_size, sizeof(*ei));
3222 btrfs_abort_transaction(trans, ret);
3223 goto out;
3224 }
3225 ei = btrfs_item_ptr(leaf, extent_slot,
3226 struct btrfs_extent_item);
3227 if (owner_objectid < BTRFS_FIRST_FREE_OBJECTID &&
3228 key.type == BTRFS_EXTENT_ITEM_KEY) {
3229 struct btrfs_tree_block_info *bi;
3230
3231 if (item_size < sizeof(*ei) + sizeof(*bi)) {
3232 abort_and_dump(trans, path,
3233 "invalid extent item size for key (%llu, %u, %llu) slot %u owner %llu, has %u expect >= %zu",
3234 key.objectid, key.type, key.offset,
3235 path->slots[0], owner_objectid, item_size,
3236 sizeof(*ei) + sizeof(*bi));
3237 ret = -EUCLEAN;
3238 goto out;
3239 }
3240 bi = (struct btrfs_tree_block_info *)(ei + 1);
3241 WARN_ON(owner_objectid != btrfs_tree_block_level(leaf, bi));
3242 }
3243
3244 refs = btrfs_extent_refs(leaf, ei);
3245 if (refs < refs_to_drop) {
3246 abort_and_dump(trans, path,
3247 "trying to drop %d refs but we only have %llu for bytenr %llu slot %u",
3248 refs_to_drop, refs, bytenr, path->slots[0]);
3249 ret = -EUCLEAN;
3250 goto out;
3251 }
3252 refs -= refs_to_drop;
3253
3254 if (refs > 0) {
3255 if (extent_op)
3256 __run_delayed_extent_op(extent_op, leaf, ei);
3257 /*
3258 * In the case of inline back ref, reference count will
3259 * be updated by remove_extent_backref
3260 */
3261 if (iref) {
3262 if (!found_extent) {
3263 abort_and_dump(trans, path,
3264 "invalid iref, got inlined extent ref but no EXTENT/METADATA_ITEM found, slot %u",
3265 path->slots[0]);
3266 ret = -EUCLEAN;
3267 goto out;
3268 }
3269 } else {
3270 btrfs_set_extent_refs(leaf, ei, refs);
3271 }
3272 if (found_extent) {
3273 ret = remove_extent_backref(trans, extent_root, path,
3274 iref, refs_to_drop, is_data);
3275 if (ret) {
3276 btrfs_abort_transaction(trans, ret);
3277 goto out;
3278 }
3279 }
3280 } else {
3281 struct btrfs_squota_delta delta = {
3282 .root = delayed_ref_root,
3283 .num_bytes = num_bytes,
3284 .is_data = is_data,
3285 .is_inc = false,
3286 .generation = btrfs_extent_generation(leaf, ei),
3287 };
3288
3289 /* In this branch refs == 1 */
3290 if (found_extent) {
3291 if (is_data && refs_to_drop !=
3292 extent_data_ref_count(path, iref)) {
3293 abort_and_dump(trans, path,
3294 "invalid refs_to_drop, current refs %u refs_to_drop %u slot %u",
3295 extent_data_ref_count(path, iref),
3296 refs_to_drop, path->slots[0]);
3297 ret = -EUCLEAN;
3298 goto out;
3299 }
3300 if (iref) {
3301 if (path->slots[0] != extent_slot) {
3302 abort_and_dump(trans, path,
3303 "invalid iref, extent item key (%llu %u %llu) slot %u doesn't have wanted iref",
3304 key.objectid, key.type,
3305 key.offset, path->slots[0]);
3306 ret = -EUCLEAN;
3307 goto out;
3308 }
3309 } else {
3310 /*
3311 * No inline ref, we must be at SHARED_* item,
3312 * And it's single ref, it must be:
3313 * | extent_slot ||extent_slot + 1|
3314 * [ EXTENT/METADATA_ITEM ][ SHARED_* ITEM ]
3315 */
3316 if (path->slots[0] != extent_slot + 1) {
3317 abort_and_dump(trans, path,
3318 "invalid SHARED_* item slot %u, previous item is not EXTENT/METADATA_ITEM",
3319 path->slots[0]);
3320 ret = -EUCLEAN;
3321 goto out;
3322 }
3323 path->slots[0] = extent_slot;
3324 num_to_del = 2;
3325 }
3326 }
3327 /*
3328 * We can't infer the data owner from the delayed ref, so we need
3329 * to try to get it from the owning ref item.
3330 *
3331 * If it is not present, then that extent was not written under
3332 * simple quotas mode, so we don't need to account for its deletion.
3333 */
3334 if (is_data)
3335 delta.root = btrfs_get_extent_owner_root(trans->fs_info,
3336 leaf, extent_slot);
3337
3338 ret = btrfs_del_items(trans, extent_root, path, path->slots[0],
3339 num_to_del);
3340 if (ret) {
3341 btrfs_abort_transaction(trans, ret);
3342 goto out;
3343 }
3344 btrfs_release_path(path);
3345
3346 ret = do_free_extent_accounting(trans, bytenr, &delta);
3347 }
3348 btrfs_release_path(path);
3349
3350 out:
3351 btrfs_free_path(path);
3352 return ret;
3353 }
3354
3355 /*
3356 * when we free an block, it is possible (and likely) that we free the last
3357 * delayed ref for that extent as well. This searches the delayed ref tree for
3358 * a given extent, and if there are no other delayed refs to be processed, it
3359 * removes it from the tree.
3360 */
check_ref_cleanup(struct btrfs_trans_handle * trans,u64 bytenr)3361 static noinline int check_ref_cleanup(struct btrfs_trans_handle *trans,
3362 u64 bytenr)
3363 {
3364 struct btrfs_fs_info *fs_info = trans->fs_info;
3365 struct btrfs_delayed_ref_head *head;
3366 struct btrfs_delayed_ref_root *delayed_refs;
3367 int ret = 0;
3368
3369 delayed_refs = &trans->transaction->delayed_refs;
3370 spin_lock(&delayed_refs->lock);
3371 head = btrfs_find_delayed_ref_head(fs_info, delayed_refs, bytenr);
3372 if (!head)
3373 goto out_delayed_unlock;
3374
3375 spin_lock(&head->lock);
3376 if (!RB_EMPTY_ROOT(&head->ref_tree.rb_root))
3377 goto out;
3378
3379 if (cleanup_extent_op(head) != NULL)
3380 goto out;
3381
3382 /*
3383 * waiting for the lock here would deadlock. If someone else has it
3384 * locked they are already in the process of dropping it anyway
3385 */
3386 if (!mutex_trylock(&head->mutex))
3387 goto out;
3388
3389 btrfs_delete_ref_head(fs_info, delayed_refs, head);
3390 head->processing = false;
3391
3392 spin_unlock(&head->lock);
3393 spin_unlock(&delayed_refs->lock);
3394
3395 BUG_ON(head->extent_op);
3396 if (head->must_insert_reserved)
3397 ret = 1;
3398
3399 btrfs_cleanup_ref_head_accounting(fs_info, delayed_refs, head);
3400 mutex_unlock(&head->mutex);
3401 btrfs_put_delayed_ref_head(head);
3402 return ret;
3403 out:
3404 spin_unlock(&head->lock);
3405
3406 out_delayed_unlock:
3407 spin_unlock(&delayed_refs->lock);
3408 return 0;
3409 }
3410
btrfs_free_tree_block(struct btrfs_trans_handle * trans,u64 root_id,struct extent_buffer * buf,u64 parent,int last_ref)3411 int btrfs_free_tree_block(struct btrfs_trans_handle *trans,
3412 u64 root_id,
3413 struct extent_buffer *buf,
3414 u64 parent, int last_ref)
3415 {
3416 struct btrfs_fs_info *fs_info = trans->fs_info;
3417 struct btrfs_block_group *bg;
3418 int ret;
3419
3420 if (root_id != BTRFS_TREE_LOG_OBJECTID) {
3421 struct btrfs_ref generic_ref = {
3422 .action = BTRFS_DROP_DELAYED_REF,
3423 .bytenr = buf->start,
3424 .num_bytes = buf->len,
3425 .parent = parent,
3426 .owning_root = btrfs_header_owner(buf),
3427 .ref_root = root_id,
3428 };
3429
3430 /*
3431 * Assert that the extent buffer is not cleared due to
3432 * EXTENT_BUFFER_ZONED_ZEROOUT. Please refer
3433 * btrfs_clear_buffer_dirty() and btree_csum_one_bio() for
3434 * detail.
3435 */
3436 ASSERT(btrfs_header_bytenr(buf) != 0);
3437
3438 btrfs_init_tree_ref(&generic_ref, btrfs_header_level(buf), 0, false);
3439 btrfs_ref_tree_mod(fs_info, &generic_ref);
3440 ret = btrfs_add_delayed_tree_ref(trans, &generic_ref, NULL);
3441 if (ret < 0)
3442 return ret;
3443 }
3444
3445 if (!last_ref)
3446 return 0;
3447
3448 if (btrfs_header_generation(buf) != trans->transid)
3449 goto out;
3450
3451 if (root_id != BTRFS_TREE_LOG_OBJECTID) {
3452 ret = check_ref_cleanup(trans, buf->start);
3453 if (!ret)
3454 goto out;
3455 }
3456
3457 bg = btrfs_lookup_block_group(fs_info, buf->start);
3458
3459 if (btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN)) {
3460 pin_down_extent(trans, bg, buf->start, buf->len, 1);
3461 btrfs_put_block_group(bg);
3462 goto out;
3463 }
3464
3465 /*
3466 * If there are tree mod log users we may have recorded mod log
3467 * operations for this node. If we re-allocate this node we
3468 * could replay operations on this node that happened when it
3469 * existed in a completely different root. For example if it
3470 * was part of root A, then was reallocated to root B, and we
3471 * are doing a btrfs_old_search_slot(root b), we could replay
3472 * operations that happened when the block was part of root A,
3473 * giving us an inconsistent view of the btree.
3474 *
3475 * We are safe from races here because at this point no other
3476 * node or root points to this extent buffer, so if after this
3477 * check a new tree mod log user joins we will not have an
3478 * existing log of operations on this node that we have to
3479 * contend with.
3480 */
3481
3482 if (test_bit(BTRFS_FS_TREE_MOD_LOG_USERS, &fs_info->flags)
3483 || btrfs_is_zoned(fs_info)) {
3484 pin_down_extent(trans, bg, buf->start, buf->len, 1);
3485 btrfs_put_block_group(bg);
3486 goto out;
3487 }
3488
3489 WARN_ON(test_bit(EXTENT_BUFFER_DIRTY, &buf->bflags));
3490
3491 btrfs_add_free_space(bg, buf->start, buf->len);
3492 btrfs_free_reserved_bytes(bg, buf->len, 0);
3493 btrfs_put_block_group(bg);
3494 trace_btrfs_reserved_extent_free(fs_info, buf->start, buf->len);
3495
3496 out:
3497
3498 /*
3499 * Deleting the buffer, clear the corrupt flag since it doesn't
3500 * matter anymore.
3501 */
3502 clear_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags);
3503 return 0;
3504 }
3505
3506 /* Can return -ENOMEM */
btrfs_free_extent(struct btrfs_trans_handle * trans,struct btrfs_ref * ref)3507 int btrfs_free_extent(struct btrfs_trans_handle *trans, struct btrfs_ref *ref)
3508 {
3509 struct btrfs_fs_info *fs_info = trans->fs_info;
3510 int ret;
3511
3512 if (btrfs_is_testing(fs_info))
3513 return 0;
3514
3515 /*
3516 * tree log blocks never actually go into the extent allocation
3517 * tree, just update pinning info and exit early.
3518 */
3519 if (ref->ref_root == BTRFS_TREE_LOG_OBJECTID) {
3520 btrfs_pin_extent(trans, ref->bytenr, ref->num_bytes, 1);
3521 ret = 0;
3522 } else if (ref->type == BTRFS_REF_METADATA) {
3523 ret = btrfs_add_delayed_tree_ref(trans, ref, NULL);
3524 } else {
3525 ret = btrfs_add_delayed_data_ref(trans, ref, 0);
3526 }
3527
3528 if (ref->ref_root != BTRFS_TREE_LOG_OBJECTID)
3529 btrfs_ref_tree_mod(fs_info, ref);
3530
3531 return ret;
3532 }
3533
3534 enum btrfs_loop_type {
3535 /*
3536 * Start caching block groups but do not wait for progress or for them
3537 * to be done.
3538 */
3539 LOOP_CACHING_NOWAIT,
3540
3541 /*
3542 * Wait for the block group free_space >= the space we're waiting for if
3543 * the block group isn't cached.
3544 */
3545 LOOP_CACHING_WAIT,
3546
3547 /*
3548 * Allow allocations to happen from block groups that do not yet have a
3549 * size classification.
3550 */
3551 LOOP_UNSET_SIZE_CLASS,
3552
3553 /*
3554 * Allocate a chunk and then retry the allocation.
3555 */
3556 LOOP_ALLOC_CHUNK,
3557
3558 /*
3559 * Ignore the size class restrictions for this allocation.
3560 */
3561 LOOP_WRONG_SIZE_CLASS,
3562
3563 /*
3564 * Ignore the empty size, only try to allocate the number of bytes
3565 * needed for this allocation.
3566 */
3567 LOOP_NO_EMPTY_SIZE,
3568 };
3569
3570 static inline void
btrfs_lock_block_group(struct btrfs_block_group * cache,int delalloc)3571 btrfs_lock_block_group(struct btrfs_block_group *cache,
3572 int delalloc)
3573 {
3574 if (delalloc)
3575 down_read(&cache->data_rwsem);
3576 }
3577
btrfs_grab_block_group(struct btrfs_block_group * cache,int delalloc)3578 static inline void btrfs_grab_block_group(struct btrfs_block_group *cache,
3579 int delalloc)
3580 {
3581 btrfs_get_block_group(cache);
3582 if (delalloc)
3583 down_read(&cache->data_rwsem);
3584 }
3585
btrfs_lock_cluster(struct btrfs_block_group * block_group,struct btrfs_free_cluster * cluster,int delalloc)3586 static struct btrfs_block_group *btrfs_lock_cluster(
3587 struct btrfs_block_group *block_group,
3588 struct btrfs_free_cluster *cluster,
3589 int delalloc)
3590 __acquires(&cluster->refill_lock)
3591 {
3592 struct btrfs_block_group *used_bg = NULL;
3593
3594 spin_lock(&cluster->refill_lock);
3595 while (1) {
3596 used_bg = cluster->block_group;
3597 if (!used_bg)
3598 return NULL;
3599
3600 if (used_bg == block_group)
3601 return used_bg;
3602
3603 btrfs_get_block_group(used_bg);
3604
3605 if (!delalloc)
3606 return used_bg;
3607
3608 if (down_read_trylock(&used_bg->data_rwsem))
3609 return used_bg;
3610
3611 spin_unlock(&cluster->refill_lock);
3612
3613 /* We should only have one-level nested. */
3614 down_read_nested(&used_bg->data_rwsem, SINGLE_DEPTH_NESTING);
3615
3616 spin_lock(&cluster->refill_lock);
3617 if (used_bg == cluster->block_group)
3618 return used_bg;
3619
3620 up_read(&used_bg->data_rwsem);
3621 btrfs_put_block_group(used_bg);
3622 }
3623 }
3624
3625 static inline void
btrfs_release_block_group(struct btrfs_block_group * cache,int delalloc)3626 btrfs_release_block_group(struct btrfs_block_group *cache,
3627 int delalloc)
3628 {
3629 if (delalloc)
3630 up_read(&cache->data_rwsem);
3631 btrfs_put_block_group(cache);
3632 }
3633
3634 /*
3635 * Helper function for find_free_extent().
3636 *
3637 * Return -ENOENT to inform caller that we need fallback to unclustered mode.
3638 * Return >0 to inform caller that we find nothing
3639 * Return 0 means we have found a location and set ffe_ctl->found_offset.
3640 */
find_free_extent_clustered(struct btrfs_block_group * bg,struct find_free_extent_ctl * ffe_ctl,struct btrfs_block_group ** cluster_bg_ret)3641 static int find_free_extent_clustered(struct btrfs_block_group *bg,
3642 struct find_free_extent_ctl *ffe_ctl,
3643 struct btrfs_block_group **cluster_bg_ret)
3644 {
3645 struct btrfs_block_group *cluster_bg;
3646 struct btrfs_free_cluster *last_ptr = ffe_ctl->last_ptr;
3647 u64 aligned_cluster;
3648 u64 offset;
3649 int ret;
3650
3651 cluster_bg = btrfs_lock_cluster(bg, last_ptr, ffe_ctl->delalloc);
3652 if (!cluster_bg)
3653 goto refill_cluster;
3654 if (cluster_bg != bg && (cluster_bg->ro ||
3655 !block_group_bits(cluster_bg, ffe_ctl->flags)))
3656 goto release_cluster;
3657
3658 offset = btrfs_alloc_from_cluster(cluster_bg, last_ptr,
3659 ffe_ctl->num_bytes, cluster_bg->start,
3660 &ffe_ctl->max_extent_size);
3661 if (offset) {
3662 /* We have a block, we're done */
3663 spin_unlock(&last_ptr->refill_lock);
3664 trace_btrfs_reserve_extent_cluster(cluster_bg, ffe_ctl);
3665 *cluster_bg_ret = cluster_bg;
3666 ffe_ctl->found_offset = offset;
3667 return 0;
3668 }
3669 WARN_ON(last_ptr->block_group != cluster_bg);
3670
3671 release_cluster:
3672 /*
3673 * If we are on LOOP_NO_EMPTY_SIZE, we can't set up a new clusters, so
3674 * lets just skip it and let the allocator find whatever block it can
3675 * find. If we reach this point, we will have tried the cluster
3676 * allocator plenty of times and not have found anything, so we are
3677 * likely way too fragmented for the clustering stuff to find anything.
3678 *
3679 * However, if the cluster is taken from the current block group,
3680 * release the cluster first, so that we stand a better chance of
3681 * succeeding in the unclustered allocation.
3682 */
3683 if (ffe_ctl->loop >= LOOP_NO_EMPTY_SIZE && cluster_bg != bg) {
3684 spin_unlock(&last_ptr->refill_lock);
3685 btrfs_release_block_group(cluster_bg, ffe_ctl->delalloc);
3686 return -ENOENT;
3687 }
3688
3689 /* This cluster didn't work out, free it and start over */
3690 btrfs_return_cluster_to_free_space(NULL, last_ptr);
3691
3692 if (cluster_bg != bg)
3693 btrfs_release_block_group(cluster_bg, ffe_ctl->delalloc);
3694
3695 refill_cluster:
3696 if (ffe_ctl->loop >= LOOP_NO_EMPTY_SIZE) {
3697 spin_unlock(&last_ptr->refill_lock);
3698 return -ENOENT;
3699 }
3700
3701 aligned_cluster = max_t(u64,
3702 ffe_ctl->empty_cluster + ffe_ctl->empty_size,
3703 bg->full_stripe_len);
3704 ret = btrfs_find_space_cluster(bg, last_ptr, ffe_ctl->search_start,
3705 ffe_ctl->num_bytes, aligned_cluster);
3706 if (ret == 0) {
3707 /* Now pull our allocation out of this cluster */
3708 offset = btrfs_alloc_from_cluster(bg, last_ptr,
3709 ffe_ctl->num_bytes, ffe_ctl->search_start,
3710 &ffe_ctl->max_extent_size);
3711 if (offset) {
3712 /* We found one, proceed */
3713 spin_unlock(&last_ptr->refill_lock);
3714 ffe_ctl->found_offset = offset;
3715 trace_btrfs_reserve_extent_cluster(bg, ffe_ctl);
3716 return 0;
3717 }
3718 }
3719 /*
3720 * At this point we either didn't find a cluster or we weren't able to
3721 * allocate a block from our cluster. Free the cluster we've been
3722 * trying to use, and go to the next block group.
3723 */
3724 btrfs_return_cluster_to_free_space(NULL, last_ptr);
3725 spin_unlock(&last_ptr->refill_lock);
3726 return 1;
3727 }
3728
3729 /*
3730 * Return >0 to inform caller that we find nothing
3731 * Return 0 when we found an free extent and set ffe_ctrl->found_offset
3732 */
find_free_extent_unclustered(struct btrfs_block_group * bg,struct find_free_extent_ctl * ffe_ctl)3733 static int find_free_extent_unclustered(struct btrfs_block_group *bg,
3734 struct find_free_extent_ctl *ffe_ctl)
3735 {
3736 struct btrfs_free_cluster *last_ptr = ffe_ctl->last_ptr;
3737 u64 offset;
3738
3739 /*
3740 * We are doing an unclustered allocation, set the fragmented flag so
3741 * we don't bother trying to setup a cluster again until we get more
3742 * space.
3743 */
3744 if (unlikely(last_ptr)) {
3745 spin_lock(&last_ptr->lock);
3746 last_ptr->fragmented = 1;
3747 spin_unlock(&last_ptr->lock);
3748 }
3749 if (ffe_ctl->cached) {
3750 struct btrfs_free_space_ctl *free_space_ctl;
3751
3752 free_space_ctl = bg->free_space_ctl;
3753 spin_lock(&free_space_ctl->tree_lock);
3754 if (free_space_ctl->free_space <
3755 ffe_ctl->num_bytes + ffe_ctl->empty_cluster +
3756 ffe_ctl->empty_size) {
3757 ffe_ctl->total_free_space = max_t(u64,
3758 ffe_ctl->total_free_space,
3759 free_space_ctl->free_space);
3760 spin_unlock(&free_space_ctl->tree_lock);
3761 return 1;
3762 }
3763 spin_unlock(&free_space_ctl->tree_lock);
3764 }
3765
3766 offset = btrfs_find_space_for_alloc(bg, ffe_ctl->search_start,
3767 ffe_ctl->num_bytes, ffe_ctl->empty_size,
3768 &ffe_ctl->max_extent_size);
3769 if (!offset)
3770 return 1;
3771 ffe_ctl->found_offset = offset;
3772 return 0;
3773 }
3774
do_allocation_clustered(struct btrfs_block_group * block_group,struct find_free_extent_ctl * ffe_ctl,struct btrfs_block_group ** bg_ret)3775 static int do_allocation_clustered(struct btrfs_block_group *block_group,
3776 struct find_free_extent_ctl *ffe_ctl,
3777 struct btrfs_block_group **bg_ret)
3778 {
3779 int ret;
3780
3781 /* We want to try and use the cluster allocator, so lets look there */
3782 if (ffe_ctl->last_ptr && ffe_ctl->use_cluster) {
3783 ret = find_free_extent_clustered(block_group, ffe_ctl, bg_ret);
3784 if (ret >= 0)
3785 return ret;
3786 /* ret == -ENOENT case falls through */
3787 }
3788
3789 return find_free_extent_unclustered(block_group, ffe_ctl);
3790 }
3791
3792 /*
3793 * Tree-log block group locking
3794 * ============================
3795 *
3796 * fs_info::treelog_bg_lock protects the fs_info::treelog_bg which
3797 * indicates the starting address of a block group, which is reserved only
3798 * for tree-log metadata.
3799 *
3800 * Lock nesting
3801 * ============
3802 *
3803 * space_info::lock
3804 * block_group::lock
3805 * fs_info::treelog_bg_lock
3806 */
3807
3808 /*
3809 * Simple allocator for sequential-only block group. It only allows sequential
3810 * allocation. No need to play with trees. This function also reserves the
3811 * bytes as in btrfs_add_reserved_bytes.
3812 */
do_allocation_zoned(struct btrfs_block_group * block_group,struct find_free_extent_ctl * ffe_ctl,struct btrfs_block_group ** bg_ret)3813 static int do_allocation_zoned(struct btrfs_block_group *block_group,
3814 struct find_free_extent_ctl *ffe_ctl,
3815 struct btrfs_block_group **bg_ret)
3816 {
3817 struct btrfs_fs_info *fs_info = block_group->fs_info;
3818 struct btrfs_space_info *space_info = block_group->space_info;
3819 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
3820 u64 start = block_group->start;
3821 u64 num_bytes = ffe_ctl->num_bytes;
3822 u64 avail;
3823 u64 bytenr = block_group->start;
3824 u64 log_bytenr;
3825 u64 data_reloc_bytenr;
3826 int ret = 0;
3827 bool skip = false;
3828
3829 ASSERT(btrfs_is_zoned(block_group->fs_info));
3830
3831 /*
3832 * Do not allow non-tree-log blocks in the dedicated tree-log block
3833 * group, and vice versa.
3834 */
3835 spin_lock(&fs_info->treelog_bg_lock);
3836 log_bytenr = fs_info->treelog_bg;
3837 if (log_bytenr && ((ffe_ctl->for_treelog && bytenr != log_bytenr) ||
3838 (!ffe_ctl->for_treelog && bytenr == log_bytenr)))
3839 skip = true;
3840 spin_unlock(&fs_info->treelog_bg_lock);
3841 if (skip)
3842 return 1;
3843
3844 /*
3845 * Do not allow non-relocation blocks in the dedicated relocation block
3846 * group, and vice versa.
3847 */
3848 spin_lock(&fs_info->relocation_bg_lock);
3849 data_reloc_bytenr = fs_info->data_reloc_bg;
3850 if (data_reloc_bytenr &&
3851 ((ffe_ctl->for_data_reloc && bytenr != data_reloc_bytenr) ||
3852 (!ffe_ctl->for_data_reloc && bytenr == data_reloc_bytenr)))
3853 skip = true;
3854 spin_unlock(&fs_info->relocation_bg_lock);
3855 if (skip)
3856 return 1;
3857
3858 /* Check RO and no space case before trying to activate it */
3859 spin_lock(&block_group->lock);
3860 if (block_group->ro || btrfs_zoned_bg_is_full(block_group)) {
3861 ret = 1;
3862 /*
3863 * May need to clear fs_info->{treelog,data_reloc}_bg.
3864 * Return the error after taking the locks.
3865 */
3866 }
3867 spin_unlock(&block_group->lock);
3868
3869 /* Metadata block group is activated at write time. */
3870 if (!ret && (block_group->flags & BTRFS_BLOCK_GROUP_DATA) &&
3871 !btrfs_zone_activate(block_group)) {
3872 ret = 1;
3873 /*
3874 * May need to clear fs_info->{treelog,data_reloc}_bg.
3875 * Return the error after taking the locks.
3876 */
3877 }
3878
3879 spin_lock(&space_info->lock);
3880 spin_lock(&block_group->lock);
3881 spin_lock(&fs_info->treelog_bg_lock);
3882 spin_lock(&fs_info->relocation_bg_lock);
3883
3884 if (ret)
3885 goto out;
3886
3887 ASSERT(!ffe_ctl->for_treelog ||
3888 block_group->start == fs_info->treelog_bg ||
3889 fs_info->treelog_bg == 0);
3890 ASSERT(!ffe_ctl->for_data_reloc ||
3891 block_group->start == fs_info->data_reloc_bg ||
3892 fs_info->data_reloc_bg == 0);
3893
3894 if (block_group->ro ||
3895 (!ffe_ctl->for_data_reloc &&
3896 test_bit(BLOCK_GROUP_FLAG_ZONED_DATA_RELOC, &block_group->runtime_flags))) {
3897 ret = 1;
3898 goto out;
3899 }
3900
3901 /*
3902 * Do not allow currently using block group to be tree-log dedicated
3903 * block group.
3904 */
3905 if (ffe_ctl->for_treelog && !fs_info->treelog_bg &&
3906 (block_group->used || block_group->reserved)) {
3907 ret = 1;
3908 goto out;
3909 }
3910
3911 /*
3912 * Do not allow currently used block group to be the data relocation
3913 * dedicated block group.
3914 */
3915 if (ffe_ctl->for_data_reloc && !fs_info->data_reloc_bg &&
3916 (block_group->used || block_group->reserved)) {
3917 ret = 1;
3918 goto out;
3919 }
3920
3921 WARN_ON_ONCE(block_group->alloc_offset > block_group->zone_capacity);
3922 avail = block_group->zone_capacity - block_group->alloc_offset;
3923 if (avail < num_bytes) {
3924 if (ffe_ctl->max_extent_size < avail) {
3925 /*
3926 * With sequential allocator, free space is always
3927 * contiguous
3928 */
3929 ffe_ctl->max_extent_size = avail;
3930 ffe_ctl->total_free_space = avail;
3931 }
3932 ret = 1;
3933 goto out;
3934 }
3935
3936 if (ffe_ctl->for_treelog && !fs_info->treelog_bg)
3937 fs_info->treelog_bg = block_group->start;
3938
3939 if (ffe_ctl->for_data_reloc) {
3940 if (!fs_info->data_reloc_bg)
3941 fs_info->data_reloc_bg = block_group->start;
3942 /*
3943 * Do not allow allocations from this block group, unless it is
3944 * for data relocation. Compared to increasing the ->ro, setting
3945 * the ->zoned_data_reloc_ongoing flag still allows nocow
3946 * writers to come in. See btrfs_inc_nocow_writers().
3947 *
3948 * We need to disable an allocation to avoid an allocation of
3949 * regular (non-relocation data) extent. With mix of relocation
3950 * extents and regular extents, we can dispatch WRITE commands
3951 * (for relocation extents) and ZONE APPEND commands (for
3952 * regular extents) at the same time to the same zone, which
3953 * easily break the write pointer.
3954 *
3955 * Also, this flag avoids this block group to be zone finished.
3956 */
3957 set_bit(BLOCK_GROUP_FLAG_ZONED_DATA_RELOC, &block_group->runtime_flags);
3958 }
3959
3960 ffe_ctl->found_offset = start + block_group->alloc_offset;
3961 block_group->alloc_offset += num_bytes;
3962 spin_lock(&ctl->tree_lock);
3963 ctl->free_space -= num_bytes;
3964 spin_unlock(&ctl->tree_lock);
3965
3966 /*
3967 * We do not check if found_offset is aligned to stripesize. The
3968 * address is anyway rewritten when using zone append writing.
3969 */
3970
3971 ffe_ctl->search_start = ffe_ctl->found_offset;
3972
3973 out:
3974 if (ret && ffe_ctl->for_treelog)
3975 fs_info->treelog_bg = 0;
3976 if (ret && ffe_ctl->for_data_reloc)
3977 fs_info->data_reloc_bg = 0;
3978 spin_unlock(&fs_info->relocation_bg_lock);
3979 spin_unlock(&fs_info->treelog_bg_lock);
3980 spin_unlock(&block_group->lock);
3981 spin_unlock(&space_info->lock);
3982 return ret;
3983 }
3984
do_allocation(struct btrfs_block_group * block_group,struct find_free_extent_ctl * ffe_ctl,struct btrfs_block_group ** bg_ret)3985 static int do_allocation(struct btrfs_block_group *block_group,
3986 struct find_free_extent_ctl *ffe_ctl,
3987 struct btrfs_block_group **bg_ret)
3988 {
3989 switch (ffe_ctl->policy) {
3990 case BTRFS_EXTENT_ALLOC_CLUSTERED:
3991 return do_allocation_clustered(block_group, ffe_ctl, bg_ret);
3992 case BTRFS_EXTENT_ALLOC_ZONED:
3993 return do_allocation_zoned(block_group, ffe_ctl, bg_ret);
3994 default:
3995 BUG();
3996 }
3997 }
3998
release_block_group(struct btrfs_block_group * block_group,struct find_free_extent_ctl * ffe_ctl,int delalloc)3999 static void release_block_group(struct btrfs_block_group *block_group,
4000 struct find_free_extent_ctl *ffe_ctl,
4001 int delalloc)
4002 {
4003 switch (ffe_ctl->policy) {
4004 case BTRFS_EXTENT_ALLOC_CLUSTERED:
4005 ffe_ctl->retry_uncached = false;
4006 break;
4007 case BTRFS_EXTENT_ALLOC_ZONED:
4008 /* Nothing to do */
4009 break;
4010 default:
4011 BUG();
4012 }
4013
4014 BUG_ON(btrfs_bg_flags_to_raid_index(block_group->flags) !=
4015 ffe_ctl->index);
4016 btrfs_release_block_group(block_group, delalloc);
4017 }
4018
found_extent_clustered(struct find_free_extent_ctl * ffe_ctl,struct btrfs_key * ins)4019 static void found_extent_clustered(struct find_free_extent_ctl *ffe_ctl,
4020 struct btrfs_key *ins)
4021 {
4022 struct btrfs_free_cluster *last_ptr = ffe_ctl->last_ptr;
4023
4024 if (!ffe_ctl->use_cluster && last_ptr) {
4025 spin_lock(&last_ptr->lock);
4026 last_ptr->window_start = ins->objectid;
4027 spin_unlock(&last_ptr->lock);
4028 }
4029 }
4030
found_extent(struct find_free_extent_ctl * ffe_ctl,struct btrfs_key * ins)4031 static void found_extent(struct find_free_extent_ctl *ffe_ctl,
4032 struct btrfs_key *ins)
4033 {
4034 switch (ffe_ctl->policy) {
4035 case BTRFS_EXTENT_ALLOC_CLUSTERED:
4036 found_extent_clustered(ffe_ctl, ins);
4037 break;
4038 case BTRFS_EXTENT_ALLOC_ZONED:
4039 /* Nothing to do */
4040 break;
4041 default:
4042 BUG();
4043 }
4044 }
4045
can_allocate_chunk_zoned(struct btrfs_fs_info * fs_info,struct find_free_extent_ctl * ffe_ctl)4046 static int can_allocate_chunk_zoned(struct btrfs_fs_info *fs_info,
4047 struct find_free_extent_ctl *ffe_ctl)
4048 {
4049 /* Block group's activeness is not a requirement for METADATA block groups. */
4050 if (!(ffe_ctl->flags & BTRFS_BLOCK_GROUP_DATA))
4051 return 0;
4052
4053 /* If we can activate new zone, just allocate a chunk and use it */
4054 if (btrfs_can_activate_zone(fs_info->fs_devices, ffe_ctl->flags))
4055 return 0;
4056
4057 /*
4058 * We already reached the max active zones. Try to finish one block
4059 * group to make a room for a new block group. This is only possible
4060 * for a data block group because btrfs_zone_finish() may need to wait
4061 * for a running transaction which can cause a deadlock for metadata
4062 * allocation.
4063 */
4064 if (ffe_ctl->flags & BTRFS_BLOCK_GROUP_DATA) {
4065 int ret = btrfs_zone_finish_one_bg(fs_info);
4066
4067 if (ret == 1)
4068 return 0;
4069 else if (ret < 0)
4070 return ret;
4071 }
4072
4073 /*
4074 * If we have enough free space left in an already active block group
4075 * and we can't activate any other zone now, do not allow allocating a
4076 * new chunk and let find_free_extent() retry with a smaller size.
4077 */
4078 if (ffe_ctl->max_extent_size >= ffe_ctl->min_alloc_size)
4079 return -ENOSPC;
4080
4081 /*
4082 * Even min_alloc_size is not left in any block groups. Since we cannot
4083 * activate a new block group, allocating it may not help. Let's tell a
4084 * caller to try again and hope it progress something by writing some
4085 * parts of the region. That is only possible for data block groups,
4086 * where a part of the region can be written.
4087 */
4088 if (ffe_ctl->flags & BTRFS_BLOCK_GROUP_DATA)
4089 return -EAGAIN;
4090
4091 /*
4092 * We cannot activate a new block group and no enough space left in any
4093 * block groups. So, allocating a new block group may not help. But,
4094 * there is nothing to do anyway, so let's go with it.
4095 */
4096 return 0;
4097 }
4098
can_allocate_chunk(struct btrfs_fs_info * fs_info,struct find_free_extent_ctl * ffe_ctl)4099 static int can_allocate_chunk(struct btrfs_fs_info *fs_info,
4100 struct find_free_extent_ctl *ffe_ctl)
4101 {
4102 switch (ffe_ctl->policy) {
4103 case BTRFS_EXTENT_ALLOC_CLUSTERED:
4104 return 0;
4105 case BTRFS_EXTENT_ALLOC_ZONED:
4106 return can_allocate_chunk_zoned(fs_info, ffe_ctl);
4107 default:
4108 BUG();
4109 }
4110 }
4111
4112 /*
4113 * Return >0 means caller needs to re-search for free extent
4114 * Return 0 means we have the needed free extent.
4115 * Return <0 means we failed to locate any free extent.
4116 */
find_free_extent_update_loop(struct btrfs_fs_info * fs_info,struct btrfs_key * ins,struct find_free_extent_ctl * ffe_ctl,bool full_search)4117 static int find_free_extent_update_loop(struct btrfs_fs_info *fs_info,
4118 struct btrfs_key *ins,
4119 struct find_free_extent_ctl *ffe_ctl,
4120 bool full_search)
4121 {
4122 struct btrfs_root *root = fs_info->chunk_root;
4123 int ret;
4124
4125 if ((ffe_ctl->loop == LOOP_CACHING_NOWAIT) &&
4126 ffe_ctl->have_caching_bg && !ffe_ctl->orig_have_caching_bg)
4127 ffe_ctl->orig_have_caching_bg = true;
4128
4129 if (ins->objectid) {
4130 found_extent(ffe_ctl, ins);
4131 return 0;
4132 }
4133
4134 if (ffe_ctl->loop >= LOOP_CACHING_WAIT && ffe_ctl->have_caching_bg)
4135 return 1;
4136
4137 ffe_ctl->index++;
4138 if (ffe_ctl->index < BTRFS_NR_RAID_TYPES)
4139 return 1;
4140
4141 /* See the comments for btrfs_loop_type for an explanation of the phases. */
4142 if (ffe_ctl->loop < LOOP_NO_EMPTY_SIZE) {
4143 ffe_ctl->index = 0;
4144 /*
4145 * We want to skip the LOOP_CACHING_WAIT step if we don't have
4146 * any uncached bgs and we've already done a full search
4147 * through.
4148 */
4149 if (ffe_ctl->loop == LOOP_CACHING_NOWAIT &&
4150 (!ffe_ctl->orig_have_caching_bg && full_search))
4151 ffe_ctl->loop++;
4152 ffe_ctl->loop++;
4153
4154 if (ffe_ctl->loop == LOOP_ALLOC_CHUNK) {
4155 struct btrfs_trans_handle *trans;
4156 int exist = 0;
4157
4158 /* Check if allocation policy allows to create a new chunk */
4159 ret = can_allocate_chunk(fs_info, ffe_ctl);
4160 if (ret)
4161 return ret;
4162
4163 trans = current->journal_info;
4164 if (trans)
4165 exist = 1;
4166 else
4167 trans = btrfs_join_transaction(root);
4168
4169 if (IS_ERR(trans)) {
4170 ret = PTR_ERR(trans);
4171 return ret;
4172 }
4173
4174 ret = btrfs_chunk_alloc(trans, ffe_ctl->flags,
4175 CHUNK_ALLOC_FORCE_FOR_EXTENT);
4176
4177 /* Do not bail out on ENOSPC since we can do more. */
4178 if (ret == -ENOSPC) {
4179 ret = 0;
4180 ffe_ctl->loop++;
4181 }
4182 else if (ret < 0)
4183 btrfs_abort_transaction(trans, ret);
4184 else
4185 ret = 0;
4186 if (!exist)
4187 btrfs_end_transaction(trans);
4188 if (ret)
4189 return ret;
4190 }
4191
4192 if (ffe_ctl->loop == LOOP_NO_EMPTY_SIZE) {
4193 if (ffe_ctl->policy != BTRFS_EXTENT_ALLOC_CLUSTERED)
4194 return -ENOSPC;
4195
4196 /*
4197 * Don't loop again if we already have no empty_size and
4198 * no empty_cluster.
4199 */
4200 if (ffe_ctl->empty_size == 0 &&
4201 ffe_ctl->empty_cluster == 0)
4202 return -ENOSPC;
4203 ffe_ctl->empty_size = 0;
4204 ffe_ctl->empty_cluster = 0;
4205 }
4206 return 1;
4207 }
4208 return -ENOSPC;
4209 }
4210
find_free_extent_check_size_class(struct find_free_extent_ctl * ffe_ctl,struct btrfs_block_group * bg)4211 static bool find_free_extent_check_size_class(struct find_free_extent_ctl *ffe_ctl,
4212 struct btrfs_block_group *bg)
4213 {
4214 if (ffe_ctl->policy == BTRFS_EXTENT_ALLOC_ZONED)
4215 return true;
4216 if (!btrfs_block_group_should_use_size_class(bg))
4217 return true;
4218 if (ffe_ctl->loop >= LOOP_WRONG_SIZE_CLASS)
4219 return true;
4220 if (ffe_ctl->loop >= LOOP_UNSET_SIZE_CLASS &&
4221 bg->size_class == BTRFS_BG_SZ_NONE)
4222 return true;
4223 return ffe_ctl->size_class == bg->size_class;
4224 }
4225
prepare_allocation_clustered(struct btrfs_fs_info * fs_info,struct find_free_extent_ctl * ffe_ctl,struct btrfs_space_info * space_info,struct btrfs_key * ins)4226 static int prepare_allocation_clustered(struct btrfs_fs_info *fs_info,
4227 struct find_free_extent_ctl *ffe_ctl,
4228 struct btrfs_space_info *space_info,
4229 struct btrfs_key *ins)
4230 {
4231 /*
4232 * If our free space is heavily fragmented we may not be able to make
4233 * big contiguous allocations, so instead of doing the expensive search
4234 * for free space, simply return ENOSPC with our max_extent_size so we
4235 * can go ahead and search for a more manageable chunk.
4236 *
4237 * If our max_extent_size is large enough for our allocation simply
4238 * disable clustering since we will likely not be able to find enough
4239 * space to create a cluster and induce latency trying.
4240 */
4241 if (space_info->max_extent_size) {
4242 spin_lock(&space_info->lock);
4243 if (space_info->max_extent_size &&
4244 ffe_ctl->num_bytes > space_info->max_extent_size) {
4245 ins->offset = space_info->max_extent_size;
4246 spin_unlock(&space_info->lock);
4247 return -ENOSPC;
4248 } else if (space_info->max_extent_size) {
4249 ffe_ctl->use_cluster = false;
4250 }
4251 spin_unlock(&space_info->lock);
4252 }
4253
4254 ffe_ctl->last_ptr = fetch_cluster_info(fs_info, space_info,
4255 &ffe_ctl->empty_cluster);
4256 if (ffe_ctl->last_ptr) {
4257 struct btrfs_free_cluster *last_ptr = ffe_ctl->last_ptr;
4258
4259 spin_lock(&last_ptr->lock);
4260 if (last_ptr->block_group)
4261 ffe_ctl->hint_byte = last_ptr->window_start;
4262 if (last_ptr->fragmented) {
4263 /*
4264 * We still set window_start so we can keep track of the
4265 * last place we found an allocation to try and save
4266 * some time.
4267 */
4268 ffe_ctl->hint_byte = last_ptr->window_start;
4269 ffe_ctl->use_cluster = false;
4270 }
4271 spin_unlock(&last_ptr->lock);
4272 }
4273
4274 return 0;
4275 }
4276
prepare_allocation_zoned(struct btrfs_fs_info * fs_info,struct find_free_extent_ctl * ffe_ctl)4277 static int prepare_allocation_zoned(struct btrfs_fs_info *fs_info,
4278 struct find_free_extent_ctl *ffe_ctl)
4279 {
4280 if (ffe_ctl->for_treelog) {
4281 spin_lock(&fs_info->treelog_bg_lock);
4282 if (fs_info->treelog_bg)
4283 ffe_ctl->hint_byte = fs_info->treelog_bg;
4284 spin_unlock(&fs_info->treelog_bg_lock);
4285 } else if (ffe_ctl->for_data_reloc) {
4286 spin_lock(&fs_info->relocation_bg_lock);
4287 if (fs_info->data_reloc_bg)
4288 ffe_ctl->hint_byte = fs_info->data_reloc_bg;
4289 spin_unlock(&fs_info->relocation_bg_lock);
4290 } else if (ffe_ctl->flags & BTRFS_BLOCK_GROUP_DATA) {
4291 struct btrfs_block_group *block_group;
4292
4293 spin_lock(&fs_info->zone_active_bgs_lock);
4294 list_for_each_entry(block_group, &fs_info->zone_active_bgs, active_bg_list) {
4295 /*
4296 * No lock is OK here because avail is monotinically
4297 * decreasing, and this is just a hint.
4298 */
4299 u64 avail = block_group->zone_capacity - block_group->alloc_offset;
4300
4301 if (block_group_bits(block_group, ffe_ctl->flags) &&
4302 avail >= ffe_ctl->num_bytes) {
4303 ffe_ctl->hint_byte = block_group->start;
4304 break;
4305 }
4306 }
4307 spin_unlock(&fs_info->zone_active_bgs_lock);
4308 }
4309
4310 return 0;
4311 }
4312
prepare_allocation(struct btrfs_fs_info * fs_info,struct find_free_extent_ctl * ffe_ctl,struct btrfs_space_info * space_info,struct btrfs_key * ins)4313 static int prepare_allocation(struct btrfs_fs_info *fs_info,
4314 struct find_free_extent_ctl *ffe_ctl,
4315 struct btrfs_space_info *space_info,
4316 struct btrfs_key *ins)
4317 {
4318 switch (ffe_ctl->policy) {
4319 case BTRFS_EXTENT_ALLOC_CLUSTERED:
4320 return prepare_allocation_clustered(fs_info, ffe_ctl,
4321 space_info, ins);
4322 case BTRFS_EXTENT_ALLOC_ZONED:
4323 return prepare_allocation_zoned(fs_info, ffe_ctl);
4324 default:
4325 BUG();
4326 }
4327 }
4328
4329 /*
4330 * walks the btree of allocated extents and find a hole of a given size.
4331 * The key ins is changed to record the hole:
4332 * ins->objectid == start position
4333 * ins->flags = BTRFS_EXTENT_ITEM_KEY
4334 * ins->offset == the size of the hole.
4335 * Any available blocks before search_start are skipped.
4336 *
4337 * If there is no suitable free space, we will record the max size of
4338 * the free space extent currently.
4339 *
4340 * The overall logic and call chain:
4341 *
4342 * find_free_extent()
4343 * |- Iterate through all block groups
4344 * | |- Get a valid block group
4345 * | |- Try to do clustered allocation in that block group
4346 * | |- Try to do unclustered allocation in that block group
4347 * | |- Check if the result is valid
4348 * | | |- If valid, then exit
4349 * | |- Jump to next block group
4350 * |
4351 * |- Push harder to find free extents
4352 * |- If not found, re-iterate all block groups
4353 */
find_free_extent(struct btrfs_root * root,struct btrfs_key * ins,struct find_free_extent_ctl * ffe_ctl)4354 static noinline int find_free_extent(struct btrfs_root *root,
4355 struct btrfs_key *ins,
4356 struct find_free_extent_ctl *ffe_ctl)
4357 {
4358 struct btrfs_fs_info *fs_info = root->fs_info;
4359 int ret = 0;
4360 int cache_block_group_error = 0;
4361 struct btrfs_block_group *block_group = NULL;
4362 struct btrfs_space_info *space_info;
4363 bool full_search = false;
4364
4365 WARN_ON(ffe_ctl->num_bytes < fs_info->sectorsize);
4366
4367 ffe_ctl->search_start = 0;
4368 /* For clustered allocation */
4369 ffe_ctl->empty_cluster = 0;
4370 ffe_ctl->last_ptr = NULL;
4371 ffe_ctl->use_cluster = true;
4372 ffe_ctl->have_caching_bg = false;
4373 ffe_ctl->orig_have_caching_bg = false;
4374 ffe_ctl->index = btrfs_bg_flags_to_raid_index(ffe_ctl->flags);
4375 ffe_ctl->loop = 0;
4376 ffe_ctl->retry_uncached = false;
4377 ffe_ctl->cached = 0;
4378 ffe_ctl->max_extent_size = 0;
4379 ffe_ctl->total_free_space = 0;
4380 ffe_ctl->found_offset = 0;
4381 ffe_ctl->policy = BTRFS_EXTENT_ALLOC_CLUSTERED;
4382 ffe_ctl->size_class = btrfs_calc_block_group_size_class(ffe_ctl->num_bytes);
4383
4384 if (btrfs_is_zoned(fs_info))
4385 ffe_ctl->policy = BTRFS_EXTENT_ALLOC_ZONED;
4386
4387 ins->type = BTRFS_EXTENT_ITEM_KEY;
4388 ins->objectid = 0;
4389 ins->offset = 0;
4390
4391 trace_find_free_extent(root, ffe_ctl);
4392
4393 space_info = btrfs_find_space_info(fs_info, ffe_ctl->flags);
4394 if (!space_info) {
4395 btrfs_err(fs_info, "No space info for %llu", ffe_ctl->flags);
4396 return -ENOSPC;
4397 }
4398
4399 ret = prepare_allocation(fs_info, ffe_ctl, space_info, ins);
4400 if (ret < 0)
4401 return ret;
4402
4403 ffe_ctl->search_start = max(ffe_ctl->search_start,
4404 first_logical_byte(fs_info));
4405 ffe_ctl->search_start = max(ffe_ctl->search_start, ffe_ctl->hint_byte);
4406 if (ffe_ctl->search_start == ffe_ctl->hint_byte) {
4407 block_group = btrfs_lookup_block_group(fs_info,
4408 ffe_ctl->search_start);
4409 /*
4410 * we don't want to use the block group if it doesn't match our
4411 * allocation bits, or if its not cached.
4412 *
4413 * However if we are re-searching with an ideal block group
4414 * picked out then we don't care that the block group is cached.
4415 */
4416 if (block_group && block_group_bits(block_group, ffe_ctl->flags) &&
4417 block_group->cached != BTRFS_CACHE_NO) {
4418 down_read(&space_info->groups_sem);
4419 if (list_empty(&block_group->list) ||
4420 block_group->ro) {
4421 /*
4422 * someone is removing this block group,
4423 * we can't jump into the have_block_group
4424 * target because our list pointers are not
4425 * valid
4426 */
4427 btrfs_put_block_group(block_group);
4428 up_read(&space_info->groups_sem);
4429 } else {
4430 ffe_ctl->index = btrfs_bg_flags_to_raid_index(
4431 block_group->flags);
4432 btrfs_lock_block_group(block_group,
4433 ffe_ctl->delalloc);
4434 ffe_ctl->hinted = true;
4435 goto have_block_group;
4436 }
4437 } else if (block_group) {
4438 btrfs_put_block_group(block_group);
4439 }
4440 }
4441 search:
4442 trace_find_free_extent_search_loop(root, ffe_ctl);
4443 ffe_ctl->have_caching_bg = false;
4444 if (ffe_ctl->index == btrfs_bg_flags_to_raid_index(ffe_ctl->flags) ||
4445 ffe_ctl->index == 0)
4446 full_search = true;
4447 down_read(&space_info->groups_sem);
4448 list_for_each_entry(block_group,
4449 &space_info->block_groups[ffe_ctl->index], list) {
4450 struct btrfs_block_group *bg_ret;
4451
4452 ffe_ctl->hinted = false;
4453 /* If the block group is read-only, we can skip it entirely. */
4454 if (unlikely(block_group->ro)) {
4455 if (ffe_ctl->for_treelog)
4456 btrfs_clear_treelog_bg(block_group);
4457 if (ffe_ctl->for_data_reloc)
4458 btrfs_clear_data_reloc_bg(block_group);
4459 continue;
4460 }
4461
4462 btrfs_grab_block_group(block_group, ffe_ctl->delalloc);
4463 ffe_ctl->search_start = block_group->start;
4464
4465 /*
4466 * this can happen if we end up cycling through all the
4467 * raid types, but we want to make sure we only allocate
4468 * for the proper type.
4469 */
4470 if (!block_group_bits(block_group, ffe_ctl->flags)) {
4471 u64 extra = BTRFS_BLOCK_GROUP_DUP |
4472 BTRFS_BLOCK_GROUP_RAID1_MASK |
4473 BTRFS_BLOCK_GROUP_RAID56_MASK |
4474 BTRFS_BLOCK_GROUP_RAID10;
4475
4476 /*
4477 * if they asked for extra copies and this block group
4478 * doesn't provide them, bail. This does allow us to
4479 * fill raid0 from raid1.
4480 */
4481 if ((ffe_ctl->flags & extra) && !(block_group->flags & extra))
4482 goto loop;
4483
4484 /*
4485 * This block group has different flags than we want.
4486 * It's possible that we have MIXED_GROUP flag but no
4487 * block group is mixed. Just skip such block group.
4488 */
4489 btrfs_release_block_group(block_group, ffe_ctl->delalloc);
4490 continue;
4491 }
4492
4493 have_block_group:
4494 trace_find_free_extent_have_block_group(root, ffe_ctl, block_group);
4495 ffe_ctl->cached = btrfs_block_group_done(block_group);
4496 if (unlikely(!ffe_ctl->cached)) {
4497 ffe_ctl->have_caching_bg = true;
4498 ret = btrfs_cache_block_group(block_group, false);
4499
4500 /*
4501 * If we get ENOMEM here or something else we want to
4502 * try other block groups, because it may not be fatal.
4503 * However if we can't find anything else we need to
4504 * save our return here so that we return the actual
4505 * error that caused problems, not ENOSPC.
4506 */
4507 if (ret < 0) {
4508 if (!cache_block_group_error)
4509 cache_block_group_error = ret;
4510 ret = 0;
4511 goto loop;
4512 }
4513 ret = 0;
4514 }
4515
4516 if (unlikely(block_group->cached == BTRFS_CACHE_ERROR)) {
4517 if (!cache_block_group_error)
4518 cache_block_group_error = -EIO;
4519 goto loop;
4520 }
4521
4522 if (!find_free_extent_check_size_class(ffe_ctl, block_group))
4523 goto loop;
4524
4525 bg_ret = NULL;
4526 ret = do_allocation(block_group, ffe_ctl, &bg_ret);
4527 if (ret > 0)
4528 goto loop;
4529
4530 if (bg_ret && bg_ret != block_group) {
4531 btrfs_release_block_group(block_group, ffe_ctl->delalloc);
4532 block_group = bg_ret;
4533 }
4534
4535 /* Checks */
4536 ffe_ctl->search_start = round_up(ffe_ctl->found_offset,
4537 fs_info->stripesize);
4538
4539 /* move on to the next group */
4540 if (ffe_ctl->search_start + ffe_ctl->num_bytes >
4541 block_group->start + block_group->length) {
4542 btrfs_add_free_space_unused(block_group,
4543 ffe_ctl->found_offset,
4544 ffe_ctl->num_bytes);
4545 goto loop;
4546 }
4547
4548 if (ffe_ctl->found_offset < ffe_ctl->search_start)
4549 btrfs_add_free_space_unused(block_group,
4550 ffe_ctl->found_offset,
4551 ffe_ctl->search_start - ffe_ctl->found_offset);
4552
4553 ret = btrfs_add_reserved_bytes(block_group, ffe_ctl->ram_bytes,
4554 ffe_ctl->num_bytes,
4555 ffe_ctl->delalloc,
4556 ffe_ctl->loop >= LOOP_WRONG_SIZE_CLASS);
4557 if (ret == -EAGAIN) {
4558 btrfs_add_free_space_unused(block_group,
4559 ffe_ctl->found_offset,
4560 ffe_ctl->num_bytes);
4561 goto loop;
4562 }
4563 btrfs_inc_block_group_reservations(block_group);
4564
4565 /* we are all good, lets return */
4566 ins->objectid = ffe_ctl->search_start;
4567 ins->offset = ffe_ctl->num_bytes;
4568
4569 trace_btrfs_reserve_extent(block_group, ffe_ctl);
4570 btrfs_release_block_group(block_group, ffe_ctl->delalloc);
4571 break;
4572 loop:
4573 if (!ffe_ctl->cached && ffe_ctl->loop > LOOP_CACHING_NOWAIT &&
4574 !ffe_ctl->retry_uncached) {
4575 ffe_ctl->retry_uncached = true;
4576 btrfs_wait_block_group_cache_progress(block_group,
4577 ffe_ctl->num_bytes +
4578 ffe_ctl->empty_cluster +
4579 ffe_ctl->empty_size);
4580 goto have_block_group;
4581 }
4582 release_block_group(block_group, ffe_ctl, ffe_ctl->delalloc);
4583 cond_resched();
4584 }
4585 up_read(&space_info->groups_sem);
4586
4587 ret = find_free_extent_update_loop(fs_info, ins, ffe_ctl, full_search);
4588 if (ret > 0)
4589 goto search;
4590
4591 if (ret == -ENOSPC && !cache_block_group_error) {
4592 /*
4593 * Use ffe_ctl->total_free_space as fallback if we can't find
4594 * any contiguous hole.
4595 */
4596 if (!ffe_ctl->max_extent_size)
4597 ffe_ctl->max_extent_size = ffe_ctl->total_free_space;
4598 spin_lock(&space_info->lock);
4599 space_info->max_extent_size = ffe_ctl->max_extent_size;
4600 spin_unlock(&space_info->lock);
4601 ins->offset = ffe_ctl->max_extent_size;
4602 } else if (ret == -ENOSPC) {
4603 ret = cache_block_group_error;
4604 }
4605 return ret;
4606 }
4607
4608 /*
4609 * Entry point to the extent allocator. Tries to find a hole that is at least
4610 * as big as @num_bytes.
4611 *
4612 * @root - The root that will contain this extent
4613 *
4614 * @ram_bytes - The amount of space in ram that @num_bytes take. This
4615 * is used for accounting purposes. This value differs
4616 * from @num_bytes only in the case of compressed extents.
4617 *
4618 * @num_bytes - Number of bytes to allocate on-disk.
4619 *
4620 * @min_alloc_size - Indicates the minimum amount of space that the
4621 * allocator should try to satisfy. In some cases
4622 * @num_bytes may be larger than what is required and if
4623 * the filesystem is fragmented then allocation fails.
4624 * However, the presence of @min_alloc_size gives a
4625 * chance to try and satisfy the smaller allocation.
4626 *
4627 * @empty_size - A hint that you plan on doing more COW. This is the
4628 * size in bytes the allocator should try to find free
4629 * next to the block it returns. This is just a hint and
4630 * may be ignored by the allocator.
4631 *
4632 * @hint_byte - Hint to the allocator to start searching above the byte
4633 * address passed. It might be ignored.
4634 *
4635 * @ins - This key is modified to record the found hole. It will
4636 * have the following values:
4637 * ins->objectid == start position
4638 * ins->flags = BTRFS_EXTENT_ITEM_KEY
4639 * ins->offset == the size of the hole.
4640 *
4641 * @is_data - Boolean flag indicating whether an extent is
4642 * allocated for data (true) or metadata (false)
4643 *
4644 * @delalloc - Boolean flag indicating whether this allocation is for
4645 * delalloc or not. If 'true' data_rwsem of block groups
4646 * is going to be acquired.
4647 *
4648 *
4649 * Returns 0 when an allocation succeeded or < 0 when an error occurred. In
4650 * case -ENOSPC is returned then @ins->offset will contain the size of the
4651 * largest available hole the allocator managed to find.
4652 */
btrfs_reserve_extent(struct btrfs_root * root,u64 ram_bytes,u64 num_bytes,u64 min_alloc_size,u64 empty_size,u64 hint_byte,struct btrfs_key * ins,int is_data,int delalloc)4653 int btrfs_reserve_extent(struct btrfs_root *root, u64 ram_bytes,
4654 u64 num_bytes, u64 min_alloc_size,
4655 u64 empty_size, u64 hint_byte,
4656 struct btrfs_key *ins, int is_data, int delalloc)
4657 {
4658 struct btrfs_fs_info *fs_info = root->fs_info;
4659 struct find_free_extent_ctl ffe_ctl = {};
4660 bool final_tried = num_bytes == min_alloc_size;
4661 u64 flags;
4662 int ret;
4663 bool for_treelog = (btrfs_root_id(root) == BTRFS_TREE_LOG_OBJECTID);
4664 bool for_data_reloc = (btrfs_is_data_reloc_root(root) && is_data);
4665
4666 flags = get_alloc_profile_by_root(root, is_data);
4667 again:
4668 WARN_ON(num_bytes < fs_info->sectorsize);
4669
4670 ffe_ctl.ram_bytes = ram_bytes;
4671 ffe_ctl.num_bytes = num_bytes;
4672 ffe_ctl.min_alloc_size = min_alloc_size;
4673 ffe_ctl.empty_size = empty_size;
4674 ffe_ctl.flags = flags;
4675 ffe_ctl.delalloc = delalloc;
4676 ffe_ctl.hint_byte = hint_byte;
4677 ffe_ctl.for_treelog = for_treelog;
4678 ffe_ctl.for_data_reloc = for_data_reloc;
4679
4680 ret = find_free_extent(root, ins, &ffe_ctl);
4681 if (!ret && !is_data) {
4682 btrfs_dec_block_group_reservations(fs_info, ins->objectid);
4683 } else if (ret == -ENOSPC) {
4684 if (!final_tried && ins->offset) {
4685 num_bytes = min(num_bytes >> 1, ins->offset);
4686 num_bytes = round_down(num_bytes,
4687 fs_info->sectorsize);
4688 num_bytes = max(num_bytes, min_alloc_size);
4689 ram_bytes = num_bytes;
4690 if (num_bytes == min_alloc_size)
4691 final_tried = true;
4692 goto again;
4693 } else if (btrfs_test_opt(fs_info, ENOSPC_DEBUG)) {
4694 struct btrfs_space_info *sinfo;
4695
4696 sinfo = btrfs_find_space_info(fs_info, flags);
4697 btrfs_err(fs_info,
4698 "allocation failed flags %llu, wanted %llu tree-log %d, relocation: %d",
4699 flags, num_bytes, for_treelog, for_data_reloc);
4700 if (sinfo)
4701 btrfs_dump_space_info(fs_info, sinfo,
4702 num_bytes, 1);
4703 }
4704 }
4705
4706 return ret;
4707 }
4708
btrfs_free_reserved_extent(struct btrfs_fs_info * fs_info,u64 start,u64 len,int delalloc)4709 int btrfs_free_reserved_extent(struct btrfs_fs_info *fs_info,
4710 u64 start, u64 len, int delalloc)
4711 {
4712 struct btrfs_block_group *cache;
4713
4714 cache = btrfs_lookup_block_group(fs_info, start);
4715 if (!cache) {
4716 btrfs_err(fs_info, "Unable to find block group for %llu",
4717 start);
4718 return -ENOSPC;
4719 }
4720
4721 btrfs_add_free_space(cache, start, len);
4722 btrfs_free_reserved_bytes(cache, len, delalloc);
4723 trace_btrfs_reserved_extent_free(fs_info, start, len);
4724
4725 btrfs_put_block_group(cache);
4726 return 0;
4727 }
4728
btrfs_pin_reserved_extent(struct btrfs_trans_handle * trans,const struct extent_buffer * eb)4729 int btrfs_pin_reserved_extent(struct btrfs_trans_handle *trans,
4730 const struct extent_buffer *eb)
4731 {
4732 struct btrfs_block_group *cache;
4733 int ret = 0;
4734
4735 cache = btrfs_lookup_block_group(trans->fs_info, eb->start);
4736 if (!cache) {
4737 btrfs_err(trans->fs_info, "unable to find block group for %llu",
4738 eb->start);
4739 return -ENOSPC;
4740 }
4741
4742 ret = pin_down_extent(trans, cache, eb->start, eb->len, 1);
4743 btrfs_put_block_group(cache);
4744 return ret;
4745 }
4746
alloc_reserved_extent(struct btrfs_trans_handle * trans,u64 bytenr,u64 num_bytes)4747 static int alloc_reserved_extent(struct btrfs_trans_handle *trans, u64 bytenr,
4748 u64 num_bytes)
4749 {
4750 struct btrfs_fs_info *fs_info = trans->fs_info;
4751 int ret;
4752
4753 ret = remove_from_free_space_tree(trans, bytenr, num_bytes);
4754 if (ret)
4755 return ret;
4756
4757 ret = btrfs_update_block_group(trans, bytenr, num_bytes, true);
4758 if (ret) {
4759 ASSERT(!ret);
4760 btrfs_err(fs_info, "update block group failed for %llu %llu",
4761 bytenr, num_bytes);
4762 return ret;
4763 }
4764
4765 trace_btrfs_reserved_extent_alloc(fs_info, bytenr, num_bytes);
4766 return 0;
4767 }
4768
alloc_reserved_file_extent(struct btrfs_trans_handle * trans,u64 parent,u64 root_objectid,u64 flags,u64 owner,u64 offset,struct btrfs_key * ins,int ref_mod,u64 oref_root)4769 static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
4770 u64 parent, u64 root_objectid,
4771 u64 flags, u64 owner, u64 offset,
4772 struct btrfs_key *ins, int ref_mod, u64 oref_root)
4773 {
4774 struct btrfs_fs_info *fs_info = trans->fs_info;
4775 struct btrfs_root *extent_root;
4776 int ret;
4777 struct btrfs_extent_item *extent_item;
4778 struct btrfs_extent_owner_ref *oref;
4779 struct btrfs_extent_inline_ref *iref;
4780 struct btrfs_path *path;
4781 struct extent_buffer *leaf;
4782 int type;
4783 u32 size;
4784 const bool simple_quota = (btrfs_qgroup_mode(fs_info) == BTRFS_QGROUP_MODE_SIMPLE);
4785
4786 if (parent > 0)
4787 type = BTRFS_SHARED_DATA_REF_KEY;
4788 else
4789 type = BTRFS_EXTENT_DATA_REF_KEY;
4790
4791 size = sizeof(*extent_item);
4792 if (simple_quota)
4793 size += btrfs_extent_inline_ref_size(BTRFS_EXTENT_OWNER_REF_KEY);
4794 size += btrfs_extent_inline_ref_size(type);
4795
4796 path = btrfs_alloc_path();
4797 if (!path)
4798 return -ENOMEM;
4799
4800 extent_root = btrfs_extent_root(fs_info, ins->objectid);
4801 ret = btrfs_insert_empty_item(trans, extent_root, path, ins, size);
4802 if (ret) {
4803 btrfs_free_path(path);
4804 return ret;
4805 }
4806
4807 leaf = path->nodes[0];
4808 extent_item = btrfs_item_ptr(leaf, path->slots[0],
4809 struct btrfs_extent_item);
4810 btrfs_set_extent_refs(leaf, extent_item, ref_mod);
4811 btrfs_set_extent_generation(leaf, extent_item, trans->transid);
4812 btrfs_set_extent_flags(leaf, extent_item,
4813 flags | BTRFS_EXTENT_FLAG_DATA);
4814
4815 iref = (struct btrfs_extent_inline_ref *)(extent_item + 1);
4816 if (simple_quota) {
4817 btrfs_set_extent_inline_ref_type(leaf, iref, BTRFS_EXTENT_OWNER_REF_KEY);
4818 oref = (struct btrfs_extent_owner_ref *)(&iref->offset);
4819 btrfs_set_extent_owner_ref_root_id(leaf, oref, oref_root);
4820 iref = (struct btrfs_extent_inline_ref *)(oref + 1);
4821 }
4822 btrfs_set_extent_inline_ref_type(leaf, iref, type);
4823
4824 if (parent > 0) {
4825 struct btrfs_shared_data_ref *ref;
4826 ref = (struct btrfs_shared_data_ref *)(iref + 1);
4827 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
4828 btrfs_set_shared_data_ref_count(leaf, ref, ref_mod);
4829 } else {
4830 struct btrfs_extent_data_ref *ref;
4831 ref = (struct btrfs_extent_data_ref *)(&iref->offset);
4832 btrfs_set_extent_data_ref_root(leaf, ref, root_objectid);
4833 btrfs_set_extent_data_ref_objectid(leaf, ref, owner);
4834 btrfs_set_extent_data_ref_offset(leaf, ref, offset);
4835 btrfs_set_extent_data_ref_count(leaf, ref, ref_mod);
4836 }
4837
4838 btrfs_free_path(path);
4839
4840 return alloc_reserved_extent(trans, ins->objectid, ins->offset);
4841 }
4842
alloc_reserved_tree_block(struct btrfs_trans_handle * trans,struct btrfs_delayed_ref_node * node,struct btrfs_delayed_extent_op * extent_op)4843 static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans,
4844 struct btrfs_delayed_ref_node *node,
4845 struct btrfs_delayed_extent_op *extent_op)
4846 {
4847 struct btrfs_fs_info *fs_info = trans->fs_info;
4848 struct btrfs_root *extent_root;
4849 int ret;
4850 struct btrfs_extent_item *extent_item;
4851 struct btrfs_key extent_key;
4852 struct btrfs_tree_block_info *block_info;
4853 struct btrfs_extent_inline_ref *iref;
4854 struct btrfs_path *path;
4855 struct extent_buffer *leaf;
4856 u32 size = sizeof(*extent_item) + sizeof(*iref);
4857 const u64 flags = (extent_op ? extent_op->flags_to_set : 0);
4858 /* The owner of a tree block is the level. */
4859 int level = btrfs_delayed_ref_owner(node);
4860 bool skinny_metadata = btrfs_fs_incompat(fs_info, SKINNY_METADATA);
4861
4862 extent_key.objectid = node->bytenr;
4863 if (skinny_metadata) {
4864 /* The owner of a tree block is the level. */
4865 extent_key.offset = level;
4866 extent_key.type = BTRFS_METADATA_ITEM_KEY;
4867 } else {
4868 extent_key.offset = node->num_bytes;
4869 extent_key.type = BTRFS_EXTENT_ITEM_KEY;
4870 size += sizeof(*block_info);
4871 }
4872
4873 path = btrfs_alloc_path();
4874 if (!path)
4875 return -ENOMEM;
4876
4877 extent_root = btrfs_extent_root(fs_info, extent_key.objectid);
4878 ret = btrfs_insert_empty_item(trans, extent_root, path, &extent_key,
4879 size);
4880 if (ret) {
4881 btrfs_free_path(path);
4882 return ret;
4883 }
4884
4885 leaf = path->nodes[0];
4886 extent_item = btrfs_item_ptr(leaf, path->slots[0],
4887 struct btrfs_extent_item);
4888 btrfs_set_extent_refs(leaf, extent_item, 1);
4889 btrfs_set_extent_generation(leaf, extent_item, trans->transid);
4890 btrfs_set_extent_flags(leaf, extent_item,
4891 flags | BTRFS_EXTENT_FLAG_TREE_BLOCK);
4892
4893 if (skinny_metadata) {
4894 iref = (struct btrfs_extent_inline_ref *)(extent_item + 1);
4895 } else {
4896 block_info = (struct btrfs_tree_block_info *)(extent_item + 1);
4897 btrfs_set_tree_block_key(leaf, block_info, &extent_op->key);
4898 btrfs_set_tree_block_level(leaf, block_info, level);
4899 iref = (struct btrfs_extent_inline_ref *)(block_info + 1);
4900 }
4901
4902 if (node->type == BTRFS_SHARED_BLOCK_REF_KEY) {
4903 btrfs_set_extent_inline_ref_type(leaf, iref,
4904 BTRFS_SHARED_BLOCK_REF_KEY);
4905 btrfs_set_extent_inline_ref_offset(leaf, iref, node->parent);
4906 } else {
4907 btrfs_set_extent_inline_ref_type(leaf, iref,
4908 BTRFS_TREE_BLOCK_REF_KEY);
4909 btrfs_set_extent_inline_ref_offset(leaf, iref, node->ref_root);
4910 }
4911
4912 btrfs_free_path(path);
4913
4914 return alloc_reserved_extent(trans, node->bytenr, fs_info->nodesize);
4915 }
4916
btrfs_alloc_reserved_file_extent(struct btrfs_trans_handle * trans,struct btrfs_root * root,u64 owner,u64 offset,u64 ram_bytes,struct btrfs_key * ins)4917 int btrfs_alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
4918 struct btrfs_root *root, u64 owner,
4919 u64 offset, u64 ram_bytes,
4920 struct btrfs_key *ins)
4921 {
4922 struct btrfs_ref generic_ref = {
4923 .action = BTRFS_ADD_DELAYED_EXTENT,
4924 .bytenr = ins->objectid,
4925 .num_bytes = ins->offset,
4926 .owning_root = btrfs_root_id(root),
4927 .ref_root = btrfs_root_id(root),
4928 };
4929
4930 ASSERT(generic_ref.ref_root != BTRFS_TREE_LOG_OBJECTID);
4931
4932 if (btrfs_is_data_reloc_root(root) && is_fstree(root->relocation_src_root))
4933 generic_ref.owning_root = root->relocation_src_root;
4934
4935 btrfs_init_data_ref(&generic_ref, owner, offset, 0, false);
4936 btrfs_ref_tree_mod(root->fs_info, &generic_ref);
4937
4938 return btrfs_add_delayed_data_ref(trans, &generic_ref, ram_bytes);
4939 }
4940
4941 /*
4942 * this is used by the tree logging recovery code. It records that
4943 * an extent has been allocated and makes sure to clear the free
4944 * space cache bits as well
4945 */
btrfs_alloc_logged_file_extent(struct btrfs_trans_handle * trans,u64 root_objectid,u64 owner,u64 offset,struct btrfs_key * ins)4946 int btrfs_alloc_logged_file_extent(struct btrfs_trans_handle *trans,
4947 u64 root_objectid, u64 owner, u64 offset,
4948 struct btrfs_key *ins)
4949 {
4950 struct btrfs_fs_info *fs_info = trans->fs_info;
4951 int ret;
4952 struct btrfs_block_group *block_group;
4953 struct btrfs_space_info *space_info;
4954 struct btrfs_squota_delta delta = {
4955 .root = root_objectid,
4956 .num_bytes = ins->offset,
4957 .generation = trans->transid,
4958 .is_data = true,
4959 .is_inc = true,
4960 };
4961
4962 /*
4963 * Mixed block groups will exclude before processing the log so we only
4964 * need to do the exclude dance if this fs isn't mixed.
4965 */
4966 if (!btrfs_fs_incompat(fs_info, MIXED_GROUPS)) {
4967 ret = __exclude_logged_extent(fs_info, ins->objectid,
4968 ins->offset);
4969 if (ret)
4970 return ret;
4971 }
4972
4973 block_group = btrfs_lookup_block_group(fs_info, ins->objectid);
4974 if (!block_group)
4975 return -EINVAL;
4976
4977 space_info = block_group->space_info;
4978 spin_lock(&space_info->lock);
4979 spin_lock(&block_group->lock);
4980 space_info->bytes_reserved += ins->offset;
4981 block_group->reserved += ins->offset;
4982 spin_unlock(&block_group->lock);
4983 spin_unlock(&space_info->lock);
4984
4985 ret = alloc_reserved_file_extent(trans, 0, root_objectid, 0, owner,
4986 offset, ins, 1, root_objectid);
4987 if (ret)
4988 btrfs_pin_extent(trans, ins->objectid, ins->offset, 1);
4989 ret = btrfs_record_squota_delta(fs_info, &delta);
4990 btrfs_put_block_group(block_group);
4991 return ret;
4992 }
4993
4994 #ifdef CONFIG_BTRFS_DEBUG
4995 /*
4996 * Extra safety check in case the extent tree is corrupted and extent allocator
4997 * chooses to use a tree block which is already used and locked.
4998 */
check_eb_lock_owner(const struct extent_buffer * eb)4999 static bool check_eb_lock_owner(const struct extent_buffer *eb)
5000 {
5001 if (eb->lock_owner == current->pid) {
5002 btrfs_err_rl(eb->fs_info,
5003 "tree block %llu owner %llu already locked by pid=%d, extent tree corruption detected",
5004 eb->start, btrfs_header_owner(eb), current->pid);
5005 return true;
5006 }
5007 return false;
5008 }
5009 #else
check_eb_lock_owner(struct extent_buffer * eb)5010 static bool check_eb_lock_owner(struct extent_buffer *eb)
5011 {
5012 return false;
5013 }
5014 #endif
5015
5016 static struct extent_buffer *
btrfs_init_new_buffer(struct btrfs_trans_handle * trans,struct btrfs_root * root,u64 bytenr,int level,u64 owner,enum btrfs_lock_nesting nest)5017 btrfs_init_new_buffer(struct btrfs_trans_handle *trans, struct btrfs_root *root,
5018 u64 bytenr, int level, u64 owner,
5019 enum btrfs_lock_nesting nest)
5020 {
5021 struct btrfs_fs_info *fs_info = root->fs_info;
5022 struct extent_buffer *buf;
5023 u64 lockdep_owner = owner;
5024
5025 buf = btrfs_find_create_tree_block(fs_info, bytenr, owner, level);
5026 if (IS_ERR(buf))
5027 return buf;
5028
5029 if (check_eb_lock_owner(buf)) {
5030 free_extent_buffer(buf);
5031 return ERR_PTR(-EUCLEAN);
5032 }
5033
5034 /*
5035 * The reloc trees are just snapshots, so we need them to appear to be
5036 * just like any other fs tree WRT lockdep.
5037 *
5038 * The exception however is in replace_path() in relocation, where we
5039 * hold the lock on the original fs root and then search for the reloc
5040 * root. At that point we need to make sure any reloc root buffers are
5041 * set to the BTRFS_TREE_RELOC_OBJECTID lockdep class in order to make
5042 * lockdep happy.
5043 */
5044 if (lockdep_owner == BTRFS_TREE_RELOC_OBJECTID &&
5045 !test_bit(BTRFS_ROOT_RESET_LOCKDEP_CLASS, &root->state))
5046 lockdep_owner = BTRFS_FS_TREE_OBJECTID;
5047
5048 /* btrfs_clear_buffer_dirty() accesses generation field. */
5049 btrfs_set_header_generation(buf, trans->transid);
5050
5051 /*
5052 * This needs to stay, because we could allocate a freed block from an
5053 * old tree into a new tree, so we need to make sure this new block is
5054 * set to the appropriate level and owner.
5055 */
5056 btrfs_set_buffer_lockdep_class(lockdep_owner, buf, level);
5057
5058 btrfs_tree_lock_nested(buf, nest);
5059 btrfs_clear_buffer_dirty(trans, buf);
5060 clear_bit(EXTENT_BUFFER_STALE, &buf->bflags);
5061 clear_bit(EXTENT_BUFFER_ZONED_ZEROOUT, &buf->bflags);
5062
5063 set_extent_buffer_uptodate(buf);
5064
5065 memzero_extent_buffer(buf, 0, sizeof(struct btrfs_header));
5066 btrfs_set_header_level(buf, level);
5067 btrfs_set_header_bytenr(buf, buf->start);
5068 btrfs_set_header_generation(buf, trans->transid);
5069 btrfs_set_header_backref_rev(buf, BTRFS_MIXED_BACKREF_REV);
5070 btrfs_set_header_owner(buf, owner);
5071 write_extent_buffer_fsid(buf, fs_info->fs_devices->metadata_uuid);
5072 write_extent_buffer_chunk_tree_uuid(buf, fs_info->chunk_tree_uuid);
5073 if (btrfs_root_id(root) == BTRFS_TREE_LOG_OBJECTID) {
5074 buf->log_index = root->log_transid % 2;
5075 /*
5076 * we allow two log transactions at a time, use different
5077 * EXTENT bit to differentiate dirty pages.
5078 */
5079 if (buf->log_index == 0)
5080 set_extent_bit(&root->dirty_log_pages, buf->start,
5081 buf->start + buf->len - 1,
5082 EXTENT_DIRTY, NULL);
5083 else
5084 set_extent_bit(&root->dirty_log_pages, buf->start,
5085 buf->start + buf->len - 1,
5086 EXTENT_NEW, NULL);
5087 } else {
5088 buf->log_index = -1;
5089 set_extent_bit(&trans->transaction->dirty_pages, buf->start,
5090 buf->start + buf->len - 1, EXTENT_DIRTY, NULL);
5091 }
5092 /* this returns a buffer locked for blocking */
5093 return buf;
5094 }
5095
5096 /*
5097 * finds a free extent and does all the dirty work required for allocation
5098 * returns the tree buffer or an ERR_PTR on error.
5099 */
btrfs_alloc_tree_block(struct btrfs_trans_handle * trans,struct btrfs_root * root,u64 parent,u64 root_objectid,const struct btrfs_disk_key * key,int level,u64 hint,u64 empty_size,u64 reloc_src_root,enum btrfs_lock_nesting nest)5100 struct extent_buffer *btrfs_alloc_tree_block(struct btrfs_trans_handle *trans,
5101 struct btrfs_root *root,
5102 u64 parent, u64 root_objectid,
5103 const struct btrfs_disk_key *key,
5104 int level, u64 hint,
5105 u64 empty_size,
5106 u64 reloc_src_root,
5107 enum btrfs_lock_nesting nest)
5108 {
5109 struct btrfs_fs_info *fs_info = root->fs_info;
5110 struct btrfs_key ins;
5111 struct btrfs_block_rsv *block_rsv;
5112 struct extent_buffer *buf;
5113 u64 flags = 0;
5114 int ret;
5115 u32 blocksize = fs_info->nodesize;
5116 bool skinny_metadata = btrfs_fs_incompat(fs_info, SKINNY_METADATA);
5117 u64 owning_root;
5118
5119 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
5120 if (btrfs_is_testing(fs_info)) {
5121 buf = btrfs_init_new_buffer(trans, root, root->alloc_bytenr,
5122 level, root_objectid, nest);
5123 if (!IS_ERR(buf))
5124 root->alloc_bytenr += blocksize;
5125 return buf;
5126 }
5127 #endif
5128
5129 block_rsv = btrfs_use_block_rsv(trans, root, blocksize);
5130 if (IS_ERR(block_rsv))
5131 return ERR_CAST(block_rsv);
5132
5133 ret = btrfs_reserve_extent(root, blocksize, blocksize, blocksize,
5134 empty_size, hint, &ins, 0, 0);
5135 if (ret)
5136 goto out_unuse;
5137
5138 buf = btrfs_init_new_buffer(trans, root, ins.objectid, level,
5139 root_objectid, nest);
5140 if (IS_ERR(buf)) {
5141 ret = PTR_ERR(buf);
5142 goto out_free_reserved;
5143 }
5144 owning_root = btrfs_header_owner(buf);
5145
5146 if (root_objectid == BTRFS_TREE_RELOC_OBJECTID) {
5147 if (parent == 0)
5148 parent = ins.objectid;
5149 flags |= BTRFS_BLOCK_FLAG_FULL_BACKREF;
5150 owning_root = reloc_src_root;
5151 } else
5152 BUG_ON(parent > 0);
5153
5154 if (root_objectid != BTRFS_TREE_LOG_OBJECTID) {
5155 struct btrfs_delayed_extent_op *extent_op;
5156 struct btrfs_ref generic_ref = {
5157 .action = BTRFS_ADD_DELAYED_EXTENT,
5158 .bytenr = ins.objectid,
5159 .num_bytes = ins.offset,
5160 .parent = parent,
5161 .owning_root = owning_root,
5162 .ref_root = root_objectid,
5163 };
5164
5165 if (!skinny_metadata || flags != 0) {
5166 extent_op = btrfs_alloc_delayed_extent_op();
5167 if (!extent_op) {
5168 ret = -ENOMEM;
5169 goto out_free_buf;
5170 }
5171 if (key)
5172 memcpy(&extent_op->key, key, sizeof(extent_op->key));
5173 else
5174 memset(&extent_op->key, 0, sizeof(extent_op->key));
5175 extent_op->flags_to_set = flags;
5176 extent_op->update_key = (skinny_metadata ? false : true);
5177 extent_op->update_flags = (flags != 0);
5178 } else {
5179 extent_op = NULL;
5180 }
5181
5182 btrfs_init_tree_ref(&generic_ref, level, btrfs_root_id(root), false);
5183 btrfs_ref_tree_mod(fs_info, &generic_ref);
5184 ret = btrfs_add_delayed_tree_ref(trans, &generic_ref, extent_op);
5185 if (ret) {
5186 btrfs_free_delayed_extent_op(extent_op);
5187 goto out_free_buf;
5188 }
5189 }
5190 return buf;
5191
5192 out_free_buf:
5193 btrfs_tree_unlock(buf);
5194 free_extent_buffer(buf);
5195 out_free_reserved:
5196 btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, 0);
5197 out_unuse:
5198 btrfs_unuse_block_rsv(fs_info, block_rsv, blocksize);
5199 return ERR_PTR(ret);
5200 }
5201
5202 struct walk_control {
5203 u64 refs[BTRFS_MAX_LEVEL];
5204 u64 flags[BTRFS_MAX_LEVEL];
5205 struct btrfs_key update_progress;
5206 struct btrfs_key drop_progress;
5207 int drop_level;
5208 int stage;
5209 int level;
5210 int shared_level;
5211 int update_ref;
5212 int keep_locks;
5213 int reada_slot;
5214 int reada_count;
5215 int restarted;
5216 /* Indicate that extent info needs to be looked up when walking the tree. */
5217 int lookup_info;
5218 };
5219
5220 /*
5221 * This is our normal stage. We are traversing blocks the current snapshot owns
5222 * and we are dropping any of our references to any children we are able to, and
5223 * then freeing the block once we've processed all of the children.
5224 */
5225 #define DROP_REFERENCE 1
5226
5227 /*
5228 * We enter this stage when we have to walk into a child block (meaning we can't
5229 * simply drop our reference to it from our current parent node) and there are
5230 * more than one reference on it. If we are the owner of any of the children
5231 * blocks from the current parent node then we have to do the FULL_BACKREF dance
5232 * on them in order to drop our normal ref and add the shared ref.
5233 */
5234 #define UPDATE_BACKREF 2
5235
5236 /*
5237 * Decide if we need to walk down into this node to adjust the references.
5238 *
5239 * @root: the root we are currently deleting
5240 * @wc: the walk control for this deletion
5241 * @eb: the parent eb that we're currently visiting
5242 * @refs: the number of refs for wc->level - 1
5243 * @flags: the flags for wc->level - 1
5244 * @slot: the slot in the eb that we're currently checking
5245 *
5246 * This is meant to be called when we're evaluating if a node we point to at
5247 * wc->level should be read and walked into, or if we can simply delete our
5248 * reference to it. We return true if we should walk into the node, false if we
5249 * can skip it.
5250 *
5251 * We have assertions in here to make sure this is called correctly. We assume
5252 * that sanity checking on the blocks read to this point has been done, so any
5253 * corrupted file systems must have been caught before calling this function.
5254 */
visit_node_for_delete(struct btrfs_root * root,struct walk_control * wc,struct extent_buffer * eb,u64 flags,int slot)5255 static bool visit_node_for_delete(struct btrfs_root *root, struct walk_control *wc,
5256 struct extent_buffer *eb, u64 flags, int slot)
5257 {
5258 struct btrfs_key key;
5259 u64 generation;
5260 int level = wc->level;
5261
5262 ASSERT(level > 0);
5263 ASSERT(wc->refs[level - 1] > 0);
5264
5265 /*
5266 * The update backref stage we only want to skip if we already have
5267 * FULL_BACKREF set, otherwise we need to read.
5268 */
5269 if (wc->stage == UPDATE_BACKREF) {
5270 if (level == 1 && flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)
5271 return false;
5272 return true;
5273 }
5274
5275 /*
5276 * We're the last ref on this block, we must walk into it and process
5277 * any refs it's pointing at.
5278 */
5279 if (wc->refs[level - 1] == 1)
5280 return true;
5281
5282 /*
5283 * If we're already FULL_BACKREF then we know we can just drop our
5284 * current reference.
5285 */
5286 if (level == 1 && flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)
5287 return false;
5288
5289 /*
5290 * This block is older than our creation generation, we can drop our
5291 * reference to it.
5292 */
5293 generation = btrfs_node_ptr_generation(eb, slot);
5294 if (!wc->update_ref || generation <= btrfs_root_origin_generation(root))
5295 return false;
5296
5297 /*
5298 * This block was processed from a previous snapshot deletion run, we
5299 * can skip it.
5300 */
5301 btrfs_node_key_to_cpu(eb, &key, slot);
5302 if (btrfs_comp_cpu_keys(&key, &wc->update_progress) < 0)
5303 return false;
5304
5305 /* All other cases we need to wander into the node. */
5306 return true;
5307 }
5308
reada_walk_down(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct walk_control * wc,struct btrfs_path * path)5309 static noinline void reada_walk_down(struct btrfs_trans_handle *trans,
5310 struct btrfs_root *root,
5311 struct walk_control *wc,
5312 struct btrfs_path *path)
5313 {
5314 struct btrfs_fs_info *fs_info = root->fs_info;
5315 u64 bytenr;
5316 u64 generation;
5317 u64 refs;
5318 u64 flags;
5319 u32 nritems;
5320 struct extent_buffer *eb;
5321 int ret;
5322 int slot;
5323 int nread = 0;
5324
5325 if (path->slots[wc->level] < wc->reada_slot) {
5326 wc->reada_count = wc->reada_count * 2 / 3;
5327 wc->reada_count = max(wc->reada_count, 2);
5328 } else {
5329 wc->reada_count = wc->reada_count * 3 / 2;
5330 wc->reada_count = min_t(int, wc->reada_count,
5331 BTRFS_NODEPTRS_PER_BLOCK(fs_info));
5332 }
5333
5334 eb = path->nodes[wc->level];
5335 nritems = btrfs_header_nritems(eb);
5336
5337 for (slot = path->slots[wc->level]; slot < nritems; slot++) {
5338 if (nread >= wc->reada_count)
5339 break;
5340
5341 cond_resched();
5342 bytenr = btrfs_node_blockptr(eb, slot);
5343 generation = btrfs_node_ptr_generation(eb, slot);
5344
5345 if (slot == path->slots[wc->level])
5346 goto reada;
5347
5348 if (wc->stage == UPDATE_BACKREF &&
5349 generation <= btrfs_root_origin_generation(root))
5350 continue;
5351
5352 /* We don't lock the tree block, it's OK to be racy here */
5353 ret = btrfs_lookup_extent_info(trans, fs_info, bytenr,
5354 wc->level - 1, 1, &refs,
5355 &flags, NULL);
5356 /* We don't care about errors in readahead. */
5357 if (ret < 0)
5358 continue;
5359
5360 /*
5361 * This could be racey, it's conceivable that we raced and end
5362 * up with a bogus refs count, if that's the case just skip, if
5363 * we are actually corrupt we will notice when we look up
5364 * everything again with our locks.
5365 */
5366 if (refs == 0)
5367 continue;
5368
5369 /* If we don't need to visit this node don't reada. */
5370 if (!visit_node_for_delete(root, wc, eb, flags, slot))
5371 continue;
5372 reada:
5373 btrfs_readahead_node_child(eb, slot);
5374 nread++;
5375 }
5376 wc->reada_slot = slot;
5377 }
5378
5379 /*
5380 * helper to process tree block while walking down the tree.
5381 *
5382 * when wc->stage == UPDATE_BACKREF, this function updates
5383 * back refs for pointers in the block.
5384 *
5385 * NOTE: return value 1 means we should stop walking down.
5386 */
walk_down_proc(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,struct walk_control * wc)5387 static noinline int walk_down_proc(struct btrfs_trans_handle *trans,
5388 struct btrfs_root *root,
5389 struct btrfs_path *path,
5390 struct walk_control *wc)
5391 {
5392 struct btrfs_fs_info *fs_info = root->fs_info;
5393 int level = wc->level;
5394 struct extent_buffer *eb = path->nodes[level];
5395 u64 flag = BTRFS_BLOCK_FLAG_FULL_BACKREF;
5396 int ret;
5397
5398 if (wc->stage == UPDATE_BACKREF && btrfs_header_owner(eb) != btrfs_root_id(root))
5399 return 1;
5400
5401 /*
5402 * when reference count of tree block is 1, it won't increase
5403 * again. once full backref flag is set, we never clear it.
5404 */
5405 if (wc->lookup_info &&
5406 ((wc->stage == DROP_REFERENCE && wc->refs[level] != 1) ||
5407 (wc->stage == UPDATE_BACKREF && !(wc->flags[level] & flag)))) {
5408 ASSERT(path->locks[level]);
5409 ret = btrfs_lookup_extent_info(trans, fs_info,
5410 eb->start, level, 1,
5411 &wc->refs[level],
5412 &wc->flags[level],
5413 NULL);
5414 if (ret)
5415 return ret;
5416 if (unlikely(wc->refs[level] == 0)) {
5417 btrfs_err(fs_info, "bytenr %llu has 0 references, expect > 0",
5418 eb->start);
5419 return -EUCLEAN;
5420 }
5421 }
5422
5423 if (wc->stage == DROP_REFERENCE) {
5424 if (wc->refs[level] > 1)
5425 return 1;
5426
5427 if (path->locks[level] && !wc->keep_locks) {
5428 btrfs_tree_unlock_rw(eb, path->locks[level]);
5429 path->locks[level] = 0;
5430 }
5431 return 0;
5432 }
5433
5434 /* wc->stage == UPDATE_BACKREF */
5435 if (!(wc->flags[level] & flag)) {
5436 ASSERT(path->locks[level]);
5437 ret = btrfs_inc_ref(trans, root, eb, 1);
5438 if (ret) {
5439 btrfs_abort_transaction(trans, ret);
5440 return ret;
5441 }
5442 ret = btrfs_dec_ref(trans, root, eb, 0);
5443 if (ret) {
5444 btrfs_abort_transaction(trans, ret);
5445 return ret;
5446 }
5447 ret = btrfs_set_disk_extent_flags(trans, eb, flag);
5448 if (ret) {
5449 btrfs_abort_transaction(trans, ret);
5450 return ret;
5451 }
5452 wc->flags[level] |= flag;
5453 }
5454
5455 /*
5456 * the block is shared by multiple trees, so it's not good to
5457 * keep the tree lock
5458 */
5459 if (path->locks[level] && level > 0) {
5460 btrfs_tree_unlock_rw(eb, path->locks[level]);
5461 path->locks[level] = 0;
5462 }
5463 return 0;
5464 }
5465
5466 /*
5467 * This is used to verify a ref exists for this root to deal with a bug where we
5468 * would have a drop_progress key that hadn't been updated properly.
5469 */
check_ref_exists(struct btrfs_trans_handle * trans,struct btrfs_root * root,u64 bytenr,u64 parent,int level)5470 static int check_ref_exists(struct btrfs_trans_handle *trans,
5471 struct btrfs_root *root, u64 bytenr, u64 parent,
5472 int level)
5473 {
5474 struct btrfs_delayed_ref_root *delayed_refs;
5475 struct btrfs_delayed_ref_head *head;
5476 struct btrfs_path *path;
5477 struct btrfs_extent_inline_ref *iref;
5478 int ret;
5479 bool exists = false;
5480
5481 path = btrfs_alloc_path();
5482 if (!path)
5483 return -ENOMEM;
5484 again:
5485 ret = lookup_extent_backref(trans, path, &iref, bytenr,
5486 root->fs_info->nodesize, parent,
5487 btrfs_root_id(root), level, 0);
5488 if (ret != -ENOENT) {
5489 /*
5490 * If we get 0 then we found our reference, return 1, else
5491 * return the error if it's not -ENOENT;
5492 */
5493 btrfs_free_path(path);
5494 return (ret < 0 ) ? ret : 1;
5495 }
5496
5497 /*
5498 * We could have a delayed ref with this reference, so look it up while
5499 * we're holding the path open to make sure we don't race with the
5500 * delayed ref running.
5501 */
5502 delayed_refs = &trans->transaction->delayed_refs;
5503 spin_lock(&delayed_refs->lock);
5504 head = btrfs_find_delayed_ref_head(root->fs_info, delayed_refs, bytenr);
5505 if (!head)
5506 goto out;
5507 if (!mutex_trylock(&head->mutex)) {
5508 /*
5509 * We're contended, means that the delayed ref is running, get a
5510 * reference and wait for the ref head to be complete and then
5511 * try again.
5512 */
5513 refcount_inc(&head->refs);
5514 spin_unlock(&delayed_refs->lock);
5515
5516 btrfs_release_path(path);
5517
5518 mutex_lock(&head->mutex);
5519 mutex_unlock(&head->mutex);
5520 btrfs_put_delayed_ref_head(head);
5521 goto again;
5522 }
5523
5524 exists = btrfs_find_delayed_tree_ref(head, root->root_key.objectid, parent);
5525 mutex_unlock(&head->mutex);
5526 out:
5527 spin_unlock(&delayed_refs->lock);
5528 btrfs_free_path(path);
5529 return exists ? 1 : 0;
5530 }
5531
5532 /*
5533 * We may not have an uptodate block, so if we are going to walk down into this
5534 * block we need to drop the lock, read it off of the disk, re-lock it and
5535 * return to continue dropping the snapshot.
5536 */
check_next_block_uptodate(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,struct walk_control * wc,struct extent_buffer * next)5537 static int check_next_block_uptodate(struct btrfs_trans_handle *trans,
5538 struct btrfs_root *root,
5539 struct btrfs_path *path,
5540 struct walk_control *wc,
5541 struct extent_buffer *next)
5542 {
5543 struct btrfs_tree_parent_check check = { 0 };
5544 u64 generation;
5545 int level = wc->level;
5546 int ret;
5547
5548 btrfs_assert_tree_write_locked(next);
5549
5550 generation = btrfs_node_ptr_generation(path->nodes[level], path->slots[level]);
5551
5552 if (btrfs_buffer_uptodate(next, generation, 0))
5553 return 0;
5554
5555 check.level = level - 1;
5556 check.transid = generation;
5557 check.owner_root = btrfs_root_id(root);
5558 check.has_first_key = true;
5559 btrfs_node_key_to_cpu(path->nodes[level], &check.first_key, path->slots[level]);
5560
5561 btrfs_tree_unlock(next);
5562 if (level == 1)
5563 reada_walk_down(trans, root, wc, path);
5564 ret = btrfs_read_extent_buffer(next, &check);
5565 if (ret) {
5566 free_extent_buffer(next);
5567 return ret;
5568 }
5569 btrfs_tree_lock(next);
5570 wc->lookup_info = 1;
5571 return 0;
5572 }
5573
5574 /*
5575 * If we determine that we don't have to visit wc->level - 1 then we need to
5576 * determine if we can drop our reference.
5577 *
5578 * If we are UPDATE_BACKREF then we will not, we need to update our backrefs.
5579 *
5580 * If we are DROP_REFERENCE this will figure out if we need to drop our current
5581 * reference, skipping it if we dropped it from a previous incompleted drop, or
5582 * dropping it if we still have a reference to it.
5583 */
maybe_drop_reference(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,struct walk_control * wc,struct extent_buffer * next,u64 owner_root)5584 static int maybe_drop_reference(struct btrfs_trans_handle *trans, struct btrfs_root *root,
5585 struct btrfs_path *path, struct walk_control *wc,
5586 struct extent_buffer *next, u64 owner_root)
5587 {
5588 struct btrfs_ref ref = {
5589 .action = BTRFS_DROP_DELAYED_REF,
5590 .bytenr = next->start,
5591 .num_bytes = root->fs_info->nodesize,
5592 .owning_root = owner_root,
5593 .ref_root = btrfs_root_id(root),
5594 };
5595 int level = wc->level;
5596 int ret;
5597
5598 /* We are UPDATE_BACKREF, we're not dropping anything. */
5599 if (wc->stage == UPDATE_BACKREF)
5600 return 0;
5601
5602 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF) {
5603 ref.parent = path->nodes[level]->start;
5604 } else {
5605 ASSERT(btrfs_root_id(root) == btrfs_header_owner(path->nodes[level]));
5606 if (btrfs_root_id(root) != btrfs_header_owner(path->nodes[level])) {
5607 btrfs_err(root->fs_info, "mismatched block owner");
5608 return -EIO;
5609 }
5610 }
5611
5612 /*
5613 * If we had a drop_progress we need to verify the refs are set as
5614 * expected. If we find our ref then we know that from here on out
5615 * everything should be correct, and we can clear the
5616 * ->restarted flag.
5617 */
5618 if (wc->restarted) {
5619 ret = check_ref_exists(trans, root, next->start, ref.parent,
5620 level - 1);
5621 if (ret <= 0)
5622 return ret;
5623 ret = 0;
5624 wc->restarted = 0;
5625 }
5626
5627 /*
5628 * Reloc tree doesn't contribute to qgroup numbers, and we have already
5629 * accounted them at merge time (replace_path), thus we could skip
5630 * expensive subtree trace here.
5631 */
5632 if (btrfs_root_id(root) != BTRFS_TREE_RELOC_OBJECTID &&
5633 wc->refs[level - 1] > 1) {
5634 u64 generation = btrfs_node_ptr_generation(path->nodes[level],
5635 path->slots[level]);
5636
5637 ret = btrfs_qgroup_trace_subtree(trans, next, generation, level - 1);
5638 if (ret) {
5639 btrfs_err_rl(root->fs_info,
5640 "error %d accounting shared subtree, quota is out of sync, rescan required",
5641 ret);
5642 }
5643 }
5644
5645 /*
5646 * We need to update the next key in our walk control so we can update
5647 * the drop_progress key accordingly. We don't care if find_next_key
5648 * doesn't find a key because that means we're at the end and are going
5649 * to clean up now.
5650 */
5651 wc->drop_level = level;
5652 find_next_key(path, level, &wc->drop_progress);
5653
5654 btrfs_init_tree_ref(&ref, level - 1, 0, false);
5655 return btrfs_free_extent(trans, &ref);
5656 }
5657
5658 /*
5659 * helper to process tree block pointer.
5660 *
5661 * when wc->stage == DROP_REFERENCE, this function checks
5662 * reference count of the block pointed to. if the block
5663 * is shared and we need update back refs for the subtree
5664 * rooted at the block, this function changes wc->stage to
5665 * UPDATE_BACKREF. if the block is shared and there is no
5666 * need to update back, this function drops the reference
5667 * to the block.
5668 *
5669 * NOTE: return value 1 means we should stop walking down.
5670 */
do_walk_down(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,struct walk_control * wc)5671 static noinline int do_walk_down(struct btrfs_trans_handle *trans,
5672 struct btrfs_root *root,
5673 struct btrfs_path *path,
5674 struct walk_control *wc)
5675 {
5676 struct btrfs_fs_info *fs_info = root->fs_info;
5677 u64 bytenr;
5678 u64 generation;
5679 u64 owner_root = 0;
5680 struct extent_buffer *next;
5681 int level = wc->level;
5682 int ret = 0;
5683
5684 generation = btrfs_node_ptr_generation(path->nodes[level],
5685 path->slots[level]);
5686 /*
5687 * if the lower level block was created before the snapshot
5688 * was created, we know there is no need to update back refs
5689 * for the subtree
5690 */
5691 if (wc->stage == UPDATE_BACKREF &&
5692 generation <= btrfs_root_origin_generation(root)) {
5693 wc->lookup_info = 1;
5694 return 1;
5695 }
5696
5697 bytenr = btrfs_node_blockptr(path->nodes[level], path->slots[level]);
5698
5699 next = btrfs_find_create_tree_block(fs_info, bytenr, btrfs_root_id(root),
5700 level - 1);
5701 if (IS_ERR(next))
5702 return PTR_ERR(next);
5703
5704 btrfs_tree_lock(next);
5705
5706 ret = btrfs_lookup_extent_info(trans, fs_info, bytenr, level - 1, 1,
5707 &wc->refs[level - 1],
5708 &wc->flags[level - 1],
5709 &owner_root);
5710 if (ret < 0)
5711 goto out_unlock;
5712
5713 if (unlikely(wc->refs[level - 1] == 0)) {
5714 btrfs_err(fs_info, "bytenr %llu has 0 references, expect > 0",
5715 bytenr);
5716 ret = -EUCLEAN;
5717 goto out_unlock;
5718 }
5719 wc->lookup_info = 0;
5720
5721 /* If we don't have to walk into this node skip it. */
5722 if (!visit_node_for_delete(root, wc, path->nodes[level],
5723 wc->flags[level - 1], path->slots[level]))
5724 goto skip;
5725
5726 /*
5727 * We have to walk down into this node, and if we're currently at the
5728 * DROP_REFERNCE stage and this block is shared then we need to switch
5729 * to the UPDATE_BACKREF stage in order to convert to FULL_BACKREF.
5730 */
5731 if (wc->stage == DROP_REFERENCE && wc->refs[level - 1] > 1) {
5732 wc->stage = UPDATE_BACKREF;
5733 wc->shared_level = level - 1;
5734 }
5735
5736 ret = check_next_block_uptodate(trans, root, path, wc, next);
5737 if (ret)
5738 return ret;
5739
5740 level--;
5741 ASSERT(level == btrfs_header_level(next));
5742 if (level != btrfs_header_level(next)) {
5743 btrfs_err(root->fs_info, "mismatched level");
5744 ret = -EIO;
5745 goto out_unlock;
5746 }
5747 path->nodes[level] = next;
5748 path->slots[level] = 0;
5749 path->locks[level] = BTRFS_WRITE_LOCK;
5750 wc->level = level;
5751 if (wc->level == 1)
5752 wc->reada_slot = 0;
5753 return 0;
5754 skip:
5755 ret = maybe_drop_reference(trans, root, path, wc, next, owner_root);
5756 if (ret)
5757 goto out_unlock;
5758 wc->refs[level - 1] = 0;
5759 wc->flags[level - 1] = 0;
5760 wc->lookup_info = 1;
5761 ret = 1;
5762
5763 out_unlock:
5764 btrfs_tree_unlock(next);
5765 free_extent_buffer(next);
5766
5767 return ret;
5768 }
5769
5770 /*
5771 * helper to process tree block while walking up the tree.
5772 *
5773 * when wc->stage == DROP_REFERENCE, this function drops
5774 * reference count on the block.
5775 *
5776 * when wc->stage == UPDATE_BACKREF, this function changes
5777 * wc->stage back to DROP_REFERENCE if we changed wc->stage
5778 * to UPDATE_BACKREF previously while processing the block.
5779 *
5780 * NOTE: return value 1 means we should stop walking up.
5781 */
walk_up_proc(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,struct walk_control * wc)5782 static noinline int walk_up_proc(struct btrfs_trans_handle *trans,
5783 struct btrfs_root *root,
5784 struct btrfs_path *path,
5785 struct walk_control *wc)
5786 {
5787 struct btrfs_fs_info *fs_info = root->fs_info;
5788 int ret = 0;
5789 int level = wc->level;
5790 struct extent_buffer *eb = path->nodes[level];
5791 u64 parent = 0;
5792
5793 if (wc->stage == UPDATE_BACKREF) {
5794 ASSERT(wc->shared_level >= level);
5795 if (level < wc->shared_level)
5796 goto out;
5797
5798 ret = find_next_key(path, level + 1, &wc->update_progress);
5799 if (ret > 0)
5800 wc->update_ref = 0;
5801
5802 wc->stage = DROP_REFERENCE;
5803 wc->shared_level = -1;
5804 path->slots[level] = 0;
5805
5806 /*
5807 * check reference count again if the block isn't locked.
5808 * we should start walking down the tree again if reference
5809 * count is one.
5810 */
5811 if (!path->locks[level]) {
5812 ASSERT(level > 0);
5813 btrfs_tree_lock(eb);
5814 path->locks[level] = BTRFS_WRITE_LOCK;
5815
5816 ret = btrfs_lookup_extent_info(trans, fs_info,
5817 eb->start, level, 1,
5818 &wc->refs[level],
5819 &wc->flags[level],
5820 NULL);
5821 if (ret < 0) {
5822 btrfs_tree_unlock_rw(eb, path->locks[level]);
5823 path->locks[level] = 0;
5824 return ret;
5825 }
5826 if (unlikely(wc->refs[level] == 0)) {
5827 btrfs_tree_unlock_rw(eb, path->locks[level]);
5828 btrfs_err(fs_info, "bytenr %llu has 0 references, expect > 0",
5829 eb->start);
5830 return -EUCLEAN;
5831 }
5832 if (wc->refs[level] == 1) {
5833 btrfs_tree_unlock_rw(eb, path->locks[level]);
5834 path->locks[level] = 0;
5835 return 1;
5836 }
5837 }
5838 }
5839
5840 /* wc->stage == DROP_REFERENCE */
5841 ASSERT(path->locks[level] || wc->refs[level] == 1);
5842
5843 if (wc->refs[level] == 1) {
5844 if (level == 0) {
5845 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
5846 ret = btrfs_dec_ref(trans, root, eb, 1);
5847 else
5848 ret = btrfs_dec_ref(trans, root, eb, 0);
5849 if (ret) {
5850 btrfs_abort_transaction(trans, ret);
5851 return ret;
5852 }
5853 if (is_fstree(btrfs_root_id(root))) {
5854 ret = btrfs_qgroup_trace_leaf_items(trans, eb);
5855 if (ret) {
5856 btrfs_err_rl(fs_info,
5857 "error %d accounting leaf items, quota is out of sync, rescan required",
5858 ret);
5859 }
5860 }
5861 }
5862 /* Make block locked assertion in btrfs_clear_buffer_dirty happy. */
5863 if (!path->locks[level]) {
5864 btrfs_tree_lock(eb);
5865 path->locks[level] = BTRFS_WRITE_LOCK;
5866 }
5867 btrfs_clear_buffer_dirty(trans, eb);
5868 }
5869
5870 if (eb == root->node) {
5871 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
5872 parent = eb->start;
5873 else if (btrfs_root_id(root) != btrfs_header_owner(eb))
5874 goto owner_mismatch;
5875 } else {
5876 if (wc->flags[level + 1] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
5877 parent = path->nodes[level + 1]->start;
5878 else if (btrfs_root_id(root) !=
5879 btrfs_header_owner(path->nodes[level + 1]))
5880 goto owner_mismatch;
5881 }
5882
5883 ret = btrfs_free_tree_block(trans, btrfs_root_id(root), eb, parent,
5884 wc->refs[level] == 1);
5885 if (ret < 0)
5886 btrfs_abort_transaction(trans, ret);
5887 out:
5888 wc->refs[level] = 0;
5889 wc->flags[level] = 0;
5890 return ret;
5891
5892 owner_mismatch:
5893 btrfs_err_rl(fs_info, "unexpected tree owner, have %llu expect %llu",
5894 btrfs_header_owner(eb), btrfs_root_id(root));
5895 return -EUCLEAN;
5896 }
5897
5898 /*
5899 * walk_down_tree consists of two steps.
5900 *
5901 * walk_down_proc(). Look up the reference count and reference of our current
5902 * wc->level. At this point path->nodes[wc->level] should be populated and
5903 * uptodate, and in most cases should already be locked. If we are in
5904 * DROP_REFERENCE and our refcount is > 1 then we've entered a shared node and
5905 * we can walk back up the tree. If we are UPDATE_BACKREF we have to set
5906 * FULL_BACKREF on this node if it's not already set, and then do the
5907 * FULL_BACKREF conversion dance, which is to drop the root reference and add
5908 * the shared reference to all of this nodes children.
5909 *
5910 * do_walk_down(). This is where we actually start iterating on the children of
5911 * our current path->nodes[wc->level]. For DROP_REFERENCE that means dropping
5912 * our reference to the children that return false from visit_node_for_delete(),
5913 * which has various conditions where we know we can just drop our reference
5914 * without visiting the node. For UPDATE_BACKREF we will skip any children that
5915 * visit_node_for_delete() returns false for, only walking down when necessary.
5916 * The bulk of the work for UPDATE_BACKREF occurs in the walk_up_tree() part of
5917 * snapshot deletion.
5918 */
walk_down_tree(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,struct walk_control * wc)5919 static noinline int walk_down_tree(struct btrfs_trans_handle *trans,
5920 struct btrfs_root *root,
5921 struct btrfs_path *path,
5922 struct walk_control *wc)
5923 {
5924 int level = wc->level;
5925 int ret = 0;
5926
5927 wc->lookup_info = 1;
5928 while (level >= 0) {
5929 ret = walk_down_proc(trans, root, path, wc);
5930 if (ret)
5931 break;
5932
5933 if (level == 0)
5934 break;
5935
5936 if (path->slots[level] >=
5937 btrfs_header_nritems(path->nodes[level]))
5938 break;
5939
5940 ret = do_walk_down(trans, root, path, wc);
5941 if (ret > 0) {
5942 path->slots[level]++;
5943 continue;
5944 } else if (ret < 0)
5945 break;
5946 level = wc->level;
5947 }
5948 return (ret == 1) ? 0 : ret;
5949 }
5950
5951 /*
5952 * walk_up_tree() is responsible for making sure we visit every slot on our
5953 * current node, and if we're at the end of that node then we call
5954 * walk_up_proc() on our current node which will do one of a few things based on
5955 * our stage.
5956 *
5957 * UPDATE_BACKREF. If we wc->level is currently less than our wc->shared_level
5958 * then we need to walk back up the tree, and then going back down into the
5959 * other slots via walk_down_tree to update any other children from our original
5960 * wc->shared_level. Once we're at or above our wc->shared_level we can switch
5961 * back to DROP_REFERENCE, lookup the current nodes refs and flags, and carry on.
5962 *
5963 * DROP_REFERENCE. If our refs == 1 then we're going to free this tree block.
5964 * If we're level 0 then we need to btrfs_dec_ref() on all of the data extents
5965 * in our current leaf. After that we call btrfs_free_tree_block() on the
5966 * current node and walk up to the next node to walk down the next slot.
5967 */
walk_up_tree(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,struct walk_control * wc,int max_level)5968 static noinline int walk_up_tree(struct btrfs_trans_handle *trans,
5969 struct btrfs_root *root,
5970 struct btrfs_path *path,
5971 struct walk_control *wc, int max_level)
5972 {
5973 int level = wc->level;
5974 int ret;
5975
5976 path->slots[level] = btrfs_header_nritems(path->nodes[level]);
5977 while (level < max_level && path->nodes[level]) {
5978 wc->level = level;
5979 if (path->slots[level] + 1 <
5980 btrfs_header_nritems(path->nodes[level])) {
5981 path->slots[level]++;
5982 return 0;
5983 } else {
5984 ret = walk_up_proc(trans, root, path, wc);
5985 if (ret > 0)
5986 return 0;
5987 if (ret < 0)
5988 return ret;
5989
5990 if (path->locks[level]) {
5991 btrfs_tree_unlock_rw(path->nodes[level],
5992 path->locks[level]);
5993 path->locks[level] = 0;
5994 }
5995 free_extent_buffer(path->nodes[level]);
5996 path->nodes[level] = NULL;
5997 level++;
5998 }
5999 }
6000 return 1;
6001 }
6002
6003 /*
6004 * drop a subvolume tree.
6005 *
6006 * this function traverses the tree freeing any blocks that only
6007 * referenced by the tree.
6008 *
6009 * when a shared tree block is found. this function decreases its
6010 * reference count by one. if update_ref is true, this function
6011 * also make sure backrefs for the shared block and all lower level
6012 * blocks are properly updated.
6013 *
6014 * If called with for_reloc == 0, may exit early with -EAGAIN
6015 */
btrfs_drop_snapshot(struct btrfs_root * root,int update_ref,int for_reloc)6016 int btrfs_drop_snapshot(struct btrfs_root *root, int update_ref, int for_reloc)
6017 {
6018 const bool is_reloc_root = (btrfs_root_id(root) == BTRFS_TREE_RELOC_OBJECTID);
6019 struct btrfs_fs_info *fs_info = root->fs_info;
6020 struct btrfs_path *path;
6021 struct btrfs_trans_handle *trans;
6022 struct btrfs_root *tree_root = fs_info->tree_root;
6023 struct btrfs_root_item *root_item = &root->root_item;
6024 struct walk_control *wc;
6025 struct btrfs_key key;
6026 const u64 rootid = btrfs_root_id(root);
6027 int ret = 0;
6028 int level;
6029 bool root_dropped = false;
6030 bool unfinished_drop = false;
6031
6032 btrfs_debug(fs_info, "Drop subvolume %llu", btrfs_root_id(root));
6033
6034 path = btrfs_alloc_path();
6035 if (!path) {
6036 ret = -ENOMEM;
6037 goto out;
6038 }
6039
6040 wc = kzalloc(sizeof(*wc), GFP_NOFS);
6041 if (!wc) {
6042 btrfs_free_path(path);
6043 ret = -ENOMEM;
6044 goto out;
6045 }
6046
6047 /*
6048 * Use join to avoid potential EINTR from transaction start. See
6049 * wait_reserve_ticket and the whole reservation callchain.
6050 */
6051 if (for_reloc)
6052 trans = btrfs_join_transaction(tree_root);
6053 else
6054 trans = btrfs_start_transaction(tree_root, 0);
6055 if (IS_ERR(trans)) {
6056 ret = PTR_ERR(trans);
6057 goto out_free;
6058 }
6059
6060 ret = btrfs_run_delayed_items(trans);
6061 if (ret)
6062 goto out_end_trans;
6063
6064 /*
6065 * This will help us catch people modifying the fs tree while we're
6066 * dropping it. It is unsafe to mess with the fs tree while it's being
6067 * dropped as we unlock the root node and parent nodes as we walk down
6068 * the tree, assuming nothing will change. If something does change
6069 * then we'll have stale information and drop references to blocks we've
6070 * already dropped.
6071 */
6072 set_bit(BTRFS_ROOT_DELETING, &root->state);
6073 unfinished_drop = test_bit(BTRFS_ROOT_UNFINISHED_DROP, &root->state);
6074
6075 if (btrfs_disk_key_objectid(&root_item->drop_progress) == 0) {
6076 level = btrfs_header_level(root->node);
6077 path->nodes[level] = btrfs_lock_root_node(root);
6078 path->slots[level] = 0;
6079 path->locks[level] = BTRFS_WRITE_LOCK;
6080 memset(&wc->update_progress, 0,
6081 sizeof(wc->update_progress));
6082 } else {
6083 btrfs_disk_key_to_cpu(&key, &root_item->drop_progress);
6084 memcpy(&wc->update_progress, &key,
6085 sizeof(wc->update_progress));
6086
6087 level = btrfs_root_drop_level(root_item);
6088 BUG_ON(level == 0);
6089 path->lowest_level = level;
6090 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
6091 path->lowest_level = 0;
6092 if (ret < 0)
6093 goto out_end_trans;
6094
6095 WARN_ON(ret > 0);
6096 ret = 0;
6097
6098 /*
6099 * unlock our path, this is safe because only this
6100 * function is allowed to delete this snapshot
6101 */
6102 btrfs_unlock_up_safe(path, 0);
6103
6104 level = btrfs_header_level(root->node);
6105 while (1) {
6106 btrfs_tree_lock(path->nodes[level]);
6107 path->locks[level] = BTRFS_WRITE_LOCK;
6108
6109 /*
6110 * btrfs_lookup_extent_info() returns 0 for success,
6111 * or < 0 for error.
6112 */
6113 ret = btrfs_lookup_extent_info(trans, fs_info,
6114 path->nodes[level]->start,
6115 level, 1, &wc->refs[level],
6116 &wc->flags[level], NULL);
6117 if (ret < 0)
6118 goto out_end_trans;
6119
6120 BUG_ON(wc->refs[level] == 0);
6121
6122 if (level == btrfs_root_drop_level(root_item))
6123 break;
6124
6125 btrfs_tree_unlock(path->nodes[level]);
6126 path->locks[level] = 0;
6127 WARN_ON(wc->refs[level] != 1);
6128 level--;
6129 }
6130 }
6131
6132 wc->restarted = test_bit(BTRFS_ROOT_DEAD_TREE, &root->state);
6133 wc->level = level;
6134 wc->shared_level = -1;
6135 wc->stage = DROP_REFERENCE;
6136 wc->update_ref = update_ref;
6137 wc->keep_locks = 0;
6138 wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(fs_info);
6139
6140 while (1) {
6141
6142 ret = walk_down_tree(trans, root, path, wc);
6143 if (ret < 0) {
6144 btrfs_abort_transaction(trans, ret);
6145 break;
6146 }
6147
6148 ret = walk_up_tree(trans, root, path, wc, BTRFS_MAX_LEVEL);
6149 if (ret < 0) {
6150 btrfs_abort_transaction(trans, ret);
6151 break;
6152 }
6153
6154 if (ret > 0) {
6155 BUG_ON(wc->stage != DROP_REFERENCE);
6156 ret = 0;
6157 break;
6158 }
6159
6160 if (wc->stage == DROP_REFERENCE) {
6161 wc->drop_level = wc->level;
6162 btrfs_node_key_to_cpu(path->nodes[wc->drop_level],
6163 &wc->drop_progress,
6164 path->slots[wc->drop_level]);
6165 }
6166 btrfs_cpu_key_to_disk(&root_item->drop_progress,
6167 &wc->drop_progress);
6168 btrfs_set_root_drop_level(root_item, wc->drop_level);
6169
6170 BUG_ON(wc->level == 0);
6171 if (btrfs_should_end_transaction(trans) ||
6172 (!for_reloc && btrfs_need_cleaner_sleep(fs_info))) {
6173 ret = btrfs_update_root(trans, tree_root,
6174 &root->root_key,
6175 root_item);
6176 if (ret) {
6177 btrfs_abort_transaction(trans, ret);
6178 goto out_end_trans;
6179 }
6180
6181 if (!is_reloc_root)
6182 btrfs_set_last_root_drop_gen(fs_info, trans->transid);
6183
6184 btrfs_end_transaction_throttle(trans);
6185 if (!for_reloc && btrfs_need_cleaner_sleep(fs_info)) {
6186 btrfs_debug(fs_info,
6187 "drop snapshot early exit");
6188 ret = -EAGAIN;
6189 goto out_free;
6190 }
6191
6192 /*
6193 * Use join to avoid potential EINTR from transaction
6194 * start. See wait_reserve_ticket and the whole
6195 * reservation callchain.
6196 */
6197 if (for_reloc)
6198 trans = btrfs_join_transaction(tree_root);
6199 else
6200 trans = btrfs_start_transaction(tree_root, 0);
6201 if (IS_ERR(trans)) {
6202 ret = PTR_ERR(trans);
6203 goto out_free;
6204 }
6205 }
6206 }
6207 btrfs_release_path(path);
6208 if (ret)
6209 goto out_end_trans;
6210
6211 ret = btrfs_del_root(trans, &root->root_key);
6212 if (ret) {
6213 btrfs_abort_transaction(trans, ret);
6214 goto out_end_trans;
6215 }
6216
6217 if (!is_reloc_root) {
6218 ret = btrfs_find_root(tree_root, &root->root_key, path,
6219 NULL, NULL);
6220 if (ret < 0) {
6221 btrfs_abort_transaction(trans, ret);
6222 goto out_end_trans;
6223 } else if (ret > 0) {
6224 ret = 0;
6225 /*
6226 * If we fail to delete the orphan item this time
6227 * around, it'll get picked up the next time.
6228 *
6229 * The most common failure here is just -ENOENT.
6230 */
6231 btrfs_del_orphan_item(trans, tree_root, btrfs_root_id(root));
6232 }
6233 }
6234
6235 /*
6236 * This subvolume is going to be completely dropped, and won't be
6237 * recorded as dirty roots, thus pertrans meta rsv will not be freed at
6238 * commit transaction time. So free it here manually.
6239 */
6240 btrfs_qgroup_convert_reserved_meta(root, INT_MAX);
6241 btrfs_qgroup_free_meta_all_pertrans(root);
6242
6243 if (test_bit(BTRFS_ROOT_IN_RADIX, &root->state))
6244 btrfs_add_dropped_root(trans, root);
6245 else
6246 btrfs_put_root(root);
6247 root_dropped = true;
6248 out_end_trans:
6249 if (!is_reloc_root)
6250 btrfs_set_last_root_drop_gen(fs_info, trans->transid);
6251
6252 btrfs_end_transaction_throttle(trans);
6253 out_free:
6254 kfree(wc);
6255 btrfs_free_path(path);
6256 out:
6257 if (!ret && root_dropped) {
6258 ret = btrfs_qgroup_cleanup_dropped_subvolume(fs_info, rootid);
6259 if (ret < 0)
6260 btrfs_warn_rl(fs_info,
6261 "failed to cleanup qgroup 0/%llu: %d",
6262 rootid, ret);
6263 ret = 0;
6264 }
6265 /*
6266 * We were an unfinished drop root, check to see if there are any
6267 * pending, and if not clear and wake up any waiters.
6268 */
6269 if (!ret && unfinished_drop)
6270 btrfs_maybe_wake_unfinished_drop(fs_info);
6271
6272 /*
6273 * So if we need to stop dropping the snapshot for whatever reason we
6274 * need to make sure to add it back to the dead root list so that we
6275 * keep trying to do the work later. This also cleans up roots if we
6276 * don't have it in the radix (like when we recover after a power fail
6277 * or unmount) so we don't leak memory.
6278 */
6279 if (!for_reloc && !root_dropped)
6280 btrfs_add_dead_root(root);
6281 return ret;
6282 }
6283
6284 /*
6285 * drop subtree rooted at tree block 'node'.
6286 *
6287 * NOTE: this function will unlock and release tree block 'node'
6288 * only used by relocation code
6289 */
btrfs_drop_subtree(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct extent_buffer * node,struct extent_buffer * parent)6290 int btrfs_drop_subtree(struct btrfs_trans_handle *trans,
6291 struct btrfs_root *root,
6292 struct extent_buffer *node,
6293 struct extent_buffer *parent)
6294 {
6295 struct btrfs_fs_info *fs_info = root->fs_info;
6296 struct btrfs_path *path;
6297 struct walk_control *wc;
6298 int level;
6299 int parent_level;
6300 int ret = 0;
6301
6302 BUG_ON(btrfs_root_id(root) != BTRFS_TREE_RELOC_OBJECTID);
6303
6304 path = btrfs_alloc_path();
6305 if (!path)
6306 return -ENOMEM;
6307
6308 wc = kzalloc(sizeof(*wc), GFP_NOFS);
6309 if (!wc) {
6310 btrfs_free_path(path);
6311 return -ENOMEM;
6312 }
6313
6314 btrfs_assert_tree_write_locked(parent);
6315 parent_level = btrfs_header_level(parent);
6316 atomic_inc(&parent->refs);
6317 path->nodes[parent_level] = parent;
6318 path->slots[parent_level] = btrfs_header_nritems(parent);
6319
6320 btrfs_assert_tree_write_locked(node);
6321 level = btrfs_header_level(node);
6322 path->nodes[level] = node;
6323 path->slots[level] = 0;
6324 path->locks[level] = BTRFS_WRITE_LOCK;
6325
6326 wc->refs[parent_level] = 1;
6327 wc->flags[parent_level] = BTRFS_BLOCK_FLAG_FULL_BACKREF;
6328 wc->level = level;
6329 wc->shared_level = -1;
6330 wc->stage = DROP_REFERENCE;
6331 wc->update_ref = 0;
6332 wc->keep_locks = 1;
6333 wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(fs_info);
6334
6335 while (1) {
6336 ret = walk_down_tree(trans, root, path, wc);
6337 if (ret < 0)
6338 break;
6339
6340 ret = walk_up_tree(trans, root, path, wc, parent_level);
6341 if (ret) {
6342 if (ret > 0)
6343 ret = 0;
6344 break;
6345 }
6346 }
6347
6348 kfree(wc);
6349 btrfs_free_path(path);
6350 return ret;
6351 }
6352
6353 /*
6354 * Unpin the extent range in an error context and don't add the space back.
6355 * Errors are not propagated further.
6356 */
btrfs_error_unpin_extent_range(struct btrfs_fs_info * fs_info,u64 start,u64 end)6357 void btrfs_error_unpin_extent_range(struct btrfs_fs_info *fs_info, u64 start, u64 end)
6358 {
6359 unpin_extent_range(fs_info, start, end, false);
6360 }
6361
6362 /*
6363 * It used to be that old block groups would be left around forever.
6364 * Iterating over them would be enough to trim unused space. Since we
6365 * now automatically remove them, we also need to iterate over unallocated
6366 * space.
6367 *
6368 * We don't want a transaction for this since the discard may take a
6369 * substantial amount of time. We don't require that a transaction be
6370 * running, but we do need to take a running transaction into account
6371 * to ensure that we're not discarding chunks that were released or
6372 * allocated in the current transaction.
6373 *
6374 * Holding the chunks lock will prevent other threads from allocating
6375 * or releasing chunks, but it won't prevent a running transaction
6376 * from committing and releasing the memory that the pending chunks
6377 * list head uses. For that, we need to take a reference to the
6378 * transaction and hold the commit root sem. We only need to hold
6379 * it while performing the free space search since we have already
6380 * held back allocations.
6381 */
btrfs_trim_free_extents(struct btrfs_device * device,u64 * trimmed)6382 static int btrfs_trim_free_extents(struct btrfs_device *device, u64 *trimmed)
6383 {
6384 u64 start = BTRFS_DEVICE_RANGE_RESERVED, len = 0, end = 0;
6385 int ret;
6386
6387 *trimmed = 0;
6388
6389 /* Discard not supported = nothing to do. */
6390 if (!bdev_max_discard_sectors(device->bdev))
6391 return 0;
6392
6393 /* Not writable = nothing to do. */
6394 if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state))
6395 return 0;
6396
6397 /* No free space = nothing to do. */
6398 if (device->total_bytes <= device->bytes_used)
6399 return 0;
6400
6401 ret = 0;
6402
6403 while (1) {
6404 struct btrfs_fs_info *fs_info = device->fs_info;
6405 u64 bytes;
6406
6407 ret = mutex_lock_interruptible(&fs_info->chunk_mutex);
6408 if (ret)
6409 break;
6410
6411 find_first_clear_extent_bit(&device->alloc_state, start,
6412 &start, &end,
6413 CHUNK_TRIMMED | CHUNK_ALLOCATED);
6414
6415 /* Check if there are any CHUNK_* bits left */
6416 if (start > device->total_bytes) {
6417 WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG));
6418 btrfs_warn_in_rcu(fs_info,
6419 "ignoring attempt to trim beyond device size: offset %llu length %llu device %s device size %llu",
6420 start, end - start + 1,
6421 btrfs_dev_name(device),
6422 device->total_bytes);
6423 mutex_unlock(&fs_info->chunk_mutex);
6424 ret = 0;
6425 break;
6426 }
6427
6428 /* Ensure we skip the reserved space on each device. */
6429 start = max_t(u64, start, BTRFS_DEVICE_RANGE_RESERVED);
6430
6431 /*
6432 * If find_first_clear_extent_bit find a range that spans the
6433 * end of the device it will set end to -1, in this case it's up
6434 * to the caller to trim the value to the size of the device.
6435 */
6436 end = min(end, device->total_bytes - 1);
6437
6438 len = end - start + 1;
6439
6440 /* We didn't find any extents */
6441 if (!len) {
6442 mutex_unlock(&fs_info->chunk_mutex);
6443 ret = 0;
6444 break;
6445 }
6446
6447 ret = btrfs_issue_discard(device->bdev, start, len,
6448 &bytes);
6449 if (!ret)
6450 set_extent_bit(&device->alloc_state, start,
6451 start + bytes - 1, CHUNK_TRIMMED, NULL);
6452 mutex_unlock(&fs_info->chunk_mutex);
6453
6454 if (ret)
6455 break;
6456
6457 start += len;
6458 *trimmed += bytes;
6459
6460 if (btrfs_trim_interrupted()) {
6461 ret = -ERESTARTSYS;
6462 break;
6463 }
6464
6465 cond_resched();
6466 }
6467
6468 return ret;
6469 }
6470
6471 /*
6472 * Trim the whole filesystem by:
6473 * 1) trimming the free space in each block group
6474 * 2) trimming the unallocated space on each device
6475 *
6476 * This will also continue trimming even if a block group or device encounters
6477 * an error. The return value will be the last error, or 0 if nothing bad
6478 * happens.
6479 */
btrfs_trim_fs(struct btrfs_fs_info * fs_info,struct fstrim_range * range)6480 int btrfs_trim_fs(struct btrfs_fs_info *fs_info, struct fstrim_range *range)
6481 {
6482 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
6483 struct btrfs_block_group *cache = NULL;
6484 struct btrfs_device *device;
6485 u64 group_trimmed;
6486 u64 range_end = U64_MAX;
6487 u64 start;
6488 u64 end;
6489 u64 trimmed = 0;
6490 u64 bg_failed = 0;
6491 u64 dev_failed = 0;
6492 int bg_ret = 0;
6493 int dev_ret = 0;
6494 int ret = 0;
6495
6496 if (range->start == U64_MAX)
6497 return -EINVAL;
6498
6499 /*
6500 * Check range overflow if range->len is set.
6501 * The default range->len is U64_MAX.
6502 */
6503 if (range->len != U64_MAX &&
6504 check_add_overflow(range->start, range->len, &range_end))
6505 return -EINVAL;
6506
6507 cache = btrfs_lookup_first_block_group(fs_info, range->start);
6508 for (; cache; cache = btrfs_next_block_group(cache)) {
6509 if (cache->start >= range_end) {
6510 btrfs_put_block_group(cache);
6511 break;
6512 }
6513
6514 start = max(range->start, cache->start);
6515 end = min(range_end, cache->start + cache->length);
6516
6517 if (end - start >= range->minlen) {
6518 if (!btrfs_block_group_done(cache)) {
6519 ret = btrfs_cache_block_group(cache, true);
6520 if (ret) {
6521 bg_failed++;
6522 bg_ret = ret;
6523 continue;
6524 }
6525 }
6526 ret = btrfs_trim_block_group(cache,
6527 &group_trimmed,
6528 start,
6529 end,
6530 range->minlen);
6531
6532 trimmed += group_trimmed;
6533 if (ret) {
6534 bg_failed++;
6535 bg_ret = ret;
6536 continue;
6537 }
6538 }
6539 }
6540
6541 if (bg_failed)
6542 btrfs_warn(fs_info,
6543 "failed to trim %llu block group(s), last error %d",
6544 bg_failed, bg_ret);
6545
6546 mutex_lock(&fs_devices->device_list_mutex);
6547 list_for_each_entry(device, &fs_devices->devices, dev_list) {
6548 if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state))
6549 continue;
6550
6551 ret = btrfs_trim_free_extents(device, &group_trimmed);
6552
6553 trimmed += group_trimmed;
6554 if (ret) {
6555 dev_failed++;
6556 dev_ret = ret;
6557 break;
6558 }
6559 }
6560 mutex_unlock(&fs_devices->device_list_mutex);
6561
6562 if (dev_failed)
6563 btrfs_warn(fs_info,
6564 "failed to trim %llu device(s), last error %d",
6565 dev_failed, dev_ret);
6566 range->len = trimmed;
6567 if (bg_ret)
6568 return bg_ret;
6569 return dev_ret;
6570 }
6571