1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * fs/f2fs/node.c
4 *
5 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
6 * http://www.samsung.com/
7 */
8 #include <linux/fs.h>
9 #include <linux/f2fs_fs.h>
10 #include <linux/mpage.h>
11 #include <linux/sched/mm.h>
12 #include <linux/blkdev.h>
13 #include <linux/pagevec.h>
14 #include <linux/swap.h>
15
16 #include "f2fs.h"
17 #include "node.h"
18 #include "segment.h"
19 #include "xattr.h"
20 #include "iostat.h"
21 #include <trace/events/f2fs.h>
22
23 #define on_f2fs_build_free_nids(nm_i) mutex_is_locked(&(nm_i)->build_lock)
24
25 static struct kmem_cache *nat_entry_slab;
26 static struct kmem_cache *free_nid_slab;
27 static struct kmem_cache *nat_entry_set_slab;
28 static struct kmem_cache *fsync_node_entry_slab;
29
30 /*
31 * Check whether the given nid is within node id range.
32 */
f2fs_check_nid_range(struct f2fs_sb_info * sbi,nid_t nid)33 int f2fs_check_nid_range(struct f2fs_sb_info *sbi, nid_t nid)
34 {
35 if (unlikely(nid < F2FS_ROOT_INO(sbi) || nid >= NM_I(sbi)->max_nid)) {
36 set_sbi_flag(sbi, SBI_NEED_FSCK);
37 f2fs_warn(sbi, "%s: out-of-range nid=%x, run fsck to fix.",
38 __func__, nid);
39 f2fs_handle_error(sbi, ERROR_CORRUPTED_INODE);
40 return -EFSCORRUPTED;
41 }
42 return 0;
43 }
44
f2fs_available_free_memory(struct f2fs_sb_info * sbi,int type)45 bool f2fs_available_free_memory(struct f2fs_sb_info *sbi, int type)
46 {
47 struct f2fs_nm_info *nm_i = NM_I(sbi);
48 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
49 struct sysinfo val;
50 unsigned long avail_ram;
51 unsigned long mem_size = 0;
52 bool res = false;
53
54 if (!nm_i)
55 return true;
56
57 si_meminfo(&val);
58
59 /* only uses low memory */
60 avail_ram = val.totalram - val.totalhigh;
61
62 /*
63 * give 25%, 25%, 50%, 50%, 25%, 25% memory for each components respectively
64 */
65 if (type == FREE_NIDS) {
66 mem_size = (nm_i->nid_cnt[FREE_NID] *
67 sizeof(struct free_nid)) >> PAGE_SHIFT;
68 res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 2);
69 } else if (type == NAT_ENTRIES) {
70 mem_size = (nm_i->nat_cnt[TOTAL_NAT] *
71 sizeof(struct nat_entry)) >> PAGE_SHIFT;
72 res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 2);
73 if (excess_cached_nats(sbi))
74 res = false;
75 } else if (type == DIRTY_DENTS) {
76 if (sbi->sb->s_bdi->wb.dirty_exceeded)
77 return false;
78 mem_size = get_pages(sbi, F2FS_DIRTY_DENTS);
79 res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 1);
80 } else if (type == INO_ENTRIES) {
81 int i;
82
83 for (i = 0; i < MAX_INO_ENTRY; i++)
84 mem_size += sbi->im[i].ino_num *
85 sizeof(struct ino_entry);
86 mem_size >>= PAGE_SHIFT;
87 res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 1);
88 } else if (type == READ_EXTENT_CACHE || type == AGE_EXTENT_CACHE) {
89 enum extent_type etype = type == READ_EXTENT_CACHE ?
90 EX_READ : EX_BLOCK_AGE;
91 struct extent_tree_info *eti = &sbi->extent_tree[etype];
92
93 mem_size = (atomic_read(&eti->total_ext_tree) *
94 sizeof(struct extent_tree) +
95 atomic_read(&eti->total_ext_node) *
96 sizeof(struct extent_node)) >> PAGE_SHIFT;
97 res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 2);
98 } else if (type == DISCARD_CACHE) {
99 mem_size = (atomic_read(&dcc->discard_cmd_cnt) *
100 sizeof(struct discard_cmd)) >> PAGE_SHIFT;
101 res = mem_size < (avail_ram * nm_i->ram_thresh / 100);
102 } else if (type == COMPRESS_PAGE) {
103 #ifdef CONFIG_F2FS_FS_COMPRESSION
104 unsigned long free_ram = val.freeram;
105
106 /*
107 * free memory is lower than watermark or cached page count
108 * exceed threshold, deny caching compress page.
109 */
110 res = (free_ram > avail_ram * sbi->compress_watermark / 100) &&
111 (COMPRESS_MAPPING(sbi)->nrpages <
112 free_ram * sbi->compress_percent / 100);
113 #else
114 res = false;
115 #endif
116 } else {
117 if (!sbi->sb->s_bdi->wb.dirty_exceeded)
118 return true;
119 }
120 return res;
121 }
122
clear_node_page_dirty(struct page * page)123 static void clear_node_page_dirty(struct page *page)
124 {
125 if (PageDirty(page)) {
126 f2fs_clear_page_cache_dirty_tag(page_folio(page));
127 clear_page_dirty_for_io(page);
128 dec_page_count(F2FS_P_SB(page), F2FS_DIRTY_NODES);
129 }
130 ClearPageUptodate(page);
131 }
132
get_current_nat_page(struct f2fs_sb_info * sbi,nid_t nid)133 static struct page *get_current_nat_page(struct f2fs_sb_info *sbi, nid_t nid)
134 {
135 return f2fs_get_meta_page_retry(sbi, current_nat_addr(sbi, nid));
136 }
137
get_next_nat_page(struct f2fs_sb_info * sbi,nid_t nid)138 static struct page *get_next_nat_page(struct f2fs_sb_info *sbi, nid_t nid)
139 {
140 struct page *src_page;
141 struct page *dst_page;
142 pgoff_t dst_off;
143 void *src_addr;
144 void *dst_addr;
145 struct f2fs_nm_info *nm_i = NM_I(sbi);
146
147 dst_off = next_nat_addr(sbi, current_nat_addr(sbi, nid));
148
149 /* get current nat block page with lock */
150 src_page = get_current_nat_page(sbi, nid);
151 if (IS_ERR(src_page))
152 return src_page;
153 dst_page = f2fs_grab_meta_page(sbi, dst_off);
154 f2fs_bug_on(sbi, PageDirty(src_page));
155
156 src_addr = page_address(src_page);
157 dst_addr = page_address(dst_page);
158 memcpy(dst_addr, src_addr, PAGE_SIZE);
159 set_page_dirty(dst_page);
160 f2fs_put_page(src_page, 1);
161
162 set_to_next_nat(nm_i, nid);
163
164 return dst_page;
165 }
166
__alloc_nat_entry(struct f2fs_sb_info * sbi,nid_t nid,bool no_fail)167 static struct nat_entry *__alloc_nat_entry(struct f2fs_sb_info *sbi,
168 nid_t nid, bool no_fail)
169 {
170 struct nat_entry *new;
171
172 new = f2fs_kmem_cache_alloc(nat_entry_slab,
173 GFP_F2FS_ZERO, no_fail, sbi);
174 if (new) {
175 nat_set_nid(new, nid);
176 nat_reset_flag(new);
177 }
178 return new;
179 }
180
__free_nat_entry(struct nat_entry * e)181 static void __free_nat_entry(struct nat_entry *e)
182 {
183 kmem_cache_free(nat_entry_slab, e);
184 }
185
186 /* must be locked by nat_tree_lock */
__init_nat_entry(struct f2fs_nm_info * nm_i,struct nat_entry * ne,struct f2fs_nat_entry * raw_ne,bool no_fail)187 static struct nat_entry *__init_nat_entry(struct f2fs_nm_info *nm_i,
188 struct nat_entry *ne, struct f2fs_nat_entry *raw_ne, bool no_fail)
189 {
190 if (no_fail)
191 f2fs_radix_tree_insert(&nm_i->nat_root, nat_get_nid(ne), ne);
192 else if (radix_tree_insert(&nm_i->nat_root, nat_get_nid(ne), ne))
193 return NULL;
194
195 if (raw_ne)
196 node_info_from_raw_nat(&ne->ni, raw_ne);
197
198 spin_lock(&nm_i->nat_list_lock);
199 list_add_tail(&ne->list, &nm_i->nat_entries);
200 spin_unlock(&nm_i->nat_list_lock);
201
202 nm_i->nat_cnt[TOTAL_NAT]++;
203 nm_i->nat_cnt[RECLAIMABLE_NAT]++;
204 return ne;
205 }
206
__lookup_nat_cache(struct f2fs_nm_info * nm_i,nid_t n)207 static struct nat_entry *__lookup_nat_cache(struct f2fs_nm_info *nm_i, nid_t n)
208 {
209 struct nat_entry *ne;
210
211 ne = radix_tree_lookup(&nm_i->nat_root, n);
212
213 /* for recent accessed nat entry, move it to tail of lru list */
214 if (ne && !get_nat_flag(ne, IS_DIRTY)) {
215 spin_lock(&nm_i->nat_list_lock);
216 if (!list_empty(&ne->list))
217 list_move_tail(&ne->list, &nm_i->nat_entries);
218 spin_unlock(&nm_i->nat_list_lock);
219 }
220
221 return ne;
222 }
223
__gang_lookup_nat_cache(struct f2fs_nm_info * nm_i,nid_t start,unsigned int nr,struct nat_entry ** ep)224 static unsigned int __gang_lookup_nat_cache(struct f2fs_nm_info *nm_i,
225 nid_t start, unsigned int nr, struct nat_entry **ep)
226 {
227 return radix_tree_gang_lookup(&nm_i->nat_root, (void **)ep, start, nr);
228 }
229
__del_from_nat_cache(struct f2fs_nm_info * nm_i,struct nat_entry * e)230 static void __del_from_nat_cache(struct f2fs_nm_info *nm_i, struct nat_entry *e)
231 {
232 radix_tree_delete(&nm_i->nat_root, nat_get_nid(e));
233 nm_i->nat_cnt[TOTAL_NAT]--;
234 nm_i->nat_cnt[RECLAIMABLE_NAT]--;
235 __free_nat_entry(e);
236 }
237
__grab_nat_entry_set(struct f2fs_nm_info * nm_i,struct nat_entry * ne)238 static struct nat_entry_set *__grab_nat_entry_set(struct f2fs_nm_info *nm_i,
239 struct nat_entry *ne)
240 {
241 nid_t set = NAT_BLOCK_OFFSET(ne->ni.nid);
242 struct nat_entry_set *head;
243
244 head = radix_tree_lookup(&nm_i->nat_set_root, set);
245 if (!head) {
246 head = f2fs_kmem_cache_alloc(nat_entry_set_slab,
247 GFP_NOFS, true, NULL);
248
249 INIT_LIST_HEAD(&head->entry_list);
250 INIT_LIST_HEAD(&head->set_list);
251 head->set = set;
252 head->entry_cnt = 0;
253 f2fs_radix_tree_insert(&nm_i->nat_set_root, set, head);
254 }
255 return head;
256 }
257
__set_nat_cache_dirty(struct f2fs_nm_info * nm_i,struct nat_entry * ne)258 static void __set_nat_cache_dirty(struct f2fs_nm_info *nm_i,
259 struct nat_entry *ne)
260 {
261 struct nat_entry_set *head;
262 bool new_ne = nat_get_blkaddr(ne) == NEW_ADDR;
263
264 if (!new_ne)
265 head = __grab_nat_entry_set(nm_i, ne);
266
267 /*
268 * update entry_cnt in below condition:
269 * 1. update NEW_ADDR to valid block address;
270 * 2. update old block address to new one;
271 */
272 if (!new_ne && (get_nat_flag(ne, IS_PREALLOC) ||
273 !get_nat_flag(ne, IS_DIRTY)))
274 head->entry_cnt++;
275
276 set_nat_flag(ne, IS_PREALLOC, new_ne);
277
278 if (get_nat_flag(ne, IS_DIRTY))
279 goto refresh_list;
280
281 nm_i->nat_cnt[DIRTY_NAT]++;
282 nm_i->nat_cnt[RECLAIMABLE_NAT]--;
283 set_nat_flag(ne, IS_DIRTY, true);
284 refresh_list:
285 spin_lock(&nm_i->nat_list_lock);
286 if (new_ne)
287 list_del_init(&ne->list);
288 else
289 list_move_tail(&ne->list, &head->entry_list);
290 spin_unlock(&nm_i->nat_list_lock);
291 }
292
__clear_nat_cache_dirty(struct f2fs_nm_info * nm_i,struct nat_entry_set * set,struct nat_entry * ne)293 static void __clear_nat_cache_dirty(struct f2fs_nm_info *nm_i,
294 struct nat_entry_set *set, struct nat_entry *ne)
295 {
296 spin_lock(&nm_i->nat_list_lock);
297 list_move_tail(&ne->list, &nm_i->nat_entries);
298 spin_unlock(&nm_i->nat_list_lock);
299
300 set_nat_flag(ne, IS_DIRTY, false);
301 set->entry_cnt--;
302 nm_i->nat_cnt[DIRTY_NAT]--;
303 nm_i->nat_cnt[RECLAIMABLE_NAT]++;
304 }
305
__gang_lookup_nat_set(struct f2fs_nm_info * nm_i,nid_t start,unsigned int nr,struct nat_entry_set ** ep)306 static unsigned int __gang_lookup_nat_set(struct f2fs_nm_info *nm_i,
307 nid_t start, unsigned int nr, struct nat_entry_set **ep)
308 {
309 return radix_tree_gang_lookup(&nm_i->nat_set_root, (void **)ep,
310 start, nr);
311 }
312
f2fs_in_warm_node_list(struct f2fs_sb_info * sbi,struct page * page)313 bool f2fs_in_warm_node_list(struct f2fs_sb_info *sbi, struct page *page)
314 {
315 return NODE_MAPPING(sbi) == page->mapping &&
316 IS_DNODE(page) && is_cold_node(page);
317 }
318
f2fs_init_fsync_node_info(struct f2fs_sb_info * sbi)319 void f2fs_init_fsync_node_info(struct f2fs_sb_info *sbi)
320 {
321 spin_lock_init(&sbi->fsync_node_lock);
322 INIT_LIST_HEAD(&sbi->fsync_node_list);
323 sbi->fsync_seg_id = 0;
324 sbi->fsync_node_num = 0;
325 }
326
f2fs_add_fsync_node_entry(struct f2fs_sb_info * sbi,struct page * page)327 static unsigned int f2fs_add_fsync_node_entry(struct f2fs_sb_info *sbi,
328 struct page *page)
329 {
330 struct fsync_node_entry *fn;
331 unsigned long flags;
332 unsigned int seq_id;
333
334 fn = f2fs_kmem_cache_alloc(fsync_node_entry_slab,
335 GFP_NOFS, true, NULL);
336
337 get_page(page);
338 fn->page = page;
339 INIT_LIST_HEAD(&fn->list);
340
341 spin_lock_irqsave(&sbi->fsync_node_lock, flags);
342 list_add_tail(&fn->list, &sbi->fsync_node_list);
343 fn->seq_id = sbi->fsync_seg_id++;
344 seq_id = fn->seq_id;
345 sbi->fsync_node_num++;
346 spin_unlock_irqrestore(&sbi->fsync_node_lock, flags);
347
348 return seq_id;
349 }
350
f2fs_del_fsync_node_entry(struct f2fs_sb_info * sbi,struct page * page)351 void f2fs_del_fsync_node_entry(struct f2fs_sb_info *sbi, struct page *page)
352 {
353 struct fsync_node_entry *fn;
354 unsigned long flags;
355
356 spin_lock_irqsave(&sbi->fsync_node_lock, flags);
357 list_for_each_entry(fn, &sbi->fsync_node_list, list) {
358 if (fn->page == page) {
359 list_del(&fn->list);
360 sbi->fsync_node_num--;
361 spin_unlock_irqrestore(&sbi->fsync_node_lock, flags);
362 kmem_cache_free(fsync_node_entry_slab, fn);
363 put_page(page);
364 return;
365 }
366 }
367 spin_unlock_irqrestore(&sbi->fsync_node_lock, flags);
368 f2fs_bug_on(sbi, 1);
369 }
370
f2fs_reset_fsync_node_info(struct f2fs_sb_info * sbi)371 void f2fs_reset_fsync_node_info(struct f2fs_sb_info *sbi)
372 {
373 unsigned long flags;
374
375 spin_lock_irqsave(&sbi->fsync_node_lock, flags);
376 sbi->fsync_seg_id = 0;
377 spin_unlock_irqrestore(&sbi->fsync_node_lock, flags);
378 }
379
f2fs_need_dentry_mark(struct f2fs_sb_info * sbi,nid_t nid)380 int f2fs_need_dentry_mark(struct f2fs_sb_info *sbi, nid_t nid)
381 {
382 struct f2fs_nm_info *nm_i = NM_I(sbi);
383 struct nat_entry *e;
384 bool need = false;
385
386 f2fs_down_read(&nm_i->nat_tree_lock);
387 e = __lookup_nat_cache(nm_i, nid);
388 if (e) {
389 if (!get_nat_flag(e, IS_CHECKPOINTED) &&
390 !get_nat_flag(e, HAS_FSYNCED_INODE))
391 need = true;
392 }
393 f2fs_up_read(&nm_i->nat_tree_lock);
394 return need;
395 }
396
f2fs_is_checkpointed_node(struct f2fs_sb_info * sbi,nid_t nid)397 bool f2fs_is_checkpointed_node(struct f2fs_sb_info *sbi, nid_t nid)
398 {
399 struct f2fs_nm_info *nm_i = NM_I(sbi);
400 struct nat_entry *e;
401 bool is_cp = true;
402
403 f2fs_down_read(&nm_i->nat_tree_lock);
404 e = __lookup_nat_cache(nm_i, nid);
405 if (e && !get_nat_flag(e, IS_CHECKPOINTED))
406 is_cp = false;
407 f2fs_up_read(&nm_i->nat_tree_lock);
408 return is_cp;
409 }
410
f2fs_need_inode_block_update(struct f2fs_sb_info * sbi,nid_t ino)411 bool f2fs_need_inode_block_update(struct f2fs_sb_info *sbi, nid_t ino)
412 {
413 struct f2fs_nm_info *nm_i = NM_I(sbi);
414 struct nat_entry *e;
415 bool need_update = true;
416
417 f2fs_down_read(&nm_i->nat_tree_lock);
418 e = __lookup_nat_cache(nm_i, ino);
419 if (e && get_nat_flag(e, HAS_LAST_FSYNC) &&
420 (get_nat_flag(e, IS_CHECKPOINTED) ||
421 get_nat_flag(e, HAS_FSYNCED_INODE)))
422 need_update = false;
423 f2fs_up_read(&nm_i->nat_tree_lock);
424 return need_update;
425 }
426
427 /* must be locked by nat_tree_lock */
cache_nat_entry(struct f2fs_sb_info * sbi,nid_t nid,struct f2fs_nat_entry * ne)428 static void cache_nat_entry(struct f2fs_sb_info *sbi, nid_t nid,
429 struct f2fs_nat_entry *ne)
430 {
431 struct f2fs_nm_info *nm_i = NM_I(sbi);
432 struct nat_entry *new, *e;
433
434 /* Let's mitigate lock contention of nat_tree_lock during checkpoint */
435 if (f2fs_rwsem_is_locked(&sbi->cp_global_sem))
436 return;
437
438 new = __alloc_nat_entry(sbi, nid, false);
439 if (!new)
440 return;
441
442 f2fs_down_write(&nm_i->nat_tree_lock);
443 e = __lookup_nat_cache(nm_i, nid);
444 if (!e)
445 e = __init_nat_entry(nm_i, new, ne, false);
446 else
447 f2fs_bug_on(sbi, nat_get_ino(e) != le32_to_cpu(ne->ino) ||
448 nat_get_blkaddr(e) !=
449 le32_to_cpu(ne->block_addr) ||
450 nat_get_version(e) != ne->version);
451 f2fs_up_write(&nm_i->nat_tree_lock);
452 if (e != new)
453 __free_nat_entry(new);
454 }
455
set_node_addr(struct f2fs_sb_info * sbi,struct node_info * ni,block_t new_blkaddr,bool fsync_done)456 static void set_node_addr(struct f2fs_sb_info *sbi, struct node_info *ni,
457 block_t new_blkaddr, bool fsync_done)
458 {
459 struct f2fs_nm_info *nm_i = NM_I(sbi);
460 struct nat_entry *e;
461 struct nat_entry *new = __alloc_nat_entry(sbi, ni->nid, true);
462
463 f2fs_down_write(&nm_i->nat_tree_lock);
464 e = __lookup_nat_cache(nm_i, ni->nid);
465 if (!e) {
466 e = __init_nat_entry(nm_i, new, NULL, true);
467 copy_node_info(&e->ni, ni);
468 f2fs_bug_on(sbi, ni->blk_addr == NEW_ADDR);
469 } else if (new_blkaddr == NEW_ADDR) {
470 /*
471 * when nid is reallocated,
472 * previous nat entry can be remained in nat cache.
473 * So, reinitialize it with new information.
474 */
475 copy_node_info(&e->ni, ni);
476 f2fs_bug_on(sbi, ni->blk_addr != NULL_ADDR);
477 }
478 /* let's free early to reduce memory consumption */
479 if (e != new)
480 __free_nat_entry(new);
481
482 /* sanity check */
483 f2fs_bug_on(sbi, nat_get_blkaddr(e) != ni->blk_addr);
484 f2fs_bug_on(sbi, nat_get_blkaddr(e) == NULL_ADDR &&
485 new_blkaddr == NULL_ADDR);
486 f2fs_bug_on(sbi, nat_get_blkaddr(e) == NEW_ADDR &&
487 new_blkaddr == NEW_ADDR);
488 f2fs_bug_on(sbi, __is_valid_data_blkaddr(nat_get_blkaddr(e)) &&
489 new_blkaddr == NEW_ADDR);
490
491 /* increment version no as node is removed */
492 if (nat_get_blkaddr(e) != NEW_ADDR && new_blkaddr == NULL_ADDR) {
493 unsigned char version = nat_get_version(e);
494
495 nat_set_version(e, inc_node_version(version));
496 }
497
498 /* change address */
499 nat_set_blkaddr(e, new_blkaddr);
500 if (!__is_valid_data_blkaddr(new_blkaddr))
501 set_nat_flag(e, IS_CHECKPOINTED, false);
502 __set_nat_cache_dirty(nm_i, e);
503
504 /* update fsync_mark if its inode nat entry is still alive */
505 if (ni->nid != ni->ino)
506 e = __lookup_nat_cache(nm_i, ni->ino);
507 if (e) {
508 if (fsync_done && ni->nid == ni->ino)
509 set_nat_flag(e, HAS_FSYNCED_INODE, true);
510 set_nat_flag(e, HAS_LAST_FSYNC, fsync_done);
511 }
512 f2fs_up_write(&nm_i->nat_tree_lock);
513 }
514
f2fs_try_to_free_nats(struct f2fs_sb_info * sbi,int nr_shrink)515 int f2fs_try_to_free_nats(struct f2fs_sb_info *sbi, int nr_shrink)
516 {
517 struct f2fs_nm_info *nm_i = NM_I(sbi);
518 int nr = nr_shrink;
519
520 if (!f2fs_down_write_trylock(&nm_i->nat_tree_lock))
521 return 0;
522
523 spin_lock(&nm_i->nat_list_lock);
524 while (nr_shrink) {
525 struct nat_entry *ne;
526
527 if (list_empty(&nm_i->nat_entries))
528 break;
529
530 ne = list_first_entry(&nm_i->nat_entries,
531 struct nat_entry, list);
532 list_del(&ne->list);
533 spin_unlock(&nm_i->nat_list_lock);
534
535 __del_from_nat_cache(nm_i, ne);
536 nr_shrink--;
537
538 spin_lock(&nm_i->nat_list_lock);
539 }
540 spin_unlock(&nm_i->nat_list_lock);
541
542 f2fs_up_write(&nm_i->nat_tree_lock);
543 return nr - nr_shrink;
544 }
545
f2fs_get_node_info(struct f2fs_sb_info * sbi,nid_t nid,struct node_info * ni,bool checkpoint_context)546 int f2fs_get_node_info(struct f2fs_sb_info *sbi, nid_t nid,
547 struct node_info *ni, bool checkpoint_context)
548 {
549 struct f2fs_nm_info *nm_i = NM_I(sbi);
550 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
551 struct f2fs_journal *journal = curseg->journal;
552 nid_t start_nid = START_NID(nid);
553 struct f2fs_nat_block *nat_blk;
554 struct page *page = NULL;
555 struct f2fs_nat_entry ne;
556 struct nat_entry *e;
557 pgoff_t index;
558 block_t blkaddr;
559 int i;
560
561 ni->flag = 0;
562 ni->nid = nid;
563 retry:
564 /* Check nat cache */
565 f2fs_down_read(&nm_i->nat_tree_lock);
566 e = __lookup_nat_cache(nm_i, nid);
567 if (e) {
568 ni->ino = nat_get_ino(e);
569 ni->blk_addr = nat_get_blkaddr(e);
570 ni->version = nat_get_version(e);
571 f2fs_up_read(&nm_i->nat_tree_lock);
572 return 0;
573 }
574
575 /*
576 * Check current segment summary by trying to grab journal_rwsem first.
577 * This sem is on the critical path on the checkpoint requiring the above
578 * nat_tree_lock. Therefore, we should retry, if we failed to grab here
579 * while not bothering checkpoint.
580 */
581 if (!f2fs_rwsem_is_locked(&sbi->cp_global_sem) || checkpoint_context) {
582 down_read(&curseg->journal_rwsem);
583 } else if (f2fs_rwsem_is_contended(&nm_i->nat_tree_lock) ||
584 !down_read_trylock(&curseg->journal_rwsem)) {
585 f2fs_up_read(&nm_i->nat_tree_lock);
586 goto retry;
587 }
588
589 i = f2fs_lookup_journal_in_cursum(journal, NAT_JOURNAL, nid, 0);
590 if (i >= 0) {
591 ne = nat_in_journal(journal, i);
592 node_info_from_raw_nat(ni, &ne);
593 }
594 up_read(&curseg->journal_rwsem);
595 if (i >= 0) {
596 f2fs_up_read(&nm_i->nat_tree_lock);
597 goto cache;
598 }
599
600 /* Fill node_info from nat page */
601 index = current_nat_addr(sbi, nid);
602 f2fs_up_read(&nm_i->nat_tree_lock);
603
604 page = f2fs_get_meta_page(sbi, index);
605 if (IS_ERR(page))
606 return PTR_ERR(page);
607
608 nat_blk = (struct f2fs_nat_block *)page_address(page);
609 ne = nat_blk->entries[nid - start_nid];
610 node_info_from_raw_nat(ni, &ne);
611 f2fs_put_page(page, 1);
612 cache:
613 blkaddr = le32_to_cpu(ne.block_addr);
614 if (__is_valid_data_blkaddr(blkaddr) &&
615 !f2fs_is_valid_blkaddr(sbi, blkaddr, DATA_GENERIC_ENHANCE))
616 return -EFAULT;
617
618 /* cache nat entry */
619 cache_nat_entry(sbi, nid, &ne);
620 return 0;
621 }
622
623 /*
624 * readahead MAX_RA_NODE number of node pages.
625 */
f2fs_ra_node_pages(struct page * parent,int start,int n)626 static void f2fs_ra_node_pages(struct page *parent, int start, int n)
627 {
628 struct f2fs_sb_info *sbi = F2FS_P_SB(parent);
629 struct blk_plug plug;
630 int i, end;
631 nid_t nid;
632
633 blk_start_plug(&plug);
634
635 /* Then, try readahead for siblings of the desired node */
636 end = start + n;
637 end = min(end, (int)NIDS_PER_BLOCK);
638 for (i = start; i < end; i++) {
639 nid = get_nid(parent, i, false);
640 f2fs_ra_node_page(sbi, nid);
641 }
642
643 blk_finish_plug(&plug);
644 }
645
f2fs_get_next_page_offset(struct dnode_of_data * dn,pgoff_t pgofs)646 pgoff_t f2fs_get_next_page_offset(struct dnode_of_data *dn, pgoff_t pgofs)
647 {
648 const long direct_index = ADDRS_PER_INODE(dn->inode);
649 const long direct_blks = ADDRS_PER_BLOCK(dn->inode);
650 const long indirect_blks = ADDRS_PER_BLOCK(dn->inode) * NIDS_PER_BLOCK;
651 unsigned int skipped_unit = ADDRS_PER_BLOCK(dn->inode);
652 int cur_level = dn->cur_level;
653 int max_level = dn->max_level;
654 pgoff_t base = 0;
655
656 if (!dn->max_level)
657 return pgofs + 1;
658
659 while (max_level-- > cur_level)
660 skipped_unit *= NIDS_PER_BLOCK;
661
662 switch (dn->max_level) {
663 case 3:
664 base += 2 * indirect_blks;
665 fallthrough;
666 case 2:
667 base += 2 * direct_blks;
668 fallthrough;
669 case 1:
670 base += direct_index;
671 break;
672 default:
673 f2fs_bug_on(F2FS_I_SB(dn->inode), 1);
674 }
675
676 return ((pgofs - base) / skipped_unit + 1) * skipped_unit + base;
677 }
678
679 /*
680 * The maximum depth is four.
681 * Offset[0] will have raw inode offset.
682 */
get_node_path(struct inode * inode,long block,int offset[4],unsigned int noffset[4])683 static int get_node_path(struct inode *inode, long block,
684 int offset[4], unsigned int noffset[4])
685 {
686 const long direct_index = ADDRS_PER_INODE(inode);
687 const long direct_blks = ADDRS_PER_BLOCK(inode);
688 const long dptrs_per_blk = NIDS_PER_BLOCK;
689 const long indirect_blks = ADDRS_PER_BLOCK(inode) * NIDS_PER_BLOCK;
690 const long dindirect_blks = indirect_blks * NIDS_PER_BLOCK;
691 int n = 0;
692 int level = 0;
693
694 noffset[0] = 0;
695
696 if (block < direct_index) {
697 offset[n] = block;
698 goto got;
699 }
700 block -= direct_index;
701 if (block < direct_blks) {
702 offset[n++] = NODE_DIR1_BLOCK;
703 noffset[n] = 1;
704 offset[n] = block;
705 level = 1;
706 goto got;
707 }
708 block -= direct_blks;
709 if (block < direct_blks) {
710 offset[n++] = NODE_DIR2_BLOCK;
711 noffset[n] = 2;
712 offset[n] = block;
713 level = 1;
714 goto got;
715 }
716 block -= direct_blks;
717 if (block < indirect_blks) {
718 offset[n++] = NODE_IND1_BLOCK;
719 noffset[n] = 3;
720 offset[n++] = block / direct_blks;
721 noffset[n] = 4 + offset[n - 1];
722 offset[n] = block % direct_blks;
723 level = 2;
724 goto got;
725 }
726 block -= indirect_blks;
727 if (block < indirect_blks) {
728 offset[n++] = NODE_IND2_BLOCK;
729 noffset[n] = 4 + dptrs_per_blk;
730 offset[n++] = block / direct_blks;
731 noffset[n] = 5 + dptrs_per_blk + offset[n - 1];
732 offset[n] = block % direct_blks;
733 level = 2;
734 goto got;
735 }
736 block -= indirect_blks;
737 if (block < dindirect_blks) {
738 offset[n++] = NODE_DIND_BLOCK;
739 noffset[n] = 5 + (dptrs_per_blk * 2);
740 offset[n++] = block / indirect_blks;
741 noffset[n] = 6 + (dptrs_per_blk * 2) +
742 offset[n - 1] * (dptrs_per_blk + 1);
743 offset[n++] = (block / direct_blks) % dptrs_per_blk;
744 noffset[n] = 7 + (dptrs_per_blk * 2) +
745 offset[n - 2] * (dptrs_per_blk + 1) +
746 offset[n - 1];
747 offset[n] = block % direct_blks;
748 level = 3;
749 goto got;
750 } else {
751 return -E2BIG;
752 }
753 got:
754 return level;
755 }
756
757 /*
758 * Caller should call f2fs_put_dnode(dn).
759 * Also, it should grab and release a rwsem by calling f2fs_lock_op() and
760 * f2fs_unlock_op() only if mode is set with ALLOC_NODE.
761 */
f2fs_get_dnode_of_data(struct dnode_of_data * dn,pgoff_t index,int mode)762 int f2fs_get_dnode_of_data(struct dnode_of_data *dn, pgoff_t index, int mode)
763 {
764 struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
765 struct page *npage[4];
766 struct page *parent = NULL;
767 int offset[4];
768 unsigned int noffset[4];
769 nid_t nids[4];
770 int level, i = 0;
771 int err = 0;
772
773 level = get_node_path(dn->inode, index, offset, noffset);
774 if (level < 0)
775 return level;
776
777 nids[0] = dn->inode->i_ino;
778 npage[0] = dn->inode_page;
779
780 if (!npage[0]) {
781 npage[0] = f2fs_get_node_page(sbi, nids[0]);
782 if (IS_ERR(npage[0]))
783 return PTR_ERR(npage[0]);
784 }
785
786 /* if inline_data is set, should not report any block indices */
787 if (f2fs_has_inline_data(dn->inode) && index) {
788 err = -ENOENT;
789 f2fs_put_page(npage[0], 1);
790 goto release_out;
791 }
792
793 parent = npage[0];
794 if (level != 0)
795 nids[1] = get_nid(parent, offset[0], true);
796 dn->inode_page = npage[0];
797 dn->inode_page_locked = true;
798
799 /* get indirect or direct nodes */
800 for (i = 1; i <= level; i++) {
801 bool done = false;
802
803 if (!nids[i] && mode == ALLOC_NODE) {
804 /* alloc new node */
805 if (!f2fs_alloc_nid(sbi, &(nids[i]))) {
806 err = -ENOSPC;
807 goto release_pages;
808 }
809
810 dn->nid = nids[i];
811 npage[i] = f2fs_new_node_page(dn, noffset[i]);
812 if (IS_ERR(npage[i])) {
813 f2fs_alloc_nid_failed(sbi, nids[i]);
814 err = PTR_ERR(npage[i]);
815 goto release_pages;
816 }
817
818 set_nid(parent, offset[i - 1], nids[i], i == 1);
819 f2fs_alloc_nid_done(sbi, nids[i]);
820 done = true;
821 } else if (mode == LOOKUP_NODE_RA && i == level && level > 1) {
822 npage[i] = f2fs_get_node_page_ra(parent, offset[i - 1]);
823 if (IS_ERR(npage[i])) {
824 err = PTR_ERR(npage[i]);
825 goto release_pages;
826 }
827 done = true;
828 }
829 if (i == 1) {
830 dn->inode_page_locked = false;
831 unlock_page(parent);
832 } else {
833 f2fs_put_page(parent, 1);
834 }
835
836 if (!done) {
837 npage[i] = f2fs_get_node_page(sbi, nids[i]);
838 if (IS_ERR(npage[i])) {
839 err = PTR_ERR(npage[i]);
840 f2fs_put_page(npage[0], 0);
841 goto release_out;
842 }
843 }
844 if (i < level) {
845 parent = npage[i];
846 nids[i + 1] = get_nid(parent, offset[i], false);
847 }
848 }
849 dn->nid = nids[level];
850 dn->ofs_in_node = offset[level];
851 dn->node_page = npage[level];
852 dn->data_blkaddr = f2fs_data_blkaddr(dn);
853
854 if (is_inode_flag_set(dn->inode, FI_COMPRESSED_FILE) &&
855 f2fs_sb_has_readonly(sbi)) {
856 unsigned int cluster_size = F2FS_I(dn->inode)->i_cluster_size;
857 unsigned int ofs_in_node = dn->ofs_in_node;
858 pgoff_t fofs = index;
859 unsigned int c_len;
860 block_t blkaddr;
861
862 /* should align fofs and ofs_in_node to cluster_size */
863 if (fofs % cluster_size) {
864 fofs = round_down(fofs, cluster_size);
865 ofs_in_node = round_down(ofs_in_node, cluster_size);
866 }
867
868 c_len = f2fs_cluster_blocks_are_contiguous(dn, ofs_in_node);
869 if (!c_len)
870 goto out;
871
872 blkaddr = data_blkaddr(dn->inode, dn->node_page, ofs_in_node);
873 if (blkaddr == COMPRESS_ADDR)
874 blkaddr = data_blkaddr(dn->inode, dn->node_page,
875 ofs_in_node + 1);
876
877 f2fs_update_read_extent_tree_range_compressed(dn->inode,
878 fofs, blkaddr, cluster_size, c_len);
879 }
880 out:
881 return 0;
882
883 release_pages:
884 f2fs_put_page(parent, 1);
885 if (i > 1)
886 f2fs_put_page(npage[0], 0);
887 release_out:
888 dn->inode_page = NULL;
889 dn->node_page = NULL;
890 if (err == -ENOENT) {
891 dn->cur_level = i;
892 dn->max_level = level;
893 dn->ofs_in_node = offset[level];
894 }
895 return err;
896 }
897
truncate_node(struct dnode_of_data * dn)898 static int truncate_node(struct dnode_of_data *dn)
899 {
900 struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
901 struct node_info ni;
902 int err;
903 pgoff_t index;
904
905 err = f2fs_get_node_info(sbi, dn->nid, &ni, false);
906 if (err)
907 return err;
908
909 if (ni.blk_addr != NEW_ADDR &&
910 !f2fs_is_valid_blkaddr(sbi, ni.blk_addr, DATA_GENERIC_ENHANCE)) {
911 f2fs_err_ratelimited(sbi,
912 "nat entry is corrupted, run fsck to fix it, ino:%u, "
913 "nid:%u, blkaddr:%u", ni.ino, ni.nid, ni.blk_addr);
914 set_sbi_flag(sbi, SBI_NEED_FSCK);
915 f2fs_handle_error(sbi, ERROR_INCONSISTENT_NAT);
916 return -EFSCORRUPTED;
917 }
918
919 /* Deallocate node address */
920 f2fs_invalidate_blocks(sbi, ni.blk_addr, 1);
921 dec_valid_node_count(sbi, dn->inode, dn->nid == dn->inode->i_ino);
922 set_node_addr(sbi, &ni, NULL_ADDR, false);
923
924 if (dn->nid == dn->inode->i_ino) {
925 f2fs_remove_orphan_inode(sbi, dn->nid);
926 dec_valid_inode_count(sbi);
927 f2fs_inode_synced(dn->inode);
928 }
929
930 clear_node_page_dirty(dn->node_page);
931 set_sbi_flag(sbi, SBI_IS_DIRTY);
932
933 index = page_folio(dn->node_page)->index;
934 f2fs_put_page(dn->node_page, 1);
935
936 invalidate_mapping_pages(NODE_MAPPING(sbi),
937 index, index);
938
939 dn->node_page = NULL;
940 trace_f2fs_truncate_node(dn->inode, dn->nid, ni.blk_addr);
941
942 return 0;
943 }
944
truncate_dnode(struct dnode_of_data * dn)945 static int truncate_dnode(struct dnode_of_data *dn)
946 {
947 struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
948 struct page *page;
949 int err;
950
951 if (dn->nid == 0)
952 return 1;
953
954 /* get direct node */
955 page = f2fs_get_node_page(sbi, dn->nid);
956 if (PTR_ERR(page) == -ENOENT)
957 return 1;
958 else if (IS_ERR(page))
959 return PTR_ERR(page);
960
961 if (IS_INODE(page) || ino_of_node(page) != dn->inode->i_ino) {
962 f2fs_err(sbi, "incorrect node reference, ino: %lu, nid: %u, ino_of_node: %u",
963 dn->inode->i_ino, dn->nid, ino_of_node(page));
964 set_sbi_flag(sbi, SBI_NEED_FSCK);
965 f2fs_handle_error(sbi, ERROR_INVALID_NODE_REFERENCE);
966 f2fs_put_page(page, 1);
967 return -EFSCORRUPTED;
968 }
969
970 /* Make dnode_of_data for parameter */
971 dn->node_page = page;
972 dn->ofs_in_node = 0;
973 f2fs_truncate_data_blocks_range(dn, ADDRS_PER_BLOCK(dn->inode));
974 err = truncate_node(dn);
975 if (err) {
976 f2fs_put_page(page, 1);
977 return err;
978 }
979
980 return 1;
981 }
982
truncate_nodes(struct dnode_of_data * dn,unsigned int nofs,int ofs,int depth)983 static int truncate_nodes(struct dnode_of_data *dn, unsigned int nofs,
984 int ofs, int depth)
985 {
986 struct dnode_of_data rdn = *dn;
987 struct page *page;
988 struct f2fs_node *rn;
989 nid_t child_nid;
990 unsigned int child_nofs;
991 int freed = 0;
992 int i, ret;
993
994 if (dn->nid == 0)
995 return NIDS_PER_BLOCK + 1;
996
997 trace_f2fs_truncate_nodes_enter(dn->inode, dn->nid, dn->data_blkaddr);
998
999 page = f2fs_get_node_page(F2FS_I_SB(dn->inode), dn->nid);
1000 if (IS_ERR(page)) {
1001 trace_f2fs_truncate_nodes_exit(dn->inode, PTR_ERR(page));
1002 return PTR_ERR(page);
1003 }
1004
1005 f2fs_ra_node_pages(page, ofs, NIDS_PER_BLOCK);
1006
1007 rn = F2FS_NODE(page);
1008 if (depth < 3) {
1009 for (i = ofs; i < NIDS_PER_BLOCK; i++, freed++) {
1010 child_nid = le32_to_cpu(rn->in.nid[i]);
1011 if (child_nid == 0)
1012 continue;
1013 rdn.nid = child_nid;
1014 ret = truncate_dnode(&rdn);
1015 if (ret < 0)
1016 goto out_err;
1017 if (set_nid(page, i, 0, false))
1018 dn->node_changed = true;
1019 }
1020 } else {
1021 child_nofs = nofs + ofs * (NIDS_PER_BLOCK + 1) + 1;
1022 for (i = ofs; i < NIDS_PER_BLOCK; i++) {
1023 child_nid = le32_to_cpu(rn->in.nid[i]);
1024 if (child_nid == 0) {
1025 child_nofs += NIDS_PER_BLOCK + 1;
1026 continue;
1027 }
1028 rdn.nid = child_nid;
1029 ret = truncate_nodes(&rdn, child_nofs, 0, depth - 1);
1030 if (ret == (NIDS_PER_BLOCK + 1)) {
1031 if (set_nid(page, i, 0, false))
1032 dn->node_changed = true;
1033 child_nofs += ret;
1034 } else if (ret < 0 && ret != -ENOENT) {
1035 goto out_err;
1036 }
1037 }
1038 freed = child_nofs;
1039 }
1040
1041 if (!ofs) {
1042 /* remove current indirect node */
1043 dn->node_page = page;
1044 ret = truncate_node(dn);
1045 if (ret)
1046 goto out_err;
1047 freed++;
1048 } else {
1049 f2fs_put_page(page, 1);
1050 }
1051 trace_f2fs_truncate_nodes_exit(dn->inode, freed);
1052 return freed;
1053
1054 out_err:
1055 f2fs_put_page(page, 1);
1056 trace_f2fs_truncate_nodes_exit(dn->inode, ret);
1057 return ret;
1058 }
1059
truncate_partial_nodes(struct dnode_of_data * dn,struct f2fs_inode * ri,int * offset,int depth)1060 static int truncate_partial_nodes(struct dnode_of_data *dn,
1061 struct f2fs_inode *ri, int *offset, int depth)
1062 {
1063 struct page *pages[2];
1064 nid_t nid[3];
1065 nid_t child_nid;
1066 int err = 0;
1067 int i;
1068 int idx = depth - 2;
1069
1070 nid[0] = get_nid(dn->inode_page, offset[0], true);
1071 if (!nid[0])
1072 return 0;
1073
1074 /* get indirect nodes in the path */
1075 for (i = 0; i < idx + 1; i++) {
1076 /* reference count'll be increased */
1077 pages[i] = f2fs_get_node_page(F2FS_I_SB(dn->inode), nid[i]);
1078 if (IS_ERR(pages[i])) {
1079 err = PTR_ERR(pages[i]);
1080 idx = i - 1;
1081 goto fail;
1082 }
1083 nid[i + 1] = get_nid(pages[i], offset[i + 1], false);
1084 }
1085
1086 f2fs_ra_node_pages(pages[idx], offset[idx + 1], NIDS_PER_BLOCK);
1087
1088 /* free direct nodes linked to a partial indirect node */
1089 for (i = offset[idx + 1]; i < NIDS_PER_BLOCK; i++) {
1090 child_nid = get_nid(pages[idx], i, false);
1091 if (!child_nid)
1092 continue;
1093 dn->nid = child_nid;
1094 err = truncate_dnode(dn);
1095 if (err < 0)
1096 goto fail;
1097 if (set_nid(pages[idx], i, 0, false))
1098 dn->node_changed = true;
1099 }
1100
1101 if (offset[idx + 1] == 0) {
1102 dn->node_page = pages[idx];
1103 dn->nid = nid[idx];
1104 err = truncate_node(dn);
1105 if (err)
1106 goto fail;
1107 } else {
1108 f2fs_put_page(pages[idx], 1);
1109 }
1110 offset[idx]++;
1111 offset[idx + 1] = 0;
1112 idx--;
1113 fail:
1114 for (i = idx; i >= 0; i--)
1115 f2fs_put_page(pages[i], 1);
1116
1117 trace_f2fs_truncate_partial_nodes(dn->inode, nid, depth, err);
1118
1119 return err;
1120 }
1121
1122 /*
1123 * All the block addresses of data and nodes should be nullified.
1124 */
f2fs_truncate_inode_blocks(struct inode * inode,pgoff_t from)1125 int f2fs_truncate_inode_blocks(struct inode *inode, pgoff_t from)
1126 {
1127 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1128 int err = 0, cont = 1;
1129 int level, offset[4], noffset[4];
1130 unsigned int nofs = 0;
1131 struct f2fs_inode *ri;
1132 struct dnode_of_data dn;
1133 struct page *page;
1134
1135 trace_f2fs_truncate_inode_blocks_enter(inode, from);
1136
1137 level = get_node_path(inode, from, offset, noffset);
1138 if (level <= 0) {
1139 if (!level) {
1140 level = -EFSCORRUPTED;
1141 f2fs_err(sbi, "%s: inode ino=%lx has corrupted node block, from:%lu addrs:%u",
1142 __func__, inode->i_ino,
1143 from, ADDRS_PER_INODE(inode));
1144 set_sbi_flag(sbi, SBI_NEED_FSCK);
1145 }
1146 trace_f2fs_truncate_inode_blocks_exit(inode, level);
1147 return level;
1148 }
1149
1150 page = f2fs_get_node_page(sbi, inode->i_ino);
1151 if (IS_ERR(page)) {
1152 trace_f2fs_truncate_inode_blocks_exit(inode, PTR_ERR(page));
1153 return PTR_ERR(page);
1154 }
1155
1156 set_new_dnode(&dn, inode, page, NULL, 0);
1157 unlock_page(page);
1158
1159 ri = F2FS_INODE(page);
1160 switch (level) {
1161 case 0:
1162 case 1:
1163 nofs = noffset[1];
1164 break;
1165 case 2:
1166 nofs = noffset[1];
1167 if (!offset[level - 1])
1168 goto skip_partial;
1169 err = truncate_partial_nodes(&dn, ri, offset, level);
1170 if (err < 0 && err != -ENOENT)
1171 goto fail;
1172 nofs += 1 + NIDS_PER_BLOCK;
1173 break;
1174 case 3:
1175 nofs = 5 + 2 * NIDS_PER_BLOCK;
1176 if (!offset[level - 1])
1177 goto skip_partial;
1178 err = truncate_partial_nodes(&dn, ri, offset, level);
1179 if (err < 0 && err != -ENOENT)
1180 goto fail;
1181 break;
1182 default:
1183 BUG();
1184 }
1185
1186 skip_partial:
1187 while (cont) {
1188 dn.nid = get_nid(page, offset[0], true);
1189 switch (offset[0]) {
1190 case NODE_DIR1_BLOCK:
1191 case NODE_DIR2_BLOCK:
1192 err = truncate_dnode(&dn);
1193 break;
1194
1195 case NODE_IND1_BLOCK:
1196 case NODE_IND2_BLOCK:
1197 err = truncate_nodes(&dn, nofs, offset[1], 2);
1198 break;
1199
1200 case NODE_DIND_BLOCK:
1201 err = truncate_nodes(&dn, nofs, offset[1], 3);
1202 cont = 0;
1203 break;
1204
1205 default:
1206 BUG();
1207 }
1208 if (err == -ENOENT) {
1209 set_sbi_flag(F2FS_P_SB(page), SBI_NEED_FSCK);
1210 f2fs_handle_error(sbi, ERROR_INVALID_BLKADDR);
1211 f2fs_err_ratelimited(sbi,
1212 "truncate node fail, ino:%lu, nid:%u, "
1213 "offset[0]:%d, offset[1]:%d, nofs:%d",
1214 inode->i_ino, dn.nid, offset[0],
1215 offset[1], nofs);
1216 err = 0;
1217 }
1218 if (err < 0)
1219 goto fail;
1220 if (offset[1] == 0 && get_nid(page, offset[0], true)) {
1221 lock_page(page);
1222 BUG_ON(page->mapping != NODE_MAPPING(sbi));
1223 set_nid(page, offset[0], 0, true);
1224 unlock_page(page);
1225 }
1226 offset[1] = 0;
1227 offset[0]++;
1228 nofs += err;
1229 }
1230 fail:
1231 f2fs_put_page(page, 0);
1232 trace_f2fs_truncate_inode_blocks_exit(inode, err);
1233 return err > 0 ? 0 : err;
1234 }
1235
1236 /* caller must lock inode page */
f2fs_truncate_xattr_node(struct inode * inode)1237 int f2fs_truncate_xattr_node(struct inode *inode)
1238 {
1239 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1240 nid_t nid = F2FS_I(inode)->i_xattr_nid;
1241 struct dnode_of_data dn;
1242 struct page *npage;
1243 int err;
1244
1245 if (!nid)
1246 return 0;
1247
1248 npage = f2fs_get_node_page(sbi, nid);
1249 if (IS_ERR(npage))
1250 return PTR_ERR(npage);
1251
1252 set_new_dnode(&dn, inode, NULL, npage, nid);
1253 err = truncate_node(&dn);
1254 if (err) {
1255 f2fs_put_page(npage, 1);
1256 return err;
1257 }
1258
1259 f2fs_i_xnid_write(inode, 0);
1260
1261 return 0;
1262 }
1263
1264 /*
1265 * Caller should grab and release a rwsem by calling f2fs_lock_op() and
1266 * f2fs_unlock_op().
1267 */
f2fs_remove_inode_page(struct inode * inode)1268 int f2fs_remove_inode_page(struct inode *inode)
1269 {
1270 struct dnode_of_data dn;
1271 int err;
1272
1273 set_new_dnode(&dn, inode, NULL, NULL, inode->i_ino);
1274 err = f2fs_get_dnode_of_data(&dn, 0, LOOKUP_NODE);
1275 if (err)
1276 return err;
1277
1278 err = f2fs_truncate_xattr_node(inode);
1279 if (err) {
1280 f2fs_put_dnode(&dn);
1281 return err;
1282 }
1283
1284 /* remove potential inline_data blocks */
1285 if (!IS_DEVICE_ALIASING(inode) &&
1286 (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
1287 S_ISLNK(inode->i_mode)))
1288 f2fs_truncate_data_blocks_range(&dn, 1);
1289
1290 /* 0 is possible, after f2fs_new_inode() has failed */
1291 if (unlikely(f2fs_cp_error(F2FS_I_SB(inode)))) {
1292 f2fs_put_dnode(&dn);
1293 return -EIO;
1294 }
1295
1296 if (unlikely(inode->i_blocks != 0 && inode->i_blocks != 8)) {
1297 f2fs_warn(F2FS_I_SB(inode),
1298 "f2fs_remove_inode_page: inconsistent i_blocks, ino:%lu, iblocks:%llu",
1299 inode->i_ino, (unsigned long long)inode->i_blocks);
1300 set_sbi_flag(F2FS_I_SB(inode), SBI_NEED_FSCK);
1301 }
1302
1303 /* will put inode & node pages */
1304 err = truncate_node(&dn);
1305 if (err) {
1306 f2fs_put_dnode(&dn);
1307 return err;
1308 }
1309 return 0;
1310 }
1311
f2fs_new_inode_page(struct inode * inode)1312 struct page *f2fs_new_inode_page(struct inode *inode)
1313 {
1314 struct dnode_of_data dn;
1315
1316 /* allocate inode page for new inode */
1317 set_new_dnode(&dn, inode, NULL, NULL, inode->i_ino);
1318
1319 /* caller should f2fs_put_page(page, 1); */
1320 return f2fs_new_node_page(&dn, 0);
1321 }
1322
f2fs_new_node_page(struct dnode_of_data * dn,unsigned int ofs)1323 struct page *f2fs_new_node_page(struct dnode_of_data *dn, unsigned int ofs)
1324 {
1325 struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
1326 struct node_info new_ni;
1327 struct page *page;
1328 int err;
1329
1330 if (unlikely(is_inode_flag_set(dn->inode, FI_NO_ALLOC)))
1331 return ERR_PTR(-EPERM);
1332
1333 page = f2fs_grab_cache_page(NODE_MAPPING(sbi), dn->nid, false);
1334 if (!page)
1335 return ERR_PTR(-ENOMEM);
1336
1337 if (unlikely((err = inc_valid_node_count(sbi, dn->inode, !ofs))))
1338 goto fail;
1339
1340 #ifdef CONFIG_F2FS_CHECK_FS
1341 err = f2fs_get_node_info(sbi, dn->nid, &new_ni, false);
1342 if (err) {
1343 dec_valid_node_count(sbi, dn->inode, !ofs);
1344 goto fail;
1345 }
1346 if (unlikely(new_ni.blk_addr != NULL_ADDR)) {
1347 err = -EFSCORRUPTED;
1348 dec_valid_node_count(sbi, dn->inode, !ofs);
1349 set_sbi_flag(sbi, SBI_NEED_FSCK);
1350 f2fs_warn_ratelimited(sbi,
1351 "f2fs_new_node_page: inconsistent nat entry, "
1352 "ino:%u, nid:%u, blkaddr:%u, ver:%u, flag:%u",
1353 new_ni.ino, new_ni.nid, new_ni.blk_addr,
1354 new_ni.version, new_ni.flag);
1355 f2fs_handle_error(sbi, ERROR_INCONSISTENT_NAT);
1356 goto fail;
1357 }
1358 #endif
1359 new_ni.nid = dn->nid;
1360 new_ni.ino = dn->inode->i_ino;
1361 new_ni.blk_addr = NULL_ADDR;
1362 new_ni.flag = 0;
1363 new_ni.version = 0;
1364 set_node_addr(sbi, &new_ni, NEW_ADDR, false);
1365
1366 f2fs_wait_on_page_writeback(page, NODE, true, true);
1367 fill_node_footer(page, dn->nid, dn->inode->i_ino, ofs, true);
1368 set_cold_node(page, S_ISDIR(dn->inode->i_mode));
1369 if (!PageUptodate(page))
1370 SetPageUptodate(page);
1371 if (set_page_dirty(page))
1372 dn->node_changed = true;
1373
1374 if (f2fs_has_xattr_block(ofs))
1375 f2fs_i_xnid_write(dn->inode, dn->nid);
1376
1377 if (ofs == 0)
1378 inc_valid_inode_count(sbi);
1379 return page;
1380 fail:
1381 clear_node_page_dirty(page);
1382 f2fs_put_page(page, 1);
1383 return ERR_PTR(err);
1384 }
1385
1386 /*
1387 * Caller should do after getting the following values.
1388 * 0: f2fs_put_page(page, 0)
1389 * LOCKED_PAGE or error: f2fs_put_page(page, 1)
1390 */
read_node_page(struct page * page,blk_opf_t op_flags)1391 static int read_node_page(struct page *page, blk_opf_t op_flags)
1392 {
1393 struct folio *folio = page_folio(page);
1394 struct f2fs_sb_info *sbi = F2FS_P_SB(page);
1395 struct node_info ni;
1396 struct f2fs_io_info fio = {
1397 .sbi = sbi,
1398 .type = NODE,
1399 .op = REQ_OP_READ,
1400 .op_flags = op_flags,
1401 .page = page,
1402 .encrypted_page = NULL,
1403 };
1404 int err;
1405
1406 if (folio_test_uptodate(folio)) {
1407 if (!f2fs_inode_chksum_verify(sbi, page)) {
1408 folio_clear_uptodate(folio);
1409 return -EFSBADCRC;
1410 }
1411 return LOCKED_PAGE;
1412 }
1413
1414 err = f2fs_get_node_info(sbi, folio->index, &ni, false);
1415 if (err)
1416 return err;
1417
1418 /* NEW_ADDR can be seen, after cp_error drops some dirty node pages */
1419 if (unlikely(ni.blk_addr == NULL_ADDR || ni.blk_addr == NEW_ADDR)) {
1420 folio_clear_uptodate(folio);
1421 return -ENOENT;
1422 }
1423
1424 fio.new_blkaddr = fio.old_blkaddr = ni.blk_addr;
1425
1426 err = f2fs_submit_page_bio(&fio);
1427
1428 if (!err)
1429 f2fs_update_iostat(sbi, NULL, FS_NODE_READ_IO, F2FS_BLKSIZE);
1430
1431 return err;
1432 }
1433
1434 /*
1435 * Readahead a node page
1436 */
f2fs_ra_node_page(struct f2fs_sb_info * sbi,nid_t nid)1437 void f2fs_ra_node_page(struct f2fs_sb_info *sbi, nid_t nid)
1438 {
1439 struct page *apage;
1440 int err;
1441
1442 if (!nid)
1443 return;
1444 if (f2fs_check_nid_range(sbi, nid))
1445 return;
1446
1447 apage = xa_load(&NODE_MAPPING(sbi)->i_pages, nid);
1448 if (apage)
1449 return;
1450
1451 apage = f2fs_grab_cache_page(NODE_MAPPING(sbi), nid, false);
1452 if (!apage)
1453 return;
1454
1455 err = read_node_page(apage, REQ_RAHEAD);
1456 f2fs_put_page(apage, err ? 1 : 0);
1457 }
1458
__get_node_page(struct f2fs_sb_info * sbi,pgoff_t nid,struct page * parent,int start)1459 static struct page *__get_node_page(struct f2fs_sb_info *sbi, pgoff_t nid,
1460 struct page *parent, int start)
1461 {
1462 struct page *page;
1463 int err;
1464
1465 if (!nid)
1466 return ERR_PTR(-ENOENT);
1467 if (f2fs_check_nid_range(sbi, nid))
1468 return ERR_PTR(-EINVAL);
1469 repeat:
1470 page = f2fs_grab_cache_page(NODE_MAPPING(sbi), nid, false);
1471 if (!page)
1472 return ERR_PTR(-ENOMEM);
1473
1474 err = read_node_page(page, 0);
1475 if (err < 0) {
1476 goto out_put_err;
1477 } else if (err == LOCKED_PAGE) {
1478 err = 0;
1479 goto page_hit;
1480 }
1481
1482 if (parent)
1483 f2fs_ra_node_pages(parent, start + 1, MAX_RA_NODE);
1484
1485 lock_page(page);
1486
1487 if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
1488 f2fs_put_page(page, 1);
1489 goto repeat;
1490 }
1491
1492 if (unlikely(!PageUptodate(page))) {
1493 err = -EIO;
1494 goto out_err;
1495 }
1496
1497 if (!f2fs_inode_chksum_verify(sbi, page)) {
1498 err = -EFSBADCRC;
1499 goto out_err;
1500 }
1501 page_hit:
1502 if (likely(nid == nid_of_node(page)))
1503 return page;
1504
1505 f2fs_warn(sbi, "inconsistent node block, nid:%lu, node_footer[nid:%u,ino:%u,ofs:%u,cpver:%llu,blkaddr:%u]",
1506 nid, nid_of_node(page), ino_of_node(page),
1507 ofs_of_node(page), cpver_of_node(page),
1508 next_blkaddr_of_node(page));
1509 set_sbi_flag(sbi, SBI_NEED_FSCK);
1510 f2fs_handle_error(sbi, ERROR_INCONSISTENT_FOOTER);
1511 err = -EFSCORRUPTED;
1512 out_err:
1513 ClearPageUptodate(page);
1514 out_put_err:
1515 /* ENOENT comes from read_node_page which is not an error. */
1516 if (err != -ENOENT)
1517 f2fs_handle_page_eio(sbi, page_folio(page), NODE);
1518 f2fs_put_page(page, 1);
1519 return ERR_PTR(err);
1520 }
1521
f2fs_get_node_page(struct f2fs_sb_info * sbi,pgoff_t nid)1522 struct page *f2fs_get_node_page(struct f2fs_sb_info *sbi, pgoff_t nid)
1523 {
1524 return __get_node_page(sbi, nid, NULL, 0);
1525 }
1526
f2fs_get_node_page_ra(struct page * parent,int start)1527 struct page *f2fs_get_node_page_ra(struct page *parent, int start)
1528 {
1529 struct f2fs_sb_info *sbi = F2FS_P_SB(parent);
1530 nid_t nid = get_nid(parent, start, false);
1531
1532 return __get_node_page(sbi, nid, parent, start);
1533 }
1534
flush_inline_data(struct f2fs_sb_info * sbi,nid_t ino)1535 static void flush_inline_data(struct f2fs_sb_info *sbi, nid_t ino)
1536 {
1537 struct inode *inode;
1538 struct page *page;
1539 int ret;
1540
1541 /* should flush inline_data before evict_inode */
1542 inode = ilookup(sbi->sb, ino);
1543 if (!inode)
1544 return;
1545
1546 page = f2fs_pagecache_get_page(inode->i_mapping, 0,
1547 FGP_LOCK|FGP_NOWAIT, 0);
1548 if (!page)
1549 goto iput_out;
1550
1551 if (!PageUptodate(page))
1552 goto page_out;
1553
1554 if (!PageDirty(page))
1555 goto page_out;
1556
1557 if (!clear_page_dirty_for_io(page))
1558 goto page_out;
1559
1560 ret = f2fs_write_inline_data(inode, page_folio(page));
1561 inode_dec_dirty_pages(inode);
1562 f2fs_remove_dirty_inode(inode);
1563 if (ret)
1564 set_page_dirty(page);
1565 page_out:
1566 f2fs_put_page(page, 1);
1567 iput_out:
1568 iput(inode);
1569 }
1570
last_fsync_dnode(struct f2fs_sb_info * sbi,nid_t ino)1571 static struct page *last_fsync_dnode(struct f2fs_sb_info *sbi, nid_t ino)
1572 {
1573 pgoff_t index;
1574 struct folio_batch fbatch;
1575 struct page *last_page = NULL;
1576 int nr_folios;
1577
1578 folio_batch_init(&fbatch);
1579 index = 0;
1580
1581 while ((nr_folios = filemap_get_folios_tag(NODE_MAPPING(sbi), &index,
1582 (pgoff_t)-1, PAGECACHE_TAG_DIRTY,
1583 &fbatch))) {
1584 int i;
1585
1586 for (i = 0; i < nr_folios; i++) {
1587 struct page *page = &fbatch.folios[i]->page;
1588
1589 if (unlikely(f2fs_cp_error(sbi))) {
1590 f2fs_put_page(last_page, 0);
1591 folio_batch_release(&fbatch);
1592 return ERR_PTR(-EIO);
1593 }
1594
1595 if (!IS_DNODE(page) || !is_cold_node(page))
1596 continue;
1597 if (ino_of_node(page) != ino)
1598 continue;
1599
1600 lock_page(page);
1601
1602 if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
1603 continue_unlock:
1604 unlock_page(page);
1605 continue;
1606 }
1607 if (ino_of_node(page) != ino)
1608 goto continue_unlock;
1609
1610 if (!PageDirty(page)) {
1611 /* someone wrote it for us */
1612 goto continue_unlock;
1613 }
1614
1615 if (last_page)
1616 f2fs_put_page(last_page, 0);
1617
1618 get_page(page);
1619 last_page = page;
1620 unlock_page(page);
1621 }
1622 folio_batch_release(&fbatch);
1623 cond_resched();
1624 }
1625 return last_page;
1626 }
1627
__write_node_page(struct page * page,bool atomic,bool * submitted,struct writeback_control * wbc,bool do_balance,enum iostat_type io_type,unsigned int * seq_id)1628 static int __write_node_page(struct page *page, bool atomic, bool *submitted,
1629 struct writeback_control *wbc, bool do_balance,
1630 enum iostat_type io_type, unsigned int *seq_id)
1631 {
1632 struct f2fs_sb_info *sbi = F2FS_P_SB(page);
1633 struct folio *folio = page_folio(page);
1634 nid_t nid;
1635 struct node_info ni;
1636 struct f2fs_io_info fio = {
1637 .sbi = sbi,
1638 .ino = ino_of_node(page),
1639 .type = NODE,
1640 .op = REQ_OP_WRITE,
1641 .op_flags = wbc_to_write_flags(wbc),
1642 .page = page,
1643 .encrypted_page = NULL,
1644 .submitted = 0,
1645 .io_type = io_type,
1646 .io_wbc = wbc,
1647 };
1648 unsigned int seq;
1649
1650 trace_f2fs_writepage(folio, NODE);
1651
1652 if (unlikely(f2fs_cp_error(sbi))) {
1653 /* keep node pages in remount-ro mode */
1654 if (F2FS_OPTION(sbi).errors == MOUNT_ERRORS_READONLY)
1655 goto redirty_out;
1656 folio_clear_uptodate(folio);
1657 dec_page_count(sbi, F2FS_DIRTY_NODES);
1658 folio_unlock(folio);
1659 return 0;
1660 }
1661
1662 if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
1663 goto redirty_out;
1664
1665 if (!is_sbi_flag_set(sbi, SBI_CP_DISABLED) &&
1666 wbc->sync_mode == WB_SYNC_NONE &&
1667 IS_DNODE(page) && is_cold_node(page))
1668 goto redirty_out;
1669
1670 /* get old block addr of this node page */
1671 nid = nid_of_node(page);
1672 f2fs_bug_on(sbi, folio->index != nid);
1673
1674 if (f2fs_get_node_info(sbi, nid, &ni, !do_balance))
1675 goto redirty_out;
1676
1677 if (wbc->for_reclaim) {
1678 if (!f2fs_down_read_trylock(&sbi->node_write))
1679 goto redirty_out;
1680 } else {
1681 f2fs_down_read(&sbi->node_write);
1682 }
1683
1684 /* This page is already truncated */
1685 if (unlikely(ni.blk_addr == NULL_ADDR)) {
1686 folio_clear_uptodate(folio);
1687 dec_page_count(sbi, F2FS_DIRTY_NODES);
1688 f2fs_up_read(&sbi->node_write);
1689 folio_unlock(folio);
1690 return 0;
1691 }
1692
1693 if (__is_valid_data_blkaddr(ni.blk_addr) &&
1694 !f2fs_is_valid_blkaddr(sbi, ni.blk_addr,
1695 DATA_GENERIC_ENHANCE)) {
1696 f2fs_up_read(&sbi->node_write);
1697 goto redirty_out;
1698 }
1699
1700 if (atomic && !test_opt(sbi, NOBARRIER))
1701 fio.op_flags |= REQ_PREFLUSH | REQ_FUA;
1702
1703 /* should add to global list before clearing PAGECACHE status */
1704 if (f2fs_in_warm_node_list(sbi, page)) {
1705 seq = f2fs_add_fsync_node_entry(sbi, page);
1706 if (seq_id)
1707 *seq_id = seq;
1708 }
1709
1710 folio_start_writeback(folio);
1711
1712 fio.old_blkaddr = ni.blk_addr;
1713 f2fs_do_write_node_page(nid, &fio);
1714 set_node_addr(sbi, &ni, fio.new_blkaddr, is_fsync_dnode(page));
1715 dec_page_count(sbi, F2FS_DIRTY_NODES);
1716 f2fs_up_read(&sbi->node_write);
1717
1718 if (wbc->for_reclaim) {
1719 f2fs_submit_merged_write_cond(sbi, NULL, page, 0, NODE);
1720 submitted = NULL;
1721 }
1722
1723 folio_unlock(folio);
1724
1725 if (unlikely(f2fs_cp_error(sbi))) {
1726 f2fs_submit_merged_write(sbi, NODE);
1727 submitted = NULL;
1728 }
1729 if (submitted)
1730 *submitted = fio.submitted;
1731
1732 if (do_balance)
1733 f2fs_balance_fs(sbi, false);
1734 return 0;
1735
1736 redirty_out:
1737 folio_redirty_for_writepage(wbc, folio);
1738 return AOP_WRITEPAGE_ACTIVATE;
1739 }
1740
f2fs_move_node_page(struct page * node_page,int gc_type)1741 int f2fs_move_node_page(struct page *node_page, int gc_type)
1742 {
1743 int err = 0;
1744
1745 if (gc_type == FG_GC) {
1746 struct writeback_control wbc = {
1747 .sync_mode = WB_SYNC_ALL,
1748 .nr_to_write = 1,
1749 .for_reclaim = 0,
1750 };
1751
1752 f2fs_wait_on_page_writeback(node_page, NODE, true, true);
1753
1754 set_page_dirty(node_page);
1755
1756 if (!clear_page_dirty_for_io(node_page)) {
1757 err = -EAGAIN;
1758 goto out_page;
1759 }
1760
1761 if (__write_node_page(node_page, false, NULL,
1762 &wbc, false, FS_GC_NODE_IO, NULL)) {
1763 err = -EAGAIN;
1764 unlock_page(node_page);
1765 }
1766 goto release_page;
1767 } else {
1768 /* set page dirty and write it */
1769 if (!folio_test_writeback(page_folio(node_page)))
1770 set_page_dirty(node_page);
1771 }
1772 out_page:
1773 unlock_page(node_page);
1774 release_page:
1775 f2fs_put_page(node_page, 0);
1776 return err;
1777 }
1778
f2fs_write_node_page(struct page * page,struct writeback_control * wbc)1779 static int f2fs_write_node_page(struct page *page,
1780 struct writeback_control *wbc)
1781 {
1782 return __write_node_page(page, false, NULL, wbc, false,
1783 FS_NODE_IO, NULL);
1784 }
1785
f2fs_fsync_node_pages(struct f2fs_sb_info * sbi,struct inode * inode,struct writeback_control * wbc,bool atomic,unsigned int * seq_id)1786 int f2fs_fsync_node_pages(struct f2fs_sb_info *sbi, struct inode *inode,
1787 struct writeback_control *wbc, bool atomic,
1788 unsigned int *seq_id)
1789 {
1790 pgoff_t index;
1791 struct folio_batch fbatch;
1792 int ret = 0;
1793 struct page *last_page = NULL;
1794 bool marked = false;
1795 nid_t ino = inode->i_ino;
1796 int nr_folios;
1797 int nwritten = 0;
1798
1799 if (atomic) {
1800 last_page = last_fsync_dnode(sbi, ino);
1801 if (IS_ERR_OR_NULL(last_page))
1802 return PTR_ERR_OR_ZERO(last_page);
1803 }
1804 retry:
1805 folio_batch_init(&fbatch);
1806 index = 0;
1807
1808 while ((nr_folios = filemap_get_folios_tag(NODE_MAPPING(sbi), &index,
1809 (pgoff_t)-1, PAGECACHE_TAG_DIRTY,
1810 &fbatch))) {
1811 int i;
1812
1813 for (i = 0; i < nr_folios; i++) {
1814 struct page *page = &fbatch.folios[i]->page;
1815 bool submitted = false;
1816
1817 if (unlikely(f2fs_cp_error(sbi))) {
1818 f2fs_put_page(last_page, 0);
1819 folio_batch_release(&fbatch);
1820 ret = -EIO;
1821 goto out;
1822 }
1823
1824 if (!IS_DNODE(page) || !is_cold_node(page))
1825 continue;
1826 if (ino_of_node(page) != ino)
1827 continue;
1828
1829 lock_page(page);
1830
1831 if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
1832 continue_unlock:
1833 unlock_page(page);
1834 continue;
1835 }
1836 if (ino_of_node(page) != ino)
1837 goto continue_unlock;
1838
1839 if (!PageDirty(page) && page != last_page) {
1840 /* someone wrote it for us */
1841 goto continue_unlock;
1842 }
1843
1844 f2fs_wait_on_page_writeback(page, NODE, true, true);
1845
1846 set_fsync_mark(page, 0);
1847 set_dentry_mark(page, 0);
1848
1849 if (!atomic || page == last_page) {
1850 set_fsync_mark(page, 1);
1851 percpu_counter_inc(&sbi->rf_node_block_count);
1852 if (IS_INODE(page)) {
1853 if (is_inode_flag_set(inode,
1854 FI_DIRTY_INODE))
1855 f2fs_update_inode(inode, page);
1856 set_dentry_mark(page,
1857 f2fs_need_dentry_mark(sbi, ino));
1858 }
1859 /* may be written by other thread */
1860 if (!PageDirty(page))
1861 set_page_dirty(page);
1862 }
1863
1864 if (!clear_page_dirty_for_io(page))
1865 goto continue_unlock;
1866
1867 ret = __write_node_page(page, atomic &&
1868 page == last_page,
1869 &submitted, wbc, true,
1870 FS_NODE_IO, seq_id);
1871 if (ret) {
1872 unlock_page(page);
1873 f2fs_put_page(last_page, 0);
1874 break;
1875 } else if (submitted) {
1876 nwritten++;
1877 }
1878
1879 if (page == last_page) {
1880 f2fs_put_page(page, 0);
1881 marked = true;
1882 break;
1883 }
1884 }
1885 folio_batch_release(&fbatch);
1886 cond_resched();
1887
1888 if (ret || marked)
1889 break;
1890 }
1891 if (!ret && atomic && !marked) {
1892 f2fs_debug(sbi, "Retry to write fsync mark: ino=%u, idx=%lx",
1893 ino, page_folio(last_page)->index);
1894 lock_page(last_page);
1895 f2fs_wait_on_page_writeback(last_page, NODE, true, true);
1896 set_page_dirty(last_page);
1897 unlock_page(last_page);
1898 goto retry;
1899 }
1900 out:
1901 if (nwritten)
1902 f2fs_submit_merged_write_cond(sbi, NULL, NULL, ino, NODE);
1903 return ret ? -EIO : 0;
1904 }
1905
f2fs_match_ino(struct inode * inode,unsigned long ino,void * data)1906 static int f2fs_match_ino(struct inode *inode, unsigned long ino, void *data)
1907 {
1908 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1909 bool clean;
1910
1911 if (inode->i_ino != ino)
1912 return 0;
1913
1914 if (!is_inode_flag_set(inode, FI_DIRTY_INODE))
1915 return 0;
1916
1917 spin_lock(&sbi->inode_lock[DIRTY_META]);
1918 clean = list_empty(&F2FS_I(inode)->gdirty_list);
1919 spin_unlock(&sbi->inode_lock[DIRTY_META]);
1920
1921 if (clean)
1922 return 0;
1923
1924 inode = igrab(inode);
1925 if (!inode)
1926 return 0;
1927 return 1;
1928 }
1929
flush_dirty_inode(struct page * page)1930 static bool flush_dirty_inode(struct page *page)
1931 {
1932 struct f2fs_sb_info *sbi = F2FS_P_SB(page);
1933 struct inode *inode;
1934 nid_t ino = ino_of_node(page);
1935
1936 inode = find_inode_nowait(sbi->sb, ino, f2fs_match_ino, NULL);
1937 if (!inode)
1938 return false;
1939
1940 f2fs_update_inode(inode, page);
1941 unlock_page(page);
1942
1943 iput(inode);
1944 return true;
1945 }
1946
f2fs_flush_inline_data(struct f2fs_sb_info * sbi)1947 void f2fs_flush_inline_data(struct f2fs_sb_info *sbi)
1948 {
1949 pgoff_t index = 0;
1950 struct folio_batch fbatch;
1951 int nr_folios;
1952
1953 folio_batch_init(&fbatch);
1954
1955 while ((nr_folios = filemap_get_folios_tag(NODE_MAPPING(sbi), &index,
1956 (pgoff_t)-1, PAGECACHE_TAG_DIRTY,
1957 &fbatch))) {
1958 int i;
1959
1960 for (i = 0; i < nr_folios; i++) {
1961 struct page *page = &fbatch.folios[i]->page;
1962
1963 if (!IS_INODE(page))
1964 continue;
1965
1966 lock_page(page);
1967
1968 if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
1969 continue_unlock:
1970 unlock_page(page);
1971 continue;
1972 }
1973
1974 if (!PageDirty(page)) {
1975 /* someone wrote it for us */
1976 goto continue_unlock;
1977 }
1978
1979 /* flush inline_data, if it's async context. */
1980 if (page_private_inline(page)) {
1981 clear_page_private_inline(page);
1982 unlock_page(page);
1983 flush_inline_data(sbi, ino_of_node(page));
1984 continue;
1985 }
1986 unlock_page(page);
1987 }
1988 folio_batch_release(&fbatch);
1989 cond_resched();
1990 }
1991 }
1992
f2fs_sync_node_pages(struct f2fs_sb_info * sbi,struct writeback_control * wbc,bool do_balance,enum iostat_type io_type)1993 int f2fs_sync_node_pages(struct f2fs_sb_info *sbi,
1994 struct writeback_control *wbc,
1995 bool do_balance, enum iostat_type io_type)
1996 {
1997 pgoff_t index;
1998 struct folio_batch fbatch;
1999 int step = 0;
2000 int nwritten = 0;
2001 int ret = 0;
2002 int nr_folios, done = 0;
2003
2004 folio_batch_init(&fbatch);
2005
2006 next_step:
2007 index = 0;
2008
2009 while (!done && (nr_folios = filemap_get_folios_tag(NODE_MAPPING(sbi),
2010 &index, (pgoff_t)-1, PAGECACHE_TAG_DIRTY,
2011 &fbatch))) {
2012 int i;
2013
2014 for (i = 0; i < nr_folios; i++) {
2015 struct page *page = &fbatch.folios[i]->page;
2016 bool submitted = false;
2017
2018 /* give a priority to WB_SYNC threads */
2019 if (atomic_read(&sbi->wb_sync_req[NODE]) &&
2020 wbc->sync_mode == WB_SYNC_NONE) {
2021 done = 1;
2022 break;
2023 }
2024
2025 /*
2026 * flushing sequence with step:
2027 * 0. indirect nodes
2028 * 1. dentry dnodes
2029 * 2. file dnodes
2030 */
2031 if (step == 0 && IS_DNODE(page))
2032 continue;
2033 if (step == 1 && (!IS_DNODE(page) ||
2034 is_cold_node(page)))
2035 continue;
2036 if (step == 2 && (!IS_DNODE(page) ||
2037 !is_cold_node(page)))
2038 continue;
2039 lock_node:
2040 if (wbc->sync_mode == WB_SYNC_ALL)
2041 lock_page(page);
2042 else if (!trylock_page(page))
2043 continue;
2044
2045 if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
2046 continue_unlock:
2047 unlock_page(page);
2048 continue;
2049 }
2050
2051 if (!PageDirty(page)) {
2052 /* someone wrote it for us */
2053 goto continue_unlock;
2054 }
2055
2056 /* flush inline_data/inode, if it's async context. */
2057 if (!do_balance)
2058 goto write_node;
2059
2060 /* flush inline_data */
2061 if (page_private_inline(page)) {
2062 clear_page_private_inline(page);
2063 unlock_page(page);
2064 flush_inline_data(sbi, ino_of_node(page));
2065 goto lock_node;
2066 }
2067
2068 /* flush dirty inode */
2069 if (IS_INODE(page) && flush_dirty_inode(page))
2070 goto lock_node;
2071 write_node:
2072 f2fs_wait_on_page_writeback(page, NODE, true, true);
2073
2074 if (!clear_page_dirty_for_io(page))
2075 goto continue_unlock;
2076
2077 set_fsync_mark(page, 0);
2078 set_dentry_mark(page, 0);
2079
2080 ret = __write_node_page(page, false, &submitted,
2081 wbc, do_balance, io_type, NULL);
2082 if (ret)
2083 unlock_page(page);
2084 else if (submitted)
2085 nwritten++;
2086
2087 if (--wbc->nr_to_write == 0)
2088 break;
2089 }
2090 folio_batch_release(&fbatch);
2091 cond_resched();
2092
2093 if (wbc->nr_to_write == 0) {
2094 step = 2;
2095 break;
2096 }
2097 }
2098
2099 if (step < 2) {
2100 if (!is_sbi_flag_set(sbi, SBI_CP_DISABLED) &&
2101 wbc->sync_mode == WB_SYNC_NONE && step == 1)
2102 goto out;
2103 step++;
2104 goto next_step;
2105 }
2106 out:
2107 if (nwritten)
2108 f2fs_submit_merged_write(sbi, NODE);
2109
2110 if (unlikely(f2fs_cp_error(sbi)))
2111 return -EIO;
2112 return ret;
2113 }
2114
f2fs_wait_on_node_pages_writeback(struct f2fs_sb_info * sbi,unsigned int seq_id)2115 int f2fs_wait_on_node_pages_writeback(struct f2fs_sb_info *sbi,
2116 unsigned int seq_id)
2117 {
2118 struct fsync_node_entry *fn;
2119 struct page *page;
2120 struct list_head *head = &sbi->fsync_node_list;
2121 unsigned long flags;
2122 unsigned int cur_seq_id = 0;
2123
2124 while (seq_id && cur_seq_id < seq_id) {
2125 spin_lock_irqsave(&sbi->fsync_node_lock, flags);
2126 if (list_empty(head)) {
2127 spin_unlock_irqrestore(&sbi->fsync_node_lock, flags);
2128 break;
2129 }
2130 fn = list_first_entry(head, struct fsync_node_entry, list);
2131 if (fn->seq_id > seq_id) {
2132 spin_unlock_irqrestore(&sbi->fsync_node_lock, flags);
2133 break;
2134 }
2135 cur_seq_id = fn->seq_id;
2136 page = fn->page;
2137 get_page(page);
2138 spin_unlock_irqrestore(&sbi->fsync_node_lock, flags);
2139
2140 f2fs_wait_on_page_writeback(page, NODE, true, false);
2141
2142 put_page(page);
2143 }
2144
2145 return filemap_check_errors(NODE_MAPPING(sbi));
2146 }
2147
f2fs_write_node_pages(struct address_space * mapping,struct writeback_control * wbc)2148 static int f2fs_write_node_pages(struct address_space *mapping,
2149 struct writeback_control *wbc)
2150 {
2151 struct f2fs_sb_info *sbi = F2FS_M_SB(mapping);
2152 struct blk_plug plug;
2153 long diff;
2154
2155 if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
2156 goto skip_write;
2157
2158 /* balancing f2fs's metadata in background */
2159 f2fs_balance_fs_bg(sbi, true);
2160
2161 /* collect a number of dirty node pages and write together */
2162 if (wbc->sync_mode != WB_SYNC_ALL &&
2163 get_pages(sbi, F2FS_DIRTY_NODES) <
2164 nr_pages_to_skip(sbi, NODE))
2165 goto skip_write;
2166
2167 if (wbc->sync_mode == WB_SYNC_ALL)
2168 atomic_inc(&sbi->wb_sync_req[NODE]);
2169 else if (atomic_read(&sbi->wb_sync_req[NODE])) {
2170 /* to avoid potential deadlock */
2171 if (current->plug)
2172 blk_finish_plug(current->plug);
2173 goto skip_write;
2174 }
2175
2176 trace_f2fs_writepages(mapping->host, wbc, NODE);
2177
2178 diff = nr_pages_to_write(sbi, NODE, wbc);
2179 blk_start_plug(&plug);
2180 f2fs_sync_node_pages(sbi, wbc, true, FS_NODE_IO);
2181 blk_finish_plug(&plug);
2182 wbc->nr_to_write = max((long)0, wbc->nr_to_write - diff);
2183
2184 if (wbc->sync_mode == WB_SYNC_ALL)
2185 atomic_dec(&sbi->wb_sync_req[NODE]);
2186 return 0;
2187
2188 skip_write:
2189 wbc->pages_skipped += get_pages(sbi, F2FS_DIRTY_NODES);
2190 trace_f2fs_writepages(mapping->host, wbc, NODE);
2191 return 0;
2192 }
2193
f2fs_dirty_node_folio(struct address_space * mapping,struct folio * folio)2194 static bool f2fs_dirty_node_folio(struct address_space *mapping,
2195 struct folio *folio)
2196 {
2197 trace_f2fs_set_page_dirty(folio, NODE);
2198
2199 if (!folio_test_uptodate(folio))
2200 folio_mark_uptodate(folio);
2201 #ifdef CONFIG_F2FS_CHECK_FS
2202 if (IS_INODE(&folio->page))
2203 f2fs_inode_chksum_set(F2FS_M_SB(mapping), &folio->page);
2204 #endif
2205 if (filemap_dirty_folio(mapping, folio)) {
2206 inc_page_count(F2FS_M_SB(mapping), F2FS_DIRTY_NODES);
2207 set_page_private_reference(&folio->page);
2208 return true;
2209 }
2210 return false;
2211 }
2212
2213 /*
2214 * Structure of the f2fs node operations
2215 */
2216 const struct address_space_operations f2fs_node_aops = {
2217 .writepage = f2fs_write_node_page,
2218 .writepages = f2fs_write_node_pages,
2219 .dirty_folio = f2fs_dirty_node_folio,
2220 .invalidate_folio = f2fs_invalidate_folio,
2221 .release_folio = f2fs_release_folio,
2222 .migrate_folio = filemap_migrate_folio,
2223 };
2224
__lookup_free_nid_list(struct f2fs_nm_info * nm_i,nid_t n)2225 static struct free_nid *__lookup_free_nid_list(struct f2fs_nm_info *nm_i,
2226 nid_t n)
2227 {
2228 return radix_tree_lookup(&nm_i->free_nid_root, n);
2229 }
2230
__insert_free_nid(struct f2fs_sb_info * sbi,struct free_nid * i)2231 static int __insert_free_nid(struct f2fs_sb_info *sbi,
2232 struct free_nid *i)
2233 {
2234 struct f2fs_nm_info *nm_i = NM_I(sbi);
2235 int err = radix_tree_insert(&nm_i->free_nid_root, i->nid, i);
2236
2237 if (err)
2238 return err;
2239
2240 nm_i->nid_cnt[FREE_NID]++;
2241 list_add_tail(&i->list, &nm_i->free_nid_list);
2242 return 0;
2243 }
2244
__remove_free_nid(struct f2fs_sb_info * sbi,struct free_nid * i,enum nid_state state)2245 static void __remove_free_nid(struct f2fs_sb_info *sbi,
2246 struct free_nid *i, enum nid_state state)
2247 {
2248 struct f2fs_nm_info *nm_i = NM_I(sbi);
2249
2250 f2fs_bug_on(sbi, state != i->state);
2251 nm_i->nid_cnt[state]--;
2252 if (state == FREE_NID)
2253 list_del(&i->list);
2254 radix_tree_delete(&nm_i->free_nid_root, i->nid);
2255 }
2256
__move_free_nid(struct f2fs_sb_info * sbi,struct free_nid * i,enum nid_state org_state,enum nid_state dst_state)2257 static void __move_free_nid(struct f2fs_sb_info *sbi, struct free_nid *i,
2258 enum nid_state org_state, enum nid_state dst_state)
2259 {
2260 struct f2fs_nm_info *nm_i = NM_I(sbi);
2261
2262 f2fs_bug_on(sbi, org_state != i->state);
2263 i->state = dst_state;
2264 nm_i->nid_cnt[org_state]--;
2265 nm_i->nid_cnt[dst_state]++;
2266
2267 switch (dst_state) {
2268 case PREALLOC_NID:
2269 list_del(&i->list);
2270 break;
2271 case FREE_NID:
2272 list_add_tail(&i->list, &nm_i->free_nid_list);
2273 break;
2274 default:
2275 BUG_ON(1);
2276 }
2277 }
2278
update_free_nid_bitmap(struct f2fs_sb_info * sbi,nid_t nid,bool set,bool build)2279 static void update_free_nid_bitmap(struct f2fs_sb_info *sbi, nid_t nid,
2280 bool set, bool build)
2281 {
2282 struct f2fs_nm_info *nm_i = NM_I(sbi);
2283 unsigned int nat_ofs = NAT_BLOCK_OFFSET(nid);
2284 unsigned int nid_ofs = nid - START_NID(nid);
2285
2286 if (!test_bit_le(nat_ofs, nm_i->nat_block_bitmap))
2287 return;
2288
2289 if (set) {
2290 if (test_bit_le(nid_ofs, nm_i->free_nid_bitmap[nat_ofs]))
2291 return;
2292 __set_bit_le(nid_ofs, nm_i->free_nid_bitmap[nat_ofs]);
2293 nm_i->free_nid_count[nat_ofs]++;
2294 } else {
2295 if (!test_bit_le(nid_ofs, nm_i->free_nid_bitmap[nat_ofs]))
2296 return;
2297 __clear_bit_le(nid_ofs, nm_i->free_nid_bitmap[nat_ofs]);
2298 if (!build)
2299 nm_i->free_nid_count[nat_ofs]--;
2300 }
2301 }
2302
2303 /* return if the nid is recognized as free */
add_free_nid(struct f2fs_sb_info * sbi,nid_t nid,bool build,bool update)2304 static bool add_free_nid(struct f2fs_sb_info *sbi,
2305 nid_t nid, bool build, bool update)
2306 {
2307 struct f2fs_nm_info *nm_i = NM_I(sbi);
2308 struct free_nid *i, *e;
2309 struct nat_entry *ne;
2310 int err = -EINVAL;
2311 bool ret = false;
2312
2313 /* 0 nid should not be used */
2314 if (unlikely(nid == 0))
2315 return false;
2316
2317 if (unlikely(f2fs_check_nid_range(sbi, nid)))
2318 return false;
2319
2320 i = f2fs_kmem_cache_alloc(free_nid_slab, GFP_NOFS, true, NULL);
2321 i->nid = nid;
2322 i->state = FREE_NID;
2323
2324 radix_tree_preload(GFP_NOFS | __GFP_NOFAIL);
2325
2326 spin_lock(&nm_i->nid_list_lock);
2327
2328 if (build) {
2329 /*
2330 * Thread A Thread B
2331 * - f2fs_create
2332 * - f2fs_new_inode
2333 * - f2fs_alloc_nid
2334 * - __insert_nid_to_list(PREALLOC_NID)
2335 * - f2fs_balance_fs_bg
2336 * - f2fs_build_free_nids
2337 * - __f2fs_build_free_nids
2338 * - scan_nat_page
2339 * - add_free_nid
2340 * - __lookup_nat_cache
2341 * - f2fs_add_link
2342 * - f2fs_init_inode_metadata
2343 * - f2fs_new_inode_page
2344 * - f2fs_new_node_page
2345 * - set_node_addr
2346 * - f2fs_alloc_nid_done
2347 * - __remove_nid_from_list(PREALLOC_NID)
2348 * - __insert_nid_to_list(FREE_NID)
2349 */
2350 ne = __lookup_nat_cache(nm_i, nid);
2351 if (ne && (!get_nat_flag(ne, IS_CHECKPOINTED) ||
2352 nat_get_blkaddr(ne) != NULL_ADDR))
2353 goto err_out;
2354
2355 e = __lookup_free_nid_list(nm_i, nid);
2356 if (e) {
2357 if (e->state == FREE_NID)
2358 ret = true;
2359 goto err_out;
2360 }
2361 }
2362 ret = true;
2363 err = __insert_free_nid(sbi, i);
2364 err_out:
2365 if (update) {
2366 update_free_nid_bitmap(sbi, nid, ret, build);
2367 if (!build)
2368 nm_i->available_nids++;
2369 }
2370 spin_unlock(&nm_i->nid_list_lock);
2371 radix_tree_preload_end();
2372
2373 if (err)
2374 kmem_cache_free(free_nid_slab, i);
2375 return ret;
2376 }
2377
remove_free_nid(struct f2fs_sb_info * sbi,nid_t nid)2378 static void remove_free_nid(struct f2fs_sb_info *sbi, nid_t nid)
2379 {
2380 struct f2fs_nm_info *nm_i = NM_I(sbi);
2381 struct free_nid *i;
2382 bool need_free = false;
2383
2384 spin_lock(&nm_i->nid_list_lock);
2385 i = __lookup_free_nid_list(nm_i, nid);
2386 if (i && i->state == FREE_NID) {
2387 __remove_free_nid(sbi, i, FREE_NID);
2388 need_free = true;
2389 }
2390 spin_unlock(&nm_i->nid_list_lock);
2391
2392 if (need_free)
2393 kmem_cache_free(free_nid_slab, i);
2394 }
2395
scan_nat_page(struct f2fs_sb_info * sbi,struct page * nat_page,nid_t start_nid)2396 static int scan_nat_page(struct f2fs_sb_info *sbi,
2397 struct page *nat_page, nid_t start_nid)
2398 {
2399 struct f2fs_nm_info *nm_i = NM_I(sbi);
2400 struct f2fs_nat_block *nat_blk = page_address(nat_page);
2401 block_t blk_addr;
2402 unsigned int nat_ofs = NAT_BLOCK_OFFSET(start_nid);
2403 int i;
2404
2405 __set_bit_le(nat_ofs, nm_i->nat_block_bitmap);
2406
2407 i = start_nid % NAT_ENTRY_PER_BLOCK;
2408
2409 for (; i < NAT_ENTRY_PER_BLOCK; i++, start_nid++) {
2410 if (unlikely(start_nid >= nm_i->max_nid))
2411 break;
2412
2413 blk_addr = le32_to_cpu(nat_blk->entries[i].block_addr);
2414
2415 if (blk_addr == NEW_ADDR)
2416 return -EFSCORRUPTED;
2417
2418 if (blk_addr == NULL_ADDR) {
2419 add_free_nid(sbi, start_nid, true, true);
2420 } else {
2421 spin_lock(&NM_I(sbi)->nid_list_lock);
2422 update_free_nid_bitmap(sbi, start_nid, false, true);
2423 spin_unlock(&NM_I(sbi)->nid_list_lock);
2424 }
2425 }
2426
2427 return 0;
2428 }
2429
scan_curseg_cache(struct f2fs_sb_info * sbi)2430 static void scan_curseg_cache(struct f2fs_sb_info *sbi)
2431 {
2432 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
2433 struct f2fs_journal *journal = curseg->journal;
2434 int i;
2435
2436 down_read(&curseg->journal_rwsem);
2437 for (i = 0; i < nats_in_cursum(journal); i++) {
2438 block_t addr;
2439 nid_t nid;
2440
2441 addr = le32_to_cpu(nat_in_journal(journal, i).block_addr);
2442 nid = le32_to_cpu(nid_in_journal(journal, i));
2443 if (addr == NULL_ADDR)
2444 add_free_nid(sbi, nid, true, false);
2445 else
2446 remove_free_nid(sbi, nid);
2447 }
2448 up_read(&curseg->journal_rwsem);
2449 }
2450
scan_free_nid_bits(struct f2fs_sb_info * sbi)2451 static void scan_free_nid_bits(struct f2fs_sb_info *sbi)
2452 {
2453 struct f2fs_nm_info *nm_i = NM_I(sbi);
2454 unsigned int i, idx;
2455 nid_t nid;
2456
2457 f2fs_down_read(&nm_i->nat_tree_lock);
2458
2459 for (i = 0; i < nm_i->nat_blocks; i++) {
2460 if (!test_bit_le(i, nm_i->nat_block_bitmap))
2461 continue;
2462 if (!nm_i->free_nid_count[i])
2463 continue;
2464 for (idx = 0; idx < NAT_ENTRY_PER_BLOCK; idx++) {
2465 idx = find_next_bit_le(nm_i->free_nid_bitmap[i],
2466 NAT_ENTRY_PER_BLOCK, idx);
2467 if (idx >= NAT_ENTRY_PER_BLOCK)
2468 break;
2469
2470 nid = i * NAT_ENTRY_PER_BLOCK + idx;
2471 add_free_nid(sbi, nid, true, false);
2472
2473 if (nm_i->nid_cnt[FREE_NID] >= MAX_FREE_NIDS)
2474 goto out;
2475 }
2476 }
2477 out:
2478 scan_curseg_cache(sbi);
2479
2480 f2fs_up_read(&nm_i->nat_tree_lock);
2481 }
2482
__f2fs_build_free_nids(struct f2fs_sb_info * sbi,bool sync,bool mount)2483 static int __f2fs_build_free_nids(struct f2fs_sb_info *sbi,
2484 bool sync, bool mount)
2485 {
2486 struct f2fs_nm_info *nm_i = NM_I(sbi);
2487 int i = 0, ret;
2488 nid_t nid = nm_i->next_scan_nid;
2489
2490 if (unlikely(nid >= nm_i->max_nid))
2491 nid = 0;
2492
2493 if (unlikely(nid % NAT_ENTRY_PER_BLOCK))
2494 nid = NAT_BLOCK_OFFSET(nid) * NAT_ENTRY_PER_BLOCK;
2495
2496 /* Enough entries */
2497 if (nm_i->nid_cnt[FREE_NID] >= NAT_ENTRY_PER_BLOCK)
2498 return 0;
2499
2500 if (!sync && !f2fs_available_free_memory(sbi, FREE_NIDS))
2501 return 0;
2502
2503 if (!mount) {
2504 /* try to find free nids in free_nid_bitmap */
2505 scan_free_nid_bits(sbi);
2506
2507 if (nm_i->nid_cnt[FREE_NID] >= NAT_ENTRY_PER_BLOCK)
2508 return 0;
2509 }
2510
2511 /* readahead nat pages to be scanned */
2512 f2fs_ra_meta_pages(sbi, NAT_BLOCK_OFFSET(nid), FREE_NID_PAGES,
2513 META_NAT, true);
2514
2515 f2fs_down_read(&nm_i->nat_tree_lock);
2516
2517 while (1) {
2518 if (!test_bit_le(NAT_BLOCK_OFFSET(nid),
2519 nm_i->nat_block_bitmap)) {
2520 struct page *page = get_current_nat_page(sbi, nid);
2521
2522 if (IS_ERR(page)) {
2523 ret = PTR_ERR(page);
2524 } else {
2525 ret = scan_nat_page(sbi, page, nid);
2526 f2fs_put_page(page, 1);
2527 }
2528
2529 if (ret) {
2530 f2fs_up_read(&nm_i->nat_tree_lock);
2531
2532 if (ret == -EFSCORRUPTED) {
2533 f2fs_err(sbi, "NAT is corrupt, run fsck to fix it");
2534 set_sbi_flag(sbi, SBI_NEED_FSCK);
2535 f2fs_handle_error(sbi,
2536 ERROR_INCONSISTENT_NAT);
2537 }
2538
2539 return ret;
2540 }
2541 }
2542
2543 nid += (NAT_ENTRY_PER_BLOCK - (nid % NAT_ENTRY_PER_BLOCK));
2544 if (unlikely(nid >= nm_i->max_nid))
2545 nid = 0;
2546
2547 if (++i >= FREE_NID_PAGES)
2548 break;
2549 }
2550
2551 /* go to the next free nat pages to find free nids abundantly */
2552 nm_i->next_scan_nid = nid;
2553
2554 /* find free nids from current sum_pages */
2555 scan_curseg_cache(sbi);
2556
2557 f2fs_up_read(&nm_i->nat_tree_lock);
2558
2559 f2fs_ra_meta_pages(sbi, NAT_BLOCK_OFFSET(nm_i->next_scan_nid),
2560 nm_i->ra_nid_pages, META_NAT, false);
2561
2562 return 0;
2563 }
2564
f2fs_build_free_nids(struct f2fs_sb_info * sbi,bool sync,bool mount)2565 int f2fs_build_free_nids(struct f2fs_sb_info *sbi, bool sync, bool mount)
2566 {
2567 int ret;
2568
2569 mutex_lock(&NM_I(sbi)->build_lock);
2570 ret = __f2fs_build_free_nids(sbi, sync, mount);
2571 mutex_unlock(&NM_I(sbi)->build_lock);
2572
2573 return ret;
2574 }
2575
2576 /*
2577 * If this function returns success, caller can obtain a new nid
2578 * from second parameter of this function.
2579 * The returned nid could be used ino as well as nid when inode is created.
2580 */
f2fs_alloc_nid(struct f2fs_sb_info * sbi,nid_t * nid)2581 bool f2fs_alloc_nid(struct f2fs_sb_info *sbi, nid_t *nid)
2582 {
2583 struct f2fs_nm_info *nm_i = NM_I(sbi);
2584 struct free_nid *i = NULL;
2585 retry:
2586 if (time_to_inject(sbi, FAULT_ALLOC_NID))
2587 return false;
2588
2589 spin_lock(&nm_i->nid_list_lock);
2590
2591 if (unlikely(nm_i->available_nids == 0)) {
2592 spin_unlock(&nm_i->nid_list_lock);
2593 return false;
2594 }
2595
2596 /* We should not use stale free nids created by f2fs_build_free_nids */
2597 if (nm_i->nid_cnt[FREE_NID] && !on_f2fs_build_free_nids(nm_i)) {
2598 f2fs_bug_on(sbi, list_empty(&nm_i->free_nid_list));
2599 i = list_first_entry(&nm_i->free_nid_list,
2600 struct free_nid, list);
2601 *nid = i->nid;
2602
2603 __move_free_nid(sbi, i, FREE_NID, PREALLOC_NID);
2604 nm_i->available_nids--;
2605
2606 update_free_nid_bitmap(sbi, *nid, false, false);
2607
2608 spin_unlock(&nm_i->nid_list_lock);
2609 return true;
2610 }
2611 spin_unlock(&nm_i->nid_list_lock);
2612
2613 /* Let's scan nat pages and its caches to get free nids */
2614 if (!f2fs_build_free_nids(sbi, true, false))
2615 goto retry;
2616 return false;
2617 }
2618
2619 /*
2620 * f2fs_alloc_nid() should be called prior to this function.
2621 */
f2fs_alloc_nid_done(struct f2fs_sb_info * sbi,nid_t nid)2622 void f2fs_alloc_nid_done(struct f2fs_sb_info *sbi, nid_t nid)
2623 {
2624 struct f2fs_nm_info *nm_i = NM_I(sbi);
2625 struct free_nid *i;
2626
2627 spin_lock(&nm_i->nid_list_lock);
2628 i = __lookup_free_nid_list(nm_i, nid);
2629 f2fs_bug_on(sbi, !i);
2630 __remove_free_nid(sbi, i, PREALLOC_NID);
2631 spin_unlock(&nm_i->nid_list_lock);
2632
2633 kmem_cache_free(free_nid_slab, i);
2634 }
2635
2636 /*
2637 * f2fs_alloc_nid() should be called prior to this function.
2638 */
f2fs_alloc_nid_failed(struct f2fs_sb_info * sbi,nid_t nid)2639 void f2fs_alloc_nid_failed(struct f2fs_sb_info *sbi, nid_t nid)
2640 {
2641 struct f2fs_nm_info *nm_i = NM_I(sbi);
2642 struct free_nid *i;
2643 bool need_free = false;
2644
2645 if (!nid)
2646 return;
2647
2648 spin_lock(&nm_i->nid_list_lock);
2649 i = __lookup_free_nid_list(nm_i, nid);
2650 f2fs_bug_on(sbi, !i);
2651
2652 if (!f2fs_available_free_memory(sbi, FREE_NIDS)) {
2653 __remove_free_nid(sbi, i, PREALLOC_NID);
2654 need_free = true;
2655 } else {
2656 __move_free_nid(sbi, i, PREALLOC_NID, FREE_NID);
2657 }
2658
2659 nm_i->available_nids++;
2660
2661 update_free_nid_bitmap(sbi, nid, true, false);
2662
2663 spin_unlock(&nm_i->nid_list_lock);
2664
2665 if (need_free)
2666 kmem_cache_free(free_nid_slab, i);
2667 }
2668
f2fs_try_to_free_nids(struct f2fs_sb_info * sbi,int nr_shrink)2669 int f2fs_try_to_free_nids(struct f2fs_sb_info *sbi, int nr_shrink)
2670 {
2671 struct f2fs_nm_info *nm_i = NM_I(sbi);
2672 int nr = nr_shrink;
2673
2674 if (nm_i->nid_cnt[FREE_NID] <= MAX_FREE_NIDS)
2675 return 0;
2676
2677 if (!mutex_trylock(&nm_i->build_lock))
2678 return 0;
2679
2680 while (nr_shrink && nm_i->nid_cnt[FREE_NID] > MAX_FREE_NIDS) {
2681 struct free_nid *i, *next;
2682 unsigned int batch = SHRINK_NID_BATCH_SIZE;
2683
2684 spin_lock(&nm_i->nid_list_lock);
2685 list_for_each_entry_safe(i, next, &nm_i->free_nid_list, list) {
2686 if (!nr_shrink || !batch ||
2687 nm_i->nid_cnt[FREE_NID] <= MAX_FREE_NIDS)
2688 break;
2689 __remove_free_nid(sbi, i, FREE_NID);
2690 kmem_cache_free(free_nid_slab, i);
2691 nr_shrink--;
2692 batch--;
2693 }
2694 spin_unlock(&nm_i->nid_list_lock);
2695 }
2696
2697 mutex_unlock(&nm_i->build_lock);
2698
2699 return nr - nr_shrink;
2700 }
2701
f2fs_recover_inline_xattr(struct inode * inode,struct page * page)2702 int f2fs_recover_inline_xattr(struct inode *inode, struct page *page)
2703 {
2704 void *src_addr, *dst_addr;
2705 size_t inline_size;
2706 struct page *ipage;
2707 struct f2fs_inode *ri;
2708
2709 ipage = f2fs_get_node_page(F2FS_I_SB(inode), inode->i_ino);
2710 if (IS_ERR(ipage))
2711 return PTR_ERR(ipage);
2712
2713 ri = F2FS_INODE(page);
2714 if (ri->i_inline & F2FS_INLINE_XATTR) {
2715 if (!f2fs_has_inline_xattr(inode)) {
2716 set_inode_flag(inode, FI_INLINE_XATTR);
2717 stat_inc_inline_xattr(inode);
2718 }
2719 } else {
2720 if (f2fs_has_inline_xattr(inode)) {
2721 stat_dec_inline_xattr(inode);
2722 clear_inode_flag(inode, FI_INLINE_XATTR);
2723 }
2724 goto update_inode;
2725 }
2726
2727 dst_addr = inline_xattr_addr(inode, ipage);
2728 src_addr = inline_xattr_addr(inode, page);
2729 inline_size = inline_xattr_size(inode);
2730
2731 f2fs_wait_on_page_writeback(ipage, NODE, true, true);
2732 memcpy(dst_addr, src_addr, inline_size);
2733 update_inode:
2734 f2fs_update_inode(inode, ipage);
2735 f2fs_put_page(ipage, 1);
2736 return 0;
2737 }
2738
f2fs_recover_xattr_data(struct inode * inode,struct page * page)2739 int f2fs_recover_xattr_data(struct inode *inode, struct page *page)
2740 {
2741 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2742 nid_t prev_xnid = F2FS_I(inode)->i_xattr_nid;
2743 nid_t new_xnid;
2744 struct dnode_of_data dn;
2745 struct node_info ni;
2746 struct page *xpage;
2747 int err;
2748
2749 if (!prev_xnid)
2750 goto recover_xnid;
2751
2752 /* 1: invalidate the previous xattr nid */
2753 err = f2fs_get_node_info(sbi, prev_xnid, &ni, false);
2754 if (err)
2755 return err;
2756
2757 f2fs_invalidate_blocks(sbi, ni.blk_addr, 1);
2758 dec_valid_node_count(sbi, inode, false);
2759 set_node_addr(sbi, &ni, NULL_ADDR, false);
2760
2761 recover_xnid:
2762 /* 2: update xattr nid in inode */
2763 if (!f2fs_alloc_nid(sbi, &new_xnid))
2764 return -ENOSPC;
2765
2766 set_new_dnode(&dn, inode, NULL, NULL, new_xnid);
2767 xpage = f2fs_new_node_page(&dn, XATTR_NODE_OFFSET);
2768 if (IS_ERR(xpage)) {
2769 f2fs_alloc_nid_failed(sbi, new_xnid);
2770 return PTR_ERR(xpage);
2771 }
2772
2773 f2fs_alloc_nid_done(sbi, new_xnid);
2774 f2fs_update_inode_page(inode);
2775
2776 /* 3: update and set xattr node page dirty */
2777 if (page) {
2778 memcpy(F2FS_NODE(xpage), F2FS_NODE(page),
2779 VALID_XATTR_BLOCK_SIZE);
2780 set_page_dirty(xpage);
2781 }
2782 f2fs_put_page(xpage, 1);
2783
2784 return 0;
2785 }
2786
f2fs_recover_inode_page(struct f2fs_sb_info * sbi,struct page * page)2787 int f2fs_recover_inode_page(struct f2fs_sb_info *sbi, struct page *page)
2788 {
2789 struct f2fs_inode *src, *dst;
2790 nid_t ino = ino_of_node(page);
2791 struct node_info old_ni, new_ni;
2792 struct page *ipage;
2793 int err;
2794
2795 err = f2fs_get_node_info(sbi, ino, &old_ni, false);
2796 if (err)
2797 return err;
2798
2799 if (unlikely(old_ni.blk_addr != NULL_ADDR))
2800 return -EINVAL;
2801 retry:
2802 ipage = f2fs_grab_cache_page(NODE_MAPPING(sbi), ino, false);
2803 if (!ipage) {
2804 memalloc_retry_wait(GFP_NOFS);
2805 goto retry;
2806 }
2807
2808 /* Should not use this inode from free nid list */
2809 remove_free_nid(sbi, ino);
2810
2811 if (!PageUptodate(ipage))
2812 SetPageUptodate(ipage);
2813 fill_node_footer(ipage, ino, ino, 0, true);
2814 set_cold_node(ipage, false);
2815
2816 src = F2FS_INODE(page);
2817 dst = F2FS_INODE(ipage);
2818
2819 memcpy(dst, src, offsetof(struct f2fs_inode, i_ext));
2820 dst->i_size = 0;
2821 dst->i_blocks = cpu_to_le64(1);
2822 dst->i_links = cpu_to_le32(1);
2823 dst->i_xattr_nid = 0;
2824 dst->i_inline = src->i_inline & (F2FS_INLINE_XATTR | F2FS_EXTRA_ATTR);
2825 if (dst->i_inline & F2FS_EXTRA_ATTR) {
2826 dst->i_extra_isize = src->i_extra_isize;
2827
2828 if (f2fs_sb_has_flexible_inline_xattr(sbi) &&
2829 F2FS_FITS_IN_INODE(src, le16_to_cpu(src->i_extra_isize),
2830 i_inline_xattr_size))
2831 dst->i_inline_xattr_size = src->i_inline_xattr_size;
2832
2833 if (f2fs_sb_has_project_quota(sbi) &&
2834 F2FS_FITS_IN_INODE(src, le16_to_cpu(src->i_extra_isize),
2835 i_projid))
2836 dst->i_projid = src->i_projid;
2837
2838 if (f2fs_sb_has_inode_crtime(sbi) &&
2839 F2FS_FITS_IN_INODE(src, le16_to_cpu(src->i_extra_isize),
2840 i_crtime_nsec)) {
2841 dst->i_crtime = src->i_crtime;
2842 dst->i_crtime_nsec = src->i_crtime_nsec;
2843 }
2844 }
2845
2846 new_ni = old_ni;
2847 new_ni.ino = ino;
2848
2849 if (unlikely(inc_valid_node_count(sbi, NULL, true)))
2850 WARN_ON(1);
2851 set_node_addr(sbi, &new_ni, NEW_ADDR, false);
2852 inc_valid_inode_count(sbi);
2853 set_page_dirty(ipage);
2854 f2fs_put_page(ipage, 1);
2855 return 0;
2856 }
2857
f2fs_restore_node_summary(struct f2fs_sb_info * sbi,unsigned int segno,struct f2fs_summary_block * sum)2858 int f2fs_restore_node_summary(struct f2fs_sb_info *sbi,
2859 unsigned int segno, struct f2fs_summary_block *sum)
2860 {
2861 struct f2fs_node *rn;
2862 struct f2fs_summary *sum_entry;
2863 block_t addr;
2864 int i, idx, last_offset, nrpages;
2865
2866 /* scan the node segment */
2867 last_offset = BLKS_PER_SEG(sbi);
2868 addr = START_BLOCK(sbi, segno);
2869 sum_entry = &sum->entries[0];
2870
2871 for (i = 0; i < last_offset; i += nrpages, addr += nrpages) {
2872 nrpages = bio_max_segs(last_offset - i);
2873
2874 /* readahead node pages */
2875 f2fs_ra_meta_pages(sbi, addr, nrpages, META_POR, true);
2876
2877 for (idx = addr; idx < addr + nrpages; idx++) {
2878 struct page *page = f2fs_get_tmp_page(sbi, idx);
2879
2880 if (IS_ERR(page))
2881 return PTR_ERR(page);
2882
2883 rn = F2FS_NODE(page);
2884 sum_entry->nid = rn->footer.nid;
2885 sum_entry->version = 0;
2886 sum_entry->ofs_in_node = 0;
2887 sum_entry++;
2888 f2fs_put_page(page, 1);
2889 }
2890
2891 invalidate_mapping_pages(META_MAPPING(sbi), addr,
2892 addr + nrpages);
2893 }
2894 return 0;
2895 }
2896
remove_nats_in_journal(struct f2fs_sb_info * sbi)2897 static void remove_nats_in_journal(struct f2fs_sb_info *sbi)
2898 {
2899 struct f2fs_nm_info *nm_i = NM_I(sbi);
2900 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
2901 struct f2fs_journal *journal = curseg->journal;
2902 int i;
2903
2904 down_write(&curseg->journal_rwsem);
2905 for (i = 0; i < nats_in_cursum(journal); i++) {
2906 struct nat_entry *ne;
2907 struct f2fs_nat_entry raw_ne;
2908 nid_t nid = le32_to_cpu(nid_in_journal(journal, i));
2909
2910 if (f2fs_check_nid_range(sbi, nid))
2911 continue;
2912
2913 raw_ne = nat_in_journal(journal, i);
2914
2915 ne = __lookup_nat_cache(nm_i, nid);
2916 if (!ne) {
2917 ne = __alloc_nat_entry(sbi, nid, true);
2918 __init_nat_entry(nm_i, ne, &raw_ne, true);
2919 }
2920
2921 /*
2922 * if a free nat in journal has not been used after last
2923 * checkpoint, we should remove it from available nids,
2924 * since later we will add it again.
2925 */
2926 if (!get_nat_flag(ne, IS_DIRTY) &&
2927 le32_to_cpu(raw_ne.block_addr) == NULL_ADDR) {
2928 spin_lock(&nm_i->nid_list_lock);
2929 nm_i->available_nids--;
2930 spin_unlock(&nm_i->nid_list_lock);
2931 }
2932
2933 __set_nat_cache_dirty(nm_i, ne);
2934 }
2935 update_nats_in_cursum(journal, -i);
2936 up_write(&curseg->journal_rwsem);
2937 }
2938
__adjust_nat_entry_set(struct nat_entry_set * nes,struct list_head * head,int max)2939 static void __adjust_nat_entry_set(struct nat_entry_set *nes,
2940 struct list_head *head, int max)
2941 {
2942 struct nat_entry_set *cur;
2943
2944 if (nes->entry_cnt >= max)
2945 goto add_out;
2946
2947 list_for_each_entry(cur, head, set_list) {
2948 if (cur->entry_cnt >= nes->entry_cnt) {
2949 list_add(&nes->set_list, cur->set_list.prev);
2950 return;
2951 }
2952 }
2953 add_out:
2954 list_add_tail(&nes->set_list, head);
2955 }
2956
__update_nat_bits(struct f2fs_sb_info * sbi,nid_t start_nid,struct page * page)2957 static void __update_nat_bits(struct f2fs_sb_info *sbi, nid_t start_nid,
2958 struct page *page)
2959 {
2960 struct f2fs_nm_info *nm_i = NM_I(sbi);
2961 unsigned int nat_index = start_nid / NAT_ENTRY_PER_BLOCK;
2962 struct f2fs_nat_block *nat_blk = page_address(page);
2963 int valid = 0;
2964 int i = 0;
2965
2966 if (!enabled_nat_bits(sbi, NULL))
2967 return;
2968
2969 if (nat_index == 0) {
2970 valid = 1;
2971 i = 1;
2972 }
2973 for (; i < NAT_ENTRY_PER_BLOCK; i++) {
2974 if (le32_to_cpu(nat_blk->entries[i].block_addr) != NULL_ADDR)
2975 valid++;
2976 }
2977 if (valid == 0) {
2978 __set_bit_le(nat_index, nm_i->empty_nat_bits);
2979 __clear_bit_le(nat_index, nm_i->full_nat_bits);
2980 return;
2981 }
2982
2983 __clear_bit_le(nat_index, nm_i->empty_nat_bits);
2984 if (valid == NAT_ENTRY_PER_BLOCK)
2985 __set_bit_le(nat_index, nm_i->full_nat_bits);
2986 else
2987 __clear_bit_le(nat_index, nm_i->full_nat_bits);
2988 }
2989
__flush_nat_entry_set(struct f2fs_sb_info * sbi,struct nat_entry_set * set,struct cp_control * cpc)2990 static int __flush_nat_entry_set(struct f2fs_sb_info *sbi,
2991 struct nat_entry_set *set, struct cp_control *cpc)
2992 {
2993 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
2994 struct f2fs_journal *journal = curseg->journal;
2995 nid_t start_nid = set->set * NAT_ENTRY_PER_BLOCK;
2996 bool to_journal = true;
2997 struct f2fs_nat_block *nat_blk;
2998 struct nat_entry *ne, *cur;
2999 struct page *page = NULL;
3000
3001 /*
3002 * there are two steps to flush nat entries:
3003 * #1, flush nat entries to journal in current hot data summary block.
3004 * #2, flush nat entries to nat page.
3005 */
3006 if (enabled_nat_bits(sbi, cpc) ||
3007 !__has_cursum_space(journal, set->entry_cnt, NAT_JOURNAL))
3008 to_journal = false;
3009
3010 if (to_journal) {
3011 down_write(&curseg->journal_rwsem);
3012 } else {
3013 page = get_next_nat_page(sbi, start_nid);
3014 if (IS_ERR(page))
3015 return PTR_ERR(page);
3016
3017 nat_blk = page_address(page);
3018 f2fs_bug_on(sbi, !nat_blk);
3019 }
3020
3021 /* flush dirty nats in nat entry set */
3022 list_for_each_entry_safe(ne, cur, &set->entry_list, list) {
3023 struct f2fs_nat_entry *raw_ne;
3024 nid_t nid = nat_get_nid(ne);
3025 int offset;
3026
3027 f2fs_bug_on(sbi, nat_get_blkaddr(ne) == NEW_ADDR);
3028
3029 if (to_journal) {
3030 offset = f2fs_lookup_journal_in_cursum(journal,
3031 NAT_JOURNAL, nid, 1);
3032 f2fs_bug_on(sbi, offset < 0);
3033 raw_ne = &nat_in_journal(journal, offset);
3034 nid_in_journal(journal, offset) = cpu_to_le32(nid);
3035 } else {
3036 raw_ne = &nat_blk->entries[nid - start_nid];
3037 }
3038 raw_nat_from_node_info(raw_ne, &ne->ni);
3039 nat_reset_flag(ne);
3040 __clear_nat_cache_dirty(NM_I(sbi), set, ne);
3041 if (nat_get_blkaddr(ne) == NULL_ADDR) {
3042 add_free_nid(sbi, nid, false, true);
3043 } else {
3044 spin_lock(&NM_I(sbi)->nid_list_lock);
3045 update_free_nid_bitmap(sbi, nid, false, false);
3046 spin_unlock(&NM_I(sbi)->nid_list_lock);
3047 }
3048 }
3049
3050 if (to_journal) {
3051 up_write(&curseg->journal_rwsem);
3052 } else {
3053 __update_nat_bits(sbi, start_nid, page);
3054 f2fs_put_page(page, 1);
3055 }
3056
3057 /* Allow dirty nats by node block allocation in write_begin */
3058 if (!set->entry_cnt) {
3059 radix_tree_delete(&NM_I(sbi)->nat_set_root, set->set);
3060 kmem_cache_free(nat_entry_set_slab, set);
3061 }
3062 return 0;
3063 }
3064
3065 /*
3066 * This function is called during the checkpointing process.
3067 */
f2fs_flush_nat_entries(struct f2fs_sb_info * sbi,struct cp_control * cpc)3068 int f2fs_flush_nat_entries(struct f2fs_sb_info *sbi, struct cp_control *cpc)
3069 {
3070 struct f2fs_nm_info *nm_i = NM_I(sbi);
3071 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
3072 struct f2fs_journal *journal = curseg->journal;
3073 struct nat_entry_set *setvec[NAT_VEC_SIZE];
3074 struct nat_entry_set *set, *tmp;
3075 unsigned int found;
3076 nid_t set_idx = 0;
3077 LIST_HEAD(sets);
3078 int err = 0;
3079
3080 /*
3081 * during unmount, let's flush nat_bits before checking
3082 * nat_cnt[DIRTY_NAT].
3083 */
3084 if (enabled_nat_bits(sbi, cpc)) {
3085 f2fs_down_write(&nm_i->nat_tree_lock);
3086 remove_nats_in_journal(sbi);
3087 f2fs_up_write(&nm_i->nat_tree_lock);
3088 }
3089
3090 if (!nm_i->nat_cnt[DIRTY_NAT])
3091 return 0;
3092
3093 f2fs_down_write(&nm_i->nat_tree_lock);
3094
3095 /*
3096 * if there are no enough space in journal to store dirty nat
3097 * entries, remove all entries from journal and merge them
3098 * into nat entry set.
3099 */
3100 if (enabled_nat_bits(sbi, cpc) ||
3101 !__has_cursum_space(journal,
3102 nm_i->nat_cnt[DIRTY_NAT], NAT_JOURNAL))
3103 remove_nats_in_journal(sbi);
3104
3105 while ((found = __gang_lookup_nat_set(nm_i,
3106 set_idx, NAT_VEC_SIZE, setvec))) {
3107 unsigned idx;
3108
3109 set_idx = setvec[found - 1]->set + 1;
3110 for (idx = 0; idx < found; idx++)
3111 __adjust_nat_entry_set(setvec[idx], &sets,
3112 MAX_NAT_JENTRIES(journal));
3113 }
3114
3115 /* flush dirty nats in nat entry set */
3116 list_for_each_entry_safe(set, tmp, &sets, set_list) {
3117 err = __flush_nat_entry_set(sbi, set, cpc);
3118 if (err)
3119 break;
3120 }
3121
3122 f2fs_up_write(&nm_i->nat_tree_lock);
3123 /* Allow dirty nats by node block allocation in write_begin */
3124
3125 return err;
3126 }
3127
__get_nat_bitmaps(struct f2fs_sb_info * sbi)3128 static int __get_nat_bitmaps(struct f2fs_sb_info *sbi)
3129 {
3130 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
3131 struct f2fs_nm_info *nm_i = NM_I(sbi);
3132 unsigned int nat_bits_bytes = nm_i->nat_blocks / BITS_PER_BYTE;
3133 unsigned int i;
3134 __u64 cp_ver = cur_cp_version(ckpt);
3135 block_t nat_bits_addr;
3136
3137 if (!enabled_nat_bits(sbi, NULL))
3138 return 0;
3139
3140 nm_i->nat_bits_blocks = F2FS_BLK_ALIGN((nat_bits_bytes << 1) + 8);
3141 nm_i->nat_bits = f2fs_kvzalloc(sbi,
3142 F2FS_BLK_TO_BYTES(nm_i->nat_bits_blocks), GFP_KERNEL);
3143 if (!nm_i->nat_bits)
3144 return -ENOMEM;
3145
3146 nat_bits_addr = __start_cp_addr(sbi) + BLKS_PER_SEG(sbi) -
3147 nm_i->nat_bits_blocks;
3148 for (i = 0; i < nm_i->nat_bits_blocks; i++) {
3149 struct page *page;
3150
3151 page = f2fs_get_meta_page(sbi, nat_bits_addr++);
3152 if (IS_ERR(page))
3153 return PTR_ERR(page);
3154
3155 memcpy(nm_i->nat_bits + F2FS_BLK_TO_BYTES(i),
3156 page_address(page), F2FS_BLKSIZE);
3157 f2fs_put_page(page, 1);
3158 }
3159
3160 cp_ver |= (cur_cp_crc(ckpt) << 32);
3161 if (cpu_to_le64(cp_ver) != *(__le64 *)nm_i->nat_bits) {
3162 disable_nat_bits(sbi, true);
3163 return 0;
3164 }
3165
3166 nm_i->full_nat_bits = nm_i->nat_bits + 8;
3167 nm_i->empty_nat_bits = nm_i->full_nat_bits + nat_bits_bytes;
3168
3169 f2fs_notice(sbi, "Found nat_bits in checkpoint");
3170 return 0;
3171 }
3172
load_free_nid_bitmap(struct f2fs_sb_info * sbi)3173 static inline void load_free_nid_bitmap(struct f2fs_sb_info *sbi)
3174 {
3175 struct f2fs_nm_info *nm_i = NM_I(sbi);
3176 unsigned int i = 0;
3177 nid_t nid, last_nid;
3178
3179 if (!enabled_nat_bits(sbi, NULL))
3180 return;
3181
3182 for (i = 0; i < nm_i->nat_blocks; i++) {
3183 i = find_next_bit_le(nm_i->empty_nat_bits, nm_i->nat_blocks, i);
3184 if (i >= nm_i->nat_blocks)
3185 break;
3186
3187 __set_bit_le(i, nm_i->nat_block_bitmap);
3188
3189 nid = i * NAT_ENTRY_PER_BLOCK;
3190 last_nid = nid + NAT_ENTRY_PER_BLOCK;
3191
3192 spin_lock(&NM_I(sbi)->nid_list_lock);
3193 for (; nid < last_nid; nid++)
3194 update_free_nid_bitmap(sbi, nid, true, true);
3195 spin_unlock(&NM_I(sbi)->nid_list_lock);
3196 }
3197
3198 for (i = 0; i < nm_i->nat_blocks; i++) {
3199 i = find_next_bit_le(nm_i->full_nat_bits, nm_i->nat_blocks, i);
3200 if (i >= nm_i->nat_blocks)
3201 break;
3202
3203 __set_bit_le(i, nm_i->nat_block_bitmap);
3204 }
3205 }
3206
init_node_manager(struct f2fs_sb_info * sbi)3207 static int init_node_manager(struct f2fs_sb_info *sbi)
3208 {
3209 struct f2fs_super_block *sb_raw = F2FS_RAW_SUPER(sbi);
3210 struct f2fs_nm_info *nm_i = NM_I(sbi);
3211 unsigned char *version_bitmap;
3212 unsigned int nat_segs;
3213 int err;
3214
3215 nm_i->nat_blkaddr = le32_to_cpu(sb_raw->nat_blkaddr);
3216
3217 /* segment_count_nat includes pair segment so divide to 2. */
3218 nat_segs = le32_to_cpu(sb_raw->segment_count_nat) >> 1;
3219 nm_i->nat_blocks = nat_segs << le32_to_cpu(sb_raw->log_blocks_per_seg);
3220 nm_i->max_nid = NAT_ENTRY_PER_BLOCK * nm_i->nat_blocks;
3221
3222 /* not used nids: 0, node, meta, (and root counted as valid node) */
3223 nm_i->available_nids = nm_i->max_nid - sbi->total_valid_node_count -
3224 F2FS_RESERVED_NODE_NUM;
3225 nm_i->nid_cnt[FREE_NID] = 0;
3226 nm_i->nid_cnt[PREALLOC_NID] = 0;
3227 nm_i->ram_thresh = DEF_RAM_THRESHOLD;
3228 nm_i->ra_nid_pages = DEF_RA_NID_PAGES;
3229 nm_i->dirty_nats_ratio = DEF_DIRTY_NAT_RATIO_THRESHOLD;
3230 nm_i->max_rf_node_blocks = DEF_RF_NODE_BLOCKS;
3231
3232 INIT_RADIX_TREE(&nm_i->free_nid_root, GFP_ATOMIC);
3233 INIT_LIST_HEAD(&nm_i->free_nid_list);
3234 INIT_RADIX_TREE(&nm_i->nat_root, GFP_NOIO);
3235 INIT_RADIX_TREE(&nm_i->nat_set_root, GFP_NOIO);
3236 INIT_LIST_HEAD(&nm_i->nat_entries);
3237 spin_lock_init(&nm_i->nat_list_lock);
3238
3239 mutex_init(&nm_i->build_lock);
3240 spin_lock_init(&nm_i->nid_list_lock);
3241 init_f2fs_rwsem(&nm_i->nat_tree_lock);
3242
3243 nm_i->next_scan_nid = le32_to_cpu(sbi->ckpt->next_free_nid);
3244 nm_i->bitmap_size = __bitmap_size(sbi, NAT_BITMAP);
3245 version_bitmap = __bitmap_ptr(sbi, NAT_BITMAP);
3246 nm_i->nat_bitmap = kmemdup(version_bitmap, nm_i->bitmap_size,
3247 GFP_KERNEL);
3248 if (!nm_i->nat_bitmap)
3249 return -ENOMEM;
3250
3251 err = __get_nat_bitmaps(sbi);
3252 if (err)
3253 return err;
3254
3255 #ifdef CONFIG_F2FS_CHECK_FS
3256 nm_i->nat_bitmap_mir = kmemdup(version_bitmap, nm_i->bitmap_size,
3257 GFP_KERNEL);
3258 if (!nm_i->nat_bitmap_mir)
3259 return -ENOMEM;
3260 #endif
3261
3262 return 0;
3263 }
3264
init_free_nid_cache(struct f2fs_sb_info * sbi)3265 static int init_free_nid_cache(struct f2fs_sb_info *sbi)
3266 {
3267 struct f2fs_nm_info *nm_i = NM_I(sbi);
3268 int i;
3269
3270 nm_i->free_nid_bitmap =
3271 f2fs_kvzalloc(sbi, array_size(sizeof(unsigned char *),
3272 nm_i->nat_blocks),
3273 GFP_KERNEL);
3274 if (!nm_i->free_nid_bitmap)
3275 return -ENOMEM;
3276
3277 for (i = 0; i < nm_i->nat_blocks; i++) {
3278 nm_i->free_nid_bitmap[i] = f2fs_kvzalloc(sbi,
3279 f2fs_bitmap_size(NAT_ENTRY_PER_BLOCK), GFP_KERNEL);
3280 if (!nm_i->free_nid_bitmap[i])
3281 return -ENOMEM;
3282 }
3283
3284 nm_i->nat_block_bitmap = f2fs_kvzalloc(sbi, nm_i->nat_blocks / 8,
3285 GFP_KERNEL);
3286 if (!nm_i->nat_block_bitmap)
3287 return -ENOMEM;
3288
3289 nm_i->free_nid_count =
3290 f2fs_kvzalloc(sbi, array_size(sizeof(unsigned short),
3291 nm_i->nat_blocks),
3292 GFP_KERNEL);
3293 if (!nm_i->free_nid_count)
3294 return -ENOMEM;
3295 return 0;
3296 }
3297
f2fs_build_node_manager(struct f2fs_sb_info * sbi)3298 int f2fs_build_node_manager(struct f2fs_sb_info *sbi)
3299 {
3300 int err;
3301
3302 sbi->nm_info = f2fs_kzalloc(sbi, sizeof(struct f2fs_nm_info),
3303 GFP_KERNEL);
3304 if (!sbi->nm_info)
3305 return -ENOMEM;
3306
3307 err = init_node_manager(sbi);
3308 if (err)
3309 return err;
3310
3311 err = init_free_nid_cache(sbi);
3312 if (err)
3313 return err;
3314
3315 /* load free nid status from nat_bits table */
3316 load_free_nid_bitmap(sbi);
3317
3318 return f2fs_build_free_nids(sbi, true, true);
3319 }
3320
f2fs_destroy_node_manager(struct f2fs_sb_info * sbi)3321 void f2fs_destroy_node_manager(struct f2fs_sb_info *sbi)
3322 {
3323 struct f2fs_nm_info *nm_i = NM_I(sbi);
3324 struct free_nid *i, *next_i;
3325 void *vec[NAT_VEC_SIZE];
3326 struct nat_entry **natvec = (struct nat_entry **)vec;
3327 struct nat_entry_set **setvec = (struct nat_entry_set **)vec;
3328 nid_t nid = 0;
3329 unsigned int found;
3330
3331 if (!nm_i)
3332 return;
3333
3334 /* destroy free nid list */
3335 spin_lock(&nm_i->nid_list_lock);
3336 list_for_each_entry_safe(i, next_i, &nm_i->free_nid_list, list) {
3337 __remove_free_nid(sbi, i, FREE_NID);
3338 spin_unlock(&nm_i->nid_list_lock);
3339 kmem_cache_free(free_nid_slab, i);
3340 spin_lock(&nm_i->nid_list_lock);
3341 }
3342 f2fs_bug_on(sbi, nm_i->nid_cnt[FREE_NID]);
3343 f2fs_bug_on(sbi, nm_i->nid_cnt[PREALLOC_NID]);
3344 f2fs_bug_on(sbi, !list_empty(&nm_i->free_nid_list));
3345 spin_unlock(&nm_i->nid_list_lock);
3346
3347 /* destroy nat cache */
3348 f2fs_down_write(&nm_i->nat_tree_lock);
3349 while ((found = __gang_lookup_nat_cache(nm_i,
3350 nid, NAT_VEC_SIZE, natvec))) {
3351 unsigned idx;
3352
3353 nid = nat_get_nid(natvec[found - 1]) + 1;
3354 for (idx = 0; idx < found; idx++) {
3355 spin_lock(&nm_i->nat_list_lock);
3356 list_del(&natvec[idx]->list);
3357 spin_unlock(&nm_i->nat_list_lock);
3358
3359 __del_from_nat_cache(nm_i, natvec[idx]);
3360 }
3361 }
3362 f2fs_bug_on(sbi, nm_i->nat_cnt[TOTAL_NAT]);
3363
3364 /* destroy nat set cache */
3365 nid = 0;
3366 memset(vec, 0, sizeof(void *) * NAT_VEC_SIZE);
3367 while ((found = __gang_lookup_nat_set(nm_i,
3368 nid, NAT_VEC_SIZE, setvec))) {
3369 unsigned idx;
3370
3371 nid = setvec[found - 1]->set + 1;
3372 for (idx = 0; idx < found; idx++) {
3373 /* entry_cnt is not zero, when cp_error was occurred */
3374 f2fs_bug_on(sbi, !list_empty(&setvec[idx]->entry_list));
3375 radix_tree_delete(&nm_i->nat_set_root, setvec[idx]->set);
3376 kmem_cache_free(nat_entry_set_slab, setvec[idx]);
3377 }
3378 }
3379 f2fs_up_write(&nm_i->nat_tree_lock);
3380
3381 kvfree(nm_i->nat_block_bitmap);
3382 if (nm_i->free_nid_bitmap) {
3383 int i;
3384
3385 for (i = 0; i < nm_i->nat_blocks; i++)
3386 kvfree(nm_i->free_nid_bitmap[i]);
3387 kvfree(nm_i->free_nid_bitmap);
3388 }
3389 kvfree(nm_i->free_nid_count);
3390
3391 kvfree(nm_i->nat_bitmap);
3392 kvfree(nm_i->nat_bits);
3393 #ifdef CONFIG_F2FS_CHECK_FS
3394 kvfree(nm_i->nat_bitmap_mir);
3395 #endif
3396 sbi->nm_info = NULL;
3397 kfree(nm_i);
3398 }
3399
f2fs_create_node_manager_caches(void)3400 int __init f2fs_create_node_manager_caches(void)
3401 {
3402 nat_entry_slab = f2fs_kmem_cache_create("f2fs_nat_entry",
3403 sizeof(struct nat_entry));
3404 if (!nat_entry_slab)
3405 goto fail;
3406
3407 free_nid_slab = f2fs_kmem_cache_create("f2fs_free_nid",
3408 sizeof(struct free_nid));
3409 if (!free_nid_slab)
3410 goto destroy_nat_entry;
3411
3412 nat_entry_set_slab = f2fs_kmem_cache_create("f2fs_nat_entry_set",
3413 sizeof(struct nat_entry_set));
3414 if (!nat_entry_set_slab)
3415 goto destroy_free_nid;
3416
3417 fsync_node_entry_slab = f2fs_kmem_cache_create("f2fs_fsync_node_entry",
3418 sizeof(struct fsync_node_entry));
3419 if (!fsync_node_entry_slab)
3420 goto destroy_nat_entry_set;
3421 return 0;
3422
3423 destroy_nat_entry_set:
3424 kmem_cache_destroy(nat_entry_set_slab);
3425 destroy_free_nid:
3426 kmem_cache_destroy(free_nid_slab);
3427 destroy_nat_entry:
3428 kmem_cache_destroy(nat_entry_slab);
3429 fail:
3430 return -ENOMEM;
3431 }
3432
f2fs_destroy_node_manager_caches(void)3433 void f2fs_destroy_node_manager_caches(void)
3434 {
3435 kmem_cache_destroy(fsync_node_entry_slab);
3436 kmem_cache_destroy(nat_entry_set_slab);
3437 kmem_cache_destroy(free_nid_slab);
3438 kmem_cache_destroy(nat_entry_slab);
3439 }
3440