1 // SPDX-License-Identifier: GPL-2.0
2 // Copyright (C) 2016, Linaro Ltd - Daniel Lezcano <[email protected]>
3 #define pr_fmt(fmt) "irq_timings: " fmt
4
5 #include <linux/kernel.h>
6 #include <linux/percpu.h>
7 #include <linux/slab.h>
8 #include <linux/static_key.h>
9 #include <linux/init.h>
10 #include <linux/interrupt.h>
11 #include <linux/idr.h>
12 #include <linux/irq.h>
13 #include <linux/math64.h>
14 #include <linux/log2.h>
15
16 #include <trace/events/irq.h>
17
18 #include "internals.h"
19
20 DEFINE_STATIC_KEY_FALSE(irq_timing_enabled);
21
22 DEFINE_PER_CPU(struct irq_timings, irq_timings);
23
24 static DEFINE_IDR(irqt_stats);
25
irq_timings_enable(void)26 void irq_timings_enable(void)
27 {
28 static_branch_enable(&irq_timing_enabled);
29 }
30
irq_timings_disable(void)31 void irq_timings_disable(void)
32 {
33 static_branch_disable(&irq_timing_enabled);
34 }
35
36 /*
37 * The main goal of this algorithm is to predict the next interrupt
38 * occurrence on the current CPU.
39 *
40 * Currently, the interrupt timings are stored in a circular array
41 * buffer every time there is an interrupt, as a tuple: the interrupt
42 * number and the associated timestamp when the event occurred <irq,
43 * timestamp>.
44 *
45 * For every interrupt occurring in a short period of time, we can
46 * measure the elapsed time between the occurrences for the same
47 * interrupt and we end up with a suite of intervals. The experience
48 * showed the interrupts are often coming following a periodic
49 * pattern.
50 *
51 * The objective of the algorithm is to find out this periodic pattern
52 * in a fastest way and use its period to predict the next irq event.
53 *
54 * When the next interrupt event is requested, we are in the situation
55 * where the interrupts are disabled and the circular buffer
56 * containing the timings is filled with the events which happened
57 * after the previous next-interrupt-event request.
58 *
59 * At this point, we read the circular buffer and we fill the irq
60 * related statistics structure. After this step, the circular array
61 * containing the timings is empty because all the values are
62 * dispatched in their corresponding buffers.
63 *
64 * Now for each interrupt, we can predict the next event by using the
65 * suffix array, log interval and exponential moving average
66 *
67 * 1. Suffix array
68 *
69 * Suffix array is an array of all the suffixes of a string. It is
70 * widely used as a data structure for compression, text search, ...
71 * For instance for the word 'banana', the suffixes will be: 'banana'
72 * 'anana' 'nana' 'ana' 'na' 'a'
73 *
74 * Usually, the suffix array is sorted but for our purpose it is
75 * not necessary and won't provide any improvement in the context of
76 * the solved problem where we clearly define the boundaries of the
77 * search by a max period and min period.
78 *
79 * The suffix array will build a suite of intervals of different
80 * length and will look for the repetition of each suite. If the suite
81 * is repeating then we have the period because it is the length of
82 * the suite whatever its position in the buffer.
83 *
84 * 2. Log interval
85 *
86 * We saw the irq timings allow to compute the interval of the
87 * occurrences for a specific interrupt. We can reasonably assume the
88 * longer is the interval, the higher is the error for the next event
89 * and we can consider storing those interval values into an array
90 * where each slot in the array correspond to an interval at the power
91 * of 2 of the index. For example, index 12 will contain values
92 * between 2^11 and 2^12.
93 *
94 * At the end we have an array of values where at each index defines a
95 * [2^index - 1, 2 ^ index] interval values allowing to store a large
96 * number of values inside a small array.
97 *
98 * For example, if we have the value 1123, then we store it at
99 * ilog2(1123) = 10 index value.
100 *
101 * Storing those value at the specific index is done by computing an
102 * exponential moving average for this specific slot. For instance,
103 * for values 1800, 1123, 1453, ... fall under the same slot (10) and
104 * the exponential moving average is computed every time a new value
105 * is stored at this slot.
106 *
107 * 3. Exponential Moving Average
108 *
109 * The EMA is largely used to track a signal for stocks or as a low
110 * pass filter. The magic of the formula, is it is very simple and the
111 * reactivity of the average can be tuned with the factors called
112 * alpha.
113 *
114 * The higher the alphas are, the faster the average respond to the
115 * signal change. In our case, if a slot in the array is a big
116 * interval, we can have numbers with a big difference between
117 * them. The impact of those differences in the average computation
118 * can be tuned by changing the alpha value.
119 *
120 *
121 * -- The algorithm --
122 *
123 * We saw the different processing above, now let's see how they are
124 * used together.
125 *
126 * For each interrupt:
127 * For each interval:
128 * Compute the index = ilog2(interval)
129 * Compute a new_ema(buffer[index], interval)
130 * Store the index in a circular buffer
131 *
132 * Compute the suffix array of the indexes
133 *
134 * For each suffix:
135 * If the suffix is reverse-found 3 times
136 * Return suffix
137 *
138 * Return Not found
139 *
140 * However we can not have endless suffix array to be build, it won't
141 * make sense and it will add an extra overhead, so we can restrict
142 * this to a maximum suffix length of 5 and a minimum suffix length of
143 * 2. The experience showed 5 is the majority of the maximum pattern
144 * period found for different devices.
145 *
146 * The result is a pattern finding less than 1us for an interrupt.
147 *
148 * Example based on real values:
149 *
150 * Example 1 : MMC write/read interrupt interval:
151 *
152 * 223947, 1240, 1384, 1386, 1386,
153 * 217416, 1236, 1384, 1386, 1387,
154 * 214719, 1241, 1386, 1387, 1384,
155 * 213696, 1234, 1384, 1386, 1388,
156 * 219904, 1240, 1385, 1389, 1385,
157 * 212240, 1240, 1386, 1386, 1386,
158 * 214415, 1236, 1384, 1386, 1387,
159 * 214276, 1234, 1384, 1388, ?
160 *
161 * For each element, apply ilog2(value)
162 *
163 * 15, 8, 8, 8, 8,
164 * 15, 8, 8, 8, 8,
165 * 15, 8, 8, 8, 8,
166 * 15, 8, 8, 8, 8,
167 * 15, 8, 8, 8, 8,
168 * 15, 8, 8, 8, 8,
169 * 15, 8, 8, 8, 8,
170 * 15, 8, 8, 8, ?
171 *
172 * Max period of 5, we take the last (max_period * 3) 15 elements as
173 * we can be confident if the pattern repeats itself three times it is
174 * a repeating pattern.
175 *
176 * 8,
177 * 15, 8, 8, 8, 8,
178 * 15, 8, 8, 8, 8,
179 * 15, 8, 8, 8, ?
180 *
181 * Suffixes are:
182 *
183 * 1) 8, 15, 8, 8, 8 <- max period
184 * 2) 8, 15, 8, 8
185 * 3) 8, 15, 8
186 * 4) 8, 15 <- min period
187 *
188 * From there we search the repeating pattern for each suffix.
189 *
190 * buffer: 8, 15, 8, 8, 8, 8, 15, 8, 8, 8, 8, 15, 8, 8, 8
191 * | | | | | | | | | | | | | | |
192 * 8, 15, 8, 8, 8 | | | | | | | | | |
193 * 8, 15, 8, 8, 8 | | | | |
194 * 8, 15, 8, 8, 8
195 *
196 * When moving the suffix, we found exactly 3 matches.
197 *
198 * The first suffix with period 5 is repeating.
199 *
200 * The next event is (3 * max_period) % suffix_period
201 *
202 * In this example, the result 0, so the next event is suffix[0] => 8
203 *
204 * However, 8 is the index in the array of exponential moving average
205 * which was calculated on the fly when storing the values, so the
206 * interval is ema[8] = 1366
207 *
208 *
209 * Example 2:
210 *
211 * 4, 3, 5, 100,
212 * 3, 3, 5, 117,
213 * 4, 4, 5, 112,
214 * 4, 3, 4, 110,
215 * 3, 5, 3, 117,
216 * 4, 4, 5, 112,
217 * 4, 3, 4, 110,
218 * 3, 4, 5, 112,
219 * 4, 3, 4, 110
220 *
221 * ilog2
222 *
223 * 0, 0, 0, 4,
224 * 0, 0, 0, 4,
225 * 0, 0, 0, 4,
226 * 0, 0, 0, 4,
227 * 0, 0, 0, 4,
228 * 0, 0, 0, 4,
229 * 0, 0, 0, 4,
230 * 0, 0, 0, 4,
231 * 0, 0, 0, 4
232 *
233 * Max period 5:
234 * 0, 0, 4,
235 * 0, 0, 0, 4,
236 * 0, 0, 0, 4,
237 * 0, 0, 0, 4
238 *
239 * Suffixes:
240 *
241 * 1) 0, 0, 4, 0, 0
242 * 2) 0, 0, 4, 0
243 * 3) 0, 0, 4
244 * 4) 0, 0
245 *
246 * buffer: 0, 0, 4, 0, 0, 0, 4, 0, 0, 0, 4, 0, 0, 0, 4
247 * | | | | | | X
248 * 0, 0, 4, 0, 0, | X
249 * 0, 0
250 *
251 * buffer: 0, 0, 4, 0, 0, 0, 4, 0, 0, 0, 4, 0, 0, 0, 4
252 * | | | | | | | | | | | | | | |
253 * 0, 0, 4, 0, | | | | | | | | | | |
254 * 0, 0, 4, 0, | | | | | | |
255 * 0, 0, 4, 0, | | |
256 * 0 0 4
257 *
258 * Pattern is found 3 times, the remaining is 1 which results from
259 * (max_period * 3) % suffix_period. This value is the index in the
260 * suffix arrays. The suffix array for a period 4 has the value 4
261 * at index 1.
262 */
263 #define EMA_ALPHA_VAL 64
264 #define EMA_ALPHA_SHIFT 7
265
266 #define PREDICTION_PERIOD_MIN 3
267 #define PREDICTION_PERIOD_MAX 5
268 #define PREDICTION_FACTOR 4
269 #define PREDICTION_MAX 10 /* 2 ^ PREDICTION_MAX useconds */
270 #define PREDICTION_BUFFER_SIZE 16 /* slots for EMAs, hardly more than 16 */
271
272 /*
273 * Number of elements in the circular buffer: If it happens it was
274 * flushed before, then the number of elements could be smaller than
275 * IRQ_TIMINGS_SIZE, so the count is used, otherwise the array size is
276 * used as we wrapped. The index begins from zero when we did not
277 * wrap. That could be done in a nicer way with the proper circular
278 * array structure type but with the cost of extra computation in the
279 * interrupt handler hot path. We choose efficiency.
280 */
281 #define for_each_irqts(i, irqts) \
282 for (i = irqts->count < IRQ_TIMINGS_SIZE ? \
283 0 : irqts->count & IRQ_TIMINGS_MASK, \
284 irqts->count = min(IRQ_TIMINGS_SIZE, \
285 irqts->count); \
286 irqts->count > 0; irqts->count--, \
287 i = (i + 1) & IRQ_TIMINGS_MASK)
288
289 struct irqt_stat {
290 u64 last_ts;
291 u64 ema_time[PREDICTION_BUFFER_SIZE];
292 int timings[IRQ_TIMINGS_SIZE];
293 int circ_timings[IRQ_TIMINGS_SIZE];
294 int count;
295 };
296
297 /*
298 * Exponential moving average computation
299 */
irq_timings_ema_new(u64 value,u64 ema_old)300 static u64 irq_timings_ema_new(u64 value, u64 ema_old)
301 {
302 s64 diff;
303
304 if (unlikely(!ema_old))
305 return value;
306
307 diff = (value - ema_old) * EMA_ALPHA_VAL;
308 /*
309 * We can use a s64 type variable to be added with the u64
310 * ema_old variable as this one will never have its topmost
311 * bit set, it will be always smaller than 2^63 nanosec
312 * interrupt interval (292 years).
313 */
314 return ema_old + (diff >> EMA_ALPHA_SHIFT);
315 }
316
irq_timings_next_event_index(int * buffer,size_t len,int period_max)317 static int irq_timings_next_event_index(int *buffer, size_t len, int period_max)
318 {
319 int period;
320
321 /*
322 * Move the beginning pointer to the end minus the max period x 3.
323 * We are at the point we can begin searching the pattern
324 */
325 buffer = &buffer[len - (period_max * 3)];
326
327 /* Adjust the length to the maximum allowed period x 3 */
328 len = period_max * 3;
329
330 /*
331 * The buffer contains the suite of intervals, in a ilog2
332 * basis, we are looking for a repetition. We point the
333 * beginning of the search three times the length of the
334 * period beginning at the end of the buffer. We do that for
335 * each suffix.
336 */
337 for (period = period_max; period >= PREDICTION_PERIOD_MIN; period--) {
338
339 /*
340 * The first comparison always succeed because the
341 * suffix is deduced from the first n-period bytes of
342 * the buffer and we compare the initial suffix with
343 * itself, so we can skip the first iteration.
344 */
345 int idx = period;
346 size_t size = period;
347
348 /*
349 * We look if the suite with period 'i' repeat
350 * itself. If it is truncated at the end, as it
351 * repeats we can use the period to find out the next
352 * element with the modulo.
353 */
354 while (!memcmp(buffer, &buffer[idx], size * sizeof(int))) {
355
356 /*
357 * Move the index in a period basis
358 */
359 idx += size;
360
361 /*
362 * If this condition is reached, all previous
363 * memcmp were successful, so the period is
364 * found.
365 */
366 if (idx == len)
367 return buffer[len % period];
368
369 /*
370 * If the remaining elements to compare are
371 * smaller than the period, readjust the size
372 * of the comparison for the last iteration.
373 */
374 if (len - idx < period)
375 size = len - idx;
376 }
377 }
378
379 return -1;
380 }
381
__irq_timings_next_event(struct irqt_stat * irqs,int irq,u64 now)382 static u64 __irq_timings_next_event(struct irqt_stat *irqs, int irq, u64 now)
383 {
384 int index, i, period_max, count, start, min = INT_MAX;
385
386 if ((now - irqs->last_ts) >= NSEC_PER_SEC) {
387 irqs->count = irqs->last_ts = 0;
388 return U64_MAX;
389 }
390
391 /*
392 * As we want to find three times the repetition, we need a
393 * number of intervals greater or equal to three times the
394 * maximum period, otherwise we truncate the max period.
395 */
396 period_max = irqs->count > (3 * PREDICTION_PERIOD_MAX) ?
397 PREDICTION_PERIOD_MAX : irqs->count / 3;
398
399 /*
400 * If we don't have enough irq timings for this prediction,
401 * just bail out.
402 */
403 if (period_max <= PREDICTION_PERIOD_MIN)
404 return U64_MAX;
405
406 /*
407 * 'count' will depends if the circular buffer wrapped or not
408 */
409 count = irqs->count < IRQ_TIMINGS_SIZE ?
410 irqs->count : IRQ_TIMINGS_SIZE;
411
412 start = irqs->count < IRQ_TIMINGS_SIZE ?
413 0 : (irqs->count & IRQ_TIMINGS_MASK);
414
415 /*
416 * Copy the content of the circular buffer into another buffer
417 * in order to linearize the buffer instead of dealing with
418 * wrapping indexes and shifted array which will be prone to
419 * error and extremely difficult to debug.
420 */
421 for (i = 0; i < count; i++) {
422 int index = (start + i) & IRQ_TIMINGS_MASK;
423
424 irqs->timings[i] = irqs->circ_timings[index];
425 min = min_t(int, irqs->timings[i], min);
426 }
427
428 index = irq_timings_next_event_index(irqs->timings, count, period_max);
429 if (index < 0)
430 return irqs->last_ts + irqs->ema_time[min];
431
432 return irqs->last_ts + irqs->ema_time[index];
433 }
434
irq_timings_interval_index(u64 interval)435 static __always_inline int irq_timings_interval_index(u64 interval)
436 {
437 /*
438 * The PREDICTION_FACTOR increase the interval size for the
439 * array of exponential average.
440 */
441 u64 interval_us = (interval >> 10) / PREDICTION_FACTOR;
442
443 return likely(interval_us) ? ilog2(interval_us) : 0;
444 }
445
__irq_timings_store(int irq,struct irqt_stat * irqs,u64 interval)446 static __always_inline void __irq_timings_store(int irq, struct irqt_stat *irqs,
447 u64 interval)
448 {
449 int index;
450
451 /*
452 * Get the index in the ema table for this interrupt.
453 */
454 index = irq_timings_interval_index(interval);
455
456 if (index > PREDICTION_BUFFER_SIZE - 1) {
457 irqs->count = 0;
458 return;
459 }
460
461 /*
462 * Store the index as an element of the pattern in another
463 * circular array.
464 */
465 irqs->circ_timings[irqs->count & IRQ_TIMINGS_MASK] = index;
466
467 irqs->ema_time[index] = irq_timings_ema_new(interval,
468 irqs->ema_time[index]);
469
470 irqs->count++;
471 }
472
irq_timings_store(int irq,struct irqt_stat * irqs,u64 ts)473 static inline void irq_timings_store(int irq, struct irqt_stat *irqs, u64 ts)
474 {
475 u64 old_ts = irqs->last_ts;
476 u64 interval;
477
478 /*
479 * The timestamps are absolute time values, we need to compute
480 * the timing interval between two interrupts.
481 */
482 irqs->last_ts = ts;
483
484 /*
485 * The interval type is u64 in order to deal with the same
486 * type in our computation, that prevent mindfuck issues with
487 * overflow, sign and division.
488 */
489 interval = ts - old_ts;
490
491 /*
492 * The interrupt triggered more than one second apart, that
493 * ends the sequence as predictable for our purpose. In this
494 * case, assume we have the beginning of a sequence and the
495 * timestamp is the first value. As it is impossible to
496 * predict anything at this point, return.
497 *
498 * Note the first timestamp of the sequence will always fall
499 * in this test because the old_ts is zero. That is what we
500 * want as we need another timestamp to compute an interval.
501 */
502 if (interval >= NSEC_PER_SEC) {
503 irqs->count = 0;
504 return;
505 }
506
507 __irq_timings_store(irq, irqs, interval);
508 }
509
510 /**
511 * irq_timings_next_event - Return when the next event is supposed to arrive
512 * @now: current time
513 *
514 * During the last busy cycle, the number of interrupts is incremented
515 * and stored in the irq_timings structure. This information is
516 * necessary to:
517 *
518 * - know if the index in the table wrapped up:
519 *
520 * If more than the array size interrupts happened during the
521 * last busy/idle cycle, the index wrapped up and we have to
522 * begin with the next element in the array which is the last one
523 * in the sequence, otherwise it is at the index 0.
524 *
525 * - have an indication of the interrupts activity on this CPU
526 * (eg. irq/sec)
527 *
528 * The values are 'consumed' after inserting in the statistical model,
529 * thus the count is reinitialized.
530 *
531 * The array of values **must** be browsed in the time direction, the
532 * timestamp must increase between an element and the next one.
533 *
534 * Returns a nanosec time based estimation of the earliest interrupt,
535 * U64_MAX otherwise.
536 */
irq_timings_next_event(u64 now)537 u64 irq_timings_next_event(u64 now)
538 {
539 struct irq_timings *irqts = this_cpu_ptr(&irq_timings);
540 struct irqt_stat *irqs;
541 struct irqt_stat __percpu *s;
542 u64 ts, next_evt = U64_MAX;
543 int i, irq = 0;
544
545 /*
546 * This function must be called with the local irq disabled in
547 * order to prevent the timings circular buffer to be updated
548 * while we are reading it.
549 */
550 lockdep_assert_irqs_disabled();
551
552 if (!irqts->count)
553 return next_evt;
554
555 /*
556 * Number of elements in the circular buffer: If it happens it
557 * was flushed before, then the number of elements could be
558 * smaller than IRQ_TIMINGS_SIZE, so the count is used,
559 * otherwise the array size is used as we wrapped. The index
560 * begins from zero when we did not wrap. That could be done
561 * in a nicer way with the proper circular array structure
562 * type but with the cost of extra computation in the
563 * interrupt handler hot path. We choose efficiency.
564 *
565 * Inject measured irq/timestamp to the pattern prediction
566 * model while decrementing the counter because we consume the
567 * data from our circular buffer.
568 */
569 for_each_irqts(i, irqts) {
570 irq = irq_timing_decode(irqts->values[i], &ts);
571 s = idr_find(&irqt_stats, irq);
572 if (s)
573 irq_timings_store(irq, this_cpu_ptr(s), ts);
574 }
575
576 /*
577 * Look in the list of interrupts' statistics, the earliest
578 * next event.
579 */
580 idr_for_each_entry(&irqt_stats, s, i) {
581
582 irqs = this_cpu_ptr(s);
583
584 ts = __irq_timings_next_event(irqs, i, now);
585 if (ts <= now)
586 return now;
587
588 if (ts < next_evt)
589 next_evt = ts;
590 }
591
592 return next_evt;
593 }
594
irq_timings_free(int irq)595 void irq_timings_free(int irq)
596 {
597 struct irqt_stat __percpu *s;
598
599 s = idr_find(&irqt_stats, irq);
600 if (s) {
601 free_percpu(s);
602 idr_remove(&irqt_stats, irq);
603 }
604 }
605
irq_timings_alloc(int irq)606 int irq_timings_alloc(int irq)
607 {
608 struct irqt_stat __percpu *s;
609 int id;
610
611 /*
612 * Some platforms can have the same private interrupt per cpu,
613 * so this function may be called several times with the
614 * same interrupt number. Just bail out in case the per cpu
615 * stat structure is already allocated.
616 */
617 s = idr_find(&irqt_stats, irq);
618 if (s)
619 return 0;
620
621 s = alloc_percpu(*s);
622 if (!s)
623 return -ENOMEM;
624
625 idr_preload(GFP_KERNEL);
626 id = idr_alloc(&irqt_stats, s, irq, irq + 1, GFP_NOWAIT);
627 idr_preload_end();
628
629 if (id < 0) {
630 free_percpu(s);
631 return id;
632 }
633
634 return 0;
635 }
636
637 #ifdef CONFIG_TEST_IRQ_TIMINGS
638 struct timings_intervals {
639 u64 *intervals;
640 size_t count;
641 };
642
643 /*
644 * Intervals are given in nanosecond base
645 */
646 static u64 intervals0[] __initdata = {
647 10000, 50000, 200000, 500000,
648 10000, 50000, 200000, 500000,
649 10000, 50000, 200000, 500000,
650 10000, 50000, 200000, 500000,
651 10000, 50000, 200000, 500000,
652 10000, 50000, 200000, 500000,
653 10000, 50000, 200000, 500000,
654 10000, 50000, 200000, 500000,
655 10000, 50000, 200000,
656 };
657
658 static u64 intervals1[] __initdata = {
659 223947000, 1240000, 1384000, 1386000, 1386000,
660 217416000, 1236000, 1384000, 1386000, 1387000,
661 214719000, 1241000, 1386000, 1387000, 1384000,
662 213696000, 1234000, 1384000, 1386000, 1388000,
663 219904000, 1240000, 1385000, 1389000, 1385000,
664 212240000, 1240000, 1386000, 1386000, 1386000,
665 214415000, 1236000, 1384000, 1386000, 1387000,
666 214276000, 1234000,
667 };
668
669 static u64 intervals2[] __initdata = {
670 4000, 3000, 5000, 100000,
671 3000, 3000, 5000, 117000,
672 4000, 4000, 5000, 112000,
673 4000, 3000, 4000, 110000,
674 3000, 5000, 3000, 117000,
675 4000, 4000, 5000, 112000,
676 4000, 3000, 4000, 110000,
677 3000, 4000, 5000, 112000,
678 4000,
679 };
680
681 static u64 intervals3[] __initdata = {
682 1385000, 212240000, 1240000,
683 1386000, 214415000, 1236000,
684 1384000, 214276000, 1234000,
685 1386000, 214415000, 1236000,
686 1385000, 212240000, 1240000,
687 1386000, 214415000, 1236000,
688 1384000, 214276000, 1234000,
689 1386000, 214415000, 1236000,
690 1385000, 212240000, 1240000,
691 };
692
693 static u64 intervals4[] __initdata = {
694 10000, 50000, 10000, 50000,
695 10000, 50000, 10000, 50000,
696 10000, 50000, 10000, 50000,
697 10000, 50000, 10000, 50000,
698 10000, 50000, 10000, 50000,
699 10000, 50000, 10000, 50000,
700 10000, 50000, 10000, 50000,
701 10000, 50000, 10000, 50000,
702 10000,
703 };
704
705 static struct timings_intervals tis[] __initdata = {
706 { intervals0, ARRAY_SIZE(intervals0) },
707 { intervals1, ARRAY_SIZE(intervals1) },
708 { intervals2, ARRAY_SIZE(intervals2) },
709 { intervals3, ARRAY_SIZE(intervals3) },
710 { intervals4, ARRAY_SIZE(intervals4) },
711 };
712
irq_timings_test_next_index(struct timings_intervals * ti)713 static int __init irq_timings_test_next_index(struct timings_intervals *ti)
714 {
715 int _buffer[IRQ_TIMINGS_SIZE];
716 int buffer[IRQ_TIMINGS_SIZE];
717 int index, start, i, count, period_max;
718
719 count = ti->count - 1;
720
721 period_max = count > (3 * PREDICTION_PERIOD_MAX) ?
722 PREDICTION_PERIOD_MAX : count / 3;
723
724 /*
725 * Inject all values except the last one which will be used
726 * to compare with the next index result.
727 */
728 pr_debug("index suite: ");
729
730 for (i = 0; i < count; i++) {
731 index = irq_timings_interval_index(ti->intervals[i]);
732 _buffer[i & IRQ_TIMINGS_MASK] = index;
733 pr_cont("%d ", index);
734 }
735
736 start = count < IRQ_TIMINGS_SIZE ? 0 :
737 count & IRQ_TIMINGS_MASK;
738
739 count = min_t(int, count, IRQ_TIMINGS_SIZE);
740
741 for (i = 0; i < count; i++) {
742 int index = (start + i) & IRQ_TIMINGS_MASK;
743 buffer[i] = _buffer[index];
744 }
745
746 index = irq_timings_next_event_index(buffer, count, period_max);
747 i = irq_timings_interval_index(ti->intervals[ti->count - 1]);
748
749 if (index != i) {
750 pr_err("Expected (%d) and computed (%d) next indexes differ\n",
751 i, index);
752 return -EINVAL;
753 }
754
755 return 0;
756 }
757
irq_timings_next_index_selftest(void)758 static int __init irq_timings_next_index_selftest(void)
759 {
760 int i, ret;
761
762 for (i = 0; i < ARRAY_SIZE(tis); i++) {
763
764 pr_info("---> Injecting intervals number #%d (count=%zd)\n",
765 i, tis[i].count);
766
767 ret = irq_timings_test_next_index(&tis[i]);
768 if (ret)
769 break;
770 }
771
772 return ret;
773 }
774
irq_timings_test_irqs(struct timings_intervals * ti)775 static int __init irq_timings_test_irqs(struct timings_intervals *ti)
776 {
777 struct irqt_stat __percpu *s;
778 struct irqt_stat *irqs;
779 int i, index, ret, irq = 0xACE5;
780
781 ret = irq_timings_alloc(irq);
782 if (ret) {
783 pr_err("Failed to allocate irq timings\n");
784 return ret;
785 }
786
787 s = idr_find(&irqt_stats, irq);
788 if (!s) {
789 ret = -EIDRM;
790 goto out;
791 }
792
793 irqs = this_cpu_ptr(s);
794
795 for (i = 0; i < ti->count; i++) {
796
797 index = irq_timings_interval_index(ti->intervals[i]);
798 pr_debug("%d: interval=%llu ema_index=%d\n",
799 i, ti->intervals[i], index);
800
801 __irq_timings_store(irq, irqs, ti->intervals[i]);
802 if (irqs->circ_timings[i & IRQ_TIMINGS_MASK] != index) {
803 ret = -EBADSLT;
804 pr_err("Failed to store in the circular buffer\n");
805 goto out;
806 }
807 }
808
809 if (irqs->count != ti->count) {
810 ret = -ERANGE;
811 pr_err("Count differs\n");
812 goto out;
813 }
814
815 ret = 0;
816 out:
817 irq_timings_free(irq);
818
819 return ret;
820 }
821
irq_timings_irqs_selftest(void)822 static int __init irq_timings_irqs_selftest(void)
823 {
824 int i, ret;
825
826 for (i = 0; i < ARRAY_SIZE(tis); i++) {
827 pr_info("---> Injecting intervals number #%d (count=%zd)\n",
828 i, tis[i].count);
829 ret = irq_timings_test_irqs(&tis[i]);
830 if (ret)
831 break;
832 }
833
834 return ret;
835 }
836
irq_timings_test_irqts(struct irq_timings * irqts,unsigned count)837 static int __init irq_timings_test_irqts(struct irq_timings *irqts,
838 unsigned count)
839 {
840 int start = count >= IRQ_TIMINGS_SIZE ? count - IRQ_TIMINGS_SIZE : 0;
841 int i, irq, oirq = 0xBEEF;
842 u64 ots = 0xDEAD, ts;
843
844 /*
845 * Fill the circular buffer by using the dedicated function.
846 */
847 for (i = 0; i < count; i++) {
848 pr_debug("%d: index=%d, ts=%llX irq=%X\n",
849 i, i & IRQ_TIMINGS_MASK, ots + i, oirq + i);
850
851 irq_timings_push(ots + i, oirq + i);
852 }
853
854 /*
855 * Compute the first elements values after the index wrapped
856 * up or not.
857 */
858 ots += start;
859 oirq += start;
860
861 /*
862 * Test the circular buffer count is correct.
863 */
864 pr_debug("---> Checking timings array count (%d) is right\n", count);
865 if (WARN_ON(irqts->count != count))
866 return -EINVAL;
867
868 /*
869 * Test the macro allowing to browse all the irqts.
870 */
871 pr_debug("---> Checking the for_each_irqts() macro\n");
872 for_each_irqts(i, irqts) {
873
874 irq = irq_timing_decode(irqts->values[i], &ts);
875
876 pr_debug("index=%d, ts=%llX / %llX, irq=%X / %X\n",
877 i, ts, ots, irq, oirq);
878
879 if (WARN_ON(ts != ots || irq != oirq))
880 return -EINVAL;
881
882 ots++; oirq++;
883 }
884
885 /*
886 * The circular buffer should have be flushed when browsed
887 * with for_each_irqts
888 */
889 pr_debug("---> Checking timings array is empty after browsing it\n");
890 if (WARN_ON(irqts->count))
891 return -EINVAL;
892
893 return 0;
894 }
895
irq_timings_irqts_selftest(void)896 static int __init irq_timings_irqts_selftest(void)
897 {
898 struct irq_timings *irqts = this_cpu_ptr(&irq_timings);
899 int i, ret;
900
901 /*
902 * Test the circular buffer with different number of
903 * elements. The purpose is to test at the limits (empty, half
904 * full, full, wrapped with the cursor at the boundaries,
905 * wrapped several times, etc ...
906 */
907 int count[] = { 0,
908 IRQ_TIMINGS_SIZE >> 1,
909 IRQ_TIMINGS_SIZE,
910 IRQ_TIMINGS_SIZE + (IRQ_TIMINGS_SIZE >> 1),
911 2 * IRQ_TIMINGS_SIZE,
912 (2 * IRQ_TIMINGS_SIZE) + 3,
913 };
914
915 for (i = 0; i < ARRAY_SIZE(count); i++) {
916
917 pr_info("---> Checking the timings with %d/%d values\n",
918 count[i], IRQ_TIMINGS_SIZE);
919
920 ret = irq_timings_test_irqts(irqts, count[i]);
921 if (ret)
922 break;
923 }
924
925 return ret;
926 }
927
irq_timings_selftest(void)928 static int __init irq_timings_selftest(void)
929 {
930 int ret;
931
932 pr_info("------------------- selftest start -----------------\n");
933
934 /*
935 * At this point, we don't except any subsystem to use the irq
936 * timings but us, so it should not be enabled.
937 */
938 if (static_branch_unlikely(&irq_timing_enabled)) {
939 pr_warn("irq timings already initialized, skipping selftest\n");
940 return 0;
941 }
942
943 ret = irq_timings_irqts_selftest();
944 if (ret)
945 goto out;
946
947 ret = irq_timings_irqs_selftest();
948 if (ret)
949 goto out;
950
951 ret = irq_timings_next_index_selftest();
952 out:
953 pr_info("---------- selftest end with %s -----------\n",
954 ret ? "failure" : "success");
955
956 return ret;
957 }
958 early_initcall(irq_timings_selftest);
959 #endif
960