1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
4  *
5  *  Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <[email protected]>
6  *
7  *  Interactivity improvements by Mike Galbraith
8  *  (C) 2007 Mike Galbraith <[email protected]>
9  *
10  *  Various enhancements by Dmitry Adamushko.
11  *  (C) 2007 Dmitry Adamushko <[email protected]>
12  *
13  *  Group scheduling enhancements by Srivatsa Vaddagiri
14  *  Copyright IBM Corporation, 2007
15  *  Author: Srivatsa Vaddagiri <[email protected]>
16  *
17  *  Scaled math optimizations by Thomas Gleixner
18  *  Copyright (C) 2007, Thomas Gleixner <[email protected]>
19  *
20  *  Adaptive scheduling granularity, math enhancements by Peter Zijlstra
21  *  Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra
22  */
23 #include <linux/energy_model.h>
24 #include <linux/mmap_lock.h>
25 #include <linux/hugetlb_inline.h>
26 #include <linux/jiffies.h>
27 #include <linux/mm_api.h>
28 #include <linux/highmem.h>
29 #include <linux/spinlock_api.h>
30 #include <linux/cpumask_api.h>
31 #include <linux/lockdep_api.h>
32 #include <linux/softirq.h>
33 #include <linux/refcount_api.h>
34 #include <linux/topology.h>
35 #include <linux/sched/clock.h>
36 #include <linux/sched/cond_resched.h>
37 #include <linux/sched/cputime.h>
38 #include <linux/sched/isolation.h>
39 #include <linux/sched/nohz.h>
40 #include <linux/sched/prio.h>
41 
42 #include <linux/cpuidle.h>
43 #include <linux/interrupt.h>
44 #include <linux/memory-tiers.h>
45 #include <linux/mempolicy.h>
46 #include <linux/mutex_api.h>
47 #include <linux/profile.h>
48 #include <linux/psi.h>
49 #include <linux/ratelimit.h>
50 #include <linux/task_work.h>
51 #include <linux/rbtree_augmented.h>
52 
53 #include <asm/switch_to.h>
54 
55 #include <uapi/linux/sched/types.h>
56 
57 #include "sched.h"
58 #include "stats.h"
59 #include "autogroup.h"
60 
61 /*
62  * The initial- and re-scaling of tunables is configurable
63  *
64  * Options are:
65  *
66  *   SCHED_TUNABLESCALING_NONE - unscaled, always *1
67  *   SCHED_TUNABLESCALING_LOG - scaled logarithmically, *1+ilog(ncpus)
68  *   SCHED_TUNABLESCALING_LINEAR - scaled linear, *ncpus
69  *
70  * (default SCHED_TUNABLESCALING_LOG = *(1+ilog(ncpus))
71  */
72 unsigned int sysctl_sched_tunable_scaling = SCHED_TUNABLESCALING_LOG;
73 
74 /*
75  * Minimal preemption granularity for CPU-bound tasks:
76  *
77  * (default: 0.75 msec * (1 + ilog(ncpus)), units: nanoseconds)
78  */
79 unsigned int sysctl_sched_base_slice			= 750000ULL;
80 static unsigned int normalized_sysctl_sched_base_slice	= 750000ULL;
81 
82 const_debug unsigned int sysctl_sched_migration_cost	= 500000UL;
83 
setup_sched_thermal_decay_shift(char * str)84 static int __init setup_sched_thermal_decay_shift(char *str)
85 {
86 	pr_warn("Ignoring the deprecated sched_thermal_decay_shift= option\n");
87 	return 1;
88 }
89 __setup("sched_thermal_decay_shift=", setup_sched_thermal_decay_shift);
90 
91 #ifdef CONFIG_SMP
92 /*
93  * For asym packing, by default the lower numbered CPU has higher priority.
94  */
arch_asym_cpu_priority(int cpu)95 int __weak arch_asym_cpu_priority(int cpu)
96 {
97 	return -cpu;
98 }
99 
100 /*
101  * The margin used when comparing utilization with CPU capacity.
102  *
103  * (default: ~20%)
104  */
105 #define fits_capacity(cap, max)	((cap) * 1280 < (max) * 1024)
106 
107 /*
108  * The margin used when comparing CPU capacities.
109  * is 'cap1' noticeably greater than 'cap2'
110  *
111  * (default: ~5%)
112  */
113 #define capacity_greater(cap1, cap2) ((cap1) * 1024 > (cap2) * 1078)
114 #endif
115 
116 #ifdef CONFIG_CFS_BANDWIDTH
117 /*
118  * Amount of runtime to allocate from global (tg) to local (per-cfs_rq) pool
119  * each time a cfs_rq requests quota.
120  *
121  * Note: in the case that the slice exceeds the runtime remaining (either due
122  * to consumption or the quota being specified to be smaller than the slice)
123  * we will always only issue the remaining available time.
124  *
125  * (default: 5 msec, units: microseconds)
126  */
127 static unsigned int sysctl_sched_cfs_bandwidth_slice		= 5000UL;
128 #endif
129 
130 #ifdef CONFIG_NUMA_BALANCING
131 /* Restrict the NUMA promotion throughput (MB/s) for each target node. */
132 static unsigned int sysctl_numa_balancing_promote_rate_limit = 65536;
133 #endif
134 
135 #ifdef CONFIG_SYSCTL
136 static const struct ctl_table sched_fair_sysctls[] = {
137 #ifdef CONFIG_CFS_BANDWIDTH
138 	{
139 		.procname       = "sched_cfs_bandwidth_slice_us",
140 		.data           = &sysctl_sched_cfs_bandwidth_slice,
141 		.maxlen         = sizeof(unsigned int),
142 		.mode           = 0644,
143 		.proc_handler   = proc_dointvec_minmax,
144 		.extra1         = SYSCTL_ONE,
145 	},
146 #endif
147 #ifdef CONFIG_NUMA_BALANCING
148 	{
149 		.procname	= "numa_balancing_promote_rate_limit_MBps",
150 		.data		= &sysctl_numa_balancing_promote_rate_limit,
151 		.maxlen		= sizeof(unsigned int),
152 		.mode		= 0644,
153 		.proc_handler	= proc_dointvec_minmax,
154 		.extra1		= SYSCTL_ZERO,
155 	},
156 #endif /* CONFIG_NUMA_BALANCING */
157 };
158 
sched_fair_sysctl_init(void)159 static int __init sched_fair_sysctl_init(void)
160 {
161 	register_sysctl_init("kernel", sched_fair_sysctls);
162 	return 0;
163 }
164 late_initcall(sched_fair_sysctl_init);
165 #endif
166 
update_load_add(struct load_weight * lw,unsigned long inc)167 static inline void update_load_add(struct load_weight *lw, unsigned long inc)
168 {
169 	lw->weight += inc;
170 	lw->inv_weight = 0;
171 }
172 
update_load_sub(struct load_weight * lw,unsigned long dec)173 static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
174 {
175 	lw->weight -= dec;
176 	lw->inv_weight = 0;
177 }
178 
update_load_set(struct load_weight * lw,unsigned long w)179 static inline void update_load_set(struct load_weight *lw, unsigned long w)
180 {
181 	lw->weight = w;
182 	lw->inv_weight = 0;
183 }
184 
185 /*
186  * Increase the granularity value when there are more CPUs,
187  * because with more CPUs the 'effective latency' as visible
188  * to users decreases. But the relationship is not linear,
189  * so pick a second-best guess by going with the log2 of the
190  * number of CPUs.
191  *
192  * This idea comes from the SD scheduler of Con Kolivas:
193  */
get_update_sysctl_factor(void)194 static unsigned int get_update_sysctl_factor(void)
195 {
196 	unsigned int cpus = min_t(unsigned int, num_online_cpus(), 8);
197 	unsigned int factor;
198 
199 	switch (sysctl_sched_tunable_scaling) {
200 	case SCHED_TUNABLESCALING_NONE:
201 		factor = 1;
202 		break;
203 	case SCHED_TUNABLESCALING_LINEAR:
204 		factor = cpus;
205 		break;
206 	case SCHED_TUNABLESCALING_LOG:
207 	default:
208 		factor = 1 + ilog2(cpus);
209 		break;
210 	}
211 
212 	return factor;
213 }
214 
update_sysctl(void)215 static void update_sysctl(void)
216 {
217 	unsigned int factor = get_update_sysctl_factor();
218 
219 #define SET_SYSCTL(name) \
220 	(sysctl_##name = (factor) * normalized_sysctl_##name)
221 	SET_SYSCTL(sched_base_slice);
222 #undef SET_SYSCTL
223 }
224 
sched_init_granularity(void)225 void __init sched_init_granularity(void)
226 {
227 	update_sysctl();
228 }
229 
230 #define WMULT_CONST	(~0U)
231 #define WMULT_SHIFT	32
232 
__update_inv_weight(struct load_weight * lw)233 static void __update_inv_weight(struct load_weight *lw)
234 {
235 	unsigned long w;
236 
237 	if (likely(lw->inv_weight))
238 		return;
239 
240 	w = scale_load_down(lw->weight);
241 
242 	if (BITS_PER_LONG > 32 && unlikely(w >= WMULT_CONST))
243 		lw->inv_weight = 1;
244 	else if (unlikely(!w))
245 		lw->inv_weight = WMULT_CONST;
246 	else
247 		lw->inv_weight = WMULT_CONST / w;
248 }
249 
250 /*
251  * delta_exec * weight / lw.weight
252  *   OR
253  * (delta_exec * (weight * lw->inv_weight)) >> WMULT_SHIFT
254  *
255  * Either weight := NICE_0_LOAD and lw \e sched_prio_to_wmult[], in which case
256  * we're guaranteed shift stays positive because inv_weight is guaranteed to
257  * fit 32 bits, and NICE_0_LOAD gives another 10 bits; therefore shift >= 22.
258  *
259  * Or, weight =< lw.weight (because lw.weight is the runqueue weight), thus
260  * weight/lw.weight <= 1, and therefore our shift will also be positive.
261  */
__calc_delta(u64 delta_exec,unsigned long weight,struct load_weight * lw)262 static u64 __calc_delta(u64 delta_exec, unsigned long weight, struct load_weight *lw)
263 {
264 	u64 fact = scale_load_down(weight);
265 	u32 fact_hi = (u32)(fact >> 32);
266 	int shift = WMULT_SHIFT;
267 	int fs;
268 
269 	__update_inv_weight(lw);
270 
271 	if (unlikely(fact_hi)) {
272 		fs = fls(fact_hi);
273 		shift -= fs;
274 		fact >>= fs;
275 	}
276 
277 	fact = mul_u32_u32(fact, lw->inv_weight);
278 
279 	fact_hi = (u32)(fact >> 32);
280 	if (fact_hi) {
281 		fs = fls(fact_hi);
282 		shift -= fs;
283 		fact >>= fs;
284 	}
285 
286 	return mul_u64_u32_shr(delta_exec, fact, shift);
287 }
288 
289 /*
290  * delta /= w
291  */
calc_delta_fair(u64 delta,struct sched_entity * se)292 static inline u64 calc_delta_fair(u64 delta, struct sched_entity *se)
293 {
294 	if (unlikely(se->load.weight != NICE_0_LOAD))
295 		delta = __calc_delta(delta, NICE_0_LOAD, &se->load);
296 
297 	return delta;
298 }
299 
300 const struct sched_class fair_sched_class;
301 
302 /**************************************************************
303  * CFS operations on generic schedulable entities:
304  */
305 
306 #ifdef CONFIG_FAIR_GROUP_SCHED
307 
308 /* Walk up scheduling entities hierarchy */
309 #define for_each_sched_entity(se) \
310 		for (; se; se = se->parent)
311 
list_add_leaf_cfs_rq(struct cfs_rq * cfs_rq)312 static inline bool list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
313 {
314 	struct rq *rq = rq_of(cfs_rq);
315 	int cpu = cpu_of(rq);
316 
317 	if (cfs_rq->on_list)
318 		return rq->tmp_alone_branch == &rq->leaf_cfs_rq_list;
319 
320 	cfs_rq->on_list = 1;
321 
322 	/*
323 	 * Ensure we either appear before our parent (if already
324 	 * enqueued) or force our parent to appear after us when it is
325 	 * enqueued. The fact that we always enqueue bottom-up
326 	 * reduces this to two cases and a special case for the root
327 	 * cfs_rq. Furthermore, it also means that we will always reset
328 	 * tmp_alone_branch either when the branch is connected
329 	 * to a tree or when we reach the top of the tree
330 	 */
331 	if (cfs_rq->tg->parent &&
332 	    cfs_rq->tg->parent->cfs_rq[cpu]->on_list) {
333 		/*
334 		 * If parent is already on the list, we add the child
335 		 * just before. Thanks to circular linked property of
336 		 * the list, this means to put the child at the tail
337 		 * of the list that starts by parent.
338 		 */
339 		list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list,
340 			&(cfs_rq->tg->parent->cfs_rq[cpu]->leaf_cfs_rq_list));
341 		/*
342 		 * The branch is now connected to its tree so we can
343 		 * reset tmp_alone_branch to the beginning of the
344 		 * list.
345 		 */
346 		rq->tmp_alone_branch = &rq->leaf_cfs_rq_list;
347 		return true;
348 	}
349 
350 	if (!cfs_rq->tg->parent) {
351 		/*
352 		 * cfs rq without parent should be put
353 		 * at the tail of the list.
354 		 */
355 		list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list,
356 			&rq->leaf_cfs_rq_list);
357 		/*
358 		 * We have reach the top of a tree so we can reset
359 		 * tmp_alone_branch to the beginning of the list.
360 		 */
361 		rq->tmp_alone_branch = &rq->leaf_cfs_rq_list;
362 		return true;
363 	}
364 
365 	/*
366 	 * The parent has not already been added so we want to
367 	 * make sure that it will be put after us.
368 	 * tmp_alone_branch points to the begin of the branch
369 	 * where we will add parent.
370 	 */
371 	list_add_rcu(&cfs_rq->leaf_cfs_rq_list, rq->tmp_alone_branch);
372 	/*
373 	 * update tmp_alone_branch to points to the new begin
374 	 * of the branch
375 	 */
376 	rq->tmp_alone_branch = &cfs_rq->leaf_cfs_rq_list;
377 	return false;
378 }
379 
list_del_leaf_cfs_rq(struct cfs_rq * cfs_rq)380 static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
381 {
382 	if (cfs_rq->on_list) {
383 		struct rq *rq = rq_of(cfs_rq);
384 
385 		/*
386 		 * With cfs_rq being unthrottled/throttled during an enqueue,
387 		 * it can happen the tmp_alone_branch points to the leaf that
388 		 * we finally want to delete. In this case, tmp_alone_branch moves
389 		 * to the prev element but it will point to rq->leaf_cfs_rq_list
390 		 * at the end of the enqueue.
391 		 */
392 		if (rq->tmp_alone_branch == &cfs_rq->leaf_cfs_rq_list)
393 			rq->tmp_alone_branch = cfs_rq->leaf_cfs_rq_list.prev;
394 
395 		list_del_rcu(&cfs_rq->leaf_cfs_rq_list);
396 		cfs_rq->on_list = 0;
397 	}
398 }
399 
assert_list_leaf_cfs_rq(struct rq * rq)400 static inline void assert_list_leaf_cfs_rq(struct rq *rq)
401 {
402 	SCHED_WARN_ON(rq->tmp_alone_branch != &rq->leaf_cfs_rq_list);
403 }
404 
405 /* Iterate through all leaf cfs_rq's on a runqueue */
406 #define for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos)			\
407 	list_for_each_entry_safe(cfs_rq, pos, &rq->leaf_cfs_rq_list,	\
408 				 leaf_cfs_rq_list)
409 
410 /* Do the two (enqueued) entities belong to the same group ? */
411 static inline struct cfs_rq *
is_same_group(struct sched_entity * se,struct sched_entity * pse)412 is_same_group(struct sched_entity *se, struct sched_entity *pse)
413 {
414 	if (se->cfs_rq == pse->cfs_rq)
415 		return se->cfs_rq;
416 
417 	return NULL;
418 }
419 
parent_entity(const struct sched_entity * se)420 static inline struct sched_entity *parent_entity(const struct sched_entity *se)
421 {
422 	return se->parent;
423 }
424 
425 static void
find_matching_se(struct sched_entity ** se,struct sched_entity ** pse)426 find_matching_se(struct sched_entity **se, struct sched_entity **pse)
427 {
428 	int se_depth, pse_depth;
429 
430 	/*
431 	 * preemption test can be made between sibling entities who are in the
432 	 * same cfs_rq i.e who have a common parent. Walk up the hierarchy of
433 	 * both tasks until we find their ancestors who are siblings of common
434 	 * parent.
435 	 */
436 
437 	/* First walk up until both entities are at same depth */
438 	se_depth = (*se)->depth;
439 	pse_depth = (*pse)->depth;
440 
441 	while (se_depth > pse_depth) {
442 		se_depth--;
443 		*se = parent_entity(*se);
444 	}
445 
446 	while (pse_depth > se_depth) {
447 		pse_depth--;
448 		*pse = parent_entity(*pse);
449 	}
450 
451 	while (!is_same_group(*se, *pse)) {
452 		*se = parent_entity(*se);
453 		*pse = parent_entity(*pse);
454 	}
455 }
456 
tg_is_idle(struct task_group * tg)457 static int tg_is_idle(struct task_group *tg)
458 {
459 	return tg->idle > 0;
460 }
461 
cfs_rq_is_idle(struct cfs_rq * cfs_rq)462 static int cfs_rq_is_idle(struct cfs_rq *cfs_rq)
463 {
464 	return cfs_rq->idle > 0;
465 }
466 
se_is_idle(struct sched_entity * se)467 static int se_is_idle(struct sched_entity *se)
468 {
469 	if (entity_is_task(se))
470 		return task_has_idle_policy(task_of(se));
471 	return cfs_rq_is_idle(group_cfs_rq(se));
472 }
473 
474 #else	/* !CONFIG_FAIR_GROUP_SCHED */
475 
476 #define for_each_sched_entity(se) \
477 		for (; se; se = NULL)
478 
list_add_leaf_cfs_rq(struct cfs_rq * cfs_rq)479 static inline bool list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
480 {
481 	return true;
482 }
483 
list_del_leaf_cfs_rq(struct cfs_rq * cfs_rq)484 static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
485 {
486 }
487 
assert_list_leaf_cfs_rq(struct rq * rq)488 static inline void assert_list_leaf_cfs_rq(struct rq *rq)
489 {
490 }
491 
492 #define for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos)	\
493 		for (cfs_rq = &rq->cfs, pos = NULL; cfs_rq; cfs_rq = pos)
494 
parent_entity(struct sched_entity * se)495 static inline struct sched_entity *parent_entity(struct sched_entity *se)
496 {
497 	return NULL;
498 }
499 
500 static inline void
find_matching_se(struct sched_entity ** se,struct sched_entity ** pse)501 find_matching_se(struct sched_entity **se, struct sched_entity **pse)
502 {
503 }
504 
tg_is_idle(struct task_group * tg)505 static inline int tg_is_idle(struct task_group *tg)
506 {
507 	return 0;
508 }
509 
cfs_rq_is_idle(struct cfs_rq * cfs_rq)510 static int cfs_rq_is_idle(struct cfs_rq *cfs_rq)
511 {
512 	return 0;
513 }
514 
se_is_idle(struct sched_entity * se)515 static int se_is_idle(struct sched_entity *se)
516 {
517 	return task_has_idle_policy(task_of(se));
518 }
519 
520 #endif	/* CONFIG_FAIR_GROUP_SCHED */
521 
522 static __always_inline
523 void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec);
524 
525 /**************************************************************
526  * Scheduling class tree data structure manipulation methods:
527  */
528 
max_vruntime(u64 max_vruntime,u64 vruntime)529 static inline __maybe_unused u64 max_vruntime(u64 max_vruntime, u64 vruntime)
530 {
531 	s64 delta = (s64)(vruntime - max_vruntime);
532 	if (delta > 0)
533 		max_vruntime = vruntime;
534 
535 	return max_vruntime;
536 }
537 
min_vruntime(u64 min_vruntime,u64 vruntime)538 static inline __maybe_unused u64 min_vruntime(u64 min_vruntime, u64 vruntime)
539 {
540 	s64 delta = (s64)(vruntime - min_vruntime);
541 	if (delta < 0)
542 		min_vruntime = vruntime;
543 
544 	return min_vruntime;
545 }
546 
entity_before(const struct sched_entity * a,const struct sched_entity * b)547 static inline bool entity_before(const struct sched_entity *a,
548 				 const struct sched_entity *b)
549 {
550 	/*
551 	 * Tiebreak on vruntime seems unnecessary since it can
552 	 * hardly happen.
553 	 */
554 	return (s64)(a->deadline - b->deadline) < 0;
555 }
556 
entity_key(struct cfs_rq * cfs_rq,struct sched_entity * se)557 static inline s64 entity_key(struct cfs_rq *cfs_rq, struct sched_entity *se)
558 {
559 	return (s64)(se->vruntime - cfs_rq->min_vruntime);
560 }
561 
562 #define __node_2_se(node) \
563 	rb_entry((node), struct sched_entity, run_node)
564 
565 /*
566  * Compute virtual time from the per-task service numbers:
567  *
568  * Fair schedulers conserve lag:
569  *
570  *   \Sum lag_i = 0
571  *
572  * Where lag_i is given by:
573  *
574  *   lag_i = S - s_i = w_i * (V - v_i)
575  *
576  * Where S is the ideal service time and V is it's virtual time counterpart.
577  * Therefore:
578  *
579  *   \Sum lag_i = 0
580  *   \Sum w_i * (V - v_i) = 0
581  *   \Sum w_i * V - w_i * v_i = 0
582  *
583  * From which we can solve an expression for V in v_i (which we have in
584  * se->vruntime):
585  *
586  *       \Sum v_i * w_i   \Sum v_i * w_i
587  *   V = -------------- = --------------
588  *          \Sum w_i            W
589  *
590  * Specifically, this is the weighted average of all entity virtual runtimes.
591  *
592  * [[ NOTE: this is only equal to the ideal scheduler under the condition
593  *          that join/leave operations happen at lag_i = 0, otherwise the
594  *          virtual time has non-contiguous motion equivalent to:
595  *
596  *	      V +-= lag_i / W
597  *
598  *	    Also see the comment in place_entity() that deals with this. ]]
599  *
600  * However, since v_i is u64, and the multiplication could easily overflow
601  * transform it into a relative form that uses smaller quantities:
602  *
603  * Substitute: v_i == (v_i - v0) + v0
604  *
605  *     \Sum ((v_i - v0) + v0) * w_i   \Sum (v_i - v0) * w_i
606  * V = ---------------------------- = --------------------- + v0
607  *                  W                            W
608  *
609  * Which we track using:
610  *
611  *                    v0 := cfs_rq->min_vruntime
612  * \Sum (v_i - v0) * w_i := cfs_rq->avg_vruntime
613  *              \Sum w_i := cfs_rq->avg_load
614  *
615  * Since min_vruntime is a monotonic increasing variable that closely tracks
616  * the per-task service, these deltas: (v_i - v), will be in the order of the
617  * maximal (virtual) lag induced in the system due to quantisation.
618  *
619  * Also, we use scale_load_down() to reduce the size.
620  *
621  * As measured, the max (key * weight) value was ~44 bits for a kernel build.
622  */
623 static void
avg_vruntime_add(struct cfs_rq * cfs_rq,struct sched_entity * se)624 avg_vruntime_add(struct cfs_rq *cfs_rq, struct sched_entity *se)
625 {
626 	unsigned long weight = scale_load_down(se->load.weight);
627 	s64 key = entity_key(cfs_rq, se);
628 
629 	cfs_rq->avg_vruntime += key * weight;
630 	cfs_rq->avg_load += weight;
631 }
632 
633 static void
avg_vruntime_sub(struct cfs_rq * cfs_rq,struct sched_entity * se)634 avg_vruntime_sub(struct cfs_rq *cfs_rq, struct sched_entity *se)
635 {
636 	unsigned long weight = scale_load_down(se->load.weight);
637 	s64 key = entity_key(cfs_rq, se);
638 
639 	cfs_rq->avg_vruntime -= key * weight;
640 	cfs_rq->avg_load -= weight;
641 }
642 
643 static inline
avg_vruntime_update(struct cfs_rq * cfs_rq,s64 delta)644 void avg_vruntime_update(struct cfs_rq *cfs_rq, s64 delta)
645 {
646 	/*
647 	 * v' = v + d ==> avg_vruntime' = avg_runtime - d*avg_load
648 	 */
649 	cfs_rq->avg_vruntime -= cfs_rq->avg_load * delta;
650 }
651 
652 /*
653  * Specifically: avg_runtime() + 0 must result in entity_eligible() := true
654  * For this to be so, the result of this function must have a left bias.
655  */
avg_vruntime(struct cfs_rq * cfs_rq)656 u64 avg_vruntime(struct cfs_rq *cfs_rq)
657 {
658 	struct sched_entity *curr = cfs_rq->curr;
659 	s64 avg = cfs_rq->avg_vruntime;
660 	long load = cfs_rq->avg_load;
661 
662 	if (curr && curr->on_rq) {
663 		unsigned long weight = scale_load_down(curr->load.weight);
664 
665 		avg += entity_key(cfs_rq, curr) * weight;
666 		load += weight;
667 	}
668 
669 	if (load) {
670 		/* sign flips effective floor / ceiling */
671 		if (avg < 0)
672 			avg -= (load - 1);
673 		avg = div_s64(avg, load);
674 	}
675 
676 	return cfs_rq->min_vruntime + avg;
677 }
678 
679 /*
680  * lag_i = S - s_i = w_i * (V - v_i)
681  *
682  * However, since V is approximated by the weighted average of all entities it
683  * is possible -- by addition/removal/reweight to the tree -- to move V around
684  * and end up with a larger lag than we started with.
685  *
686  * Limit this to either double the slice length with a minimum of TICK_NSEC
687  * since that is the timing granularity.
688  *
689  * EEVDF gives the following limit for a steady state system:
690  *
691  *   -r_max < lag < max(r_max, q)
692  *
693  * XXX could add max_slice to the augmented data to track this.
694  */
update_entity_lag(struct cfs_rq * cfs_rq,struct sched_entity * se)695 static void update_entity_lag(struct cfs_rq *cfs_rq, struct sched_entity *se)
696 {
697 	s64 vlag, limit;
698 
699 	SCHED_WARN_ON(!se->on_rq);
700 
701 	vlag = avg_vruntime(cfs_rq) - se->vruntime;
702 	limit = calc_delta_fair(max_t(u64, 2*se->slice, TICK_NSEC), se);
703 
704 	se->vlag = clamp(vlag, -limit, limit);
705 }
706 
707 /*
708  * Entity is eligible once it received less service than it ought to have,
709  * eg. lag >= 0.
710  *
711  * lag_i = S - s_i = w_i*(V - v_i)
712  *
713  * lag_i >= 0 -> V >= v_i
714  *
715  *     \Sum (v_i - v)*w_i
716  * V = ------------------ + v
717  *          \Sum w_i
718  *
719  * lag_i >= 0 -> \Sum (v_i - v)*w_i >= (v_i - v)*(\Sum w_i)
720  *
721  * Note: using 'avg_vruntime() > se->vruntime' is inaccurate due
722  *       to the loss in precision caused by the division.
723  */
vruntime_eligible(struct cfs_rq * cfs_rq,u64 vruntime)724 static int vruntime_eligible(struct cfs_rq *cfs_rq, u64 vruntime)
725 {
726 	struct sched_entity *curr = cfs_rq->curr;
727 	s64 avg = cfs_rq->avg_vruntime;
728 	long load = cfs_rq->avg_load;
729 
730 	if (curr && curr->on_rq) {
731 		unsigned long weight = scale_load_down(curr->load.weight);
732 
733 		avg += entity_key(cfs_rq, curr) * weight;
734 		load += weight;
735 	}
736 
737 	return avg >= (s64)(vruntime - cfs_rq->min_vruntime) * load;
738 }
739 
entity_eligible(struct cfs_rq * cfs_rq,struct sched_entity * se)740 int entity_eligible(struct cfs_rq *cfs_rq, struct sched_entity *se)
741 {
742 	return vruntime_eligible(cfs_rq, se->vruntime);
743 }
744 
__update_min_vruntime(struct cfs_rq * cfs_rq,u64 vruntime)745 static u64 __update_min_vruntime(struct cfs_rq *cfs_rq, u64 vruntime)
746 {
747 	u64 min_vruntime = cfs_rq->min_vruntime;
748 	/*
749 	 * open coded max_vruntime() to allow updating avg_vruntime
750 	 */
751 	s64 delta = (s64)(vruntime - min_vruntime);
752 	if (delta > 0) {
753 		avg_vruntime_update(cfs_rq, delta);
754 		min_vruntime = vruntime;
755 	}
756 	return min_vruntime;
757 }
758 
update_min_vruntime(struct cfs_rq * cfs_rq)759 static void update_min_vruntime(struct cfs_rq *cfs_rq)
760 {
761 	struct sched_entity *se = __pick_root_entity(cfs_rq);
762 	struct sched_entity *curr = cfs_rq->curr;
763 	u64 vruntime = cfs_rq->min_vruntime;
764 
765 	if (curr) {
766 		if (curr->on_rq)
767 			vruntime = curr->vruntime;
768 		else
769 			curr = NULL;
770 	}
771 
772 	if (se) {
773 		if (!curr)
774 			vruntime = se->min_vruntime;
775 		else
776 			vruntime = min_vruntime(vruntime, se->min_vruntime);
777 	}
778 
779 	/* ensure we never gain time by being placed backwards. */
780 	cfs_rq->min_vruntime = __update_min_vruntime(cfs_rq, vruntime);
781 }
782 
cfs_rq_min_slice(struct cfs_rq * cfs_rq)783 static inline u64 cfs_rq_min_slice(struct cfs_rq *cfs_rq)
784 {
785 	struct sched_entity *root = __pick_root_entity(cfs_rq);
786 	struct sched_entity *curr = cfs_rq->curr;
787 	u64 min_slice = ~0ULL;
788 
789 	if (curr && curr->on_rq)
790 		min_slice = curr->slice;
791 
792 	if (root)
793 		min_slice = min(min_slice, root->min_slice);
794 
795 	return min_slice;
796 }
797 
__entity_less(struct rb_node * a,const struct rb_node * b)798 static inline bool __entity_less(struct rb_node *a, const struct rb_node *b)
799 {
800 	return entity_before(__node_2_se(a), __node_2_se(b));
801 }
802 
803 #define vruntime_gt(field, lse, rse) ({ (s64)((lse)->field - (rse)->field) > 0; })
804 
__min_vruntime_update(struct sched_entity * se,struct rb_node * node)805 static inline void __min_vruntime_update(struct sched_entity *se, struct rb_node *node)
806 {
807 	if (node) {
808 		struct sched_entity *rse = __node_2_se(node);
809 		if (vruntime_gt(min_vruntime, se, rse))
810 			se->min_vruntime = rse->min_vruntime;
811 	}
812 }
813 
__min_slice_update(struct sched_entity * se,struct rb_node * node)814 static inline void __min_slice_update(struct sched_entity *se, struct rb_node *node)
815 {
816 	if (node) {
817 		struct sched_entity *rse = __node_2_se(node);
818 		if (rse->min_slice < se->min_slice)
819 			se->min_slice = rse->min_slice;
820 	}
821 }
822 
823 /*
824  * se->min_vruntime = min(se->vruntime, {left,right}->min_vruntime)
825  */
min_vruntime_update(struct sched_entity * se,bool exit)826 static inline bool min_vruntime_update(struct sched_entity *se, bool exit)
827 {
828 	u64 old_min_vruntime = se->min_vruntime;
829 	u64 old_min_slice = se->min_slice;
830 	struct rb_node *node = &se->run_node;
831 
832 	se->min_vruntime = se->vruntime;
833 	__min_vruntime_update(se, node->rb_right);
834 	__min_vruntime_update(se, node->rb_left);
835 
836 	se->min_slice = se->slice;
837 	__min_slice_update(se, node->rb_right);
838 	__min_slice_update(se, node->rb_left);
839 
840 	return se->min_vruntime == old_min_vruntime &&
841 	       se->min_slice == old_min_slice;
842 }
843 
844 RB_DECLARE_CALLBACKS(static, min_vruntime_cb, struct sched_entity,
845 		     run_node, min_vruntime, min_vruntime_update);
846 
847 /*
848  * Enqueue an entity into the rb-tree:
849  */
__enqueue_entity(struct cfs_rq * cfs_rq,struct sched_entity * se)850 static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
851 {
852 	avg_vruntime_add(cfs_rq, se);
853 	se->min_vruntime = se->vruntime;
854 	se->min_slice = se->slice;
855 	rb_add_augmented_cached(&se->run_node, &cfs_rq->tasks_timeline,
856 				__entity_less, &min_vruntime_cb);
857 }
858 
__dequeue_entity(struct cfs_rq * cfs_rq,struct sched_entity * se)859 static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
860 {
861 	rb_erase_augmented_cached(&se->run_node, &cfs_rq->tasks_timeline,
862 				  &min_vruntime_cb);
863 	avg_vruntime_sub(cfs_rq, se);
864 }
865 
__pick_root_entity(struct cfs_rq * cfs_rq)866 struct sched_entity *__pick_root_entity(struct cfs_rq *cfs_rq)
867 {
868 	struct rb_node *root = cfs_rq->tasks_timeline.rb_root.rb_node;
869 
870 	if (!root)
871 		return NULL;
872 
873 	return __node_2_se(root);
874 }
875 
__pick_first_entity(struct cfs_rq * cfs_rq)876 struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq)
877 {
878 	struct rb_node *left = rb_first_cached(&cfs_rq->tasks_timeline);
879 
880 	if (!left)
881 		return NULL;
882 
883 	return __node_2_se(left);
884 }
885 
886 /*
887  * HACK, stash a copy of deadline at the point of pick in vlag,
888  * which isn't used until dequeue.
889  */
set_protect_slice(struct sched_entity * se)890 static inline void set_protect_slice(struct sched_entity *se)
891 {
892 	se->vlag = se->deadline;
893 }
894 
protect_slice(struct sched_entity * se)895 static inline bool protect_slice(struct sched_entity *se)
896 {
897 	return se->vlag == se->deadline;
898 }
899 
cancel_protect_slice(struct sched_entity * se)900 static inline void cancel_protect_slice(struct sched_entity *se)
901 {
902 	if (protect_slice(se))
903 		se->vlag = se->deadline + 1;
904 }
905 
906 /*
907  * Earliest Eligible Virtual Deadline First
908  *
909  * In order to provide latency guarantees for different request sizes
910  * EEVDF selects the best runnable task from two criteria:
911  *
912  *  1) the task must be eligible (must be owed service)
913  *
914  *  2) from those tasks that meet 1), we select the one
915  *     with the earliest virtual deadline.
916  *
917  * We can do this in O(log n) time due to an augmented RB-tree. The
918  * tree keeps the entries sorted on deadline, but also functions as a
919  * heap based on the vruntime by keeping:
920  *
921  *  se->min_vruntime = min(se->vruntime, se->{left,right}->min_vruntime)
922  *
923  * Which allows tree pruning through eligibility.
924  */
pick_eevdf(struct cfs_rq * cfs_rq)925 static struct sched_entity *pick_eevdf(struct cfs_rq *cfs_rq)
926 {
927 	struct rb_node *node = cfs_rq->tasks_timeline.rb_root.rb_node;
928 	struct sched_entity *se = __pick_first_entity(cfs_rq);
929 	struct sched_entity *curr = cfs_rq->curr;
930 	struct sched_entity *best = NULL;
931 
932 	/*
933 	 * We can safely skip eligibility check if there is only one entity
934 	 * in this cfs_rq, saving some cycles.
935 	 */
936 	if (cfs_rq->nr_queued == 1)
937 		return curr && curr->on_rq ? curr : se;
938 
939 	if (curr && (!curr->on_rq || !entity_eligible(cfs_rq, curr)))
940 		curr = NULL;
941 
942 	if (sched_feat(RUN_TO_PARITY) && curr && protect_slice(curr))
943 		return curr;
944 
945 	/* Pick the leftmost entity if it's eligible */
946 	if (se && entity_eligible(cfs_rq, se)) {
947 		best = se;
948 		goto found;
949 	}
950 
951 	/* Heap search for the EEVD entity */
952 	while (node) {
953 		struct rb_node *left = node->rb_left;
954 
955 		/*
956 		 * Eligible entities in left subtree are always better
957 		 * choices, since they have earlier deadlines.
958 		 */
959 		if (left && vruntime_eligible(cfs_rq,
960 					__node_2_se(left)->min_vruntime)) {
961 			node = left;
962 			continue;
963 		}
964 
965 		se = __node_2_se(node);
966 
967 		/*
968 		 * The left subtree either is empty or has no eligible
969 		 * entity, so check the current node since it is the one
970 		 * with earliest deadline that might be eligible.
971 		 */
972 		if (entity_eligible(cfs_rq, se)) {
973 			best = se;
974 			break;
975 		}
976 
977 		node = node->rb_right;
978 	}
979 found:
980 	if (!best || (curr && entity_before(curr, best)))
981 		best = curr;
982 
983 	return best;
984 }
985 
986 #ifdef CONFIG_SCHED_DEBUG
__pick_last_entity(struct cfs_rq * cfs_rq)987 struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq)
988 {
989 	struct rb_node *last = rb_last(&cfs_rq->tasks_timeline.rb_root);
990 
991 	if (!last)
992 		return NULL;
993 
994 	return __node_2_se(last);
995 }
996 
997 /**************************************************************
998  * Scheduling class statistics methods:
999  */
1000 #ifdef CONFIG_SMP
sched_update_scaling(void)1001 int sched_update_scaling(void)
1002 {
1003 	unsigned int factor = get_update_sysctl_factor();
1004 
1005 #define WRT_SYSCTL(name) \
1006 	(normalized_sysctl_##name = sysctl_##name / (factor))
1007 	WRT_SYSCTL(sched_base_slice);
1008 #undef WRT_SYSCTL
1009 
1010 	return 0;
1011 }
1012 #endif
1013 #endif
1014 
1015 static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se);
1016 
1017 /*
1018  * XXX: strictly: vd_i += N*r_i/w_i such that: vd_i > ve_i
1019  * this is probably good enough.
1020  */
update_deadline(struct cfs_rq * cfs_rq,struct sched_entity * se)1021 static bool update_deadline(struct cfs_rq *cfs_rq, struct sched_entity *se)
1022 {
1023 	if ((s64)(se->vruntime - se->deadline) < 0)
1024 		return false;
1025 
1026 	/*
1027 	 * For EEVDF the virtual time slope is determined by w_i (iow.
1028 	 * nice) while the request time r_i is determined by
1029 	 * sysctl_sched_base_slice.
1030 	 */
1031 	if (!se->custom_slice)
1032 		se->slice = sysctl_sched_base_slice;
1033 
1034 	/*
1035 	 * EEVDF: vd_i = ve_i + r_i / w_i
1036 	 */
1037 	se->deadline = se->vruntime + calc_delta_fair(se->slice, se);
1038 
1039 	/*
1040 	 * The task has consumed its request, reschedule.
1041 	 */
1042 	return true;
1043 }
1044 
1045 #include "pelt.h"
1046 #ifdef CONFIG_SMP
1047 
1048 static int select_idle_sibling(struct task_struct *p, int prev_cpu, int cpu);
1049 static unsigned long task_h_load(struct task_struct *p);
1050 static unsigned long capacity_of(int cpu);
1051 
1052 /* Give new sched_entity start runnable values to heavy its load in infant time */
init_entity_runnable_average(struct sched_entity * se)1053 void init_entity_runnable_average(struct sched_entity *se)
1054 {
1055 	struct sched_avg *sa = &se->avg;
1056 
1057 	memset(sa, 0, sizeof(*sa));
1058 
1059 	/*
1060 	 * Tasks are initialized with full load to be seen as heavy tasks until
1061 	 * they get a chance to stabilize to their real load level.
1062 	 * Group entities are initialized with zero load to reflect the fact that
1063 	 * nothing has been attached to the task group yet.
1064 	 */
1065 	if (entity_is_task(se))
1066 		sa->load_avg = scale_load_down(se->load.weight);
1067 
1068 	/* when this task is enqueued, it will contribute to its cfs_rq's load_avg */
1069 }
1070 
1071 /*
1072  * With new tasks being created, their initial util_avgs are extrapolated
1073  * based on the cfs_rq's current util_avg:
1074  *
1075  *   util_avg = cfs_rq->avg.util_avg / (cfs_rq->avg.load_avg + 1)
1076  *		* se_weight(se)
1077  *
1078  * However, in many cases, the above util_avg does not give a desired
1079  * value. Moreover, the sum of the util_avgs may be divergent, such
1080  * as when the series is a harmonic series.
1081  *
1082  * To solve this problem, we also cap the util_avg of successive tasks to
1083  * only 1/2 of the left utilization budget:
1084  *
1085  *   util_avg_cap = (cpu_scale - cfs_rq->avg.util_avg) / 2^n
1086  *
1087  * where n denotes the nth task and cpu_scale the CPU capacity.
1088  *
1089  * For example, for a CPU with 1024 of capacity, a simplest series from
1090  * the beginning would be like:
1091  *
1092  *  task  util_avg: 512, 256, 128,  64,  32,   16,    8, ...
1093  * cfs_rq util_avg: 512, 768, 896, 960, 992, 1008, 1016, ...
1094  *
1095  * Finally, that extrapolated util_avg is clamped to the cap (util_avg_cap)
1096  * if util_avg > util_avg_cap.
1097  */
post_init_entity_util_avg(struct task_struct * p)1098 void post_init_entity_util_avg(struct task_struct *p)
1099 {
1100 	struct sched_entity *se = &p->se;
1101 	struct cfs_rq *cfs_rq = cfs_rq_of(se);
1102 	struct sched_avg *sa = &se->avg;
1103 	long cpu_scale = arch_scale_cpu_capacity(cpu_of(rq_of(cfs_rq)));
1104 	long cap = (long)(cpu_scale - cfs_rq->avg.util_avg) / 2;
1105 
1106 	if (p->sched_class != &fair_sched_class) {
1107 		/*
1108 		 * For !fair tasks do:
1109 		 *
1110 		update_cfs_rq_load_avg(now, cfs_rq);
1111 		attach_entity_load_avg(cfs_rq, se);
1112 		switched_from_fair(rq, p);
1113 		 *
1114 		 * such that the next switched_to_fair() has the
1115 		 * expected state.
1116 		 */
1117 		se->avg.last_update_time = cfs_rq_clock_pelt(cfs_rq);
1118 		return;
1119 	}
1120 
1121 	if (cap > 0) {
1122 		if (cfs_rq->avg.util_avg != 0) {
1123 			sa->util_avg  = cfs_rq->avg.util_avg * se_weight(se);
1124 			sa->util_avg /= (cfs_rq->avg.load_avg + 1);
1125 
1126 			if (sa->util_avg > cap)
1127 				sa->util_avg = cap;
1128 		} else {
1129 			sa->util_avg = cap;
1130 		}
1131 	}
1132 
1133 	sa->runnable_avg = sa->util_avg;
1134 }
1135 
1136 #else /* !CONFIG_SMP */
init_entity_runnable_average(struct sched_entity * se)1137 void init_entity_runnable_average(struct sched_entity *se)
1138 {
1139 }
post_init_entity_util_avg(struct task_struct * p)1140 void post_init_entity_util_avg(struct task_struct *p)
1141 {
1142 }
update_tg_load_avg(struct cfs_rq * cfs_rq)1143 static void update_tg_load_avg(struct cfs_rq *cfs_rq)
1144 {
1145 }
1146 #endif /* CONFIG_SMP */
1147 
update_curr_se(struct rq * rq,struct sched_entity * curr)1148 static s64 update_curr_se(struct rq *rq, struct sched_entity *curr)
1149 {
1150 	u64 now = rq_clock_task(rq);
1151 	s64 delta_exec;
1152 
1153 	delta_exec = now - curr->exec_start;
1154 	if (unlikely(delta_exec <= 0))
1155 		return delta_exec;
1156 
1157 	curr->exec_start = now;
1158 	curr->sum_exec_runtime += delta_exec;
1159 
1160 	if (schedstat_enabled()) {
1161 		struct sched_statistics *stats;
1162 
1163 		stats = __schedstats_from_se(curr);
1164 		__schedstat_set(stats->exec_max,
1165 				max(delta_exec, stats->exec_max));
1166 	}
1167 
1168 	return delta_exec;
1169 }
1170 
update_curr_task(struct task_struct * p,s64 delta_exec)1171 static inline void update_curr_task(struct task_struct *p, s64 delta_exec)
1172 {
1173 	trace_sched_stat_runtime(p, delta_exec);
1174 	account_group_exec_runtime(p, delta_exec);
1175 	cgroup_account_cputime(p, delta_exec);
1176 }
1177 
did_preempt_short(struct cfs_rq * cfs_rq,struct sched_entity * curr)1178 static inline bool did_preempt_short(struct cfs_rq *cfs_rq, struct sched_entity *curr)
1179 {
1180 	if (!sched_feat(PREEMPT_SHORT))
1181 		return false;
1182 
1183 	if (curr->vlag == curr->deadline)
1184 		return false;
1185 
1186 	return !entity_eligible(cfs_rq, curr);
1187 }
1188 
do_preempt_short(struct cfs_rq * cfs_rq,struct sched_entity * pse,struct sched_entity * se)1189 static inline bool do_preempt_short(struct cfs_rq *cfs_rq,
1190 				    struct sched_entity *pse, struct sched_entity *se)
1191 {
1192 	if (!sched_feat(PREEMPT_SHORT))
1193 		return false;
1194 
1195 	if (pse->slice >= se->slice)
1196 		return false;
1197 
1198 	if (!entity_eligible(cfs_rq, pse))
1199 		return false;
1200 
1201 	if (entity_before(pse, se))
1202 		return true;
1203 
1204 	if (!entity_eligible(cfs_rq, se))
1205 		return true;
1206 
1207 	return false;
1208 }
1209 
1210 /*
1211  * Used by other classes to account runtime.
1212  */
update_curr_common(struct rq * rq)1213 s64 update_curr_common(struct rq *rq)
1214 {
1215 	struct task_struct *donor = rq->donor;
1216 	s64 delta_exec;
1217 
1218 	delta_exec = update_curr_se(rq, &donor->se);
1219 	if (likely(delta_exec > 0))
1220 		update_curr_task(donor, delta_exec);
1221 
1222 	return delta_exec;
1223 }
1224 
1225 /*
1226  * Update the current task's runtime statistics.
1227  */
update_curr(struct cfs_rq * cfs_rq)1228 static void update_curr(struct cfs_rq *cfs_rq)
1229 {
1230 	struct sched_entity *curr = cfs_rq->curr;
1231 	struct rq *rq = rq_of(cfs_rq);
1232 	s64 delta_exec;
1233 	bool resched;
1234 
1235 	if (unlikely(!curr))
1236 		return;
1237 
1238 	delta_exec = update_curr_se(rq, curr);
1239 	if (unlikely(delta_exec <= 0))
1240 		return;
1241 
1242 	curr->vruntime += calc_delta_fair(delta_exec, curr);
1243 	resched = update_deadline(cfs_rq, curr);
1244 	update_min_vruntime(cfs_rq);
1245 
1246 	if (entity_is_task(curr)) {
1247 		struct task_struct *p = task_of(curr);
1248 
1249 		update_curr_task(p, delta_exec);
1250 
1251 		/*
1252 		 * If the fair_server is active, we need to account for the
1253 		 * fair_server time whether or not the task is running on
1254 		 * behalf of fair_server or not:
1255 		 *  - If the task is running on behalf of fair_server, we need
1256 		 *    to limit its time based on the assigned runtime.
1257 		 *  - Fair task that runs outside of fair_server should account
1258 		 *    against fair_server such that it can account for this time
1259 		 *    and possibly avoid running this period.
1260 		 */
1261 		if (dl_server_active(&rq->fair_server))
1262 			dl_server_update(&rq->fair_server, delta_exec);
1263 	}
1264 
1265 	account_cfs_rq_runtime(cfs_rq, delta_exec);
1266 
1267 	if (cfs_rq->nr_queued == 1)
1268 		return;
1269 
1270 	if (resched || did_preempt_short(cfs_rq, curr)) {
1271 		resched_curr_lazy(rq);
1272 		clear_buddies(cfs_rq, curr);
1273 	}
1274 }
1275 
update_curr_fair(struct rq * rq)1276 static void update_curr_fair(struct rq *rq)
1277 {
1278 	update_curr(cfs_rq_of(&rq->donor->se));
1279 }
1280 
1281 static inline void
update_stats_wait_start_fair(struct cfs_rq * cfs_rq,struct sched_entity * se)1282 update_stats_wait_start_fair(struct cfs_rq *cfs_rq, struct sched_entity *se)
1283 {
1284 	struct sched_statistics *stats;
1285 	struct task_struct *p = NULL;
1286 
1287 	if (!schedstat_enabled())
1288 		return;
1289 
1290 	stats = __schedstats_from_se(se);
1291 
1292 	if (entity_is_task(se))
1293 		p = task_of(se);
1294 
1295 	__update_stats_wait_start(rq_of(cfs_rq), p, stats);
1296 }
1297 
1298 static inline void
update_stats_wait_end_fair(struct cfs_rq * cfs_rq,struct sched_entity * se)1299 update_stats_wait_end_fair(struct cfs_rq *cfs_rq, struct sched_entity *se)
1300 {
1301 	struct sched_statistics *stats;
1302 	struct task_struct *p = NULL;
1303 
1304 	if (!schedstat_enabled())
1305 		return;
1306 
1307 	stats = __schedstats_from_se(se);
1308 
1309 	/*
1310 	 * When the sched_schedstat changes from 0 to 1, some sched se
1311 	 * maybe already in the runqueue, the se->statistics.wait_start
1312 	 * will be 0.So it will let the delta wrong. We need to avoid this
1313 	 * scenario.
1314 	 */
1315 	if (unlikely(!schedstat_val(stats->wait_start)))
1316 		return;
1317 
1318 	if (entity_is_task(se))
1319 		p = task_of(se);
1320 
1321 	__update_stats_wait_end(rq_of(cfs_rq), p, stats);
1322 }
1323 
1324 static inline void
update_stats_enqueue_sleeper_fair(struct cfs_rq * cfs_rq,struct sched_entity * se)1325 update_stats_enqueue_sleeper_fair(struct cfs_rq *cfs_rq, struct sched_entity *se)
1326 {
1327 	struct sched_statistics *stats;
1328 	struct task_struct *tsk = NULL;
1329 
1330 	if (!schedstat_enabled())
1331 		return;
1332 
1333 	stats = __schedstats_from_se(se);
1334 
1335 	if (entity_is_task(se))
1336 		tsk = task_of(se);
1337 
1338 	__update_stats_enqueue_sleeper(rq_of(cfs_rq), tsk, stats);
1339 }
1340 
1341 /*
1342  * Task is being enqueued - update stats:
1343  */
1344 static inline void
update_stats_enqueue_fair(struct cfs_rq * cfs_rq,struct sched_entity * se,int flags)1345 update_stats_enqueue_fair(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
1346 {
1347 	if (!schedstat_enabled())
1348 		return;
1349 
1350 	/*
1351 	 * Are we enqueueing a waiting task? (for current tasks
1352 	 * a dequeue/enqueue event is a NOP)
1353 	 */
1354 	if (se != cfs_rq->curr)
1355 		update_stats_wait_start_fair(cfs_rq, se);
1356 
1357 	if (flags & ENQUEUE_WAKEUP)
1358 		update_stats_enqueue_sleeper_fair(cfs_rq, se);
1359 }
1360 
1361 static inline void
update_stats_dequeue_fair(struct cfs_rq * cfs_rq,struct sched_entity * se,int flags)1362 update_stats_dequeue_fair(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
1363 {
1364 
1365 	if (!schedstat_enabled())
1366 		return;
1367 
1368 	/*
1369 	 * Mark the end of the wait period if dequeueing a
1370 	 * waiting task:
1371 	 */
1372 	if (se != cfs_rq->curr)
1373 		update_stats_wait_end_fair(cfs_rq, se);
1374 
1375 	if ((flags & DEQUEUE_SLEEP) && entity_is_task(se)) {
1376 		struct task_struct *tsk = task_of(se);
1377 		unsigned int state;
1378 
1379 		/* XXX racy against TTWU */
1380 		state = READ_ONCE(tsk->__state);
1381 		if (state & TASK_INTERRUPTIBLE)
1382 			__schedstat_set(tsk->stats.sleep_start,
1383 				      rq_clock(rq_of(cfs_rq)));
1384 		if (state & TASK_UNINTERRUPTIBLE)
1385 			__schedstat_set(tsk->stats.block_start,
1386 				      rq_clock(rq_of(cfs_rq)));
1387 	}
1388 }
1389 
1390 /*
1391  * We are picking a new current task - update its stats:
1392  */
1393 static inline void
update_stats_curr_start(struct cfs_rq * cfs_rq,struct sched_entity * se)1394 update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
1395 {
1396 	/*
1397 	 * We are starting a new run period:
1398 	 */
1399 	se->exec_start = rq_clock_task(rq_of(cfs_rq));
1400 }
1401 
1402 /**************************************************
1403  * Scheduling class queueing methods:
1404  */
1405 
is_core_idle(int cpu)1406 static inline bool is_core_idle(int cpu)
1407 {
1408 #ifdef CONFIG_SCHED_SMT
1409 	int sibling;
1410 
1411 	for_each_cpu(sibling, cpu_smt_mask(cpu)) {
1412 		if (cpu == sibling)
1413 			continue;
1414 
1415 		if (!idle_cpu(sibling))
1416 			return false;
1417 	}
1418 #endif
1419 
1420 	return true;
1421 }
1422 
1423 #ifdef CONFIG_NUMA
1424 #define NUMA_IMBALANCE_MIN 2
1425 
1426 static inline long
adjust_numa_imbalance(int imbalance,int dst_running,int imb_numa_nr)1427 adjust_numa_imbalance(int imbalance, int dst_running, int imb_numa_nr)
1428 {
1429 	/*
1430 	 * Allow a NUMA imbalance if busy CPUs is less than the maximum
1431 	 * threshold. Above this threshold, individual tasks may be contending
1432 	 * for both memory bandwidth and any shared HT resources.  This is an
1433 	 * approximation as the number of running tasks may not be related to
1434 	 * the number of busy CPUs due to sched_setaffinity.
1435 	 */
1436 	if (dst_running > imb_numa_nr)
1437 		return imbalance;
1438 
1439 	/*
1440 	 * Allow a small imbalance based on a simple pair of communicating
1441 	 * tasks that remain local when the destination is lightly loaded.
1442 	 */
1443 	if (imbalance <= NUMA_IMBALANCE_MIN)
1444 		return 0;
1445 
1446 	return imbalance;
1447 }
1448 #endif /* CONFIG_NUMA */
1449 
1450 #ifdef CONFIG_NUMA_BALANCING
1451 /*
1452  * Approximate time to scan a full NUMA task in ms. The task scan period is
1453  * calculated based on the tasks virtual memory size and
1454  * numa_balancing_scan_size.
1455  */
1456 unsigned int sysctl_numa_balancing_scan_period_min = 1000;
1457 unsigned int sysctl_numa_balancing_scan_period_max = 60000;
1458 
1459 /* Portion of address space to scan in MB */
1460 unsigned int sysctl_numa_balancing_scan_size = 256;
1461 
1462 /* Scan @scan_size MB every @scan_period after an initial @scan_delay in ms */
1463 unsigned int sysctl_numa_balancing_scan_delay = 1000;
1464 
1465 /* The page with hint page fault latency < threshold in ms is considered hot */
1466 unsigned int sysctl_numa_balancing_hot_threshold = MSEC_PER_SEC;
1467 
1468 struct numa_group {
1469 	refcount_t refcount;
1470 
1471 	spinlock_t lock; /* nr_tasks, tasks */
1472 	int nr_tasks;
1473 	pid_t gid;
1474 	int active_nodes;
1475 
1476 	struct rcu_head rcu;
1477 	unsigned long total_faults;
1478 	unsigned long max_faults_cpu;
1479 	/*
1480 	 * faults[] array is split into two regions: faults_mem and faults_cpu.
1481 	 *
1482 	 * Faults_cpu is used to decide whether memory should move
1483 	 * towards the CPU. As a consequence, these stats are weighted
1484 	 * more by CPU use than by memory faults.
1485 	 */
1486 	unsigned long faults[];
1487 };
1488 
1489 /*
1490  * For functions that can be called in multiple contexts that permit reading
1491  * ->numa_group (see struct task_struct for locking rules).
1492  */
deref_task_numa_group(struct task_struct * p)1493 static struct numa_group *deref_task_numa_group(struct task_struct *p)
1494 {
1495 	return rcu_dereference_check(p->numa_group, p == current ||
1496 		(lockdep_is_held(__rq_lockp(task_rq(p))) && !READ_ONCE(p->on_cpu)));
1497 }
1498 
deref_curr_numa_group(struct task_struct * p)1499 static struct numa_group *deref_curr_numa_group(struct task_struct *p)
1500 {
1501 	return rcu_dereference_protected(p->numa_group, p == current);
1502 }
1503 
1504 static inline unsigned long group_faults_priv(struct numa_group *ng);
1505 static inline unsigned long group_faults_shared(struct numa_group *ng);
1506 
task_nr_scan_windows(struct task_struct * p)1507 static unsigned int task_nr_scan_windows(struct task_struct *p)
1508 {
1509 	unsigned long rss = 0;
1510 	unsigned long nr_scan_pages;
1511 
1512 	/*
1513 	 * Calculations based on RSS as non-present and empty pages are skipped
1514 	 * by the PTE scanner and NUMA hinting faults should be trapped based
1515 	 * on resident pages
1516 	 */
1517 	nr_scan_pages = sysctl_numa_balancing_scan_size << (20 - PAGE_SHIFT);
1518 	rss = get_mm_rss(p->mm);
1519 	if (!rss)
1520 		rss = nr_scan_pages;
1521 
1522 	rss = round_up(rss, nr_scan_pages);
1523 	return rss / nr_scan_pages;
1524 }
1525 
1526 /* For sanity's sake, never scan more PTEs than MAX_SCAN_WINDOW MB/sec. */
1527 #define MAX_SCAN_WINDOW 2560
1528 
task_scan_min(struct task_struct * p)1529 static unsigned int task_scan_min(struct task_struct *p)
1530 {
1531 	unsigned int scan_size = READ_ONCE(sysctl_numa_balancing_scan_size);
1532 	unsigned int scan, floor;
1533 	unsigned int windows = 1;
1534 
1535 	if (scan_size < MAX_SCAN_WINDOW)
1536 		windows = MAX_SCAN_WINDOW / scan_size;
1537 	floor = 1000 / windows;
1538 
1539 	scan = sysctl_numa_balancing_scan_period_min / task_nr_scan_windows(p);
1540 	return max_t(unsigned int, floor, scan);
1541 }
1542 
task_scan_start(struct task_struct * p)1543 static unsigned int task_scan_start(struct task_struct *p)
1544 {
1545 	unsigned long smin = task_scan_min(p);
1546 	unsigned long period = smin;
1547 	struct numa_group *ng;
1548 
1549 	/* Scale the maximum scan period with the amount of shared memory. */
1550 	rcu_read_lock();
1551 	ng = rcu_dereference(p->numa_group);
1552 	if (ng) {
1553 		unsigned long shared = group_faults_shared(ng);
1554 		unsigned long private = group_faults_priv(ng);
1555 
1556 		period *= refcount_read(&ng->refcount);
1557 		period *= shared + 1;
1558 		period /= private + shared + 1;
1559 	}
1560 	rcu_read_unlock();
1561 
1562 	return max(smin, period);
1563 }
1564 
task_scan_max(struct task_struct * p)1565 static unsigned int task_scan_max(struct task_struct *p)
1566 {
1567 	unsigned long smin = task_scan_min(p);
1568 	unsigned long smax;
1569 	struct numa_group *ng;
1570 
1571 	/* Watch for min being lower than max due to floor calculations */
1572 	smax = sysctl_numa_balancing_scan_period_max / task_nr_scan_windows(p);
1573 
1574 	/* Scale the maximum scan period with the amount of shared memory. */
1575 	ng = deref_curr_numa_group(p);
1576 	if (ng) {
1577 		unsigned long shared = group_faults_shared(ng);
1578 		unsigned long private = group_faults_priv(ng);
1579 		unsigned long period = smax;
1580 
1581 		period *= refcount_read(&ng->refcount);
1582 		period *= shared + 1;
1583 		period /= private + shared + 1;
1584 
1585 		smax = max(smax, period);
1586 	}
1587 
1588 	return max(smin, smax);
1589 }
1590 
account_numa_enqueue(struct rq * rq,struct task_struct * p)1591 static void account_numa_enqueue(struct rq *rq, struct task_struct *p)
1592 {
1593 	rq->nr_numa_running += (p->numa_preferred_nid != NUMA_NO_NODE);
1594 	rq->nr_preferred_running += (p->numa_preferred_nid == task_node(p));
1595 }
1596 
account_numa_dequeue(struct rq * rq,struct task_struct * p)1597 static void account_numa_dequeue(struct rq *rq, struct task_struct *p)
1598 {
1599 	rq->nr_numa_running -= (p->numa_preferred_nid != NUMA_NO_NODE);
1600 	rq->nr_preferred_running -= (p->numa_preferred_nid == task_node(p));
1601 }
1602 
1603 /* Shared or private faults. */
1604 #define NR_NUMA_HINT_FAULT_TYPES 2
1605 
1606 /* Memory and CPU locality */
1607 #define NR_NUMA_HINT_FAULT_STATS (NR_NUMA_HINT_FAULT_TYPES * 2)
1608 
1609 /* Averaged statistics, and temporary buffers. */
1610 #define NR_NUMA_HINT_FAULT_BUCKETS (NR_NUMA_HINT_FAULT_STATS * 2)
1611 
task_numa_group_id(struct task_struct * p)1612 pid_t task_numa_group_id(struct task_struct *p)
1613 {
1614 	struct numa_group *ng;
1615 	pid_t gid = 0;
1616 
1617 	rcu_read_lock();
1618 	ng = rcu_dereference(p->numa_group);
1619 	if (ng)
1620 		gid = ng->gid;
1621 	rcu_read_unlock();
1622 
1623 	return gid;
1624 }
1625 
1626 /*
1627  * The averaged statistics, shared & private, memory & CPU,
1628  * occupy the first half of the array. The second half of the
1629  * array is for current counters, which are averaged into the
1630  * first set by task_numa_placement.
1631  */
task_faults_idx(enum numa_faults_stats s,int nid,int priv)1632 static inline int task_faults_idx(enum numa_faults_stats s, int nid, int priv)
1633 {
1634 	return NR_NUMA_HINT_FAULT_TYPES * (s * nr_node_ids + nid) + priv;
1635 }
1636 
task_faults(struct task_struct * p,int nid)1637 static inline unsigned long task_faults(struct task_struct *p, int nid)
1638 {
1639 	if (!p->numa_faults)
1640 		return 0;
1641 
1642 	return p->numa_faults[task_faults_idx(NUMA_MEM, nid, 0)] +
1643 		p->numa_faults[task_faults_idx(NUMA_MEM, nid, 1)];
1644 }
1645 
group_faults(struct task_struct * p,int nid)1646 static inline unsigned long group_faults(struct task_struct *p, int nid)
1647 {
1648 	struct numa_group *ng = deref_task_numa_group(p);
1649 
1650 	if (!ng)
1651 		return 0;
1652 
1653 	return ng->faults[task_faults_idx(NUMA_MEM, nid, 0)] +
1654 		ng->faults[task_faults_idx(NUMA_MEM, nid, 1)];
1655 }
1656 
group_faults_cpu(struct numa_group * group,int nid)1657 static inline unsigned long group_faults_cpu(struct numa_group *group, int nid)
1658 {
1659 	return group->faults[task_faults_idx(NUMA_CPU, nid, 0)] +
1660 		group->faults[task_faults_idx(NUMA_CPU, nid, 1)];
1661 }
1662 
group_faults_priv(struct numa_group * ng)1663 static inline unsigned long group_faults_priv(struct numa_group *ng)
1664 {
1665 	unsigned long faults = 0;
1666 	int node;
1667 
1668 	for_each_online_node(node) {
1669 		faults += ng->faults[task_faults_idx(NUMA_MEM, node, 1)];
1670 	}
1671 
1672 	return faults;
1673 }
1674 
group_faults_shared(struct numa_group * ng)1675 static inline unsigned long group_faults_shared(struct numa_group *ng)
1676 {
1677 	unsigned long faults = 0;
1678 	int node;
1679 
1680 	for_each_online_node(node) {
1681 		faults += ng->faults[task_faults_idx(NUMA_MEM, node, 0)];
1682 	}
1683 
1684 	return faults;
1685 }
1686 
1687 /*
1688  * A node triggering more than 1/3 as many NUMA faults as the maximum is
1689  * considered part of a numa group's pseudo-interleaving set. Migrations
1690  * between these nodes are slowed down, to allow things to settle down.
1691  */
1692 #define ACTIVE_NODE_FRACTION 3
1693 
numa_is_active_node(int nid,struct numa_group * ng)1694 static bool numa_is_active_node(int nid, struct numa_group *ng)
1695 {
1696 	return group_faults_cpu(ng, nid) * ACTIVE_NODE_FRACTION > ng->max_faults_cpu;
1697 }
1698 
1699 /* Handle placement on systems where not all nodes are directly connected. */
score_nearby_nodes(struct task_struct * p,int nid,int lim_dist,bool task)1700 static unsigned long score_nearby_nodes(struct task_struct *p, int nid,
1701 					int lim_dist, bool task)
1702 {
1703 	unsigned long score = 0;
1704 	int node, max_dist;
1705 
1706 	/*
1707 	 * All nodes are directly connected, and the same distance
1708 	 * from each other. No need for fancy placement algorithms.
1709 	 */
1710 	if (sched_numa_topology_type == NUMA_DIRECT)
1711 		return 0;
1712 
1713 	/* sched_max_numa_distance may be changed in parallel. */
1714 	max_dist = READ_ONCE(sched_max_numa_distance);
1715 	/*
1716 	 * This code is called for each node, introducing N^2 complexity,
1717 	 * which should be OK given the number of nodes rarely exceeds 8.
1718 	 */
1719 	for_each_online_node(node) {
1720 		unsigned long faults;
1721 		int dist = node_distance(nid, node);
1722 
1723 		/*
1724 		 * The furthest away nodes in the system are not interesting
1725 		 * for placement; nid was already counted.
1726 		 */
1727 		if (dist >= max_dist || node == nid)
1728 			continue;
1729 
1730 		/*
1731 		 * On systems with a backplane NUMA topology, compare groups
1732 		 * of nodes, and move tasks towards the group with the most
1733 		 * memory accesses. When comparing two nodes at distance
1734 		 * "hoplimit", only nodes closer by than "hoplimit" are part
1735 		 * of each group. Skip other nodes.
1736 		 */
1737 		if (sched_numa_topology_type == NUMA_BACKPLANE && dist >= lim_dist)
1738 			continue;
1739 
1740 		/* Add up the faults from nearby nodes. */
1741 		if (task)
1742 			faults = task_faults(p, node);
1743 		else
1744 			faults = group_faults(p, node);
1745 
1746 		/*
1747 		 * On systems with a glueless mesh NUMA topology, there are
1748 		 * no fixed "groups of nodes". Instead, nodes that are not
1749 		 * directly connected bounce traffic through intermediate
1750 		 * nodes; a numa_group can occupy any set of nodes.
1751 		 * The further away a node is, the less the faults count.
1752 		 * This seems to result in good task placement.
1753 		 */
1754 		if (sched_numa_topology_type == NUMA_GLUELESS_MESH) {
1755 			faults *= (max_dist - dist);
1756 			faults /= (max_dist - LOCAL_DISTANCE);
1757 		}
1758 
1759 		score += faults;
1760 	}
1761 
1762 	return score;
1763 }
1764 
1765 /*
1766  * These return the fraction of accesses done by a particular task, or
1767  * task group, on a particular numa node.  The group weight is given a
1768  * larger multiplier, in order to group tasks together that are almost
1769  * evenly spread out between numa nodes.
1770  */
task_weight(struct task_struct * p,int nid,int dist)1771 static inline unsigned long task_weight(struct task_struct *p, int nid,
1772 					int dist)
1773 {
1774 	unsigned long faults, total_faults;
1775 
1776 	if (!p->numa_faults)
1777 		return 0;
1778 
1779 	total_faults = p->total_numa_faults;
1780 
1781 	if (!total_faults)
1782 		return 0;
1783 
1784 	faults = task_faults(p, nid);
1785 	faults += score_nearby_nodes(p, nid, dist, true);
1786 
1787 	return 1000 * faults / total_faults;
1788 }
1789 
group_weight(struct task_struct * p,int nid,int dist)1790 static inline unsigned long group_weight(struct task_struct *p, int nid,
1791 					 int dist)
1792 {
1793 	struct numa_group *ng = deref_task_numa_group(p);
1794 	unsigned long faults, total_faults;
1795 
1796 	if (!ng)
1797 		return 0;
1798 
1799 	total_faults = ng->total_faults;
1800 
1801 	if (!total_faults)
1802 		return 0;
1803 
1804 	faults = group_faults(p, nid);
1805 	faults += score_nearby_nodes(p, nid, dist, false);
1806 
1807 	return 1000 * faults / total_faults;
1808 }
1809 
1810 /*
1811  * If memory tiering mode is enabled, cpupid of slow memory page is
1812  * used to record scan time instead of CPU and PID.  When tiering mode
1813  * is disabled at run time, the scan time (in cpupid) will be
1814  * interpreted as CPU and PID.  So CPU needs to be checked to avoid to
1815  * access out of array bound.
1816  */
cpupid_valid(int cpupid)1817 static inline bool cpupid_valid(int cpupid)
1818 {
1819 	return cpupid_to_cpu(cpupid) < nr_cpu_ids;
1820 }
1821 
1822 /*
1823  * For memory tiering mode, if there are enough free pages (more than
1824  * enough watermark defined here) in fast memory node, to take full
1825  * advantage of fast memory capacity, all recently accessed slow
1826  * memory pages will be migrated to fast memory node without
1827  * considering hot threshold.
1828  */
pgdat_free_space_enough(struct pglist_data * pgdat)1829 static bool pgdat_free_space_enough(struct pglist_data *pgdat)
1830 {
1831 	int z;
1832 	unsigned long enough_wmark;
1833 
1834 	enough_wmark = max(1UL * 1024 * 1024 * 1024 >> PAGE_SHIFT,
1835 			   pgdat->node_present_pages >> 4);
1836 	for (z = pgdat->nr_zones - 1; z >= 0; z--) {
1837 		struct zone *zone = pgdat->node_zones + z;
1838 
1839 		if (!populated_zone(zone))
1840 			continue;
1841 
1842 		if (zone_watermark_ok(zone, 0,
1843 				      promo_wmark_pages(zone) + enough_wmark,
1844 				      ZONE_MOVABLE, 0))
1845 			return true;
1846 	}
1847 	return false;
1848 }
1849 
1850 /*
1851  * For memory tiering mode, when page tables are scanned, the scan
1852  * time will be recorded in struct page in addition to make page
1853  * PROT_NONE for slow memory page.  So when the page is accessed, in
1854  * hint page fault handler, the hint page fault latency is calculated
1855  * via,
1856  *
1857  *	hint page fault latency = hint page fault time - scan time
1858  *
1859  * The smaller the hint page fault latency, the higher the possibility
1860  * for the page to be hot.
1861  */
numa_hint_fault_latency(struct folio * folio)1862 static int numa_hint_fault_latency(struct folio *folio)
1863 {
1864 	int last_time, time;
1865 
1866 	time = jiffies_to_msecs(jiffies);
1867 	last_time = folio_xchg_access_time(folio, time);
1868 
1869 	return (time - last_time) & PAGE_ACCESS_TIME_MASK;
1870 }
1871 
1872 /*
1873  * For memory tiering mode, too high promotion/demotion throughput may
1874  * hurt application latency.  So we provide a mechanism to rate limit
1875  * the number of pages that are tried to be promoted.
1876  */
numa_promotion_rate_limit(struct pglist_data * pgdat,unsigned long rate_limit,int nr)1877 static bool numa_promotion_rate_limit(struct pglist_data *pgdat,
1878 				      unsigned long rate_limit, int nr)
1879 {
1880 	unsigned long nr_cand;
1881 	unsigned int now, start;
1882 
1883 	now = jiffies_to_msecs(jiffies);
1884 	mod_node_page_state(pgdat, PGPROMOTE_CANDIDATE, nr);
1885 	nr_cand = node_page_state(pgdat, PGPROMOTE_CANDIDATE);
1886 	start = pgdat->nbp_rl_start;
1887 	if (now - start > MSEC_PER_SEC &&
1888 	    cmpxchg(&pgdat->nbp_rl_start, start, now) == start)
1889 		pgdat->nbp_rl_nr_cand = nr_cand;
1890 	if (nr_cand - pgdat->nbp_rl_nr_cand >= rate_limit)
1891 		return true;
1892 	return false;
1893 }
1894 
1895 #define NUMA_MIGRATION_ADJUST_STEPS	16
1896 
numa_promotion_adjust_threshold(struct pglist_data * pgdat,unsigned long rate_limit,unsigned int ref_th)1897 static void numa_promotion_adjust_threshold(struct pglist_data *pgdat,
1898 					    unsigned long rate_limit,
1899 					    unsigned int ref_th)
1900 {
1901 	unsigned int now, start, th_period, unit_th, th;
1902 	unsigned long nr_cand, ref_cand, diff_cand;
1903 
1904 	now = jiffies_to_msecs(jiffies);
1905 	th_period = sysctl_numa_balancing_scan_period_max;
1906 	start = pgdat->nbp_th_start;
1907 	if (now - start > th_period &&
1908 	    cmpxchg(&pgdat->nbp_th_start, start, now) == start) {
1909 		ref_cand = rate_limit *
1910 			sysctl_numa_balancing_scan_period_max / MSEC_PER_SEC;
1911 		nr_cand = node_page_state(pgdat, PGPROMOTE_CANDIDATE);
1912 		diff_cand = nr_cand - pgdat->nbp_th_nr_cand;
1913 		unit_th = ref_th * 2 / NUMA_MIGRATION_ADJUST_STEPS;
1914 		th = pgdat->nbp_threshold ? : ref_th;
1915 		if (diff_cand > ref_cand * 11 / 10)
1916 			th = max(th - unit_th, unit_th);
1917 		else if (diff_cand < ref_cand * 9 / 10)
1918 			th = min(th + unit_th, ref_th * 2);
1919 		pgdat->nbp_th_nr_cand = nr_cand;
1920 		pgdat->nbp_threshold = th;
1921 	}
1922 }
1923 
should_numa_migrate_memory(struct task_struct * p,struct folio * folio,int src_nid,int dst_cpu)1924 bool should_numa_migrate_memory(struct task_struct *p, struct folio *folio,
1925 				int src_nid, int dst_cpu)
1926 {
1927 	struct numa_group *ng = deref_curr_numa_group(p);
1928 	int dst_nid = cpu_to_node(dst_cpu);
1929 	int last_cpupid, this_cpupid;
1930 
1931 	/*
1932 	 * Cannot migrate to memoryless nodes.
1933 	 */
1934 	if (!node_state(dst_nid, N_MEMORY))
1935 		return false;
1936 
1937 	/*
1938 	 * The pages in slow memory node should be migrated according
1939 	 * to hot/cold instead of private/shared.
1940 	 */
1941 	if (folio_use_access_time(folio)) {
1942 		struct pglist_data *pgdat;
1943 		unsigned long rate_limit;
1944 		unsigned int latency, th, def_th;
1945 
1946 		pgdat = NODE_DATA(dst_nid);
1947 		if (pgdat_free_space_enough(pgdat)) {
1948 			/* workload changed, reset hot threshold */
1949 			pgdat->nbp_threshold = 0;
1950 			return true;
1951 		}
1952 
1953 		def_th = sysctl_numa_balancing_hot_threshold;
1954 		rate_limit = sysctl_numa_balancing_promote_rate_limit << \
1955 			(20 - PAGE_SHIFT);
1956 		numa_promotion_adjust_threshold(pgdat, rate_limit, def_th);
1957 
1958 		th = pgdat->nbp_threshold ? : def_th;
1959 		latency = numa_hint_fault_latency(folio);
1960 		if (latency >= th)
1961 			return false;
1962 
1963 		return !numa_promotion_rate_limit(pgdat, rate_limit,
1964 						  folio_nr_pages(folio));
1965 	}
1966 
1967 	this_cpupid = cpu_pid_to_cpupid(dst_cpu, current->pid);
1968 	last_cpupid = folio_xchg_last_cpupid(folio, this_cpupid);
1969 
1970 	if (!(sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING) &&
1971 	    !node_is_toptier(src_nid) && !cpupid_valid(last_cpupid))
1972 		return false;
1973 
1974 	/*
1975 	 * Allow first faults or private faults to migrate immediately early in
1976 	 * the lifetime of a task. The magic number 4 is based on waiting for
1977 	 * two full passes of the "multi-stage node selection" test that is
1978 	 * executed below.
1979 	 */
1980 	if ((p->numa_preferred_nid == NUMA_NO_NODE || p->numa_scan_seq <= 4) &&
1981 	    (cpupid_pid_unset(last_cpupid) || cpupid_match_pid(p, last_cpupid)))
1982 		return true;
1983 
1984 	/*
1985 	 * Multi-stage node selection is used in conjunction with a periodic
1986 	 * migration fault to build a temporal task<->page relation. By using
1987 	 * a two-stage filter we remove short/unlikely relations.
1988 	 *
1989 	 * Using P(p) ~ n_p / n_t as per frequentist probability, we can equate
1990 	 * a task's usage of a particular page (n_p) per total usage of this
1991 	 * page (n_t) (in a given time-span) to a probability.
1992 	 *
1993 	 * Our periodic faults will sample this probability and getting the
1994 	 * same result twice in a row, given these samples are fully
1995 	 * independent, is then given by P(n)^2, provided our sample period
1996 	 * is sufficiently short compared to the usage pattern.
1997 	 *
1998 	 * This quadric squishes small probabilities, making it less likely we
1999 	 * act on an unlikely task<->page relation.
2000 	 */
2001 	if (!cpupid_pid_unset(last_cpupid) &&
2002 				cpupid_to_nid(last_cpupid) != dst_nid)
2003 		return false;
2004 
2005 	/* Always allow migrate on private faults */
2006 	if (cpupid_match_pid(p, last_cpupid))
2007 		return true;
2008 
2009 	/* A shared fault, but p->numa_group has not been set up yet. */
2010 	if (!ng)
2011 		return true;
2012 
2013 	/*
2014 	 * Destination node is much more heavily used than the source
2015 	 * node? Allow migration.
2016 	 */
2017 	if (group_faults_cpu(ng, dst_nid) > group_faults_cpu(ng, src_nid) *
2018 					ACTIVE_NODE_FRACTION)
2019 		return true;
2020 
2021 	/*
2022 	 * Distribute memory according to CPU & memory use on each node,
2023 	 * with 3/4 hysteresis to avoid unnecessary memory migrations:
2024 	 *
2025 	 * faults_cpu(dst)   3   faults_cpu(src)
2026 	 * --------------- * - > ---------------
2027 	 * faults_mem(dst)   4   faults_mem(src)
2028 	 */
2029 	return group_faults_cpu(ng, dst_nid) * group_faults(p, src_nid) * 3 >
2030 	       group_faults_cpu(ng, src_nid) * group_faults(p, dst_nid) * 4;
2031 }
2032 
2033 /*
2034  * 'numa_type' describes the node at the moment of load balancing.
2035  */
2036 enum numa_type {
2037 	/* The node has spare capacity that can be used to run more tasks.  */
2038 	node_has_spare = 0,
2039 	/*
2040 	 * The node is fully used and the tasks don't compete for more CPU
2041 	 * cycles. Nevertheless, some tasks might wait before running.
2042 	 */
2043 	node_fully_busy,
2044 	/*
2045 	 * The node is overloaded and can't provide expected CPU cycles to all
2046 	 * tasks.
2047 	 */
2048 	node_overloaded
2049 };
2050 
2051 /* Cached statistics for all CPUs within a node */
2052 struct numa_stats {
2053 	unsigned long load;
2054 	unsigned long runnable;
2055 	unsigned long util;
2056 	/* Total compute capacity of CPUs on a node */
2057 	unsigned long compute_capacity;
2058 	unsigned int nr_running;
2059 	unsigned int weight;
2060 	enum numa_type node_type;
2061 	int idle_cpu;
2062 };
2063 
2064 struct task_numa_env {
2065 	struct task_struct *p;
2066 
2067 	int src_cpu, src_nid;
2068 	int dst_cpu, dst_nid;
2069 	int imb_numa_nr;
2070 
2071 	struct numa_stats src_stats, dst_stats;
2072 
2073 	int imbalance_pct;
2074 	int dist;
2075 
2076 	struct task_struct *best_task;
2077 	long best_imp;
2078 	int best_cpu;
2079 };
2080 
2081 static unsigned long cpu_load(struct rq *rq);
2082 static unsigned long cpu_runnable(struct rq *rq);
2083 
2084 static inline enum
numa_classify(unsigned int imbalance_pct,struct numa_stats * ns)2085 numa_type numa_classify(unsigned int imbalance_pct,
2086 			 struct numa_stats *ns)
2087 {
2088 	if ((ns->nr_running > ns->weight) &&
2089 	    (((ns->compute_capacity * 100) < (ns->util * imbalance_pct)) ||
2090 	     ((ns->compute_capacity * imbalance_pct) < (ns->runnable * 100))))
2091 		return node_overloaded;
2092 
2093 	if ((ns->nr_running < ns->weight) ||
2094 	    (((ns->compute_capacity * 100) > (ns->util * imbalance_pct)) &&
2095 	     ((ns->compute_capacity * imbalance_pct) > (ns->runnable * 100))))
2096 		return node_has_spare;
2097 
2098 	return node_fully_busy;
2099 }
2100 
2101 #ifdef CONFIG_SCHED_SMT
2102 /* Forward declarations of select_idle_sibling helpers */
2103 static inline bool test_idle_cores(int cpu);
numa_idle_core(int idle_core,int cpu)2104 static inline int numa_idle_core(int idle_core, int cpu)
2105 {
2106 	if (!static_branch_likely(&sched_smt_present) ||
2107 	    idle_core >= 0 || !test_idle_cores(cpu))
2108 		return idle_core;
2109 
2110 	/*
2111 	 * Prefer cores instead of packing HT siblings
2112 	 * and triggering future load balancing.
2113 	 */
2114 	if (is_core_idle(cpu))
2115 		idle_core = cpu;
2116 
2117 	return idle_core;
2118 }
2119 #else
numa_idle_core(int idle_core,int cpu)2120 static inline int numa_idle_core(int idle_core, int cpu)
2121 {
2122 	return idle_core;
2123 }
2124 #endif
2125 
2126 /*
2127  * Gather all necessary information to make NUMA balancing placement
2128  * decisions that are compatible with standard load balancer. This
2129  * borrows code and logic from update_sg_lb_stats but sharing a
2130  * common implementation is impractical.
2131  */
update_numa_stats(struct task_numa_env * env,struct numa_stats * ns,int nid,bool find_idle)2132 static void update_numa_stats(struct task_numa_env *env,
2133 			      struct numa_stats *ns, int nid,
2134 			      bool find_idle)
2135 {
2136 	int cpu, idle_core = -1;
2137 
2138 	memset(ns, 0, sizeof(*ns));
2139 	ns->idle_cpu = -1;
2140 
2141 	rcu_read_lock();
2142 	for_each_cpu(cpu, cpumask_of_node(nid)) {
2143 		struct rq *rq = cpu_rq(cpu);
2144 
2145 		ns->load += cpu_load(rq);
2146 		ns->runnable += cpu_runnable(rq);
2147 		ns->util += cpu_util_cfs(cpu);
2148 		ns->nr_running += rq->cfs.h_nr_runnable;
2149 		ns->compute_capacity += capacity_of(cpu);
2150 
2151 		if (find_idle && idle_core < 0 && !rq->nr_running && idle_cpu(cpu)) {
2152 			if (READ_ONCE(rq->numa_migrate_on) ||
2153 			    !cpumask_test_cpu(cpu, env->p->cpus_ptr))
2154 				continue;
2155 
2156 			if (ns->idle_cpu == -1)
2157 				ns->idle_cpu = cpu;
2158 
2159 			idle_core = numa_idle_core(idle_core, cpu);
2160 		}
2161 	}
2162 	rcu_read_unlock();
2163 
2164 	ns->weight = cpumask_weight(cpumask_of_node(nid));
2165 
2166 	ns->node_type = numa_classify(env->imbalance_pct, ns);
2167 
2168 	if (idle_core >= 0)
2169 		ns->idle_cpu = idle_core;
2170 }
2171 
task_numa_assign(struct task_numa_env * env,struct task_struct * p,long imp)2172 static void task_numa_assign(struct task_numa_env *env,
2173 			     struct task_struct *p, long imp)
2174 {
2175 	struct rq *rq = cpu_rq(env->dst_cpu);
2176 
2177 	/* Check if run-queue part of active NUMA balance. */
2178 	if (env->best_cpu != env->dst_cpu && xchg(&rq->numa_migrate_on, 1)) {
2179 		int cpu;
2180 		int start = env->dst_cpu;
2181 
2182 		/* Find alternative idle CPU. */
2183 		for_each_cpu_wrap(cpu, cpumask_of_node(env->dst_nid), start + 1) {
2184 			if (cpu == env->best_cpu || !idle_cpu(cpu) ||
2185 			    !cpumask_test_cpu(cpu, env->p->cpus_ptr)) {
2186 				continue;
2187 			}
2188 
2189 			env->dst_cpu = cpu;
2190 			rq = cpu_rq(env->dst_cpu);
2191 			if (!xchg(&rq->numa_migrate_on, 1))
2192 				goto assign;
2193 		}
2194 
2195 		/* Failed to find an alternative idle CPU */
2196 		return;
2197 	}
2198 
2199 assign:
2200 	/*
2201 	 * Clear previous best_cpu/rq numa-migrate flag, since task now
2202 	 * found a better CPU to move/swap.
2203 	 */
2204 	if (env->best_cpu != -1 && env->best_cpu != env->dst_cpu) {
2205 		rq = cpu_rq(env->best_cpu);
2206 		WRITE_ONCE(rq->numa_migrate_on, 0);
2207 	}
2208 
2209 	if (env->best_task)
2210 		put_task_struct(env->best_task);
2211 	if (p)
2212 		get_task_struct(p);
2213 
2214 	env->best_task = p;
2215 	env->best_imp = imp;
2216 	env->best_cpu = env->dst_cpu;
2217 }
2218 
load_too_imbalanced(long src_load,long dst_load,struct task_numa_env * env)2219 static bool load_too_imbalanced(long src_load, long dst_load,
2220 				struct task_numa_env *env)
2221 {
2222 	long imb, old_imb;
2223 	long orig_src_load, orig_dst_load;
2224 	long src_capacity, dst_capacity;
2225 
2226 	/*
2227 	 * The load is corrected for the CPU capacity available on each node.
2228 	 *
2229 	 * src_load        dst_load
2230 	 * ------------ vs ---------
2231 	 * src_capacity    dst_capacity
2232 	 */
2233 	src_capacity = env->src_stats.compute_capacity;
2234 	dst_capacity = env->dst_stats.compute_capacity;
2235 
2236 	imb = abs(dst_load * src_capacity - src_load * dst_capacity);
2237 
2238 	orig_src_load = env->src_stats.load;
2239 	orig_dst_load = env->dst_stats.load;
2240 
2241 	old_imb = abs(orig_dst_load * src_capacity - orig_src_load * dst_capacity);
2242 
2243 	/* Would this change make things worse? */
2244 	return (imb > old_imb);
2245 }
2246 
2247 /*
2248  * Maximum NUMA importance can be 1998 (2*999);
2249  * SMALLIMP @ 30 would be close to 1998/64.
2250  * Used to deter task migration.
2251  */
2252 #define SMALLIMP	30
2253 
2254 /*
2255  * This checks if the overall compute and NUMA accesses of the system would
2256  * be improved if the source tasks was migrated to the target dst_cpu taking
2257  * into account that it might be best if task running on the dst_cpu should
2258  * be exchanged with the source task
2259  */
task_numa_compare(struct task_numa_env * env,long taskimp,long groupimp,bool maymove)2260 static bool task_numa_compare(struct task_numa_env *env,
2261 			      long taskimp, long groupimp, bool maymove)
2262 {
2263 	struct numa_group *cur_ng, *p_ng = deref_curr_numa_group(env->p);
2264 	struct rq *dst_rq = cpu_rq(env->dst_cpu);
2265 	long imp = p_ng ? groupimp : taskimp;
2266 	struct task_struct *cur;
2267 	long src_load, dst_load;
2268 	int dist = env->dist;
2269 	long moveimp = imp;
2270 	long load;
2271 	bool stopsearch = false;
2272 
2273 	if (READ_ONCE(dst_rq->numa_migrate_on))
2274 		return false;
2275 
2276 	rcu_read_lock();
2277 	cur = rcu_dereference(dst_rq->curr);
2278 	if (cur && ((cur->flags & PF_EXITING) || is_idle_task(cur)))
2279 		cur = NULL;
2280 
2281 	/*
2282 	 * Because we have preemption enabled we can get migrated around and
2283 	 * end try selecting ourselves (current == env->p) as a swap candidate.
2284 	 */
2285 	if (cur == env->p) {
2286 		stopsearch = true;
2287 		goto unlock;
2288 	}
2289 
2290 	if (!cur) {
2291 		if (maymove && moveimp >= env->best_imp)
2292 			goto assign;
2293 		else
2294 			goto unlock;
2295 	}
2296 
2297 	/* Skip this swap candidate if cannot move to the source cpu. */
2298 	if (!cpumask_test_cpu(env->src_cpu, cur->cpus_ptr))
2299 		goto unlock;
2300 
2301 	/*
2302 	 * Skip this swap candidate if it is not moving to its preferred
2303 	 * node and the best task is.
2304 	 */
2305 	if (env->best_task &&
2306 	    env->best_task->numa_preferred_nid == env->src_nid &&
2307 	    cur->numa_preferred_nid != env->src_nid) {
2308 		goto unlock;
2309 	}
2310 
2311 	/*
2312 	 * "imp" is the fault differential for the source task between the
2313 	 * source and destination node. Calculate the total differential for
2314 	 * the source task and potential destination task. The more negative
2315 	 * the value is, the more remote accesses that would be expected to
2316 	 * be incurred if the tasks were swapped.
2317 	 *
2318 	 * If dst and source tasks are in the same NUMA group, or not
2319 	 * in any group then look only at task weights.
2320 	 */
2321 	cur_ng = rcu_dereference(cur->numa_group);
2322 	if (cur_ng == p_ng) {
2323 		/*
2324 		 * Do not swap within a group or between tasks that have
2325 		 * no group if there is spare capacity. Swapping does
2326 		 * not address the load imbalance and helps one task at
2327 		 * the cost of punishing another.
2328 		 */
2329 		if (env->dst_stats.node_type == node_has_spare)
2330 			goto unlock;
2331 
2332 		imp = taskimp + task_weight(cur, env->src_nid, dist) -
2333 		      task_weight(cur, env->dst_nid, dist);
2334 		/*
2335 		 * Add some hysteresis to prevent swapping the
2336 		 * tasks within a group over tiny differences.
2337 		 */
2338 		if (cur_ng)
2339 			imp -= imp / 16;
2340 	} else {
2341 		/*
2342 		 * Compare the group weights. If a task is all by itself
2343 		 * (not part of a group), use the task weight instead.
2344 		 */
2345 		if (cur_ng && p_ng)
2346 			imp += group_weight(cur, env->src_nid, dist) -
2347 			       group_weight(cur, env->dst_nid, dist);
2348 		else
2349 			imp += task_weight(cur, env->src_nid, dist) -
2350 			       task_weight(cur, env->dst_nid, dist);
2351 	}
2352 
2353 	/* Discourage picking a task already on its preferred node */
2354 	if (cur->numa_preferred_nid == env->dst_nid)
2355 		imp -= imp / 16;
2356 
2357 	/*
2358 	 * Encourage picking a task that moves to its preferred node.
2359 	 * This potentially makes imp larger than it's maximum of
2360 	 * 1998 (see SMALLIMP and task_weight for why) but in this
2361 	 * case, it does not matter.
2362 	 */
2363 	if (cur->numa_preferred_nid == env->src_nid)
2364 		imp += imp / 8;
2365 
2366 	if (maymove && moveimp > imp && moveimp > env->best_imp) {
2367 		imp = moveimp;
2368 		cur = NULL;
2369 		goto assign;
2370 	}
2371 
2372 	/*
2373 	 * Prefer swapping with a task moving to its preferred node over a
2374 	 * task that is not.
2375 	 */
2376 	if (env->best_task && cur->numa_preferred_nid == env->src_nid &&
2377 	    env->best_task->numa_preferred_nid != env->src_nid) {
2378 		goto assign;
2379 	}
2380 
2381 	/*
2382 	 * If the NUMA importance is less than SMALLIMP,
2383 	 * task migration might only result in ping pong
2384 	 * of tasks and also hurt performance due to cache
2385 	 * misses.
2386 	 */
2387 	if (imp < SMALLIMP || imp <= env->best_imp + SMALLIMP / 2)
2388 		goto unlock;
2389 
2390 	/*
2391 	 * In the overloaded case, try and keep the load balanced.
2392 	 */
2393 	load = task_h_load(env->p) - task_h_load(cur);
2394 	if (!load)
2395 		goto assign;
2396 
2397 	dst_load = env->dst_stats.load + load;
2398 	src_load = env->src_stats.load - load;
2399 
2400 	if (load_too_imbalanced(src_load, dst_load, env))
2401 		goto unlock;
2402 
2403 assign:
2404 	/* Evaluate an idle CPU for a task numa move. */
2405 	if (!cur) {
2406 		int cpu = env->dst_stats.idle_cpu;
2407 
2408 		/* Nothing cached so current CPU went idle since the search. */
2409 		if (cpu < 0)
2410 			cpu = env->dst_cpu;
2411 
2412 		/*
2413 		 * If the CPU is no longer truly idle and the previous best CPU
2414 		 * is, keep using it.
2415 		 */
2416 		if (!idle_cpu(cpu) && env->best_cpu >= 0 &&
2417 		    idle_cpu(env->best_cpu)) {
2418 			cpu = env->best_cpu;
2419 		}
2420 
2421 		env->dst_cpu = cpu;
2422 	}
2423 
2424 	task_numa_assign(env, cur, imp);
2425 
2426 	/*
2427 	 * If a move to idle is allowed because there is capacity or load
2428 	 * balance improves then stop the search. While a better swap
2429 	 * candidate may exist, a search is not free.
2430 	 */
2431 	if (maymove && !cur && env->best_cpu >= 0 && idle_cpu(env->best_cpu))
2432 		stopsearch = true;
2433 
2434 	/*
2435 	 * If a swap candidate must be identified and the current best task
2436 	 * moves its preferred node then stop the search.
2437 	 */
2438 	if (!maymove && env->best_task &&
2439 	    env->best_task->numa_preferred_nid == env->src_nid) {
2440 		stopsearch = true;
2441 	}
2442 unlock:
2443 	rcu_read_unlock();
2444 
2445 	return stopsearch;
2446 }
2447 
task_numa_find_cpu(struct task_numa_env * env,long taskimp,long groupimp)2448 static void task_numa_find_cpu(struct task_numa_env *env,
2449 				long taskimp, long groupimp)
2450 {
2451 	bool maymove = false;
2452 	int cpu;
2453 
2454 	/*
2455 	 * If dst node has spare capacity, then check if there is an
2456 	 * imbalance that would be overruled by the load balancer.
2457 	 */
2458 	if (env->dst_stats.node_type == node_has_spare) {
2459 		unsigned int imbalance;
2460 		int src_running, dst_running;
2461 
2462 		/*
2463 		 * Would movement cause an imbalance? Note that if src has
2464 		 * more running tasks that the imbalance is ignored as the
2465 		 * move improves the imbalance from the perspective of the
2466 		 * CPU load balancer.
2467 		 * */
2468 		src_running = env->src_stats.nr_running - 1;
2469 		dst_running = env->dst_stats.nr_running + 1;
2470 		imbalance = max(0, dst_running - src_running);
2471 		imbalance = adjust_numa_imbalance(imbalance, dst_running,
2472 						  env->imb_numa_nr);
2473 
2474 		/* Use idle CPU if there is no imbalance */
2475 		if (!imbalance) {
2476 			maymove = true;
2477 			if (env->dst_stats.idle_cpu >= 0) {
2478 				env->dst_cpu = env->dst_stats.idle_cpu;
2479 				task_numa_assign(env, NULL, 0);
2480 				return;
2481 			}
2482 		}
2483 	} else {
2484 		long src_load, dst_load, load;
2485 		/*
2486 		 * If the improvement from just moving env->p direction is better
2487 		 * than swapping tasks around, check if a move is possible.
2488 		 */
2489 		load = task_h_load(env->p);
2490 		dst_load = env->dst_stats.load + load;
2491 		src_load = env->src_stats.load - load;
2492 		maymove = !load_too_imbalanced(src_load, dst_load, env);
2493 	}
2494 
2495 	for_each_cpu(cpu, cpumask_of_node(env->dst_nid)) {
2496 		/* Skip this CPU if the source task cannot migrate */
2497 		if (!cpumask_test_cpu(cpu, env->p->cpus_ptr))
2498 			continue;
2499 
2500 		env->dst_cpu = cpu;
2501 		if (task_numa_compare(env, taskimp, groupimp, maymove))
2502 			break;
2503 	}
2504 }
2505 
task_numa_migrate(struct task_struct * p)2506 static int task_numa_migrate(struct task_struct *p)
2507 {
2508 	struct task_numa_env env = {
2509 		.p = p,
2510 
2511 		.src_cpu = task_cpu(p),
2512 		.src_nid = task_node(p),
2513 
2514 		.imbalance_pct = 112,
2515 
2516 		.best_task = NULL,
2517 		.best_imp = 0,
2518 		.best_cpu = -1,
2519 	};
2520 	unsigned long taskweight, groupweight;
2521 	struct sched_domain *sd;
2522 	long taskimp, groupimp;
2523 	struct numa_group *ng;
2524 	struct rq *best_rq;
2525 	int nid, ret, dist;
2526 
2527 	/*
2528 	 * Pick the lowest SD_NUMA domain, as that would have the smallest
2529 	 * imbalance and would be the first to start moving tasks about.
2530 	 *
2531 	 * And we want to avoid any moving of tasks about, as that would create
2532 	 * random movement of tasks -- counter the numa conditions we're trying
2533 	 * to satisfy here.
2534 	 */
2535 	rcu_read_lock();
2536 	sd = rcu_dereference(per_cpu(sd_numa, env.src_cpu));
2537 	if (sd) {
2538 		env.imbalance_pct = 100 + (sd->imbalance_pct - 100) / 2;
2539 		env.imb_numa_nr = sd->imb_numa_nr;
2540 	}
2541 	rcu_read_unlock();
2542 
2543 	/*
2544 	 * Cpusets can break the scheduler domain tree into smaller
2545 	 * balance domains, some of which do not cross NUMA boundaries.
2546 	 * Tasks that are "trapped" in such domains cannot be migrated
2547 	 * elsewhere, so there is no point in (re)trying.
2548 	 */
2549 	if (unlikely(!sd)) {
2550 		sched_setnuma(p, task_node(p));
2551 		return -EINVAL;
2552 	}
2553 
2554 	env.dst_nid = p->numa_preferred_nid;
2555 	dist = env.dist = node_distance(env.src_nid, env.dst_nid);
2556 	taskweight = task_weight(p, env.src_nid, dist);
2557 	groupweight = group_weight(p, env.src_nid, dist);
2558 	update_numa_stats(&env, &env.src_stats, env.src_nid, false);
2559 	taskimp = task_weight(p, env.dst_nid, dist) - taskweight;
2560 	groupimp = group_weight(p, env.dst_nid, dist) - groupweight;
2561 	update_numa_stats(&env, &env.dst_stats, env.dst_nid, true);
2562 
2563 	/* Try to find a spot on the preferred nid. */
2564 	task_numa_find_cpu(&env, taskimp, groupimp);
2565 
2566 	/*
2567 	 * Look at other nodes in these cases:
2568 	 * - there is no space available on the preferred_nid
2569 	 * - the task is part of a numa_group that is interleaved across
2570 	 *   multiple NUMA nodes; in order to better consolidate the group,
2571 	 *   we need to check other locations.
2572 	 */
2573 	ng = deref_curr_numa_group(p);
2574 	if (env.best_cpu == -1 || (ng && ng->active_nodes > 1)) {
2575 		for_each_node_state(nid, N_CPU) {
2576 			if (nid == env.src_nid || nid == p->numa_preferred_nid)
2577 				continue;
2578 
2579 			dist = node_distance(env.src_nid, env.dst_nid);
2580 			if (sched_numa_topology_type == NUMA_BACKPLANE &&
2581 						dist != env.dist) {
2582 				taskweight = task_weight(p, env.src_nid, dist);
2583 				groupweight = group_weight(p, env.src_nid, dist);
2584 			}
2585 
2586 			/* Only consider nodes where both task and groups benefit */
2587 			taskimp = task_weight(p, nid, dist) - taskweight;
2588 			groupimp = group_weight(p, nid, dist) - groupweight;
2589 			if (taskimp < 0 && groupimp < 0)
2590 				continue;
2591 
2592 			env.dist = dist;
2593 			env.dst_nid = nid;
2594 			update_numa_stats(&env, &env.dst_stats, env.dst_nid, true);
2595 			task_numa_find_cpu(&env, taskimp, groupimp);
2596 		}
2597 	}
2598 
2599 	/*
2600 	 * If the task is part of a workload that spans multiple NUMA nodes,
2601 	 * and is migrating into one of the workload's active nodes, remember
2602 	 * this node as the task's preferred numa node, so the workload can
2603 	 * settle down.
2604 	 * A task that migrated to a second choice node will be better off
2605 	 * trying for a better one later. Do not set the preferred node here.
2606 	 */
2607 	if (ng) {
2608 		if (env.best_cpu == -1)
2609 			nid = env.src_nid;
2610 		else
2611 			nid = cpu_to_node(env.best_cpu);
2612 
2613 		if (nid != p->numa_preferred_nid)
2614 			sched_setnuma(p, nid);
2615 	}
2616 
2617 	/* No better CPU than the current one was found. */
2618 	if (env.best_cpu == -1) {
2619 		trace_sched_stick_numa(p, env.src_cpu, NULL, -1);
2620 		return -EAGAIN;
2621 	}
2622 
2623 	best_rq = cpu_rq(env.best_cpu);
2624 	if (env.best_task == NULL) {
2625 		ret = migrate_task_to(p, env.best_cpu);
2626 		WRITE_ONCE(best_rq->numa_migrate_on, 0);
2627 		if (ret != 0)
2628 			trace_sched_stick_numa(p, env.src_cpu, NULL, env.best_cpu);
2629 		return ret;
2630 	}
2631 
2632 	ret = migrate_swap(p, env.best_task, env.best_cpu, env.src_cpu);
2633 	WRITE_ONCE(best_rq->numa_migrate_on, 0);
2634 
2635 	if (ret != 0)
2636 		trace_sched_stick_numa(p, env.src_cpu, env.best_task, env.best_cpu);
2637 	put_task_struct(env.best_task);
2638 	return ret;
2639 }
2640 
2641 /* Attempt to migrate a task to a CPU on the preferred node. */
numa_migrate_preferred(struct task_struct * p)2642 static void numa_migrate_preferred(struct task_struct *p)
2643 {
2644 	unsigned long interval = HZ;
2645 
2646 	/* This task has no NUMA fault statistics yet */
2647 	if (unlikely(p->numa_preferred_nid == NUMA_NO_NODE || !p->numa_faults))
2648 		return;
2649 
2650 	/* Periodically retry migrating the task to the preferred node */
2651 	interval = min(interval, msecs_to_jiffies(p->numa_scan_period) / 16);
2652 	p->numa_migrate_retry = jiffies + interval;
2653 
2654 	/* Success if task is already running on preferred CPU */
2655 	if (task_node(p) == p->numa_preferred_nid)
2656 		return;
2657 
2658 	/* Otherwise, try migrate to a CPU on the preferred node */
2659 	task_numa_migrate(p);
2660 }
2661 
2662 /*
2663  * Find out how many nodes the workload is actively running on. Do this by
2664  * tracking the nodes from which NUMA hinting faults are triggered. This can
2665  * be different from the set of nodes where the workload's memory is currently
2666  * located.
2667  */
numa_group_count_active_nodes(struct numa_group * numa_group)2668 static void numa_group_count_active_nodes(struct numa_group *numa_group)
2669 {
2670 	unsigned long faults, max_faults = 0;
2671 	int nid, active_nodes = 0;
2672 
2673 	for_each_node_state(nid, N_CPU) {
2674 		faults = group_faults_cpu(numa_group, nid);
2675 		if (faults > max_faults)
2676 			max_faults = faults;
2677 	}
2678 
2679 	for_each_node_state(nid, N_CPU) {
2680 		faults = group_faults_cpu(numa_group, nid);
2681 		if (faults * ACTIVE_NODE_FRACTION > max_faults)
2682 			active_nodes++;
2683 	}
2684 
2685 	numa_group->max_faults_cpu = max_faults;
2686 	numa_group->active_nodes = active_nodes;
2687 }
2688 
2689 /*
2690  * When adapting the scan rate, the period is divided into NUMA_PERIOD_SLOTS
2691  * increments. The more local the fault statistics are, the higher the scan
2692  * period will be for the next scan window. If local/(local+remote) ratio is
2693  * below NUMA_PERIOD_THRESHOLD (where range of ratio is 1..NUMA_PERIOD_SLOTS)
2694  * the scan period will decrease. Aim for 70% local accesses.
2695  */
2696 #define NUMA_PERIOD_SLOTS 10
2697 #define NUMA_PERIOD_THRESHOLD 7
2698 
2699 /*
2700  * Increase the scan period (slow down scanning) if the majority of
2701  * our memory is already on our local node, or if the majority of
2702  * the page accesses are shared with other processes.
2703  * Otherwise, decrease the scan period.
2704  */
update_task_scan_period(struct task_struct * p,unsigned long shared,unsigned long private)2705 static void update_task_scan_period(struct task_struct *p,
2706 			unsigned long shared, unsigned long private)
2707 {
2708 	unsigned int period_slot;
2709 	int lr_ratio, ps_ratio;
2710 	int diff;
2711 
2712 	unsigned long remote = p->numa_faults_locality[0];
2713 	unsigned long local = p->numa_faults_locality[1];
2714 
2715 	/*
2716 	 * If there were no record hinting faults then either the task is
2717 	 * completely idle or all activity is in areas that are not of interest
2718 	 * to automatic numa balancing. Related to that, if there were failed
2719 	 * migration then it implies we are migrating too quickly or the local
2720 	 * node is overloaded. In either case, scan slower
2721 	 */
2722 	if (local + shared == 0 || p->numa_faults_locality[2]) {
2723 		p->numa_scan_period = min(p->numa_scan_period_max,
2724 			p->numa_scan_period << 1);
2725 
2726 		p->mm->numa_next_scan = jiffies +
2727 			msecs_to_jiffies(p->numa_scan_period);
2728 
2729 		return;
2730 	}
2731 
2732 	/*
2733 	 * Prepare to scale scan period relative to the current period.
2734 	 *	 == NUMA_PERIOD_THRESHOLD scan period stays the same
2735 	 *       <  NUMA_PERIOD_THRESHOLD scan period decreases (scan faster)
2736 	 *	 >= NUMA_PERIOD_THRESHOLD scan period increases (scan slower)
2737 	 */
2738 	period_slot = DIV_ROUND_UP(p->numa_scan_period, NUMA_PERIOD_SLOTS);
2739 	lr_ratio = (local * NUMA_PERIOD_SLOTS) / (local + remote);
2740 	ps_ratio = (private * NUMA_PERIOD_SLOTS) / (private + shared);
2741 
2742 	if (ps_ratio >= NUMA_PERIOD_THRESHOLD) {
2743 		/*
2744 		 * Most memory accesses are local. There is no need to
2745 		 * do fast NUMA scanning, since memory is already local.
2746 		 */
2747 		int slot = ps_ratio - NUMA_PERIOD_THRESHOLD;
2748 		if (!slot)
2749 			slot = 1;
2750 		diff = slot * period_slot;
2751 	} else if (lr_ratio >= NUMA_PERIOD_THRESHOLD) {
2752 		/*
2753 		 * Most memory accesses are shared with other tasks.
2754 		 * There is no point in continuing fast NUMA scanning,
2755 		 * since other tasks may just move the memory elsewhere.
2756 		 */
2757 		int slot = lr_ratio - NUMA_PERIOD_THRESHOLD;
2758 		if (!slot)
2759 			slot = 1;
2760 		diff = slot * period_slot;
2761 	} else {
2762 		/*
2763 		 * Private memory faults exceed (SLOTS-THRESHOLD)/SLOTS,
2764 		 * yet they are not on the local NUMA node. Speed up
2765 		 * NUMA scanning to get the memory moved over.
2766 		 */
2767 		int ratio = max(lr_ratio, ps_ratio);
2768 		diff = -(NUMA_PERIOD_THRESHOLD - ratio) * period_slot;
2769 	}
2770 
2771 	p->numa_scan_period = clamp(p->numa_scan_period + diff,
2772 			task_scan_min(p), task_scan_max(p));
2773 	memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
2774 }
2775 
2776 /*
2777  * Get the fraction of time the task has been running since the last
2778  * NUMA placement cycle. The scheduler keeps similar statistics, but
2779  * decays those on a 32ms period, which is orders of magnitude off
2780  * from the dozens-of-seconds NUMA balancing period. Use the scheduler
2781  * stats only if the task is so new there are no NUMA statistics yet.
2782  */
numa_get_avg_runtime(struct task_struct * p,u64 * period)2783 static u64 numa_get_avg_runtime(struct task_struct *p, u64 *period)
2784 {
2785 	u64 runtime, delta, now;
2786 	/* Use the start of this time slice to avoid calculations. */
2787 	now = p->se.exec_start;
2788 	runtime = p->se.sum_exec_runtime;
2789 
2790 	if (p->last_task_numa_placement) {
2791 		delta = runtime - p->last_sum_exec_runtime;
2792 		*period = now - p->last_task_numa_placement;
2793 
2794 		/* Avoid time going backwards, prevent potential divide error: */
2795 		if (unlikely((s64)*period < 0))
2796 			*period = 0;
2797 	} else {
2798 		delta = p->se.avg.load_sum;
2799 		*period = LOAD_AVG_MAX;
2800 	}
2801 
2802 	p->last_sum_exec_runtime = runtime;
2803 	p->last_task_numa_placement = now;
2804 
2805 	return delta;
2806 }
2807 
2808 /*
2809  * Determine the preferred nid for a task in a numa_group. This needs to
2810  * be done in a way that produces consistent results with group_weight,
2811  * otherwise workloads might not converge.
2812  */
preferred_group_nid(struct task_struct * p,int nid)2813 static int preferred_group_nid(struct task_struct *p, int nid)
2814 {
2815 	nodemask_t nodes;
2816 	int dist;
2817 
2818 	/* Direct connections between all NUMA nodes. */
2819 	if (sched_numa_topology_type == NUMA_DIRECT)
2820 		return nid;
2821 
2822 	/*
2823 	 * On a system with glueless mesh NUMA topology, group_weight
2824 	 * scores nodes according to the number of NUMA hinting faults on
2825 	 * both the node itself, and on nearby nodes.
2826 	 */
2827 	if (sched_numa_topology_type == NUMA_GLUELESS_MESH) {
2828 		unsigned long score, max_score = 0;
2829 		int node, max_node = nid;
2830 
2831 		dist = sched_max_numa_distance;
2832 
2833 		for_each_node_state(node, N_CPU) {
2834 			score = group_weight(p, node, dist);
2835 			if (score > max_score) {
2836 				max_score = score;
2837 				max_node = node;
2838 			}
2839 		}
2840 		return max_node;
2841 	}
2842 
2843 	/*
2844 	 * Finding the preferred nid in a system with NUMA backplane
2845 	 * interconnect topology is more involved. The goal is to locate
2846 	 * tasks from numa_groups near each other in the system, and
2847 	 * untangle workloads from different sides of the system. This requires
2848 	 * searching down the hierarchy of node groups, recursively searching
2849 	 * inside the highest scoring group of nodes. The nodemask tricks
2850 	 * keep the complexity of the search down.
2851 	 */
2852 	nodes = node_states[N_CPU];
2853 	for (dist = sched_max_numa_distance; dist > LOCAL_DISTANCE; dist--) {
2854 		unsigned long max_faults = 0;
2855 		nodemask_t max_group = NODE_MASK_NONE;
2856 		int a, b;
2857 
2858 		/* Are there nodes at this distance from each other? */
2859 		if (!find_numa_distance(dist))
2860 			continue;
2861 
2862 		for_each_node_mask(a, nodes) {
2863 			unsigned long faults = 0;
2864 			nodemask_t this_group;
2865 			nodes_clear(this_group);
2866 
2867 			/* Sum group's NUMA faults; includes a==b case. */
2868 			for_each_node_mask(b, nodes) {
2869 				if (node_distance(a, b) < dist) {
2870 					faults += group_faults(p, b);
2871 					node_set(b, this_group);
2872 					node_clear(b, nodes);
2873 				}
2874 			}
2875 
2876 			/* Remember the top group. */
2877 			if (faults > max_faults) {
2878 				max_faults = faults;
2879 				max_group = this_group;
2880 				/*
2881 				 * subtle: at the smallest distance there is
2882 				 * just one node left in each "group", the
2883 				 * winner is the preferred nid.
2884 				 */
2885 				nid = a;
2886 			}
2887 		}
2888 		/* Next round, evaluate the nodes within max_group. */
2889 		if (!max_faults)
2890 			break;
2891 		nodes = max_group;
2892 	}
2893 	return nid;
2894 }
2895 
task_numa_placement(struct task_struct * p)2896 static void task_numa_placement(struct task_struct *p)
2897 {
2898 	int seq, nid, max_nid = NUMA_NO_NODE;
2899 	unsigned long max_faults = 0;
2900 	unsigned long fault_types[2] = { 0, 0 };
2901 	unsigned long total_faults;
2902 	u64 runtime, period;
2903 	spinlock_t *group_lock = NULL;
2904 	struct numa_group *ng;
2905 
2906 	/*
2907 	 * The p->mm->numa_scan_seq field gets updated without
2908 	 * exclusive access. Use READ_ONCE() here to ensure
2909 	 * that the field is read in a single access:
2910 	 */
2911 	seq = READ_ONCE(p->mm->numa_scan_seq);
2912 	if (p->numa_scan_seq == seq)
2913 		return;
2914 	p->numa_scan_seq = seq;
2915 	p->numa_scan_period_max = task_scan_max(p);
2916 
2917 	total_faults = p->numa_faults_locality[0] +
2918 		       p->numa_faults_locality[1];
2919 	runtime = numa_get_avg_runtime(p, &period);
2920 
2921 	/* If the task is part of a group prevent parallel updates to group stats */
2922 	ng = deref_curr_numa_group(p);
2923 	if (ng) {
2924 		group_lock = &ng->lock;
2925 		spin_lock_irq(group_lock);
2926 	}
2927 
2928 	/* Find the node with the highest number of faults */
2929 	for_each_online_node(nid) {
2930 		/* Keep track of the offsets in numa_faults array */
2931 		int mem_idx, membuf_idx, cpu_idx, cpubuf_idx;
2932 		unsigned long faults = 0, group_faults = 0;
2933 		int priv;
2934 
2935 		for (priv = 0; priv < NR_NUMA_HINT_FAULT_TYPES; priv++) {
2936 			long diff, f_diff, f_weight;
2937 
2938 			mem_idx = task_faults_idx(NUMA_MEM, nid, priv);
2939 			membuf_idx = task_faults_idx(NUMA_MEMBUF, nid, priv);
2940 			cpu_idx = task_faults_idx(NUMA_CPU, nid, priv);
2941 			cpubuf_idx = task_faults_idx(NUMA_CPUBUF, nid, priv);
2942 
2943 			/* Decay existing window, copy faults since last scan */
2944 			diff = p->numa_faults[membuf_idx] - p->numa_faults[mem_idx] / 2;
2945 			fault_types[priv] += p->numa_faults[membuf_idx];
2946 			p->numa_faults[membuf_idx] = 0;
2947 
2948 			/*
2949 			 * Normalize the faults_from, so all tasks in a group
2950 			 * count according to CPU use, instead of by the raw
2951 			 * number of faults. Tasks with little runtime have
2952 			 * little over-all impact on throughput, and thus their
2953 			 * faults are less important.
2954 			 */
2955 			f_weight = div64_u64(runtime << 16, period + 1);
2956 			f_weight = (f_weight * p->numa_faults[cpubuf_idx]) /
2957 				   (total_faults + 1);
2958 			f_diff = f_weight - p->numa_faults[cpu_idx] / 2;
2959 			p->numa_faults[cpubuf_idx] = 0;
2960 
2961 			p->numa_faults[mem_idx] += diff;
2962 			p->numa_faults[cpu_idx] += f_diff;
2963 			faults += p->numa_faults[mem_idx];
2964 			p->total_numa_faults += diff;
2965 			if (ng) {
2966 				/*
2967 				 * safe because we can only change our own group
2968 				 *
2969 				 * mem_idx represents the offset for a given
2970 				 * nid and priv in a specific region because it
2971 				 * is at the beginning of the numa_faults array.
2972 				 */
2973 				ng->faults[mem_idx] += diff;
2974 				ng->faults[cpu_idx] += f_diff;
2975 				ng->total_faults += diff;
2976 				group_faults += ng->faults[mem_idx];
2977 			}
2978 		}
2979 
2980 		if (!ng) {
2981 			if (faults > max_faults) {
2982 				max_faults = faults;
2983 				max_nid = nid;
2984 			}
2985 		} else if (group_faults > max_faults) {
2986 			max_faults = group_faults;
2987 			max_nid = nid;
2988 		}
2989 	}
2990 
2991 	/* Cannot migrate task to CPU-less node */
2992 	max_nid = numa_nearest_node(max_nid, N_CPU);
2993 
2994 	if (ng) {
2995 		numa_group_count_active_nodes(ng);
2996 		spin_unlock_irq(group_lock);
2997 		max_nid = preferred_group_nid(p, max_nid);
2998 	}
2999 
3000 	if (max_faults) {
3001 		/* Set the new preferred node */
3002 		if (max_nid != p->numa_preferred_nid)
3003 			sched_setnuma(p, max_nid);
3004 	}
3005 
3006 	update_task_scan_period(p, fault_types[0], fault_types[1]);
3007 }
3008 
get_numa_group(struct numa_group * grp)3009 static inline int get_numa_group(struct numa_group *grp)
3010 {
3011 	return refcount_inc_not_zero(&grp->refcount);
3012 }
3013 
put_numa_group(struct numa_group * grp)3014 static inline void put_numa_group(struct numa_group *grp)
3015 {
3016 	if (refcount_dec_and_test(&grp->refcount))
3017 		kfree_rcu(grp, rcu);
3018 }
3019 
task_numa_group(struct task_struct * p,int cpupid,int flags,int * priv)3020 static void task_numa_group(struct task_struct *p, int cpupid, int flags,
3021 			int *priv)
3022 {
3023 	struct numa_group *grp, *my_grp;
3024 	struct task_struct *tsk;
3025 	bool join = false;
3026 	int cpu = cpupid_to_cpu(cpupid);
3027 	int i;
3028 
3029 	if (unlikely(!deref_curr_numa_group(p))) {
3030 		unsigned int size = sizeof(struct numa_group) +
3031 				    NR_NUMA_HINT_FAULT_STATS *
3032 				    nr_node_ids * sizeof(unsigned long);
3033 
3034 		grp = kzalloc(size, GFP_KERNEL | __GFP_NOWARN);
3035 		if (!grp)
3036 			return;
3037 
3038 		refcount_set(&grp->refcount, 1);
3039 		grp->active_nodes = 1;
3040 		grp->max_faults_cpu = 0;
3041 		spin_lock_init(&grp->lock);
3042 		grp->gid = p->pid;
3043 
3044 		for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
3045 			grp->faults[i] = p->numa_faults[i];
3046 
3047 		grp->total_faults = p->total_numa_faults;
3048 
3049 		grp->nr_tasks++;
3050 		rcu_assign_pointer(p->numa_group, grp);
3051 	}
3052 
3053 	rcu_read_lock();
3054 	tsk = READ_ONCE(cpu_rq(cpu)->curr);
3055 
3056 	if (!cpupid_match_pid(tsk, cpupid))
3057 		goto no_join;
3058 
3059 	grp = rcu_dereference(tsk->numa_group);
3060 	if (!grp)
3061 		goto no_join;
3062 
3063 	my_grp = deref_curr_numa_group(p);
3064 	if (grp == my_grp)
3065 		goto no_join;
3066 
3067 	/*
3068 	 * Only join the other group if its bigger; if we're the bigger group,
3069 	 * the other task will join us.
3070 	 */
3071 	if (my_grp->nr_tasks > grp->nr_tasks)
3072 		goto no_join;
3073 
3074 	/*
3075 	 * Tie-break on the grp address.
3076 	 */
3077 	if (my_grp->nr_tasks == grp->nr_tasks && my_grp > grp)
3078 		goto no_join;
3079 
3080 	/* Always join threads in the same process. */
3081 	if (tsk->mm == current->mm)
3082 		join = true;
3083 
3084 	/* Simple filter to avoid false positives due to PID collisions */
3085 	if (flags & TNF_SHARED)
3086 		join = true;
3087 
3088 	/* Update priv based on whether false sharing was detected */
3089 	*priv = !join;
3090 
3091 	if (join && !get_numa_group(grp))
3092 		goto no_join;
3093 
3094 	rcu_read_unlock();
3095 
3096 	if (!join)
3097 		return;
3098 
3099 	WARN_ON_ONCE(irqs_disabled());
3100 	double_lock_irq(&my_grp->lock, &grp->lock);
3101 
3102 	for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++) {
3103 		my_grp->faults[i] -= p->numa_faults[i];
3104 		grp->faults[i] += p->numa_faults[i];
3105 	}
3106 	my_grp->total_faults -= p->total_numa_faults;
3107 	grp->total_faults += p->total_numa_faults;
3108 
3109 	my_grp->nr_tasks--;
3110 	grp->nr_tasks++;
3111 
3112 	spin_unlock(&my_grp->lock);
3113 	spin_unlock_irq(&grp->lock);
3114 
3115 	rcu_assign_pointer(p->numa_group, grp);
3116 
3117 	put_numa_group(my_grp);
3118 	return;
3119 
3120 no_join:
3121 	rcu_read_unlock();
3122 	return;
3123 }
3124 
3125 /*
3126  * Get rid of NUMA statistics associated with a task (either current or dead).
3127  * If @final is set, the task is dead and has reached refcount zero, so we can
3128  * safely free all relevant data structures. Otherwise, there might be
3129  * concurrent reads from places like load balancing and procfs, and we should
3130  * reset the data back to default state without freeing ->numa_faults.
3131  */
task_numa_free(struct task_struct * p,bool final)3132 void task_numa_free(struct task_struct *p, bool final)
3133 {
3134 	/* safe: p either is current or is being freed by current */
3135 	struct numa_group *grp = rcu_dereference_raw(p->numa_group);
3136 	unsigned long *numa_faults = p->numa_faults;
3137 	unsigned long flags;
3138 	int i;
3139 
3140 	if (!numa_faults)
3141 		return;
3142 
3143 	if (grp) {
3144 		spin_lock_irqsave(&grp->lock, flags);
3145 		for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
3146 			grp->faults[i] -= p->numa_faults[i];
3147 		grp->total_faults -= p->total_numa_faults;
3148 
3149 		grp->nr_tasks--;
3150 		spin_unlock_irqrestore(&grp->lock, flags);
3151 		RCU_INIT_POINTER(p->numa_group, NULL);
3152 		put_numa_group(grp);
3153 	}
3154 
3155 	if (final) {
3156 		p->numa_faults = NULL;
3157 		kfree(numa_faults);
3158 	} else {
3159 		p->total_numa_faults = 0;
3160 		for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
3161 			numa_faults[i] = 0;
3162 	}
3163 }
3164 
3165 /*
3166  * Got a PROT_NONE fault for a page on @node.
3167  */
task_numa_fault(int last_cpupid,int mem_node,int pages,int flags)3168 void task_numa_fault(int last_cpupid, int mem_node, int pages, int flags)
3169 {
3170 	struct task_struct *p = current;
3171 	bool migrated = flags & TNF_MIGRATED;
3172 	int cpu_node = task_node(current);
3173 	int local = !!(flags & TNF_FAULT_LOCAL);
3174 	struct numa_group *ng;
3175 	int priv;
3176 
3177 	if (!static_branch_likely(&sched_numa_balancing))
3178 		return;
3179 
3180 	/* for example, ksmd faulting in a user's mm */
3181 	if (!p->mm)
3182 		return;
3183 
3184 	/*
3185 	 * NUMA faults statistics are unnecessary for the slow memory
3186 	 * node for memory tiering mode.
3187 	 */
3188 	if (!node_is_toptier(mem_node) &&
3189 	    (sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING ||
3190 	     !cpupid_valid(last_cpupid)))
3191 		return;
3192 
3193 	/* Allocate buffer to track faults on a per-node basis */
3194 	if (unlikely(!p->numa_faults)) {
3195 		int size = sizeof(*p->numa_faults) *
3196 			   NR_NUMA_HINT_FAULT_BUCKETS * nr_node_ids;
3197 
3198 		p->numa_faults = kzalloc(size, GFP_KERNEL|__GFP_NOWARN);
3199 		if (!p->numa_faults)
3200 			return;
3201 
3202 		p->total_numa_faults = 0;
3203 		memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
3204 	}
3205 
3206 	/*
3207 	 * First accesses are treated as private, otherwise consider accesses
3208 	 * to be private if the accessing pid has not changed
3209 	 */
3210 	if (unlikely(last_cpupid == (-1 & LAST_CPUPID_MASK))) {
3211 		priv = 1;
3212 	} else {
3213 		priv = cpupid_match_pid(p, last_cpupid);
3214 		if (!priv && !(flags & TNF_NO_GROUP))
3215 			task_numa_group(p, last_cpupid, flags, &priv);
3216 	}
3217 
3218 	/*
3219 	 * If a workload spans multiple NUMA nodes, a shared fault that
3220 	 * occurs wholly within the set of nodes that the workload is
3221 	 * actively using should be counted as local. This allows the
3222 	 * scan rate to slow down when a workload has settled down.
3223 	 */
3224 	ng = deref_curr_numa_group(p);
3225 	if (!priv && !local && ng && ng->active_nodes > 1 &&
3226 				numa_is_active_node(cpu_node, ng) &&
3227 				numa_is_active_node(mem_node, ng))
3228 		local = 1;
3229 
3230 	/*
3231 	 * Retry to migrate task to preferred node periodically, in case it
3232 	 * previously failed, or the scheduler moved us.
3233 	 */
3234 	if (time_after(jiffies, p->numa_migrate_retry)) {
3235 		task_numa_placement(p);
3236 		numa_migrate_preferred(p);
3237 	}
3238 
3239 	if (migrated)
3240 		p->numa_pages_migrated += pages;
3241 	if (flags & TNF_MIGRATE_FAIL)
3242 		p->numa_faults_locality[2] += pages;
3243 
3244 	p->numa_faults[task_faults_idx(NUMA_MEMBUF, mem_node, priv)] += pages;
3245 	p->numa_faults[task_faults_idx(NUMA_CPUBUF, cpu_node, priv)] += pages;
3246 	p->numa_faults_locality[local] += pages;
3247 }
3248 
reset_ptenuma_scan(struct task_struct * p)3249 static void reset_ptenuma_scan(struct task_struct *p)
3250 {
3251 	/*
3252 	 * We only did a read acquisition of the mmap sem, so
3253 	 * p->mm->numa_scan_seq is written to without exclusive access
3254 	 * and the update is not guaranteed to be atomic. That's not
3255 	 * much of an issue though, since this is just used for
3256 	 * statistical sampling. Use READ_ONCE/WRITE_ONCE, which are not
3257 	 * expensive, to avoid any form of compiler optimizations:
3258 	 */
3259 	WRITE_ONCE(p->mm->numa_scan_seq, READ_ONCE(p->mm->numa_scan_seq) + 1);
3260 	p->mm->numa_scan_offset = 0;
3261 }
3262 
vma_is_accessed(struct mm_struct * mm,struct vm_area_struct * vma)3263 static bool vma_is_accessed(struct mm_struct *mm, struct vm_area_struct *vma)
3264 {
3265 	unsigned long pids;
3266 	/*
3267 	 * Allow unconditional access first two times, so that all the (pages)
3268 	 * of VMAs get prot_none fault introduced irrespective of accesses.
3269 	 * This is also done to avoid any side effect of task scanning
3270 	 * amplifying the unfairness of disjoint set of VMAs' access.
3271 	 */
3272 	if ((READ_ONCE(current->mm->numa_scan_seq) - vma->numab_state->start_scan_seq) < 2)
3273 		return true;
3274 
3275 	pids = vma->numab_state->pids_active[0] | vma->numab_state->pids_active[1];
3276 	if (test_bit(hash_32(current->pid, ilog2(BITS_PER_LONG)), &pids))
3277 		return true;
3278 
3279 	/*
3280 	 * Complete a scan that has already started regardless of PID access, or
3281 	 * some VMAs may never be scanned in multi-threaded applications:
3282 	 */
3283 	if (mm->numa_scan_offset > vma->vm_start) {
3284 		trace_sched_skip_vma_numa(mm, vma, NUMAB_SKIP_IGNORE_PID);
3285 		return true;
3286 	}
3287 
3288 	/*
3289 	 * This vma has not been accessed for a while, and if the number
3290 	 * the threads in the same process is low, which means no other
3291 	 * threads can help scan this vma, force a vma scan.
3292 	 */
3293 	if (READ_ONCE(mm->numa_scan_seq) >
3294 	   (vma->numab_state->prev_scan_seq + get_nr_threads(current)))
3295 		return true;
3296 
3297 	return false;
3298 }
3299 
3300 #define VMA_PID_RESET_PERIOD (4 * sysctl_numa_balancing_scan_delay)
3301 
3302 /*
3303  * The expensive part of numa migration is done from task_work context.
3304  * Triggered from task_tick_numa().
3305  */
task_numa_work(struct callback_head * work)3306 static void task_numa_work(struct callback_head *work)
3307 {
3308 	unsigned long migrate, next_scan, now = jiffies;
3309 	struct task_struct *p = current;
3310 	struct mm_struct *mm = p->mm;
3311 	u64 runtime = p->se.sum_exec_runtime;
3312 	struct vm_area_struct *vma;
3313 	unsigned long start, end;
3314 	unsigned long nr_pte_updates = 0;
3315 	long pages, virtpages;
3316 	struct vma_iterator vmi;
3317 	bool vma_pids_skipped;
3318 	bool vma_pids_forced = false;
3319 
3320 	SCHED_WARN_ON(p != container_of(work, struct task_struct, numa_work));
3321 
3322 	work->next = work;
3323 	/*
3324 	 * Who cares about NUMA placement when they're dying.
3325 	 *
3326 	 * NOTE: make sure not to dereference p->mm before this check,
3327 	 * exit_task_work() happens _after_ exit_mm() so we could be called
3328 	 * without p->mm even though we still had it when we enqueued this
3329 	 * work.
3330 	 */
3331 	if (p->flags & PF_EXITING)
3332 		return;
3333 
3334 	if (!mm->numa_next_scan) {
3335 		mm->numa_next_scan = now +
3336 			msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
3337 	}
3338 
3339 	/*
3340 	 * Enforce maximal scan/migration frequency..
3341 	 */
3342 	migrate = mm->numa_next_scan;
3343 	if (time_before(now, migrate))
3344 		return;
3345 
3346 	if (p->numa_scan_period == 0) {
3347 		p->numa_scan_period_max = task_scan_max(p);
3348 		p->numa_scan_period = task_scan_start(p);
3349 	}
3350 
3351 	next_scan = now + msecs_to_jiffies(p->numa_scan_period);
3352 	if (!try_cmpxchg(&mm->numa_next_scan, &migrate, next_scan))
3353 		return;
3354 
3355 	/*
3356 	 * Delay this task enough that another task of this mm will likely win
3357 	 * the next time around.
3358 	 */
3359 	p->node_stamp += 2 * TICK_NSEC;
3360 
3361 	pages = sysctl_numa_balancing_scan_size;
3362 	pages <<= 20 - PAGE_SHIFT; /* MB in pages */
3363 	virtpages = pages * 8;	   /* Scan up to this much virtual space */
3364 	if (!pages)
3365 		return;
3366 
3367 
3368 	if (!mmap_read_trylock(mm))
3369 		return;
3370 
3371 	/*
3372 	 * VMAs are skipped if the current PID has not trapped a fault within
3373 	 * the VMA recently. Allow scanning to be forced if there is no
3374 	 * suitable VMA remaining.
3375 	 */
3376 	vma_pids_skipped = false;
3377 
3378 retry_pids:
3379 	start = mm->numa_scan_offset;
3380 	vma_iter_init(&vmi, mm, start);
3381 	vma = vma_next(&vmi);
3382 	if (!vma) {
3383 		reset_ptenuma_scan(p);
3384 		start = 0;
3385 		vma_iter_set(&vmi, start);
3386 		vma = vma_next(&vmi);
3387 	}
3388 
3389 	for (; vma; vma = vma_next(&vmi)) {
3390 		if (!vma_migratable(vma) || !vma_policy_mof(vma) ||
3391 			is_vm_hugetlb_page(vma) || (vma->vm_flags & VM_MIXEDMAP)) {
3392 			trace_sched_skip_vma_numa(mm, vma, NUMAB_SKIP_UNSUITABLE);
3393 			continue;
3394 		}
3395 
3396 		/*
3397 		 * Shared library pages mapped by multiple processes are not
3398 		 * migrated as it is expected they are cache replicated. Avoid
3399 		 * hinting faults in read-only file-backed mappings or the vDSO
3400 		 * as migrating the pages will be of marginal benefit.
3401 		 */
3402 		if (!vma->vm_mm ||
3403 		    (vma->vm_file && (vma->vm_flags & (VM_READ|VM_WRITE)) == (VM_READ))) {
3404 			trace_sched_skip_vma_numa(mm, vma, NUMAB_SKIP_SHARED_RO);
3405 			continue;
3406 		}
3407 
3408 		/*
3409 		 * Skip inaccessible VMAs to avoid any confusion between
3410 		 * PROT_NONE and NUMA hinting PTEs
3411 		 */
3412 		if (!vma_is_accessible(vma)) {
3413 			trace_sched_skip_vma_numa(mm, vma, NUMAB_SKIP_INACCESSIBLE);
3414 			continue;
3415 		}
3416 
3417 		/* Initialise new per-VMA NUMAB state. */
3418 		if (!vma->numab_state) {
3419 			struct vma_numab_state *ptr;
3420 
3421 			ptr = kzalloc(sizeof(*ptr), GFP_KERNEL);
3422 			if (!ptr)
3423 				continue;
3424 
3425 			if (cmpxchg(&vma->numab_state, NULL, ptr)) {
3426 				kfree(ptr);
3427 				continue;
3428 			}
3429 
3430 			vma->numab_state->start_scan_seq = mm->numa_scan_seq;
3431 
3432 			vma->numab_state->next_scan = now +
3433 				msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
3434 
3435 			/* Reset happens after 4 times scan delay of scan start */
3436 			vma->numab_state->pids_active_reset =  vma->numab_state->next_scan +
3437 				msecs_to_jiffies(VMA_PID_RESET_PERIOD);
3438 
3439 			/*
3440 			 * Ensure prev_scan_seq does not match numa_scan_seq,
3441 			 * to prevent VMAs being skipped prematurely on the
3442 			 * first scan:
3443 			 */
3444 			 vma->numab_state->prev_scan_seq = mm->numa_scan_seq - 1;
3445 		}
3446 
3447 		/*
3448 		 * Scanning the VMAs of short lived tasks add more overhead. So
3449 		 * delay the scan for new VMAs.
3450 		 */
3451 		if (mm->numa_scan_seq && time_before(jiffies,
3452 						vma->numab_state->next_scan)) {
3453 			trace_sched_skip_vma_numa(mm, vma, NUMAB_SKIP_SCAN_DELAY);
3454 			continue;
3455 		}
3456 
3457 		/* RESET access PIDs regularly for old VMAs. */
3458 		if (mm->numa_scan_seq &&
3459 				time_after(jiffies, vma->numab_state->pids_active_reset)) {
3460 			vma->numab_state->pids_active_reset = vma->numab_state->pids_active_reset +
3461 				msecs_to_jiffies(VMA_PID_RESET_PERIOD);
3462 			vma->numab_state->pids_active[0] = READ_ONCE(vma->numab_state->pids_active[1]);
3463 			vma->numab_state->pids_active[1] = 0;
3464 		}
3465 
3466 		/* Do not rescan VMAs twice within the same sequence. */
3467 		if (vma->numab_state->prev_scan_seq == mm->numa_scan_seq) {
3468 			mm->numa_scan_offset = vma->vm_end;
3469 			trace_sched_skip_vma_numa(mm, vma, NUMAB_SKIP_SEQ_COMPLETED);
3470 			continue;
3471 		}
3472 
3473 		/*
3474 		 * Do not scan the VMA if task has not accessed it, unless no other
3475 		 * VMA candidate exists.
3476 		 */
3477 		if (!vma_pids_forced && !vma_is_accessed(mm, vma)) {
3478 			vma_pids_skipped = true;
3479 			trace_sched_skip_vma_numa(mm, vma, NUMAB_SKIP_PID_INACTIVE);
3480 			continue;
3481 		}
3482 
3483 		do {
3484 			start = max(start, vma->vm_start);
3485 			end = ALIGN(start + (pages << PAGE_SHIFT), HPAGE_SIZE);
3486 			end = min(end, vma->vm_end);
3487 			nr_pte_updates = change_prot_numa(vma, start, end);
3488 
3489 			/*
3490 			 * Try to scan sysctl_numa_balancing_size worth of
3491 			 * hpages that have at least one present PTE that
3492 			 * is not already PTE-numa. If the VMA contains
3493 			 * areas that are unused or already full of prot_numa
3494 			 * PTEs, scan up to virtpages, to skip through those
3495 			 * areas faster.
3496 			 */
3497 			if (nr_pte_updates)
3498 				pages -= (end - start) >> PAGE_SHIFT;
3499 			virtpages -= (end - start) >> PAGE_SHIFT;
3500 
3501 			start = end;
3502 			if (pages <= 0 || virtpages <= 0)
3503 				goto out;
3504 
3505 			cond_resched();
3506 		} while (end != vma->vm_end);
3507 
3508 		/* VMA scan is complete, do not scan until next sequence. */
3509 		vma->numab_state->prev_scan_seq = mm->numa_scan_seq;
3510 
3511 		/*
3512 		 * Only force scan within one VMA at a time, to limit the
3513 		 * cost of scanning a potentially uninteresting VMA.
3514 		 */
3515 		if (vma_pids_forced)
3516 			break;
3517 	}
3518 
3519 	/*
3520 	 * If no VMAs are remaining and VMAs were skipped due to the PID
3521 	 * not accessing the VMA previously, then force a scan to ensure
3522 	 * forward progress:
3523 	 */
3524 	if (!vma && !vma_pids_forced && vma_pids_skipped) {
3525 		vma_pids_forced = true;
3526 		goto retry_pids;
3527 	}
3528 
3529 out:
3530 	/*
3531 	 * It is possible to reach the end of the VMA list but the last few
3532 	 * VMAs are not guaranteed to the vma_migratable. If they are not, we
3533 	 * would find the !migratable VMA on the next scan but not reset the
3534 	 * scanner to the start so check it now.
3535 	 */
3536 	if (vma)
3537 		mm->numa_scan_offset = start;
3538 	else
3539 		reset_ptenuma_scan(p);
3540 	mmap_read_unlock(mm);
3541 
3542 	/*
3543 	 * Make sure tasks use at least 32x as much time to run other code
3544 	 * than they used here, to limit NUMA PTE scanning overhead to 3% max.
3545 	 * Usually update_task_scan_period slows down scanning enough; on an
3546 	 * overloaded system we need to limit overhead on a per task basis.
3547 	 */
3548 	if (unlikely(p->se.sum_exec_runtime != runtime)) {
3549 		u64 diff = p->se.sum_exec_runtime - runtime;
3550 		p->node_stamp += 32 * diff;
3551 	}
3552 }
3553 
init_numa_balancing(unsigned long clone_flags,struct task_struct * p)3554 void init_numa_balancing(unsigned long clone_flags, struct task_struct *p)
3555 {
3556 	int mm_users = 0;
3557 	struct mm_struct *mm = p->mm;
3558 
3559 	if (mm) {
3560 		mm_users = atomic_read(&mm->mm_users);
3561 		if (mm_users == 1) {
3562 			mm->numa_next_scan = jiffies + msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
3563 			mm->numa_scan_seq = 0;
3564 		}
3565 	}
3566 	p->node_stamp			= 0;
3567 	p->numa_scan_seq		= mm ? mm->numa_scan_seq : 0;
3568 	p->numa_scan_period		= sysctl_numa_balancing_scan_delay;
3569 	p->numa_migrate_retry		= 0;
3570 	/* Protect against double add, see task_tick_numa and task_numa_work */
3571 	p->numa_work.next		= &p->numa_work;
3572 	p->numa_faults			= NULL;
3573 	p->numa_pages_migrated		= 0;
3574 	p->total_numa_faults		= 0;
3575 	RCU_INIT_POINTER(p->numa_group, NULL);
3576 	p->last_task_numa_placement	= 0;
3577 	p->last_sum_exec_runtime	= 0;
3578 
3579 	init_task_work(&p->numa_work, task_numa_work);
3580 
3581 	/* New address space, reset the preferred nid */
3582 	if (!(clone_flags & CLONE_VM)) {
3583 		p->numa_preferred_nid = NUMA_NO_NODE;
3584 		return;
3585 	}
3586 
3587 	/*
3588 	 * New thread, keep existing numa_preferred_nid which should be copied
3589 	 * already by arch_dup_task_struct but stagger when scans start.
3590 	 */
3591 	if (mm) {
3592 		unsigned int delay;
3593 
3594 		delay = min_t(unsigned int, task_scan_max(current),
3595 			current->numa_scan_period * mm_users * NSEC_PER_MSEC);
3596 		delay += 2 * TICK_NSEC;
3597 		p->node_stamp = delay;
3598 	}
3599 }
3600 
3601 /*
3602  * Drive the periodic memory faults..
3603  */
task_tick_numa(struct rq * rq,struct task_struct * curr)3604 static void task_tick_numa(struct rq *rq, struct task_struct *curr)
3605 {
3606 	struct callback_head *work = &curr->numa_work;
3607 	u64 period, now;
3608 
3609 	/*
3610 	 * We don't care about NUMA placement if we don't have memory.
3611 	 */
3612 	if (!curr->mm || (curr->flags & (PF_EXITING | PF_KTHREAD)) || work->next != work)
3613 		return;
3614 
3615 	/*
3616 	 * Using runtime rather than walltime has the dual advantage that
3617 	 * we (mostly) drive the selection from busy threads and that the
3618 	 * task needs to have done some actual work before we bother with
3619 	 * NUMA placement.
3620 	 */
3621 	now = curr->se.sum_exec_runtime;
3622 	period = (u64)curr->numa_scan_period * NSEC_PER_MSEC;
3623 
3624 	if (now > curr->node_stamp + period) {
3625 		if (!curr->node_stamp)
3626 			curr->numa_scan_period = task_scan_start(curr);
3627 		curr->node_stamp += period;
3628 
3629 		if (!time_before(jiffies, curr->mm->numa_next_scan))
3630 			task_work_add(curr, work, TWA_RESUME);
3631 	}
3632 }
3633 
update_scan_period(struct task_struct * p,int new_cpu)3634 static void update_scan_period(struct task_struct *p, int new_cpu)
3635 {
3636 	int src_nid = cpu_to_node(task_cpu(p));
3637 	int dst_nid = cpu_to_node(new_cpu);
3638 
3639 	if (!static_branch_likely(&sched_numa_balancing))
3640 		return;
3641 
3642 	if (!p->mm || !p->numa_faults || (p->flags & PF_EXITING))
3643 		return;
3644 
3645 	if (src_nid == dst_nid)
3646 		return;
3647 
3648 	/*
3649 	 * Allow resets if faults have been trapped before one scan
3650 	 * has completed. This is most likely due to a new task that
3651 	 * is pulled cross-node due to wakeups or load balancing.
3652 	 */
3653 	if (p->numa_scan_seq) {
3654 		/*
3655 		 * Avoid scan adjustments if moving to the preferred
3656 		 * node or if the task was not previously running on
3657 		 * the preferred node.
3658 		 */
3659 		if (dst_nid == p->numa_preferred_nid ||
3660 		    (p->numa_preferred_nid != NUMA_NO_NODE &&
3661 			src_nid != p->numa_preferred_nid))
3662 			return;
3663 	}
3664 
3665 	p->numa_scan_period = task_scan_start(p);
3666 }
3667 
3668 #else
task_tick_numa(struct rq * rq,struct task_struct * curr)3669 static void task_tick_numa(struct rq *rq, struct task_struct *curr)
3670 {
3671 }
3672 
account_numa_enqueue(struct rq * rq,struct task_struct * p)3673 static inline void account_numa_enqueue(struct rq *rq, struct task_struct *p)
3674 {
3675 }
3676 
account_numa_dequeue(struct rq * rq,struct task_struct * p)3677 static inline void account_numa_dequeue(struct rq *rq, struct task_struct *p)
3678 {
3679 }
3680 
update_scan_period(struct task_struct * p,int new_cpu)3681 static inline void update_scan_period(struct task_struct *p, int new_cpu)
3682 {
3683 }
3684 
3685 #endif /* CONFIG_NUMA_BALANCING */
3686 
3687 static void
account_entity_enqueue(struct cfs_rq * cfs_rq,struct sched_entity * se)3688 account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
3689 {
3690 	update_load_add(&cfs_rq->load, se->load.weight);
3691 #ifdef CONFIG_SMP
3692 	if (entity_is_task(se)) {
3693 		struct rq *rq = rq_of(cfs_rq);
3694 
3695 		account_numa_enqueue(rq, task_of(se));
3696 		list_add(&se->group_node, &rq->cfs_tasks);
3697 	}
3698 #endif
3699 	cfs_rq->nr_queued++;
3700 }
3701 
3702 static void
account_entity_dequeue(struct cfs_rq * cfs_rq,struct sched_entity * se)3703 account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
3704 {
3705 	update_load_sub(&cfs_rq->load, se->load.weight);
3706 #ifdef CONFIG_SMP
3707 	if (entity_is_task(se)) {
3708 		account_numa_dequeue(rq_of(cfs_rq), task_of(se));
3709 		list_del_init(&se->group_node);
3710 	}
3711 #endif
3712 	cfs_rq->nr_queued--;
3713 }
3714 
3715 /*
3716  * Signed add and clamp on underflow.
3717  *
3718  * Explicitly do a load-store to ensure the intermediate value never hits
3719  * memory. This allows lockless observations without ever seeing the negative
3720  * values.
3721  */
3722 #define add_positive(_ptr, _val) do {                           \
3723 	typeof(_ptr) ptr = (_ptr);                              \
3724 	typeof(_val) val = (_val);                              \
3725 	typeof(*ptr) res, var = READ_ONCE(*ptr);                \
3726 								\
3727 	res = var + val;                                        \
3728 								\
3729 	if (val < 0 && res > var)                               \
3730 		res = 0;                                        \
3731 								\
3732 	WRITE_ONCE(*ptr, res);                                  \
3733 } while (0)
3734 
3735 /*
3736  * Unsigned subtract and clamp on underflow.
3737  *
3738  * Explicitly do a load-store to ensure the intermediate value never hits
3739  * memory. This allows lockless observations without ever seeing the negative
3740  * values.
3741  */
3742 #define sub_positive(_ptr, _val) do {				\
3743 	typeof(_ptr) ptr = (_ptr);				\
3744 	typeof(*ptr) val = (_val);				\
3745 	typeof(*ptr) res, var = READ_ONCE(*ptr);		\
3746 	res = var - val;					\
3747 	if (res > var)						\
3748 		res = 0;					\
3749 	WRITE_ONCE(*ptr, res);					\
3750 } while (0)
3751 
3752 /*
3753  * Remove and clamp on negative, from a local variable.
3754  *
3755  * A variant of sub_positive(), which does not use explicit load-store
3756  * and is thus optimized for local variable updates.
3757  */
3758 #define lsub_positive(_ptr, _val) do {				\
3759 	typeof(_ptr) ptr = (_ptr);				\
3760 	*ptr -= min_t(typeof(*ptr), *ptr, _val);		\
3761 } while (0)
3762 
3763 #ifdef CONFIG_SMP
3764 static inline void
enqueue_load_avg(struct cfs_rq * cfs_rq,struct sched_entity * se)3765 enqueue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
3766 {
3767 	cfs_rq->avg.load_avg += se->avg.load_avg;
3768 	cfs_rq->avg.load_sum += se_weight(se) * se->avg.load_sum;
3769 }
3770 
3771 static inline void
dequeue_load_avg(struct cfs_rq * cfs_rq,struct sched_entity * se)3772 dequeue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
3773 {
3774 	sub_positive(&cfs_rq->avg.load_avg, se->avg.load_avg);
3775 	sub_positive(&cfs_rq->avg.load_sum, se_weight(se) * se->avg.load_sum);
3776 	/* See update_cfs_rq_load_avg() */
3777 	cfs_rq->avg.load_sum = max_t(u32, cfs_rq->avg.load_sum,
3778 					  cfs_rq->avg.load_avg * PELT_MIN_DIVIDER);
3779 }
3780 #else
3781 static inline void
enqueue_load_avg(struct cfs_rq * cfs_rq,struct sched_entity * se)3782 enqueue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) { }
3783 static inline void
dequeue_load_avg(struct cfs_rq * cfs_rq,struct sched_entity * se)3784 dequeue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) { }
3785 #endif
3786 
3787 static void place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags);
3788 
reweight_entity(struct cfs_rq * cfs_rq,struct sched_entity * se,unsigned long weight)3789 static void reweight_entity(struct cfs_rq *cfs_rq, struct sched_entity *se,
3790 			    unsigned long weight)
3791 {
3792 	bool curr = cfs_rq->curr == se;
3793 
3794 	if (se->on_rq) {
3795 		/* commit outstanding execution time */
3796 		update_curr(cfs_rq);
3797 		update_entity_lag(cfs_rq, se);
3798 		se->deadline -= se->vruntime;
3799 		se->rel_deadline = 1;
3800 		if (!curr)
3801 			__dequeue_entity(cfs_rq, se);
3802 		update_load_sub(&cfs_rq->load, se->load.weight);
3803 	}
3804 	dequeue_load_avg(cfs_rq, se);
3805 
3806 	/*
3807 	 * Because we keep se->vlag = V - v_i, while: lag_i = w_i*(V - v_i),
3808 	 * we need to scale se->vlag when w_i changes.
3809 	 */
3810 	se->vlag = div_s64(se->vlag * se->load.weight, weight);
3811 	if (se->rel_deadline)
3812 		se->deadline = div_s64(se->deadline * se->load.weight, weight);
3813 
3814 	update_load_set(&se->load, weight);
3815 
3816 #ifdef CONFIG_SMP
3817 	do {
3818 		u32 divider = get_pelt_divider(&se->avg);
3819 
3820 		se->avg.load_avg = div_u64(se_weight(se) * se->avg.load_sum, divider);
3821 	} while (0);
3822 #endif
3823 
3824 	enqueue_load_avg(cfs_rq, se);
3825 	if (se->on_rq) {
3826 		update_load_add(&cfs_rq->load, se->load.weight);
3827 		place_entity(cfs_rq, se, 0);
3828 		if (!curr)
3829 			__enqueue_entity(cfs_rq, se);
3830 
3831 		/*
3832 		 * The entity's vruntime has been adjusted, so let's check
3833 		 * whether the rq-wide min_vruntime needs updated too. Since
3834 		 * the calculations above require stable min_vruntime rather
3835 		 * than up-to-date one, we do the update at the end of the
3836 		 * reweight process.
3837 		 */
3838 		update_min_vruntime(cfs_rq);
3839 	}
3840 }
3841 
reweight_task_fair(struct rq * rq,struct task_struct * p,const struct load_weight * lw)3842 static void reweight_task_fair(struct rq *rq, struct task_struct *p,
3843 			       const struct load_weight *lw)
3844 {
3845 	struct sched_entity *se = &p->se;
3846 	struct cfs_rq *cfs_rq = cfs_rq_of(se);
3847 	struct load_weight *load = &se->load;
3848 
3849 	reweight_entity(cfs_rq, se, lw->weight);
3850 	load->inv_weight = lw->inv_weight;
3851 }
3852 
3853 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq);
3854 
3855 #ifdef CONFIG_FAIR_GROUP_SCHED
3856 #ifdef CONFIG_SMP
3857 /*
3858  * All this does is approximate the hierarchical proportion which includes that
3859  * global sum we all love to hate.
3860  *
3861  * That is, the weight of a group entity, is the proportional share of the
3862  * group weight based on the group runqueue weights. That is:
3863  *
3864  *                     tg->weight * grq->load.weight
3865  *   ge->load.weight = -----------------------------               (1)
3866  *                       \Sum grq->load.weight
3867  *
3868  * Now, because computing that sum is prohibitively expensive to compute (been
3869  * there, done that) we approximate it with this average stuff. The average
3870  * moves slower and therefore the approximation is cheaper and more stable.
3871  *
3872  * So instead of the above, we substitute:
3873  *
3874  *   grq->load.weight -> grq->avg.load_avg                         (2)
3875  *
3876  * which yields the following:
3877  *
3878  *                     tg->weight * grq->avg.load_avg
3879  *   ge->load.weight = ------------------------------              (3)
3880  *                             tg->load_avg
3881  *
3882  * Where: tg->load_avg ~= \Sum grq->avg.load_avg
3883  *
3884  * That is shares_avg, and it is right (given the approximation (2)).
3885  *
3886  * The problem with it is that because the average is slow -- it was designed
3887  * to be exactly that of course -- this leads to transients in boundary
3888  * conditions. In specific, the case where the group was idle and we start the
3889  * one task. It takes time for our CPU's grq->avg.load_avg to build up,
3890  * yielding bad latency etc..
3891  *
3892  * Now, in that special case (1) reduces to:
3893  *
3894  *                     tg->weight * grq->load.weight
3895  *   ge->load.weight = ----------------------------- = tg->weight   (4)
3896  *                         grp->load.weight
3897  *
3898  * That is, the sum collapses because all other CPUs are idle; the UP scenario.
3899  *
3900  * So what we do is modify our approximation (3) to approach (4) in the (near)
3901  * UP case, like:
3902  *
3903  *   ge->load.weight =
3904  *
3905  *              tg->weight * grq->load.weight
3906  *     ---------------------------------------------------         (5)
3907  *     tg->load_avg - grq->avg.load_avg + grq->load.weight
3908  *
3909  * But because grq->load.weight can drop to 0, resulting in a divide by zero,
3910  * we need to use grq->avg.load_avg as its lower bound, which then gives:
3911  *
3912  *
3913  *                     tg->weight * grq->load.weight
3914  *   ge->load.weight = -----------------------------		   (6)
3915  *                             tg_load_avg'
3916  *
3917  * Where:
3918  *
3919  *   tg_load_avg' = tg->load_avg - grq->avg.load_avg +
3920  *                  max(grq->load.weight, grq->avg.load_avg)
3921  *
3922  * And that is shares_weight and is icky. In the (near) UP case it approaches
3923  * (4) while in the normal case it approaches (3). It consistently
3924  * overestimates the ge->load.weight and therefore:
3925  *
3926  *   \Sum ge->load.weight >= tg->weight
3927  *
3928  * hence icky!
3929  */
calc_group_shares(struct cfs_rq * cfs_rq)3930 static long calc_group_shares(struct cfs_rq *cfs_rq)
3931 {
3932 	long tg_weight, tg_shares, load, shares;
3933 	struct task_group *tg = cfs_rq->tg;
3934 
3935 	tg_shares = READ_ONCE(tg->shares);
3936 
3937 	load = max(scale_load_down(cfs_rq->load.weight), cfs_rq->avg.load_avg);
3938 
3939 	tg_weight = atomic_long_read(&tg->load_avg);
3940 
3941 	/* Ensure tg_weight >= load */
3942 	tg_weight -= cfs_rq->tg_load_avg_contrib;
3943 	tg_weight += load;
3944 
3945 	shares = (tg_shares * load);
3946 	if (tg_weight)
3947 		shares /= tg_weight;
3948 
3949 	/*
3950 	 * MIN_SHARES has to be unscaled here to support per-CPU partitioning
3951 	 * of a group with small tg->shares value. It is a floor value which is
3952 	 * assigned as a minimum load.weight to the sched_entity representing
3953 	 * the group on a CPU.
3954 	 *
3955 	 * E.g. on 64-bit for a group with tg->shares of scale_load(15)=15*1024
3956 	 * on an 8-core system with 8 tasks each runnable on one CPU shares has
3957 	 * to be 15*1024*1/8=1920 instead of scale_load(MIN_SHARES)=2*1024. In
3958 	 * case no task is runnable on a CPU MIN_SHARES=2 should be returned
3959 	 * instead of 0.
3960 	 */
3961 	return clamp_t(long, shares, MIN_SHARES, tg_shares);
3962 }
3963 #endif /* CONFIG_SMP */
3964 
3965 /*
3966  * Recomputes the group entity based on the current state of its group
3967  * runqueue.
3968  */
update_cfs_group(struct sched_entity * se)3969 static void update_cfs_group(struct sched_entity *se)
3970 {
3971 	struct cfs_rq *gcfs_rq = group_cfs_rq(se);
3972 	long shares;
3973 
3974 	/*
3975 	 * When a group becomes empty, preserve its weight. This matters for
3976 	 * DELAY_DEQUEUE.
3977 	 */
3978 	if (!gcfs_rq || !gcfs_rq->load.weight)
3979 		return;
3980 
3981 	if (throttled_hierarchy(gcfs_rq))
3982 		return;
3983 
3984 #ifndef CONFIG_SMP
3985 	shares = READ_ONCE(gcfs_rq->tg->shares);
3986 #else
3987 	shares = calc_group_shares(gcfs_rq);
3988 #endif
3989 	if (unlikely(se->load.weight != shares))
3990 		reweight_entity(cfs_rq_of(se), se, shares);
3991 }
3992 
3993 #else /* CONFIG_FAIR_GROUP_SCHED */
update_cfs_group(struct sched_entity * se)3994 static inline void update_cfs_group(struct sched_entity *se)
3995 {
3996 }
3997 #endif /* CONFIG_FAIR_GROUP_SCHED */
3998 
cfs_rq_util_change(struct cfs_rq * cfs_rq,int flags)3999 static inline void cfs_rq_util_change(struct cfs_rq *cfs_rq, int flags)
4000 {
4001 	struct rq *rq = rq_of(cfs_rq);
4002 
4003 	if (&rq->cfs == cfs_rq) {
4004 		/*
4005 		 * There are a few boundary cases this might miss but it should
4006 		 * get called often enough that that should (hopefully) not be
4007 		 * a real problem.
4008 		 *
4009 		 * It will not get called when we go idle, because the idle
4010 		 * thread is a different class (!fair), nor will the utilization
4011 		 * number include things like RT tasks.
4012 		 *
4013 		 * As is, the util number is not freq-invariant (we'd have to
4014 		 * implement arch_scale_freq_capacity() for that).
4015 		 *
4016 		 * See cpu_util_cfs().
4017 		 */
4018 		cpufreq_update_util(rq, flags);
4019 	}
4020 }
4021 
4022 #ifdef CONFIG_SMP
load_avg_is_decayed(struct sched_avg * sa)4023 static inline bool load_avg_is_decayed(struct sched_avg *sa)
4024 {
4025 	if (sa->load_sum)
4026 		return false;
4027 
4028 	if (sa->util_sum)
4029 		return false;
4030 
4031 	if (sa->runnable_sum)
4032 		return false;
4033 
4034 	/*
4035 	 * _avg must be null when _sum are null because _avg = _sum / divider
4036 	 * Make sure that rounding and/or propagation of PELT values never
4037 	 * break this.
4038 	 */
4039 	SCHED_WARN_ON(sa->load_avg ||
4040 		      sa->util_avg ||
4041 		      sa->runnable_avg);
4042 
4043 	return true;
4044 }
4045 
cfs_rq_last_update_time(struct cfs_rq * cfs_rq)4046 static inline u64 cfs_rq_last_update_time(struct cfs_rq *cfs_rq)
4047 {
4048 	return u64_u32_load_copy(cfs_rq->avg.last_update_time,
4049 				 cfs_rq->last_update_time_copy);
4050 }
4051 #ifdef CONFIG_FAIR_GROUP_SCHED
4052 /*
4053  * Because list_add_leaf_cfs_rq always places a child cfs_rq on the list
4054  * immediately before a parent cfs_rq, and cfs_rqs are removed from the list
4055  * bottom-up, we only have to test whether the cfs_rq before us on the list
4056  * is our child.
4057  * If cfs_rq is not on the list, test whether a child needs its to be added to
4058  * connect a branch to the tree  * (see list_add_leaf_cfs_rq() for details).
4059  */
child_cfs_rq_on_list(struct cfs_rq * cfs_rq)4060 static inline bool child_cfs_rq_on_list(struct cfs_rq *cfs_rq)
4061 {
4062 	struct cfs_rq *prev_cfs_rq;
4063 	struct list_head *prev;
4064 	struct rq *rq = rq_of(cfs_rq);
4065 
4066 	if (cfs_rq->on_list) {
4067 		prev = cfs_rq->leaf_cfs_rq_list.prev;
4068 	} else {
4069 		prev = rq->tmp_alone_branch;
4070 	}
4071 
4072 	if (prev == &rq->leaf_cfs_rq_list)
4073 		return false;
4074 
4075 	prev_cfs_rq = container_of(prev, struct cfs_rq, leaf_cfs_rq_list);
4076 
4077 	return (prev_cfs_rq->tg->parent == cfs_rq->tg);
4078 }
4079 
cfs_rq_is_decayed(struct cfs_rq * cfs_rq)4080 static inline bool cfs_rq_is_decayed(struct cfs_rq *cfs_rq)
4081 {
4082 	if (cfs_rq->load.weight)
4083 		return false;
4084 
4085 	if (!load_avg_is_decayed(&cfs_rq->avg))
4086 		return false;
4087 
4088 	if (child_cfs_rq_on_list(cfs_rq))
4089 		return false;
4090 
4091 	return true;
4092 }
4093 
4094 /**
4095  * update_tg_load_avg - update the tg's load avg
4096  * @cfs_rq: the cfs_rq whose avg changed
4097  *
4098  * This function 'ensures': tg->load_avg := \Sum tg->cfs_rq[]->avg.load.
4099  * However, because tg->load_avg is a global value there are performance
4100  * considerations.
4101  *
4102  * In order to avoid having to look at the other cfs_rq's, we use a
4103  * differential update where we store the last value we propagated. This in
4104  * turn allows skipping updates if the differential is 'small'.
4105  *
4106  * Updating tg's load_avg is necessary before update_cfs_share().
4107  */
update_tg_load_avg(struct cfs_rq * cfs_rq)4108 static inline void update_tg_load_avg(struct cfs_rq *cfs_rq)
4109 {
4110 	long delta;
4111 	u64 now;
4112 
4113 	/*
4114 	 * No need to update load_avg for root_task_group as it is not used.
4115 	 */
4116 	if (cfs_rq->tg == &root_task_group)
4117 		return;
4118 
4119 	/* rq has been offline and doesn't contribute to the share anymore: */
4120 	if (!cpu_active(cpu_of(rq_of(cfs_rq))))
4121 		return;
4122 
4123 	/*
4124 	 * For migration heavy workloads, access to tg->load_avg can be
4125 	 * unbound. Limit the update rate to at most once per ms.
4126 	 */
4127 	now = sched_clock_cpu(cpu_of(rq_of(cfs_rq)));
4128 	if (now - cfs_rq->last_update_tg_load_avg < NSEC_PER_MSEC)
4129 		return;
4130 
4131 	delta = cfs_rq->avg.load_avg - cfs_rq->tg_load_avg_contrib;
4132 	if (abs(delta) > cfs_rq->tg_load_avg_contrib / 64) {
4133 		atomic_long_add(delta, &cfs_rq->tg->load_avg);
4134 		cfs_rq->tg_load_avg_contrib = cfs_rq->avg.load_avg;
4135 		cfs_rq->last_update_tg_load_avg = now;
4136 	}
4137 }
4138 
clear_tg_load_avg(struct cfs_rq * cfs_rq)4139 static inline void clear_tg_load_avg(struct cfs_rq *cfs_rq)
4140 {
4141 	long delta;
4142 	u64 now;
4143 
4144 	/*
4145 	 * No need to update load_avg for root_task_group, as it is not used.
4146 	 */
4147 	if (cfs_rq->tg == &root_task_group)
4148 		return;
4149 
4150 	now = sched_clock_cpu(cpu_of(rq_of(cfs_rq)));
4151 	delta = 0 - cfs_rq->tg_load_avg_contrib;
4152 	atomic_long_add(delta, &cfs_rq->tg->load_avg);
4153 	cfs_rq->tg_load_avg_contrib = 0;
4154 	cfs_rq->last_update_tg_load_avg = now;
4155 }
4156 
4157 /* CPU offline callback: */
clear_tg_offline_cfs_rqs(struct rq * rq)4158 static void __maybe_unused clear_tg_offline_cfs_rqs(struct rq *rq)
4159 {
4160 	struct task_group *tg;
4161 
4162 	lockdep_assert_rq_held(rq);
4163 
4164 	/*
4165 	 * The rq clock has already been updated in
4166 	 * set_rq_offline(), so we should skip updating
4167 	 * the rq clock again in unthrottle_cfs_rq().
4168 	 */
4169 	rq_clock_start_loop_update(rq);
4170 
4171 	rcu_read_lock();
4172 	list_for_each_entry_rcu(tg, &task_groups, list) {
4173 		struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
4174 
4175 		clear_tg_load_avg(cfs_rq);
4176 	}
4177 	rcu_read_unlock();
4178 
4179 	rq_clock_stop_loop_update(rq);
4180 }
4181 
4182 /*
4183  * Called within set_task_rq() right before setting a task's CPU. The
4184  * caller only guarantees p->pi_lock is held; no other assumptions,
4185  * including the state of rq->lock, should be made.
4186  */
set_task_rq_fair(struct sched_entity * se,struct cfs_rq * prev,struct cfs_rq * next)4187 void set_task_rq_fair(struct sched_entity *se,
4188 		      struct cfs_rq *prev, struct cfs_rq *next)
4189 {
4190 	u64 p_last_update_time;
4191 	u64 n_last_update_time;
4192 
4193 	if (!sched_feat(ATTACH_AGE_LOAD))
4194 		return;
4195 
4196 	/*
4197 	 * We are supposed to update the task to "current" time, then its up to
4198 	 * date and ready to go to new CPU/cfs_rq. But we have difficulty in
4199 	 * getting what current time is, so simply throw away the out-of-date
4200 	 * time. This will result in the wakee task is less decayed, but giving
4201 	 * the wakee more load sounds not bad.
4202 	 */
4203 	if (!(se->avg.last_update_time && prev))
4204 		return;
4205 
4206 	p_last_update_time = cfs_rq_last_update_time(prev);
4207 	n_last_update_time = cfs_rq_last_update_time(next);
4208 
4209 	__update_load_avg_blocked_se(p_last_update_time, se);
4210 	se->avg.last_update_time = n_last_update_time;
4211 }
4212 
4213 /*
4214  * When on migration a sched_entity joins/leaves the PELT hierarchy, we need to
4215  * propagate its contribution. The key to this propagation is the invariant
4216  * that for each group:
4217  *
4218  *   ge->avg == grq->avg						(1)
4219  *
4220  * _IFF_ we look at the pure running and runnable sums. Because they
4221  * represent the very same entity, just at different points in the hierarchy.
4222  *
4223  * Per the above update_tg_cfs_util() and update_tg_cfs_runnable() are trivial
4224  * and simply copies the running/runnable sum over (but still wrong, because
4225  * the group entity and group rq do not have their PELT windows aligned).
4226  *
4227  * However, update_tg_cfs_load() is more complex. So we have:
4228  *
4229  *   ge->avg.load_avg = ge->load.weight * ge->avg.runnable_avg		(2)
4230  *
4231  * And since, like util, the runnable part should be directly transferable,
4232  * the following would _appear_ to be the straight forward approach:
4233  *
4234  *   grq->avg.load_avg = grq->load.weight * grq->avg.runnable_avg	(3)
4235  *
4236  * And per (1) we have:
4237  *
4238  *   ge->avg.runnable_avg == grq->avg.runnable_avg
4239  *
4240  * Which gives:
4241  *
4242  *                      ge->load.weight * grq->avg.load_avg
4243  *   ge->avg.load_avg = -----------------------------------		(4)
4244  *                               grq->load.weight
4245  *
4246  * Except that is wrong!
4247  *
4248  * Because while for entities historical weight is not important and we
4249  * really only care about our future and therefore can consider a pure
4250  * runnable sum, runqueues can NOT do this.
4251  *
4252  * We specifically want runqueues to have a load_avg that includes
4253  * historical weights. Those represent the blocked load, the load we expect
4254  * to (shortly) return to us. This only works by keeping the weights as
4255  * integral part of the sum. We therefore cannot decompose as per (3).
4256  *
4257  * Another reason this doesn't work is that runnable isn't a 0-sum entity.
4258  * Imagine a rq with 2 tasks that each are runnable 2/3 of the time. Then the
4259  * rq itself is runnable anywhere between 2/3 and 1 depending on how the
4260  * runnable section of these tasks overlap (or not). If they were to perfectly
4261  * align the rq as a whole would be runnable 2/3 of the time. If however we
4262  * always have at least 1 runnable task, the rq as a whole is always runnable.
4263  *
4264  * So we'll have to approximate.. :/
4265  *
4266  * Given the constraint:
4267  *
4268  *   ge->avg.running_sum <= ge->avg.runnable_sum <= LOAD_AVG_MAX
4269  *
4270  * We can construct a rule that adds runnable to a rq by assuming minimal
4271  * overlap.
4272  *
4273  * On removal, we'll assume each task is equally runnable; which yields:
4274  *
4275  *   grq->avg.runnable_sum = grq->avg.load_sum / grq->load.weight
4276  *
4277  * XXX: only do this for the part of runnable > running ?
4278  *
4279  */
4280 static inline void
update_tg_cfs_util(struct cfs_rq * cfs_rq,struct sched_entity * se,struct cfs_rq * gcfs_rq)4281 update_tg_cfs_util(struct cfs_rq *cfs_rq, struct sched_entity *se, struct cfs_rq *gcfs_rq)
4282 {
4283 	long delta_sum, delta_avg = gcfs_rq->avg.util_avg - se->avg.util_avg;
4284 	u32 new_sum, divider;
4285 
4286 	/* Nothing to update */
4287 	if (!delta_avg)
4288 		return;
4289 
4290 	/*
4291 	 * cfs_rq->avg.period_contrib can be used for both cfs_rq and se.
4292 	 * See ___update_load_avg() for details.
4293 	 */
4294 	divider = get_pelt_divider(&cfs_rq->avg);
4295 
4296 
4297 	/* Set new sched_entity's utilization */
4298 	se->avg.util_avg = gcfs_rq->avg.util_avg;
4299 	new_sum = se->avg.util_avg * divider;
4300 	delta_sum = (long)new_sum - (long)se->avg.util_sum;
4301 	se->avg.util_sum = new_sum;
4302 
4303 	/* Update parent cfs_rq utilization */
4304 	add_positive(&cfs_rq->avg.util_avg, delta_avg);
4305 	add_positive(&cfs_rq->avg.util_sum, delta_sum);
4306 
4307 	/* See update_cfs_rq_load_avg() */
4308 	cfs_rq->avg.util_sum = max_t(u32, cfs_rq->avg.util_sum,
4309 					  cfs_rq->avg.util_avg * PELT_MIN_DIVIDER);
4310 }
4311 
4312 static inline void
update_tg_cfs_runnable(struct cfs_rq * cfs_rq,struct sched_entity * se,struct cfs_rq * gcfs_rq)4313 update_tg_cfs_runnable(struct cfs_rq *cfs_rq, struct sched_entity *se, struct cfs_rq *gcfs_rq)
4314 {
4315 	long delta_sum, delta_avg = gcfs_rq->avg.runnable_avg - se->avg.runnable_avg;
4316 	u32 new_sum, divider;
4317 
4318 	/* Nothing to update */
4319 	if (!delta_avg)
4320 		return;
4321 
4322 	/*
4323 	 * cfs_rq->avg.period_contrib can be used for both cfs_rq and se.
4324 	 * See ___update_load_avg() for details.
4325 	 */
4326 	divider = get_pelt_divider(&cfs_rq->avg);
4327 
4328 	/* Set new sched_entity's runnable */
4329 	se->avg.runnable_avg = gcfs_rq->avg.runnable_avg;
4330 	new_sum = se->avg.runnable_avg * divider;
4331 	delta_sum = (long)new_sum - (long)se->avg.runnable_sum;
4332 	se->avg.runnable_sum = new_sum;
4333 
4334 	/* Update parent cfs_rq runnable */
4335 	add_positive(&cfs_rq->avg.runnable_avg, delta_avg);
4336 	add_positive(&cfs_rq->avg.runnable_sum, delta_sum);
4337 	/* See update_cfs_rq_load_avg() */
4338 	cfs_rq->avg.runnable_sum = max_t(u32, cfs_rq->avg.runnable_sum,
4339 					      cfs_rq->avg.runnable_avg * PELT_MIN_DIVIDER);
4340 }
4341 
4342 static inline void
update_tg_cfs_load(struct cfs_rq * cfs_rq,struct sched_entity * se,struct cfs_rq * gcfs_rq)4343 update_tg_cfs_load(struct cfs_rq *cfs_rq, struct sched_entity *se, struct cfs_rq *gcfs_rq)
4344 {
4345 	long delta_avg, running_sum, runnable_sum = gcfs_rq->prop_runnable_sum;
4346 	unsigned long load_avg;
4347 	u64 load_sum = 0;
4348 	s64 delta_sum;
4349 	u32 divider;
4350 
4351 	if (!runnable_sum)
4352 		return;
4353 
4354 	gcfs_rq->prop_runnable_sum = 0;
4355 
4356 	/*
4357 	 * cfs_rq->avg.period_contrib can be used for both cfs_rq and se.
4358 	 * See ___update_load_avg() for details.
4359 	 */
4360 	divider = get_pelt_divider(&cfs_rq->avg);
4361 
4362 	if (runnable_sum >= 0) {
4363 		/*
4364 		 * Add runnable; clip at LOAD_AVG_MAX. Reflects that until
4365 		 * the CPU is saturated running == runnable.
4366 		 */
4367 		runnable_sum += se->avg.load_sum;
4368 		runnable_sum = min_t(long, runnable_sum, divider);
4369 	} else {
4370 		/*
4371 		 * Estimate the new unweighted runnable_sum of the gcfs_rq by
4372 		 * assuming all tasks are equally runnable.
4373 		 */
4374 		if (scale_load_down(gcfs_rq->load.weight)) {
4375 			load_sum = div_u64(gcfs_rq->avg.load_sum,
4376 				scale_load_down(gcfs_rq->load.weight));
4377 		}
4378 
4379 		/* But make sure to not inflate se's runnable */
4380 		runnable_sum = min(se->avg.load_sum, load_sum);
4381 	}
4382 
4383 	/*
4384 	 * runnable_sum can't be lower than running_sum
4385 	 * Rescale running sum to be in the same range as runnable sum
4386 	 * running_sum is in [0 : LOAD_AVG_MAX <<  SCHED_CAPACITY_SHIFT]
4387 	 * runnable_sum is in [0 : LOAD_AVG_MAX]
4388 	 */
4389 	running_sum = se->avg.util_sum >> SCHED_CAPACITY_SHIFT;
4390 	runnable_sum = max(runnable_sum, running_sum);
4391 
4392 	load_sum = se_weight(se) * runnable_sum;
4393 	load_avg = div_u64(load_sum, divider);
4394 
4395 	delta_avg = load_avg - se->avg.load_avg;
4396 	if (!delta_avg)
4397 		return;
4398 
4399 	delta_sum = load_sum - (s64)se_weight(se) * se->avg.load_sum;
4400 
4401 	se->avg.load_sum = runnable_sum;
4402 	se->avg.load_avg = load_avg;
4403 	add_positive(&cfs_rq->avg.load_avg, delta_avg);
4404 	add_positive(&cfs_rq->avg.load_sum, delta_sum);
4405 	/* See update_cfs_rq_load_avg() */
4406 	cfs_rq->avg.load_sum = max_t(u32, cfs_rq->avg.load_sum,
4407 					  cfs_rq->avg.load_avg * PELT_MIN_DIVIDER);
4408 }
4409 
add_tg_cfs_propagate(struct cfs_rq * cfs_rq,long runnable_sum)4410 static inline void add_tg_cfs_propagate(struct cfs_rq *cfs_rq, long runnable_sum)
4411 {
4412 	cfs_rq->propagate = 1;
4413 	cfs_rq->prop_runnable_sum += runnable_sum;
4414 }
4415 
4416 /* Update task and its cfs_rq load average */
propagate_entity_load_avg(struct sched_entity * se)4417 static inline int propagate_entity_load_avg(struct sched_entity *se)
4418 {
4419 	struct cfs_rq *cfs_rq, *gcfs_rq;
4420 
4421 	if (entity_is_task(se))
4422 		return 0;
4423 
4424 	gcfs_rq = group_cfs_rq(se);
4425 	if (!gcfs_rq->propagate)
4426 		return 0;
4427 
4428 	gcfs_rq->propagate = 0;
4429 
4430 	cfs_rq = cfs_rq_of(se);
4431 
4432 	add_tg_cfs_propagate(cfs_rq, gcfs_rq->prop_runnable_sum);
4433 
4434 	update_tg_cfs_util(cfs_rq, se, gcfs_rq);
4435 	update_tg_cfs_runnable(cfs_rq, se, gcfs_rq);
4436 	update_tg_cfs_load(cfs_rq, se, gcfs_rq);
4437 
4438 	trace_pelt_cfs_tp(cfs_rq);
4439 	trace_pelt_se_tp(se);
4440 
4441 	return 1;
4442 }
4443 
4444 /*
4445  * Check if we need to update the load and the utilization of a blocked
4446  * group_entity:
4447  */
skip_blocked_update(struct sched_entity * se)4448 static inline bool skip_blocked_update(struct sched_entity *se)
4449 {
4450 	struct cfs_rq *gcfs_rq = group_cfs_rq(se);
4451 
4452 	/*
4453 	 * If sched_entity still have not zero load or utilization, we have to
4454 	 * decay it:
4455 	 */
4456 	if (se->avg.load_avg || se->avg.util_avg)
4457 		return false;
4458 
4459 	/*
4460 	 * If there is a pending propagation, we have to update the load and
4461 	 * the utilization of the sched_entity:
4462 	 */
4463 	if (gcfs_rq->propagate)
4464 		return false;
4465 
4466 	/*
4467 	 * Otherwise, the load and the utilization of the sched_entity is
4468 	 * already zero and there is no pending propagation, so it will be a
4469 	 * waste of time to try to decay it:
4470 	 */
4471 	return true;
4472 }
4473 
4474 #else /* CONFIG_FAIR_GROUP_SCHED */
4475 
update_tg_load_avg(struct cfs_rq * cfs_rq)4476 static inline void update_tg_load_avg(struct cfs_rq *cfs_rq) {}
4477 
clear_tg_offline_cfs_rqs(struct rq * rq)4478 static inline void clear_tg_offline_cfs_rqs(struct rq *rq) {}
4479 
propagate_entity_load_avg(struct sched_entity * se)4480 static inline int propagate_entity_load_avg(struct sched_entity *se)
4481 {
4482 	return 0;
4483 }
4484 
add_tg_cfs_propagate(struct cfs_rq * cfs_rq,long runnable_sum)4485 static inline void add_tg_cfs_propagate(struct cfs_rq *cfs_rq, long runnable_sum) {}
4486 
4487 #endif /* CONFIG_FAIR_GROUP_SCHED */
4488 
4489 #ifdef CONFIG_NO_HZ_COMMON
migrate_se_pelt_lag(struct sched_entity * se)4490 static inline void migrate_se_pelt_lag(struct sched_entity *se)
4491 {
4492 	u64 throttled = 0, now, lut;
4493 	struct cfs_rq *cfs_rq;
4494 	struct rq *rq;
4495 	bool is_idle;
4496 
4497 	if (load_avg_is_decayed(&se->avg))
4498 		return;
4499 
4500 	cfs_rq = cfs_rq_of(se);
4501 	rq = rq_of(cfs_rq);
4502 
4503 	rcu_read_lock();
4504 	is_idle = is_idle_task(rcu_dereference(rq->curr));
4505 	rcu_read_unlock();
4506 
4507 	/*
4508 	 * The lag estimation comes with a cost we don't want to pay all the
4509 	 * time. Hence, limiting to the case where the source CPU is idle and
4510 	 * we know we are at the greatest risk to have an outdated clock.
4511 	 */
4512 	if (!is_idle)
4513 		return;
4514 
4515 	/*
4516 	 * Estimated "now" is: last_update_time + cfs_idle_lag + rq_idle_lag, where:
4517 	 *
4518 	 *   last_update_time (the cfs_rq's last_update_time)
4519 	 *	= cfs_rq_clock_pelt()@cfs_rq_idle
4520 	 *      = rq_clock_pelt()@cfs_rq_idle
4521 	 *        - cfs->throttled_clock_pelt_time@cfs_rq_idle
4522 	 *
4523 	 *   cfs_idle_lag (delta between rq's update and cfs_rq's update)
4524 	 *      = rq_clock_pelt()@rq_idle - rq_clock_pelt()@cfs_rq_idle
4525 	 *
4526 	 *   rq_idle_lag (delta between now and rq's update)
4527 	 *      = sched_clock_cpu() - rq_clock()@rq_idle
4528 	 *
4529 	 * We can then write:
4530 	 *
4531 	 *    now = rq_clock_pelt()@rq_idle - cfs->throttled_clock_pelt_time +
4532 	 *          sched_clock_cpu() - rq_clock()@rq_idle
4533 	 * Where:
4534 	 *      rq_clock_pelt()@rq_idle is rq->clock_pelt_idle
4535 	 *      rq_clock()@rq_idle      is rq->clock_idle
4536 	 *      cfs->throttled_clock_pelt_time@cfs_rq_idle
4537 	 *                              is cfs_rq->throttled_pelt_idle
4538 	 */
4539 
4540 #ifdef CONFIG_CFS_BANDWIDTH
4541 	throttled = u64_u32_load(cfs_rq->throttled_pelt_idle);
4542 	/* The clock has been stopped for throttling */
4543 	if (throttled == U64_MAX)
4544 		return;
4545 #endif
4546 	now = u64_u32_load(rq->clock_pelt_idle);
4547 	/*
4548 	 * Paired with _update_idle_rq_clock_pelt(). It ensures at the worst case
4549 	 * is observed the old clock_pelt_idle value and the new clock_idle,
4550 	 * which lead to an underestimation. The opposite would lead to an
4551 	 * overestimation.
4552 	 */
4553 	smp_rmb();
4554 	lut = cfs_rq_last_update_time(cfs_rq);
4555 
4556 	now -= throttled;
4557 	if (now < lut)
4558 		/*
4559 		 * cfs_rq->avg.last_update_time is more recent than our
4560 		 * estimation, let's use it.
4561 		 */
4562 		now = lut;
4563 	else
4564 		now += sched_clock_cpu(cpu_of(rq)) - u64_u32_load(rq->clock_idle);
4565 
4566 	__update_load_avg_blocked_se(now, se);
4567 }
4568 #else
migrate_se_pelt_lag(struct sched_entity * se)4569 static void migrate_se_pelt_lag(struct sched_entity *se) {}
4570 #endif
4571 
4572 /**
4573  * update_cfs_rq_load_avg - update the cfs_rq's load/util averages
4574  * @now: current time, as per cfs_rq_clock_pelt()
4575  * @cfs_rq: cfs_rq to update
4576  *
4577  * The cfs_rq avg is the direct sum of all its entities (blocked and runnable)
4578  * avg. The immediate corollary is that all (fair) tasks must be attached.
4579  *
4580  * cfs_rq->avg is used for task_h_load() and update_cfs_share() for example.
4581  *
4582  * Return: true if the load decayed or we removed load.
4583  *
4584  * Since both these conditions indicate a changed cfs_rq->avg.load we should
4585  * call update_tg_load_avg() when this function returns true.
4586  */
4587 static inline int
update_cfs_rq_load_avg(u64 now,struct cfs_rq * cfs_rq)4588 update_cfs_rq_load_avg(u64 now, struct cfs_rq *cfs_rq)
4589 {
4590 	unsigned long removed_load = 0, removed_util = 0, removed_runnable = 0;
4591 	struct sched_avg *sa = &cfs_rq->avg;
4592 	int decayed = 0;
4593 
4594 	if (cfs_rq->removed.nr) {
4595 		unsigned long r;
4596 		u32 divider = get_pelt_divider(&cfs_rq->avg);
4597 
4598 		raw_spin_lock(&cfs_rq->removed.lock);
4599 		swap(cfs_rq->removed.util_avg, removed_util);
4600 		swap(cfs_rq->removed.load_avg, removed_load);
4601 		swap(cfs_rq->removed.runnable_avg, removed_runnable);
4602 		cfs_rq->removed.nr = 0;
4603 		raw_spin_unlock(&cfs_rq->removed.lock);
4604 
4605 		r = removed_load;
4606 		sub_positive(&sa->load_avg, r);
4607 		sub_positive(&sa->load_sum, r * divider);
4608 		/* See sa->util_sum below */
4609 		sa->load_sum = max_t(u32, sa->load_sum, sa->load_avg * PELT_MIN_DIVIDER);
4610 
4611 		r = removed_util;
4612 		sub_positive(&sa->util_avg, r);
4613 		sub_positive(&sa->util_sum, r * divider);
4614 		/*
4615 		 * Because of rounding, se->util_sum might ends up being +1 more than
4616 		 * cfs->util_sum. Although this is not a problem by itself, detaching
4617 		 * a lot of tasks with the rounding problem between 2 updates of
4618 		 * util_avg (~1ms) can make cfs->util_sum becoming null whereas
4619 		 * cfs_util_avg is not.
4620 		 * Check that util_sum is still above its lower bound for the new
4621 		 * util_avg. Given that period_contrib might have moved since the last
4622 		 * sync, we are only sure that util_sum must be above or equal to
4623 		 *    util_avg * minimum possible divider
4624 		 */
4625 		sa->util_sum = max_t(u32, sa->util_sum, sa->util_avg * PELT_MIN_DIVIDER);
4626 
4627 		r = removed_runnable;
4628 		sub_positive(&sa->runnable_avg, r);
4629 		sub_positive(&sa->runnable_sum, r * divider);
4630 		/* See sa->util_sum above */
4631 		sa->runnable_sum = max_t(u32, sa->runnable_sum,
4632 					      sa->runnable_avg * PELT_MIN_DIVIDER);
4633 
4634 		/*
4635 		 * removed_runnable is the unweighted version of removed_load so we
4636 		 * can use it to estimate removed_load_sum.
4637 		 */
4638 		add_tg_cfs_propagate(cfs_rq,
4639 			-(long)(removed_runnable * divider) >> SCHED_CAPACITY_SHIFT);
4640 
4641 		decayed = 1;
4642 	}
4643 
4644 	decayed |= __update_load_avg_cfs_rq(now, cfs_rq);
4645 	u64_u32_store_copy(sa->last_update_time,
4646 			   cfs_rq->last_update_time_copy,
4647 			   sa->last_update_time);
4648 	return decayed;
4649 }
4650 
4651 /**
4652  * attach_entity_load_avg - attach this entity to its cfs_rq load avg
4653  * @cfs_rq: cfs_rq to attach to
4654  * @se: sched_entity to attach
4655  *
4656  * Must call update_cfs_rq_load_avg() before this, since we rely on
4657  * cfs_rq->avg.last_update_time being current.
4658  */
attach_entity_load_avg(struct cfs_rq * cfs_rq,struct sched_entity * se)4659 static void attach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
4660 {
4661 	/*
4662 	 * cfs_rq->avg.period_contrib can be used for both cfs_rq and se.
4663 	 * See ___update_load_avg() for details.
4664 	 */
4665 	u32 divider = get_pelt_divider(&cfs_rq->avg);
4666 
4667 	/*
4668 	 * When we attach the @se to the @cfs_rq, we must align the decay
4669 	 * window because without that, really weird and wonderful things can
4670 	 * happen.
4671 	 *
4672 	 * XXX illustrate
4673 	 */
4674 	se->avg.last_update_time = cfs_rq->avg.last_update_time;
4675 	se->avg.period_contrib = cfs_rq->avg.period_contrib;
4676 
4677 	/*
4678 	 * Hell(o) Nasty stuff.. we need to recompute _sum based on the new
4679 	 * period_contrib. This isn't strictly correct, but since we're
4680 	 * entirely outside of the PELT hierarchy, nobody cares if we truncate
4681 	 * _sum a little.
4682 	 */
4683 	se->avg.util_sum = se->avg.util_avg * divider;
4684 
4685 	se->avg.runnable_sum = se->avg.runnable_avg * divider;
4686 
4687 	se->avg.load_sum = se->avg.load_avg * divider;
4688 	if (se_weight(se) < se->avg.load_sum)
4689 		se->avg.load_sum = div_u64(se->avg.load_sum, se_weight(se));
4690 	else
4691 		se->avg.load_sum = 1;
4692 
4693 	enqueue_load_avg(cfs_rq, se);
4694 	cfs_rq->avg.util_avg += se->avg.util_avg;
4695 	cfs_rq->avg.util_sum += se->avg.util_sum;
4696 	cfs_rq->avg.runnable_avg += se->avg.runnable_avg;
4697 	cfs_rq->avg.runnable_sum += se->avg.runnable_sum;
4698 
4699 	add_tg_cfs_propagate(cfs_rq, se->avg.load_sum);
4700 
4701 	cfs_rq_util_change(cfs_rq, 0);
4702 
4703 	trace_pelt_cfs_tp(cfs_rq);
4704 }
4705 
4706 /**
4707  * detach_entity_load_avg - detach this entity from its cfs_rq load avg
4708  * @cfs_rq: cfs_rq to detach from
4709  * @se: sched_entity to detach
4710  *
4711  * Must call update_cfs_rq_load_avg() before this, since we rely on
4712  * cfs_rq->avg.last_update_time being current.
4713  */
detach_entity_load_avg(struct cfs_rq * cfs_rq,struct sched_entity * se)4714 static void detach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
4715 {
4716 	dequeue_load_avg(cfs_rq, se);
4717 	sub_positive(&cfs_rq->avg.util_avg, se->avg.util_avg);
4718 	sub_positive(&cfs_rq->avg.util_sum, se->avg.util_sum);
4719 	/* See update_cfs_rq_load_avg() */
4720 	cfs_rq->avg.util_sum = max_t(u32, cfs_rq->avg.util_sum,
4721 					  cfs_rq->avg.util_avg * PELT_MIN_DIVIDER);
4722 
4723 	sub_positive(&cfs_rq->avg.runnable_avg, se->avg.runnable_avg);
4724 	sub_positive(&cfs_rq->avg.runnable_sum, se->avg.runnable_sum);
4725 	/* See update_cfs_rq_load_avg() */
4726 	cfs_rq->avg.runnable_sum = max_t(u32, cfs_rq->avg.runnable_sum,
4727 					      cfs_rq->avg.runnable_avg * PELT_MIN_DIVIDER);
4728 
4729 	add_tg_cfs_propagate(cfs_rq, -se->avg.load_sum);
4730 
4731 	cfs_rq_util_change(cfs_rq, 0);
4732 
4733 	trace_pelt_cfs_tp(cfs_rq);
4734 }
4735 
4736 /*
4737  * Optional action to be done while updating the load average
4738  */
4739 #define UPDATE_TG	0x1
4740 #define SKIP_AGE_LOAD	0x2
4741 #define DO_ATTACH	0x4
4742 #define DO_DETACH	0x8
4743 
4744 /* Update task and its cfs_rq load average */
update_load_avg(struct cfs_rq * cfs_rq,struct sched_entity * se,int flags)4745 static inline void update_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
4746 {
4747 	u64 now = cfs_rq_clock_pelt(cfs_rq);
4748 	int decayed;
4749 
4750 	/*
4751 	 * Track task load average for carrying it to new CPU after migrated, and
4752 	 * track group sched_entity load average for task_h_load calculation in migration
4753 	 */
4754 	if (se->avg.last_update_time && !(flags & SKIP_AGE_LOAD))
4755 		__update_load_avg_se(now, cfs_rq, se);
4756 
4757 	decayed  = update_cfs_rq_load_avg(now, cfs_rq);
4758 	decayed |= propagate_entity_load_avg(se);
4759 
4760 	if (!se->avg.last_update_time && (flags & DO_ATTACH)) {
4761 
4762 		/*
4763 		 * DO_ATTACH means we're here from enqueue_entity().
4764 		 * !last_update_time means we've passed through
4765 		 * migrate_task_rq_fair() indicating we migrated.
4766 		 *
4767 		 * IOW we're enqueueing a task on a new CPU.
4768 		 */
4769 		attach_entity_load_avg(cfs_rq, se);
4770 		update_tg_load_avg(cfs_rq);
4771 
4772 	} else if (flags & DO_DETACH) {
4773 		/*
4774 		 * DO_DETACH means we're here from dequeue_entity()
4775 		 * and we are migrating task out of the CPU.
4776 		 */
4777 		detach_entity_load_avg(cfs_rq, se);
4778 		update_tg_load_avg(cfs_rq);
4779 	} else if (decayed) {
4780 		cfs_rq_util_change(cfs_rq, 0);
4781 
4782 		if (flags & UPDATE_TG)
4783 			update_tg_load_avg(cfs_rq);
4784 	}
4785 }
4786 
4787 /*
4788  * Synchronize entity load avg of dequeued entity without locking
4789  * the previous rq.
4790  */
sync_entity_load_avg(struct sched_entity * se)4791 static void sync_entity_load_avg(struct sched_entity *se)
4792 {
4793 	struct cfs_rq *cfs_rq = cfs_rq_of(se);
4794 	u64 last_update_time;
4795 
4796 	last_update_time = cfs_rq_last_update_time(cfs_rq);
4797 	__update_load_avg_blocked_se(last_update_time, se);
4798 }
4799 
4800 /*
4801  * Task first catches up with cfs_rq, and then subtract
4802  * itself from the cfs_rq (task must be off the queue now).
4803  */
remove_entity_load_avg(struct sched_entity * se)4804 static void remove_entity_load_avg(struct sched_entity *se)
4805 {
4806 	struct cfs_rq *cfs_rq = cfs_rq_of(se);
4807 	unsigned long flags;
4808 
4809 	/*
4810 	 * tasks cannot exit without having gone through wake_up_new_task() ->
4811 	 * enqueue_task_fair() which will have added things to the cfs_rq,
4812 	 * so we can remove unconditionally.
4813 	 */
4814 
4815 	sync_entity_load_avg(se);
4816 
4817 	raw_spin_lock_irqsave(&cfs_rq->removed.lock, flags);
4818 	++cfs_rq->removed.nr;
4819 	cfs_rq->removed.util_avg	+= se->avg.util_avg;
4820 	cfs_rq->removed.load_avg	+= se->avg.load_avg;
4821 	cfs_rq->removed.runnable_avg	+= se->avg.runnable_avg;
4822 	raw_spin_unlock_irqrestore(&cfs_rq->removed.lock, flags);
4823 }
4824 
cfs_rq_runnable_avg(struct cfs_rq * cfs_rq)4825 static inline unsigned long cfs_rq_runnable_avg(struct cfs_rq *cfs_rq)
4826 {
4827 	return cfs_rq->avg.runnable_avg;
4828 }
4829 
cfs_rq_load_avg(struct cfs_rq * cfs_rq)4830 static inline unsigned long cfs_rq_load_avg(struct cfs_rq *cfs_rq)
4831 {
4832 	return cfs_rq->avg.load_avg;
4833 }
4834 
4835 static int sched_balance_newidle(struct rq *this_rq, struct rq_flags *rf);
4836 
task_util(struct task_struct * p)4837 static inline unsigned long task_util(struct task_struct *p)
4838 {
4839 	return READ_ONCE(p->se.avg.util_avg);
4840 }
4841 
task_runnable(struct task_struct * p)4842 static inline unsigned long task_runnable(struct task_struct *p)
4843 {
4844 	return READ_ONCE(p->se.avg.runnable_avg);
4845 }
4846 
_task_util_est(struct task_struct * p)4847 static inline unsigned long _task_util_est(struct task_struct *p)
4848 {
4849 	return READ_ONCE(p->se.avg.util_est) & ~UTIL_AVG_UNCHANGED;
4850 }
4851 
task_util_est(struct task_struct * p)4852 static inline unsigned long task_util_est(struct task_struct *p)
4853 {
4854 	return max(task_util(p), _task_util_est(p));
4855 }
4856 
util_est_enqueue(struct cfs_rq * cfs_rq,struct task_struct * p)4857 static inline void util_est_enqueue(struct cfs_rq *cfs_rq,
4858 				    struct task_struct *p)
4859 {
4860 	unsigned int enqueued;
4861 
4862 	if (!sched_feat(UTIL_EST))
4863 		return;
4864 
4865 	/* Update root cfs_rq's estimated utilization */
4866 	enqueued  = cfs_rq->avg.util_est;
4867 	enqueued += _task_util_est(p);
4868 	WRITE_ONCE(cfs_rq->avg.util_est, enqueued);
4869 
4870 	trace_sched_util_est_cfs_tp(cfs_rq);
4871 }
4872 
util_est_dequeue(struct cfs_rq * cfs_rq,struct task_struct * p)4873 static inline void util_est_dequeue(struct cfs_rq *cfs_rq,
4874 				    struct task_struct *p)
4875 {
4876 	unsigned int enqueued;
4877 
4878 	if (!sched_feat(UTIL_EST))
4879 		return;
4880 
4881 	/* Update root cfs_rq's estimated utilization */
4882 	enqueued  = cfs_rq->avg.util_est;
4883 	enqueued -= min_t(unsigned int, enqueued, _task_util_est(p));
4884 	WRITE_ONCE(cfs_rq->avg.util_est, enqueued);
4885 
4886 	trace_sched_util_est_cfs_tp(cfs_rq);
4887 }
4888 
4889 #define UTIL_EST_MARGIN (SCHED_CAPACITY_SCALE / 100)
4890 
util_est_update(struct cfs_rq * cfs_rq,struct task_struct * p,bool task_sleep)4891 static inline void util_est_update(struct cfs_rq *cfs_rq,
4892 				   struct task_struct *p,
4893 				   bool task_sleep)
4894 {
4895 	unsigned int ewma, dequeued, last_ewma_diff;
4896 
4897 	if (!sched_feat(UTIL_EST))
4898 		return;
4899 
4900 	/*
4901 	 * Skip update of task's estimated utilization when the task has not
4902 	 * yet completed an activation, e.g. being migrated.
4903 	 */
4904 	if (!task_sleep)
4905 		return;
4906 
4907 	/* Get current estimate of utilization */
4908 	ewma = READ_ONCE(p->se.avg.util_est);
4909 
4910 	/*
4911 	 * If the PELT values haven't changed since enqueue time,
4912 	 * skip the util_est update.
4913 	 */
4914 	if (ewma & UTIL_AVG_UNCHANGED)
4915 		return;
4916 
4917 	/* Get utilization at dequeue */
4918 	dequeued = task_util(p);
4919 
4920 	/*
4921 	 * Reset EWMA on utilization increases, the moving average is used only
4922 	 * to smooth utilization decreases.
4923 	 */
4924 	if (ewma <= dequeued) {
4925 		ewma = dequeued;
4926 		goto done;
4927 	}
4928 
4929 	/*
4930 	 * Skip update of task's estimated utilization when its members are
4931 	 * already ~1% close to its last activation value.
4932 	 */
4933 	last_ewma_diff = ewma - dequeued;
4934 	if (last_ewma_diff < UTIL_EST_MARGIN)
4935 		goto done;
4936 
4937 	/*
4938 	 * To avoid overestimation of actual task utilization, skip updates if
4939 	 * we cannot grant there is idle time in this CPU.
4940 	 */
4941 	if (dequeued > arch_scale_cpu_capacity(cpu_of(rq_of(cfs_rq))))
4942 		return;
4943 
4944 	/*
4945 	 * To avoid underestimate of task utilization, skip updates of EWMA if
4946 	 * we cannot grant that thread got all CPU time it wanted.
4947 	 */
4948 	if ((dequeued + UTIL_EST_MARGIN) < task_runnable(p))
4949 		goto done;
4950 
4951 
4952 	/*
4953 	 * Update Task's estimated utilization
4954 	 *
4955 	 * When *p completes an activation we can consolidate another sample
4956 	 * of the task size. This is done by using this value to update the
4957 	 * Exponential Weighted Moving Average (EWMA):
4958 	 *
4959 	 *  ewma(t) = w *  task_util(p) + (1-w) * ewma(t-1)
4960 	 *          = w *  task_util(p) +         ewma(t-1)  - w * ewma(t-1)
4961 	 *          = w * (task_util(p) -         ewma(t-1)) +     ewma(t-1)
4962 	 *          = w * (      -last_ewma_diff           ) +     ewma(t-1)
4963 	 *          = w * (-last_ewma_diff +  ewma(t-1) / w)
4964 	 *
4965 	 * Where 'w' is the weight of new samples, which is configured to be
4966 	 * 0.25, thus making w=1/4 ( >>= UTIL_EST_WEIGHT_SHIFT)
4967 	 */
4968 	ewma <<= UTIL_EST_WEIGHT_SHIFT;
4969 	ewma  -= last_ewma_diff;
4970 	ewma >>= UTIL_EST_WEIGHT_SHIFT;
4971 done:
4972 	ewma |= UTIL_AVG_UNCHANGED;
4973 	WRITE_ONCE(p->se.avg.util_est, ewma);
4974 
4975 	trace_sched_util_est_se_tp(&p->se);
4976 }
4977 
get_actual_cpu_capacity(int cpu)4978 static inline unsigned long get_actual_cpu_capacity(int cpu)
4979 {
4980 	unsigned long capacity = arch_scale_cpu_capacity(cpu);
4981 
4982 	capacity -= max(hw_load_avg(cpu_rq(cpu)), cpufreq_get_pressure(cpu));
4983 
4984 	return capacity;
4985 }
4986 
util_fits_cpu(unsigned long util,unsigned long uclamp_min,unsigned long uclamp_max,int cpu)4987 static inline int util_fits_cpu(unsigned long util,
4988 				unsigned long uclamp_min,
4989 				unsigned long uclamp_max,
4990 				int cpu)
4991 {
4992 	unsigned long capacity = capacity_of(cpu);
4993 	unsigned long capacity_orig;
4994 	bool fits, uclamp_max_fits;
4995 
4996 	/*
4997 	 * Check if the real util fits without any uclamp boost/cap applied.
4998 	 */
4999 	fits = fits_capacity(util, capacity);
5000 
5001 	if (!uclamp_is_used())
5002 		return fits;
5003 
5004 	/*
5005 	 * We must use arch_scale_cpu_capacity() for comparing against uclamp_min and
5006 	 * uclamp_max. We only care about capacity pressure (by using
5007 	 * capacity_of()) for comparing against the real util.
5008 	 *
5009 	 * If a task is boosted to 1024 for example, we don't want a tiny
5010 	 * pressure to skew the check whether it fits a CPU or not.
5011 	 *
5012 	 * Similarly if a task is capped to arch_scale_cpu_capacity(little_cpu), it
5013 	 * should fit a little cpu even if there's some pressure.
5014 	 *
5015 	 * Only exception is for HW or cpufreq pressure since it has a direct impact
5016 	 * on available OPP of the system.
5017 	 *
5018 	 * We honour it for uclamp_min only as a drop in performance level
5019 	 * could result in not getting the requested minimum performance level.
5020 	 *
5021 	 * For uclamp_max, we can tolerate a drop in performance level as the
5022 	 * goal is to cap the task. So it's okay if it's getting less.
5023 	 */
5024 	capacity_orig = arch_scale_cpu_capacity(cpu);
5025 
5026 	/*
5027 	 * We want to force a task to fit a cpu as implied by uclamp_max.
5028 	 * But we do have some corner cases to cater for..
5029 	 *
5030 	 *
5031 	 *                                 C=z
5032 	 *   |                             ___
5033 	 *   |                  C=y       |   |
5034 	 *   |_ _ _ _ _ _ _ _ _ ___ _ _ _ | _ | _ _ _ _ _  uclamp_max
5035 	 *   |      C=x        |   |      |   |
5036 	 *   |      ___        |   |      |   |
5037 	 *   |     |   |       |   |      |   |    (util somewhere in this region)
5038 	 *   |     |   |       |   |      |   |
5039 	 *   |     |   |       |   |      |   |
5040 	 *   +----------------------------------------
5041 	 *         CPU0        CPU1       CPU2
5042 	 *
5043 	 *   In the above example if a task is capped to a specific performance
5044 	 *   point, y, then when:
5045 	 *
5046 	 *   * util = 80% of x then it does not fit on CPU0 and should migrate
5047 	 *     to CPU1
5048 	 *   * util = 80% of y then it is forced to fit on CPU1 to honour
5049 	 *     uclamp_max request.
5050 	 *
5051 	 *   which is what we're enforcing here. A task always fits if
5052 	 *   uclamp_max <= capacity_orig. But when uclamp_max > capacity_orig,
5053 	 *   the normal upmigration rules should withhold still.
5054 	 *
5055 	 *   Only exception is when we are on max capacity, then we need to be
5056 	 *   careful not to block overutilized state. This is so because:
5057 	 *
5058 	 *     1. There's no concept of capping at max_capacity! We can't go
5059 	 *        beyond this performance level anyway.
5060 	 *     2. The system is being saturated when we're operating near
5061 	 *        max capacity, it doesn't make sense to block overutilized.
5062 	 */
5063 	uclamp_max_fits = (capacity_orig == SCHED_CAPACITY_SCALE) && (uclamp_max == SCHED_CAPACITY_SCALE);
5064 	uclamp_max_fits = !uclamp_max_fits && (uclamp_max <= capacity_orig);
5065 	fits = fits || uclamp_max_fits;
5066 
5067 	/*
5068 	 *
5069 	 *                                 C=z
5070 	 *   |                             ___       (region a, capped, util >= uclamp_max)
5071 	 *   |                  C=y       |   |
5072 	 *   |_ _ _ _ _ _ _ _ _ ___ _ _ _ | _ | _ _ _ _ _ uclamp_max
5073 	 *   |      C=x        |   |      |   |
5074 	 *   |      ___        |   |      |   |      (region b, uclamp_min <= util <= uclamp_max)
5075 	 *   |_ _ _|_ _|_ _ _ _| _ | _ _ _| _ | _ _ _ _ _ uclamp_min
5076 	 *   |     |   |       |   |      |   |
5077 	 *   |     |   |       |   |      |   |      (region c, boosted, util < uclamp_min)
5078 	 *   +----------------------------------------
5079 	 *         CPU0        CPU1       CPU2
5080 	 *
5081 	 * a) If util > uclamp_max, then we're capped, we don't care about
5082 	 *    actual fitness value here. We only care if uclamp_max fits
5083 	 *    capacity without taking margin/pressure into account.
5084 	 *    See comment above.
5085 	 *
5086 	 * b) If uclamp_min <= util <= uclamp_max, then the normal
5087 	 *    fits_capacity() rules apply. Except we need to ensure that we
5088 	 *    enforce we remain within uclamp_max, see comment above.
5089 	 *
5090 	 * c) If util < uclamp_min, then we are boosted. Same as (b) but we
5091 	 *    need to take into account the boosted value fits the CPU without
5092 	 *    taking margin/pressure into account.
5093 	 *
5094 	 * Cases (a) and (b) are handled in the 'fits' variable already. We
5095 	 * just need to consider an extra check for case (c) after ensuring we
5096 	 * handle the case uclamp_min > uclamp_max.
5097 	 */
5098 	uclamp_min = min(uclamp_min, uclamp_max);
5099 	if (fits && (util < uclamp_min) &&
5100 	    (uclamp_min > get_actual_cpu_capacity(cpu)))
5101 		return -1;
5102 
5103 	return fits;
5104 }
5105 
task_fits_cpu(struct task_struct * p,int cpu)5106 static inline int task_fits_cpu(struct task_struct *p, int cpu)
5107 {
5108 	unsigned long uclamp_min = uclamp_eff_value(p, UCLAMP_MIN);
5109 	unsigned long uclamp_max = uclamp_eff_value(p, UCLAMP_MAX);
5110 	unsigned long util = task_util_est(p);
5111 	/*
5112 	 * Return true only if the cpu fully fits the task requirements, which
5113 	 * include the utilization but also the performance hints.
5114 	 */
5115 	return (util_fits_cpu(util, uclamp_min, uclamp_max, cpu) > 0);
5116 }
5117 
update_misfit_status(struct task_struct * p,struct rq * rq)5118 static inline void update_misfit_status(struct task_struct *p, struct rq *rq)
5119 {
5120 	int cpu = cpu_of(rq);
5121 
5122 	if (!sched_asym_cpucap_active())
5123 		return;
5124 
5125 	/*
5126 	 * Affinity allows us to go somewhere higher?  Or are we on biggest
5127 	 * available CPU already? Or do we fit into this CPU ?
5128 	 */
5129 	if (!p || (p->nr_cpus_allowed == 1) ||
5130 	    (arch_scale_cpu_capacity(cpu) == p->max_allowed_capacity) ||
5131 	    task_fits_cpu(p, cpu)) {
5132 
5133 		rq->misfit_task_load = 0;
5134 		return;
5135 	}
5136 
5137 	/*
5138 	 * Make sure that misfit_task_load will not be null even if
5139 	 * task_h_load() returns 0.
5140 	 */
5141 	rq->misfit_task_load = max_t(unsigned long, task_h_load(p), 1);
5142 }
5143 
5144 #else /* CONFIG_SMP */
5145 
cfs_rq_is_decayed(struct cfs_rq * cfs_rq)5146 static inline bool cfs_rq_is_decayed(struct cfs_rq *cfs_rq)
5147 {
5148 	return !cfs_rq->nr_queued;
5149 }
5150 
5151 #define UPDATE_TG	0x0
5152 #define SKIP_AGE_LOAD	0x0
5153 #define DO_ATTACH	0x0
5154 #define DO_DETACH	0x0
5155 
update_load_avg(struct cfs_rq * cfs_rq,struct sched_entity * se,int not_used1)5156 static inline void update_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se, int not_used1)
5157 {
5158 	cfs_rq_util_change(cfs_rq, 0);
5159 }
5160 
remove_entity_load_avg(struct sched_entity * se)5161 static inline void remove_entity_load_avg(struct sched_entity *se) {}
5162 
5163 static inline void
attach_entity_load_avg(struct cfs_rq * cfs_rq,struct sched_entity * se)5164 attach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {}
5165 static inline void
detach_entity_load_avg(struct cfs_rq * cfs_rq,struct sched_entity * se)5166 detach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {}
5167 
sched_balance_newidle(struct rq * rq,struct rq_flags * rf)5168 static inline int sched_balance_newidle(struct rq *rq, struct rq_flags *rf)
5169 {
5170 	return 0;
5171 }
5172 
5173 static inline void
util_est_enqueue(struct cfs_rq * cfs_rq,struct task_struct * p)5174 util_est_enqueue(struct cfs_rq *cfs_rq, struct task_struct *p) {}
5175 
5176 static inline void
util_est_dequeue(struct cfs_rq * cfs_rq,struct task_struct * p)5177 util_est_dequeue(struct cfs_rq *cfs_rq, struct task_struct *p) {}
5178 
5179 static inline void
util_est_update(struct cfs_rq * cfs_rq,struct task_struct * p,bool task_sleep)5180 util_est_update(struct cfs_rq *cfs_rq, struct task_struct *p,
5181 		bool task_sleep) {}
update_misfit_status(struct task_struct * p,struct rq * rq)5182 static inline void update_misfit_status(struct task_struct *p, struct rq *rq) {}
5183 
5184 #endif /* CONFIG_SMP */
5185 
__setparam_fair(struct task_struct * p,const struct sched_attr * attr)5186 void __setparam_fair(struct task_struct *p, const struct sched_attr *attr)
5187 {
5188 	struct sched_entity *se = &p->se;
5189 
5190 	p->static_prio = NICE_TO_PRIO(attr->sched_nice);
5191 	if (attr->sched_runtime) {
5192 		se->custom_slice = 1;
5193 		se->slice = clamp_t(u64, attr->sched_runtime,
5194 				      NSEC_PER_MSEC/10,   /* HZ=1000 * 10 */
5195 				      NSEC_PER_MSEC*100); /* HZ=100  / 10 */
5196 	} else {
5197 		se->custom_slice = 0;
5198 		se->slice = sysctl_sched_base_slice;
5199 	}
5200 }
5201 
5202 static void
place_entity(struct cfs_rq * cfs_rq,struct sched_entity * se,int flags)5203 place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
5204 {
5205 	u64 vslice, vruntime = avg_vruntime(cfs_rq);
5206 	s64 lag = 0;
5207 
5208 	if (!se->custom_slice)
5209 		se->slice = sysctl_sched_base_slice;
5210 	vslice = calc_delta_fair(se->slice, se);
5211 
5212 	/*
5213 	 * Due to how V is constructed as the weighted average of entities,
5214 	 * adding tasks with positive lag, or removing tasks with negative lag
5215 	 * will move 'time' backwards, this can screw around with the lag of
5216 	 * other tasks.
5217 	 *
5218 	 * EEVDF: placement strategy #1 / #2
5219 	 */
5220 	if (sched_feat(PLACE_LAG) && cfs_rq->nr_queued && se->vlag) {
5221 		struct sched_entity *curr = cfs_rq->curr;
5222 		unsigned long load;
5223 
5224 		lag = se->vlag;
5225 
5226 		/*
5227 		 * If we want to place a task and preserve lag, we have to
5228 		 * consider the effect of the new entity on the weighted
5229 		 * average and compensate for this, otherwise lag can quickly
5230 		 * evaporate.
5231 		 *
5232 		 * Lag is defined as:
5233 		 *
5234 		 *   lag_i = S - s_i = w_i * (V - v_i)
5235 		 *
5236 		 * To avoid the 'w_i' term all over the place, we only track
5237 		 * the virtual lag:
5238 		 *
5239 		 *   vl_i = V - v_i <=> v_i = V - vl_i
5240 		 *
5241 		 * And we take V to be the weighted average of all v:
5242 		 *
5243 		 *   V = (\Sum w_j*v_j) / W
5244 		 *
5245 		 * Where W is: \Sum w_j
5246 		 *
5247 		 * Then, the weighted average after adding an entity with lag
5248 		 * vl_i is given by:
5249 		 *
5250 		 *   V' = (\Sum w_j*v_j + w_i*v_i) / (W + w_i)
5251 		 *      = (W*V + w_i*(V - vl_i)) / (W + w_i)
5252 		 *      = (W*V + w_i*V - w_i*vl_i) / (W + w_i)
5253 		 *      = (V*(W + w_i) - w_i*l) / (W + w_i)
5254 		 *      = V - w_i*vl_i / (W + w_i)
5255 		 *
5256 		 * And the actual lag after adding an entity with vl_i is:
5257 		 *
5258 		 *   vl'_i = V' - v_i
5259 		 *         = V - w_i*vl_i / (W + w_i) - (V - vl_i)
5260 		 *         = vl_i - w_i*vl_i / (W + w_i)
5261 		 *
5262 		 * Which is strictly less than vl_i. So in order to preserve lag
5263 		 * we should inflate the lag before placement such that the
5264 		 * effective lag after placement comes out right.
5265 		 *
5266 		 * As such, invert the above relation for vl'_i to get the vl_i
5267 		 * we need to use such that the lag after placement is the lag
5268 		 * we computed before dequeue.
5269 		 *
5270 		 *   vl'_i = vl_i - w_i*vl_i / (W + w_i)
5271 		 *         = ((W + w_i)*vl_i - w_i*vl_i) / (W + w_i)
5272 		 *
5273 		 *   (W + w_i)*vl'_i = (W + w_i)*vl_i - w_i*vl_i
5274 		 *                   = W*vl_i
5275 		 *
5276 		 *   vl_i = (W + w_i)*vl'_i / W
5277 		 */
5278 		load = cfs_rq->avg_load;
5279 		if (curr && curr->on_rq)
5280 			load += scale_load_down(curr->load.weight);
5281 
5282 		lag *= load + scale_load_down(se->load.weight);
5283 		if (WARN_ON_ONCE(!load))
5284 			load = 1;
5285 		lag = div_s64(lag, load);
5286 	}
5287 
5288 	se->vruntime = vruntime - lag;
5289 
5290 	if (se->rel_deadline) {
5291 		se->deadline += se->vruntime;
5292 		se->rel_deadline = 0;
5293 		return;
5294 	}
5295 
5296 	/*
5297 	 * When joining the competition; the existing tasks will be,
5298 	 * on average, halfway through their slice, as such start tasks
5299 	 * off with half a slice to ease into the competition.
5300 	 */
5301 	if (sched_feat(PLACE_DEADLINE_INITIAL) && (flags & ENQUEUE_INITIAL))
5302 		vslice /= 2;
5303 
5304 	/*
5305 	 * EEVDF: vd_i = ve_i + r_i/w_i
5306 	 */
5307 	se->deadline = se->vruntime + vslice;
5308 }
5309 
5310 static void check_enqueue_throttle(struct cfs_rq *cfs_rq);
5311 static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq);
5312 
5313 static void
5314 requeue_delayed_entity(struct sched_entity *se);
5315 
5316 static void
enqueue_entity(struct cfs_rq * cfs_rq,struct sched_entity * se,int flags)5317 enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
5318 {
5319 	bool curr = cfs_rq->curr == se;
5320 
5321 	/*
5322 	 * If we're the current task, we must renormalise before calling
5323 	 * update_curr().
5324 	 */
5325 	if (curr)
5326 		place_entity(cfs_rq, se, flags);
5327 
5328 	update_curr(cfs_rq);
5329 
5330 	/*
5331 	 * When enqueuing a sched_entity, we must:
5332 	 *   - Update loads to have both entity and cfs_rq synced with now.
5333 	 *   - For group_entity, update its runnable_weight to reflect the new
5334 	 *     h_nr_runnable of its group cfs_rq.
5335 	 *   - For group_entity, update its weight to reflect the new share of
5336 	 *     its group cfs_rq
5337 	 *   - Add its new weight to cfs_rq->load.weight
5338 	 */
5339 	update_load_avg(cfs_rq, se, UPDATE_TG | DO_ATTACH);
5340 	se_update_runnable(se);
5341 	/*
5342 	 * XXX update_load_avg() above will have attached us to the pelt sum;
5343 	 * but update_cfs_group() here will re-adjust the weight and have to
5344 	 * undo/redo all that. Seems wasteful.
5345 	 */
5346 	update_cfs_group(se);
5347 
5348 	/*
5349 	 * XXX now that the entity has been re-weighted, and it's lag adjusted,
5350 	 * we can place the entity.
5351 	 */
5352 	if (!curr)
5353 		place_entity(cfs_rq, se, flags);
5354 
5355 	account_entity_enqueue(cfs_rq, se);
5356 
5357 	/* Entity has migrated, no longer consider this task hot */
5358 	if (flags & ENQUEUE_MIGRATED)
5359 		se->exec_start = 0;
5360 
5361 	check_schedstat_required();
5362 	update_stats_enqueue_fair(cfs_rq, se, flags);
5363 	if (!curr)
5364 		__enqueue_entity(cfs_rq, se);
5365 	se->on_rq = 1;
5366 
5367 	if (cfs_rq->nr_queued == 1) {
5368 		check_enqueue_throttle(cfs_rq);
5369 		if (!throttled_hierarchy(cfs_rq)) {
5370 			list_add_leaf_cfs_rq(cfs_rq);
5371 		} else {
5372 #ifdef CONFIG_CFS_BANDWIDTH
5373 			struct rq *rq = rq_of(cfs_rq);
5374 
5375 			if (cfs_rq_throttled(cfs_rq) && !cfs_rq->throttled_clock)
5376 				cfs_rq->throttled_clock = rq_clock(rq);
5377 			if (!cfs_rq->throttled_clock_self)
5378 				cfs_rq->throttled_clock_self = rq_clock(rq);
5379 #endif
5380 		}
5381 	}
5382 }
5383 
__clear_buddies_next(struct sched_entity * se)5384 static void __clear_buddies_next(struct sched_entity *se)
5385 {
5386 	for_each_sched_entity(se) {
5387 		struct cfs_rq *cfs_rq = cfs_rq_of(se);
5388 		if (cfs_rq->next != se)
5389 			break;
5390 
5391 		cfs_rq->next = NULL;
5392 	}
5393 }
5394 
clear_buddies(struct cfs_rq * cfs_rq,struct sched_entity * se)5395 static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se)
5396 {
5397 	if (cfs_rq->next == se)
5398 		__clear_buddies_next(se);
5399 }
5400 
5401 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq);
5402 
set_delayed(struct sched_entity * se)5403 static void set_delayed(struct sched_entity *se)
5404 {
5405 	se->sched_delayed = 1;
5406 
5407 	/*
5408 	 * Delayed se of cfs_rq have no tasks queued on them.
5409 	 * Do not adjust h_nr_runnable since dequeue_entities()
5410 	 * will account it for blocked tasks.
5411 	 */
5412 	if (!entity_is_task(se))
5413 		return;
5414 
5415 	for_each_sched_entity(se) {
5416 		struct cfs_rq *cfs_rq = cfs_rq_of(se);
5417 
5418 		cfs_rq->h_nr_runnable--;
5419 		if (cfs_rq_throttled(cfs_rq))
5420 			break;
5421 	}
5422 }
5423 
clear_delayed(struct sched_entity * se)5424 static void clear_delayed(struct sched_entity *se)
5425 {
5426 	se->sched_delayed = 0;
5427 
5428 	/*
5429 	 * Delayed se of cfs_rq have no tasks queued on them.
5430 	 * Do not adjust h_nr_runnable since a dequeue has
5431 	 * already accounted for it or an enqueue of a task
5432 	 * below it will account for it in enqueue_task_fair().
5433 	 */
5434 	if (!entity_is_task(se))
5435 		return;
5436 
5437 	for_each_sched_entity(se) {
5438 		struct cfs_rq *cfs_rq = cfs_rq_of(se);
5439 
5440 		cfs_rq->h_nr_runnable++;
5441 		if (cfs_rq_throttled(cfs_rq))
5442 			break;
5443 	}
5444 }
5445 
finish_delayed_dequeue_entity(struct sched_entity * se)5446 static inline void finish_delayed_dequeue_entity(struct sched_entity *se)
5447 {
5448 	clear_delayed(se);
5449 	if (sched_feat(DELAY_ZERO) && se->vlag > 0)
5450 		se->vlag = 0;
5451 }
5452 
5453 static bool
dequeue_entity(struct cfs_rq * cfs_rq,struct sched_entity * se,int flags)5454 dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
5455 {
5456 	bool sleep = flags & DEQUEUE_SLEEP;
5457 	int action = UPDATE_TG;
5458 
5459 	update_curr(cfs_rq);
5460 	clear_buddies(cfs_rq, se);
5461 
5462 	if (flags & DEQUEUE_DELAYED) {
5463 		SCHED_WARN_ON(!se->sched_delayed);
5464 	} else {
5465 		bool delay = sleep;
5466 		/*
5467 		 * DELAY_DEQUEUE relies on spurious wakeups, special task
5468 		 * states must not suffer spurious wakeups, excempt them.
5469 		 */
5470 		if (flags & DEQUEUE_SPECIAL)
5471 			delay = false;
5472 
5473 		SCHED_WARN_ON(delay && se->sched_delayed);
5474 
5475 		if (sched_feat(DELAY_DEQUEUE) && delay &&
5476 		    !entity_eligible(cfs_rq, se)) {
5477 			update_load_avg(cfs_rq, se, 0);
5478 			set_delayed(se);
5479 			return false;
5480 		}
5481 	}
5482 
5483 	if (entity_is_task(se) && task_on_rq_migrating(task_of(se)))
5484 		action |= DO_DETACH;
5485 
5486 	/*
5487 	 * When dequeuing a sched_entity, we must:
5488 	 *   - Update loads to have both entity and cfs_rq synced with now.
5489 	 *   - For group_entity, update its runnable_weight to reflect the new
5490 	 *     h_nr_runnable of its group cfs_rq.
5491 	 *   - Subtract its previous weight from cfs_rq->load.weight.
5492 	 *   - For group entity, update its weight to reflect the new share
5493 	 *     of its group cfs_rq.
5494 	 */
5495 	update_load_avg(cfs_rq, se, action);
5496 	se_update_runnable(se);
5497 
5498 	update_stats_dequeue_fair(cfs_rq, se, flags);
5499 
5500 	update_entity_lag(cfs_rq, se);
5501 	if (sched_feat(PLACE_REL_DEADLINE) && !sleep) {
5502 		se->deadline -= se->vruntime;
5503 		se->rel_deadline = 1;
5504 	}
5505 
5506 	if (se != cfs_rq->curr)
5507 		__dequeue_entity(cfs_rq, se);
5508 	se->on_rq = 0;
5509 	account_entity_dequeue(cfs_rq, se);
5510 
5511 	/* return excess runtime on last dequeue */
5512 	return_cfs_rq_runtime(cfs_rq);
5513 
5514 	update_cfs_group(se);
5515 
5516 	/*
5517 	 * Now advance min_vruntime if @se was the entity holding it back,
5518 	 * except when: DEQUEUE_SAVE && !DEQUEUE_MOVE, in this case we'll be
5519 	 * put back on, and if we advance min_vruntime, we'll be placed back
5520 	 * further than we started -- i.e. we'll be penalized.
5521 	 */
5522 	if ((flags & (DEQUEUE_SAVE | DEQUEUE_MOVE)) != DEQUEUE_SAVE)
5523 		update_min_vruntime(cfs_rq);
5524 
5525 	if (flags & DEQUEUE_DELAYED)
5526 		finish_delayed_dequeue_entity(se);
5527 
5528 	if (cfs_rq->nr_queued == 0)
5529 		update_idle_cfs_rq_clock_pelt(cfs_rq);
5530 
5531 	return true;
5532 }
5533 
5534 static void
set_next_entity(struct cfs_rq * cfs_rq,struct sched_entity * se)5535 set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
5536 {
5537 	clear_buddies(cfs_rq, se);
5538 
5539 	/* 'current' is not kept within the tree. */
5540 	if (se->on_rq) {
5541 		/*
5542 		 * Any task has to be enqueued before it get to execute on
5543 		 * a CPU. So account for the time it spent waiting on the
5544 		 * runqueue.
5545 		 */
5546 		update_stats_wait_end_fair(cfs_rq, se);
5547 		__dequeue_entity(cfs_rq, se);
5548 		update_load_avg(cfs_rq, se, UPDATE_TG);
5549 
5550 		set_protect_slice(se);
5551 	}
5552 
5553 	update_stats_curr_start(cfs_rq, se);
5554 	SCHED_WARN_ON(cfs_rq->curr);
5555 	cfs_rq->curr = se;
5556 
5557 	/*
5558 	 * Track our maximum slice length, if the CPU's load is at
5559 	 * least twice that of our own weight (i.e. don't track it
5560 	 * when there are only lesser-weight tasks around):
5561 	 */
5562 	if (schedstat_enabled() &&
5563 	    rq_of(cfs_rq)->cfs.load.weight >= 2*se->load.weight) {
5564 		struct sched_statistics *stats;
5565 
5566 		stats = __schedstats_from_se(se);
5567 		__schedstat_set(stats->slice_max,
5568 				max((u64)stats->slice_max,
5569 				    se->sum_exec_runtime - se->prev_sum_exec_runtime));
5570 	}
5571 
5572 	se->prev_sum_exec_runtime = se->sum_exec_runtime;
5573 }
5574 
5575 static int dequeue_entities(struct rq *rq, struct sched_entity *se, int flags);
5576 
5577 /*
5578  * Pick the next process, keeping these things in mind, in this order:
5579  * 1) keep things fair between processes/task groups
5580  * 2) pick the "next" process, since someone really wants that to run
5581  * 3) pick the "last" process, for cache locality
5582  * 4) do not run the "skip" process, if something else is available
5583  */
5584 static struct sched_entity *
pick_next_entity(struct rq * rq,struct cfs_rq * cfs_rq)5585 pick_next_entity(struct rq *rq, struct cfs_rq *cfs_rq)
5586 {
5587 	struct sched_entity *se;
5588 
5589 	/*
5590 	 * Picking the ->next buddy will affect latency but not fairness.
5591 	 */
5592 	if (sched_feat(PICK_BUDDY) &&
5593 	    cfs_rq->next && entity_eligible(cfs_rq, cfs_rq->next)) {
5594 		/* ->next will never be delayed */
5595 		SCHED_WARN_ON(cfs_rq->next->sched_delayed);
5596 		return cfs_rq->next;
5597 	}
5598 
5599 	se = pick_eevdf(cfs_rq);
5600 	if (se->sched_delayed) {
5601 		dequeue_entities(rq, se, DEQUEUE_SLEEP | DEQUEUE_DELAYED);
5602 		/*
5603 		 * Must not reference @se again, see __block_task().
5604 		 */
5605 		return NULL;
5606 	}
5607 	return se;
5608 }
5609 
5610 static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq);
5611 
put_prev_entity(struct cfs_rq * cfs_rq,struct sched_entity * prev)5612 static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
5613 {
5614 	/*
5615 	 * If still on the runqueue then deactivate_task()
5616 	 * was not called and update_curr() has to be done:
5617 	 */
5618 	if (prev->on_rq)
5619 		update_curr(cfs_rq);
5620 
5621 	/* throttle cfs_rqs exceeding runtime */
5622 	check_cfs_rq_runtime(cfs_rq);
5623 
5624 	if (prev->on_rq) {
5625 		update_stats_wait_start_fair(cfs_rq, prev);
5626 		/* Put 'current' back into the tree. */
5627 		__enqueue_entity(cfs_rq, prev);
5628 		/* in !on_rq case, update occurred at dequeue */
5629 		update_load_avg(cfs_rq, prev, 0);
5630 	}
5631 	SCHED_WARN_ON(cfs_rq->curr != prev);
5632 	cfs_rq->curr = NULL;
5633 }
5634 
5635 static void
entity_tick(struct cfs_rq * cfs_rq,struct sched_entity * curr,int queued)5636 entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued)
5637 {
5638 	/*
5639 	 * Update run-time statistics of the 'current'.
5640 	 */
5641 	update_curr(cfs_rq);
5642 
5643 	/*
5644 	 * Ensure that runnable average is periodically updated.
5645 	 */
5646 	update_load_avg(cfs_rq, curr, UPDATE_TG);
5647 	update_cfs_group(curr);
5648 
5649 #ifdef CONFIG_SCHED_HRTICK
5650 	/*
5651 	 * queued ticks are scheduled to match the slice, so don't bother
5652 	 * validating it and just reschedule.
5653 	 */
5654 	if (queued) {
5655 		resched_curr_lazy(rq_of(cfs_rq));
5656 		return;
5657 	}
5658 #endif
5659 }
5660 
5661 
5662 /**************************************************
5663  * CFS bandwidth control machinery
5664  */
5665 
5666 #ifdef CONFIG_CFS_BANDWIDTH
5667 
5668 #ifdef CONFIG_JUMP_LABEL
5669 static struct static_key __cfs_bandwidth_used;
5670 
cfs_bandwidth_used(void)5671 static inline bool cfs_bandwidth_used(void)
5672 {
5673 	return static_key_false(&__cfs_bandwidth_used);
5674 }
5675 
cfs_bandwidth_usage_inc(void)5676 void cfs_bandwidth_usage_inc(void)
5677 {
5678 	static_key_slow_inc_cpuslocked(&__cfs_bandwidth_used);
5679 }
5680 
cfs_bandwidth_usage_dec(void)5681 void cfs_bandwidth_usage_dec(void)
5682 {
5683 	static_key_slow_dec_cpuslocked(&__cfs_bandwidth_used);
5684 }
5685 #else /* CONFIG_JUMP_LABEL */
cfs_bandwidth_used(void)5686 static bool cfs_bandwidth_used(void)
5687 {
5688 	return true;
5689 }
5690 
cfs_bandwidth_usage_inc(void)5691 void cfs_bandwidth_usage_inc(void) {}
cfs_bandwidth_usage_dec(void)5692 void cfs_bandwidth_usage_dec(void) {}
5693 #endif /* CONFIG_JUMP_LABEL */
5694 
5695 /*
5696  * default period for cfs group bandwidth.
5697  * default: 0.1s, units: nanoseconds
5698  */
default_cfs_period(void)5699 static inline u64 default_cfs_period(void)
5700 {
5701 	return 100000000ULL;
5702 }
5703 
sched_cfs_bandwidth_slice(void)5704 static inline u64 sched_cfs_bandwidth_slice(void)
5705 {
5706 	return (u64)sysctl_sched_cfs_bandwidth_slice * NSEC_PER_USEC;
5707 }
5708 
5709 /*
5710  * Replenish runtime according to assigned quota. We use sched_clock_cpu
5711  * directly instead of rq->clock to avoid adding additional synchronization
5712  * around rq->lock.
5713  *
5714  * requires cfs_b->lock
5715  */
__refill_cfs_bandwidth_runtime(struct cfs_bandwidth * cfs_b)5716 void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b)
5717 {
5718 	s64 runtime;
5719 
5720 	if (unlikely(cfs_b->quota == RUNTIME_INF))
5721 		return;
5722 
5723 	cfs_b->runtime += cfs_b->quota;
5724 	runtime = cfs_b->runtime_snap - cfs_b->runtime;
5725 	if (runtime > 0) {
5726 		cfs_b->burst_time += runtime;
5727 		cfs_b->nr_burst++;
5728 	}
5729 
5730 	cfs_b->runtime = min(cfs_b->runtime, cfs_b->quota + cfs_b->burst);
5731 	cfs_b->runtime_snap = cfs_b->runtime;
5732 }
5733 
tg_cfs_bandwidth(struct task_group * tg)5734 static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
5735 {
5736 	return &tg->cfs_bandwidth;
5737 }
5738 
5739 /* returns 0 on failure to allocate runtime */
__assign_cfs_rq_runtime(struct cfs_bandwidth * cfs_b,struct cfs_rq * cfs_rq,u64 target_runtime)5740 static int __assign_cfs_rq_runtime(struct cfs_bandwidth *cfs_b,
5741 				   struct cfs_rq *cfs_rq, u64 target_runtime)
5742 {
5743 	u64 min_amount, amount = 0;
5744 
5745 	lockdep_assert_held(&cfs_b->lock);
5746 
5747 	/* note: this is a positive sum as runtime_remaining <= 0 */
5748 	min_amount = target_runtime - cfs_rq->runtime_remaining;
5749 
5750 	if (cfs_b->quota == RUNTIME_INF)
5751 		amount = min_amount;
5752 	else {
5753 		start_cfs_bandwidth(cfs_b);
5754 
5755 		if (cfs_b->runtime > 0) {
5756 			amount = min(cfs_b->runtime, min_amount);
5757 			cfs_b->runtime -= amount;
5758 			cfs_b->idle = 0;
5759 		}
5760 	}
5761 
5762 	cfs_rq->runtime_remaining += amount;
5763 
5764 	return cfs_rq->runtime_remaining > 0;
5765 }
5766 
5767 /* returns 0 on failure to allocate runtime */
assign_cfs_rq_runtime(struct cfs_rq * cfs_rq)5768 static int assign_cfs_rq_runtime(struct cfs_rq *cfs_rq)
5769 {
5770 	struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
5771 	int ret;
5772 
5773 	raw_spin_lock(&cfs_b->lock);
5774 	ret = __assign_cfs_rq_runtime(cfs_b, cfs_rq, sched_cfs_bandwidth_slice());
5775 	raw_spin_unlock(&cfs_b->lock);
5776 
5777 	return ret;
5778 }
5779 
__account_cfs_rq_runtime(struct cfs_rq * cfs_rq,u64 delta_exec)5780 static void __account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec)
5781 {
5782 	/* dock delta_exec before expiring quota (as it could span periods) */
5783 	cfs_rq->runtime_remaining -= delta_exec;
5784 
5785 	if (likely(cfs_rq->runtime_remaining > 0))
5786 		return;
5787 
5788 	if (cfs_rq->throttled)
5789 		return;
5790 	/*
5791 	 * if we're unable to extend our runtime we resched so that the active
5792 	 * hierarchy can be throttled
5793 	 */
5794 	if (!assign_cfs_rq_runtime(cfs_rq) && likely(cfs_rq->curr))
5795 		resched_curr(rq_of(cfs_rq));
5796 }
5797 
5798 static __always_inline
account_cfs_rq_runtime(struct cfs_rq * cfs_rq,u64 delta_exec)5799 void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec)
5800 {
5801 	if (!cfs_bandwidth_used() || !cfs_rq->runtime_enabled)
5802 		return;
5803 
5804 	__account_cfs_rq_runtime(cfs_rq, delta_exec);
5805 }
5806 
cfs_rq_throttled(struct cfs_rq * cfs_rq)5807 static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
5808 {
5809 	return cfs_bandwidth_used() && cfs_rq->throttled;
5810 }
5811 
5812 /* check whether cfs_rq, or any parent, is throttled */
throttled_hierarchy(struct cfs_rq * cfs_rq)5813 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
5814 {
5815 	return cfs_bandwidth_used() && cfs_rq->throttle_count;
5816 }
5817 
5818 /*
5819  * Ensure that neither of the group entities corresponding to src_cpu or
5820  * dest_cpu are members of a throttled hierarchy when performing group
5821  * load-balance operations.
5822  */
throttled_lb_pair(struct task_group * tg,int src_cpu,int dest_cpu)5823 static inline int throttled_lb_pair(struct task_group *tg,
5824 				    int src_cpu, int dest_cpu)
5825 {
5826 	struct cfs_rq *src_cfs_rq, *dest_cfs_rq;
5827 
5828 	src_cfs_rq = tg->cfs_rq[src_cpu];
5829 	dest_cfs_rq = tg->cfs_rq[dest_cpu];
5830 
5831 	return throttled_hierarchy(src_cfs_rq) ||
5832 	       throttled_hierarchy(dest_cfs_rq);
5833 }
5834 
tg_unthrottle_up(struct task_group * tg,void * data)5835 static int tg_unthrottle_up(struct task_group *tg, void *data)
5836 {
5837 	struct rq *rq = data;
5838 	struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
5839 
5840 	cfs_rq->throttle_count--;
5841 	if (!cfs_rq->throttle_count) {
5842 		cfs_rq->throttled_clock_pelt_time += rq_clock_pelt(rq) -
5843 					     cfs_rq->throttled_clock_pelt;
5844 
5845 		/* Add cfs_rq with load or one or more already running entities to the list */
5846 		if (!cfs_rq_is_decayed(cfs_rq))
5847 			list_add_leaf_cfs_rq(cfs_rq);
5848 
5849 		if (cfs_rq->throttled_clock_self) {
5850 			u64 delta = rq_clock(rq) - cfs_rq->throttled_clock_self;
5851 
5852 			cfs_rq->throttled_clock_self = 0;
5853 
5854 			if (SCHED_WARN_ON((s64)delta < 0))
5855 				delta = 0;
5856 
5857 			cfs_rq->throttled_clock_self_time += delta;
5858 		}
5859 	}
5860 
5861 	return 0;
5862 }
5863 
tg_throttle_down(struct task_group * tg,void * data)5864 static int tg_throttle_down(struct task_group *tg, void *data)
5865 {
5866 	struct rq *rq = data;
5867 	struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
5868 
5869 	/* group is entering throttled state, stop time */
5870 	if (!cfs_rq->throttle_count) {
5871 		cfs_rq->throttled_clock_pelt = rq_clock_pelt(rq);
5872 		list_del_leaf_cfs_rq(cfs_rq);
5873 
5874 		SCHED_WARN_ON(cfs_rq->throttled_clock_self);
5875 		if (cfs_rq->nr_queued)
5876 			cfs_rq->throttled_clock_self = rq_clock(rq);
5877 	}
5878 	cfs_rq->throttle_count++;
5879 
5880 	return 0;
5881 }
5882 
throttle_cfs_rq(struct cfs_rq * cfs_rq)5883 static bool throttle_cfs_rq(struct cfs_rq *cfs_rq)
5884 {
5885 	struct rq *rq = rq_of(cfs_rq);
5886 	struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
5887 	struct sched_entity *se;
5888 	long queued_delta, runnable_delta, idle_delta, dequeue = 1;
5889 	long rq_h_nr_queued = rq->cfs.h_nr_queued;
5890 
5891 	raw_spin_lock(&cfs_b->lock);
5892 	/* This will start the period timer if necessary */
5893 	if (__assign_cfs_rq_runtime(cfs_b, cfs_rq, 1)) {
5894 		/*
5895 		 * We have raced with bandwidth becoming available, and if we
5896 		 * actually throttled the timer might not unthrottle us for an
5897 		 * entire period. We additionally needed to make sure that any
5898 		 * subsequent check_cfs_rq_runtime calls agree not to throttle
5899 		 * us, as we may commit to do cfs put_prev+pick_next, so we ask
5900 		 * for 1ns of runtime rather than just check cfs_b.
5901 		 */
5902 		dequeue = 0;
5903 	} else {
5904 		list_add_tail_rcu(&cfs_rq->throttled_list,
5905 				  &cfs_b->throttled_cfs_rq);
5906 	}
5907 	raw_spin_unlock(&cfs_b->lock);
5908 
5909 	if (!dequeue)
5910 		return false;  /* Throttle no longer required. */
5911 
5912 	se = cfs_rq->tg->se[cpu_of(rq_of(cfs_rq))];
5913 
5914 	/* freeze hierarchy runnable averages while throttled */
5915 	rcu_read_lock();
5916 	walk_tg_tree_from(cfs_rq->tg, tg_throttle_down, tg_nop, (void *)rq);
5917 	rcu_read_unlock();
5918 
5919 	queued_delta = cfs_rq->h_nr_queued;
5920 	runnable_delta = cfs_rq->h_nr_runnable;
5921 	idle_delta = cfs_rq->h_nr_idle;
5922 	for_each_sched_entity(se) {
5923 		struct cfs_rq *qcfs_rq = cfs_rq_of(se);
5924 		int flags;
5925 
5926 		/* throttled entity or throttle-on-deactivate */
5927 		if (!se->on_rq)
5928 			goto done;
5929 
5930 		/*
5931 		 * Abuse SPECIAL to avoid delayed dequeue in this instance.
5932 		 * This avoids teaching dequeue_entities() about throttled
5933 		 * entities and keeps things relatively simple.
5934 		 */
5935 		flags = DEQUEUE_SLEEP | DEQUEUE_SPECIAL;
5936 		if (se->sched_delayed)
5937 			flags |= DEQUEUE_DELAYED;
5938 		dequeue_entity(qcfs_rq, se, flags);
5939 
5940 		if (cfs_rq_is_idle(group_cfs_rq(se)))
5941 			idle_delta = cfs_rq->h_nr_queued;
5942 
5943 		qcfs_rq->h_nr_queued -= queued_delta;
5944 		qcfs_rq->h_nr_runnable -= runnable_delta;
5945 		qcfs_rq->h_nr_idle -= idle_delta;
5946 
5947 		if (qcfs_rq->load.weight) {
5948 			/* Avoid re-evaluating load for this entity: */
5949 			se = parent_entity(se);
5950 			break;
5951 		}
5952 	}
5953 
5954 	for_each_sched_entity(se) {
5955 		struct cfs_rq *qcfs_rq = cfs_rq_of(se);
5956 		/* throttled entity or throttle-on-deactivate */
5957 		if (!se->on_rq)
5958 			goto done;
5959 
5960 		update_load_avg(qcfs_rq, se, 0);
5961 		se_update_runnable(se);
5962 
5963 		if (cfs_rq_is_idle(group_cfs_rq(se)))
5964 			idle_delta = cfs_rq->h_nr_queued;
5965 
5966 		qcfs_rq->h_nr_queued -= queued_delta;
5967 		qcfs_rq->h_nr_runnable -= runnable_delta;
5968 		qcfs_rq->h_nr_idle -= idle_delta;
5969 	}
5970 
5971 	/* At this point se is NULL and we are at root level*/
5972 	sub_nr_running(rq, queued_delta);
5973 
5974 	/* Stop the fair server if throttling resulted in no runnable tasks */
5975 	if (rq_h_nr_queued && !rq->cfs.h_nr_queued)
5976 		dl_server_stop(&rq->fair_server);
5977 done:
5978 	/*
5979 	 * Note: distribution will already see us throttled via the
5980 	 * throttled-list.  rq->lock protects completion.
5981 	 */
5982 	cfs_rq->throttled = 1;
5983 	SCHED_WARN_ON(cfs_rq->throttled_clock);
5984 	if (cfs_rq->nr_queued)
5985 		cfs_rq->throttled_clock = rq_clock(rq);
5986 	return true;
5987 }
5988 
unthrottle_cfs_rq(struct cfs_rq * cfs_rq)5989 void unthrottle_cfs_rq(struct cfs_rq *cfs_rq)
5990 {
5991 	struct rq *rq = rq_of(cfs_rq);
5992 	struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
5993 	struct sched_entity *se;
5994 	long queued_delta, runnable_delta, idle_delta;
5995 	long rq_h_nr_queued = rq->cfs.h_nr_queued;
5996 
5997 	se = cfs_rq->tg->se[cpu_of(rq)];
5998 
5999 	cfs_rq->throttled = 0;
6000 
6001 	update_rq_clock(rq);
6002 
6003 	raw_spin_lock(&cfs_b->lock);
6004 	if (cfs_rq->throttled_clock) {
6005 		cfs_b->throttled_time += rq_clock(rq) - cfs_rq->throttled_clock;
6006 		cfs_rq->throttled_clock = 0;
6007 	}
6008 	list_del_rcu(&cfs_rq->throttled_list);
6009 	raw_spin_unlock(&cfs_b->lock);
6010 
6011 	/* update hierarchical throttle state */
6012 	walk_tg_tree_from(cfs_rq->tg, tg_nop, tg_unthrottle_up, (void *)rq);
6013 
6014 	if (!cfs_rq->load.weight) {
6015 		if (!cfs_rq->on_list)
6016 			return;
6017 		/*
6018 		 * Nothing to run but something to decay (on_list)?
6019 		 * Complete the branch.
6020 		 */
6021 		for_each_sched_entity(se) {
6022 			if (list_add_leaf_cfs_rq(cfs_rq_of(se)))
6023 				break;
6024 		}
6025 		goto unthrottle_throttle;
6026 	}
6027 
6028 	queued_delta = cfs_rq->h_nr_queued;
6029 	runnable_delta = cfs_rq->h_nr_runnable;
6030 	idle_delta = cfs_rq->h_nr_idle;
6031 	for_each_sched_entity(se) {
6032 		struct cfs_rq *qcfs_rq = cfs_rq_of(se);
6033 
6034 		/* Handle any unfinished DELAY_DEQUEUE business first. */
6035 		if (se->sched_delayed) {
6036 			int flags = DEQUEUE_SLEEP | DEQUEUE_DELAYED;
6037 
6038 			dequeue_entity(qcfs_rq, se, flags);
6039 		} else if (se->on_rq)
6040 			break;
6041 		enqueue_entity(qcfs_rq, se, ENQUEUE_WAKEUP);
6042 
6043 		if (cfs_rq_is_idle(group_cfs_rq(se)))
6044 			idle_delta = cfs_rq->h_nr_queued;
6045 
6046 		qcfs_rq->h_nr_queued += queued_delta;
6047 		qcfs_rq->h_nr_runnable += runnable_delta;
6048 		qcfs_rq->h_nr_idle += idle_delta;
6049 
6050 		/* end evaluation on encountering a throttled cfs_rq */
6051 		if (cfs_rq_throttled(qcfs_rq))
6052 			goto unthrottle_throttle;
6053 	}
6054 
6055 	for_each_sched_entity(se) {
6056 		struct cfs_rq *qcfs_rq = cfs_rq_of(se);
6057 
6058 		update_load_avg(qcfs_rq, se, UPDATE_TG);
6059 		se_update_runnable(se);
6060 
6061 		if (cfs_rq_is_idle(group_cfs_rq(se)))
6062 			idle_delta = cfs_rq->h_nr_queued;
6063 
6064 		qcfs_rq->h_nr_queued += queued_delta;
6065 		qcfs_rq->h_nr_runnable += runnable_delta;
6066 		qcfs_rq->h_nr_idle += idle_delta;
6067 
6068 		/* end evaluation on encountering a throttled cfs_rq */
6069 		if (cfs_rq_throttled(qcfs_rq))
6070 			goto unthrottle_throttle;
6071 	}
6072 
6073 	/* Start the fair server if un-throttling resulted in new runnable tasks */
6074 	if (!rq_h_nr_queued && rq->cfs.h_nr_queued)
6075 		dl_server_start(&rq->fair_server);
6076 
6077 	/* At this point se is NULL and we are at root level*/
6078 	add_nr_running(rq, queued_delta);
6079 
6080 unthrottle_throttle:
6081 	assert_list_leaf_cfs_rq(rq);
6082 
6083 	/* Determine whether we need to wake up potentially idle CPU: */
6084 	if (rq->curr == rq->idle && rq->cfs.nr_queued)
6085 		resched_curr(rq);
6086 }
6087 
6088 #ifdef CONFIG_SMP
__cfsb_csd_unthrottle(void * arg)6089 static void __cfsb_csd_unthrottle(void *arg)
6090 {
6091 	struct cfs_rq *cursor, *tmp;
6092 	struct rq *rq = arg;
6093 	struct rq_flags rf;
6094 
6095 	rq_lock(rq, &rf);
6096 
6097 	/*
6098 	 * Iterating over the list can trigger several call to
6099 	 * update_rq_clock() in unthrottle_cfs_rq().
6100 	 * Do it once and skip the potential next ones.
6101 	 */
6102 	update_rq_clock(rq);
6103 	rq_clock_start_loop_update(rq);
6104 
6105 	/*
6106 	 * Since we hold rq lock we're safe from concurrent manipulation of
6107 	 * the CSD list. However, this RCU critical section annotates the
6108 	 * fact that we pair with sched_free_group_rcu(), so that we cannot
6109 	 * race with group being freed in the window between removing it
6110 	 * from the list and advancing to the next entry in the list.
6111 	 */
6112 	rcu_read_lock();
6113 
6114 	list_for_each_entry_safe(cursor, tmp, &rq->cfsb_csd_list,
6115 				 throttled_csd_list) {
6116 		list_del_init(&cursor->throttled_csd_list);
6117 
6118 		if (cfs_rq_throttled(cursor))
6119 			unthrottle_cfs_rq(cursor);
6120 	}
6121 
6122 	rcu_read_unlock();
6123 
6124 	rq_clock_stop_loop_update(rq);
6125 	rq_unlock(rq, &rf);
6126 }
6127 
__unthrottle_cfs_rq_async(struct cfs_rq * cfs_rq)6128 static inline void __unthrottle_cfs_rq_async(struct cfs_rq *cfs_rq)
6129 {
6130 	struct rq *rq = rq_of(cfs_rq);
6131 	bool first;
6132 
6133 	if (rq == this_rq()) {
6134 		unthrottle_cfs_rq(cfs_rq);
6135 		return;
6136 	}
6137 
6138 	/* Already enqueued */
6139 	if (SCHED_WARN_ON(!list_empty(&cfs_rq->throttled_csd_list)))
6140 		return;
6141 
6142 	first = list_empty(&rq->cfsb_csd_list);
6143 	list_add_tail(&cfs_rq->throttled_csd_list, &rq->cfsb_csd_list);
6144 	if (first)
6145 		smp_call_function_single_async(cpu_of(rq), &rq->cfsb_csd);
6146 }
6147 #else
__unthrottle_cfs_rq_async(struct cfs_rq * cfs_rq)6148 static inline void __unthrottle_cfs_rq_async(struct cfs_rq *cfs_rq)
6149 {
6150 	unthrottle_cfs_rq(cfs_rq);
6151 }
6152 #endif
6153 
unthrottle_cfs_rq_async(struct cfs_rq * cfs_rq)6154 static void unthrottle_cfs_rq_async(struct cfs_rq *cfs_rq)
6155 {
6156 	lockdep_assert_rq_held(rq_of(cfs_rq));
6157 
6158 	if (SCHED_WARN_ON(!cfs_rq_throttled(cfs_rq) ||
6159 	    cfs_rq->runtime_remaining <= 0))
6160 		return;
6161 
6162 	__unthrottle_cfs_rq_async(cfs_rq);
6163 }
6164 
distribute_cfs_runtime(struct cfs_bandwidth * cfs_b)6165 static bool distribute_cfs_runtime(struct cfs_bandwidth *cfs_b)
6166 {
6167 	int this_cpu = smp_processor_id();
6168 	u64 runtime, remaining = 1;
6169 	bool throttled = false;
6170 	struct cfs_rq *cfs_rq, *tmp;
6171 	struct rq_flags rf;
6172 	struct rq *rq;
6173 	LIST_HEAD(local_unthrottle);
6174 
6175 	rcu_read_lock();
6176 	list_for_each_entry_rcu(cfs_rq, &cfs_b->throttled_cfs_rq,
6177 				throttled_list) {
6178 		rq = rq_of(cfs_rq);
6179 
6180 		if (!remaining) {
6181 			throttled = true;
6182 			break;
6183 		}
6184 
6185 		rq_lock_irqsave(rq, &rf);
6186 		if (!cfs_rq_throttled(cfs_rq))
6187 			goto next;
6188 
6189 		/* Already queued for async unthrottle */
6190 		if (!list_empty(&cfs_rq->throttled_csd_list))
6191 			goto next;
6192 
6193 		/* By the above checks, this should never be true */
6194 		SCHED_WARN_ON(cfs_rq->runtime_remaining > 0);
6195 
6196 		raw_spin_lock(&cfs_b->lock);
6197 		runtime = -cfs_rq->runtime_remaining + 1;
6198 		if (runtime > cfs_b->runtime)
6199 			runtime = cfs_b->runtime;
6200 		cfs_b->runtime -= runtime;
6201 		remaining = cfs_b->runtime;
6202 		raw_spin_unlock(&cfs_b->lock);
6203 
6204 		cfs_rq->runtime_remaining += runtime;
6205 
6206 		/* we check whether we're throttled above */
6207 		if (cfs_rq->runtime_remaining > 0) {
6208 			if (cpu_of(rq) != this_cpu) {
6209 				unthrottle_cfs_rq_async(cfs_rq);
6210 			} else {
6211 				/*
6212 				 * We currently only expect to be unthrottling
6213 				 * a single cfs_rq locally.
6214 				 */
6215 				SCHED_WARN_ON(!list_empty(&local_unthrottle));
6216 				list_add_tail(&cfs_rq->throttled_csd_list,
6217 					      &local_unthrottle);
6218 			}
6219 		} else {
6220 			throttled = true;
6221 		}
6222 
6223 next:
6224 		rq_unlock_irqrestore(rq, &rf);
6225 	}
6226 
6227 	list_for_each_entry_safe(cfs_rq, tmp, &local_unthrottle,
6228 				 throttled_csd_list) {
6229 		struct rq *rq = rq_of(cfs_rq);
6230 
6231 		rq_lock_irqsave(rq, &rf);
6232 
6233 		list_del_init(&cfs_rq->throttled_csd_list);
6234 
6235 		if (cfs_rq_throttled(cfs_rq))
6236 			unthrottle_cfs_rq(cfs_rq);
6237 
6238 		rq_unlock_irqrestore(rq, &rf);
6239 	}
6240 	SCHED_WARN_ON(!list_empty(&local_unthrottle));
6241 
6242 	rcu_read_unlock();
6243 
6244 	return throttled;
6245 }
6246 
6247 /*
6248  * Responsible for refilling a task_group's bandwidth and unthrottling its
6249  * cfs_rqs as appropriate. If there has been no activity within the last
6250  * period the timer is deactivated until scheduling resumes; cfs_b->idle is
6251  * used to track this state.
6252  */
do_sched_cfs_period_timer(struct cfs_bandwidth * cfs_b,int overrun,unsigned long flags)6253 static int do_sched_cfs_period_timer(struct cfs_bandwidth *cfs_b, int overrun, unsigned long flags)
6254 {
6255 	int throttled;
6256 
6257 	/* no need to continue the timer with no bandwidth constraint */
6258 	if (cfs_b->quota == RUNTIME_INF)
6259 		goto out_deactivate;
6260 
6261 	throttled = !list_empty(&cfs_b->throttled_cfs_rq);
6262 	cfs_b->nr_periods += overrun;
6263 
6264 	/* Refill extra burst quota even if cfs_b->idle */
6265 	__refill_cfs_bandwidth_runtime(cfs_b);
6266 
6267 	/*
6268 	 * idle depends on !throttled (for the case of a large deficit), and if
6269 	 * we're going inactive then everything else can be deferred
6270 	 */
6271 	if (cfs_b->idle && !throttled)
6272 		goto out_deactivate;
6273 
6274 	if (!throttled) {
6275 		/* mark as potentially idle for the upcoming period */
6276 		cfs_b->idle = 1;
6277 		return 0;
6278 	}
6279 
6280 	/* account preceding periods in which throttling occurred */
6281 	cfs_b->nr_throttled += overrun;
6282 
6283 	/*
6284 	 * This check is repeated as we release cfs_b->lock while we unthrottle.
6285 	 */
6286 	while (throttled && cfs_b->runtime > 0) {
6287 		raw_spin_unlock_irqrestore(&cfs_b->lock, flags);
6288 		/* we can't nest cfs_b->lock while distributing bandwidth */
6289 		throttled = distribute_cfs_runtime(cfs_b);
6290 		raw_spin_lock_irqsave(&cfs_b->lock, flags);
6291 	}
6292 
6293 	/*
6294 	 * While we are ensured activity in the period following an
6295 	 * unthrottle, this also covers the case in which the new bandwidth is
6296 	 * insufficient to cover the existing bandwidth deficit.  (Forcing the
6297 	 * timer to remain active while there are any throttled entities.)
6298 	 */
6299 	cfs_b->idle = 0;
6300 
6301 	return 0;
6302 
6303 out_deactivate:
6304 	return 1;
6305 }
6306 
6307 /* a cfs_rq won't donate quota below this amount */
6308 static const u64 min_cfs_rq_runtime = 1 * NSEC_PER_MSEC;
6309 /* minimum remaining period time to redistribute slack quota */
6310 static const u64 min_bandwidth_expiration = 2 * NSEC_PER_MSEC;
6311 /* how long we wait to gather additional slack before distributing */
6312 static const u64 cfs_bandwidth_slack_period = 5 * NSEC_PER_MSEC;
6313 
6314 /*
6315  * Are we near the end of the current quota period?
6316  *
6317  * Requires cfs_b->lock for hrtimer_expires_remaining to be safe against the
6318  * hrtimer base being cleared by hrtimer_start. In the case of
6319  * migrate_hrtimers, base is never cleared, so we are fine.
6320  */
runtime_refresh_within(struct cfs_bandwidth * cfs_b,u64 min_expire)6321 static int runtime_refresh_within(struct cfs_bandwidth *cfs_b, u64 min_expire)
6322 {
6323 	struct hrtimer *refresh_timer = &cfs_b->period_timer;
6324 	s64 remaining;
6325 
6326 	/* if the call-back is running a quota refresh is already occurring */
6327 	if (hrtimer_callback_running(refresh_timer))
6328 		return 1;
6329 
6330 	/* is a quota refresh about to occur? */
6331 	remaining = ktime_to_ns(hrtimer_expires_remaining(refresh_timer));
6332 	if (remaining < (s64)min_expire)
6333 		return 1;
6334 
6335 	return 0;
6336 }
6337 
start_cfs_slack_bandwidth(struct cfs_bandwidth * cfs_b)6338 static void start_cfs_slack_bandwidth(struct cfs_bandwidth *cfs_b)
6339 {
6340 	u64 min_left = cfs_bandwidth_slack_period + min_bandwidth_expiration;
6341 
6342 	/* if there's a quota refresh soon don't bother with slack */
6343 	if (runtime_refresh_within(cfs_b, min_left))
6344 		return;
6345 
6346 	/* don't push forwards an existing deferred unthrottle */
6347 	if (cfs_b->slack_started)
6348 		return;
6349 	cfs_b->slack_started = true;
6350 
6351 	hrtimer_start(&cfs_b->slack_timer,
6352 			ns_to_ktime(cfs_bandwidth_slack_period),
6353 			HRTIMER_MODE_REL);
6354 }
6355 
6356 /* we know any runtime found here is valid as update_curr() precedes return */
__return_cfs_rq_runtime(struct cfs_rq * cfs_rq)6357 static void __return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
6358 {
6359 	struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
6360 	s64 slack_runtime = cfs_rq->runtime_remaining - min_cfs_rq_runtime;
6361 
6362 	if (slack_runtime <= 0)
6363 		return;
6364 
6365 	raw_spin_lock(&cfs_b->lock);
6366 	if (cfs_b->quota != RUNTIME_INF) {
6367 		cfs_b->runtime += slack_runtime;
6368 
6369 		/* we are under rq->lock, defer unthrottling using a timer */
6370 		if (cfs_b->runtime > sched_cfs_bandwidth_slice() &&
6371 		    !list_empty(&cfs_b->throttled_cfs_rq))
6372 			start_cfs_slack_bandwidth(cfs_b);
6373 	}
6374 	raw_spin_unlock(&cfs_b->lock);
6375 
6376 	/* even if it's not valid for return we don't want to try again */
6377 	cfs_rq->runtime_remaining -= slack_runtime;
6378 }
6379 
return_cfs_rq_runtime(struct cfs_rq * cfs_rq)6380 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
6381 {
6382 	if (!cfs_bandwidth_used())
6383 		return;
6384 
6385 	if (!cfs_rq->runtime_enabled || cfs_rq->nr_queued)
6386 		return;
6387 
6388 	__return_cfs_rq_runtime(cfs_rq);
6389 }
6390 
6391 /*
6392  * This is done with a timer (instead of inline with bandwidth return) since
6393  * it's necessary to juggle rq->locks to unthrottle their respective cfs_rqs.
6394  */
do_sched_cfs_slack_timer(struct cfs_bandwidth * cfs_b)6395 static void do_sched_cfs_slack_timer(struct cfs_bandwidth *cfs_b)
6396 {
6397 	u64 runtime = 0, slice = sched_cfs_bandwidth_slice();
6398 	unsigned long flags;
6399 
6400 	/* confirm we're still not at a refresh boundary */
6401 	raw_spin_lock_irqsave(&cfs_b->lock, flags);
6402 	cfs_b->slack_started = false;
6403 
6404 	if (runtime_refresh_within(cfs_b, min_bandwidth_expiration)) {
6405 		raw_spin_unlock_irqrestore(&cfs_b->lock, flags);
6406 		return;
6407 	}
6408 
6409 	if (cfs_b->quota != RUNTIME_INF && cfs_b->runtime > slice)
6410 		runtime = cfs_b->runtime;
6411 
6412 	raw_spin_unlock_irqrestore(&cfs_b->lock, flags);
6413 
6414 	if (!runtime)
6415 		return;
6416 
6417 	distribute_cfs_runtime(cfs_b);
6418 }
6419 
6420 /*
6421  * When a group wakes up we want to make sure that its quota is not already
6422  * expired/exceeded, otherwise it may be allowed to steal additional ticks of
6423  * runtime as update_curr() throttling can not trigger until it's on-rq.
6424  */
check_enqueue_throttle(struct cfs_rq * cfs_rq)6425 static void check_enqueue_throttle(struct cfs_rq *cfs_rq)
6426 {
6427 	if (!cfs_bandwidth_used())
6428 		return;
6429 
6430 	/* an active group must be handled by the update_curr()->put() path */
6431 	if (!cfs_rq->runtime_enabled || cfs_rq->curr)
6432 		return;
6433 
6434 	/* ensure the group is not already throttled */
6435 	if (cfs_rq_throttled(cfs_rq))
6436 		return;
6437 
6438 	/* update runtime allocation */
6439 	account_cfs_rq_runtime(cfs_rq, 0);
6440 	if (cfs_rq->runtime_remaining <= 0)
6441 		throttle_cfs_rq(cfs_rq);
6442 }
6443 
sync_throttle(struct task_group * tg,int cpu)6444 static void sync_throttle(struct task_group *tg, int cpu)
6445 {
6446 	struct cfs_rq *pcfs_rq, *cfs_rq;
6447 
6448 	if (!cfs_bandwidth_used())
6449 		return;
6450 
6451 	if (!tg->parent)
6452 		return;
6453 
6454 	cfs_rq = tg->cfs_rq[cpu];
6455 	pcfs_rq = tg->parent->cfs_rq[cpu];
6456 
6457 	cfs_rq->throttle_count = pcfs_rq->throttle_count;
6458 	cfs_rq->throttled_clock_pelt = rq_clock_pelt(cpu_rq(cpu));
6459 }
6460 
6461 /* conditionally throttle active cfs_rq's from put_prev_entity() */
check_cfs_rq_runtime(struct cfs_rq * cfs_rq)6462 static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq)
6463 {
6464 	if (!cfs_bandwidth_used())
6465 		return false;
6466 
6467 	if (likely(!cfs_rq->runtime_enabled || cfs_rq->runtime_remaining > 0))
6468 		return false;
6469 
6470 	/*
6471 	 * it's possible for a throttled entity to be forced into a running
6472 	 * state (e.g. set_curr_task), in this case we're finished.
6473 	 */
6474 	if (cfs_rq_throttled(cfs_rq))
6475 		return true;
6476 
6477 	return throttle_cfs_rq(cfs_rq);
6478 }
6479 
sched_cfs_slack_timer(struct hrtimer * timer)6480 static enum hrtimer_restart sched_cfs_slack_timer(struct hrtimer *timer)
6481 {
6482 	struct cfs_bandwidth *cfs_b =
6483 		container_of(timer, struct cfs_bandwidth, slack_timer);
6484 
6485 	do_sched_cfs_slack_timer(cfs_b);
6486 
6487 	return HRTIMER_NORESTART;
6488 }
6489 
6490 extern const u64 max_cfs_quota_period;
6491 
sched_cfs_period_timer(struct hrtimer * timer)6492 static enum hrtimer_restart sched_cfs_period_timer(struct hrtimer *timer)
6493 {
6494 	struct cfs_bandwidth *cfs_b =
6495 		container_of(timer, struct cfs_bandwidth, period_timer);
6496 	unsigned long flags;
6497 	int overrun;
6498 	int idle = 0;
6499 	int count = 0;
6500 
6501 	raw_spin_lock_irqsave(&cfs_b->lock, flags);
6502 	for (;;) {
6503 		overrun = hrtimer_forward_now(timer, cfs_b->period);
6504 		if (!overrun)
6505 			break;
6506 
6507 		idle = do_sched_cfs_period_timer(cfs_b, overrun, flags);
6508 
6509 		if (++count > 3) {
6510 			u64 new, old = ktime_to_ns(cfs_b->period);
6511 
6512 			/*
6513 			 * Grow period by a factor of 2 to avoid losing precision.
6514 			 * Precision loss in the quota/period ratio can cause __cfs_schedulable
6515 			 * to fail.
6516 			 */
6517 			new = old * 2;
6518 			if (new < max_cfs_quota_period) {
6519 				cfs_b->period = ns_to_ktime(new);
6520 				cfs_b->quota *= 2;
6521 				cfs_b->burst *= 2;
6522 
6523 				pr_warn_ratelimited(
6524 	"cfs_period_timer[cpu%d]: period too short, scaling up (new cfs_period_us = %lld, cfs_quota_us = %lld)\n",
6525 					smp_processor_id(),
6526 					div_u64(new, NSEC_PER_USEC),
6527 					div_u64(cfs_b->quota, NSEC_PER_USEC));
6528 			} else {
6529 				pr_warn_ratelimited(
6530 	"cfs_period_timer[cpu%d]: period too short, but cannot scale up without losing precision (cfs_period_us = %lld, cfs_quota_us = %lld)\n",
6531 					smp_processor_id(),
6532 					div_u64(old, NSEC_PER_USEC),
6533 					div_u64(cfs_b->quota, NSEC_PER_USEC));
6534 			}
6535 
6536 			/* reset count so we don't come right back in here */
6537 			count = 0;
6538 		}
6539 	}
6540 	if (idle)
6541 		cfs_b->period_active = 0;
6542 	raw_spin_unlock_irqrestore(&cfs_b->lock, flags);
6543 
6544 	return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
6545 }
6546 
init_cfs_bandwidth(struct cfs_bandwidth * cfs_b,struct cfs_bandwidth * parent)6547 void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b, struct cfs_bandwidth *parent)
6548 {
6549 	raw_spin_lock_init(&cfs_b->lock);
6550 	cfs_b->runtime = 0;
6551 	cfs_b->quota = RUNTIME_INF;
6552 	cfs_b->period = ns_to_ktime(default_cfs_period());
6553 	cfs_b->burst = 0;
6554 	cfs_b->hierarchical_quota = parent ? parent->hierarchical_quota : RUNTIME_INF;
6555 
6556 	INIT_LIST_HEAD(&cfs_b->throttled_cfs_rq);
6557 	hrtimer_init(&cfs_b->period_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED);
6558 	cfs_b->period_timer.function = sched_cfs_period_timer;
6559 
6560 	/* Add a random offset so that timers interleave */
6561 	hrtimer_set_expires(&cfs_b->period_timer,
6562 			    get_random_u32_below(cfs_b->period));
6563 	hrtimer_init(&cfs_b->slack_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
6564 	cfs_b->slack_timer.function = sched_cfs_slack_timer;
6565 	cfs_b->slack_started = false;
6566 }
6567 
init_cfs_rq_runtime(struct cfs_rq * cfs_rq)6568 static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq)
6569 {
6570 	cfs_rq->runtime_enabled = 0;
6571 	INIT_LIST_HEAD(&cfs_rq->throttled_list);
6572 	INIT_LIST_HEAD(&cfs_rq->throttled_csd_list);
6573 }
6574 
start_cfs_bandwidth(struct cfs_bandwidth * cfs_b)6575 void start_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
6576 {
6577 	lockdep_assert_held(&cfs_b->lock);
6578 
6579 	if (cfs_b->period_active)
6580 		return;
6581 
6582 	cfs_b->period_active = 1;
6583 	hrtimer_forward_now(&cfs_b->period_timer, cfs_b->period);
6584 	hrtimer_start_expires(&cfs_b->period_timer, HRTIMER_MODE_ABS_PINNED);
6585 }
6586 
destroy_cfs_bandwidth(struct cfs_bandwidth * cfs_b)6587 static void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
6588 {
6589 	int __maybe_unused i;
6590 
6591 	/* init_cfs_bandwidth() was not called */
6592 	if (!cfs_b->throttled_cfs_rq.next)
6593 		return;
6594 
6595 	hrtimer_cancel(&cfs_b->period_timer);
6596 	hrtimer_cancel(&cfs_b->slack_timer);
6597 
6598 	/*
6599 	 * It is possible that we still have some cfs_rq's pending on a CSD
6600 	 * list, though this race is very rare. In order for this to occur, we
6601 	 * must have raced with the last task leaving the group while there
6602 	 * exist throttled cfs_rq(s), and the period_timer must have queued the
6603 	 * CSD item but the remote cpu has not yet processed it. To handle this,
6604 	 * we can simply flush all pending CSD work inline here. We're
6605 	 * guaranteed at this point that no additional cfs_rq of this group can
6606 	 * join a CSD list.
6607 	 */
6608 #ifdef CONFIG_SMP
6609 	for_each_possible_cpu(i) {
6610 		struct rq *rq = cpu_rq(i);
6611 		unsigned long flags;
6612 
6613 		if (list_empty(&rq->cfsb_csd_list))
6614 			continue;
6615 
6616 		local_irq_save(flags);
6617 		__cfsb_csd_unthrottle(rq);
6618 		local_irq_restore(flags);
6619 	}
6620 #endif
6621 }
6622 
6623 /*
6624  * Both these CPU hotplug callbacks race against unregister_fair_sched_group()
6625  *
6626  * The race is harmless, since modifying bandwidth settings of unhooked group
6627  * bits doesn't do much.
6628  */
6629 
6630 /* cpu online callback */
update_runtime_enabled(struct rq * rq)6631 static void __maybe_unused update_runtime_enabled(struct rq *rq)
6632 {
6633 	struct task_group *tg;
6634 
6635 	lockdep_assert_rq_held(rq);
6636 
6637 	rcu_read_lock();
6638 	list_for_each_entry_rcu(tg, &task_groups, list) {
6639 		struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
6640 		struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
6641 
6642 		raw_spin_lock(&cfs_b->lock);
6643 		cfs_rq->runtime_enabled = cfs_b->quota != RUNTIME_INF;
6644 		raw_spin_unlock(&cfs_b->lock);
6645 	}
6646 	rcu_read_unlock();
6647 }
6648 
6649 /* cpu offline callback */
unthrottle_offline_cfs_rqs(struct rq * rq)6650 static void __maybe_unused unthrottle_offline_cfs_rqs(struct rq *rq)
6651 {
6652 	struct task_group *tg;
6653 
6654 	lockdep_assert_rq_held(rq);
6655 
6656 	// Do not unthrottle for an active CPU
6657 	if (cpumask_test_cpu(cpu_of(rq), cpu_active_mask))
6658 		return;
6659 
6660 	/*
6661 	 * The rq clock has already been updated in the
6662 	 * set_rq_offline(), so we should skip updating
6663 	 * the rq clock again in unthrottle_cfs_rq().
6664 	 */
6665 	rq_clock_start_loop_update(rq);
6666 
6667 	rcu_read_lock();
6668 	list_for_each_entry_rcu(tg, &task_groups, list) {
6669 		struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
6670 
6671 		if (!cfs_rq->runtime_enabled)
6672 			continue;
6673 
6674 		/*
6675 		 * Offline rq is schedulable till CPU is completely disabled
6676 		 * in take_cpu_down(), so we prevent new cfs throttling here.
6677 		 */
6678 		cfs_rq->runtime_enabled = 0;
6679 
6680 		if (!cfs_rq_throttled(cfs_rq))
6681 			continue;
6682 
6683 		/*
6684 		 * clock_task is not advancing so we just need to make sure
6685 		 * there's some valid quota amount
6686 		 */
6687 		cfs_rq->runtime_remaining = 1;
6688 		unthrottle_cfs_rq(cfs_rq);
6689 	}
6690 	rcu_read_unlock();
6691 
6692 	rq_clock_stop_loop_update(rq);
6693 }
6694 
cfs_task_bw_constrained(struct task_struct * p)6695 bool cfs_task_bw_constrained(struct task_struct *p)
6696 {
6697 	struct cfs_rq *cfs_rq = task_cfs_rq(p);
6698 
6699 	if (!cfs_bandwidth_used())
6700 		return false;
6701 
6702 	if (cfs_rq->runtime_enabled ||
6703 	    tg_cfs_bandwidth(cfs_rq->tg)->hierarchical_quota != RUNTIME_INF)
6704 		return true;
6705 
6706 	return false;
6707 }
6708 
6709 #ifdef CONFIG_NO_HZ_FULL
6710 /* called from pick_next_task_fair() */
sched_fair_update_stop_tick(struct rq * rq,struct task_struct * p)6711 static void sched_fair_update_stop_tick(struct rq *rq, struct task_struct *p)
6712 {
6713 	int cpu = cpu_of(rq);
6714 
6715 	if (!cfs_bandwidth_used())
6716 		return;
6717 
6718 	if (!tick_nohz_full_cpu(cpu))
6719 		return;
6720 
6721 	if (rq->nr_running != 1)
6722 		return;
6723 
6724 	/*
6725 	 *  We know there is only one task runnable and we've just picked it. The
6726 	 *  normal enqueue path will have cleared TICK_DEP_BIT_SCHED if we will
6727 	 *  be otherwise able to stop the tick. Just need to check if we are using
6728 	 *  bandwidth control.
6729 	 */
6730 	if (cfs_task_bw_constrained(p))
6731 		tick_nohz_dep_set_cpu(cpu, TICK_DEP_BIT_SCHED);
6732 }
6733 #endif
6734 
6735 #else /* CONFIG_CFS_BANDWIDTH */
6736 
account_cfs_rq_runtime(struct cfs_rq * cfs_rq,u64 delta_exec)6737 static void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec) {}
check_cfs_rq_runtime(struct cfs_rq * cfs_rq)6738 static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq) { return false; }
check_enqueue_throttle(struct cfs_rq * cfs_rq)6739 static void check_enqueue_throttle(struct cfs_rq *cfs_rq) {}
sync_throttle(struct task_group * tg,int cpu)6740 static inline void sync_throttle(struct task_group *tg, int cpu) {}
return_cfs_rq_runtime(struct cfs_rq * cfs_rq)6741 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
6742 
cfs_rq_throttled(struct cfs_rq * cfs_rq)6743 static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
6744 {
6745 	return 0;
6746 }
6747 
throttled_hierarchy(struct cfs_rq * cfs_rq)6748 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
6749 {
6750 	return 0;
6751 }
6752 
throttled_lb_pair(struct task_group * tg,int src_cpu,int dest_cpu)6753 static inline int throttled_lb_pair(struct task_group *tg,
6754 				    int src_cpu, int dest_cpu)
6755 {
6756 	return 0;
6757 }
6758 
6759 #ifdef CONFIG_FAIR_GROUP_SCHED
init_cfs_bandwidth(struct cfs_bandwidth * cfs_b,struct cfs_bandwidth * parent)6760 void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b, struct cfs_bandwidth *parent) {}
init_cfs_rq_runtime(struct cfs_rq * cfs_rq)6761 static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
6762 #endif
6763 
tg_cfs_bandwidth(struct task_group * tg)6764 static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
6765 {
6766 	return NULL;
6767 }
destroy_cfs_bandwidth(struct cfs_bandwidth * cfs_b)6768 static inline void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
update_runtime_enabled(struct rq * rq)6769 static inline void update_runtime_enabled(struct rq *rq) {}
unthrottle_offline_cfs_rqs(struct rq * rq)6770 static inline void unthrottle_offline_cfs_rqs(struct rq *rq) {}
6771 #ifdef CONFIG_CGROUP_SCHED
cfs_task_bw_constrained(struct task_struct * p)6772 bool cfs_task_bw_constrained(struct task_struct *p)
6773 {
6774 	return false;
6775 }
6776 #endif
6777 #endif /* CONFIG_CFS_BANDWIDTH */
6778 
6779 #if !defined(CONFIG_CFS_BANDWIDTH) || !defined(CONFIG_NO_HZ_FULL)
sched_fair_update_stop_tick(struct rq * rq,struct task_struct * p)6780 static inline void sched_fair_update_stop_tick(struct rq *rq, struct task_struct *p) {}
6781 #endif
6782 
6783 /**************************************************
6784  * CFS operations on tasks:
6785  */
6786 
6787 #ifdef CONFIG_SCHED_HRTICK
hrtick_start_fair(struct rq * rq,struct task_struct * p)6788 static void hrtick_start_fair(struct rq *rq, struct task_struct *p)
6789 {
6790 	struct sched_entity *se = &p->se;
6791 
6792 	SCHED_WARN_ON(task_rq(p) != rq);
6793 
6794 	if (rq->cfs.h_nr_queued > 1) {
6795 		u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime;
6796 		u64 slice = se->slice;
6797 		s64 delta = slice - ran;
6798 
6799 		if (delta < 0) {
6800 			if (task_current_donor(rq, p))
6801 				resched_curr(rq);
6802 			return;
6803 		}
6804 		hrtick_start(rq, delta);
6805 	}
6806 }
6807 
6808 /*
6809  * called from enqueue/dequeue and updates the hrtick when the
6810  * current task is from our class and nr_running is low enough
6811  * to matter.
6812  */
hrtick_update(struct rq * rq)6813 static void hrtick_update(struct rq *rq)
6814 {
6815 	struct task_struct *donor = rq->donor;
6816 
6817 	if (!hrtick_enabled_fair(rq) || donor->sched_class != &fair_sched_class)
6818 		return;
6819 
6820 	hrtick_start_fair(rq, donor);
6821 }
6822 #else /* !CONFIG_SCHED_HRTICK */
6823 static inline void
hrtick_start_fair(struct rq * rq,struct task_struct * p)6824 hrtick_start_fair(struct rq *rq, struct task_struct *p)
6825 {
6826 }
6827 
hrtick_update(struct rq * rq)6828 static inline void hrtick_update(struct rq *rq)
6829 {
6830 }
6831 #endif
6832 
6833 #ifdef CONFIG_SMP
cpu_overutilized(int cpu)6834 static inline bool cpu_overutilized(int cpu)
6835 {
6836 	unsigned long  rq_util_min, rq_util_max;
6837 
6838 	if (!sched_energy_enabled())
6839 		return false;
6840 
6841 	rq_util_min = uclamp_rq_get(cpu_rq(cpu), UCLAMP_MIN);
6842 	rq_util_max = uclamp_rq_get(cpu_rq(cpu), UCLAMP_MAX);
6843 
6844 	/* Return true only if the utilization doesn't fit CPU's capacity */
6845 	return !util_fits_cpu(cpu_util_cfs(cpu), rq_util_min, rq_util_max, cpu);
6846 }
6847 
6848 /*
6849  * overutilized value make sense only if EAS is enabled
6850  */
is_rd_overutilized(struct root_domain * rd)6851 static inline bool is_rd_overutilized(struct root_domain *rd)
6852 {
6853 	return !sched_energy_enabled() || READ_ONCE(rd->overutilized);
6854 }
6855 
set_rd_overutilized(struct root_domain * rd,bool flag)6856 static inline void set_rd_overutilized(struct root_domain *rd, bool flag)
6857 {
6858 	if (!sched_energy_enabled())
6859 		return;
6860 
6861 	WRITE_ONCE(rd->overutilized, flag);
6862 	trace_sched_overutilized_tp(rd, flag);
6863 }
6864 
check_update_overutilized_status(struct rq * rq)6865 static inline void check_update_overutilized_status(struct rq *rq)
6866 {
6867 	/*
6868 	 * overutilized field is used for load balancing decisions only
6869 	 * if energy aware scheduler is being used
6870 	 */
6871 
6872 	if (!is_rd_overutilized(rq->rd) && cpu_overutilized(rq->cpu))
6873 		set_rd_overutilized(rq->rd, 1);
6874 }
6875 #else
check_update_overutilized_status(struct rq * rq)6876 static inline void check_update_overutilized_status(struct rq *rq) { }
6877 #endif
6878 
6879 /* Runqueue only has SCHED_IDLE tasks enqueued */
sched_idle_rq(struct rq * rq)6880 static int sched_idle_rq(struct rq *rq)
6881 {
6882 	return unlikely(rq->nr_running == rq->cfs.h_nr_idle &&
6883 			rq->nr_running);
6884 }
6885 
6886 #ifdef CONFIG_SMP
sched_idle_cpu(int cpu)6887 static int sched_idle_cpu(int cpu)
6888 {
6889 	return sched_idle_rq(cpu_rq(cpu));
6890 }
6891 #endif
6892 
6893 static void
requeue_delayed_entity(struct sched_entity * se)6894 requeue_delayed_entity(struct sched_entity *se)
6895 {
6896 	struct cfs_rq *cfs_rq = cfs_rq_of(se);
6897 
6898 	/*
6899 	 * se->sched_delayed should imply: se->on_rq == 1.
6900 	 * Because a delayed entity is one that is still on
6901 	 * the runqueue competing until elegibility.
6902 	 */
6903 	SCHED_WARN_ON(!se->sched_delayed);
6904 	SCHED_WARN_ON(!se->on_rq);
6905 
6906 	if (sched_feat(DELAY_ZERO)) {
6907 		update_entity_lag(cfs_rq, se);
6908 		if (se->vlag > 0) {
6909 			cfs_rq->nr_queued--;
6910 			if (se != cfs_rq->curr)
6911 				__dequeue_entity(cfs_rq, se);
6912 			se->vlag = 0;
6913 			place_entity(cfs_rq, se, 0);
6914 			if (se != cfs_rq->curr)
6915 				__enqueue_entity(cfs_rq, se);
6916 			cfs_rq->nr_queued++;
6917 		}
6918 	}
6919 
6920 	update_load_avg(cfs_rq, se, 0);
6921 	clear_delayed(se);
6922 }
6923 
6924 /*
6925  * The enqueue_task method is called before nr_running is
6926  * increased. Here we update the fair scheduling stats and
6927  * then put the task into the rbtree:
6928  */
6929 static void
enqueue_task_fair(struct rq * rq,struct task_struct * p,int flags)6930 enqueue_task_fair(struct rq *rq, struct task_struct *p, int flags)
6931 {
6932 	struct cfs_rq *cfs_rq;
6933 	struct sched_entity *se = &p->se;
6934 	int h_nr_idle = task_has_idle_policy(p);
6935 	int h_nr_runnable = 1;
6936 	int task_new = !(flags & ENQUEUE_WAKEUP);
6937 	int rq_h_nr_queued = rq->cfs.h_nr_queued;
6938 	u64 slice = 0;
6939 
6940 	/*
6941 	 * The code below (indirectly) updates schedutil which looks at
6942 	 * the cfs_rq utilization to select a frequency.
6943 	 * Let's add the task's estimated utilization to the cfs_rq's
6944 	 * estimated utilization, before we update schedutil.
6945 	 */
6946 	if (!(p->se.sched_delayed && (task_on_rq_migrating(p) || (flags & ENQUEUE_RESTORE))))
6947 		util_est_enqueue(&rq->cfs, p);
6948 
6949 	if (flags & ENQUEUE_DELAYED) {
6950 		requeue_delayed_entity(se);
6951 		return;
6952 	}
6953 
6954 	/*
6955 	 * If in_iowait is set, the code below may not trigger any cpufreq
6956 	 * utilization updates, so do it here explicitly with the IOWAIT flag
6957 	 * passed.
6958 	 */
6959 	if (p->in_iowait)
6960 		cpufreq_update_util(rq, SCHED_CPUFREQ_IOWAIT);
6961 
6962 	if (task_new && se->sched_delayed)
6963 		h_nr_runnable = 0;
6964 
6965 	for_each_sched_entity(se) {
6966 		if (se->on_rq) {
6967 			if (se->sched_delayed)
6968 				requeue_delayed_entity(se);
6969 			break;
6970 		}
6971 		cfs_rq = cfs_rq_of(se);
6972 
6973 		/*
6974 		 * Basically set the slice of group entries to the min_slice of
6975 		 * their respective cfs_rq. This ensures the group can service
6976 		 * its entities in the desired time-frame.
6977 		 */
6978 		if (slice) {
6979 			se->slice = slice;
6980 			se->custom_slice = 1;
6981 		}
6982 		enqueue_entity(cfs_rq, se, flags);
6983 		slice = cfs_rq_min_slice(cfs_rq);
6984 
6985 		cfs_rq->h_nr_runnable += h_nr_runnable;
6986 		cfs_rq->h_nr_queued++;
6987 		cfs_rq->h_nr_idle += h_nr_idle;
6988 
6989 		if (cfs_rq_is_idle(cfs_rq))
6990 			h_nr_idle = 1;
6991 
6992 		/* end evaluation on encountering a throttled cfs_rq */
6993 		if (cfs_rq_throttled(cfs_rq))
6994 			goto enqueue_throttle;
6995 
6996 		flags = ENQUEUE_WAKEUP;
6997 	}
6998 
6999 	for_each_sched_entity(se) {
7000 		cfs_rq = cfs_rq_of(se);
7001 
7002 		update_load_avg(cfs_rq, se, UPDATE_TG);
7003 		se_update_runnable(se);
7004 		update_cfs_group(se);
7005 
7006 		se->slice = slice;
7007 		if (se != cfs_rq->curr)
7008 			min_vruntime_cb_propagate(&se->run_node, NULL);
7009 		slice = cfs_rq_min_slice(cfs_rq);
7010 
7011 		cfs_rq->h_nr_runnable += h_nr_runnable;
7012 		cfs_rq->h_nr_queued++;
7013 		cfs_rq->h_nr_idle += h_nr_idle;
7014 
7015 		if (cfs_rq_is_idle(cfs_rq))
7016 			h_nr_idle = 1;
7017 
7018 		/* end evaluation on encountering a throttled cfs_rq */
7019 		if (cfs_rq_throttled(cfs_rq))
7020 			goto enqueue_throttle;
7021 	}
7022 
7023 	if (!rq_h_nr_queued && rq->cfs.h_nr_queued) {
7024 		/* Account for idle runtime */
7025 		if (!rq->nr_running)
7026 			dl_server_update_idle_time(rq, rq->curr);
7027 		dl_server_start(&rq->fair_server);
7028 	}
7029 
7030 	/* At this point se is NULL and we are at root level*/
7031 	add_nr_running(rq, 1);
7032 
7033 	/*
7034 	 * Since new tasks are assigned an initial util_avg equal to
7035 	 * half of the spare capacity of their CPU, tiny tasks have the
7036 	 * ability to cross the overutilized threshold, which will
7037 	 * result in the load balancer ruining all the task placement
7038 	 * done by EAS. As a way to mitigate that effect, do not account
7039 	 * for the first enqueue operation of new tasks during the
7040 	 * overutilized flag detection.
7041 	 *
7042 	 * A better way of solving this problem would be to wait for
7043 	 * the PELT signals of tasks to converge before taking them
7044 	 * into account, but that is not straightforward to implement,
7045 	 * and the following generally works well enough in practice.
7046 	 */
7047 	if (!task_new)
7048 		check_update_overutilized_status(rq);
7049 
7050 enqueue_throttle:
7051 	assert_list_leaf_cfs_rq(rq);
7052 
7053 	hrtick_update(rq);
7054 }
7055 
7056 static void set_next_buddy(struct sched_entity *se);
7057 
7058 /*
7059  * Basically dequeue_task_fair(), except it can deal with dequeue_entity()
7060  * failing half-way through and resume the dequeue later.
7061  *
7062  * Returns:
7063  * -1 - dequeue delayed
7064  *  0 - dequeue throttled
7065  *  1 - dequeue complete
7066  */
dequeue_entities(struct rq * rq,struct sched_entity * se,int flags)7067 static int dequeue_entities(struct rq *rq, struct sched_entity *se, int flags)
7068 {
7069 	bool was_sched_idle = sched_idle_rq(rq);
7070 	int rq_h_nr_queued = rq->cfs.h_nr_queued;
7071 	bool task_sleep = flags & DEQUEUE_SLEEP;
7072 	bool task_delayed = flags & DEQUEUE_DELAYED;
7073 	struct task_struct *p = NULL;
7074 	int h_nr_idle = 0;
7075 	int h_nr_queued = 0;
7076 	int h_nr_runnable = 0;
7077 	struct cfs_rq *cfs_rq;
7078 	u64 slice = 0;
7079 
7080 	if (entity_is_task(se)) {
7081 		p = task_of(se);
7082 		h_nr_queued = 1;
7083 		h_nr_idle = task_has_idle_policy(p);
7084 		if (task_sleep || task_delayed || !se->sched_delayed)
7085 			h_nr_runnable = 1;
7086 	} else {
7087 		cfs_rq = group_cfs_rq(se);
7088 		slice = cfs_rq_min_slice(cfs_rq);
7089 	}
7090 
7091 	for_each_sched_entity(se) {
7092 		cfs_rq = cfs_rq_of(se);
7093 
7094 		if (!dequeue_entity(cfs_rq, se, flags)) {
7095 			if (p && &p->se == se)
7096 				return -1;
7097 
7098 			break;
7099 		}
7100 
7101 		cfs_rq->h_nr_runnable -= h_nr_runnable;
7102 		cfs_rq->h_nr_queued -= h_nr_queued;
7103 		cfs_rq->h_nr_idle -= h_nr_idle;
7104 
7105 		if (cfs_rq_is_idle(cfs_rq))
7106 			h_nr_idle = h_nr_queued;
7107 
7108 		/* end evaluation on encountering a throttled cfs_rq */
7109 		if (cfs_rq_throttled(cfs_rq))
7110 			return 0;
7111 
7112 		/* Don't dequeue parent if it has other entities besides us */
7113 		if (cfs_rq->load.weight) {
7114 			slice = cfs_rq_min_slice(cfs_rq);
7115 
7116 			/* Avoid re-evaluating load for this entity: */
7117 			se = parent_entity(se);
7118 			/*
7119 			 * Bias pick_next to pick a task from this cfs_rq, as
7120 			 * p is sleeping when it is within its sched_slice.
7121 			 */
7122 			if (task_sleep && se && !throttled_hierarchy(cfs_rq))
7123 				set_next_buddy(se);
7124 			break;
7125 		}
7126 		flags |= DEQUEUE_SLEEP;
7127 		flags &= ~(DEQUEUE_DELAYED | DEQUEUE_SPECIAL);
7128 	}
7129 
7130 	for_each_sched_entity(se) {
7131 		cfs_rq = cfs_rq_of(se);
7132 
7133 		update_load_avg(cfs_rq, se, UPDATE_TG);
7134 		se_update_runnable(se);
7135 		update_cfs_group(se);
7136 
7137 		se->slice = slice;
7138 		if (se != cfs_rq->curr)
7139 			min_vruntime_cb_propagate(&se->run_node, NULL);
7140 		slice = cfs_rq_min_slice(cfs_rq);
7141 
7142 		cfs_rq->h_nr_runnable -= h_nr_runnable;
7143 		cfs_rq->h_nr_queued -= h_nr_queued;
7144 		cfs_rq->h_nr_idle -= h_nr_idle;
7145 
7146 		if (cfs_rq_is_idle(cfs_rq))
7147 			h_nr_idle = h_nr_queued;
7148 
7149 		/* end evaluation on encountering a throttled cfs_rq */
7150 		if (cfs_rq_throttled(cfs_rq))
7151 			return 0;
7152 	}
7153 
7154 	sub_nr_running(rq, h_nr_queued);
7155 
7156 	if (rq_h_nr_queued && !rq->cfs.h_nr_queued)
7157 		dl_server_stop(&rq->fair_server);
7158 
7159 	/* balance early to pull high priority tasks */
7160 	if (unlikely(!was_sched_idle && sched_idle_rq(rq)))
7161 		rq->next_balance = jiffies;
7162 
7163 	if (p && task_delayed) {
7164 		SCHED_WARN_ON(!task_sleep);
7165 		SCHED_WARN_ON(p->on_rq != 1);
7166 
7167 		/* Fix-up what dequeue_task_fair() skipped */
7168 		hrtick_update(rq);
7169 
7170 		/*
7171 		 * Fix-up what block_task() skipped.
7172 		 *
7173 		 * Must be last, @p might not be valid after this.
7174 		 */
7175 		__block_task(rq, p);
7176 	}
7177 
7178 	return 1;
7179 }
7180 
7181 /*
7182  * The dequeue_task method is called before nr_running is
7183  * decreased. We remove the task from the rbtree and
7184  * update the fair scheduling stats:
7185  */
dequeue_task_fair(struct rq * rq,struct task_struct * p,int flags)7186 static bool dequeue_task_fair(struct rq *rq, struct task_struct *p, int flags)
7187 {
7188 	if (!(p->se.sched_delayed && (task_on_rq_migrating(p) || (flags & DEQUEUE_SAVE))))
7189 		util_est_dequeue(&rq->cfs, p);
7190 
7191 	util_est_update(&rq->cfs, p, flags & DEQUEUE_SLEEP);
7192 	if (dequeue_entities(rq, &p->se, flags) < 0)
7193 		return false;
7194 
7195 	/*
7196 	 * Must not reference @p after dequeue_entities(DEQUEUE_DELAYED).
7197 	 */
7198 
7199 	hrtick_update(rq);
7200 	return true;
7201 }
7202 
7203 #ifdef CONFIG_SMP
7204 
7205 /* Working cpumask for: sched_balance_rq(), sched_balance_newidle(). */
7206 static DEFINE_PER_CPU(cpumask_var_t, load_balance_mask);
7207 static DEFINE_PER_CPU(cpumask_var_t, select_rq_mask);
7208 static DEFINE_PER_CPU(cpumask_var_t, should_we_balance_tmpmask);
7209 
7210 #ifdef CONFIG_NO_HZ_COMMON
7211 
7212 static struct {
7213 	cpumask_var_t idle_cpus_mask;
7214 	atomic_t nr_cpus;
7215 	int has_blocked;		/* Idle CPUS has blocked load */
7216 	int needs_update;		/* Newly idle CPUs need their next_balance collated */
7217 	unsigned long next_balance;     /* in jiffy units */
7218 	unsigned long next_blocked;	/* Next update of blocked load in jiffies */
7219 } nohz ____cacheline_aligned;
7220 
7221 #endif /* CONFIG_NO_HZ_COMMON */
7222 
cpu_load(struct rq * rq)7223 static unsigned long cpu_load(struct rq *rq)
7224 {
7225 	return cfs_rq_load_avg(&rq->cfs);
7226 }
7227 
7228 /*
7229  * cpu_load_without - compute CPU load without any contributions from *p
7230  * @cpu: the CPU which load is requested
7231  * @p: the task which load should be discounted
7232  *
7233  * The load of a CPU is defined by the load of tasks currently enqueued on that
7234  * CPU as well as tasks which are currently sleeping after an execution on that
7235  * CPU.
7236  *
7237  * This method returns the load of the specified CPU by discounting the load of
7238  * the specified task, whenever the task is currently contributing to the CPU
7239  * load.
7240  */
cpu_load_without(struct rq * rq,struct task_struct * p)7241 static unsigned long cpu_load_without(struct rq *rq, struct task_struct *p)
7242 {
7243 	struct cfs_rq *cfs_rq;
7244 	unsigned int load;
7245 
7246 	/* Task has no contribution or is new */
7247 	if (cpu_of(rq) != task_cpu(p) || !READ_ONCE(p->se.avg.last_update_time))
7248 		return cpu_load(rq);
7249 
7250 	cfs_rq = &rq->cfs;
7251 	load = READ_ONCE(cfs_rq->avg.load_avg);
7252 
7253 	/* Discount task's util from CPU's util */
7254 	lsub_positive(&load, task_h_load(p));
7255 
7256 	return load;
7257 }
7258 
cpu_runnable(struct rq * rq)7259 static unsigned long cpu_runnable(struct rq *rq)
7260 {
7261 	return cfs_rq_runnable_avg(&rq->cfs);
7262 }
7263 
cpu_runnable_without(struct rq * rq,struct task_struct * p)7264 static unsigned long cpu_runnable_without(struct rq *rq, struct task_struct *p)
7265 {
7266 	struct cfs_rq *cfs_rq;
7267 	unsigned int runnable;
7268 
7269 	/* Task has no contribution or is new */
7270 	if (cpu_of(rq) != task_cpu(p) || !READ_ONCE(p->se.avg.last_update_time))
7271 		return cpu_runnable(rq);
7272 
7273 	cfs_rq = &rq->cfs;
7274 	runnable = READ_ONCE(cfs_rq->avg.runnable_avg);
7275 
7276 	/* Discount task's runnable from CPU's runnable */
7277 	lsub_positive(&runnable, p->se.avg.runnable_avg);
7278 
7279 	return runnable;
7280 }
7281 
capacity_of(int cpu)7282 static unsigned long capacity_of(int cpu)
7283 {
7284 	return cpu_rq(cpu)->cpu_capacity;
7285 }
7286 
record_wakee(struct task_struct * p)7287 static void record_wakee(struct task_struct *p)
7288 {
7289 	/*
7290 	 * Only decay a single time; tasks that have less then 1 wakeup per
7291 	 * jiffy will not have built up many flips.
7292 	 */
7293 	if (time_after(jiffies, current->wakee_flip_decay_ts + HZ)) {
7294 		current->wakee_flips >>= 1;
7295 		current->wakee_flip_decay_ts = jiffies;
7296 	}
7297 
7298 	if (current->last_wakee != p) {
7299 		current->last_wakee = p;
7300 		current->wakee_flips++;
7301 	}
7302 }
7303 
7304 /*
7305  * Detect M:N waker/wakee relationships via a switching-frequency heuristic.
7306  *
7307  * A waker of many should wake a different task than the one last awakened
7308  * at a frequency roughly N times higher than one of its wakees.
7309  *
7310  * In order to determine whether we should let the load spread vs consolidating
7311  * to shared cache, we look for a minimum 'flip' frequency of llc_size in one
7312  * partner, and a factor of lls_size higher frequency in the other.
7313  *
7314  * With both conditions met, we can be relatively sure that the relationship is
7315  * non-monogamous, with partner count exceeding socket size.
7316  *
7317  * Waker/wakee being client/server, worker/dispatcher, interrupt source or
7318  * whatever is irrelevant, spread criteria is apparent partner count exceeds
7319  * socket size.
7320  */
wake_wide(struct task_struct * p)7321 static int wake_wide(struct task_struct *p)
7322 {
7323 	unsigned int master = current->wakee_flips;
7324 	unsigned int slave = p->wakee_flips;
7325 	int factor = __this_cpu_read(sd_llc_size);
7326 
7327 	if (master < slave)
7328 		swap(master, slave);
7329 	if (slave < factor || master < slave * factor)
7330 		return 0;
7331 	return 1;
7332 }
7333 
7334 /*
7335  * The purpose of wake_affine() is to quickly determine on which CPU we can run
7336  * soonest. For the purpose of speed we only consider the waking and previous
7337  * CPU.
7338  *
7339  * wake_affine_idle() - only considers 'now', it check if the waking CPU is
7340  *			cache-affine and is (or	will be) idle.
7341  *
7342  * wake_affine_weight() - considers the weight to reflect the average
7343  *			  scheduling latency of the CPUs. This seems to work
7344  *			  for the overloaded case.
7345  */
7346 static int
wake_affine_idle(int this_cpu,int prev_cpu,int sync)7347 wake_affine_idle(int this_cpu, int prev_cpu, int sync)
7348 {
7349 	/*
7350 	 * If this_cpu is idle, it implies the wakeup is from interrupt
7351 	 * context. Only allow the move if cache is shared. Otherwise an
7352 	 * interrupt intensive workload could force all tasks onto one
7353 	 * node depending on the IO topology or IRQ affinity settings.
7354 	 *
7355 	 * If the prev_cpu is idle and cache affine then avoid a migration.
7356 	 * There is no guarantee that the cache hot data from an interrupt
7357 	 * is more important than cache hot data on the prev_cpu and from
7358 	 * a cpufreq perspective, it's better to have higher utilisation
7359 	 * on one CPU.
7360 	 */
7361 	if (available_idle_cpu(this_cpu) && cpus_share_cache(this_cpu, prev_cpu))
7362 		return available_idle_cpu(prev_cpu) ? prev_cpu : this_cpu;
7363 
7364 	if (sync && cpu_rq(this_cpu)->nr_running == 1)
7365 		return this_cpu;
7366 
7367 	if (available_idle_cpu(prev_cpu))
7368 		return prev_cpu;
7369 
7370 	return nr_cpumask_bits;
7371 }
7372 
7373 static int
wake_affine_weight(struct sched_domain * sd,struct task_struct * p,int this_cpu,int prev_cpu,int sync)7374 wake_affine_weight(struct sched_domain *sd, struct task_struct *p,
7375 		   int this_cpu, int prev_cpu, int sync)
7376 {
7377 	s64 this_eff_load, prev_eff_load;
7378 	unsigned long task_load;
7379 
7380 	this_eff_load = cpu_load(cpu_rq(this_cpu));
7381 
7382 	if (sync) {
7383 		unsigned long current_load = task_h_load(current);
7384 
7385 		if (current_load > this_eff_load)
7386 			return this_cpu;
7387 
7388 		this_eff_load -= current_load;
7389 	}
7390 
7391 	task_load = task_h_load(p);
7392 
7393 	this_eff_load += task_load;
7394 	if (sched_feat(WA_BIAS))
7395 		this_eff_load *= 100;
7396 	this_eff_load *= capacity_of(prev_cpu);
7397 
7398 	prev_eff_load = cpu_load(cpu_rq(prev_cpu));
7399 	prev_eff_load -= task_load;
7400 	if (sched_feat(WA_BIAS))
7401 		prev_eff_load *= 100 + (sd->imbalance_pct - 100) / 2;
7402 	prev_eff_load *= capacity_of(this_cpu);
7403 
7404 	/*
7405 	 * If sync, adjust the weight of prev_eff_load such that if
7406 	 * prev_eff == this_eff that select_idle_sibling() will consider
7407 	 * stacking the wakee on top of the waker if no other CPU is
7408 	 * idle.
7409 	 */
7410 	if (sync)
7411 		prev_eff_load += 1;
7412 
7413 	return this_eff_load < prev_eff_load ? this_cpu : nr_cpumask_bits;
7414 }
7415 
wake_affine(struct sched_domain * sd,struct task_struct * p,int this_cpu,int prev_cpu,int sync)7416 static int wake_affine(struct sched_domain *sd, struct task_struct *p,
7417 		       int this_cpu, int prev_cpu, int sync)
7418 {
7419 	int target = nr_cpumask_bits;
7420 
7421 	if (sched_feat(WA_IDLE))
7422 		target = wake_affine_idle(this_cpu, prev_cpu, sync);
7423 
7424 	if (sched_feat(WA_WEIGHT) && target == nr_cpumask_bits)
7425 		target = wake_affine_weight(sd, p, this_cpu, prev_cpu, sync);
7426 
7427 	schedstat_inc(p->stats.nr_wakeups_affine_attempts);
7428 	if (target != this_cpu)
7429 		return prev_cpu;
7430 
7431 	schedstat_inc(sd->ttwu_move_affine);
7432 	schedstat_inc(p->stats.nr_wakeups_affine);
7433 	return target;
7434 }
7435 
7436 static struct sched_group *
7437 sched_balance_find_dst_group(struct sched_domain *sd, struct task_struct *p, int this_cpu);
7438 
7439 /*
7440  * sched_balance_find_dst_group_cpu - find the idlest CPU among the CPUs in the group.
7441  */
7442 static int
sched_balance_find_dst_group_cpu(struct sched_group * group,struct task_struct * p,int this_cpu)7443 sched_balance_find_dst_group_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
7444 {
7445 	unsigned long load, min_load = ULONG_MAX;
7446 	unsigned int min_exit_latency = UINT_MAX;
7447 	u64 latest_idle_timestamp = 0;
7448 	int least_loaded_cpu = this_cpu;
7449 	int shallowest_idle_cpu = -1;
7450 	int i;
7451 
7452 	/* Check if we have any choice: */
7453 	if (group->group_weight == 1)
7454 		return cpumask_first(sched_group_span(group));
7455 
7456 	/* Traverse only the allowed CPUs */
7457 	for_each_cpu_and(i, sched_group_span(group), p->cpus_ptr) {
7458 		struct rq *rq = cpu_rq(i);
7459 
7460 		if (!sched_core_cookie_match(rq, p))
7461 			continue;
7462 
7463 		if (sched_idle_cpu(i))
7464 			return i;
7465 
7466 		if (available_idle_cpu(i)) {
7467 			struct cpuidle_state *idle = idle_get_state(rq);
7468 			if (idle && idle->exit_latency < min_exit_latency) {
7469 				/*
7470 				 * We give priority to a CPU whose idle state
7471 				 * has the smallest exit latency irrespective
7472 				 * of any idle timestamp.
7473 				 */
7474 				min_exit_latency = idle->exit_latency;
7475 				latest_idle_timestamp = rq->idle_stamp;
7476 				shallowest_idle_cpu = i;
7477 			} else if ((!idle || idle->exit_latency == min_exit_latency) &&
7478 				   rq->idle_stamp > latest_idle_timestamp) {
7479 				/*
7480 				 * If equal or no active idle state, then
7481 				 * the most recently idled CPU might have
7482 				 * a warmer cache.
7483 				 */
7484 				latest_idle_timestamp = rq->idle_stamp;
7485 				shallowest_idle_cpu = i;
7486 			}
7487 		} else if (shallowest_idle_cpu == -1) {
7488 			load = cpu_load(cpu_rq(i));
7489 			if (load < min_load) {
7490 				min_load = load;
7491 				least_loaded_cpu = i;
7492 			}
7493 		}
7494 	}
7495 
7496 	return shallowest_idle_cpu != -1 ? shallowest_idle_cpu : least_loaded_cpu;
7497 }
7498 
sched_balance_find_dst_cpu(struct sched_domain * sd,struct task_struct * p,int cpu,int prev_cpu,int sd_flag)7499 static inline int sched_balance_find_dst_cpu(struct sched_domain *sd, struct task_struct *p,
7500 				  int cpu, int prev_cpu, int sd_flag)
7501 {
7502 	int new_cpu = cpu;
7503 
7504 	if (!cpumask_intersects(sched_domain_span(sd), p->cpus_ptr))
7505 		return prev_cpu;
7506 
7507 	/*
7508 	 * We need task's util for cpu_util_without, sync it up to
7509 	 * prev_cpu's last_update_time.
7510 	 */
7511 	if (!(sd_flag & SD_BALANCE_FORK))
7512 		sync_entity_load_avg(&p->se);
7513 
7514 	while (sd) {
7515 		struct sched_group *group;
7516 		struct sched_domain *tmp;
7517 		int weight;
7518 
7519 		if (!(sd->flags & sd_flag)) {
7520 			sd = sd->child;
7521 			continue;
7522 		}
7523 
7524 		group = sched_balance_find_dst_group(sd, p, cpu);
7525 		if (!group) {
7526 			sd = sd->child;
7527 			continue;
7528 		}
7529 
7530 		new_cpu = sched_balance_find_dst_group_cpu(group, p, cpu);
7531 		if (new_cpu == cpu) {
7532 			/* Now try balancing at a lower domain level of 'cpu': */
7533 			sd = sd->child;
7534 			continue;
7535 		}
7536 
7537 		/* Now try balancing at a lower domain level of 'new_cpu': */
7538 		cpu = new_cpu;
7539 		weight = sd->span_weight;
7540 		sd = NULL;
7541 		for_each_domain(cpu, tmp) {
7542 			if (weight <= tmp->span_weight)
7543 				break;
7544 			if (tmp->flags & sd_flag)
7545 				sd = tmp;
7546 		}
7547 	}
7548 
7549 	return new_cpu;
7550 }
7551 
__select_idle_cpu(int cpu,struct task_struct * p)7552 static inline int __select_idle_cpu(int cpu, struct task_struct *p)
7553 {
7554 	if ((available_idle_cpu(cpu) || sched_idle_cpu(cpu)) &&
7555 	    sched_cpu_cookie_match(cpu_rq(cpu), p))
7556 		return cpu;
7557 
7558 	return -1;
7559 }
7560 
7561 #ifdef CONFIG_SCHED_SMT
7562 DEFINE_STATIC_KEY_FALSE(sched_smt_present);
7563 EXPORT_SYMBOL_GPL(sched_smt_present);
7564 
set_idle_cores(int cpu,int val)7565 static inline void set_idle_cores(int cpu, int val)
7566 {
7567 	struct sched_domain_shared *sds;
7568 
7569 	sds = rcu_dereference(per_cpu(sd_llc_shared, cpu));
7570 	if (sds)
7571 		WRITE_ONCE(sds->has_idle_cores, val);
7572 }
7573 
test_idle_cores(int cpu)7574 static inline bool test_idle_cores(int cpu)
7575 {
7576 	struct sched_domain_shared *sds;
7577 
7578 	sds = rcu_dereference(per_cpu(sd_llc_shared, cpu));
7579 	if (sds)
7580 		return READ_ONCE(sds->has_idle_cores);
7581 
7582 	return false;
7583 }
7584 
7585 /*
7586  * Scans the local SMT mask to see if the entire core is idle, and records this
7587  * information in sd_llc_shared->has_idle_cores.
7588  *
7589  * Since SMT siblings share all cache levels, inspecting this limited remote
7590  * state should be fairly cheap.
7591  */
__update_idle_core(struct rq * rq)7592 void __update_idle_core(struct rq *rq)
7593 {
7594 	int core = cpu_of(rq);
7595 	int cpu;
7596 
7597 	rcu_read_lock();
7598 	if (test_idle_cores(core))
7599 		goto unlock;
7600 
7601 	for_each_cpu(cpu, cpu_smt_mask(core)) {
7602 		if (cpu == core)
7603 			continue;
7604 
7605 		if (!available_idle_cpu(cpu))
7606 			goto unlock;
7607 	}
7608 
7609 	set_idle_cores(core, 1);
7610 unlock:
7611 	rcu_read_unlock();
7612 }
7613 
7614 /*
7615  * Scan the entire LLC domain for idle cores; this dynamically switches off if
7616  * there are no idle cores left in the system; tracked through
7617  * sd_llc->shared->has_idle_cores and enabled through update_idle_core() above.
7618  */
select_idle_core(struct task_struct * p,int core,struct cpumask * cpus,int * idle_cpu)7619 static int select_idle_core(struct task_struct *p, int core, struct cpumask *cpus, int *idle_cpu)
7620 {
7621 	bool idle = true;
7622 	int cpu;
7623 
7624 	for_each_cpu(cpu, cpu_smt_mask(core)) {
7625 		if (!available_idle_cpu(cpu)) {
7626 			idle = false;
7627 			if (*idle_cpu == -1) {
7628 				if (sched_idle_cpu(cpu) && cpumask_test_cpu(cpu, cpus)) {
7629 					*idle_cpu = cpu;
7630 					break;
7631 				}
7632 				continue;
7633 			}
7634 			break;
7635 		}
7636 		if (*idle_cpu == -1 && cpumask_test_cpu(cpu, cpus))
7637 			*idle_cpu = cpu;
7638 	}
7639 
7640 	if (idle)
7641 		return core;
7642 
7643 	cpumask_andnot(cpus, cpus, cpu_smt_mask(core));
7644 	return -1;
7645 }
7646 
7647 /*
7648  * Scan the local SMT mask for idle CPUs.
7649  */
select_idle_smt(struct task_struct * p,struct sched_domain * sd,int target)7650 static int select_idle_smt(struct task_struct *p, struct sched_domain *sd, int target)
7651 {
7652 	int cpu;
7653 
7654 	for_each_cpu_and(cpu, cpu_smt_mask(target), p->cpus_ptr) {
7655 		if (cpu == target)
7656 			continue;
7657 		/*
7658 		 * Check if the CPU is in the LLC scheduling domain of @target.
7659 		 * Due to isolcpus, there is no guarantee that all the siblings are in the domain.
7660 		 */
7661 		if (!cpumask_test_cpu(cpu, sched_domain_span(sd)))
7662 			continue;
7663 		if (available_idle_cpu(cpu) || sched_idle_cpu(cpu))
7664 			return cpu;
7665 	}
7666 
7667 	return -1;
7668 }
7669 
7670 #else /* CONFIG_SCHED_SMT */
7671 
set_idle_cores(int cpu,int val)7672 static inline void set_idle_cores(int cpu, int val)
7673 {
7674 }
7675 
test_idle_cores(int cpu)7676 static inline bool test_idle_cores(int cpu)
7677 {
7678 	return false;
7679 }
7680 
select_idle_core(struct task_struct * p,int core,struct cpumask * cpus,int * idle_cpu)7681 static inline int select_idle_core(struct task_struct *p, int core, struct cpumask *cpus, int *idle_cpu)
7682 {
7683 	return __select_idle_cpu(core, p);
7684 }
7685 
select_idle_smt(struct task_struct * p,struct sched_domain * sd,int target)7686 static inline int select_idle_smt(struct task_struct *p, struct sched_domain *sd, int target)
7687 {
7688 	return -1;
7689 }
7690 
7691 #endif /* CONFIG_SCHED_SMT */
7692 
7693 /*
7694  * Scan the LLC domain for idle CPUs; this is dynamically regulated by
7695  * comparing the average scan cost (tracked in sd->avg_scan_cost) against the
7696  * average idle time for this rq (as found in rq->avg_idle).
7697  */
select_idle_cpu(struct task_struct * p,struct sched_domain * sd,bool has_idle_core,int target)7698 static int select_idle_cpu(struct task_struct *p, struct sched_domain *sd, bool has_idle_core, int target)
7699 {
7700 	struct cpumask *cpus = this_cpu_cpumask_var_ptr(select_rq_mask);
7701 	int i, cpu, idle_cpu = -1, nr = INT_MAX;
7702 	struct sched_domain_shared *sd_share;
7703 
7704 	cpumask_and(cpus, sched_domain_span(sd), p->cpus_ptr);
7705 
7706 	if (sched_feat(SIS_UTIL)) {
7707 		sd_share = rcu_dereference(per_cpu(sd_llc_shared, target));
7708 		if (sd_share) {
7709 			/* because !--nr is the condition to stop scan */
7710 			nr = READ_ONCE(sd_share->nr_idle_scan) + 1;
7711 			/* overloaded LLC is unlikely to have idle cpu/core */
7712 			if (nr == 1)
7713 				return -1;
7714 		}
7715 	}
7716 
7717 	if (static_branch_unlikely(&sched_cluster_active)) {
7718 		struct sched_group *sg = sd->groups;
7719 
7720 		if (sg->flags & SD_CLUSTER) {
7721 			for_each_cpu_wrap(cpu, sched_group_span(sg), target + 1) {
7722 				if (!cpumask_test_cpu(cpu, cpus))
7723 					continue;
7724 
7725 				if (has_idle_core) {
7726 					i = select_idle_core(p, cpu, cpus, &idle_cpu);
7727 					if ((unsigned int)i < nr_cpumask_bits)
7728 						return i;
7729 				} else {
7730 					if (--nr <= 0)
7731 						return -1;
7732 					idle_cpu = __select_idle_cpu(cpu, p);
7733 					if ((unsigned int)idle_cpu < nr_cpumask_bits)
7734 						return idle_cpu;
7735 				}
7736 			}
7737 			cpumask_andnot(cpus, cpus, sched_group_span(sg));
7738 		}
7739 	}
7740 
7741 	for_each_cpu_wrap(cpu, cpus, target + 1) {
7742 		if (has_idle_core) {
7743 			i = select_idle_core(p, cpu, cpus, &idle_cpu);
7744 			if ((unsigned int)i < nr_cpumask_bits)
7745 				return i;
7746 
7747 		} else {
7748 			if (--nr <= 0)
7749 				return -1;
7750 			idle_cpu = __select_idle_cpu(cpu, p);
7751 			if ((unsigned int)idle_cpu < nr_cpumask_bits)
7752 				break;
7753 		}
7754 	}
7755 
7756 	if (has_idle_core)
7757 		set_idle_cores(target, false);
7758 
7759 	return idle_cpu;
7760 }
7761 
7762 /*
7763  * Scan the asym_capacity domain for idle CPUs; pick the first idle one on which
7764  * the task fits. If no CPU is big enough, but there are idle ones, try to
7765  * maximize capacity.
7766  */
7767 static int
select_idle_capacity(struct task_struct * p,struct sched_domain * sd,int target)7768 select_idle_capacity(struct task_struct *p, struct sched_domain *sd, int target)
7769 {
7770 	unsigned long task_util, util_min, util_max, best_cap = 0;
7771 	int fits, best_fits = 0;
7772 	int cpu, best_cpu = -1;
7773 	struct cpumask *cpus;
7774 
7775 	cpus = this_cpu_cpumask_var_ptr(select_rq_mask);
7776 	cpumask_and(cpus, sched_domain_span(sd), p->cpus_ptr);
7777 
7778 	task_util = task_util_est(p);
7779 	util_min = uclamp_eff_value(p, UCLAMP_MIN);
7780 	util_max = uclamp_eff_value(p, UCLAMP_MAX);
7781 
7782 	for_each_cpu_wrap(cpu, cpus, target) {
7783 		unsigned long cpu_cap = capacity_of(cpu);
7784 
7785 		if (!available_idle_cpu(cpu) && !sched_idle_cpu(cpu))
7786 			continue;
7787 
7788 		fits = util_fits_cpu(task_util, util_min, util_max, cpu);
7789 
7790 		/* This CPU fits with all requirements */
7791 		if (fits > 0)
7792 			return cpu;
7793 		/*
7794 		 * Only the min performance hint (i.e. uclamp_min) doesn't fit.
7795 		 * Look for the CPU with best capacity.
7796 		 */
7797 		else if (fits < 0)
7798 			cpu_cap = get_actual_cpu_capacity(cpu);
7799 
7800 		/*
7801 		 * First, select CPU which fits better (-1 being better than 0).
7802 		 * Then, select the one with best capacity at same level.
7803 		 */
7804 		if ((fits < best_fits) ||
7805 		    ((fits == best_fits) && (cpu_cap > best_cap))) {
7806 			best_cap = cpu_cap;
7807 			best_cpu = cpu;
7808 			best_fits = fits;
7809 		}
7810 	}
7811 
7812 	return best_cpu;
7813 }
7814 
asym_fits_cpu(unsigned long util,unsigned long util_min,unsigned long util_max,int cpu)7815 static inline bool asym_fits_cpu(unsigned long util,
7816 				 unsigned long util_min,
7817 				 unsigned long util_max,
7818 				 int cpu)
7819 {
7820 	if (sched_asym_cpucap_active())
7821 		/*
7822 		 * Return true only if the cpu fully fits the task requirements
7823 		 * which include the utilization and the performance hints.
7824 		 */
7825 		return (util_fits_cpu(util, util_min, util_max, cpu) > 0);
7826 
7827 	return true;
7828 }
7829 
7830 /*
7831  * Try and locate an idle core/thread in the LLC cache domain.
7832  */
select_idle_sibling(struct task_struct * p,int prev,int target)7833 static int select_idle_sibling(struct task_struct *p, int prev, int target)
7834 {
7835 	bool has_idle_core = false;
7836 	struct sched_domain *sd;
7837 	unsigned long task_util, util_min, util_max;
7838 	int i, recent_used_cpu, prev_aff = -1;
7839 
7840 	/*
7841 	 * On asymmetric system, update task utilization because we will check
7842 	 * that the task fits with CPU's capacity.
7843 	 */
7844 	if (sched_asym_cpucap_active()) {
7845 		sync_entity_load_avg(&p->se);
7846 		task_util = task_util_est(p);
7847 		util_min = uclamp_eff_value(p, UCLAMP_MIN);
7848 		util_max = uclamp_eff_value(p, UCLAMP_MAX);
7849 	}
7850 
7851 	/*
7852 	 * per-cpu select_rq_mask usage
7853 	 */
7854 	lockdep_assert_irqs_disabled();
7855 
7856 	if ((available_idle_cpu(target) || sched_idle_cpu(target)) &&
7857 	    asym_fits_cpu(task_util, util_min, util_max, target))
7858 		return target;
7859 
7860 	/*
7861 	 * If the previous CPU is cache affine and idle, don't be stupid:
7862 	 */
7863 	if (prev != target && cpus_share_cache(prev, target) &&
7864 	    (available_idle_cpu(prev) || sched_idle_cpu(prev)) &&
7865 	    asym_fits_cpu(task_util, util_min, util_max, prev)) {
7866 
7867 		if (!static_branch_unlikely(&sched_cluster_active) ||
7868 		    cpus_share_resources(prev, target))
7869 			return prev;
7870 
7871 		prev_aff = prev;
7872 	}
7873 
7874 	/*
7875 	 * Allow a per-cpu kthread to stack with the wakee if the
7876 	 * kworker thread and the tasks previous CPUs are the same.
7877 	 * The assumption is that the wakee queued work for the
7878 	 * per-cpu kthread that is now complete and the wakeup is
7879 	 * essentially a sync wakeup. An obvious example of this
7880 	 * pattern is IO completions.
7881 	 */
7882 	if (is_per_cpu_kthread(current) &&
7883 	    in_task() &&
7884 	    prev == smp_processor_id() &&
7885 	    this_rq()->nr_running <= 1 &&
7886 	    asym_fits_cpu(task_util, util_min, util_max, prev)) {
7887 		return prev;
7888 	}
7889 
7890 	/* Check a recently used CPU as a potential idle candidate: */
7891 	recent_used_cpu = p->recent_used_cpu;
7892 	p->recent_used_cpu = prev;
7893 	if (recent_used_cpu != prev &&
7894 	    recent_used_cpu != target &&
7895 	    cpus_share_cache(recent_used_cpu, target) &&
7896 	    (available_idle_cpu(recent_used_cpu) || sched_idle_cpu(recent_used_cpu)) &&
7897 	    cpumask_test_cpu(recent_used_cpu, p->cpus_ptr) &&
7898 	    asym_fits_cpu(task_util, util_min, util_max, recent_used_cpu)) {
7899 
7900 		if (!static_branch_unlikely(&sched_cluster_active) ||
7901 		    cpus_share_resources(recent_used_cpu, target))
7902 			return recent_used_cpu;
7903 
7904 	} else {
7905 		recent_used_cpu = -1;
7906 	}
7907 
7908 	/*
7909 	 * For asymmetric CPU capacity systems, our domain of interest is
7910 	 * sd_asym_cpucapacity rather than sd_llc.
7911 	 */
7912 	if (sched_asym_cpucap_active()) {
7913 		sd = rcu_dereference(per_cpu(sd_asym_cpucapacity, target));
7914 		/*
7915 		 * On an asymmetric CPU capacity system where an exclusive
7916 		 * cpuset defines a symmetric island (i.e. one unique
7917 		 * capacity_orig value through the cpuset), the key will be set
7918 		 * but the CPUs within that cpuset will not have a domain with
7919 		 * SD_ASYM_CPUCAPACITY. These should follow the usual symmetric
7920 		 * capacity path.
7921 		 */
7922 		if (sd) {
7923 			i = select_idle_capacity(p, sd, target);
7924 			return ((unsigned)i < nr_cpumask_bits) ? i : target;
7925 		}
7926 	}
7927 
7928 	sd = rcu_dereference(per_cpu(sd_llc, target));
7929 	if (!sd)
7930 		return target;
7931 
7932 	if (sched_smt_active()) {
7933 		has_idle_core = test_idle_cores(target);
7934 
7935 		if (!has_idle_core && cpus_share_cache(prev, target)) {
7936 			i = select_idle_smt(p, sd, prev);
7937 			if ((unsigned int)i < nr_cpumask_bits)
7938 				return i;
7939 		}
7940 	}
7941 
7942 	i = select_idle_cpu(p, sd, has_idle_core, target);
7943 	if ((unsigned)i < nr_cpumask_bits)
7944 		return i;
7945 
7946 	/*
7947 	 * For cluster machines which have lower sharing cache like L2 or
7948 	 * LLC Tag, we tend to find an idle CPU in the target's cluster
7949 	 * first. But prev_cpu or recent_used_cpu may also be a good candidate,
7950 	 * use them if possible when no idle CPU found in select_idle_cpu().
7951 	 */
7952 	if ((unsigned int)prev_aff < nr_cpumask_bits)
7953 		return prev_aff;
7954 	if ((unsigned int)recent_used_cpu < nr_cpumask_bits)
7955 		return recent_used_cpu;
7956 
7957 	return target;
7958 }
7959 
7960 /**
7961  * cpu_util() - Estimates the amount of CPU capacity used by CFS tasks.
7962  * @cpu: the CPU to get the utilization for
7963  * @p: task for which the CPU utilization should be predicted or NULL
7964  * @dst_cpu: CPU @p migrates to, -1 if @p moves from @cpu or @p == NULL
7965  * @boost: 1 to enable boosting, otherwise 0
7966  *
7967  * The unit of the return value must be the same as the one of CPU capacity
7968  * so that CPU utilization can be compared with CPU capacity.
7969  *
7970  * CPU utilization is the sum of running time of runnable tasks plus the
7971  * recent utilization of currently non-runnable tasks on that CPU.
7972  * It represents the amount of CPU capacity currently used by CFS tasks in
7973  * the range [0..max CPU capacity] with max CPU capacity being the CPU
7974  * capacity at f_max.
7975  *
7976  * The estimated CPU utilization is defined as the maximum between CPU
7977  * utilization and sum of the estimated utilization of the currently
7978  * runnable tasks on that CPU. It preserves a utilization "snapshot" of
7979  * previously-executed tasks, which helps better deduce how busy a CPU will
7980  * be when a long-sleeping task wakes up. The contribution to CPU utilization
7981  * of such a task would be significantly decayed at this point of time.
7982  *
7983  * Boosted CPU utilization is defined as max(CPU runnable, CPU utilization).
7984  * CPU contention for CFS tasks can be detected by CPU runnable > CPU
7985  * utilization. Boosting is implemented in cpu_util() so that internal
7986  * users (e.g. EAS) can use it next to external users (e.g. schedutil),
7987  * latter via cpu_util_cfs_boost().
7988  *
7989  * CPU utilization can be higher than the current CPU capacity
7990  * (f_curr/f_max * max CPU capacity) or even the max CPU capacity because
7991  * of rounding errors as well as task migrations or wakeups of new tasks.
7992  * CPU utilization has to be capped to fit into the [0..max CPU capacity]
7993  * range. Otherwise a group of CPUs (CPU0 util = 121% + CPU1 util = 80%)
7994  * could be seen as over-utilized even though CPU1 has 20% of spare CPU
7995  * capacity. CPU utilization is allowed to overshoot current CPU capacity
7996  * though since this is useful for predicting the CPU capacity required
7997  * after task migrations (scheduler-driven DVFS).
7998  *
7999  * Return: (Boosted) (estimated) utilization for the specified CPU.
8000  */
8001 static unsigned long
cpu_util(int cpu,struct task_struct * p,int dst_cpu,int boost)8002 cpu_util(int cpu, struct task_struct *p, int dst_cpu, int boost)
8003 {
8004 	struct cfs_rq *cfs_rq = &cpu_rq(cpu)->cfs;
8005 	unsigned long util = READ_ONCE(cfs_rq->avg.util_avg);
8006 	unsigned long runnable;
8007 
8008 	if (boost) {
8009 		runnable = READ_ONCE(cfs_rq->avg.runnable_avg);
8010 		util = max(util, runnable);
8011 	}
8012 
8013 	/*
8014 	 * If @dst_cpu is -1 or @p migrates from @cpu to @dst_cpu remove its
8015 	 * contribution. If @p migrates from another CPU to @cpu add its
8016 	 * contribution. In all the other cases @cpu is not impacted by the
8017 	 * migration so its util_avg is already correct.
8018 	 */
8019 	if (p && task_cpu(p) == cpu && dst_cpu != cpu)
8020 		lsub_positive(&util, task_util(p));
8021 	else if (p && task_cpu(p) != cpu && dst_cpu == cpu)
8022 		util += task_util(p);
8023 
8024 	if (sched_feat(UTIL_EST)) {
8025 		unsigned long util_est;
8026 
8027 		util_est = READ_ONCE(cfs_rq->avg.util_est);
8028 
8029 		/*
8030 		 * During wake-up @p isn't enqueued yet and doesn't contribute
8031 		 * to any cpu_rq(cpu)->cfs.avg.util_est.
8032 		 * If @dst_cpu == @cpu add it to "simulate" cpu_util after @p
8033 		 * has been enqueued.
8034 		 *
8035 		 * During exec (@dst_cpu = -1) @p is enqueued and does
8036 		 * contribute to cpu_rq(cpu)->cfs.util_est.
8037 		 * Remove it to "simulate" cpu_util without @p's contribution.
8038 		 *
8039 		 * Despite the task_on_rq_queued(@p) check there is still a
8040 		 * small window for a possible race when an exec
8041 		 * select_task_rq_fair() races with LB's detach_task().
8042 		 *
8043 		 *   detach_task()
8044 		 *     deactivate_task()
8045 		 *       p->on_rq = TASK_ON_RQ_MIGRATING;
8046 		 *       -------------------------------- A
8047 		 *       dequeue_task()                    \
8048 		 *         dequeue_task_fair()              + Race Time
8049 		 *           util_est_dequeue()            /
8050 		 *       -------------------------------- B
8051 		 *
8052 		 * The additional check "current == p" is required to further
8053 		 * reduce the race window.
8054 		 */
8055 		if (dst_cpu == cpu)
8056 			util_est += _task_util_est(p);
8057 		else if (p && unlikely(task_on_rq_queued(p) || current == p))
8058 			lsub_positive(&util_est, _task_util_est(p));
8059 
8060 		util = max(util, util_est);
8061 	}
8062 
8063 	return min(util, arch_scale_cpu_capacity(cpu));
8064 }
8065 
cpu_util_cfs(int cpu)8066 unsigned long cpu_util_cfs(int cpu)
8067 {
8068 	return cpu_util(cpu, NULL, -1, 0);
8069 }
8070 
cpu_util_cfs_boost(int cpu)8071 unsigned long cpu_util_cfs_boost(int cpu)
8072 {
8073 	return cpu_util(cpu, NULL, -1, 1);
8074 }
8075 
8076 /*
8077  * cpu_util_without: compute cpu utilization without any contributions from *p
8078  * @cpu: the CPU which utilization is requested
8079  * @p: the task which utilization should be discounted
8080  *
8081  * The utilization of a CPU is defined by the utilization of tasks currently
8082  * enqueued on that CPU as well as tasks which are currently sleeping after an
8083  * execution on that CPU.
8084  *
8085  * This method returns the utilization of the specified CPU by discounting the
8086  * utilization of the specified task, whenever the task is currently
8087  * contributing to the CPU utilization.
8088  */
cpu_util_without(int cpu,struct task_struct * p)8089 static unsigned long cpu_util_without(int cpu, struct task_struct *p)
8090 {
8091 	/* Task has no contribution or is new */
8092 	if (cpu != task_cpu(p) || !READ_ONCE(p->se.avg.last_update_time))
8093 		p = NULL;
8094 
8095 	return cpu_util(cpu, p, -1, 0);
8096 }
8097 
8098 /*
8099  * This function computes an effective utilization for the given CPU, to be
8100  * used for frequency selection given the linear relation: f = u * f_max.
8101  *
8102  * The scheduler tracks the following metrics:
8103  *
8104  *   cpu_util_{cfs,rt,dl,irq}()
8105  *   cpu_bw_dl()
8106  *
8107  * Where the cfs,rt and dl util numbers are tracked with the same metric and
8108  * synchronized windows and are thus directly comparable.
8109  *
8110  * The cfs,rt,dl utilization are the running times measured with rq->clock_task
8111  * which excludes things like IRQ and steal-time. These latter are then accrued
8112  * in the IRQ utilization.
8113  *
8114  * The DL bandwidth number OTOH is not a measured metric but a value computed
8115  * based on the task model parameters and gives the minimal utilization
8116  * required to meet deadlines.
8117  */
effective_cpu_util(int cpu,unsigned long util_cfs,unsigned long * min,unsigned long * max)8118 unsigned long effective_cpu_util(int cpu, unsigned long util_cfs,
8119 				 unsigned long *min,
8120 				 unsigned long *max)
8121 {
8122 	unsigned long util, irq, scale;
8123 	struct rq *rq = cpu_rq(cpu);
8124 
8125 	scale = arch_scale_cpu_capacity(cpu);
8126 
8127 	/*
8128 	 * Early check to see if IRQ/steal time saturates the CPU, can be
8129 	 * because of inaccuracies in how we track these -- see
8130 	 * update_irq_load_avg().
8131 	 */
8132 	irq = cpu_util_irq(rq);
8133 	if (unlikely(irq >= scale)) {
8134 		if (min)
8135 			*min = scale;
8136 		if (max)
8137 			*max = scale;
8138 		return scale;
8139 	}
8140 
8141 	if (min) {
8142 		/*
8143 		 * The minimum utilization returns the highest level between:
8144 		 * - the computed DL bandwidth needed with the IRQ pressure which
8145 		 *   steals time to the deadline task.
8146 		 * - The minimum performance requirement for CFS and/or RT.
8147 		 */
8148 		*min = max(irq + cpu_bw_dl(rq), uclamp_rq_get(rq, UCLAMP_MIN));
8149 
8150 		/*
8151 		 * When an RT task is runnable and uclamp is not used, we must
8152 		 * ensure that the task will run at maximum compute capacity.
8153 		 */
8154 		if (!uclamp_is_used() && rt_rq_is_runnable(&rq->rt))
8155 			*min = max(*min, scale);
8156 	}
8157 
8158 	/*
8159 	 * Because the time spend on RT/DL tasks is visible as 'lost' time to
8160 	 * CFS tasks and we use the same metric to track the effective
8161 	 * utilization (PELT windows are synchronized) we can directly add them
8162 	 * to obtain the CPU's actual utilization.
8163 	 */
8164 	util = util_cfs + cpu_util_rt(rq);
8165 	util += cpu_util_dl(rq);
8166 
8167 	/*
8168 	 * The maximum hint is a soft bandwidth requirement, which can be lower
8169 	 * than the actual utilization because of uclamp_max requirements.
8170 	 */
8171 	if (max)
8172 		*max = min(scale, uclamp_rq_get(rq, UCLAMP_MAX));
8173 
8174 	if (util >= scale)
8175 		return scale;
8176 
8177 	/*
8178 	 * There is still idle time; further improve the number by using the
8179 	 * IRQ metric. Because IRQ/steal time is hidden from the task clock we
8180 	 * need to scale the task numbers:
8181 	 *
8182 	 *              max - irq
8183 	 *   U' = irq + --------- * U
8184 	 *                 max
8185 	 */
8186 	util = scale_irq_capacity(util, irq, scale);
8187 	util += irq;
8188 
8189 	return min(scale, util);
8190 }
8191 
sched_cpu_util(int cpu)8192 unsigned long sched_cpu_util(int cpu)
8193 {
8194 	return effective_cpu_util(cpu, cpu_util_cfs(cpu), NULL, NULL);
8195 }
8196 
8197 /*
8198  * energy_env - Utilization landscape for energy estimation.
8199  * @task_busy_time: Utilization contribution by the task for which we test the
8200  *                  placement. Given by eenv_task_busy_time().
8201  * @pd_busy_time:   Utilization of the whole perf domain without the task
8202  *                  contribution. Given by eenv_pd_busy_time().
8203  * @cpu_cap:        Maximum CPU capacity for the perf domain.
8204  * @pd_cap:         Entire perf domain capacity. (pd->nr_cpus * cpu_cap).
8205  */
8206 struct energy_env {
8207 	unsigned long task_busy_time;
8208 	unsigned long pd_busy_time;
8209 	unsigned long cpu_cap;
8210 	unsigned long pd_cap;
8211 };
8212 
8213 /*
8214  * Compute the task busy time for compute_energy(). This time cannot be
8215  * injected directly into effective_cpu_util() because of the IRQ scaling.
8216  * The latter only makes sense with the most recent CPUs where the task has
8217  * run.
8218  */
eenv_task_busy_time(struct energy_env * eenv,struct task_struct * p,int prev_cpu)8219 static inline void eenv_task_busy_time(struct energy_env *eenv,
8220 				       struct task_struct *p, int prev_cpu)
8221 {
8222 	unsigned long busy_time, max_cap = arch_scale_cpu_capacity(prev_cpu);
8223 	unsigned long irq = cpu_util_irq(cpu_rq(prev_cpu));
8224 
8225 	if (unlikely(irq >= max_cap))
8226 		busy_time = max_cap;
8227 	else
8228 		busy_time = scale_irq_capacity(task_util_est(p), irq, max_cap);
8229 
8230 	eenv->task_busy_time = busy_time;
8231 }
8232 
8233 /*
8234  * Compute the perf_domain (PD) busy time for compute_energy(). Based on the
8235  * utilization for each @pd_cpus, it however doesn't take into account
8236  * clamping since the ratio (utilization / cpu_capacity) is already enough to
8237  * scale the EM reported power consumption at the (eventually clamped)
8238  * cpu_capacity.
8239  *
8240  * The contribution of the task @p for which we want to estimate the
8241  * energy cost is removed (by cpu_util()) and must be calculated
8242  * separately (see eenv_task_busy_time). This ensures:
8243  *
8244  *   - A stable PD utilization, no matter which CPU of that PD we want to place
8245  *     the task on.
8246  *
8247  *   - A fair comparison between CPUs as the task contribution (task_util())
8248  *     will always be the same no matter which CPU utilization we rely on
8249  *     (util_avg or util_est).
8250  *
8251  * Set @eenv busy time for the PD that spans @pd_cpus. This busy time can't
8252  * exceed @eenv->pd_cap.
8253  */
eenv_pd_busy_time(struct energy_env * eenv,struct cpumask * pd_cpus,struct task_struct * p)8254 static inline void eenv_pd_busy_time(struct energy_env *eenv,
8255 				     struct cpumask *pd_cpus,
8256 				     struct task_struct *p)
8257 {
8258 	unsigned long busy_time = 0;
8259 	int cpu;
8260 
8261 	for_each_cpu(cpu, pd_cpus) {
8262 		unsigned long util = cpu_util(cpu, p, -1, 0);
8263 
8264 		busy_time += effective_cpu_util(cpu, util, NULL, NULL);
8265 	}
8266 
8267 	eenv->pd_busy_time = min(eenv->pd_cap, busy_time);
8268 }
8269 
8270 /*
8271  * Compute the maximum utilization for compute_energy() when the task @p
8272  * is placed on the cpu @dst_cpu.
8273  *
8274  * Returns the maximum utilization among @eenv->cpus. This utilization can't
8275  * exceed @eenv->cpu_cap.
8276  */
8277 static inline unsigned long
eenv_pd_max_util(struct energy_env * eenv,struct cpumask * pd_cpus,struct task_struct * p,int dst_cpu)8278 eenv_pd_max_util(struct energy_env *eenv, struct cpumask *pd_cpus,
8279 		 struct task_struct *p, int dst_cpu)
8280 {
8281 	unsigned long max_util = 0;
8282 	int cpu;
8283 
8284 	for_each_cpu(cpu, pd_cpus) {
8285 		struct task_struct *tsk = (cpu == dst_cpu) ? p : NULL;
8286 		unsigned long util = cpu_util(cpu, p, dst_cpu, 1);
8287 		unsigned long eff_util, min, max;
8288 
8289 		/*
8290 		 * Performance domain frequency: utilization clamping
8291 		 * must be considered since it affects the selection
8292 		 * of the performance domain frequency.
8293 		 * NOTE: in case RT tasks are running, by default the min
8294 		 * utilization can be max OPP.
8295 		 */
8296 		eff_util = effective_cpu_util(cpu, util, &min, &max);
8297 
8298 		/* Task's uclamp can modify min and max value */
8299 		if (tsk && uclamp_is_used()) {
8300 			min = max(min, uclamp_eff_value(p, UCLAMP_MIN));
8301 
8302 			/*
8303 			 * If there is no active max uclamp constraint,
8304 			 * directly use task's one, otherwise keep max.
8305 			 */
8306 			if (uclamp_rq_is_idle(cpu_rq(cpu)))
8307 				max = uclamp_eff_value(p, UCLAMP_MAX);
8308 			else
8309 				max = max(max, uclamp_eff_value(p, UCLAMP_MAX));
8310 		}
8311 
8312 		eff_util = sugov_effective_cpu_perf(cpu, eff_util, min, max);
8313 		max_util = max(max_util, eff_util);
8314 	}
8315 
8316 	return min(max_util, eenv->cpu_cap);
8317 }
8318 
8319 /*
8320  * compute_energy(): Use the Energy Model to estimate the energy that @pd would
8321  * consume for a given utilization landscape @eenv. When @dst_cpu < 0, the task
8322  * contribution is ignored.
8323  */
8324 static inline unsigned long
compute_energy(struct energy_env * eenv,struct perf_domain * pd,struct cpumask * pd_cpus,struct task_struct * p,int dst_cpu)8325 compute_energy(struct energy_env *eenv, struct perf_domain *pd,
8326 	       struct cpumask *pd_cpus, struct task_struct *p, int dst_cpu)
8327 {
8328 	unsigned long max_util = eenv_pd_max_util(eenv, pd_cpus, p, dst_cpu);
8329 	unsigned long busy_time = eenv->pd_busy_time;
8330 	unsigned long energy;
8331 
8332 	if (dst_cpu >= 0)
8333 		busy_time = min(eenv->pd_cap, busy_time + eenv->task_busy_time);
8334 
8335 	energy = em_cpu_energy(pd->em_pd, max_util, busy_time, eenv->cpu_cap);
8336 
8337 	trace_sched_compute_energy_tp(p, dst_cpu, energy, max_util, busy_time);
8338 
8339 	return energy;
8340 }
8341 
8342 /*
8343  * find_energy_efficient_cpu(): Find most energy-efficient target CPU for the
8344  * waking task. find_energy_efficient_cpu() looks for the CPU with maximum
8345  * spare capacity in each performance domain and uses it as a potential
8346  * candidate to execute the task. Then, it uses the Energy Model to figure
8347  * out which of the CPU candidates is the most energy-efficient.
8348  *
8349  * The rationale for this heuristic is as follows. In a performance domain,
8350  * all the most energy efficient CPU candidates (according to the Energy
8351  * Model) are those for which we'll request a low frequency. When there are
8352  * several CPUs for which the frequency request will be the same, we don't
8353  * have enough data to break the tie between them, because the Energy Model
8354  * only includes active power costs. With this model, if we assume that
8355  * frequency requests follow utilization (e.g. using schedutil), the CPU with
8356  * the maximum spare capacity in a performance domain is guaranteed to be among
8357  * the best candidates of the performance domain.
8358  *
8359  * In practice, it could be preferable from an energy standpoint to pack
8360  * small tasks on a CPU in order to let other CPUs go in deeper idle states,
8361  * but that could also hurt our chances to go cluster idle, and we have no
8362  * ways to tell with the current Energy Model if this is actually a good
8363  * idea or not. So, find_energy_efficient_cpu() basically favors
8364  * cluster-packing, and spreading inside a cluster. That should at least be
8365  * a good thing for latency, and this is consistent with the idea that most
8366  * of the energy savings of EAS come from the asymmetry of the system, and
8367  * not so much from breaking the tie between identical CPUs. That's also the
8368  * reason why EAS is enabled in the topology code only for systems where
8369  * SD_ASYM_CPUCAPACITY is set.
8370  *
8371  * NOTE: Forkees are not accepted in the energy-aware wake-up path because
8372  * they don't have any useful utilization data yet and it's not possible to
8373  * forecast their impact on energy consumption. Consequently, they will be
8374  * placed by sched_balance_find_dst_cpu() on the least loaded CPU, which might turn out
8375  * to be energy-inefficient in some use-cases. The alternative would be to
8376  * bias new tasks towards specific types of CPUs first, or to try to infer
8377  * their util_avg from the parent task, but those heuristics could hurt
8378  * other use-cases too. So, until someone finds a better way to solve this,
8379  * let's keep things simple by re-using the existing slow path.
8380  */
find_energy_efficient_cpu(struct task_struct * p,int prev_cpu)8381 static int find_energy_efficient_cpu(struct task_struct *p, int prev_cpu)
8382 {
8383 	struct cpumask *cpus = this_cpu_cpumask_var_ptr(select_rq_mask);
8384 	unsigned long prev_delta = ULONG_MAX, best_delta = ULONG_MAX;
8385 	unsigned long p_util_min = uclamp_is_used() ? uclamp_eff_value(p, UCLAMP_MIN) : 0;
8386 	unsigned long p_util_max = uclamp_is_used() ? uclamp_eff_value(p, UCLAMP_MAX) : 1024;
8387 	struct root_domain *rd = this_rq()->rd;
8388 	int cpu, best_energy_cpu, target = -1;
8389 	int prev_fits = -1, best_fits = -1;
8390 	unsigned long best_actual_cap = 0;
8391 	unsigned long prev_actual_cap = 0;
8392 	struct sched_domain *sd;
8393 	struct perf_domain *pd;
8394 	struct energy_env eenv;
8395 
8396 	rcu_read_lock();
8397 	pd = rcu_dereference(rd->pd);
8398 	if (!pd)
8399 		goto unlock;
8400 
8401 	/*
8402 	 * Energy-aware wake-up happens on the lowest sched_domain starting
8403 	 * from sd_asym_cpucapacity spanning over this_cpu and prev_cpu.
8404 	 */
8405 	sd = rcu_dereference(*this_cpu_ptr(&sd_asym_cpucapacity));
8406 	while (sd && !cpumask_test_cpu(prev_cpu, sched_domain_span(sd)))
8407 		sd = sd->parent;
8408 	if (!sd)
8409 		goto unlock;
8410 
8411 	target = prev_cpu;
8412 
8413 	sync_entity_load_avg(&p->se);
8414 	if (!task_util_est(p) && p_util_min == 0)
8415 		goto unlock;
8416 
8417 	eenv_task_busy_time(&eenv, p, prev_cpu);
8418 
8419 	for (; pd; pd = pd->next) {
8420 		unsigned long util_min = p_util_min, util_max = p_util_max;
8421 		unsigned long cpu_cap, cpu_actual_cap, util;
8422 		long prev_spare_cap = -1, max_spare_cap = -1;
8423 		unsigned long rq_util_min, rq_util_max;
8424 		unsigned long cur_delta, base_energy;
8425 		int max_spare_cap_cpu = -1;
8426 		int fits, max_fits = -1;
8427 
8428 		cpumask_and(cpus, perf_domain_span(pd), cpu_online_mask);
8429 
8430 		if (cpumask_empty(cpus))
8431 			continue;
8432 
8433 		/* Account external pressure for the energy estimation */
8434 		cpu = cpumask_first(cpus);
8435 		cpu_actual_cap = get_actual_cpu_capacity(cpu);
8436 
8437 		eenv.cpu_cap = cpu_actual_cap;
8438 		eenv.pd_cap = 0;
8439 
8440 		for_each_cpu(cpu, cpus) {
8441 			struct rq *rq = cpu_rq(cpu);
8442 
8443 			eenv.pd_cap += cpu_actual_cap;
8444 
8445 			if (!cpumask_test_cpu(cpu, sched_domain_span(sd)))
8446 				continue;
8447 
8448 			if (!cpumask_test_cpu(cpu, p->cpus_ptr))
8449 				continue;
8450 
8451 			util = cpu_util(cpu, p, cpu, 0);
8452 			cpu_cap = capacity_of(cpu);
8453 
8454 			/*
8455 			 * Skip CPUs that cannot satisfy the capacity request.
8456 			 * IOW, placing the task there would make the CPU
8457 			 * overutilized. Take uclamp into account to see how
8458 			 * much capacity we can get out of the CPU; this is
8459 			 * aligned with sched_cpu_util().
8460 			 */
8461 			if (uclamp_is_used() && !uclamp_rq_is_idle(rq)) {
8462 				/*
8463 				 * Open code uclamp_rq_util_with() except for
8464 				 * the clamp() part. I.e.: apply max aggregation
8465 				 * only. util_fits_cpu() logic requires to
8466 				 * operate on non clamped util but must use the
8467 				 * max-aggregated uclamp_{min, max}.
8468 				 */
8469 				rq_util_min = uclamp_rq_get(rq, UCLAMP_MIN);
8470 				rq_util_max = uclamp_rq_get(rq, UCLAMP_MAX);
8471 
8472 				util_min = max(rq_util_min, p_util_min);
8473 				util_max = max(rq_util_max, p_util_max);
8474 			}
8475 
8476 			fits = util_fits_cpu(util, util_min, util_max, cpu);
8477 			if (!fits)
8478 				continue;
8479 
8480 			lsub_positive(&cpu_cap, util);
8481 
8482 			if (cpu == prev_cpu) {
8483 				/* Always use prev_cpu as a candidate. */
8484 				prev_spare_cap = cpu_cap;
8485 				prev_fits = fits;
8486 			} else if ((fits > max_fits) ||
8487 				   ((fits == max_fits) && ((long)cpu_cap > max_spare_cap))) {
8488 				/*
8489 				 * Find the CPU with the maximum spare capacity
8490 				 * among the remaining CPUs in the performance
8491 				 * domain.
8492 				 */
8493 				max_spare_cap = cpu_cap;
8494 				max_spare_cap_cpu = cpu;
8495 				max_fits = fits;
8496 			}
8497 		}
8498 
8499 		if (max_spare_cap_cpu < 0 && prev_spare_cap < 0)
8500 			continue;
8501 
8502 		eenv_pd_busy_time(&eenv, cpus, p);
8503 		/* Compute the 'base' energy of the pd, without @p */
8504 		base_energy = compute_energy(&eenv, pd, cpus, p, -1);
8505 
8506 		/* Evaluate the energy impact of using prev_cpu. */
8507 		if (prev_spare_cap > -1) {
8508 			prev_delta = compute_energy(&eenv, pd, cpus, p,
8509 						    prev_cpu);
8510 			/* CPU utilization has changed */
8511 			if (prev_delta < base_energy)
8512 				goto unlock;
8513 			prev_delta -= base_energy;
8514 			prev_actual_cap = cpu_actual_cap;
8515 			best_delta = min(best_delta, prev_delta);
8516 		}
8517 
8518 		/* Evaluate the energy impact of using max_spare_cap_cpu. */
8519 		if (max_spare_cap_cpu >= 0 && max_spare_cap > prev_spare_cap) {
8520 			/* Current best energy cpu fits better */
8521 			if (max_fits < best_fits)
8522 				continue;
8523 
8524 			/*
8525 			 * Both don't fit performance hint (i.e. uclamp_min)
8526 			 * but best energy cpu has better capacity.
8527 			 */
8528 			if ((max_fits < 0) &&
8529 			    (cpu_actual_cap <= best_actual_cap))
8530 				continue;
8531 
8532 			cur_delta = compute_energy(&eenv, pd, cpus, p,
8533 						   max_spare_cap_cpu);
8534 			/* CPU utilization has changed */
8535 			if (cur_delta < base_energy)
8536 				goto unlock;
8537 			cur_delta -= base_energy;
8538 
8539 			/*
8540 			 * Both fit for the task but best energy cpu has lower
8541 			 * energy impact.
8542 			 */
8543 			if ((max_fits > 0) && (best_fits > 0) &&
8544 			    (cur_delta >= best_delta))
8545 				continue;
8546 
8547 			best_delta = cur_delta;
8548 			best_energy_cpu = max_spare_cap_cpu;
8549 			best_fits = max_fits;
8550 			best_actual_cap = cpu_actual_cap;
8551 		}
8552 	}
8553 	rcu_read_unlock();
8554 
8555 	if ((best_fits > prev_fits) ||
8556 	    ((best_fits > 0) && (best_delta < prev_delta)) ||
8557 	    ((best_fits < 0) && (best_actual_cap > prev_actual_cap)))
8558 		target = best_energy_cpu;
8559 
8560 	return target;
8561 
8562 unlock:
8563 	rcu_read_unlock();
8564 
8565 	return target;
8566 }
8567 
8568 /*
8569  * select_task_rq_fair: Select target runqueue for the waking task in domains
8570  * that have the relevant SD flag set. In practice, this is SD_BALANCE_WAKE,
8571  * SD_BALANCE_FORK, or SD_BALANCE_EXEC.
8572  *
8573  * Balances load by selecting the idlest CPU in the idlest group, or under
8574  * certain conditions an idle sibling CPU if the domain has SD_WAKE_AFFINE set.
8575  *
8576  * Returns the target CPU number.
8577  */
8578 static int
select_task_rq_fair(struct task_struct * p,int prev_cpu,int wake_flags)8579 select_task_rq_fair(struct task_struct *p, int prev_cpu, int wake_flags)
8580 {
8581 	int sync = (wake_flags & WF_SYNC) && !(current->flags & PF_EXITING);
8582 	struct sched_domain *tmp, *sd = NULL;
8583 	int cpu = smp_processor_id();
8584 	int new_cpu = prev_cpu;
8585 	int want_affine = 0;
8586 	/* SD_flags and WF_flags share the first nibble */
8587 	int sd_flag = wake_flags & 0xF;
8588 
8589 	/*
8590 	 * required for stable ->cpus_allowed
8591 	 */
8592 	lockdep_assert_held(&p->pi_lock);
8593 	if (wake_flags & WF_TTWU) {
8594 		record_wakee(p);
8595 
8596 		if ((wake_flags & WF_CURRENT_CPU) &&
8597 		    cpumask_test_cpu(cpu, p->cpus_ptr))
8598 			return cpu;
8599 
8600 		if (!is_rd_overutilized(this_rq()->rd)) {
8601 			new_cpu = find_energy_efficient_cpu(p, prev_cpu);
8602 			if (new_cpu >= 0)
8603 				return new_cpu;
8604 			new_cpu = prev_cpu;
8605 		}
8606 
8607 		want_affine = !wake_wide(p) && cpumask_test_cpu(cpu, p->cpus_ptr);
8608 	}
8609 
8610 	rcu_read_lock();
8611 	for_each_domain(cpu, tmp) {
8612 		/*
8613 		 * If both 'cpu' and 'prev_cpu' are part of this domain,
8614 		 * cpu is a valid SD_WAKE_AFFINE target.
8615 		 */
8616 		if (want_affine && (tmp->flags & SD_WAKE_AFFINE) &&
8617 		    cpumask_test_cpu(prev_cpu, sched_domain_span(tmp))) {
8618 			if (cpu != prev_cpu)
8619 				new_cpu = wake_affine(tmp, p, cpu, prev_cpu, sync);
8620 
8621 			sd = NULL; /* Prefer wake_affine over balance flags */
8622 			break;
8623 		}
8624 
8625 		/*
8626 		 * Usually only true for WF_EXEC and WF_FORK, as sched_domains
8627 		 * usually do not have SD_BALANCE_WAKE set. That means wakeup
8628 		 * will usually go to the fast path.
8629 		 */
8630 		if (tmp->flags & sd_flag)
8631 			sd = tmp;
8632 		else if (!want_affine)
8633 			break;
8634 	}
8635 
8636 	if (unlikely(sd)) {
8637 		/* Slow path */
8638 		new_cpu = sched_balance_find_dst_cpu(sd, p, cpu, prev_cpu, sd_flag);
8639 	} else if (wake_flags & WF_TTWU) { /* XXX always ? */
8640 		/* Fast path */
8641 		new_cpu = select_idle_sibling(p, prev_cpu, new_cpu);
8642 	}
8643 	rcu_read_unlock();
8644 
8645 	return new_cpu;
8646 }
8647 
8648 /*
8649  * Called immediately before a task is migrated to a new CPU; task_cpu(p) and
8650  * cfs_rq_of(p) references at time of call are still valid and identify the
8651  * previous CPU. The caller guarantees p->pi_lock or task_rq(p)->lock is held.
8652  */
migrate_task_rq_fair(struct task_struct * p,int new_cpu)8653 static void migrate_task_rq_fair(struct task_struct *p, int new_cpu)
8654 {
8655 	struct sched_entity *se = &p->se;
8656 
8657 	if (!task_on_rq_migrating(p)) {
8658 		remove_entity_load_avg(se);
8659 
8660 		/*
8661 		 * Here, the task's PELT values have been updated according to
8662 		 * the current rq's clock. But if that clock hasn't been
8663 		 * updated in a while, a substantial idle time will be missed,
8664 		 * leading to an inflation after wake-up on the new rq.
8665 		 *
8666 		 * Estimate the missing time from the cfs_rq last_update_time
8667 		 * and update sched_avg to improve the PELT continuity after
8668 		 * migration.
8669 		 */
8670 		migrate_se_pelt_lag(se);
8671 	}
8672 
8673 	/* Tell new CPU we are migrated */
8674 	se->avg.last_update_time = 0;
8675 
8676 	update_scan_period(p, new_cpu);
8677 }
8678 
task_dead_fair(struct task_struct * p)8679 static void task_dead_fair(struct task_struct *p)
8680 {
8681 	struct sched_entity *se = &p->se;
8682 
8683 	if (se->sched_delayed) {
8684 		struct rq_flags rf;
8685 		struct rq *rq;
8686 
8687 		rq = task_rq_lock(p, &rf);
8688 		if (se->sched_delayed) {
8689 			update_rq_clock(rq);
8690 			dequeue_entities(rq, se, DEQUEUE_SLEEP | DEQUEUE_DELAYED);
8691 		}
8692 		task_rq_unlock(rq, p, &rf);
8693 	}
8694 
8695 	remove_entity_load_avg(se);
8696 }
8697 
8698 /*
8699  * Set the max capacity the task is allowed to run at for misfit detection.
8700  */
set_task_max_allowed_capacity(struct task_struct * p)8701 static void set_task_max_allowed_capacity(struct task_struct *p)
8702 {
8703 	struct asym_cap_data *entry;
8704 
8705 	if (!sched_asym_cpucap_active())
8706 		return;
8707 
8708 	rcu_read_lock();
8709 	list_for_each_entry_rcu(entry, &asym_cap_list, link) {
8710 		cpumask_t *cpumask;
8711 
8712 		cpumask = cpu_capacity_span(entry);
8713 		if (!cpumask_intersects(p->cpus_ptr, cpumask))
8714 			continue;
8715 
8716 		p->max_allowed_capacity = entry->capacity;
8717 		break;
8718 	}
8719 	rcu_read_unlock();
8720 }
8721 
set_cpus_allowed_fair(struct task_struct * p,struct affinity_context * ctx)8722 static void set_cpus_allowed_fair(struct task_struct *p, struct affinity_context *ctx)
8723 {
8724 	set_cpus_allowed_common(p, ctx);
8725 	set_task_max_allowed_capacity(p);
8726 }
8727 
8728 static int
balance_fair(struct rq * rq,struct task_struct * prev,struct rq_flags * rf)8729 balance_fair(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
8730 {
8731 	if (sched_fair_runnable(rq))
8732 		return 1;
8733 
8734 	return sched_balance_newidle(rq, rf) != 0;
8735 }
8736 #else
set_task_max_allowed_capacity(struct task_struct * p)8737 static inline void set_task_max_allowed_capacity(struct task_struct *p) {}
8738 #endif /* CONFIG_SMP */
8739 
set_next_buddy(struct sched_entity * se)8740 static void set_next_buddy(struct sched_entity *se)
8741 {
8742 	for_each_sched_entity(se) {
8743 		if (SCHED_WARN_ON(!se->on_rq))
8744 			return;
8745 		if (se_is_idle(se))
8746 			return;
8747 		cfs_rq_of(se)->next = se;
8748 	}
8749 }
8750 
8751 /*
8752  * Preempt the current task with a newly woken task if needed:
8753  */
check_preempt_wakeup_fair(struct rq * rq,struct task_struct * p,int wake_flags)8754 static void check_preempt_wakeup_fair(struct rq *rq, struct task_struct *p, int wake_flags)
8755 {
8756 	struct task_struct *donor = rq->donor;
8757 	struct sched_entity *se = &donor->se, *pse = &p->se;
8758 	struct cfs_rq *cfs_rq = task_cfs_rq(donor);
8759 	int cse_is_idle, pse_is_idle;
8760 
8761 	if (unlikely(se == pse))
8762 		return;
8763 
8764 	/*
8765 	 * This is possible from callers such as attach_tasks(), in which we
8766 	 * unconditionally wakeup_preempt() after an enqueue (which may have
8767 	 * lead to a throttle).  This both saves work and prevents false
8768 	 * next-buddy nomination below.
8769 	 */
8770 	if (unlikely(throttled_hierarchy(cfs_rq_of(pse))))
8771 		return;
8772 
8773 	if (sched_feat(NEXT_BUDDY) && !(wake_flags & WF_FORK) && !pse->sched_delayed) {
8774 		set_next_buddy(pse);
8775 	}
8776 
8777 	/*
8778 	 * We can come here with TIF_NEED_RESCHED already set from new task
8779 	 * wake up path.
8780 	 *
8781 	 * Note: this also catches the edge-case of curr being in a throttled
8782 	 * group (e.g. via set_curr_task), since update_curr() (in the
8783 	 * enqueue of curr) will have resulted in resched being set.  This
8784 	 * prevents us from potentially nominating it as a false LAST_BUDDY
8785 	 * below.
8786 	 */
8787 	if (test_tsk_need_resched(rq->curr))
8788 		return;
8789 
8790 	if (!sched_feat(WAKEUP_PREEMPTION))
8791 		return;
8792 
8793 	find_matching_se(&se, &pse);
8794 	WARN_ON_ONCE(!pse);
8795 
8796 	cse_is_idle = se_is_idle(se);
8797 	pse_is_idle = se_is_idle(pse);
8798 
8799 	/*
8800 	 * Preempt an idle entity in favor of a non-idle entity (and don't preempt
8801 	 * in the inverse case).
8802 	 */
8803 	if (cse_is_idle && !pse_is_idle) {
8804 		/*
8805 		 * When non-idle entity preempt an idle entity,
8806 		 * don't give idle entity slice protection.
8807 		 */
8808 		cancel_protect_slice(se);
8809 		goto preempt;
8810 	}
8811 
8812 	if (cse_is_idle != pse_is_idle)
8813 		return;
8814 
8815 	/*
8816 	 * BATCH and IDLE tasks do not preempt others.
8817 	 */
8818 	if (unlikely(!normal_policy(p->policy)))
8819 		return;
8820 
8821 	cfs_rq = cfs_rq_of(se);
8822 	update_curr(cfs_rq);
8823 	/*
8824 	 * If @p has a shorter slice than current and @p is eligible, override
8825 	 * current's slice protection in order to allow preemption.
8826 	 *
8827 	 * Note that even if @p does not turn out to be the most eligible
8828 	 * task at this moment, current's slice protection will be lost.
8829 	 */
8830 	if (do_preempt_short(cfs_rq, pse, se))
8831 		cancel_protect_slice(se);
8832 
8833 	/*
8834 	 * If @p has become the most eligible task, force preemption.
8835 	 */
8836 	if (pick_eevdf(cfs_rq) == pse)
8837 		goto preempt;
8838 
8839 	return;
8840 
8841 preempt:
8842 	resched_curr_lazy(rq);
8843 }
8844 
pick_task_fair(struct rq * rq)8845 static struct task_struct *pick_task_fair(struct rq *rq)
8846 {
8847 	struct sched_entity *se;
8848 	struct cfs_rq *cfs_rq;
8849 
8850 again:
8851 	cfs_rq = &rq->cfs;
8852 	if (!cfs_rq->nr_queued)
8853 		return NULL;
8854 
8855 	do {
8856 		/* Might not have done put_prev_entity() */
8857 		if (cfs_rq->curr && cfs_rq->curr->on_rq)
8858 			update_curr(cfs_rq);
8859 
8860 		if (unlikely(check_cfs_rq_runtime(cfs_rq)))
8861 			goto again;
8862 
8863 		se = pick_next_entity(rq, cfs_rq);
8864 		if (!se)
8865 			goto again;
8866 		cfs_rq = group_cfs_rq(se);
8867 	} while (cfs_rq);
8868 
8869 	return task_of(se);
8870 }
8871 
8872 static void __set_next_task_fair(struct rq *rq, struct task_struct *p, bool first);
8873 static void set_next_task_fair(struct rq *rq, struct task_struct *p, bool first);
8874 
8875 struct task_struct *
pick_next_task_fair(struct rq * rq,struct task_struct * prev,struct rq_flags * rf)8876 pick_next_task_fair(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
8877 {
8878 	struct sched_entity *se;
8879 	struct task_struct *p;
8880 	int new_tasks;
8881 
8882 again:
8883 	p = pick_task_fair(rq);
8884 	if (!p)
8885 		goto idle;
8886 	se = &p->se;
8887 
8888 #ifdef CONFIG_FAIR_GROUP_SCHED
8889 	if (prev->sched_class != &fair_sched_class)
8890 		goto simple;
8891 
8892 	__put_prev_set_next_dl_server(rq, prev, p);
8893 
8894 	/*
8895 	 * Because of the set_next_buddy() in dequeue_task_fair() it is rather
8896 	 * likely that a next task is from the same cgroup as the current.
8897 	 *
8898 	 * Therefore attempt to avoid putting and setting the entire cgroup
8899 	 * hierarchy, only change the part that actually changes.
8900 	 *
8901 	 * Since we haven't yet done put_prev_entity and if the selected task
8902 	 * is a different task than we started out with, try and touch the
8903 	 * least amount of cfs_rqs.
8904 	 */
8905 	if (prev != p) {
8906 		struct sched_entity *pse = &prev->se;
8907 		struct cfs_rq *cfs_rq;
8908 
8909 		while (!(cfs_rq = is_same_group(se, pse))) {
8910 			int se_depth = se->depth;
8911 			int pse_depth = pse->depth;
8912 
8913 			if (se_depth <= pse_depth) {
8914 				put_prev_entity(cfs_rq_of(pse), pse);
8915 				pse = parent_entity(pse);
8916 			}
8917 			if (se_depth >= pse_depth) {
8918 				set_next_entity(cfs_rq_of(se), se);
8919 				se = parent_entity(se);
8920 			}
8921 		}
8922 
8923 		put_prev_entity(cfs_rq, pse);
8924 		set_next_entity(cfs_rq, se);
8925 
8926 		__set_next_task_fair(rq, p, true);
8927 	}
8928 
8929 	return p;
8930 
8931 simple:
8932 #endif
8933 	put_prev_set_next_task(rq, prev, p);
8934 	return p;
8935 
8936 idle:
8937 	if (!rf)
8938 		return NULL;
8939 
8940 	new_tasks = sched_balance_newidle(rq, rf);
8941 
8942 	/*
8943 	 * Because sched_balance_newidle() releases (and re-acquires) rq->lock, it is
8944 	 * possible for any higher priority task to appear. In that case we
8945 	 * must re-start the pick_next_entity() loop.
8946 	 */
8947 	if (new_tasks < 0)
8948 		return RETRY_TASK;
8949 
8950 	if (new_tasks > 0)
8951 		goto again;
8952 
8953 	/*
8954 	 * rq is about to be idle, check if we need to update the
8955 	 * lost_idle_time of clock_pelt
8956 	 */
8957 	update_idle_rq_clock_pelt(rq);
8958 
8959 	return NULL;
8960 }
8961 
__pick_next_task_fair(struct rq * rq,struct task_struct * prev)8962 static struct task_struct *__pick_next_task_fair(struct rq *rq, struct task_struct *prev)
8963 {
8964 	return pick_next_task_fair(rq, prev, NULL);
8965 }
8966 
fair_server_has_tasks(struct sched_dl_entity * dl_se)8967 static bool fair_server_has_tasks(struct sched_dl_entity *dl_se)
8968 {
8969 	return !!dl_se->rq->cfs.nr_queued;
8970 }
8971 
fair_server_pick_task(struct sched_dl_entity * dl_se)8972 static struct task_struct *fair_server_pick_task(struct sched_dl_entity *dl_se)
8973 {
8974 	return pick_task_fair(dl_se->rq);
8975 }
8976 
fair_server_init(struct rq * rq)8977 void fair_server_init(struct rq *rq)
8978 {
8979 	struct sched_dl_entity *dl_se = &rq->fair_server;
8980 
8981 	init_dl_entity(dl_se);
8982 
8983 	dl_server_init(dl_se, rq, fair_server_has_tasks, fair_server_pick_task);
8984 }
8985 
8986 /*
8987  * Account for a descheduled task:
8988  */
put_prev_task_fair(struct rq * rq,struct task_struct * prev,struct task_struct * next)8989 static void put_prev_task_fair(struct rq *rq, struct task_struct *prev, struct task_struct *next)
8990 {
8991 	struct sched_entity *se = &prev->se;
8992 	struct cfs_rq *cfs_rq;
8993 
8994 	for_each_sched_entity(se) {
8995 		cfs_rq = cfs_rq_of(se);
8996 		put_prev_entity(cfs_rq, se);
8997 	}
8998 }
8999 
9000 /*
9001  * sched_yield() is very simple
9002  */
yield_task_fair(struct rq * rq)9003 static void yield_task_fair(struct rq *rq)
9004 {
9005 	struct task_struct *curr = rq->curr;
9006 	struct cfs_rq *cfs_rq = task_cfs_rq(curr);
9007 	struct sched_entity *se = &curr->se;
9008 
9009 	/*
9010 	 * Are we the only task in the tree?
9011 	 */
9012 	if (unlikely(rq->nr_running == 1))
9013 		return;
9014 
9015 	clear_buddies(cfs_rq, se);
9016 
9017 	update_rq_clock(rq);
9018 	/*
9019 	 * Update run-time statistics of the 'current'.
9020 	 */
9021 	update_curr(cfs_rq);
9022 	/*
9023 	 * Tell update_rq_clock() that we've just updated,
9024 	 * so we don't do microscopic update in schedule()
9025 	 * and double the fastpath cost.
9026 	 */
9027 	rq_clock_skip_update(rq);
9028 
9029 	se->deadline += calc_delta_fair(se->slice, se);
9030 }
9031 
yield_to_task_fair(struct rq * rq,struct task_struct * p)9032 static bool yield_to_task_fair(struct rq *rq, struct task_struct *p)
9033 {
9034 	struct sched_entity *se = &p->se;
9035 
9036 	/* throttled hierarchies are not runnable */
9037 	if (!se->on_rq || throttled_hierarchy(cfs_rq_of(se)))
9038 		return false;
9039 
9040 	/* Tell the scheduler that we'd really like se to run next. */
9041 	set_next_buddy(se);
9042 
9043 	yield_task_fair(rq);
9044 
9045 	return true;
9046 }
9047 
9048 #ifdef CONFIG_SMP
9049 /**************************************************
9050  * Fair scheduling class load-balancing methods.
9051  *
9052  * BASICS
9053  *
9054  * The purpose of load-balancing is to achieve the same basic fairness the
9055  * per-CPU scheduler provides, namely provide a proportional amount of compute
9056  * time to each task. This is expressed in the following equation:
9057  *
9058  *   W_i,n/P_i == W_j,n/P_j for all i,j                               (1)
9059  *
9060  * Where W_i,n is the n-th weight average for CPU i. The instantaneous weight
9061  * W_i,0 is defined as:
9062  *
9063  *   W_i,0 = \Sum_j w_i,j                                             (2)
9064  *
9065  * Where w_i,j is the weight of the j-th runnable task on CPU i. This weight
9066  * is derived from the nice value as per sched_prio_to_weight[].
9067  *
9068  * The weight average is an exponential decay average of the instantaneous
9069  * weight:
9070  *
9071  *   W'_i,n = (2^n - 1) / 2^n * W_i,n + 1 / 2^n * W_i,0               (3)
9072  *
9073  * C_i is the compute capacity of CPU i, typically it is the
9074  * fraction of 'recent' time available for SCHED_OTHER task execution. But it
9075  * can also include other factors [XXX].
9076  *
9077  * To achieve this balance we define a measure of imbalance which follows
9078  * directly from (1):
9079  *
9080  *   imb_i,j = max{ avg(W/C), W_i/C_i } - min{ avg(W/C), W_j/C_j }    (4)
9081  *
9082  * We them move tasks around to minimize the imbalance. In the continuous
9083  * function space it is obvious this converges, in the discrete case we get
9084  * a few fun cases generally called infeasible weight scenarios.
9085  *
9086  * [XXX expand on:
9087  *     - infeasible weights;
9088  *     - local vs global optima in the discrete case. ]
9089  *
9090  *
9091  * SCHED DOMAINS
9092  *
9093  * In order to solve the imbalance equation (4), and avoid the obvious O(n^2)
9094  * for all i,j solution, we create a tree of CPUs that follows the hardware
9095  * topology where each level pairs two lower groups (or better). This results
9096  * in O(log n) layers. Furthermore we reduce the number of CPUs going up the
9097  * tree to only the first of the previous level and we decrease the frequency
9098  * of load-balance at each level inversely proportional to the number of CPUs in
9099  * the groups.
9100  *
9101  * This yields:
9102  *
9103  *     log_2 n     1     n
9104  *   \Sum       { --- * --- * 2^i } = O(n)                            (5)
9105  *     i = 0      2^i   2^i
9106  *                               `- size of each group
9107  *         |         |     `- number of CPUs doing load-balance
9108  *         |         `- freq
9109  *         `- sum over all levels
9110  *
9111  * Coupled with a limit on how many tasks we can migrate every balance pass,
9112  * this makes (5) the runtime complexity of the balancer.
9113  *
9114  * An important property here is that each CPU is still (indirectly) connected
9115  * to every other CPU in at most O(log n) steps:
9116  *
9117  * The adjacency matrix of the resulting graph is given by:
9118  *
9119  *             log_2 n
9120  *   A_i,j = \Union     (i % 2^k == 0) && i / 2^(k+1) == j / 2^(k+1)  (6)
9121  *             k = 0
9122  *
9123  * And you'll find that:
9124  *
9125  *   A^(log_2 n)_i,j != 0  for all i,j                                (7)
9126  *
9127  * Showing there's indeed a path between every CPU in at most O(log n) steps.
9128  * The task movement gives a factor of O(m), giving a convergence complexity
9129  * of:
9130  *
9131  *   O(nm log n),  n := nr_cpus, m := nr_tasks                        (8)
9132  *
9133  *
9134  * WORK CONSERVING
9135  *
9136  * In order to avoid CPUs going idle while there's still work to do, new idle
9137  * balancing is more aggressive and has the newly idle CPU iterate up the domain
9138  * tree itself instead of relying on other CPUs to bring it work.
9139  *
9140  * This adds some complexity to both (5) and (8) but it reduces the total idle
9141  * time.
9142  *
9143  * [XXX more?]
9144  *
9145  *
9146  * CGROUPS
9147  *
9148  * Cgroups make a horror show out of (2), instead of a simple sum we get:
9149  *
9150  *                                s_k,i
9151  *   W_i,0 = \Sum_j \Prod_k w_k * -----                               (9)
9152  *                                 S_k
9153  *
9154  * Where
9155  *
9156  *   s_k,i = \Sum_j w_i,j,k  and  S_k = \Sum_i s_k,i                 (10)
9157  *
9158  * w_i,j,k is the weight of the j-th runnable task in the k-th cgroup on CPU i.
9159  *
9160  * The big problem is S_k, its a global sum needed to compute a local (W_i)
9161  * property.
9162  *
9163  * [XXX write more on how we solve this.. _after_ merging pjt's patches that
9164  *      rewrite all of this once again.]
9165  */
9166 
9167 static unsigned long __read_mostly max_load_balance_interval = HZ/10;
9168 
9169 enum fbq_type { regular, remote, all };
9170 
9171 /*
9172  * 'group_type' describes the group of CPUs at the moment of load balancing.
9173  *
9174  * The enum is ordered by pulling priority, with the group with lowest priority
9175  * first so the group_type can simply be compared when selecting the busiest
9176  * group. See update_sd_pick_busiest().
9177  */
9178 enum group_type {
9179 	/* The group has spare capacity that can be used to run more tasks.  */
9180 	group_has_spare = 0,
9181 	/*
9182 	 * The group is fully used and the tasks don't compete for more CPU
9183 	 * cycles. Nevertheless, some tasks might wait before running.
9184 	 */
9185 	group_fully_busy,
9186 	/*
9187 	 * One task doesn't fit with CPU's capacity and must be migrated to a
9188 	 * more powerful CPU.
9189 	 */
9190 	group_misfit_task,
9191 	/*
9192 	 * Balance SMT group that's fully busy. Can benefit from migration
9193 	 * a task on SMT with busy sibling to another CPU on idle core.
9194 	 */
9195 	group_smt_balance,
9196 	/*
9197 	 * SD_ASYM_PACKING only: One local CPU with higher capacity is available,
9198 	 * and the task should be migrated to it instead of running on the
9199 	 * current CPU.
9200 	 */
9201 	group_asym_packing,
9202 	/*
9203 	 * The tasks' affinity constraints previously prevented the scheduler
9204 	 * from balancing the load across the system.
9205 	 */
9206 	group_imbalanced,
9207 	/*
9208 	 * The CPU is overloaded and can't provide expected CPU cycles to all
9209 	 * tasks.
9210 	 */
9211 	group_overloaded
9212 };
9213 
9214 enum migration_type {
9215 	migrate_load = 0,
9216 	migrate_util,
9217 	migrate_task,
9218 	migrate_misfit
9219 };
9220 
9221 #define LBF_ALL_PINNED	0x01
9222 #define LBF_NEED_BREAK	0x02
9223 #define LBF_DST_PINNED  0x04
9224 #define LBF_SOME_PINNED	0x08
9225 #define LBF_ACTIVE_LB	0x10
9226 
9227 struct lb_env {
9228 	struct sched_domain	*sd;
9229 
9230 	struct rq		*src_rq;
9231 	int			src_cpu;
9232 
9233 	int			dst_cpu;
9234 	struct rq		*dst_rq;
9235 
9236 	struct cpumask		*dst_grpmask;
9237 	int			new_dst_cpu;
9238 	enum cpu_idle_type	idle;
9239 	long			imbalance;
9240 	/* The set of CPUs under consideration for load-balancing */
9241 	struct cpumask		*cpus;
9242 
9243 	unsigned int		flags;
9244 
9245 	unsigned int		loop;
9246 	unsigned int		loop_break;
9247 	unsigned int		loop_max;
9248 
9249 	enum fbq_type		fbq_type;
9250 	enum migration_type	migration_type;
9251 	struct list_head	tasks;
9252 };
9253 
9254 /*
9255  * Is this task likely cache-hot:
9256  */
task_hot(struct task_struct * p,struct lb_env * env)9257 static int task_hot(struct task_struct *p, struct lb_env *env)
9258 {
9259 	s64 delta;
9260 
9261 	lockdep_assert_rq_held(env->src_rq);
9262 
9263 	if (p->sched_class != &fair_sched_class)
9264 		return 0;
9265 
9266 	if (unlikely(task_has_idle_policy(p)))
9267 		return 0;
9268 
9269 	/* SMT siblings share cache */
9270 	if (env->sd->flags & SD_SHARE_CPUCAPACITY)
9271 		return 0;
9272 
9273 	/*
9274 	 * Buddy candidates are cache hot:
9275 	 */
9276 	if (sched_feat(CACHE_HOT_BUDDY) && env->dst_rq->nr_running &&
9277 	    (&p->se == cfs_rq_of(&p->se)->next))
9278 		return 1;
9279 
9280 	if (sysctl_sched_migration_cost == -1)
9281 		return 1;
9282 
9283 	/*
9284 	 * Don't migrate task if the task's cookie does not match
9285 	 * with the destination CPU's core cookie.
9286 	 */
9287 	if (!sched_core_cookie_match(cpu_rq(env->dst_cpu), p))
9288 		return 1;
9289 
9290 	if (sysctl_sched_migration_cost == 0)
9291 		return 0;
9292 
9293 	delta = rq_clock_task(env->src_rq) - p->se.exec_start;
9294 
9295 	return delta < (s64)sysctl_sched_migration_cost;
9296 }
9297 
9298 #ifdef CONFIG_NUMA_BALANCING
9299 /*
9300  * Returns a positive value, if task migration degrades locality.
9301  * Returns 0, if task migration is not affected by locality.
9302  * Returns a negative value, if task migration improves locality i.e migration preferred.
9303  */
migrate_degrades_locality(struct task_struct * p,struct lb_env * env)9304 static long migrate_degrades_locality(struct task_struct *p, struct lb_env *env)
9305 {
9306 	struct numa_group *numa_group = rcu_dereference(p->numa_group);
9307 	unsigned long src_weight, dst_weight;
9308 	int src_nid, dst_nid, dist;
9309 
9310 	if (!static_branch_likely(&sched_numa_balancing))
9311 		return 0;
9312 
9313 	if (!p->numa_faults || !(env->sd->flags & SD_NUMA))
9314 		return 0;
9315 
9316 	src_nid = cpu_to_node(env->src_cpu);
9317 	dst_nid = cpu_to_node(env->dst_cpu);
9318 
9319 	if (src_nid == dst_nid)
9320 		return 0;
9321 
9322 	/* Migrating away from the preferred node is always bad. */
9323 	if (src_nid == p->numa_preferred_nid) {
9324 		if (env->src_rq->nr_running > env->src_rq->nr_preferred_running)
9325 			return 1;
9326 		else
9327 			return 0;
9328 	}
9329 
9330 	/* Encourage migration to the preferred node. */
9331 	if (dst_nid == p->numa_preferred_nid)
9332 		return -1;
9333 
9334 	/* Leaving a core idle is often worse than degrading locality. */
9335 	if (env->idle == CPU_IDLE)
9336 		return 0;
9337 
9338 	dist = node_distance(src_nid, dst_nid);
9339 	if (numa_group) {
9340 		src_weight = group_weight(p, src_nid, dist);
9341 		dst_weight = group_weight(p, dst_nid, dist);
9342 	} else {
9343 		src_weight = task_weight(p, src_nid, dist);
9344 		dst_weight = task_weight(p, dst_nid, dist);
9345 	}
9346 
9347 	return src_weight - dst_weight;
9348 }
9349 
9350 #else
migrate_degrades_locality(struct task_struct * p,struct lb_env * env)9351 static inline long migrate_degrades_locality(struct task_struct *p,
9352 					     struct lb_env *env)
9353 {
9354 	return 0;
9355 }
9356 #endif
9357 
9358 /*
9359  * Check whether the task is ineligible on the destination cpu
9360  *
9361  * When the PLACE_LAG scheduling feature is enabled and
9362  * dst_cfs_rq->nr_queued is greater than 1, if the task
9363  * is ineligible, it will also be ineligible when
9364  * it is migrated to the destination cpu.
9365  */
task_is_ineligible_on_dst_cpu(struct task_struct * p,int dest_cpu)9366 static inline int task_is_ineligible_on_dst_cpu(struct task_struct *p, int dest_cpu)
9367 {
9368 	struct cfs_rq *dst_cfs_rq;
9369 
9370 #ifdef CONFIG_FAIR_GROUP_SCHED
9371 	dst_cfs_rq = task_group(p)->cfs_rq[dest_cpu];
9372 #else
9373 	dst_cfs_rq = &cpu_rq(dest_cpu)->cfs;
9374 #endif
9375 	if (sched_feat(PLACE_LAG) && dst_cfs_rq->nr_queued &&
9376 	    !entity_eligible(task_cfs_rq(p), &p->se))
9377 		return 1;
9378 
9379 	return 0;
9380 }
9381 
9382 /*
9383  * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
9384  */
9385 static
can_migrate_task(struct task_struct * p,struct lb_env * env)9386 int can_migrate_task(struct task_struct *p, struct lb_env *env)
9387 {
9388 	long degrades, hot;
9389 
9390 	lockdep_assert_rq_held(env->src_rq);
9391 	if (p->sched_task_hot)
9392 		p->sched_task_hot = 0;
9393 
9394 	/*
9395 	 * We do not migrate tasks that are:
9396 	 * 1) delayed dequeued unless we migrate load, or
9397 	 * 2) throttled_lb_pair, or
9398 	 * 3) cannot be migrated to this CPU due to cpus_ptr, or
9399 	 * 4) running (obviously), or
9400 	 * 5) are cache-hot on their current CPU.
9401 	 */
9402 	if ((p->se.sched_delayed) && (env->migration_type != migrate_load))
9403 		return 0;
9404 
9405 	if (throttled_lb_pair(task_group(p), env->src_cpu, env->dst_cpu))
9406 		return 0;
9407 
9408 	/*
9409 	 * We want to prioritize the migration of eligible tasks.
9410 	 * For ineligible tasks we soft-limit them and only allow
9411 	 * them to migrate when nr_balance_failed is non-zero to
9412 	 * avoid load-balancing trying very hard to balance the load.
9413 	 */
9414 	if (!env->sd->nr_balance_failed &&
9415 	    task_is_ineligible_on_dst_cpu(p, env->dst_cpu))
9416 		return 0;
9417 
9418 	/* Disregard percpu kthreads; they are where they need to be. */
9419 	if (kthread_is_per_cpu(p))
9420 		return 0;
9421 
9422 	if (!cpumask_test_cpu(env->dst_cpu, p->cpus_ptr)) {
9423 		int cpu;
9424 
9425 		schedstat_inc(p->stats.nr_failed_migrations_affine);
9426 
9427 		env->flags |= LBF_SOME_PINNED;
9428 
9429 		/*
9430 		 * Remember if this task can be migrated to any other CPU in
9431 		 * our sched_group. We may want to revisit it if we couldn't
9432 		 * meet load balance goals by pulling other tasks on src_cpu.
9433 		 *
9434 		 * Avoid computing new_dst_cpu
9435 		 * - for NEWLY_IDLE
9436 		 * - if we have already computed one in current iteration
9437 		 * - if it's an active balance
9438 		 */
9439 		if (env->idle == CPU_NEWLY_IDLE ||
9440 		    env->flags & (LBF_DST_PINNED | LBF_ACTIVE_LB))
9441 			return 0;
9442 
9443 		/* Prevent to re-select dst_cpu via env's CPUs: */
9444 		for_each_cpu_and(cpu, env->dst_grpmask, env->cpus) {
9445 			if (cpumask_test_cpu(cpu, p->cpus_ptr)) {
9446 				env->flags |= LBF_DST_PINNED;
9447 				env->new_dst_cpu = cpu;
9448 				break;
9449 			}
9450 		}
9451 
9452 		return 0;
9453 	}
9454 
9455 	/* Record that we found at least one task that could run on dst_cpu */
9456 	env->flags &= ~LBF_ALL_PINNED;
9457 
9458 	if (task_on_cpu(env->src_rq, p)) {
9459 		schedstat_inc(p->stats.nr_failed_migrations_running);
9460 		return 0;
9461 	}
9462 
9463 	/*
9464 	 * Aggressive migration if:
9465 	 * 1) active balance
9466 	 * 2) destination numa is preferred
9467 	 * 3) task is cache cold, or
9468 	 * 4) too many balance attempts have failed.
9469 	 */
9470 	if (env->flags & LBF_ACTIVE_LB)
9471 		return 1;
9472 
9473 	degrades = migrate_degrades_locality(p, env);
9474 	if (!degrades)
9475 		hot = task_hot(p, env);
9476 	else
9477 		hot = degrades > 0;
9478 
9479 	if (!hot || env->sd->nr_balance_failed > env->sd->cache_nice_tries) {
9480 		if (hot)
9481 			p->sched_task_hot = 1;
9482 		return 1;
9483 	}
9484 
9485 	schedstat_inc(p->stats.nr_failed_migrations_hot);
9486 	return 0;
9487 }
9488 
9489 /*
9490  * detach_task() -- detach the task for the migration specified in env
9491  */
detach_task(struct task_struct * p,struct lb_env * env)9492 static void detach_task(struct task_struct *p, struct lb_env *env)
9493 {
9494 	lockdep_assert_rq_held(env->src_rq);
9495 
9496 	if (p->sched_task_hot) {
9497 		p->sched_task_hot = 0;
9498 		schedstat_inc(env->sd->lb_hot_gained[env->idle]);
9499 		schedstat_inc(p->stats.nr_forced_migrations);
9500 	}
9501 
9502 	deactivate_task(env->src_rq, p, DEQUEUE_NOCLOCK);
9503 	set_task_cpu(p, env->dst_cpu);
9504 }
9505 
9506 /*
9507  * detach_one_task() -- tries to dequeue exactly one task from env->src_rq, as
9508  * part of active balancing operations within "domain".
9509  *
9510  * Returns a task if successful and NULL otherwise.
9511  */
detach_one_task(struct lb_env * env)9512 static struct task_struct *detach_one_task(struct lb_env *env)
9513 {
9514 	struct task_struct *p;
9515 
9516 	lockdep_assert_rq_held(env->src_rq);
9517 
9518 	list_for_each_entry_reverse(p,
9519 			&env->src_rq->cfs_tasks, se.group_node) {
9520 		if (!can_migrate_task(p, env))
9521 			continue;
9522 
9523 		detach_task(p, env);
9524 
9525 		/*
9526 		 * Right now, this is only the second place where
9527 		 * lb_gained[env->idle] is updated (other is detach_tasks)
9528 		 * so we can safely collect stats here rather than
9529 		 * inside detach_tasks().
9530 		 */
9531 		schedstat_inc(env->sd->lb_gained[env->idle]);
9532 		return p;
9533 	}
9534 	return NULL;
9535 }
9536 
9537 /*
9538  * detach_tasks() -- tries to detach up to imbalance load/util/tasks from
9539  * busiest_rq, as part of a balancing operation within domain "sd".
9540  *
9541  * Returns number of detached tasks if successful and 0 otherwise.
9542  */
detach_tasks(struct lb_env * env)9543 static int detach_tasks(struct lb_env *env)
9544 {
9545 	struct list_head *tasks = &env->src_rq->cfs_tasks;
9546 	unsigned long util, load;
9547 	struct task_struct *p;
9548 	int detached = 0;
9549 
9550 	lockdep_assert_rq_held(env->src_rq);
9551 
9552 	/*
9553 	 * Source run queue has been emptied by another CPU, clear
9554 	 * LBF_ALL_PINNED flag as we will not test any task.
9555 	 */
9556 	if (env->src_rq->nr_running <= 1) {
9557 		env->flags &= ~LBF_ALL_PINNED;
9558 		return 0;
9559 	}
9560 
9561 	if (env->imbalance <= 0)
9562 		return 0;
9563 
9564 	while (!list_empty(tasks)) {
9565 		/*
9566 		 * We don't want to steal all, otherwise we may be treated likewise,
9567 		 * which could at worst lead to a livelock crash.
9568 		 */
9569 		if (env->idle && env->src_rq->nr_running <= 1)
9570 			break;
9571 
9572 		env->loop++;
9573 		/* We've more or less seen every task there is, call it quits */
9574 		if (env->loop > env->loop_max)
9575 			break;
9576 
9577 		/* take a breather every nr_migrate tasks */
9578 		if (env->loop > env->loop_break) {
9579 			env->loop_break += SCHED_NR_MIGRATE_BREAK;
9580 			env->flags |= LBF_NEED_BREAK;
9581 			break;
9582 		}
9583 
9584 		p = list_last_entry(tasks, struct task_struct, se.group_node);
9585 
9586 		if (!can_migrate_task(p, env))
9587 			goto next;
9588 
9589 		switch (env->migration_type) {
9590 		case migrate_load:
9591 			/*
9592 			 * Depending of the number of CPUs and tasks and the
9593 			 * cgroup hierarchy, task_h_load() can return a null
9594 			 * value. Make sure that env->imbalance decreases
9595 			 * otherwise detach_tasks() will stop only after
9596 			 * detaching up to loop_max tasks.
9597 			 */
9598 			load = max_t(unsigned long, task_h_load(p), 1);
9599 
9600 			if (sched_feat(LB_MIN) &&
9601 			    load < 16 && !env->sd->nr_balance_failed)
9602 				goto next;
9603 
9604 			/*
9605 			 * Make sure that we don't migrate too much load.
9606 			 * Nevertheless, let relax the constraint if
9607 			 * scheduler fails to find a good waiting task to
9608 			 * migrate.
9609 			 */
9610 			if (shr_bound(load, env->sd->nr_balance_failed) > env->imbalance)
9611 				goto next;
9612 
9613 			env->imbalance -= load;
9614 			break;
9615 
9616 		case migrate_util:
9617 			util = task_util_est(p);
9618 
9619 			if (shr_bound(util, env->sd->nr_balance_failed) > env->imbalance)
9620 				goto next;
9621 
9622 			env->imbalance -= util;
9623 			break;
9624 
9625 		case migrate_task:
9626 			env->imbalance--;
9627 			break;
9628 
9629 		case migrate_misfit:
9630 			/* This is not a misfit task */
9631 			if (task_fits_cpu(p, env->src_cpu))
9632 				goto next;
9633 
9634 			env->imbalance = 0;
9635 			break;
9636 		}
9637 
9638 		detach_task(p, env);
9639 		list_add(&p->se.group_node, &env->tasks);
9640 
9641 		detached++;
9642 
9643 #ifdef CONFIG_PREEMPTION
9644 		/*
9645 		 * NEWIDLE balancing is a source of latency, so preemptible
9646 		 * kernels will stop after the first task is detached to minimize
9647 		 * the critical section.
9648 		 */
9649 		if (env->idle == CPU_NEWLY_IDLE)
9650 			break;
9651 #endif
9652 
9653 		/*
9654 		 * We only want to steal up to the prescribed amount of
9655 		 * load/util/tasks.
9656 		 */
9657 		if (env->imbalance <= 0)
9658 			break;
9659 
9660 		continue;
9661 next:
9662 		if (p->sched_task_hot)
9663 			schedstat_inc(p->stats.nr_failed_migrations_hot);
9664 
9665 		list_move(&p->se.group_node, tasks);
9666 	}
9667 
9668 	/*
9669 	 * Right now, this is one of only two places we collect this stat
9670 	 * so we can safely collect detach_one_task() stats here rather
9671 	 * than inside detach_one_task().
9672 	 */
9673 	schedstat_add(env->sd->lb_gained[env->idle], detached);
9674 
9675 	return detached;
9676 }
9677 
9678 /*
9679  * attach_task() -- attach the task detached by detach_task() to its new rq.
9680  */
attach_task(struct rq * rq,struct task_struct * p)9681 static void attach_task(struct rq *rq, struct task_struct *p)
9682 {
9683 	lockdep_assert_rq_held(rq);
9684 
9685 	WARN_ON_ONCE(task_rq(p) != rq);
9686 	activate_task(rq, p, ENQUEUE_NOCLOCK);
9687 	wakeup_preempt(rq, p, 0);
9688 }
9689 
9690 /*
9691  * attach_one_task() -- attaches the task returned from detach_one_task() to
9692  * its new rq.
9693  */
attach_one_task(struct rq * rq,struct task_struct * p)9694 static void attach_one_task(struct rq *rq, struct task_struct *p)
9695 {
9696 	struct rq_flags rf;
9697 
9698 	rq_lock(rq, &rf);
9699 	update_rq_clock(rq);
9700 	attach_task(rq, p);
9701 	rq_unlock(rq, &rf);
9702 }
9703 
9704 /*
9705  * attach_tasks() -- attaches all tasks detached by detach_tasks() to their
9706  * new rq.
9707  */
attach_tasks(struct lb_env * env)9708 static void attach_tasks(struct lb_env *env)
9709 {
9710 	struct list_head *tasks = &env->tasks;
9711 	struct task_struct *p;
9712 	struct rq_flags rf;
9713 
9714 	rq_lock(env->dst_rq, &rf);
9715 	update_rq_clock(env->dst_rq);
9716 
9717 	while (!list_empty(tasks)) {
9718 		p = list_first_entry(tasks, struct task_struct, se.group_node);
9719 		list_del_init(&p->se.group_node);
9720 
9721 		attach_task(env->dst_rq, p);
9722 	}
9723 
9724 	rq_unlock(env->dst_rq, &rf);
9725 }
9726 
9727 #ifdef CONFIG_NO_HZ_COMMON
cfs_rq_has_blocked(struct cfs_rq * cfs_rq)9728 static inline bool cfs_rq_has_blocked(struct cfs_rq *cfs_rq)
9729 {
9730 	if (cfs_rq->avg.load_avg)
9731 		return true;
9732 
9733 	if (cfs_rq->avg.util_avg)
9734 		return true;
9735 
9736 	return false;
9737 }
9738 
others_have_blocked(struct rq * rq)9739 static inline bool others_have_blocked(struct rq *rq)
9740 {
9741 	if (cpu_util_rt(rq))
9742 		return true;
9743 
9744 	if (cpu_util_dl(rq))
9745 		return true;
9746 
9747 	if (hw_load_avg(rq))
9748 		return true;
9749 
9750 	if (cpu_util_irq(rq))
9751 		return true;
9752 
9753 	return false;
9754 }
9755 
update_blocked_load_tick(struct rq * rq)9756 static inline void update_blocked_load_tick(struct rq *rq)
9757 {
9758 	WRITE_ONCE(rq->last_blocked_load_update_tick, jiffies);
9759 }
9760 
update_blocked_load_status(struct rq * rq,bool has_blocked)9761 static inline void update_blocked_load_status(struct rq *rq, bool has_blocked)
9762 {
9763 	if (!has_blocked)
9764 		rq->has_blocked_load = 0;
9765 }
9766 #else
cfs_rq_has_blocked(struct cfs_rq * cfs_rq)9767 static inline bool cfs_rq_has_blocked(struct cfs_rq *cfs_rq) { return false; }
others_have_blocked(struct rq * rq)9768 static inline bool others_have_blocked(struct rq *rq) { return false; }
update_blocked_load_tick(struct rq * rq)9769 static inline void update_blocked_load_tick(struct rq *rq) {}
update_blocked_load_status(struct rq * rq,bool has_blocked)9770 static inline void update_blocked_load_status(struct rq *rq, bool has_blocked) {}
9771 #endif
9772 
__update_blocked_others(struct rq * rq,bool * done)9773 static bool __update_blocked_others(struct rq *rq, bool *done)
9774 {
9775 	bool updated;
9776 
9777 	/*
9778 	 * update_load_avg() can call cpufreq_update_util(). Make sure that RT,
9779 	 * DL and IRQ signals have been updated before updating CFS.
9780 	 */
9781 	updated = update_other_load_avgs(rq);
9782 
9783 	if (others_have_blocked(rq))
9784 		*done = false;
9785 
9786 	return updated;
9787 }
9788 
9789 #ifdef CONFIG_FAIR_GROUP_SCHED
9790 
__update_blocked_fair(struct rq * rq,bool * done)9791 static bool __update_blocked_fair(struct rq *rq, bool *done)
9792 {
9793 	struct cfs_rq *cfs_rq, *pos;
9794 	bool decayed = false;
9795 	int cpu = cpu_of(rq);
9796 
9797 	/*
9798 	 * Iterates the task_group tree in a bottom up fashion, see
9799 	 * list_add_leaf_cfs_rq() for details.
9800 	 */
9801 	for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos) {
9802 		struct sched_entity *se;
9803 
9804 		if (update_cfs_rq_load_avg(cfs_rq_clock_pelt(cfs_rq), cfs_rq)) {
9805 			update_tg_load_avg(cfs_rq);
9806 
9807 			if (cfs_rq->nr_queued == 0)
9808 				update_idle_cfs_rq_clock_pelt(cfs_rq);
9809 
9810 			if (cfs_rq == &rq->cfs)
9811 				decayed = true;
9812 		}
9813 
9814 		/* Propagate pending load changes to the parent, if any: */
9815 		se = cfs_rq->tg->se[cpu];
9816 		if (se && !skip_blocked_update(se))
9817 			update_load_avg(cfs_rq_of(se), se, UPDATE_TG);
9818 
9819 		/*
9820 		 * There can be a lot of idle CPU cgroups.  Don't let fully
9821 		 * decayed cfs_rqs linger on the list.
9822 		 */
9823 		if (cfs_rq_is_decayed(cfs_rq))
9824 			list_del_leaf_cfs_rq(cfs_rq);
9825 
9826 		/* Don't need periodic decay once load/util_avg are null */
9827 		if (cfs_rq_has_blocked(cfs_rq))
9828 			*done = false;
9829 	}
9830 
9831 	return decayed;
9832 }
9833 
9834 /*
9835  * Compute the hierarchical load factor for cfs_rq and all its ascendants.
9836  * This needs to be done in a top-down fashion because the load of a child
9837  * group is a fraction of its parents load.
9838  */
update_cfs_rq_h_load(struct cfs_rq * cfs_rq)9839 static void update_cfs_rq_h_load(struct cfs_rq *cfs_rq)
9840 {
9841 	struct rq *rq = rq_of(cfs_rq);
9842 	struct sched_entity *se = cfs_rq->tg->se[cpu_of(rq)];
9843 	unsigned long now = jiffies;
9844 	unsigned long load;
9845 
9846 	if (cfs_rq->last_h_load_update == now)
9847 		return;
9848 
9849 	WRITE_ONCE(cfs_rq->h_load_next, NULL);
9850 	for_each_sched_entity(se) {
9851 		cfs_rq = cfs_rq_of(se);
9852 		WRITE_ONCE(cfs_rq->h_load_next, se);
9853 		if (cfs_rq->last_h_load_update == now)
9854 			break;
9855 	}
9856 
9857 	if (!se) {
9858 		cfs_rq->h_load = cfs_rq_load_avg(cfs_rq);
9859 		cfs_rq->last_h_load_update = now;
9860 	}
9861 
9862 	while ((se = READ_ONCE(cfs_rq->h_load_next)) != NULL) {
9863 		load = cfs_rq->h_load;
9864 		load = div64_ul(load * se->avg.load_avg,
9865 			cfs_rq_load_avg(cfs_rq) + 1);
9866 		cfs_rq = group_cfs_rq(se);
9867 		cfs_rq->h_load = load;
9868 		cfs_rq->last_h_load_update = now;
9869 	}
9870 }
9871 
task_h_load(struct task_struct * p)9872 static unsigned long task_h_load(struct task_struct *p)
9873 {
9874 	struct cfs_rq *cfs_rq = task_cfs_rq(p);
9875 
9876 	update_cfs_rq_h_load(cfs_rq);
9877 	return div64_ul(p->se.avg.load_avg * cfs_rq->h_load,
9878 			cfs_rq_load_avg(cfs_rq) + 1);
9879 }
9880 #else
__update_blocked_fair(struct rq * rq,bool * done)9881 static bool __update_blocked_fair(struct rq *rq, bool *done)
9882 {
9883 	struct cfs_rq *cfs_rq = &rq->cfs;
9884 	bool decayed;
9885 
9886 	decayed = update_cfs_rq_load_avg(cfs_rq_clock_pelt(cfs_rq), cfs_rq);
9887 	if (cfs_rq_has_blocked(cfs_rq))
9888 		*done = false;
9889 
9890 	return decayed;
9891 }
9892 
task_h_load(struct task_struct * p)9893 static unsigned long task_h_load(struct task_struct *p)
9894 {
9895 	return p->se.avg.load_avg;
9896 }
9897 #endif
9898 
sched_balance_update_blocked_averages(int cpu)9899 static void sched_balance_update_blocked_averages(int cpu)
9900 {
9901 	bool decayed = false, done = true;
9902 	struct rq *rq = cpu_rq(cpu);
9903 	struct rq_flags rf;
9904 
9905 	rq_lock_irqsave(rq, &rf);
9906 	update_blocked_load_tick(rq);
9907 	update_rq_clock(rq);
9908 
9909 	decayed |= __update_blocked_others(rq, &done);
9910 	decayed |= __update_blocked_fair(rq, &done);
9911 
9912 	update_blocked_load_status(rq, !done);
9913 	if (decayed)
9914 		cpufreq_update_util(rq, 0);
9915 	rq_unlock_irqrestore(rq, &rf);
9916 }
9917 
9918 /********** Helpers for sched_balance_find_src_group ************************/
9919 
9920 /*
9921  * sg_lb_stats - stats of a sched_group required for load-balancing:
9922  */
9923 struct sg_lb_stats {
9924 	unsigned long avg_load;			/* Avg load            over the CPUs of the group */
9925 	unsigned long group_load;		/* Total load          over the CPUs of the group */
9926 	unsigned long group_capacity;		/* Capacity            over the CPUs of the group */
9927 	unsigned long group_util;		/* Total utilization   over the CPUs of the group */
9928 	unsigned long group_runnable;		/* Total runnable time over the CPUs of the group */
9929 	unsigned int sum_nr_running;		/* Nr of all tasks running in the group */
9930 	unsigned int sum_h_nr_running;		/* Nr of CFS tasks running in the group */
9931 	unsigned int idle_cpus;                 /* Nr of idle CPUs         in the group */
9932 	unsigned int group_weight;
9933 	enum group_type group_type;
9934 	unsigned int group_asym_packing;	/* Tasks should be moved to preferred CPU */
9935 	unsigned int group_smt_balance;		/* Task on busy SMT be moved */
9936 	unsigned long group_misfit_task_load;	/* A CPU has a task too big for its capacity */
9937 #ifdef CONFIG_NUMA_BALANCING
9938 	unsigned int nr_numa_running;
9939 	unsigned int nr_preferred_running;
9940 #endif
9941 };
9942 
9943 /*
9944  * sd_lb_stats - stats of a sched_domain required for load-balancing:
9945  */
9946 struct sd_lb_stats {
9947 	struct sched_group *busiest;		/* Busiest group in this sd */
9948 	struct sched_group *local;		/* Local group in this sd */
9949 	unsigned long total_load;		/* Total load of all groups in sd */
9950 	unsigned long total_capacity;		/* Total capacity of all groups in sd */
9951 	unsigned long avg_load;			/* Average load across all groups in sd */
9952 	unsigned int prefer_sibling;		/* Tasks should go to sibling first */
9953 
9954 	struct sg_lb_stats busiest_stat;	/* Statistics of the busiest group */
9955 	struct sg_lb_stats local_stat;		/* Statistics of the local group */
9956 };
9957 
init_sd_lb_stats(struct sd_lb_stats * sds)9958 static inline void init_sd_lb_stats(struct sd_lb_stats *sds)
9959 {
9960 	/*
9961 	 * Skimp on the clearing to avoid duplicate work. We can avoid clearing
9962 	 * local_stat because update_sg_lb_stats() does a full clear/assignment.
9963 	 * We must however set busiest_stat::group_type and
9964 	 * busiest_stat::idle_cpus to the worst busiest group because
9965 	 * update_sd_pick_busiest() reads these before assignment.
9966 	 */
9967 	*sds = (struct sd_lb_stats){
9968 		.busiest = NULL,
9969 		.local = NULL,
9970 		.total_load = 0UL,
9971 		.total_capacity = 0UL,
9972 		.busiest_stat = {
9973 			.idle_cpus = UINT_MAX,
9974 			.group_type = group_has_spare,
9975 		},
9976 	};
9977 }
9978 
scale_rt_capacity(int cpu)9979 static unsigned long scale_rt_capacity(int cpu)
9980 {
9981 	unsigned long max = get_actual_cpu_capacity(cpu);
9982 	struct rq *rq = cpu_rq(cpu);
9983 	unsigned long used, free;
9984 	unsigned long irq;
9985 
9986 	irq = cpu_util_irq(rq);
9987 
9988 	if (unlikely(irq >= max))
9989 		return 1;
9990 
9991 	/*
9992 	 * avg_rt.util_avg and avg_dl.util_avg track binary signals
9993 	 * (running and not running) with weights 0 and 1024 respectively.
9994 	 */
9995 	used = cpu_util_rt(rq);
9996 	used += cpu_util_dl(rq);
9997 
9998 	if (unlikely(used >= max))
9999 		return 1;
10000 
10001 	free = max - used;
10002 
10003 	return scale_irq_capacity(free, irq, max);
10004 }
10005 
update_cpu_capacity(struct sched_domain * sd,int cpu)10006 static void update_cpu_capacity(struct sched_domain *sd, int cpu)
10007 {
10008 	unsigned long capacity = scale_rt_capacity(cpu);
10009 	struct sched_group *sdg = sd->groups;
10010 
10011 	if (!capacity)
10012 		capacity = 1;
10013 
10014 	cpu_rq(cpu)->cpu_capacity = capacity;
10015 	trace_sched_cpu_capacity_tp(cpu_rq(cpu));
10016 
10017 	sdg->sgc->capacity = capacity;
10018 	sdg->sgc->min_capacity = capacity;
10019 	sdg->sgc->max_capacity = capacity;
10020 }
10021 
update_group_capacity(struct sched_domain * sd,int cpu)10022 void update_group_capacity(struct sched_domain *sd, int cpu)
10023 {
10024 	struct sched_domain *child = sd->child;
10025 	struct sched_group *group, *sdg = sd->groups;
10026 	unsigned long capacity, min_capacity, max_capacity;
10027 	unsigned long interval;
10028 
10029 	interval = msecs_to_jiffies(sd->balance_interval);
10030 	interval = clamp(interval, 1UL, max_load_balance_interval);
10031 	sdg->sgc->next_update = jiffies + interval;
10032 
10033 	if (!child) {
10034 		update_cpu_capacity(sd, cpu);
10035 		return;
10036 	}
10037 
10038 	capacity = 0;
10039 	min_capacity = ULONG_MAX;
10040 	max_capacity = 0;
10041 
10042 	if (child->flags & SD_OVERLAP) {
10043 		/*
10044 		 * SD_OVERLAP domains cannot assume that child groups
10045 		 * span the current group.
10046 		 */
10047 
10048 		for_each_cpu(cpu, sched_group_span(sdg)) {
10049 			unsigned long cpu_cap = capacity_of(cpu);
10050 
10051 			capacity += cpu_cap;
10052 			min_capacity = min(cpu_cap, min_capacity);
10053 			max_capacity = max(cpu_cap, max_capacity);
10054 		}
10055 	} else  {
10056 		/*
10057 		 * !SD_OVERLAP domains can assume that child groups
10058 		 * span the current group.
10059 		 */
10060 
10061 		group = child->groups;
10062 		do {
10063 			struct sched_group_capacity *sgc = group->sgc;
10064 
10065 			capacity += sgc->capacity;
10066 			min_capacity = min(sgc->min_capacity, min_capacity);
10067 			max_capacity = max(sgc->max_capacity, max_capacity);
10068 			group = group->next;
10069 		} while (group != child->groups);
10070 	}
10071 
10072 	sdg->sgc->capacity = capacity;
10073 	sdg->sgc->min_capacity = min_capacity;
10074 	sdg->sgc->max_capacity = max_capacity;
10075 }
10076 
10077 /*
10078  * Check whether the capacity of the rq has been noticeably reduced by side
10079  * activity. The imbalance_pct is used for the threshold.
10080  * Return true is the capacity is reduced
10081  */
10082 static inline int
check_cpu_capacity(struct rq * rq,struct sched_domain * sd)10083 check_cpu_capacity(struct rq *rq, struct sched_domain *sd)
10084 {
10085 	return ((rq->cpu_capacity * sd->imbalance_pct) <
10086 				(arch_scale_cpu_capacity(cpu_of(rq)) * 100));
10087 }
10088 
10089 /* Check if the rq has a misfit task */
check_misfit_status(struct rq * rq)10090 static inline bool check_misfit_status(struct rq *rq)
10091 {
10092 	return rq->misfit_task_load;
10093 }
10094 
10095 /*
10096  * Group imbalance indicates (and tries to solve) the problem where balancing
10097  * groups is inadequate due to ->cpus_ptr constraints.
10098  *
10099  * Imagine a situation of two groups of 4 CPUs each and 4 tasks each with a
10100  * cpumask covering 1 CPU of the first group and 3 CPUs of the second group.
10101  * Something like:
10102  *
10103  *	{ 0 1 2 3 } { 4 5 6 7 }
10104  *	        *     * * *
10105  *
10106  * If we were to balance group-wise we'd place two tasks in the first group and
10107  * two tasks in the second group. Clearly this is undesired as it will overload
10108  * cpu 3 and leave one of the CPUs in the second group unused.
10109  *
10110  * The current solution to this issue is detecting the skew in the first group
10111  * by noticing the lower domain failed to reach balance and had difficulty
10112  * moving tasks due to affinity constraints.
10113  *
10114  * When this is so detected; this group becomes a candidate for busiest; see
10115  * update_sd_pick_busiest(). And calculate_imbalance() and
10116  * sched_balance_find_src_group() avoid some of the usual balance conditions to allow it
10117  * to create an effective group imbalance.
10118  *
10119  * This is a somewhat tricky proposition since the next run might not find the
10120  * group imbalance and decide the groups need to be balanced again. A most
10121  * subtle and fragile situation.
10122  */
10123 
sg_imbalanced(struct sched_group * group)10124 static inline int sg_imbalanced(struct sched_group *group)
10125 {
10126 	return group->sgc->imbalance;
10127 }
10128 
10129 /*
10130  * group_has_capacity returns true if the group has spare capacity that could
10131  * be used by some tasks.
10132  * We consider that a group has spare capacity if the number of task is
10133  * smaller than the number of CPUs or if the utilization is lower than the
10134  * available capacity for CFS tasks.
10135  * For the latter, we use a threshold to stabilize the state, to take into
10136  * account the variance of the tasks' load and to return true if the available
10137  * capacity in meaningful for the load balancer.
10138  * As an example, an available capacity of 1% can appear but it doesn't make
10139  * any benefit for the load balance.
10140  */
10141 static inline bool
group_has_capacity(unsigned int imbalance_pct,struct sg_lb_stats * sgs)10142 group_has_capacity(unsigned int imbalance_pct, struct sg_lb_stats *sgs)
10143 {
10144 	if (sgs->sum_nr_running < sgs->group_weight)
10145 		return true;
10146 
10147 	if ((sgs->group_capacity * imbalance_pct) <
10148 			(sgs->group_runnable * 100))
10149 		return false;
10150 
10151 	if ((sgs->group_capacity * 100) >
10152 			(sgs->group_util * imbalance_pct))
10153 		return true;
10154 
10155 	return false;
10156 }
10157 
10158 /*
10159  *  group_is_overloaded returns true if the group has more tasks than it can
10160  *  handle.
10161  *  group_is_overloaded is not equals to !group_has_capacity because a group
10162  *  with the exact right number of tasks, has no more spare capacity but is not
10163  *  overloaded so both group_has_capacity and group_is_overloaded return
10164  *  false.
10165  */
10166 static inline bool
group_is_overloaded(unsigned int imbalance_pct,struct sg_lb_stats * sgs)10167 group_is_overloaded(unsigned int imbalance_pct, struct sg_lb_stats *sgs)
10168 {
10169 	if (sgs->sum_nr_running <= sgs->group_weight)
10170 		return false;
10171 
10172 	if ((sgs->group_capacity * 100) <
10173 			(sgs->group_util * imbalance_pct))
10174 		return true;
10175 
10176 	if ((sgs->group_capacity * imbalance_pct) <
10177 			(sgs->group_runnable * 100))
10178 		return true;
10179 
10180 	return false;
10181 }
10182 
10183 static inline enum
group_classify(unsigned int imbalance_pct,struct sched_group * group,struct sg_lb_stats * sgs)10184 group_type group_classify(unsigned int imbalance_pct,
10185 			  struct sched_group *group,
10186 			  struct sg_lb_stats *sgs)
10187 {
10188 	if (group_is_overloaded(imbalance_pct, sgs))
10189 		return group_overloaded;
10190 
10191 	if (sg_imbalanced(group))
10192 		return group_imbalanced;
10193 
10194 	if (sgs->group_asym_packing)
10195 		return group_asym_packing;
10196 
10197 	if (sgs->group_smt_balance)
10198 		return group_smt_balance;
10199 
10200 	if (sgs->group_misfit_task_load)
10201 		return group_misfit_task;
10202 
10203 	if (!group_has_capacity(imbalance_pct, sgs))
10204 		return group_fully_busy;
10205 
10206 	return group_has_spare;
10207 }
10208 
10209 /**
10210  * sched_use_asym_prio - Check whether asym_packing priority must be used
10211  * @sd:		The scheduling domain of the load balancing
10212  * @cpu:	A CPU
10213  *
10214  * Always use CPU priority when balancing load between SMT siblings. When
10215  * balancing load between cores, it is not sufficient that @cpu is idle. Only
10216  * use CPU priority if the whole core is idle.
10217  *
10218  * Returns: True if the priority of @cpu must be followed. False otherwise.
10219  */
sched_use_asym_prio(struct sched_domain * sd,int cpu)10220 static bool sched_use_asym_prio(struct sched_domain *sd, int cpu)
10221 {
10222 	if (!(sd->flags & SD_ASYM_PACKING))
10223 		return false;
10224 
10225 	if (!sched_smt_active())
10226 		return true;
10227 
10228 	return sd->flags & SD_SHARE_CPUCAPACITY || is_core_idle(cpu);
10229 }
10230 
sched_asym(struct sched_domain * sd,int dst_cpu,int src_cpu)10231 static inline bool sched_asym(struct sched_domain *sd, int dst_cpu, int src_cpu)
10232 {
10233 	/*
10234 	 * First check if @dst_cpu can do asym_packing load balance. Only do it
10235 	 * if it has higher priority than @src_cpu.
10236 	 */
10237 	return sched_use_asym_prio(sd, dst_cpu) &&
10238 		sched_asym_prefer(dst_cpu, src_cpu);
10239 }
10240 
10241 /**
10242  * sched_group_asym - Check if the destination CPU can do asym_packing balance
10243  * @env:	The load balancing environment
10244  * @sgs:	Load-balancing statistics of the candidate busiest group
10245  * @group:	The candidate busiest group
10246  *
10247  * @env::dst_cpu can do asym_packing if it has higher priority than the
10248  * preferred CPU of @group.
10249  *
10250  * Return: true if @env::dst_cpu can do with asym_packing load balance. False
10251  * otherwise.
10252  */
10253 static inline bool
sched_group_asym(struct lb_env * env,struct sg_lb_stats * sgs,struct sched_group * group)10254 sched_group_asym(struct lb_env *env, struct sg_lb_stats *sgs, struct sched_group *group)
10255 {
10256 	/*
10257 	 * CPU priorities do not make sense for SMT cores with more than one
10258 	 * busy sibling.
10259 	 */
10260 	if ((group->flags & SD_SHARE_CPUCAPACITY) &&
10261 	    (sgs->group_weight - sgs->idle_cpus != 1))
10262 		return false;
10263 
10264 	return sched_asym(env->sd, env->dst_cpu, group->asym_prefer_cpu);
10265 }
10266 
10267 /* One group has more than one SMT CPU while the other group does not */
smt_vs_nonsmt_groups(struct sched_group * sg1,struct sched_group * sg2)10268 static inline bool smt_vs_nonsmt_groups(struct sched_group *sg1,
10269 				    struct sched_group *sg2)
10270 {
10271 	if (!sg1 || !sg2)
10272 		return false;
10273 
10274 	return (sg1->flags & SD_SHARE_CPUCAPACITY) !=
10275 		(sg2->flags & SD_SHARE_CPUCAPACITY);
10276 }
10277 
smt_balance(struct lb_env * env,struct sg_lb_stats * sgs,struct sched_group * group)10278 static inline bool smt_balance(struct lb_env *env, struct sg_lb_stats *sgs,
10279 			       struct sched_group *group)
10280 {
10281 	if (!env->idle)
10282 		return false;
10283 
10284 	/*
10285 	 * For SMT source group, it is better to move a task
10286 	 * to a CPU that doesn't have multiple tasks sharing its CPU capacity.
10287 	 * Note that if a group has a single SMT, SD_SHARE_CPUCAPACITY
10288 	 * will not be on.
10289 	 */
10290 	if (group->flags & SD_SHARE_CPUCAPACITY &&
10291 	    sgs->sum_h_nr_running > 1)
10292 		return true;
10293 
10294 	return false;
10295 }
10296 
sibling_imbalance(struct lb_env * env,struct sd_lb_stats * sds,struct sg_lb_stats * busiest,struct sg_lb_stats * local)10297 static inline long sibling_imbalance(struct lb_env *env,
10298 				    struct sd_lb_stats *sds,
10299 				    struct sg_lb_stats *busiest,
10300 				    struct sg_lb_stats *local)
10301 {
10302 	int ncores_busiest, ncores_local;
10303 	long imbalance;
10304 
10305 	if (!env->idle || !busiest->sum_nr_running)
10306 		return 0;
10307 
10308 	ncores_busiest = sds->busiest->cores;
10309 	ncores_local = sds->local->cores;
10310 
10311 	if (ncores_busiest == ncores_local) {
10312 		imbalance = busiest->sum_nr_running;
10313 		lsub_positive(&imbalance, local->sum_nr_running);
10314 		return imbalance;
10315 	}
10316 
10317 	/* Balance such that nr_running/ncores ratio are same on both groups */
10318 	imbalance = ncores_local * busiest->sum_nr_running;
10319 	lsub_positive(&imbalance, ncores_busiest * local->sum_nr_running);
10320 	/* Normalize imbalance and do rounding on normalization */
10321 	imbalance = 2 * imbalance + ncores_local + ncores_busiest;
10322 	imbalance /= ncores_local + ncores_busiest;
10323 
10324 	/* Take advantage of resource in an empty sched group */
10325 	if (imbalance <= 1 && local->sum_nr_running == 0 &&
10326 	    busiest->sum_nr_running > 1)
10327 		imbalance = 2;
10328 
10329 	return imbalance;
10330 }
10331 
10332 static inline bool
sched_reduced_capacity(struct rq * rq,struct sched_domain * sd)10333 sched_reduced_capacity(struct rq *rq, struct sched_domain *sd)
10334 {
10335 	/*
10336 	 * When there is more than 1 task, the group_overloaded case already
10337 	 * takes care of cpu with reduced capacity
10338 	 */
10339 	if (rq->cfs.h_nr_runnable != 1)
10340 		return false;
10341 
10342 	return check_cpu_capacity(rq, sd);
10343 }
10344 
10345 /**
10346  * update_sg_lb_stats - Update sched_group's statistics for load balancing.
10347  * @env: The load balancing environment.
10348  * @sds: Load-balancing data with statistics of the local group.
10349  * @group: sched_group whose statistics are to be updated.
10350  * @sgs: variable to hold the statistics for this group.
10351  * @sg_overloaded: sched_group is overloaded
10352  * @sg_overutilized: sched_group is overutilized
10353  */
update_sg_lb_stats(struct lb_env * env,struct sd_lb_stats * sds,struct sched_group * group,struct sg_lb_stats * sgs,bool * sg_overloaded,bool * sg_overutilized)10354 static inline void update_sg_lb_stats(struct lb_env *env,
10355 				      struct sd_lb_stats *sds,
10356 				      struct sched_group *group,
10357 				      struct sg_lb_stats *sgs,
10358 				      bool *sg_overloaded,
10359 				      bool *sg_overutilized)
10360 {
10361 	int i, nr_running, local_group, sd_flags = env->sd->flags;
10362 	bool balancing_at_rd = !env->sd->parent;
10363 
10364 	memset(sgs, 0, sizeof(*sgs));
10365 
10366 	local_group = group == sds->local;
10367 
10368 	for_each_cpu_and(i, sched_group_span(group), env->cpus) {
10369 		struct rq *rq = cpu_rq(i);
10370 		unsigned long load = cpu_load(rq);
10371 
10372 		sgs->group_load += load;
10373 		sgs->group_util += cpu_util_cfs(i);
10374 		sgs->group_runnable += cpu_runnable(rq);
10375 		sgs->sum_h_nr_running += rq->cfs.h_nr_runnable;
10376 
10377 		nr_running = rq->nr_running;
10378 		sgs->sum_nr_running += nr_running;
10379 
10380 		if (cpu_overutilized(i))
10381 			*sg_overutilized = 1;
10382 
10383 		/*
10384 		 * No need to call idle_cpu() if nr_running is not 0
10385 		 */
10386 		if (!nr_running && idle_cpu(i)) {
10387 			sgs->idle_cpus++;
10388 			/* Idle cpu can't have misfit task */
10389 			continue;
10390 		}
10391 
10392 		/* Overload indicator is only updated at root domain */
10393 		if (balancing_at_rd && nr_running > 1)
10394 			*sg_overloaded = 1;
10395 
10396 #ifdef CONFIG_NUMA_BALANCING
10397 		/* Only fbq_classify_group() uses this to classify NUMA groups */
10398 		if (sd_flags & SD_NUMA) {
10399 			sgs->nr_numa_running += rq->nr_numa_running;
10400 			sgs->nr_preferred_running += rq->nr_preferred_running;
10401 		}
10402 #endif
10403 		if (local_group)
10404 			continue;
10405 
10406 		if (sd_flags & SD_ASYM_CPUCAPACITY) {
10407 			/* Check for a misfit task on the cpu */
10408 			if (sgs->group_misfit_task_load < rq->misfit_task_load) {
10409 				sgs->group_misfit_task_load = rq->misfit_task_load;
10410 				*sg_overloaded = 1;
10411 			}
10412 		} else if (env->idle && sched_reduced_capacity(rq, env->sd)) {
10413 			/* Check for a task running on a CPU with reduced capacity */
10414 			if (sgs->group_misfit_task_load < load)
10415 				sgs->group_misfit_task_load = load;
10416 		}
10417 	}
10418 
10419 	sgs->group_capacity = group->sgc->capacity;
10420 
10421 	sgs->group_weight = group->group_weight;
10422 
10423 	/* Check if dst CPU is idle and preferred to this group */
10424 	if (!local_group && env->idle && sgs->sum_h_nr_running &&
10425 	    sched_group_asym(env, sgs, group))
10426 		sgs->group_asym_packing = 1;
10427 
10428 	/* Check for loaded SMT group to be balanced to dst CPU */
10429 	if (!local_group && smt_balance(env, sgs, group))
10430 		sgs->group_smt_balance = 1;
10431 
10432 	sgs->group_type = group_classify(env->sd->imbalance_pct, group, sgs);
10433 
10434 	/* Computing avg_load makes sense only when group is overloaded */
10435 	if (sgs->group_type == group_overloaded)
10436 		sgs->avg_load = (sgs->group_load * SCHED_CAPACITY_SCALE) /
10437 				sgs->group_capacity;
10438 }
10439 
10440 /**
10441  * update_sd_pick_busiest - return 1 on busiest group
10442  * @env: The load balancing environment.
10443  * @sds: sched_domain statistics
10444  * @sg: sched_group candidate to be checked for being the busiest
10445  * @sgs: sched_group statistics
10446  *
10447  * Determine if @sg is a busier group than the previously selected
10448  * busiest group.
10449  *
10450  * Return: %true if @sg is a busier group than the previously selected
10451  * busiest group. %false otherwise.
10452  */
update_sd_pick_busiest(struct lb_env * env,struct sd_lb_stats * sds,struct sched_group * sg,struct sg_lb_stats * sgs)10453 static bool update_sd_pick_busiest(struct lb_env *env,
10454 				   struct sd_lb_stats *sds,
10455 				   struct sched_group *sg,
10456 				   struct sg_lb_stats *sgs)
10457 {
10458 	struct sg_lb_stats *busiest = &sds->busiest_stat;
10459 
10460 	/* Make sure that there is at least one task to pull */
10461 	if (!sgs->sum_h_nr_running)
10462 		return false;
10463 
10464 	/*
10465 	 * Don't try to pull misfit tasks we can't help.
10466 	 * We can use max_capacity here as reduction in capacity on some
10467 	 * CPUs in the group should either be possible to resolve
10468 	 * internally or be covered by avg_load imbalance (eventually).
10469 	 */
10470 	if ((env->sd->flags & SD_ASYM_CPUCAPACITY) &&
10471 	    (sgs->group_type == group_misfit_task) &&
10472 	    (!capacity_greater(capacity_of(env->dst_cpu), sg->sgc->max_capacity) ||
10473 	     sds->local_stat.group_type != group_has_spare))
10474 		return false;
10475 
10476 	if (sgs->group_type > busiest->group_type)
10477 		return true;
10478 
10479 	if (sgs->group_type < busiest->group_type)
10480 		return false;
10481 
10482 	/*
10483 	 * The candidate and the current busiest group are the same type of
10484 	 * group. Let check which one is the busiest according to the type.
10485 	 */
10486 
10487 	switch (sgs->group_type) {
10488 	case group_overloaded:
10489 		/* Select the overloaded group with highest avg_load. */
10490 		return sgs->avg_load > busiest->avg_load;
10491 
10492 	case group_imbalanced:
10493 		/*
10494 		 * Select the 1st imbalanced group as we don't have any way to
10495 		 * choose one more than another.
10496 		 */
10497 		return false;
10498 
10499 	case group_asym_packing:
10500 		/* Prefer to move from lowest priority CPU's work */
10501 		return sched_asym_prefer(sds->busiest->asym_prefer_cpu, sg->asym_prefer_cpu);
10502 
10503 	case group_misfit_task:
10504 		/*
10505 		 * If we have more than one misfit sg go with the biggest
10506 		 * misfit.
10507 		 */
10508 		return sgs->group_misfit_task_load > busiest->group_misfit_task_load;
10509 
10510 	case group_smt_balance:
10511 		/*
10512 		 * Check if we have spare CPUs on either SMT group to
10513 		 * choose has spare or fully busy handling.
10514 		 */
10515 		if (sgs->idle_cpus != 0 || busiest->idle_cpus != 0)
10516 			goto has_spare;
10517 
10518 		fallthrough;
10519 
10520 	case group_fully_busy:
10521 		/*
10522 		 * Select the fully busy group with highest avg_load. In
10523 		 * theory, there is no need to pull task from such kind of
10524 		 * group because tasks have all compute capacity that they need
10525 		 * but we can still improve the overall throughput by reducing
10526 		 * contention when accessing shared HW resources.
10527 		 *
10528 		 * XXX for now avg_load is not computed and always 0 so we
10529 		 * select the 1st one, except if @sg is composed of SMT
10530 		 * siblings.
10531 		 */
10532 
10533 		if (sgs->avg_load < busiest->avg_load)
10534 			return false;
10535 
10536 		if (sgs->avg_load == busiest->avg_load) {
10537 			/*
10538 			 * SMT sched groups need more help than non-SMT groups.
10539 			 * If @sg happens to also be SMT, either choice is good.
10540 			 */
10541 			if (sds->busiest->flags & SD_SHARE_CPUCAPACITY)
10542 				return false;
10543 		}
10544 
10545 		break;
10546 
10547 	case group_has_spare:
10548 		/*
10549 		 * Do not pick sg with SMT CPUs over sg with pure CPUs,
10550 		 * as we do not want to pull task off SMT core with one task
10551 		 * and make the core idle.
10552 		 */
10553 		if (smt_vs_nonsmt_groups(sds->busiest, sg)) {
10554 			if (sg->flags & SD_SHARE_CPUCAPACITY && sgs->sum_h_nr_running <= 1)
10555 				return false;
10556 			else
10557 				return true;
10558 		}
10559 has_spare:
10560 
10561 		/*
10562 		 * Select not overloaded group with lowest number of idle CPUs
10563 		 * and highest number of running tasks. We could also compare
10564 		 * the spare capacity which is more stable but it can end up
10565 		 * that the group has less spare capacity but finally more idle
10566 		 * CPUs which means less opportunity to pull tasks.
10567 		 */
10568 		if (sgs->idle_cpus > busiest->idle_cpus)
10569 			return false;
10570 		else if ((sgs->idle_cpus == busiest->idle_cpus) &&
10571 			 (sgs->sum_nr_running <= busiest->sum_nr_running))
10572 			return false;
10573 
10574 		break;
10575 	}
10576 
10577 	/*
10578 	 * Candidate sg has no more than one task per CPU and has higher
10579 	 * per-CPU capacity. Migrating tasks to less capable CPUs may harm
10580 	 * throughput. Maximize throughput, power/energy consequences are not
10581 	 * considered.
10582 	 */
10583 	if ((env->sd->flags & SD_ASYM_CPUCAPACITY) &&
10584 	    (sgs->group_type <= group_fully_busy) &&
10585 	    (capacity_greater(sg->sgc->min_capacity, capacity_of(env->dst_cpu))))
10586 		return false;
10587 
10588 	return true;
10589 }
10590 
10591 #ifdef CONFIG_NUMA_BALANCING
fbq_classify_group(struct sg_lb_stats * sgs)10592 static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
10593 {
10594 	if (sgs->sum_h_nr_running > sgs->nr_numa_running)
10595 		return regular;
10596 	if (sgs->sum_h_nr_running > sgs->nr_preferred_running)
10597 		return remote;
10598 	return all;
10599 }
10600 
fbq_classify_rq(struct rq * rq)10601 static inline enum fbq_type fbq_classify_rq(struct rq *rq)
10602 {
10603 	if (rq->nr_running > rq->nr_numa_running)
10604 		return regular;
10605 	if (rq->nr_running > rq->nr_preferred_running)
10606 		return remote;
10607 	return all;
10608 }
10609 #else
fbq_classify_group(struct sg_lb_stats * sgs)10610 static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
10611 {
10612 	return all;
10613 }
10614 
fbq_classify_rq(struct rq * rq)10615 static inline enum fbq_type fbq_classify_rq(struct rq *rq)
10616 {
10617 	return regular;
10618 }
10619 #endif /* CONFIG_NUMA_BALANCING */
10620 
10621 
10622 struct sg_lb_stats;
10623 
10624 /*
10625  * task_running_on_cpu - return 1 if @p is running on @cpu.
10626  */
10627 
task_running_on_cpu(int cpu,struct task_struct * p)10628 static unsigned int task_running_on_cpu(int cpu, struct task_struct *p)
10629 {
10630 	/* Task has no contribution or is new */
10631 	if (cpu != task_cpu(p) || !READ_ONCE(p->se.avg.last_update_time))
10632 		return 0;
10633 
10634 	if (task_on_rq_queued(p))
10635 		return 1;
10636 
10637 	return 0;
10638 }
10639 
10640 /**
10641  * idle_cpu_without - would a given CPU be idle without p ?
10642  * @cpu: the processor on which idleness is tested.
10643  * @p: task which should be ignored.
10644  *
10645  * Return: 1 if the CPU would be idle. 0 otherwise.
10646  */
idle_cpu_without(int cpu,struct task_struct * p)10647 static int idle_cpu_without(int cpu, struct task_struct *p)
10648 {
10649 	struct rq *rq = cpu_rq(cpu);
10650 
10651 	if (rq->curr != rq->idle && rq->curr != p)
10652 		return 0;
10653 
10654 	/*
10655 	 * rq->nr_running can't be used but an updated version without the
10656 	 * impact of p on cpu must be used instead. The updated nr_running
10657 	 * be computed and tested before calling idle_cpu_without().
10658 	 */
10659 
10660 	if (rq->ttwu_pending)
10661 		return 0;
10662 
10663 	return 1;
10664 }
10665 
10666 /*
10667  * update_sg_wakeup_stats - Update sched_group's statistics for wakeup.
10668  * @sd: The sched_domain level to look for idlest group.
10669  * @group: sched_group whose statistics are to be updated.
10670  * @sgs: variable to hold the statistics for this group.
10671  * @p: The task for which we look for the idlest group/CPU.
10672  */
update_sg_wakeup_stats(struct sched_domain * sd,struct sched_group * group,struct sg_lb_stats * sgs,struct task_struct * p)10673 static inline void update_sg_wakeup_stats(struct sched_domain *sd,
10674 					  struct sched_group *group,
10675 					  struct sg_lb_stats *sgs,
10676 					  struct task_struct *p)
10677 {
10678 	int i, nr_running;
10679 
10680 	memset(sgs, 0, sizeof(*sgs));
10681 
10682 	/* Assume that task can't fit any CPU of the group */
10683 	if (sd->flags & SD_ASYM_CPUCAPACITY)
10684 		sgs->group_misfit_task_load = 1;
10685 
10686 	for_each_cpu(i, sched_group_span(group)) {
10687 		struct rq *rq = cpu_rq(i);
10688 		unsigned int local;
10689 
10690 		sgs->group_load += cpu_load_without(rq, p);
10691 		sgs->group_util += cpu_util_without(i, p);
10692 		sgs->group_runnable += cpu_runnable_without(rq, p);
10693 		local = task_running_on_cpu(i, p);
10694 		sgs->sum_h_nr_running += rq->cfs.h_nr_runnable - local;
10695 
10696 		nr_running = rq->nr_running - local;
10697 		sgs->sum_nr_running += nr_running;
10698 
10699 		/*
10700 		 * No need to call idle_cpu_without() if nr_running is not 0
10701 		 */
10702 		if (!nr_running && idle_cpu_without(i, p))
10703 			sgs->idle_cpus++;
10704 
10705 		/* Check if task fits in the CPU */
10706 		if (sd->flags & SD_ASYM_CPUCAPACITY &&
10707 		    sgs->group_misfit_task_load &&
10708 		    task_fits_cpu(p, i))
10709 			sgs->group_misfit_task_load = 0;
10710 
10711 	}
10712 
10713 	sgs->group_capacity = group->sgc->capacity;
10714 
10715 	sgs->group_weight = group->group_weight;
10716 
10717 	sgs->group_type = group_classify(sd->imbalance_pct, group, sgs);
10718 
10719 	/*
10720 	 * Computing avg_load makes sense only when group is fully busy or
10721 	 * overloaded
10722 	 */
10723 	if (sgs->group_type == group_fully_busy ||
10724 		sgs->group_type == group_overloaded)
10725 		sgs->avg_load = (sgs->group_load * SCHED_CAPACITY_SCALE) /
10726 				sgs->group_capacity;
10727 }
10728 
update_pick_idlest(struct sched_group * idlest,struct sg_lb_stats * idlest_sgs,struct sched_group * group,struct sg_lb_stats * sgs)10729 static bool update_pick_idlest(struct sched_group *idlest,
10730 			       struct sg_lb_stats *idlest_sgs,
10731 			       struct sched_group *group,
10732 			       struct sg_lb_stats *sgs)
10733 {
10734 	if (sgs->group_type < idlest_sgs->group_type)
10735 		return true;
10736 
10737 	if (sgs->group_type > idlest_sgs->group_type)
10738 		return false;
10739 
10740 	/*
10741 	 * The candidate and the current idlest group are the same type of
10742 	 * group. Let check which one is the idlest according to the type.
10743 	 */
10744 
10745 	switch (sgs->group_type) {
10746 	case group_overloaded:
10747 	case group_fully_busy:
10748 		/* Select the group with lowest avg_load. */
10749 		if (idlest_sgs->avg_load <= sgs->avg_load)
10750 			return false;
10751 		break;
10752 
10753 	case group_imbalanced:
10754 	case group_asym_packing:
10755 	case group_smt_balance:
10756 		/* Those types are not used in the slow wakeup path */
10757 		return false;
10758 
10759 	case group_misfit_task:
10760 		/* Select group with the highest max capacity */
10761 		if (idlest->sgc->max_capacity >= group->sgc->max_capacity)
10762 			return false;
10763 		break;
10764 
10765 	case group_has_spare:
10766 		/* Select group with most idle CPUs */
10767 		if (idlest_sgs->idle_cpus > sgs->idle_cpus)
10768 			return false;
10769 
10770 		/* Select group with lowest group_util */
10771 		if (idlest_sgs->idle_cpus == sgs->idle_cpus &&
10772 			idlest_sgs->group_util <= sgs->group_util)
10773 			return false;
10774 
10775 		break;
10776 	}
10777 
10778 	return true;
10779 }
10780 
10781 /*
10782  * sched_balance_find_dst_group() finds and returns the least busy CPU group within the
10783  * domain.
10784  *
10785  * Assumes p is allowed on at least one CPU in sd.
10786  */
10787 static struct sched_group *
sched_balance_find_dst_group(struct sched_domain * sd,struct task_struct * p,int this_cpu)10788 sched_balance_find_dst_group(struct sched_domain *sd, struct task_struct *p, int this_cpu)
10789 {
10790 	struct sched_group *idlest = NULL, *local = NULL, *group = sd->groups;
10791 	struct sg_lb_stats local_sgs, tmp_sgs;
10792 	struct sg_lb_stats *sgs;
10793 	unsigned long imbalance;
10794 	struct sg_lb_stats idlest_sgs = {
10795 			.avg_load = UINT_MAX,
10796 			.group_type = group_overloaded,
10797 	};
10798 
10799 	do {
10800 		int local_group;
10801 
10802 		/* Skip over this group if it has no CPUs allowed */
10803 		if (!cpumask_intersects(sched_group_span(group),
10804 					p->cpus_ptr))
10805 			continue;
10806 
10807 		/* Skip over this group if no cookie matched */
10808 		if (!sched_group_cookie_match(cpu_rq(this_cpu), p, group))
10809 			continue;
10810 
10811 		local_group = cpumask_test_cpu(this_cpu,
10812 					       sched_group_span(group));
10813 
10814 		if (local_group) {
10815 			sgs = &local_sgs;
10816 			local = group;
10817 		} else {
10818 			sgs = &tmp_sgs;
10819 		}
10820 
10821 		update_sg_wakeup_stats(sd, group, sgs, p);
10822 
10823 		if (!local_group && update_pick_idlest(idlest, &idlest_sgs, group, sgs)) {
10824 			idlest = group;
10825 			idlest_sgs = *sgs;
10826 		}
10827 
10828 	} while (group = group->next, group != sd->groups);
10829 
10830 
10831 	/* There is no idlest group to push tasks to */
10832 	if (!idlest)
10833 		return NULL;
10834 
10835 	/* The local group has been skipped because of CPU affinity */
10836 	if (!local)
10837 		return idlest;
10838 
10839 	/*
10840 	 * If the local group is idler than the selected idlest group
10841 	 * don't try and push the task.
10842 	 */
10843 	if (local_sgs.group_type < idlest_sgs.group_type)
10844 		return NULL;
10845 
10846 	/*
10847 	 * If the local group is busier than the selected idlest group
10848 	 * try and push the task.
10849 	 */
10850 	if (local_sgs.group_type > idlest_sgs.group_type)
10851 		return idlest;
10852 
10853 	switch (local_sgs.group_type) {
10854 	case group_overloaded:
10855 	case group_fully_busy:
10856 
10857 		/* Calculate allowed imbalance based on load */
10858 		imbalance = scale_load_down(NICE_0_LOAD) *
10859 				(sd->imbalance_pct-100) / 100;
10860 
10861 		/*
10862 		 * When comparing groups across NUMA domains, it's possible for
10863 		 * the local domain to be very lightly loaded relative to the
10864 		 * remote domains but "imbalance" skews the comparison making
10865 		 * remote CPUs look much more favourable. When considering
10866 		 * cross-domain, add imbalance to the load on the remote node
10867 		 * and consider staying local.
10868 		 */
10869 
10870 		if ((sd->flags & SD_NUMA) &&
10871 		    ((idlest_sgs.avg_load + imbalance) >= local_sgs.avg_load))
10872 			return NULL;
10873 
10874 		/*
10875 		 * If the local group is less loaded than the selected
10876 		 * idlest group don't try and push any tasks.
10877 		 */
10878 		if (idlest_sgs.avg_load >= (local_sgs.avg_load + imbalance))
10879 			return NULL;
10880 
10881 		if (100 * local_sgs.avg_load <= sd->imbalance_pct * idlest_sgs.avg_load)
10882 			return NULL;
10883 		break;
10884 
10885 	case group_imbalanced:
10886 	case group_asym_packing:
10887 	case group_smt_balance:
10888 		/* Those type are not used in the slow wakeup path */
10889 		return NULL;
10890 
10891 	case group_misfit_task:
10892 		/* Select group with the highest max capacity */
10893 		if (local->sgc->max_capacity >= idlest->sgc->max_capacity)
10894 			return NULL;
10895 		break;
10896 
10897 	case group_has_spare:
10898 #ifdef CONFIG_NUMA
10899 		if (sd->flags & SD_NUMA) {
10900 			int imb_numa_nr = sd->imb_numa_nr;
10901 #ifdef CONFIG_NUMA_BALANCING
10902 			int idlest_cpu;
10903 			/*
10904 			 * If there is spare capacity at NUMA, try to select
10905 			 * the preferred node
10906 			 */
10907 			if (cpu_to_node(this_cpu) == p->numa_preferred_nid)
10908 				return NULL;
10909 
10910 			idlest_cpu = cpumask_first(sched_group_span(idlest));
10911 			if (cpu_to_node(idlest_cpu) == p->numa_preferred_nid)
10912 				return idlest;
10913 #endif /* CONFIG_NUMA_BALANCING */
10914 			/*
10915 			 * Otherwise, keep the task close to the wakeup source
10916 			 * and improve locality if the number of running tasks
10917 			 * would remain below threshold where an imbalance is
10918 			 * allowed while accounting for the possibility the
10919 			 * task is pinned to a subset of CPUs. If there is a
10920 			 * real need of migration, periodic load balance will
10921 			 * take care of it.
10922 			 */
10923 			if (p->nr_cpus_allowed != NR_CPUS) {
10924 				struct cpumask *cpus = this_cpu_cpumask_var_ptr(select_rq_mask);
10925 
10926 				cpumask_and(cpus, sched_group_span(local), p->cpus_ptr);
10927 				imb_numa_nr = min(cpumask_weight(cpus), sd->imb_numa_nr);
10928 			}
10929 
10930 			imbalance = abs(local_sgs.idle_cpus - idlest_sgs.idle_cpus);
10931 			if (!adjust_numa_imbalance(imbalance,
10932 						   local_sgs.sum_nr_running + 1,
10933 						   imb_numa_nr)) {
10934 				return NULL;
10935 			}
10936 		}
10937 #endif /* CONFIG_NUMA */
10938 
10939 		/*
10940 		 * Select group with highest number of idle CPUs. We could also
10941 		 * compare the utilization which is more stable but it can end
10942 		 * up that the group has less spare capacity but finally more
10943 		 * idle CPUs which means more opportunity to run task.
10944 		 */
10945 		if (local_sgs.idle_cpus >= idlest_sgs.idle_cpus)
10946 			return NULL;
10947 		break;
10948 	}
10949 
10950 	return idlest;
10951 }
10952 
update_idle_cpu_scan(struct lb_env * env,unsigned long sum_util)10953 static void update_idle_cpu_scan(struct lb_env *env,
10954 				 unsigned long sum_util)
10955 {
10956 	struct sched_domain_shared *sd_share;
10957 	int llc_weight, pct;
10958 	u64 x, y, tmp;
10959 	/*
10960 	 * Update the number of CPUs to scan in LLC domain, which could
10961 	 * be used as a hint in select_idle_cpu(). The update of sd_share
10962 	 * could be expensive because it is within a shared cache line.
10963 	 * So the write of this hint only occurs during periodic load
10964 	 * balancing, rather than CPU_NEWLY_IDLE, because the latter
10965 	 * can fire way more frequently than the former.
10966 	 */
10967 	if (!sched_feat(SIS_UTIL) || env->idle == CPU_NEWLY_IDLE)
10968 		return;
10969 
10970 	llc_weight = per_cpu(sd_llc_size, env->dst_cpu);
10971 	if (env->sd->span_weight != llc_weight)
10972 		return;
10973 
10974 	sd_share = rcu_dereference(per_cpu(sd_llc_shared, env->dst_cpu));
10975 	if (!sd_share)
10976 		return;
10977 
10978 	/*
10979 	 * The number of CPUs to search drops as sum_util increases, when
10980 	 * sum_util hits 85% or above, the scan stops.
10981 	 * The reason to choose 85% as the threshold is because this is the
10982 	 * imbalance_pct(117) when a LLC sched group is overloaded.
10983 	 *
10984 	 * let y = SCHED_CAPACITY_SCALE - p * x^2                       [1]
10985 	 * and y'= y / SCHED_CAPACITY_SCALE
10986 	 *
10987 	 * x is the ratio of sum_util compared to the CPU capacity:
10988 	 * x = sum_util / (llc_weight * SCHED_CAPACITY_SCALE)
10989 	 * y' is the ratio of CPUs to be scanned in the LLC domain,
10990 	 * and the number of CPUs to scan is calculated by:
10991 	 *
10992 	 * nr_scan = llc_weight * y'                                    [2]
10993 	 *
10994 	 * When x hits the threshold of overloaded, AKA, when
10995 	 * x = 100 / pct, y drops to 0. According to [1],
10996 	 * p should be SCHED_CAPACITY_SCALE * pct^2 / 10000
10997 	 *
10998 	 * Scale x by SCHED_CAPACITY_SCALE:
10999 	 * x' = sum_util / llc_weight;                                  [3]
11000 	 *
11001 	 * and finally [1] becomes:
11002 	 * y = SCHED_CAPACITY_SCALE -
11003 	 *     x'^2 * pct^2 / (10000 * SCHED_CAPACITY_SCALE)            [4]
11004 	 *
11005 	 */
11006 	/* equation [3] */
11007 	x = sum_util;
11008 	do_div(x, llc_weight);
11009 
11010 	/* equation [4] */
11011 	pct = env->sd->imbalance_pct;
11012 	tmp = x * x * pct * pct;
11013 	do_div(tmp, 10000 * SCHED_CAPACITY_SCALE);
11014 	tmp = min_t(long, tmp, SCHED_CAPACITY_SCALE);
11015 	y = SCHED_CAPACITY_SCALE - tmp;
11016 
11017 	/* equation [2] */
11018 	y *= llc_weight;
11019 	do_div(y, SCHED_CAPACITY_SCALE);
11020 	if ((int)y != sd_share->nr_idle_scan)
11021 		WRITE_ONCE(sd_share->nr_idle_scan, (int)y);
11022 }
11023 
11024 /**
11025  * update_sd_lb_stats - Update sched_domain's statistics for load balancing.
11026  * @env: The load balancing environment.
11027  * @sds: variable to hold the statistics for this sched_domain.
11028  */
11029 
update_sd_lb_stats(struct lb_env * env,struct sd_lb_stats * sds)11030 static inline void update_sd_lb_stats(struct lb_env *env, struct sd_lb_stats *sds)
11031 {
11032 	struct sched_group *sg = env->sd->groups;
11033 	struct sg_lb_stats *local = &sds->local_stat;
11034 	struct sg_lb_stats tmp_sgs;
11035 	unsigned long sum_util = 0;
11036 	bool sg_overloaded = 0, sg_overutilized = 0;
11037 
11038 	do {
11039 		struct sg_lb_stats *sgs = &tmp_sgs;
11040 		int local_group;
11041 
11042 		local_group = cpumask_test_cpu(env->dst_cpu, sched_group_span(sg));
11043 		if (local_group) {
11044 			sds->local = sg;
11045 			sgs = local;
11046 
11047 			if (env->idle != CPU_NEWLY_IDLE ||
11048 			    time_after_eq(jiffies, sg->sgc->next_update))
11049 				update_group_capacity(env->sd, env->dst_cpu);
11050 		}
11051 
11052 		update_sg_lb_stats(env, sds, sg, sgs, &sg_overloaded, &sg_overutilized);
11053 
11054 		if (!local_group && update_sd_pick_busiest(env, sds, sg, sgs)) {
11055 			sds->busiest = sg;
11056 			sds->busiest_stat = *sgs;
11057 		}
11058 
11059 		/* Now, start updating sd_lb_stats */
11060 		sds->total_load += sgs->group_load;
11061 		sds->total_capacity += sgs->group_capacity;
11062 
11063 		sum_util += sgs->group_util;
11064 		sg = sg->next;
11065 	} while (sg != env->sd->groups);
11066 
11067 	/*
11068 	 * Indicate that the child domain of the busiest group prefers tasks
11069 	 * go to a child's sibling domains first. NB the flags of a sched group
11070 	 * are those of the child domain.
11071 	 */
11072 	if (sds->busiest)
11073 		sds->prefer_sibling = !!(sds->busiest->flags & SD_PREFER_SIBLING);
11074 
11075 
11076 	if (env->sd->flags & SD_NUMA)
11077 		env->fbq_type = fbq_classify_group(&sds->busiest_stat);
11078 
11079 	if (!env->sd->parent) {
11080 		/* update overload indicator if we are at root domain */
11081 		set_rd_overloaded(env->dst_rq->rd, sg_overloaded);
11082 
11083 		/* Update over-utilization (tipping point, U >= 0) indicator */
11084 		set_rd_overutilized(env->dst_rq->rd, sg_overutilized);
11085 	} else if (sg_overutilized) {
11086 		set_rd_overutilized(env->dst_rq->rd, sg_overutilized);
11087 	}
11088 
11089 	update_idle_cpu_scan(env, sum_util);
11090 }
11091 
11092 /**
11093  * calculate_imbalance - Calculate the amount of imbalance present within the
11094  *			 groups of a given sched_domain during load balance.
11095  * @env: load balance environment
11096  * @sds: statistics of the sched_domain whose imbalance is to be calculated.
11097  */
calculate_imbalance(struct lb_env * env,struct sd_lb_stats * sds)11098 static inline void calculate_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
11099 {
11100 	struct sg_lb_stats *local, *busiest;
11101 
11102 	local = &sds->local_stat;
11103 	busiest = &sds->busiest_stat;
11104 
11105 	if (busiest->group_type == group_misfit_task) {
11106 		if (env->sd->flags & SD_ASYM_CPUCAPACITY) {
11107 			/* Set imbalance to allow misfit tasks to be balanced. */
11108 			env->migration_type = migrate_misfit;
11109 			env->imbalance = 1;
11110 		} else {
11111 			/*
11112 			 * Set load imbalance to allow moving task from cpu
11113 			 * with reduced capacity.
11114 			 */
11115 			env->migration_type = migrate_load;
11116 			env->imbalance = busiest->group_misfit_task_load;
11117 		}
11118 		return;
11119 	}
11120 
11121 	if (busiest->group_type == group_asym_packing) {
11122 		/*
11123 		 * In case of asym capacity, we will try to migrate all load to
11124 		 * the preferred CPU.
11125 		 */
11126 		env->migration_type = migrate_task;
11127 		env->imbalance = busiest->sum_h_nr_running;
11128 		return;
11129 	}
11130 
11131 	if (busiest->group_type == group_smt_balance) {
11132 		/* Reduce number of tasks sharing CPU capacity */
11133 		env->migration_type = migrate_task;
11134 		env->imbalance = 1;
11135 		return;
11136 	}
11137 
11138 	if (busiest->group_type == group_imbalanced) {
11139 		/*
11140 		 * In the group_imb case we cannot rely on group-wide averages
11141 		 * to ensure CPU-load equilibrium, try to move any task to fix
11142 		 * the imbalance. The next load balance will take care of
11143 		 * balancing back the system.
11144 		 */
11145 		env->migration_type = migrate_task;
11146 		env->imbalance = 1;
11147 		return;
11148 	}
11149 
11150 	/*
11151 	 * Try to use spare capacity of local group without overloading it or
11152 	 * emptying busiest.
11153 	 */
11154 	if (local->group_type == group_has_spare) {
11155 		if ((busiest->group_type > group_fully_busy) &&
11156 		    !(env->sd->flags & SD_SHARE_LLC)) {
11157 			/*
11158 			 * If busiest is overloaded, try to fill spare
11159 			 * capacity. This might end up creating spare capacity
11160 			 * in busiest or busiest still being overloaded but
11161 			 * there is no simple way to directly compute the
11162 			 * amount of load to migrate in order to balance the
11163 			 * system.
11164 			 */
11165 			env->migration_type = migrate_util;
11166 			env->imbalance = max(local->group_capacity, local->group_util) -
11167 					 local->group_util;
11168 
11169 			/*
11170 			 * In some cases, the group's utilization is max or even
11171 			 * higher than capacity because of migrations but the
11172 			 * local CPU is (newly) idle. There is at least one
11173 			 * waiting task in this overloaded busiest group. Let's
11174 			 * try to pull it.
11175 			 */
11176 			if (env->idle && env->imbalance == 0) {
11177 				env->migration_type = migrate_task;
11178 				env->imbalance = 1;
11179 			}
11180 
11181 			return;
11182 		}
11183 
11184 		if (busiest->group_weight == 1 || sds->prefer_sibling) {
11185 			/*
11186 			 * When prefer sibling, evenly spread running tasks on
11187 			 * groups.
11188 			 */
11189 			env->migration_type = migrate_task;
11190 			env->imbalance = sibling_imbalance(env, sds, busiest, local);
11191 		} else {
11192 
11193 			/*
11194 			 * If there is no overload, we just want to even the number of
11195 			 * idle CPUs.
11196 			 */
11197 			env->migration_type = migrate_task;
11198 			env->imbalance = max_t(long, 0,
11199 					       (local->idle_cpus - busiest->idle_cpus));
11200 		}
11201 
11202 #ifdef CONFIG_NUMA
11203 		/* Consider allowing a small imbalance between NUMA groups */
11204 		if (env->sd->flags & SD_NUMA) {
11205 			env->imbalance = adjust_numa_imbalance(env->imbalance,
11206 							       local->sum_nr_running + 1,
11207 							       env->sd->imb_numa_nr);
11208 		}
11209 #endif
11210 
11211 		/* Number of tasks to move to restore balance */
11212 		env->imbalance >>= 1;
11213 
11214 		return;
11215 	}
11216 
11217 	/*
11218 	 * Local is fully busy but has to take more load to relieve the
11219 	 * busiest group
11220 	 */
11221 	if (local->group_type < group_overloaded) {
11222 		/*
11223 		 * Local will become overloaded so the avg_load metrics are
11224 		 * finally needed.
11225 		 */
11226 
11227 		local->avg_load = (local->group_load * SCHED_CAPACITY_SCALE) /
11228 				  local->group_capacity;
11229 
11230 		/*
11231 		 * If the local group is more loaded than the selected
11232 		 * busiest group don't try to pull any tasks.
11233 		 */
11234 		if (local->avg_load >= busiest->avg_load) {
11235 			env->imbalance = 0;
11236 			return;
11237 		}
11238 
11239 		sds->avg_load = (sds->total_load * SCHED_CAPACITY_SCALE) /
11240 				sds->total_capacity;
11241 
11242 		/*
11243 		 * If the local group is more loaded than the average system
11244 		 * load, don't try to pull any tasks.
11245 		 */
11246 		if (local->avg_load >= sds->avg_load) {
11247 			env->imbalance = 0;
11248 			return;
11249 		}
11250 
11251 	}
11252 
11253 	/*
11254 	 * Both group are or will become overloaded and we're trying to get all
11255 	 * the CPUs to the average_load, so we don't want to push ourselves
11256 	 * above the average load, nor do we wish to reduce the max loaded CPU
11257 	 * below the average load. At the same time, we also don't want to
11258 	 * reduce the group load below the group capacity. Thus we look for
11259 	 * the minimum possible imbalance.
11260 	 */
11261 	env->migration_type = migrate_load;
11262 	env->imbalance = min(
11263 		(busiest->avg_load - sds->avg_load) * busiest->group_capacity,
11264 		(sds->avg_load - local->avg_load) * local->group_capacity
11265 	) / SCHED_CAPACITY_SCALE;
11266 }
11267 
11268 /******* sched_balance_find_src_group() helpers end here *********************/
11269 
11270 /*
11271  * Decision matrix according to the local and busiest group type:
11272  *
11273  * busiest \ local has_spare fully_busy misfit asym imbalanced overloaded
11274  * has_spare        nr_idle   balanced   N/A    N/A  balanced   balanced
11275  * fully_busy       nr_idle   nr_idle    N/A    N/A  balanced   balanced
11276  * misfit_task      force     N/A        N/A    N/A  N/A        N/A
11277  * asym_packing     force     force      N/A    N/A  force      force
11278  * imbalanced       force     force      N/A    N/A  force      force
11279  * overloaded       force     force      N/A    N/A  force      avg_load
11280  *
11281  * N/A :      Not Applicable because already filtered while updating
11282  *            statistics.
11283  * balanced : The system is balanced for these 2 groups.
11284  * force :    Calculate the imbalance as load migration is probably needed.
11285  * avg_load : Only if imbalance is significant enough.
11286  * nr_idle :  dst_cpu is not busy and the number of idle CPUs is quite
11287  *            different in groups.
11288  */
11289 
11290 /**
11291  * sched_balance_find_src_group - Returns the busiest group within the sched_domain
11292  * if there is an imbalance.
11293  * @env: The load balancing environment.
11294  *
11295  * Also calculates the amount of runnable load which should be moved
11296  * to restore balance.
11297  *
11298  * Return:	- The busiest group if imbalance exists.
11299  */
sched_balance_find_src_group(struct lb_env * env)11300 static struct sched_group *sched_balance_find_src_group(struct lb_env *env)
11301 {
11302 	struct sg_lb_stats *local, *busiest;
11303 	struct sd_lb_stats sds;
11304 
11305 	init_sd_lb_stats(&sds);
11306 
11307 	/*
11308 	 * Compute the various statistics relevant for load balancing at
11309 	 * this level.
11310 	 */
11311 	update_sd_lb_stats(env, &sds);
11312 
11313 	/* There is no busy sibling group to pull tasks from */
11314 	if (!sds.busiest)
11315 		goto out_balanced;
11316 
11317 	busiest = &sds.busiest_stat;
11318 
11319 	/* Misfit tasks should be dealt with regardless of the avg load */
11320 	if (busiest->group_type == group_misfit_task)
11321 		goto force_balance;
11322 
11323 	if (!is_rd_overutilized(env->dst_rq->rd) &&
11324 	    rcu_dereference(env->dst_rq->rd->pd))
11325 		goto out_balanced;
11326 
11327 	/* ASYM feature bypasses nice load balance check */
11328 	if (busiest->group_type == group_asym_packing)
11329 		goto force_balance;
11330 
11331 	/*
11332 	 * If the busiest group is imbalanced the below checks don't
11333 	 * work because they assume all things are equal, which typically
11334 	 * isn't true due to cpus_ptr constraints and the like.
11335 	 */
11336 	if (busiest->group_type == group_imbalanced)
11337 		goto force_balance;
11338 
11339 	local = &sds.local_stat;
11340 	/*
11341 	 * If the local group is busier than the selected busiest group
11342 	 * don't try and pull any tasks.
11343 	 */
11344 	if (local->group_type > busiest->group_type)
11345 		goto out_balanced;
11346 
11347 	/*
11348 	 * When groups are overloaded, use the avg_load to ensure fairness
11349 	 * between tasks.
11350 	 */
11351 	if (local->group_type == group_overloaded) {
11352 		/*
11353 		 * If the local group is more loaded than the selected
11354 		 * busiest group don't try to pull any tasks.
11355 		 */
11356 		if (local->avg_load >= busiest->avg_load)
11357 			goto out_balanced;
11358 
11359 		/* XXX broken for overlapping NUMA groups */
11360 		sds.avg_load = (sds.total_load * SCHED_CAPACITY_SCALE) /
11361 				sds.total_capacity;
11362 
11363 		/*
11364 		 * Don't pull any tasks if this group is already above the
11365 		 * domain average load.
11366 		 */
11367 		if (local->avg_load >= sds.avg_load)
11368 			goto out_balanced;
11369 
11370 		/*
11371 		 * If the busiest group is more loaded, use imbalance_pct to be
11372 		 * conservative.
11373 		 */
11374 		if (100 * busiest->avg_load <=
11375 				env->sd->imbalance_pct * local->avg_load)
11376 			goto out_balanced;
11377 	}
11378 
11379 	/*
11380 	 * Try to move all excess tasks to a sibling domain of the busiest
11381 	 * group's child domain.
11382 	 */
11383 	if (sds.prefer_sibling && local->group_type == group_has_spare &&
11384 	    sibling_imbalance(env, &sds, busiest, local) > 1)
11385 		goto force_balance;
11386 
11387 	if (busiest->group_type != group_overloaded) {
11388 		if (!env->idle) {
11389 			/*
11390 			 * If the busiest group is not overloaded (and as a
11391 			 * result the local one too) but this CPU is already
11392 			 * busy, let another idle CPU try to pull task.
11393 			 */
11394 			goto out_balanced;
11395 		}
11396 
11397 		if (busiest->group_type == group_smt_balance &&
11398 		    smt_vs_nonsmt_groups(sds.local, sds.busiest)) {
11399 			/* Let non SMT CPU pull from SMT CPU sharing with sibling */
11400 			goto force_balance;
11401 		}
11402 
11403 		if (busiest->group_weight > 1 &&
11404 		    local->idle_cpus <= (busiest->idle_cpus + 1)) {
11405 			/*
11406 			 * If the busiest group is not overloaded
11407 			 * and there is no imbalance between this and busiest
11408 			 * group wrt idle CPUs, it is balanced. The imbalance
11409 			 * becomes significant if the diff is greater than 1
11410 			 * otherwise we might end up to just move the imbalance
11411 			 * on another group. Of course this applies only if
11412 			 * there is more than 1 CPU per group.
11413 			 */
11414 			goto out_balanced;
11415 		}
11416 
11417 		if (busiest->sum_h_nr_running == 1) {
11418 			/*
11419 			 * busiest doesn't have any tasks waiting to run
11420 			 */
11421 			goto out_balanced;
11422 		}
11423 	}
11424 
11425 force_balance:
11426 	/* Looks like there is an imbalance. Compute it */
11427 	calculate_imbalance(env, &sds);
11428 	return env->imbalance ? sds.busiest : NULL;
11429 
11430 out_balanced:
11431 	env->imbalance = 0;
11432 	return NULL;
11433 }
11434 
11435 /*
11436  * sched_balance_find_src_rq - find the busiest runqueue among the CPUs in the group.
11437  */
sched_balance_find_src_rq(struct lb_env * env,struct sched_group * group)11438 static struct rq *sched_balance_find_src_rq(struct lb_env *env,
11439 				     struct sched_group *group)
11440 {
11441 	struct rq *busiest = NULL, *rq;
11442 	unsigned long busiest_util = 0, busiest_load = 0, busiest_capacity = 1;
11443 	unsigned int busiest_nr = 0;
11444 	int i;
11445 
11446 	for_each_cpu_and(i, sched_group_span(group), env->cpus) {
11447 		unsigned long capacity, load, util;
11448 		unsigned int nr_running;
11449 		enum fbq_type rt;
11450 
11451 		rq = cpu_rq(i);
11452 		rt = fbq_classify_rq(rq);
11453 
11454 		/*
11455 		 * We classify groups/runqueues into three groups:
11456 		 *  - regular: there are !numa tasks
11457 		 *  - remote:  there are numa tasks that run on the 'wrong' node
11458 		 *  - all:     there is no distinction
11459 		 *
11460 		 * In order to avoid migrating ideally placed numa tasks,
11461 		 * ignore those when there's better options.
11462 		 *
11463 		 * If we ignore the actual busiest queue to migrate another
11464 		 * task, the next balance pass can still reduce the busiest
11465 		 * queue by moving tasks around inside the node.
11466 		 *
11467 		 * If we cannot move enough load due to this classification
11468 		 * the next pass will adjust the group classification and
11469 		 * allow migration of more tasks.
11470 		 *
11471 		 * Both cases only affect the total convergence complexity.
11472 		 */
11473 		if (rt > env->fbq_type)
11474 			continue;
11475 
11476 		nr_running = rq->cfs.h_nr_runnable;
11477 		if (!nr_running)
11478 			continue;
11479 
11480 		capacity = capacity_of(i);
11481 
11482 		/*
11483 		 * For ASYM_CPUCAPACITY domains, don't pick a CPU that could
11484 		 * eventually lead to active_balancing high->low capacity.
11485 		 * Higher per-CPU capacity is considered better than balancing
11486 		 * average load.
11487 		 */
11488 		if (env->sd->flags & SD_ASYM_CPUCAPACITY &&
11489 		    !capacity_greater(capacity_of(env->dst_cpu), capacity) &&
11490 		    nr_running == 1)
11491 			continue;
11492 
11493 		/*
11494 		 * Make sure we only pull tasks from a CPU of lower priority
11495 		 * when balancing between SMT siblings.
11496 		 *
11497 		 * If balancing between cores, let lower priority CPUs help
11498 		 * SMT cores with more than one busy sibling.
11499 		 */
11500 		if (sched_asym(env->sd, i, env->dst_cpu) && nr_running == 1)
11501 			continue;
11502 
11503 		switch (env->migration_type) {
11504 		case migrate_load:
11505 			/*
11506 			 * When comparing with load imbalance, use cpu_load()
11507 			 * which is not scaled with the CPU capacity.
11508 			 */
11509 			load = cpu_load(rq);
11510 
11511 			if (nr_running == 1 && load > env->imbalance &&
11512 			    !check_cpu_capacity(rq, env->sd))
11513 				break;
11514 
11515 			/*
11516 			 * For the load comparisons with the other CPUs,
11517 			 * consider the cpu_load() scaled with the CPU
11518 			 * capacity, so that the load can be moved away
11519 			 * from the CPU that is potentially running at a
11520 			 * lower capacity.
11521 			 *
11522 			 * Thus we're looking for max(load_i / capacity_i),
11523 			 * crosswise multiplication to rid ourselves of the
11524 			 * division works out to:
11525 			 * load_i * capacity_j > load_j * capacity_i;
11526 			 * where j is our previous maximum.
11527 			 */
11528 			if (load * busiest_capacity > busiest_load * capacity) {
11529 				busiest_load = load;
11530 				busiest_capacity = capacity;
11531 				busiest = rq;
11532 			}
11533 			break;
11534 
11535 		case migrate_util:
11536 			util = cpu_util_cfs_boost(i);
11537 
11538 			/*
11539 			 * Don't try to pull utilization from a CPU with one
11540 			 * running task. Whatever its utilization, we will fail
11541 			 * detach the task.
11542 			 */
11543 			if (nr_running <= 1)
11544 				continue;
11545 
11546 			if (busiest_util < util) {
11547 				busiest_util = util;
11548 				busiest = rq;
11549 			}
11550 			break;
11551 
11552 		case migrate_task:
11553 			if (busiest_nr < nr_running) {
11554 				busiest_nr = nr_running;
11555 				busiest = rq;
11556 			}
11557 			break;
11558 
11559 		case migrate_misfit:
11560 			/*
11561 			 * For ASYM_CPUCAPACITY domains with misfit tasks we
11562 			 * simply seek the "biggest" misfit task.
11563 			 */
11564 			if (rq->misfit_task_load > busiest_load) {
11565 				busiest_load = rq->misfit_task_load;
11566 				busiest = rq;
11567 			}
11568 
11569 			break;
11570 
11571 		}
11572 	}
11573 
11574 	return busiest;
11575 }
11576 
11577 /*
11578  * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
11579  * so long as it is large enough.
11580  */
11581 #define MAX_PINNED_INTERVAL	512
11582 
11583 static inline bool
asym_active_balance(struct lb_env * env)11584 asym_active_balance(struct lb_env *env)
11585 {
11586 	/*
11587 	 * ASYM_PACKING needs to force migrate tasks from busy but lower
11588 	 * priority CPUs in order to pack all tasks in the highest priority
11589 	 * CPUs. When done between cores, do it only if the whole core if the
11590 	 * whole core is idle.
11591 	 *
11592 	 * If @env::src_cpu is an SMT core with busy siblings, let
11593 	 * the lower priority @env::dst_cpu help it. Do not follow
11594 	 * CPU priority.
11595 	 */
11596 	return env->idle && sched_use_asym_prio(env->sd, env->dst_cpu) &&
11597 	       (sched_asym_prefer(env->dst_cpu, env->src_cpu) ||
11598 		!sched_use_asym_prio(env->sd, env->src_cpu));
11599 }
11600 
11601 static inline bool
imbalanced_active_balance(struct lb_env * env)11602 imbalanced_active_balance(struct lb_env *env)
11603 {
11604 	struct sched_domain *sd = env->sd;
11605 
11606 	/*
11607 	 * The imbalanced case includes the case of pinned tasks preventing a fair
11608 	 * distribution of the load on the system but also the even distribution of the
11609 	 * threads on a system with spare capacity
11610 	 */
11611 	if ((env->migration_type == migrate_task) &&
11612 	    (sd->nr_balance_failed > sd->cache_nice_tries+2))
11613 		return 1;
11614 
11615 	return 0;
11616 }
11617 
need_active_balance(struct lb_env * env)11618 static int need_active_balance(struct lb_env *env)
11619 {
11620 	struct sched_domain *sd = env->sd;
11621 
11622 	if (asym_active_balance(env))
11623 		return 1;
11624 
11625 	if (imbalanced_active_balance(env))
11626 		return 1;
11627 
11628 	/*
11629 	 * The dst_cpu is idle and the src_cpu CPU has only 1 CFS task.
11630 	 * It's worth migrating the task if the src_cpu's capacity is reduced
11631 	 * because of other sched_class or IRQs if more capacity stays
11632 	 * available on dst_cpu.
11633 	 */
11634 	if (env->idle &&
11635 	    (env->src_rq->cfs.h_nr_runnable == 1)) {
11636 		if ((check_cpu_capacity(env->src_rq, sd)) &&
11637 		    (capacity_of(env->src_cpu)*sd->imbalance_pct < capacity_of(env->dst_cpu)*100))
11638 			return 1;
11639 	}
11640 
11641 	if (env->migration_type == migrate_misfit)
11642 		return 1;
11643 
11644 	return 0;
11645 }
11646 
11647 static int active_load_balance_cpu_stop(void *data);
11648 
should_we_balance(struct lb_env * env)11649 static int should_we_balance(struct lb_env *env)
11650 {
11651 	struct cpumask *swb_cpus = this_cpu_cpumask_var_ptr(should_we_balance_tmpmask);
11652 	struct sched_group *sg = env->sd->groups;
11653 	int cpu, idle_smt = -1;
11654 
11655 	/*
11656 	 * Ensure the balancing environment is consistent; can happen
11657 	 * when the softirq triggers 'during' hotplug.
11658 	 */
11659 	if (!cpumask_test_cpu(env->dst_cpu, env->cpus))
11660 		return 0;
11661 
11662 	/*
11663 	 * In the newly idle case, we will allow all the CPUs
11664 	 * to do the newly idle load balance.
11665 	 *
11666 	 * However, we bail out if we already have tasks or a wakeup pending,
11667 	 * to optimize wakeup latency.
11668 	 */
11669 	if (env->idle == CPU_NEWLY_IDLE) {
11670 		if (env->dst_rq->nr_running > 0 || env->dst_rq->ttwu_pending)
11671 			return 0;
11672 		return 1;
11673 	}
11674 
11675 	cpumask_copy(swb_cpus, group_balance_mask(sg));
11676 	/* Try to find first idle CPU */
11677 	for_each_cpu_and(cpu, swb_cpus, env->cpus) {
11678 		if (!idle_cpu(cpu))
11679 			continue;
11680 
11681 		/*
11682 		 * Don't balance to idle SMT in busy core right away when
11683 		 * balancing cores, but remember the first idle SMT CPU for
11684 		 * later consideration.  Find CPU on an idle core first.
11685 		 */
11686 		if (!(env->sd->flags & SD_SHARE_CPUCAPACITY) && !is_core_idle(cpu)) {
11687 			if (idle_smt == -1)
11688 				idle_smt = cpu;
11689 			/*
11690 			 * If the core is not idle, and first SMT sibling which is
11691 			 * idle has been found, then its not needed to check other
11692 			 * SMT siblings for idleness:
11693 			 */
11694 #ifdef CONFIG_SCHED_SMT
11695 			cpumask_andnot(swb_cpus, swb_cpus, cpu_smt_mask(cpu));
11696 #endif
11697 			continue;
11698 		}
11699 
11700 		/*
11701 		 * Are we the first idle core in a non-SMT domain or higher,
11702 		 * or the first idle CPU in a SMT domain?
11703 		 */
11704 		return cpu == env->dst_cpu;
11705 	}
11706 
11707 	/* Are we the first idle CPU with busy siblings? */
11708 	if (idle_smt != -1)
11709 		return idle_smt == env->dst_cpu;
11710 
11711 	/* Are we the first CPU of this group ? */
11712 	return group_balance_cpu(sg) == env->dst_cpu;
11713 }
11714 
update_lb_imbalance_stat(struct lb_env * env,struct sched_domain * sd,enum cpu_idle_type idle)11715 static void update_lb_imbalance_stat(struct lb_env *env, struct sched_domain *sd,
11716 				     enum cpu_idle_type idle)
11717 {
11718 	if (!schedstat_enabled())
11719 		return;
11720 
11721 	switch (env->migration_type) {
11722 	case migrate_load:
11723 		__schedstat_add(sd->lb_imbalance_load[idle], env->imbalance);
11724 		break;
11725 	case migrate_util:
11726 		__schedstat_add(sd->lb_imbalance_util[idle], env->imbalance);
11727 		break;
11728 	case migrate_task:
11729 		__schedstat_add(sd->lb_imbalance_task[idle], env->imbalance);
11730 		break;
11731 	case migrate_misfit:
11732 		__schedstat_add(sd->lb_imbalance_misfit[idle], env->imbalance);
11733 		break;
11734 	}
11735 }
11736 
11737 /*
11738  * Check this_cpu to ensure it is balanced within domain. Attempt to move
11739  * tasks if there is an imbalance.
11740  */
sched_balance_rq(int this_cpu,struct rq * this_rq,struct sched_domain * sd,enum cpu_idle_type idle,int * continue_balancing)11741 static int sched_balance_rq(int this_cpu, struct rq *this_rq,
11742 			struct sched_domain *sd, enum cpu_idle_type idle,
11743 			int *continue_balancing)
11744 {
11745 	int ld_moved, cur_ld_moved, active_balance = 0;
11746 	struct sched_domain *sd_parent = sd->parent;
11747 	struct sched_group *group;
11748 	struct rq *busiest;
11749 	struct rq_flags rf;
11750 	struct cpumask *cpus = this_cpu_cpumask_var_ptr(load_balance_mask);
11751 	struct lb_env env = {
11752 		.sd		= sd,
11753 		.dst_cpu	= this_cpu,
11754 		.dst_rq		= this_rq,
11755 		.dst_grpmask    = group_balance_mask(sd->groups),
11756 		.idle		= idle,
11757 		.loop_break	= SCHED_NR_MIGRATE_BREAK,
11758 		.cpus		= cpus,
11759 		.fbq_type	= all,
11760 		.tasks		= LIST_HEAD_INIT(env.tasks),
11761 	};
11762 
11763 	cpumask_and(cpus, sched_domain_span(sd), cpu_active_mask);
11764 
11765 	schedstat_inc(sd->lb_count[idle]);
11766 
11767 redo:
11768 	if (!should_we_balance(&env)) {
11769 		*continue_balancing = 0;
11770 		goto out_balanced;
11771 	}
11772 
11773 	group = sched_balance_find_src_group(&env);
11774 	if (!group) {
11775 		schedstat_inc(sd->lb_nobusyg[idle]);
11776 		goto out_balanced;
11777 	}
11778 
11779 	busiest = sched_balance_find_src_rq(&env, group);
11780 	if (!busiest) {
11781 		schedstat_inc(sd->lb_nobusyq[idle]);
11782 		goto out_balanced;
11783 	}
11784 
11785 	WARN_ON_ONCE(busiest == env.dst_rq);
11786 
11787 	update_lb_imbalance_stat(&env, sd, idle);
11788 
11789 	env.src_cpu = busiest->cpu;
11790 	env.src_rq = busiest;
11791 
11792 	ld_moved = 0;
11793 	/* Clear this flag as soon as we find a pullable task */
11794 	env.flags |= LBF_ALL_PINNED;
11795 	if (busiest->nr_running > 1) {
11796 		/*
11797 		 * Attempt to move tasks. If sched_balance_find_src_group has found
11798 		 * an imbalance but busiest->nr_running <= 1, the group is
11799 		 * still unbalanced. ld_moved simply stays zero, so it is
11800 		 * correctly treated as an imbalance.
11801 		 */
11802 		env.loop_max  = min(sysctl_sched_nr_migrate, busiest->nr_running);
11803 
11804 more_balance:
11805 		rq_lock_irqsave(busiest, &rf);
11806 		update_rq_clock(busiest);
11807 
11808 		/*
11809 		 * cur_ld_moved - load moved in current iteration
11810 		 * ld_moved     - cumulative load moved across iterations
11811 		 */
11812 		cur_ld_moved = detach_tasks(&env);
11813 
11814 		/*
11815 		 * We've detached some tasks from busiest_rq. Every
11816 		 * task is masked "TASK_ON_RQ_MIGRATING", so we can safely
11817 		 * unlock busiest->lock, and we are able to be sure
11818 		 * that nobody can manipulate the tasks in parallel.
11819 		 * See task_rq_lock() family for the details.
11820 		 */
11821 
11822 		rq_unlock(busiest, &rf);
11823 
11824 		if (cur_ld_moved) {
11825 			attach_tasks(&env);
11826 			ld_moved += cur_ld_moved;
11827 		}
11828 
11829 		local_irq_restore(rf.flags);
11830 
11831 		if (env.flags & LBF_NEED_BREAK) {
11832 			env.flags &= ~LBF_NEED_BREAK;
11833 			goto more_balance;
11834 		}
11835 
11836 		/*
11837 		 * Revisit (affine) tasks on src_cpu that couldn't be moved to
11838 		 * us and move them to an alternate dst_cpu in our sched_group
11839 		 * where they can run. The upper limit on how many times we
11840 		 * iterate on same src_cpu is dependent on number of CPUs in our
11841 		 * sched_group.
11842 		 *
11843 		 * This changes load balance semantics a bit on who can move
11844 		 * load to a given_cpu. In addition to the given_cpu itself
11845 		 * (or a ilb_cpu acting on its behalf where given_cpu is
11846 		 * nohz-idle), we now have balance_cpu in a position to move
11847 		 * load to given_cpu. In rare situations, this may cause
11848 		 * conflicts (balance_cpu and given_cpu/ilb_cpu deciding
11849 		 * _independently_ and at _same_ time to move some load to
11850 		 * given_cpu) causing excess load to be moved to given_cpu.
11851 		 * This however should not happen so much in practice and
11852 		 * moreover subsequent load balance cycles should correct the
11853 		 * excess load moved.
11854 		 */
11855 		if ((env.flags & LBF_DST_PINNED) && env.imbalance > 0) {
11856 
11857 			/* Prevent to re-select dst_cpu via env's CPUs */
11858 			__cpumask_clear_cpu(env.dst_cpu, env.cpus);
11859 
11860 			env.dst_rq	 = cpu_rq(env.new_dst_cpu);
11861 			env.dst_cpu	 = env.new_dst_cpu;
11862 			env.flags	&= ~LBF_DST_PINNED;
11863 			env.loop	 = 0;
11864 			env.loop_break	 = SCHED_NR_MIGRATE_BREAK;
11865 
11866 			/*
11867 			 * Go back to "more_balance" rather than "redo" since we
11868 			 * need to continue with same src_cpu.
11869 			 */
11870 			goto more_balance;
11871 		}
11872 
11873 		/*
11874 		 * We failed to reach balance because of affinity.
11875 		 */
11876 		if (sd_parent) {
11877 			int *group_imbalance = &sd_parent->groups->sgc->imbalance;
11878 
11879 			if ((env.flags & LBF_SOME_PINNED) && env.imbalance > 0)
11880 				*group_imbalance = 1;
11881 		}
11882 
11883 		/* All tasks on this runqueue were pinned by CPU affinity */
11884 		if (unlikely(env.flags & LBF_ALL_PINNED)) {
11885 			__cpumask_clear_cpu(cpu_of(busiest), cpus);
11886 			/*
11887 			 * Attempting to continue load balancing at the current
11888 			 * sched_domain level only makes sense if there are
11889 			 * active CPUs remaining as possible busiest CPUs to
11890 			 * pull load from which are not contained within the
11891 			 * destination group that is receiving any migrated
11892 			 * load.
11893 			 */
11894 			if (!cpumask_subset(cpus, env.dst_grpmask)) {
11895 				env.loop = 0;
11896 				env.loop_break = SCHED_NR_MIGRATE_BREAK;
11897 				goto redo;
11898 			}
11899 			goto out_all_pinned;
11900 		}
11901 	}
11902 
11903 	if (!ld_moved) {
11904 		schedstat_inc(sd->lb_failed[idle]);
11905 		/*
11906 		 * Increment the failure counter only on periodic balance.
11907 		 * We do not want newidle balance, which can be very
11908 		 * frequent, pollute the failure counter causing
11909 		 * excessive cache_hot migrations and active balances.
11910 		 *
11911 		 * Similarly for migration_misfit which is not related to
11912 		 * load/util migration, don't pollute nr_balance_failed.
11913 		 */
11914 		if (idle != CPU_NEWLY_IDLE &&
11915 		    env.migration_type != migrate_misfit)
11916 			sd->nr_balance_failed++;
11917 
11918 		if (need_active_balance(&env)) {
11919 			unsigned long flags;
11920 
11921 			raw_spin_rq_lock_irqsave(busiest, flags);
11922 
11923 			/*
11924 			 * Don't kick the active_load_balance_cpu_stop,
11925 			 * if the curr task on busiest CPU can't be
11926 			 * moved to this_cpu:
11927 			 */
11928 			if (!cpumask_test_cpu(this_cpu, busiest->curr->cpus_ptr)) {
11929 				raw_spin_rq_unlock_irqrestore(busiest, flags);
11930 				goto out_one_pinned;
11931 			}
11932 
11933 			/* Record that we found at least one task that could run on this_cpu */
11934 			env.flags &= ~LBF_ALL_PINNED;
11935 
11936 			/*
11937 			 * ->active_balance synchronizes accesses to
11938 			 * ->active_balance_work.  Once set, it's cleared
11939 			 * only after active load balance is finished.
11940 			 */
11941 			if (!busiest->active_balance) {
11942 				busiest->active_balance = 1;
11943 				busiest->push_cpu = this_cpu;
11944 				active_balance = 1;
11945 			}
11946 
11947 			preempt_disable();
11948 			raw_spin_rq_unlock_irqrestore(busiest, flags);
11949 			if (active_balance) {
11950 				stop_one_cpu_nowait(cpu_of(busiest),
11951 					active_load_balance_cpu_stop, busiest,
11952 					&busiest->active_balance_work);
11953 			}
11954 			preempt_enable();
11955 		}
11956 	} else {
11957 		sd->nr_balance_failed = 0;
11958 	}
11959 
11960 	if (likely(!active_balance) || need_active_balance(&env)) {
11961 		/* We were unbalanced, so reset the balancing interval */
11962 		sd->balance_interval = sd->min_interval;
11963 	}
11964 
11965 	goto out;
11966 
11967 out_balanced:
11968 	/*
11969 	 * We reach balance although we may have faced some affinity
11970 	 * constraints. Clear the imbalance flag only if other tasks got
11971 	 * a chance to move and fix the imbalance.
11972 	 */
11973 	if (sd_parent && !(env.flags & LBF_ALL_PINNED)) {
11974 		int *group_imbalance = &sd_parent->groups->sgc->imbalance;
11975 
11976 		if (*group_imbalance)
11977 			*group_imbalance = 0;
11978 	}
11979 
11980 out_all_pinned:
11981 	/*
11982 	 * We reach balance because all tasks are pinned at this level so
11983 	 * we can't migrate them. Let the imbalance flag set so parent level
11984 	 * can try to migrate them.
11985 	 */
11986 	schedstat_inc(sd->lb_balanced[idle]);
11987 
11988 	sd->nr_balance_failed = 0;
11989 
11990 out_one_pinned:
11991 	ld_moved = 0;
11992 
11993 	/*
11994 	 * sched_balance_newidle() disregards balance intervals, so we could
11995 	 * repeatedly reach this code, which would lead to balance_interval
11996 	 * skyrocketing in a short amount of time. Skip the balance_interval
11997 	 * increase logic to avoid that.
11998 	 *
11999 	 * Similarly misfit migration which is not necessarily an indication of
12000 	 * the system being busy and requires lb to backoff to let it settle
12001 	 * down.
12002 	 */
12003 	if (env.idle == CPU_NEWLY_IDLE ||
12004 	    env.migration_type == migrate_misfit)
12005 		goto out;
12006 
12007 	/* tune up the balancing interval */
12008 	if ((env.flags & LBF_ALL_PINNED &&
12009 	     sd->balance_interval < MAX_PINNED_INTERVAL) ||
12010 	    sd->balance_interval < sd->max_interval)
12011 		sd->balance_interval *= 2;
12012 out:
12013 	return ld_moved;
12014 }
12015 
12016 static inline unsigned long
get_sd_balance_interval(struct sched_domain * sd,int cpu_busy)12017 get_sd_balance_interval(struct sched_domain *sd, int cpu_busy)
12018 {
12019 	unsigned long interval = sd->balance_interval;
12020 
12021 	if (cpu_busy)
12022 		interval *= sd->busy_factor;
12023 
12024 	/* scale ms to jiffies */
12025 	interval = msecs_to_jiffies(interval);
12026 
12027 	/*
12028 	 * Reduce likelihood of busy balancing at higher domains racing with
12029 	 * balancing at lower domains by preventing their balancing periods
12030 	 * from being multiples of each other.
12031 	 */
12032 	if (cpu_busy)
12033 		interval -= 1;
12034 
12035 	interval = clamp(interval, 1UL, max_load_balance_interval);
12036 
12037 	return interval;
12038 }
12039 
12040 static inline void
update_next_balance(struct sched_domain * sd,unsigned long * next_balance)12041 update_next_balance(struct sched_domain *sd, unsigned long *next_balance)
12042 {
12043 	unsigned long interval, next;
12044 
12045 	/* used by idle balance, so cpu_busy = 0 */
12046 	interval = get_sd_balance_interval(sd, 0);
12047 	next = sd->last_balance + interval;
12048 
12049 	if (time_after(*next_balance, next))
12050 		*next_balance = next;
12051 }
12052 
12053 /*
12054  * active_load_balance_cpu_stop is run by the CPU stopper. It pushes
12055  * running tasks off the busiest CPU onto idle CPUs. It requires at
12056  * least 1 task to be running on each physical CPU where possible, and
12057  * avoids physical / logical imbalances.
12058  */
active_load_balance_cpu_stop(void * data)12059 static int active_load_balance_cpu_stop(void *data)
12060 {
12061 	struct rq *busiest_rq = data;
12062 	int busiest_cpu = cpu_of(busiest_rq);
12063 	int target_cpu = busiest_rq->push_cpu;
12064 	struct rq *target_rq = cpu_rq(target_cpu);
12065 	struct sched_domain *sd;
12066 	struct task_struct *p = NULL;
12067 	struct rq_flags rf;
12068 
12069 	rq_lock_irq(busiest_rq, &rf);
12070 	/*
12071 	 * Between queueing the stop-work and running it is a hole in which
12072 	 * CPUs can become inactive. We should not move tasks from or to
12073 	 * inactive CPUs.
12074 	 */
12075 	if (!cpu_active(busiest_cpu) || !cpu_active(target_cpu))
12076 		goto out_unlock;
12077 
12078 	/* Make sure the requested CPU hasn't gone down in the meantime: */
12079 	if (unlikely(busiest_cpu != smp_processor_id() ||
12080 		     !busiest_rq->active_balance))
12081 		goto out_unlock;
12082 
12083 	/* Is there any task to move? */
12084 	if (busiest_rq->nr_running <= 1)
12085 		goto out_unlock;
12086 
12087 	/*
12088 	 * This condition is "impossible", if it occurs
12089 	 * we need to fix it. Originally reported by
12090 	 * Bjorn Helgaas on a 128-CPU setup.
12091 	 */
12092 	WARN_ON_ONCE(busiest_rq == target_rq);
12093 
12094 	/* Search for an sd spanning us and the target CPU. */
12095 	rcu_read_lock();
12096 	for_each_domain(target_cpu, sd) {
12097 		if (cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
12098 			break;
12099 	}
12100 
12101 	if (likely(sd)) {
12102 		struct lb_env env = {
12103 			.sd		= sd,
12104 			.dst_cpu	= target_cpu,
12105 			.dst_rq		= target_rq,
12106 			.src_cpu	= busiest_rq->cpu,
12107 			.src_rq		= busiest_rq,
12108 			.idle		= CPU_IDLE,
12109 			.flags		= LBF_ACTIVE_LB,
12110 		};
12111 
12112 		schedstat_inc(sd->alb_count);
12113 		update_rq_clock(busiest_rq);
12114 
12115 		p = detach_one_task(&env);
12116 		if (p) {
12117 			schedstat_inc(sd->alb_pushed);
12118 			/* Active balancing done, reset the failure counter. */
12119 			sd->nr_balance_failed = 0;
12120 		} else {
12121 			schedstat_inc(sd->alb_failed);
12122 		}
12123 	}
12124 	rcu_read_unlock();
12125 out_unlock:
12126 	busiest_rq->active_balance = 0;
12127 	rq_unlock(busiest_rq, &rf);
12128 
12129 	if (p)
12130 		attach_one_task(target_rq, p);
12131 
12132 	local_irq_enable();
12133 
12134 	return 0;
12135 }
12136 
12137 /*
12138  * This flag serializes load-balancing passes over large domains
12139  * (above the NODE topology level) - only one load-balancing instance
12140  * may run at a time, to reduce overhead on very large systems with
12141  * lots of CPUs and large NUMA distances.
12142  *
12143  * - Note that load-balancing passes triggered while another one
12144  *   is executing are skipped and not re-tried.
12145  *
12146  * - Also note that this does not serialize rebalance_domains()
12147  *   execution, as non-SD_SERIALIZE domains will still be
12148  *   load-balanced in parallel.
12149  */
12150 static atomic_t sched_balance_running = ATOMIC_INIT(0);
12151 
12152 /*
12153  * Scale the max sched_balance_rq interval with the number of CPUs in the system.
12154  * This trades load-balance latency on larger machines for less cross talk.
12155  */
update_max_interval(void)12156 void update_max_interval(void)
12157 {
12158 	max_load_balance_interval = HZ*num_online_cpus()/10;
12159 }
12160 
update_newidle_cost(struct sched_domain * sd,u64 cost)12161 static inline bool update_newidle_cost(struct sched_domain *sd, u64 cost)
12162 {
12163 	if (cost > sd->max_newidle_lb_cost) {
12164 		/*
12165 		 * Track max cost of a domain to make sure to not delay the
12166 		 * next wakeup on the CPU.
12167 		 */
12168 		sd->max_newidle_lb_cost = cost;
12169 		sd->last_decay_max_lb_cost = jiffies;
12170 	} else if (time_after(jiffies, sd->last_decay_max_lb_cost + HZ)) {
12171 		/*
12172 		 * Decay the newidle max times by ~1% per second to ensure that
12173 		 * it is not outdated and the current max cost is actually
12174 		 * shorter.
12175 		 */
12176 		sd->max_newidle_lb_cost = (sd->max_newidle_lb_cost * 253) / 256;
12177 		sd->last_decay_max_lb_cost = jiffies;
12178 
12179 		return true;
12180 	}
12181 
12182 	return false;
12183 }
12184 
12185 /*
12186  * It checks each scheduling domain to see if it is due to be balanced,
12187  * and initiates a balancing operation if so.
12188  *
12189  * Balancing parameters are set up in init_sched_domains.
12190  */
sched_balance_domains(struct rq * rq,enum cpu_idle_type idle)12191 static void sched_balance_domains(struct rq *rq, enum cpu_idle_type idle)
12192 {
12193 	int continue_balancing = 1;
12194 	int cpu = rq->cpu;
12195 	int busy = idle != CPU_IDLE && !sched_idle_cpu(cpu);
12196 	unsigned long interval;
12197 	struct sched_domain *sd;
12198 	/* Earliest time when we have to do rebalance again */
12199 	unsigned long next_balance = jiffies + 60*HZ;
12200 	int update_next_balance = 0;
12201 	int need_serialize, need_decay = 0;
12202 	u64 max_cost = 0;
12203 
12204 	rcu_read_lock();
12205 	for_each_domain(cpu, sd) {
12206 		/*
12207 		 * Decay the newidle max times here because this is a regular
12208 		 * visit to all the domains.
12209 		 */
12210 		need_decay = update_newidle_cost(sd, 0);
12211 		max_cost += sd->max_newidle_lb_cost;
12212 
12213 		/*
12214 		 * Stop the load balance at this level. There is another
12215 		 * CPU in our sched group which is doing load balancing more
12216 		 * actively.
12217 		 */
12218 		if (!continue_balancing) {
12219 			if (need_decay)
12220 				continue;
12221 			break;
12222 		}
12223 
12224 		interval = get_sd_balance_interval(sd, busy);
12225 
12226 		need_serialize = sd->flags & SD_SERIALIZE;
12227 		if (need_serialize) {
12228 			if (atomic_cmpxchg_acquire(&sched_balance_running, 0, 1))
12229 				goto out;
12230 		}
12231 
12232 		if (time_after_eq(jiffies, sd->last_balance + interval)) {
12233 			if (sched_balance_rq(cpu, rq, sd, idle, &continue_balancing)) {
12234 				/*
12235 				 * The LBF_DST_PINNED logic could have changed
12236 				 * env->dst_cpu, so we can't know our idle
12237 				 * state even if we migrated tasks. Update it.
12238 				 */
12239 				idle = idle_cpu(cpu);
12240 				busy = !idle && !sched_idle_cpu(cpu);
12241 			}
12242 			sd->last_balance = jiffies;
12243 			interval = get_sd_balance_interval(sd, busy);
12244 		}
12245 		if (need_serialize)
12246 			atomic_set_release(&sched_balance_running, 0);
12247 out:
12248 		if (time_after(next_balance, sd->last_balance + interval)) {
12249 			next_balance = sd->last_balance + interval;
12250 			update_next_balance = 1;
12251 		}
12252 	}
12253 	if (need_decay) {
12254 		/*
12255 		 * Ensure the rq-wide value also decays but keep it at a
12256 		 * reasonable floor to avoid funnies with rq->avg_idle.
12257 		 */
12258 		rq->max_idle_balance_cost =
12259 			max((u64)sysctl_sched_migration_cost, max_cost);
12260 	}
12261 	rcu_read_unlock();
12262 
12263 	/*
12264 	 * next_balance will be updated only when there is a need.
12265 	 * When the cpu is attached to null domain for ex, it will not be
12266 	 * updated.
12267 	 */
12268 	if (likely(update_next_balance))
12269 		rq->next_balance = next_balance;
12270 
12271 }
12272 
on_null_domain(struct rq * rq)12273 static inline int on_null_domain(struct rq *rq)
12274 {
12275 	return unlikely(!rcu_dereference_sched(rq->sd));
12276 }
12277 
12278 #ifdef CONFIG_NO_HZ_COMMON
12279 /*
12280  * NOHZ idle load balancing (ILB) details:
12281  *
12282  * - When one of the busy CPUs notices that there may be an idle rebalancing
12283  *   needed, they will kick the idle load balancer, which then does idle
12284  *   load balancing for all the idle CPUs.
12285  */
find_new_ilb(void)12286 static inline int find_new_ilb(void)
12287 {
12288 	const struct cpumask *hk_mask;
12289 	int ilb_cpu;
12290 
12291 	hk_mask = housekeeping_cpumask(HK_TYPE_KERNEL_NOISE);
12292 
12293 	for_each_cpu_and(ilb_cpu, nohz.idle_cpus_mask, hk_mask) {
12294 
12295 		if (ilb_cpu == smp_processor_id())
12296 			continue;
12297 
12298 		if (idle_cpu(ilb_cpu))
12299 			return ilb_cpu;
12300 	}
12301 
12302 	return -1;
12303 }
12304 
12305 /*
12306  * Kick a CPU to do the NOHZ balancing, if it is time for it, via a cross-CPU
12307  * SMP function call (IPI).
12308  *
12309  * We pick the first idle CPU in the HK_TYPE_KERNEL_NOISE housekeeping set
12310  * (if there is one).
12311  */
kick_ilb(unsigned int flags)12312 static void kick_ilb(unsigned int flags)
12313 {
12314 	int ilb_cpu;
12315 
12316 	/*
12317 	 * Increase nohz.next_balance only when if full ilb is triggered but
12318 	 * not if we only update stats.
12319 	 */
12320 	if (flags & NOHZ_BALANCE_KICK)
12321 		nohz.next_balance = jiffies+1;
12322 
12323 	ilb_cpu = find_new_ilb();
12324 	if (ilb_cpu < 0)
12325 		return;
12326 
12327 	/*
12328 	 * Don't bother if no new NOHZ balance work items for ilb_cpu,
12329 	 * i.e. all bits in flags are already set in ilb_cpu.
12330 	 */
12331 	if ((atomic_read(nohz_flags(ilb_cpu)) & flags) == flags)
12332 		return;
12333 
12334 	/*
12335 	 * Access to rq::nohz_csd is serialized by NOHZ_KICK_MASK; he who sets
12336 	 * the first flag owns it; cleared by nohz_csd_func().
12337 	 */
12338 	flags = atomic_fetch_or(flags, nohz_flags(ilb_cpu));
12339 	if (flags & NOHZ_KICK_MASK)
12340 		return;
12341 
12342 	/*
12343 	 * This way we generate an IPI on the target CPU which
12344 	 * is idle, and the softirq performing NOHZ idle load balancing
12345 	 * will be run before returning from the IPI.
12346 	 */
12347 	smp_call_function_single_async(ilb_cpu, &cpu_rq(ilb_cpu)->nohz_csd);
12348 }
12349 
12350 /*
12351  * Current decision point for kicking the idle load balancer in the presence
12352  * of idle CPUs in the system.
12353  */
nohz_balancer_kick(struct rq * rq)12354 static void nohz_balancer_kick(struct rq *rq)
12355 {
12356 	unsigned long now = jiffies;
12357 	struct sched_domain_shared *sds;
12358 	struct sched_domain *sd;
12359 	int nr_busy, i, cpu = rq->cpu;
12360 	unsigned int flags = 0;
12361 
12362 	if (unlikely(rq->idle_balance))
12363 		return;
12364 
12365 	/*
12366 	 * We may be recently in ticked or tickless idle mode. At the first
12367 	 * busy tick after returning from idle, we will update the busy stats.
12368 	 */
12369 	nohz_balance_exit_idle(rq);
12370 
12371 	/*
12372 	 * None are in tickless mode and hence no need for NOHZ idle load
12373 	 * balancing:
12374 	 */
12375 	if (likely(!atomic_read(&nohz.nr_cpus)))
12376 		return;
12377 
12378 	if (READ_ONCE(nohz.has_blocked) &&
12379 	    time_after(now, READ_ONCE(nohz.next_blocked)))
12380 		flags = NOHZ_STATS_KICK;
12381 
12382 	if (time_before(now, nohz.next_balance))
12383 		goto out;
12384 
12385 	if (rq->nr_running >= 2) {
12386 		flags = NOHZ_STATS_KICK | NOHZ_BALANCE_KICK;
12387 		goto out;
12388 	}
12389 
12390 	rcu_read_lock();
12391 
12392 	sd = rcu_dereference(rq->sd);
12393 	if (sd) {
12394 		/*
12395 		 * If there's a runnable CFS task and the current CPU has reduced
12396 		 * capacity, kick the ILB to see if there's a better CPU to run on:
12397 		 */
12398 		if (rq->cfs.h_nr_runnable >= 1 && check_cpu_capacity(rq, sd)) {
12399 			flags = NOHZ_STATS_KICK | NOHZ_BALANCE_KICK;
12400 			goto unlock;
12401 		}
12402 	}
12403 
12404 	sd = rcu_dereference(per_cpu(sd_asym_packing, cpu));
12405 	if (sd) {
12406 		/*
12407 		 * When ASYM_PACKING; see if there's a more preferred CPU
12408 		 * currently idle; in which case, kick the ILB to move tasks
12409 		 * around.
12410 		 *
12411 		 * When balancing between cores, all the SMT siblings of the
12412 		 * preferred CPU must be idle.
12413 		 */
12414 		for_each_cpu_and(i, sched_domain_span(sd), nohz.idle_cpus_mask) {
12415 			if (sched_asym(sd, i, cpu)) {
12416 				flags = NOHZ_STATS_KICK | NOHZ_BALANCE_KICK;
12417 				goto unlock;
12418 			}
12419 		}
12420 	}
12421 
12422 	sd = rcu_dereference(per_cpu(sd_asym_cpucapacity, cpu));
12423 	if (sd) {
12424 		/*
12425 		 * When ASYM_CPUCAPACITY; see if there's a higher capacity CPU
12426 		 * to run the misfit task on.
12427 		 */
12428 		if (check_misfit_status(rq)) {
12429 			flags = NOHZ_STATS_KICK | NOHZ_BALANCE_KICK;
12430 			goto unlock;
12431 		}
12432 
12433 		/*
12434 		 * For asymmetric systems, we do not want to nicely balance
12435 		 * cache use, instead we want to embrace asymmetry and only
12436 		 * ensure tasks have enough CPU capacity.
12437 		 *
12438 		 * Skip the LLC logic because it's not relevant in that case.
12439 		 */
12440 		goto unlock;
12441 	}
12442 
12443 	sds = rcu_dereference(per_cpu(sd_llc_shared, cpu));
12444 	if (sds) {
12445 		/*
12446 		 * If there is an imbalance between LLC domains (IOW we could
12447 		 * increase the overall cache utilization), we need a less-loaded LLC
12448 		 * domain to pull some load from. Likewise, we may need to spread
12449 		 * load within the current LLC domain (e.g. packed SMT cores but
12450 		 * other CPUs are idle). We can't really know from here how busy
12451 		 * the others are - so just get a NOHZ balance going if it looks
12452 		 * like this LLC domain has tasks we could move.
12453 		 */
12454 		nr_busy = atomic_read(&sds->nr_busy_cpus);
12455 		if (nr_busy > 1) {
12456 			flags = NOHZ_STATS_KICK | NOHZ_BALANCE_KICK;
12457 			goto unlock;
12458 		}
12459 	}
12460 unlock:
12461 	rcu_read_unlock();
12462 out:
12463 	if (READ_ONCE(nohz.needs_update))
12464 		flags |= NOHZ_NEXT_KICK;
12465 
12466 	if (flags)
12467 		kick_ilb(flags);
12468 }
12469 
set_cpu_sd_state_busy(int cpu)12470 static void set_cpu_sd_state_busy(int cpu)
12471 {
12472 	struct sched_domain *sd;
12473 
12474 	rcu_read_lock();
12475 	sd = rcu_dereference(per_cpu(sd_llc, cpu));
12476 
12477 	if (!sd || !sd->nohz_idle)
12478 		goto unlock;
12479 	sd->nohz_idle = 0;
12480 
12481 	atomic_inc(&sd->shared->nr_busy_cpus);
12482 unlock:
12483 	rcu_read_unlock();
12484 }
12485 
nohz_balance_exit_idle(struct rq * rq)12486 void nohz_balance_exit_idle(struct rq *rq)
12487 {
12488 	SCHED_WARN_ON(rq != this_rq());
12489 
12490 	if (likely(!rq->nohz_tick_stopped))
12491 		return;
12492 
12493 	rq->nohz_tick_stopped = 0;
12494 	cpumask_clear_cpu(rq->cpu, nohz.idle_cpus_mask);
12495 	atomic_dec(&nohz.nr_cpus);
12496 
12497 	set_cpu_sd_state_busy(rq->cpu);
12498 }
12499 
set_cpu_sd_state_idle(int cpu)12500 static void set_cpu_sd_state_idle(int cpu)
12501 {
12502 	struct sched_domain *sd;
12503 
12504 	rcu_read_lock();
12505 	sd = rcu_dereference(per_cpu(sd_llc, cpu));
12506 
12507 	if (!sd || sd->nohz_idle)
12508 		goto unlock;
12509 	sd->nohz_idle = 1;
12510 
12511 	atomic_dec(&sd->shared->nr_busy_cpus);
12512 unlock:
12513 	rcu_read_unlock();
12514 }
12515 
12516 /*
12517  * This routine will record that the CPU is going idle with tick stopped.
12518  * This info will be used in performing idle load balancing in the future.
12519  */
nohz_balance_enter_idle(int cpu)12520 void nohz_balance_enter_idle(int cpu)
12521 {
12522 	struct rq *rq = cpu_rq(cpu);
12523 
12524 	SCHED_WARN_ON(cpu != smp_processor_id());
12525 
12526 	/* If this CPU is going down, then nothing needs to be done: */
12527 	if (!cpu_active(cpu))
12528 		return;
12529 
12530 	/*
12531 	 * Can be set safely without rq->lock held
12532 	 * If a clear happens, it will have evaluated last additions because
12533 	 * rq->lock is held during the check and the clear
12534 	 */
12535 	rq->has_blocked_load = 1;
12536 
12537 	/*
12538 	 * The tick is still stopped but load could have been added in the
12539 	 * meantime. We set the nohz.has_blocked flag to trig a check of the
12540 	 * *_avg. The CPU is already part of nohz.idle_cpus_mask so the clear
12541 	 * of nohz.has_blocked can only happen after checking the new load
12542 	 */
12543 	if (rq->nohz_tick_stopped)
12544 		goto out;
12545 
12546 	/* If we're a completely isolated CPU, we don't play: */
12547 	if (on_null_domain(rq))
12548 		return;
12549 
12550 	rq->nohz_tick_stopped = 1;
12551 
12552 	cpumask_set_cpu(cpu, nohz.idle_cpus_mask);
12553 	atomic_inc(&nohz.nr_cpus);
12554 
12555 	/*
12556 	 * Ensures that if nohz_idle_balance() fails to observe our
12557 	 * @idle_cpus_mask store, it must observe the @has_blocked
12558 	 * and @needs_update stores.
12559 	 */
12560 	smp_mb__after_atomic();
12561 
12562 	set_cpu_sd_state_idle(cpu);
12563 
12564 	WRITE_ONCE(nohz.needs_update, 1);
12565 out:
12566 	/*
12567 	 * Each time a cpu enter idle, we assume that it has blocked load and
12568 	 * enable the periodic update of the load of idle CPUs
12569 	 */
12570 	WRITE_ONCE(nohz.has_blocked, 1);
12571 }
12572 
update_nohz_stats(struct rq * rq)12573 static bool update_nohz_stats(struct rq *rq)
12574 {
12575 	unsigned int cpu = rq->cpu;
12576 
12577 	if (!rq->has_blocked_load)
12578 		return false;
12579 
12580 	if (!cpumask_test_cpu(cpu, nohz.idle_cpus_mask))
12581 		return false;
12582 
12583 	if (!time_after(jiffies, READ_ONCE(rq->last_blocked_load_update_tick)))
12584 		return true;
12585 
12586 	sched_balance_update_blocked_averages(cpu);
12587 
12588 	return rq->has_blocked_load;
12589 }
12590 
12591 /*
12592  * Internal function that runs load balance for all idle CPUs. The load balance
12593  * can be a simple update of blocked load or a complete load balance with
12594  * tasks movement depending of flags.
12595  */
_nohz_idle_balance(struct rq * this_rq,unsigned int flags)12596 static void _nohz_idle_balance(struct rq *this_rq, unsigned int flags)
12597 {
12598 	/* Earliest time when we have to do rebalance again */
12599 	unsigned long now = jiffies;
12600 	unsigned long next_balance = now + 60*HZ;
12601 	bool has_blocked_load = false;
12602 	int update_next_balance = 0;
12603 	int this_cpu = this_rq->cpu;
12604 	int balance_cpu;
12605 	struct rq *rq;
12606 
12607 	SCHED_WARN_ON((flags & NOHZ_KICK_MASK) == NOHZ_BALANCE_KICK);
12608 
12609 	/*
12610 	 * We assume there will be no idle load after this update and clear
12611 	 * the has_blocked flag. If a cpu enters idle in the mean time, it will
12612 	 * set the has_blocked flag and trigger another update of idle load.
12613 	 * Because a cpu that becomes idle, is added to idle_cpus_mask before
12614 	 * setting the flag, we are sure to not clear the state and not
12615 	 * check the load of an idle cpu.
12616 	 *
12617 	 * Same applies to idle_cpus_mask vs needs_update.
12618 	 */
12619 	if (flags & NOHZ_STATS_KICK)
12620 		WRITE_ONCE(nohz.has_blocked, 0);
12621 	if (flags & NOHZ_NEXT_KICK)
12622 		WRITE_ONCE(nohz.needs_update, 0);
12623 
12624 	/*
12625 	 * Ensures that if we miss the CPU, we must see the has_blocked
12626 	 * store from nohz_balance_enter_idle().
12627 	 */
12628 	smp_mb();
12629 
12630 	/*
12631 	 * Start with the next CPU after this_cpu so we will end with this_cpu and let a
12632 	 * chance for other idle cpu to pull load.
12633 	 */
12634 	for_each_cpu_wrap(balance_cpu,  nohz.idle_cpus_mask, this_cpu+1) {
12635 		if (!idle_cpu(balance_cpu))
12636 			continue;
12637 
12638 		/*
12639 		 * If this CPU gets work to do, stop the load balancing
12640 		 * work being done for other CPUs. Next load
12641 		 * balancing owner will pick it up.
12642 		 */
12643 		if (!idle_cpu(this_cpu) && need_resched()) {
12644 			if (flags & NOHZ_STATS_KICK)
12645 				has_blocked_load = true;
12646 			if (flags & NOHZ_NEXT_KICK)
12647 				WRITE_ONCE(nohz.needs_update, 1);
12648 			goto abort;
12649 		}
12650 
12651 		rq = cpu_rq(balance_cpu);
12652 
12653 		if (flags & NOHZ_STATS_KICK)
12654 			has_blocked_load |= update_nohz_stats(rq);
12655 
12656 		/*
12657 		 * If time for next balance is due,
12658 		 * do the balance.
12659 		 */
12660 		if (time_after_eq(jiffies, rq->next_balance)) {
12661 			struct rq_flags rf;
12662 
12663 			rq_lock_irqsave(rq, &rf);
12664 			update_rq_clock(rq);
12665 			rq_unlock_irqrestore(rq, &rf);
12666 
12667 			if (flags & NOHZ_BALANCE_KICK)
12668 				sched_balance_domains(rq, CPU_IDLE);
12669 		}
12670 
12671 		if (time_after(next_balance, rq->next_balance)) {
12672 			next_balance = rq->next_balance;
12673 			update_next_balance = 1;
12674 		}
12675 	}
12676 
12677 	/*
12678 	 * next_balance will be updated only when there is a need.
12679 	 * When the CPU is attached to null domain for ex, it will not be
12680 	 * updated.
12681 	 */
12682 	if (likely(update_next_balance))
12683 		nohz.next_balance = next_balance;
12684 
12685 	if (flags & NOHZ_STATS_KICK)
12686 		WRITE_ONCE(nohz.next_blocked,
12687 			   now + msecs_to_jiffies(LOAD_AVG_PERIOD));
12688 
12689 abort:
12690 	/* There is still blocked load, enable periodic update */
12691 	if (has_blocked_load)
12692 		WRITE_ONCE(nohz.has_blocked, 1);
12693 }
12694 
12695 /*
12696  * In CONFIG_NO_HZ_COMMON case, the idle balance kickee will do the
12697  * rebalancing for all the CPUs for whom scheduler ticks are stopped.
12698  */
nohz_idle_balance(struct rq * this_rq,enum cpu_idle_type idle)12699 static bool nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle)
12700 {
12701 	unsigned int flags = this_rq->nohz_idle_balance;
12702 
12703 	if (!flags)
12704 		return false;
12705 
12706 	this_rq->nohz_idle_balance = 0;
12707 
12708 	if (idle != CPU_IDLE)
12709 		return false;
12710 
12711 	_nohz_idle_balance(this_rq, flags);
12712 
12713 	return true;
12714 }
12715 
12716 /*
12717  * Check if we need to directly run the ILB for updating blocked load before
12718  * entering idle state. Here we run ILB directly without issuing IPIs.
12719  *
12720  * Note that when this function is called, the tick may not yet be stopped on
12721  * this CPU yet. nohz.idle_cpus_mask is updated only when tick is stopped and
12722  * cleared on the next busy tick. In other words, nohz.idle_cpus_mask updates
12723  * don't align with CPUs enter/exit idle to avoid bottlenecks due to high idle
12724  * entry/exit rate (usec). So it is possible that _nohz_idle_balance() is
12725  * called from this function on (this) CPU that's not yet in the mask. That's
12726  * OK because the goal of nohz_run_idle_balance() is to run ILB only for
12727  * updating the blocked load of already idle CPUs without waking up one of
12728  * those idle CPUs and outside the preempt disable / IRQ off phase of the local
12729  * cpu about to enter idle, because it can take a long time.
12730  */
nohz_run_idle_balance(int cpu)12731 void nohz_run_idle_balance(int cpu)
12732 {
12733 	unsigned int flags;
12734 
12735 	flags = atomic_fetch_andnot(NOHZ_NEWILB_KICK, nohz_flags(cpu));
12736 
12737 	/*
12738 	 * Update the blocked load only if no SCHED_SOFTIRQ is about to happen
12739 	 * (i.e. NOHZ_STATS_KICK set) and will do the same.
12740 	 */
12741 	if ((flags == NOHZ_NEWILB_KICK) && !need_resched())
12742 		_nohz_idle_balance(cpu_rq(cpu), NOHZ_STATS_KICK);
12743 }
12744 
nohz_newidle_balance(struct rq * this_rq)12745 static void nohz_newidle_balance(struct rq *this_rq)
12746 {
12747 	int this_cpu = this_rq->cpu;
12748 
12749 	/* Will wake up very soon. No time for doing anything else*/
12750 	if (this_rq->avg_idle < sysctl_sched_migration_cost)
12751 		return;
12752 
12753 	/* Don't need to update blocked load of idle CPUs*/
12754 	if (!READ_ONCE(nohz.has_blocked) ||
12755 	    time_before(jiffies, READ_ONCE(nohz.next_blocked)))
12756 		return;
12757 
12758 	/*
12759 	 * Set the need to trigger ILB in order to update blocked load
12760 	 * before entering idle state.
12761 	 */
12762 	atomic_or(NOHZ_NEWILB_KICK, nohz_flags(this_cpu));
12763 }
12764 
12765 #else /* !CONFIG_NO_HZ_COMMON */
nohz_balancer_kick(struct rq * rq)12766 static inline void nohz_balancer_kick(struct rq *rq) { }
12767 
nohz_idle_balance(struct rq * this_rq,enum cpu_idle_type idle)12768 static inline bool nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle)
12769 {
12770 	return false;
12771 }
12772 
nohz_newidle_balance(struct rq * this_rq)12773 static inline void nohz_newidle_balance(struct rq *this_rq) { }
12774 #endif /* CONFIG_NO_HZ_COMMON */
12775 
12776 /*
12777  * sched_balance_newidle is called by schedule() if this_cpu is about to become
12778  * idle. Attempts to pull tasks from other CPUs.
12779  *
12780  * Returns:
12781  *   < 0 - we released the lock and there are !fair tasks present
12782  *     0 - failed, no new tasks
12783  *   > 0 - success, new (fair) tasks present
12784  */
sched_balance_newidle(struct rq * this_rq,struct rq_flags * rf)12785 static int sched_balance_newidle(struct rq *this_rq, struct rq_flags *rf)
12786 {
12787 	unsigned long next_balance = jiffies + HZ;
12788 	int this_cpu = this_rq->cpu;
12789 	int continue_balancing = 1;
12790 	u64 t0, t1, curr_cost = 0;
12791 	struct sched_domain *sd;
12792 	int pulled_task = 0;
12793 
12794 	update_misfit_status(NULL, this_rq);
12795 
12796 	/*
12797 	 * There is a task waiting to run. No need to search for one.
12798 	 * Return 0; the task will be enqueued when switching to idle.
12799 	 */
12800 	if (this_rq->ttwu_pending)
12801 		return 0;
12802 
12803 	/*
12804 	 * We must set idle_stamp _before_ calling sched_balance_rq()
12805 	 * for CPU_NEWLY_IDLE, such that we measure the this duration
12806 	 * as idle time.
12807 	 */
12808 	this_rq->idle_stamp = rq_clock(this_rq);
12809 
12810 	/*
12811 	 * Do not pull tasks towards !active CPUs...
12812 	 */
12813 	if (!cpu_active(this_cpu))
12814 		return 0;
12815 
12816 	/*
12817 	 * This is OK, because current is on_cpu, which avoids it being picked
12818 	 * for load-balance and preemption/IRQs are still disabled avoiding
12819 	 * further scheduler activity on it and we're being very careful to
12820 	 * re-start the picking loop.
12821 	 */
12822 	rq_unpin_lock(this_rq, rf);
12823 
12824 	rcu_read_lock();
12825 	sd = rcu_dereference_check_sched_domain(this_rq->sd);
12826 
12827 	if (!get_rd_overloaded(this_rq->rd) ||
12828 	    (sd && this_rq->avg_idle < sd->max_newidle_lb_cost)) {
12829 
12830 		if (sd)
12831 			update_next_balance(sd, &next_balance);
12832 		rcu_read_unlock();
12833 
12834 		goto out;
12835 	}
12836 	rcu_read_unlock();
12837 
12838 	raw_spin_rq_unlock(this_rq);
12839 
12840 	t0 = sched_clock_cpu(this_cpu);
12841 	sched_balance_update_blocked_averages(this_cpu);
12842 
12843 	rcu_read_lock();
12844 	for_each_domain(this_cpu, sd) {
12845 		u64 domain_cost;
12846 
12847 		update_next_balance(sd, &next_balance);
12848 
12849 		if (this_rq->avg_idle < curr_cost + sd->max_newidle_lb_cost)
12850 			break;
12851 
12852 		if (sd->flags & SD_BALANCE_NEWIDLE) {
12853 
12854 			pulled_task = sched_balance_rq(this_cpu, this_rq,
12855 						   sd, CPU_NEWLY_IDLE,
12856 						   &continue_balancing);
12857 
12858 			t1 = sched_clock_cpu(this_cpu);
12859 			domain_cost = t1 - t0;
12860 			update_newidle_cost(sd, domain_cost);
12861 
12862 			curr_cost += domain_cost;
12863 			t0 = t1;
12864 		}
12865 
12866 		/*
12867 		 * Stop searching for tasks to pull if there are
12868 		 * now runnable tasks on this rq.
12869 		 */
12870 		if (pulled_task || !continue_balancing)
12871 			break;
12872 	}
12873 	rcu_read_unlock();
12874 
12875 	raw_spin_rq_lock(this_rq);
12876 
12877 	if (curr_cost > this_rq->max_idle_balance_cost)
12878 		this_rq->max_idle_balance_cost = curr_cost;
12879 
12880 	/*
12881 	 * While browsing the domains, we released the rq lock, a task could
12882 	 * have been enqueued in the meantime. Since we're not going idle,
12883 	 * pretend we pulled a task.
12884 	 */
12885 	if (this_rq->cfs.h_nr_queued && !pulled_task)
12886 		pulled_task = 1;
12887 
12888 	/* Is there a task of a high priority class? */
12889 	if (this_rq->nr_running != this_rq->cfs.h_nr_queued)
12890 		pulled_task = -1;
12891 
12892 out:
12893 	/* Move the next balance forward */
12894 	if (time_after(this_rq->next_balance, next_balance))
12895 		this_rq->next_balance = next_balance;
12896 
12897 	if (pulled_task)
12898 		this_rq->idle_stamp = 0;
12899 	else
12900 		nohz_newidle_balance(this_rq);
12901 
12902 	rq_repin_lock(this_rq, rf);
12903 
12904 	return pulled_task;
12905 }
12906 
12907 /*
12908  * This softirq handler is triggered via SCHED_SOFTIRQ from two places:
12909  *
12910  * - directly from the local sched_tick() for periodic load balancing
12911  *
12912  * - indirectly from a remote sched_tick() for NOHZ idle balancing
12913  *   through the SMP cross-call nohz_csd_func()
12914  */
sched_balance_softirq(void)12915 static __latent_entropy void sched_balance_softirq(void)
12916 {
12917 	struct rq *this_rq = this_rq();
12918 	enum cpu_idle_type idle = this_rq->idle_balance;
12919 	/*
12920 	 * If this CPU has a pending NOHZ_BALANCE_KICK, then do the
12921 	 * balancing on behalf of the other idle CPUs whose ticks are
12922 	 * stopped. Do nohz_idle_balance *before* sched_balance_domains to
12923 	 * give the idle CPUs a chance to load balance. Else we may
12924 	 * load balance only within the local sched_domain hierarchy
12925 	 * and abort nohz_idle_balance altogether if we pull some load.
12926 	 */
12927 	if (nohz_idle_balance(this_rq, idle))
12928 		return;
12929 
12930 	/* normal load balance */
12931 	sched_balance_update_blocked_averages(this_rq->cpu);
12932 	sched_balance_domains(this_rq, idle);
12933 }
12934 
12935 /*
12936  * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
12937  */
sched_balance_trigger(struct rq * rq)12938 void sched_balance_trigger(struct rq *rq)
12939 {
12940 	/*
12941 	 * Don't need to rebalance while attached to NULL domain or
12942 	 * runqueue CPU is not active
12943 	 */
12944 	if (unlikely(on_null_domain(rq) || !cpu_active(cpu_of(rq))))
12945 		return;
12946 
12947 	if (time_after_eq(jiffies, rq->next_balance))
12948 		raise_softirq(SCHED_SOFTIRQ);
12949 
12950 	nohz_balancer_kick(rq);
12951 }
12952 
rq_online_fair(struct rq * rq)12953 static void rq_online_fair(struct rq *rq)
12954 {
12955 	update_sysctl();
12956 
12957 	update_runtime_enabled(rq);
12958 }
12959 
rq_offline_fair(struct rq * rq)12960 static void rq_offline_fair(struct rq *rq)
12961 {
12962 	update_sysctl();
12963 
12964 	/* Ensure any throttled groups are reachable by pick_next_task */
12965 	unthrottle_offline_cfs_rqs(rq);
12966 
12967 	/* Ensure that we remove rq contribution to group share: */
12968 	clear_tg_offline_cfs_rqs(rq);
12969 }
12970 
12971 #endif /* CONFIG_SMP */
12972 
12973 #ifdef CONFIG_SCHED_CORE
12974 static inline bool
__entity_slice_used(struct sched_entity * se,int min_nr_tasks)12975 __entity_slice_used(struct sched_entity *se, int min_nr_tasks)
12976 {
12977 	u64 rtime = se->sum_exec_runtime - se->prev_sum_exec_runtime;
12978 	u64 slice = se->slice;
12979 
12980 	return (rtime * min_nr_tasks > slice);
12981 }
12982 
12983 #define MIN_NR_TASKS_DURING_FORCEIDLE	2
task_tick_core(struct rq * rq,struct task_struct * curr)12984 static inline void task_tick_core(struct rq *rq, struct task_struct *curr)
12985 {
12986 	if (!sched_core_enabled(rq))
12987 		return;
12988 
12989 	/*
12990 	 * If runqueue has only one task which used up its slice and
12991 	 * if the sibling is forced idle, then trigger schedule to
12992 	 * give forced idle task a chance.
12993 	 *
12994 	 * sched_slice() considers only this active rq and it gets the
12995 	 * whole slice. But during force idle, we have siblings acting
12996 	 * like a single runqueue and hence we need to consider runnable
12997 	 * tasks on this CPU and the forced idle CPU. Ideally, we should
12998 	 * go through the forced idle rq, but that would be a perf hit.
12999 	 * We can assume that the forced idle CPU has at least
13000 	 * MIN_NR_TASKS_DURING_FORCEIDLE - 1 tasks and use that to check
13001 	 * if we need to give up the CPU.
13002 	 */
13003 	if (rq->core->core_forceidle_count && rq->cfs.nr_queued == 1 &&
13004 	    __entity_slice_used(&curr->se, MIN_NR_TASKS_DURING_FORCEIDLE))
13005 		resched_curr(rq);
13006 }
13007 
13008 /*
13009  * se_fi_update - Update the cfs_rq->min_vruntime_fi in a CFS hierarchy if needed.
13010  */
se_fi_update(const struct sched_entity * se,unsigned int fi_seq,bool forceidle)13011 static void se_fi_update(const struct sched_entity *se, unsigned int fi_seq,
13012 			 bool forceidle)
13013 {
13014 	for_each_sched_entity(se) {
13015 		struct cfs_rq *cfs_rq = cfs_rq_of(se);
13016 
13017 		if (forceidle) {
13018 			if (cfs_rq->forceidle_seq == fi_seq)
13019 				break;
13020 			cfs_rq->forceidle_seq = fi_seq;
13021 		}
13022 
13023 		cfs_rq->min_vruntime_fi = cfs_rq->min_vruntime;
13024 	}
13025 }
13026 
task_vruntime_update(struct rq * rq,struct task_struct * p,bool in_fi)13027 void task_vruntime_update(struct rq *rq, struct task_struct *p, bool in_fi)
13028 {
13029 	struct sched_entity *se = &p->se;
13030 
13031 	if (p->sched_class != &fair_sched_class)
13032 		return;
13033 
13034 	se_fi_update(se, rq->core->core_forceidle_seq, in_fi);
13035 }
13036 
cfs_prio_less(const struct task_struct * a,const struct task_struct * b,bool in_fi)13037 bool cfs_prio_less(const struct task_struct *a, const struct task_struct *b,
13038 			bool in_fi)
13039 {
13040 	struct rq *rq = task_rq(a);
13041 	const struct sched_entity *sea = &a->se;
13042 	const struct sched_entity *seb = &b->se;
13043 	struct cfs_rq *cfs_rqa;
13044 	struct cfs_rq *cfs_rqb;
13045 	s64 delta;
13046 
13047 	SCHED_WARN_ON(task_rq(b)->core != rq->core);
13048 
13049 #ifdef CONFIG_FAIR_GROUP_SCHED
13050 	/*
13051 	 * Find an se in the hierarchy for tasks a and b, such that the se's
13052 	 * are immediate siblings.
13053 	 */
13054 	while (sea->cfs_rq->tg != seb->cfs_rq->tg) {
13055 		int sea_depth = sea->depth;
13056 		int seb_depth = seb->depth;
13057 
13058 		if (sea_depth >= seb_depth)
13059 			sea = parent_entity(sea);
13060 		if (sea_depth <= seb_depth)
13061 			seb = parent_entity(seb);
13062 	}
13063 
13064 	se_fi_update(sea, rq->core->core_forceidle_seq, in_fi);
13065 	se_fi_update(seb, rq->core->core_forceidle_seq, in_fi);
13066 
13067 	cfs_rqa = sea->cfs_rq;
13068 	cfs_rqb = seb->cfs_rq;
13069 #else
13070 	cfs_rqa = &task_rq(a)->cfs;
13071 	cfs_rqb = &task_rq(b)->cfs;
13072 #endif
13073 
13074 	/*
13075 	 * Find delta after normalizing se's vruntime with its cfs_rq's
13076 	 * min_vruntime_fi, which would have been updated in prior calls
13077 	 * to se_fi_update().
13078 	 */
13079 	delta = (s64)(sea->vruntime - seb->vruntime) +
13080 		(s64)(cfs_rqb->min_vruntime_fi - cfs_rqa->min_vruntime_fi);
13081 
13082 	return delta > 0;
13083 }
13084 
task_is_throttled_fair(struct task_struct * p,int cpu)13085 static int task_is_throttled_fair(struct task_struct *p, int cpu)
13086 {
13087 	struct cfs_rq *cfs_rq;
13088 
13089 #ifdef CONFIG_FAIR_GROUP_SCHED
13090 	cfs_rq = task_group(p)->cfs_rq[cpu];
13091 #else
13092 	cfs_rq = &cpu_rq(cpu)->cfs;
13093 #endif
13094 	return throttled_hierarchy(cfs_rq);
13095 }
13096 #else
task_tick_core(struct rq * rq,struct task_struct * curr)13097 static inline void task_tick_core(struct rq *rq, struct task_struct *curr) {}
13098 #endif
13099 
13100 /*
13101  * scheduler tick hitting a task of our scheduling class.
13102  *
13103  * NOTE: This function can be called remotely by the tick offload that
13104  * goes along full dynticks. Therefore no local assumption can be made
13105  * and everything must be accessed through the @rq and @curr passed in
13106  * parameters.
13107  */
task_tick_fair(struct rq * rq,struct task_struct * curr,int queued)13108 static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued)
13109 {
13110 	struct cfs_rq *cfs_rq;
13111 	struct sched_entity *se = &curr->se;
13112 
13113 	for_each_sched_entity(se) {
13114 		cfs_rq = cfs_rq_of(se);
13115 		entity_tick(cfs_rq, se, queued);
13116 	}
13117 
13118 	if (static_branch_unlikely(&sched_numa_balancing))
13119 		task_tick_numa(rq, curr);
13120 
13121 	update_misfit_status(curr, rq);
13122 	check_update_overutilized_status(task_rq(curr));
13123 
13124 	task_tick_core(rq, curr);
13125 }
13126 
13127 /*
13128  * called on fork with the child task as argument from the parent's context
13129  *  - child not yet on the tasklist
13130  *  - preemption disabled
13131  */
task_fork_fair(struct task_struct * p)13132 static void task_fork_fair(struct task_struct *p)
13133 {
13134 	set_task_max_allowed_capacity(p);
13135 }
13136 
13137 /*
13138  * Priority of the task has changed. Check to see if we preempt
13139  * the current task.
13140  */
13141 static void
prio_changed_fair(struct rq * rq,struct task_struct * p,int oldprio)13142 prio_changed_fair(struct rq *rq, struct task_struct *p, int oldprio)
13143 {
13144 	if (!task_on_rq_queued(p))
13145 		return;
13146 
13147 	if (rq->cfs.nr_queued == 1)
13148 		return;
13149 
13150 	/*
13151 	 * Reschedule if we are currently running on this runqueue and
13152 	 * our priority decreased, or if we are not currently running on
13153 	 * this runqueue and our priority is higher than the current's
13154 	 */
13155 	if (task_current_donor(rq, p)) {
13156 		if (p->prio > oldprio)
13157 			resched_curr(rq);
13158 	} else
13159 		wakeup_preempt(rq, p, 0);
13160 }
13161 
13162 #ifdef CONFIG_FAIR_GROUP_SCHED
13163 /*
13164  * Propagate the changes of the sched_entity across the tg tree to make it
13165  * visible to the root
13166  */
propagate_entity_cfs_rq(struct sched_entity * se)13167 static void propagate_entity_cfs_rq(struct sched_entity *se)
13168 {
13169 	struct cfs_rq *cfs_rq = cfs_rq_of(se);
13170 
13171 	if (cfs_rq_throttled(cfs_rq))
13172 		return;
13173 
13174 	if (!throttled_hierarchy(cfs_rq))
13175 		list_add_leaf_cfs_rq(cfs_rq);
13176 
13177 	/* Start to propagate at parent */
13178 	se = se->parent;
13179 
13180 	for_each_sched_entity(se) {
13181 		cfs_rq = cfs_rq_of(se);
13182 
13183 		update_load_avg(cfs_rq, se, UPDATE_TG);
13184 
13185 		if (cfs_rq_throttled(cfs_rq))
13186 			break;
13187 
13188 		if (!throttled_hierarchy(cfs_rq))
13189 			list_add_leaf_cfs_rq(cfs_rq);
13190 	}
13191 }
13192 #else
propagate_entity_cfs_rq(struct sched_entity * se)13193 static void propagate_entity_cfs_rq(struct sched_entity *se) { }
13194 #endif
13195 
detach_entity_cfs_rq(struct sched_entity * se)13196 static void detach_entity_cfs_rq(struct sched_entity *se)
13197 {
13198 	struct cfs_rq *cfs_rq = cfs_rq_of(se);
13199 
13200 #ifdef CONFIG_SMP
13201 	/*
13202 	 * In case the task sched_avg hasn't been attached:
13203 	 * - A forked task which hasn't been woken up by wake_up_new_task().
13204 	 * - A task which has been woken up by try_to_wake_up() but is
13205 	 *   waiting for actually being woken up by sched_ttwu_pending().
13206 	 */
13207 	if (!se->avg.last_update_time)
13208 		return;
13209 #endif
13210 
13211 	/* Catch up with the cfs_rq and remove our load when we leave */
13212 	update_load_avg(cfs_rq, se, 0);
13213 	detach_entity_load_avg(cfs_rq, se);
13214 	update_tg_load_avg(cfs_rq);
13215 	propagate_entity_cfs_rq(se);
13216 }
13217 
attach_entity_cfs_rq(struct sched_entity * se)13218 static void attach_entity_cfs_rq(struct sched_entity *se)
13219 {
13220 	struct cfs_rq *cfs_rq = cfs_rq_of(se);
13221 
13222 	/* Synchronize entity with its cfs_rq */
13223 	update_load_avg(cfs_rq, se, sched_feat(ATTACH_AGE_LOAD) ? 0 : SKIP_AGE_LOAD);
13224 	attach_entity_load_avg(cfs_rq, se);
13225 	update_tg_load_avg(cfs_rq);
13226 	propagate_entity_cfs_rq(se);
13227 }
13228 
detach_task_cfs_rq(struct task_struct * p)13229 static void detach_task_cfs_rq(struct task_struct *p)
13230 {
13231 	struct sched_entity *se = &p->se;
13232 
13233 	detach_entity_cfs_rq(se);
13234 }
13235 
attach_task_cfs_rq(struct task_struct * p)13236 static void attach_task_cfs_rq(struct task_struct *p)
13237 {
13238 	struct sched_entity *se = &p->se;
13239 
13240 	attach_entity_cfs_rq(se);
13241 }
13242 
switched_from_fair(struct rq * rq,struct task_struct * p)13243 static void switched_from_fair(struct rq *rq, struct task_struct *p)
13244 {
13245 	detach_task_cfs_rq(p);
13246 }
13247 
switched_to_fair(struct rq * rq,struct task_struct * p)13248 static void switched_to_fair(struct rq *rq, struct task_struct *p)
13249 {
13250 	SCHED_WARN_ON(p->se.sched_delayed);
13251 
13252 	attach_task_cfs_rq(p);
13253 
13254 	set_task_max_allowed_capacity(p);
13255 
13256 	if (task_on_rq_queued(p)) {
13257 		/*
13258 		 * We were most likely switched from sched_rt, so
13259 		 * kick off the schedule if running, otherwise just see
13260 		 * if we can still preempt the current task.
13261 		 */
13262 		if (task_current_donor(rq, p))
13263 			resched_curr(rq);
13264 		else
13265 			wakeup_preempt(rq, p, 0);
13266 	}
13267 }
13268 
__set_next_task_fair(struct rq * rq,struct task_struct * p,bool first)13269 static void __set_next_task_fair(struct rq *rq, struct task_struct *p, bool first)
13270 {
13271 	struct sched_entity *se = &p->se;
13272 
13273 #ifdef CONFIG_SMP
13274 	if (task_on_rq_queued(p)) {
13275 		/*
13276 		 * Move the next running task to the front of the list, so our
13277 		 * cfs_tasks list becomes MRU one.
13278 		 */
13279 		list_move(&se->group_node, &rq->cfs_tasks);
13280 	}
13281 #endif
13282 	if (!first)
13283 		return;
13284 
13285 	SCHED_WARN_ON(se->sched_delayed);
13286 
13287 	if (hrtick_enabled_fair(rq))
13288 		hrtick_start_fair(rq, p);
13289 
13290 	update_misfit_status(p, rq);
13291 	sched_fair_update_stop_tick(rq, p);
13292 }
13293 
13294 /*
13295  * Account for a task changing its policy or group.
13296  *
13297  * This routine is mostly called to set cfs_rq->curr field when a task
13298  * migrates between groups/classes.
13299  */
set_next_task_fair(struct rq * rq,struct task_struct * p,bool first)13300 static void set_next_task_fair(struct rq *rq, struct task_struct *p, bool first)
13301 {
13302 	struct sched_entity *se = &p->se;
13303 
13304 	for_each_sched_entity(se) {
13305 		struct cfs_rq *cfs_rq = cfs_rq_of(se);
13306 
13307 		set_next_entity(cfs_rq, se);
13308 		/* ensure bandwidth has been allocated on our new cfs_rq */
13309 		account_cfs_rq_runtime(cfs_rq, 0);
13310 	}
13311 
13312 	__set_next_task_fair(rq, p, first);
13313 }
13314 
init_cfs_rq(struct cfs_rq * cfs_rq)13315 void init_cfs_rq(struct cfs_rq *cfs_rq)
13316 {
13317 	cfs_rq->tasks_timeline = RB_ROOT_CACHED;
13318 	cfs_rq->min_vruntime = (u64)(-(1LL << 20));
13319 #ifdef CONFIG_SMP
13320 	raw_spin_lock_init(&cfs_rq->removed.lock);
13321 #endif
13322 }
13323 
13324 #ifdef CONFIG_FAIR_GROUP_SCHED
task_change_group_fair(struct task_struct * p)13325 static void task_change_group_fair(struct task_struct *p)
13326 {
13327 	/*
13328 	 * We couldn't detach or attach a forked task which
13329 	 * hasn't been woken up by wake_up_new_task().
13330 	 */
13331 	if (READ_ONCE(p->__state) == TASK_NEW)
13332 		return;
13333 
13334 	detach_task_cfs_rq(p);
13335 
13336 #ifdef CONFIG_SMP
13337 	/* Tell se's cfs_rq has been changed -- migrated */
13338 	p->se.avg.last_update_time = 0;
13339 #endif
13340 	set_task_rq(p, task_cpu(p));
13341 	attach_task_cfs_rq(p);
13342 }
13343 
free_fair_sched_group(struct task_group * tg)13344 void free_fair_sched_group(struct task_group *tg)
13345 {
13346 	int i;
13347 
13348 	for_each_possible_cpu(i) {
13349 		if (tg->cfs_rq)
13350 			kfree(tg->cfs_rq[i]);
13351 		if (tg->se)
13352 			kfree(tg->se[i]);
13353 	}
13354 
13355 	kfree(tg->cfs_rq);
13356 	kfree(tg->se);
13357 }
13358 
alloc_fair_sched_group(struct task_group * tg,struct task_group * parent)13359 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
13360 {
13361 	struct sched_entity *se;
13362 	struct cfs_rq *cfs_rq;
13363 	int i;
13364 
13365 	tg->cfs_rq = kcalloc(nr_cpu_ids, sizeof(cfs_rq), GFP_KERNEL);
13366 	if (!tg->cfs_rq)
13367 		goto err;
13368 	tg->se = kcalloc(nr_cpu_ids, sizeof(se), GFP_KERNEL);
13369 	if (!tg->se)
13370 		goto err;
13371 
13372 	tg->shares = NICE_0_LOAD;
13373 
13374 	init_cfs_bandwidth(tg_cfs_bandwidth(tg), tg_cfs_bandwidth(parent));
13375 
13376 	for_each_possible_cpu(i) {
13377 		cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
13378 				      GFP_KERNEL, cpu_to_node(i));
13379 		if (!cfs_rq)
13380 			goto err;
13381 
13382 		se = kzalloc_node(sizeof(struct sched_entity_stats),
13383 				  GFP_KERNEL, cpu_to_node(i));
13384 		if (!se)
13385 			goto err_free_rq;
13386 
13387 		init_cfs_rq(cfs_rq);
13388 		init_tg_cfs_entry(tg, cfs_rq, se, i, parent->se[i]);
13389 		init_entity_runnable_average(se);
13390 	}
13391 
13392 	return 1;
13393 
13394 err_free_rq:
13395 	kfree(cfs_rq);
13396 err:
13397 	return 0;
13398 }
13399 
online_fair_sched_group(struct task_group * tg)13400 void online_fair_sched_group(struct task_group *tg)
13401 {
13402 	struct sched_entity *se;
13403 	struct rq_flags rf;
13404 	struct rq *rq;
13405 	int i;
13406 
13407 	for_each_possible_cpu(i) {
13408 		rq = cpu_rq(i);
13409 		se = tg->se[i];
13410 		rq_lock_irq(rq, &rf);
13411 		update_rq_clock(rq);
13412 		attach_entity_cfs_rq(se);
13413 		sync_throttle(tg, i);
13414 		rq_unlock_irq(rq, &rf);
13415 	}
13416 }
13417 
unregister_fair_sched_group(struct task_group * tg)13418 void unregister_fair_sched_group(struct task_group *tg)
13419 {
13420 	int cpu;
13421 
13422 	destroy_cfs_bandwidth(tg_cfs_bandwidth(tg));
13423 
13424 	for_each_possible_cpu(cpu) {
13425 		struct cfs_rq *cfs_rq = tg->cfs_rq[cpu];
13426 		struct sched_entity *se = tg->se[cpu];
13427 		struct rq *rq = cpu_rq(cpu);
13428 
13429 		if (se) {
13430 			if (se->sched_delayed) {
13431 				guard(rq_lock_irqsave)(rq);
13432 				if (se->sched_delayed) {
13433 					update_rq_clock(rq);
13434 					dequeue_entities(rq, se, DEQUEUE_SLEEP | DEQUEUE_DELAYED);
13435 				}
13436 				list_del_leaf_cfs_rq(cfs_rq);
13437 			}
13438 			remove_entity_load_avg(se);
13439 		}
13440 
13441 		/*
13442 		 * Only empty task groups can be destroyed; so we can speculatively
13443 		 * check on_list without danger of it being re-added.
13444 		 */
13445 		if (cfs_rq->on_list) {
13446 			guard(rq_lock_irqsave)(rq);
13447 			list_del_leaf_cfs_rq(cfs_rq);
13448 		}
13449 	}
13450 }
13451 
init_tg_cfs_entry(struct task_group * tg,struct cfs_rq * cfs_rq,struct sched_entity * se,int cpu,struct sched_entity * parent)13452 void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
13453 			struct sched_entity *se, int cpu,
13454 			struct sched_entity *parent)
13455 {
13456 	struct rq *rq = cpu_rq(cpu);
13457 
13458 	cfs_rq->tg = tg;
13459 	cfs_rq->rq = rq;
13460 	init_cfs_rq_runtime(cfs_rq);
13461 
13462 	tg->cfs_rq[cpu] = cfs_rq;
13463 	tg->se[cpu] = se;
13464 
13465 	/* se could be NULL for root_task_group */
13466 	if (!se)
13467 		return;
13468 
13469 	if (!parent) {
13470 		se->cfs_rq = &rq->cfs;
13471 		se->depth = 0;
13472 	} else {
13473 		se->cfs_rq = parent->my_q;
13474 		se->depth = parent->depth + 1;
13475 	}
13476 
13477 	se->my_q = cfs_rq;
13478 	/* guarantee group entities always have weight */
13479 	update_load_set(&se->load, NICE_0_LOAD);
13480 	se->parent = parent;
13481 }
13482 
13483 static DEFINE_MUTEX(shares_mutex);
13484 
__sched_group_set_shares(struct task_group * tg,unsigned long shares)13485 static int __sched_group_set_shares(struct task_group *tg, unsigned long shares)
13486 {
13487 	int i;
13488 
13489 	lockdep_assert_held(&shares_mutex);
13490 
13491 	/*
13492 	 * We can't change the weight of the root cgroup.
13493 	 */
13494 	if (!tg->se[0])
13495 		return -EINVAL;
13496 
13497 	shares = clamp(shares, scale_load(MIN_SHARES), scale_load(MAX_SHARES));
13498 
13499 	if (tg->shares == shares)
13500 		return 0;
13501 
13502 	tg->shares = shares;
13503 	for_each_possible_cpu(i) {
13504 		struct rq *rq = cpu_rq(i);
13505 		struct sched_entity *se = tg->se[i];
13506 		struct rq_flags rf;
13507 
13508 		/* Propagate contribution to hierarchy */
13509 		rq_lock_irqsave(rq, &rf);
13510 		update_rq_clock(rq);
13511 		for_each_sched_entity(se) {
13512 			update_load_avg(cfs_rq_of(se), se, UPDATE_TG);
13513 			update_cfs_group(se);
13514 		}
13515 		rq_unlock_irqrestore(rq, &rf);
13516 	}
13517 
13518 	return 0;
13519 }
13520 
sched_group_set_shares(struct task_group * tg,unsigned long shares)13521 int sched_group_set_shares(struct task_group *tg, unsigned long shares)
13522 {
13523 	int ret;
13524 
13525 	mutex_lock(&shares_mutex);
13526 	if (tg_is_idle(tg))
13527 		ret = -EINVAL;
13528 	else
13529 		ret = __sched_group_set_shares(tg, shares);
13530 	mutex_unlock(&shares_mutex);
13531 
13532 	return ret;
13533 }
13534 
sched_group_set_idle(struct task_group * tg,long idle)13535 int sched_group_set_idle(struct task_group *tg, long idle)
13536 {
13537 	int i;
13538 
13539 	if (tg == &root_task_group)
13540 		return -EINVAL;
13541 
13542 	if (idle < 0 || idle > 1)
13543 		return -EINVAL;
13544 
13545 	mutex_lock(&shares_mutex);
13546 
13547 	if (tg->idle == idle) {
13548 		mutex_unlock(&shares_mutex);
13549 		return 0;
13550 	}
13551 
13552 	tg->idle = idle;
13553 
13554 	for_each_possible_cpu(i) {
13555 		struct rq *rq = cpu_rq(i);
13556 		struct sched_entity *se = tg->se[i];
13557 		struct cfs_rq *grp_cfs_rq = tg->cfs_rq[i];
13558 		bool was_idle = cfs_rq_is_idle(grp_cfs_rq);
13559 		long idle_task_delta;
13560 		struct rq_flags rf;
13561 
13562 		rq_lock_irqsave(rq, &rf);
13563 
13564 		grp_cfs_rq->idle = idle;
13565 		if (WARN_ON_ONCE(was_idle == cfs_rq_is_idle(grp_cfs_rq)))
13566 			goto next_cpu;
13567 
13568 		idle_task_delta = grp_cfs_rq->h_nr_queued -
13569 				  grp_cfs_rq->h_nr_idle;
13570 		if (!cfs_rq_is_idle(grp_cfs_rq))
13571 			idle_task_delta *= -1;
13572 
13573 		for_each_sched_entity(se) {
13574 			struct cfs_rq *cfs_rq = cfs_rq_of(se);
13575 
13576 			if (!se->on_rq)
13577 				break;
13578 
13579 			cfs_rq->h_nr_idle += idle_task_delta;
13580 
13581 			/* Already accounted at parent level and above. */
13582 			if (cfs_rq_is_idle(cfs_rq))
13583 				break;
13584 		}
13585 
13586 next_cpu:
13587 		rq_unlock_irqrestore(rq, &rf);
13588 	}
13589 
13590 	/* Idle groups have minimum weight. */
13591 	if (tg_is_idle(tg))
13592 		__sched_group_set_shares(tg, scale_load(WEIGHT_IDLEPRIO));
13593 	else
13594 		__sched_group_set_shares(tg, NICE_0_LOAD);
13595 
13596 	mutex_unlock(&shares_mutex);
13597 	return 0;
13598 }
13599 
13600 #endif /* CONFIG_FAIR_GROUP_SCHED */
13601 
13602 
get_rr_interval_fair(struct rq * rq,struct task_struct * task)13603 static unsigned int get_rr_interval_fair(struct rq *rq, struct task_struct *task)
13604 {
13605 	struct sched_entity *se = &task->se;
13606 	unsigned int rr_interval = 0;
13607 
13608 	/*
13609 	 * Time slice is 0 for SCHED_OTHER tasks that are on an otherwise
13610 	 * idle runqueue:
13611 	 */
13612 	if (rq->cfs.load.weight)
13613 		rr_interval = NS_TO_JIFFIES(se->slice);
13614 
13615 	return rr_interval;
13616 }
13617 
13618 /*
13619  * All the scheduling class methods:
13620  */
13621 DEFINE_SCHED_CLASS(fair) = {
13622 
13623 	.enqueue_task		= enqueue_task_fair,
13624 	.dequeue_task		= dequeue_task_fair,
13625 	.yield_task		= yield_task_fair,
13626 	.yield_to_task		= yield_to_task_fair,
13627 
13628 	.wakeup_preempt		= check_preempt_wakeup_fair,
13629 
13630 	.pick_task		= pick_task_fair,
13631 	.pick_next_task		= __pick_next_task_fair,
13632 	.put_prev_task		= put_prev_task_fair,
13633 	.set_next_task          = set_next_task_fair,
13634 
13635 #ifdef CONFIG_SMP
13636 	.balance		= balance_fair,
13637 	.select_task_rq		= select_task_rq_fair,
13638 	.migrate_task_rq	= migrate_task_rq_fair,
13639 
13640 	.rq_online		= rq_online_fair,
13641 	.rq_offline		= rq_offline_fair,
13642 
13643 	.task_dead		= task_dead_fair,
13644 	.set_cpus_allowed	= set_cpus_allowed_fair,
13645 #endif
13646 
13647 	.task_tick		= task_tick_fair,
13648 	.task_fork		= task_fork_fair,
13649 
13650 	.reweight_task		= reweight_task_fair,
13651 	.prio_changed		= prio_changed_fair,
13652 	.switched_from		= switched_from_fair,
13653 	.switched_to		= switched_to_fair,
13654 
13655 	.get_rr_interval	= get_rr_interval_fair,
13656 
13657 	.update_curr		= update_curr_fair,
13658 
13659 #ifdef CONFIG_FAIR_GROUP_SCHED
13660 	.task_change_group	= task_change_group_fair,
13661 #endif
13662 
13663 #ifdef CONFIG_SCHED_CORE
13664 	.task_is_throttled	= task_is_throttled_fair,
13665 #endif
13666 
13667 #ifdef CONFIG_UCLAMP_TASK
13668 	.uclamp_enabled		= 1,
13669 #endif
13670 };
13671 
13672 #ifdef CONFIG_SCHED_DEBUG
print_cfs_stats(struct seq_file * m,int cpu)13673 void print_cfs_stats(struct seq_file *m, int cpu)
13674 {
13675 	struct cfs_rq *cfs_rq, *pos;
13676 
13677 	rcu_read_lock();
13678 	for_each_leaf_cfs_rq_safe(cpu_rq(cpu), cfs_rq, pos)
13679 		print_cfs_rq(m, cpu, cfs_rq);
13680 	rcu_read_unlock();
13681 }
13682 
13683 #ifdef CONFIG_NUMA_BALANCING
show_numa_stats(struct task_struct * p,struct seq_file * m)13684 void show_numa_stats(struct task_struct *p, struct seq_file *m)
13685 {
13686 	int node;
13687 	unsigned long tsf = 0, tpf = 0, gsf = 0, gpf = 0;
13688 	struct numa_group *ng;
13689 
13690 	rcu_read_lock();
13691 	ng = rcu_dereference(p->numa_group);
13692 	for_each_online_node(node) {
13693 		if (p->numa_faults) {
13694 			tsf = p->numa_faults[task_faults_idx(NUMA_MEM, node, 0)];
13695 			tpf = p->numa_faults[task_faults_idx(NUMA_MEM, node, 1)];
13696 		}
13697 		if (ng) {
13698 			gsf = ng->faults[task_faults_idx(NUMA_MEM, node, 0)],
13699 			gpf = ng->faults[task_faults_idx(NUMA_MEM, node, 1)];
13700 		}
13701 		print_numa_stats(m, node, tsf, tpf, gsf, gpf);
13702 	}
13703 	rcu_read_unlock();
13704 }
13705 #endif /* CONFIG_NUMA_BALANCING */
13706 #endif /* CONFIG_SCHED_DEBUG */
13707 
init_sched_fair_class(void)13708 __init void init_sched_fair_class(void)
13709 {
13710 #ifdef CONFIG_SMP
13711 	int i;
13712 
13713 	for_each_possible_cpu(i) {
13714 		zalloc_cpumask_var_node(&per_cpu(load_balance_mask, i), GFP_KERNEL, cpu_to_node(i));
13715 		zalloc_cpumask_var_node(&per_cpu(select_rq_mask,    i), GFP_KERNEL, cpu_to_node(i));
13716 		zalloc_cpumask_var_node(&per_cpu(should_we_balance_tmpmask, i),
13717 					GFP_KERNEL, cpu_to_node(i));
13718 
13719 #ifdef CONFIG_CFS_BANDWIDTH
13720 		INIT_CSD(&cpu_rq(i)->cfsb_csd, __cfsb_csd_unthrottle, cpu_rq(i));
13721 		INIT_LIST_HEAD(&cpu_rq(i)->cfsb_csd_list);
13722 #endif
13723 	}
13724 
13725 	open_softirq(SCHED_SOFTIRQ, sched_balance_softirq);
13726 
13727 #ifdef CONFIG_NO_HZ_COMMON
13728 	nohz.next_balance = jiffies;
13729 	nohz.next_blocked = jiffies;
13730 	zalloc_cpumask_var(&nohz.idle_cpus_mask, GFP_NOWAIT);
13731 #endif
13732 #endif /* SMP */
13733 
13734 }
13735