1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
4 *
5 * Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <[email protected]>
6 *
7 * Interactivity improvements by Mike Galbraith
8 * (C) 2007 Mike Galbraith <[email protected]>
9 *
10 * Various enhancements by Dmitry Adamushko.
11 * (C) 2007 Dmitry Adamushko <[email protected]>
12 *
13 * Group scheduling enhancements by Srivatsa Vaddagiri
14 * Copyright IBM Corporation, 2007
15 * Author: Srivatsa Vaddagiri <[email protected]>
16 *
17 * Scaled math optimizations by Thomas Gleixner
18 * Copyright (C) 2007, Thomas Gleixner <[email protected]>
19 *
20 * Adaptive scheduling granularity, math enhancements by Peter Zijlstra
21 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra
22 */
23 #include <linux/energy_model.h>
24 #include <linux/mmap_lock.h>
25 #include <linux/hugetlb_inline.h>
26 #include <linux/jiffies.h>
27 #include <linux/mm_api.h>
28 #include <linux/highmem.h>
29 #include <linux/spinlock_api.h>
30 #include <linux/cpumask_api.h>
31 #include <linux/lockdep_api.h>
32 #include <linux/softirq.h>
33 #include <linux/refcount_api.h>
34 #include <linux/topology.h>
35 #include <linux/sched/clock.h>
36 #include <linux/sched/cond_resched.h>
37 #include <linux/sched/cputime.h>
38 #include <linux/sched/isolation.h>
39 #include <linux/sched/nohz.h>
40 #include <linux/sched/prio.h>
41
42 #include <linux/cpuidle.h>
43 #include <linux/interrupt.h>
44 #include <linux/memory-tiers.h>
45 #include <linux/mempolicy.h>
46 #include <linux/mutex_api.h>
47 #include <linux/profile.h>
48 #include <linux/psi.h>
49 #include <linux/ratelimit.h>
50 #include <linux/task_work.h>
51 #include <linux/rbtree_augmented.h>
52
53 #include <asm/switch_to.h>
54
55 #include <uapi/linux/sched/types.h>
56
57 #include "sched.h"
58 #include "stats.h"
59 #include "autogroup.h"
60
61 /*
62 * The initial- and re-scaling of tunables is configurable
63 *
64 * Options are:
65 *
66 * SCHED_TUNABLESCALING_NONE - unscaled, always *1
67 * SCHED_TUNABLESCALING_LOG - scaled logarithmically, *1+ilog(ncpus)
68 * SCHED_TUNABLESCALING_LINEAR - scaled linear, *ncpus
69 *
70 * (default SCHED_TUNABLESCALING_LOG = *(1+ilog(ncpus))
71 */
72 unsigned int sysctl_sched_tunable_scaling = SCHED_TUNABLESCALING_LOG;
73
74 /*
75 * Minimal preemption granularity for CPU-bound tasks:
76 *
77 * (default: 0.75 msec * (1 + ilog(ncpus)), units: nanoseconds)
78 */
79 unsigned int sysctl_sched_base_slice = 750000ULL;
80 static unsigned int normalized_sysctl_sched_base_slice = 750000ULL;
81
82 const_debug unsigned int sysctl_sched_migration_cost = 500000UL;
83
setup_sched_thermal_decay_shift(char * str)84 static int __init setup_sched_thermal_decay_shift(char *str)
85 {
86 pr_warn("Ignoring the deprecated sched_thermal_decay_shift= option\n");
87 return 1;
88 }
89 __setup("sched_thermal_decay_shift=", setup_sched_thermal_decay_shift);
90
91 #ifdef CONFIG_SMP
92 /*
93 * For asym packing, by default the lower numbered CPU has higher priority.
94 */
arch_asym_cpu_priority(int cpu)95 int __weak arch_asym_cpu_priority(int cpu)
96 {
97 return -cpu;
98 }
99
100 /*
101 * The margin used when comparing utilization with CPU capacity.
102 *
103 * (default: ~20%)
104 */
105 #define fits_capacity(cap, max) ((cap) * 1280 < (max) * 1024)
106
107 /*
108 * The margin used when comparing CPU capacities.
109 * is 'cap1' noticeably greater than 'cap2'
110 *
111 * (default: ~5%)
112 */
113 #define capacity_greater(cap1, cap2) ((cap1) * 1024 > (cap2) * 1078)
114 #endif
115
116 #ifdef CONFIG_CFS_BANDWIDTH
117 /*
118 * Amount of runtime to allocate from global (tg) to local (per-cfs_rq) pool
119 * each time a cfs_rq requests quota.
120 *
121 * Note: in the case that the slice exceeds the runtime remaining (either due
122 * to consumption or the quota being specified to be smaller than the slice)
123 * we will always only issue the remaining available time.
124 *
125 * (default: 5 msec, units: microseconds)
126 */
127 static unsigned int sysctl_sched_cfs_bandwidth_slice = 5000UL;
128 #endif
129
130 #ifdef CONFIG_NUMA_BALANCING
131 /* Restrict the NUMA promotion throughput (MB/s) for each target node. */
132 static unsigned int sysctl_numa_balancing_promote_rate_limit = 65536;
133 #endif
134
135 #ifdef CONFIG_SYSCTL
136 static const struct ctl_table sched_fair_sysctls[] = {
137 #ifdef CONFIG_CFS_BANDWIDTH
138 {
139 .procname = "sched_cfs_bandwidth_slice_us",
140 .data = &sysctl_sched_cfs_bandwidth_slice,
141 .maxlen = sizeof(unsigned int),
142 .mode = 0644,
143 .proc_handler = proc_dointvec_minmax,
144 .extra1 = SYSCTL_ONE,
145 },
146 #endif
147 #ifdef CONFIG_NUMA_BALANCING
148 {
149 .procname = "numa_balancing_promote_rate_limit_MBps",
150 .data = &sysctl_numa_balancing_promote_rate_limit,
151 .maxlen = sizeof(unsigned int),
152 .mode = 0644,
153 .proc_handler = proc_dointvec_minmax,
154 .extra1 = SYSCTL_ZERO,
155 },
156 #endif /* CONFIG_NUMA_BALANCING */
157 };
158
sched_fair_sysctl_init(void)159 static int __init sched_fair_sysctl_init(void)
160 {
161 register_sysctl_init("kernel", sched_fair_sysctls);
162 return 0;
163 }
164 late_initcall(sched_fair_sysctl_init);
165 #endif
166
update_load_add(struct load_weight * lw,unsigned long inc)167 static inline void update_load_add(struct load_weight *lw, unsigned long inc)
168 {
169 lw->weight += inc;
170 lw->inv_weight = 0;
171 }
172
update_load_sub(struct load_weight * lw,unsigned long dec)173 static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
174 {
175 lw->weight -= dec;
176 lw->inv_weight = 0;
177 }
178
update_load_set(struct load_weight * lw,unsigned long w)179 static inline void update_load_set(struct load_weight *lw, unsigned long w)
180 {
181 lw->weight = w;
182 lw->inv_weight = 0;
183 }
184
185 /*
186 * Increase the granularity value when there are more CPUs,
187 * because with more CPUs the 'effective latency' as visible
188 * to users decreases. But the relationship is not linear,
189 * so pick a second-best guess by going with the log2 of the
190 * number of CPUs.
191 *
192 * This idea comes from the SD scheduler of Con Kolivas:
193 */
get_update_sysctl_factor(void)194 static unsigned int get_update_sysctl_factor(void)
195 {
196 unsigned int cpus = min_t(unsigned int, num_online_cpus(), 8);
197 unsigned int factor;
198
199 switch (sysctl_sched_tunable_scaling) {
200 case SCHED_TUNABLESCALING_NONE:
201 factor = 1;
202 break;
203 case SCHED_TUNABLESCALING_LINEAR:
204 factor = cpus;
205 break;
206 case SCHED_TUNABLESCALING_LOG:
207 default:
208 factor = 1 + ilog2(cpus);
209 break;
210 }
211
212 return factor;
213 }
214
update_sysctl(void)215 static void update_sysctl(void)
216 {
217 unsigned int factor = get_update_sysctl_factor();
218
219 #define SET_SYSCTL(name) \
220 (sysctl_##name = (factor) * normalized_sysctl_##name)
221 SET_SYSCTL(sched_base_slice);
222 #undef SET_SYSCTL
223 }
224
sched_init_granularity(void)225 void __init sched_init_granularity(void)
226 {
227 update_sysctl();
228 }
229
230 #define WMULT_CONST (~0U)
231 #define WMULT_SHIFT 32
232
__update_inv_weight(struct load_weight * lw)233 static void __update_inv_weight(struct load_weight *lw)
234 {
235 unsigned long w;
236
237 if (likely(lw->inv_weight))
238 return;
239
240 w = scale_load_down(lw->weight);
241
242 if (BITS_PER_LONG > 32 && unlikely(w >= WMULT_CONST))
243 lw->inv_weight = 1;
244 else if (unlikely(!w))
245 lw->inv_weight = WMULT_CONST;
246 else
247 lw->inv_weight = WMULT_CONST / w;
248 }
249
250 /*
251 * delta_exec * weight / lw.weight
252 * OR
253 * (delta_exec * (weight * lw->inv_weight)) >> WMULT_SHIFT
254 *
255 * Either weight := NICE_0_LOAD and lw \e sched_prio_to_wmult[], in which case
256 * we're guaranteed shift stays positive because inv_weight is guaranteed to
257 * fit 32 bits, and NICE_0_LOAD gives another 10 bits; therefore shift >= 22.
258 *
259 * Or, weight =< lw.weight (because lw.weight is the runqueue weight), thus
260 * weight/lw.weight <= 1, and therefore our shift will also be positive.
261 */
__calc_delta(u64 delta_exec,unsigned long weight,struct load_weight * lw)262 static u64 __calc_delta(u64 delta_exec, unsigned long weight, struct load_weight *lw)
263 {
264 u64 fact = scale_load_down(weight);
265 u32 fact_hi = (u32)(fact >> 32);
266 int shift = WMULT_SHIFT;
267 int fs;
268
269 __update_inv_weight(lw);
270
271 if (unlikely(fact_hi)) {
272 fs = fls(fact_hi);
273 shift -= fs;
274 fact >>= fs;
275 }
276
277 fact = mul_u32_u32(fact, lw->inv_weight);
278
279 fact_hi = (u32)(fact >> 32);
280 if (fact_hi) {
281 fs = fls(fact_hi);
282 shift -= fs;
283 fact >>= fs;
284 }
285
286 return mul_u64_u32_shr(delta_exec, fact, shift);
287 }
288
289 /*
290 * delta /= w
291 */
calc_delta_fair(u64 delta,struct sched_entity * se)292 static inline u64 calc_delta_fair(u64 delta, struct sched_entity *se)
293 {
294 if (unlikely(se->load.weight != NICE_0_LOAD))
295 delta = __calc_delta(delta, NICE_0_LOAD, &se->load);
296
297 return delta;
298 }
299
300 const struct sched_class fair_sched_class;
301
302 /**************************************************************
303 * CFS operations on generic schedulable entities:
304 */
305
306 #ifdef CONFIG_FAIR_GROUP_SCHED
307
308 /* Walk up scheduling entities hierarchy */
309 #define for_each_sched_entity(se) \
310 for (; se; se = se->parent)
311
list_add_leaf_cfs_rq(struct cfs_rq * cfs_rq)312 static inline bool list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
313 {
314 struct rq *rq = rq_of(cfs_rq);
315 int cpu = cpu_of(rq);
316
317 if (cfs_rq->on_list)
318 return rq->tmp_alone_branch == &rq->leaf_cfs_rq_list;
319
320 cfs_rq->on_list = 1;
321
322 /*
323 * Ensure we either appear before our parent (if already
324 * enqueued) or force our parent to appear after us when it is
325 * enqueued. The fact that we always enqueue bottom-up
326 * reduces this to two cases and a special case for the root
327 * cfs_rq. Furthermore, it also means that we will always reset
328 * tmp_alone_branch either when the branch is connected
329 * to a tree or when we reach the top of the tree
330 */
331 if (cfs_rq->tg->parent &&
332 cfs_rq->tg->parent->cfs_rq[cpu]->on_list) {
333 /*
334 * If parent is already on the list, we add the child
335 * just before. Thanks to circular linked property of
336 * the list, this means to put the child at the tail
337 * of the list that starts by parent.
338 */
339 list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list,
340 &(cfs_rq->tg->parent->cfs_rq[cpu]->leaf_cfs_rq_list));
341 /*
342 * The branch is now connected to its tree so we can
343 * reset tmp_alone_branch to the beginning of the
344 * list.
345 */
346 rq->tmp_alone_branch = &rq->leaf_cfs_rq_list;
347 return true;
348 }
349
350 if (!cfs_rq->tg->parent) {
351 /*
352 * cfs rq without parent should be put
353 * at the tail of the list.
354 */
355 list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list,
356 &rq->leaf_cfs_rq_list);
357 /*
358 * We have reach the top of a tree so we can reset
359 * tmp_alone_branch to the beginning of the list.
360 */
361 rq->tmp_alone_branch = &rq->leaf_cfs_rq_list;
362 return true;
363 }
364
365 /*
366 * The parent has not already been added so we want to
367 * make sure that it will be put after us.
368 * tmp_alone_branch points to the begin of the branch
369 * where we will add parent.
370 */
371 list_add_rcu(&cfs_rq->leaf_cfs_rq_list, rq->tmp_alone_branch);
372 /*
373 * update tmp_alone_branch to points to the new begin
374 * of the branch
375 */
376 rq->tmp_alone_branch = &cfs_rq->leaf_cfs_rq_list;
377 return false;
378 }
379
list_del_leaf_cfs_rq(struct cfs_rq * cfs_rq)380 static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
381 {
382 if (cfs_rq->on_list) {
383 struct rq *rq = rq_of(cfs_rq);
384
385 /*
386 * With cfs_rq being unthrottled/throttled during an enqueue,
387 * it can happen the tmp_alone_branch points to the leaf that
388 * we finally want to delete. In this case, tmp_alone_branch moves
389 * to the prev element but it will point to rq->leaf_cfs_rq_list
390 * at the end of the enqueue.
391 */
392 if (rq->tmp_alone_branch == &cfs_rq->leaf_cfs_rq_list)
393 rq->tmp_alone_branch = cfs_rq->leaf_cfs_rq_list.prev;
394
395 list_del_rcu(&cfs_rq->leaf_cfs_rq_list);
396 cfs_rq->on_list = 0;
397 }
398 }
399
assert_list_leaf_cfs_rq(struct rq * rq)400 static inline void assert_list_leaf_cfs_rq(struct rq *rq)
401 {
402 SCHED_WARN_ON(rq->tmp_alone_branch != &rq->leaf_cfs_rq_list);
403 }
404
405 /* Iterate through all leaf cfs_rq's on a runqueue */
406 #define for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos) \
407 list_for_each_entry_safe(cfs_rq, pos, &rq->leaf_cfs_rq_list, \
408 leaf_cfs_rq_list)
409
410 /* Do the two (enqueued) entities belong to the same group ? */
411 static inline struct cfs_rq *
is_same_group(struct sched_entity * se,struct sched_entity * pse)412 is_same_group(struct sched_entity *se, struct sched_entity *pse)
413 {
414 if (se->cfs_rq == pse->cfs_rq)
415 return se->cfs_rq;
416
417 return NULL;
418 }
419
parent_entity(const struct sched_entity * se)420 static inline struct sched_entity *parent_entity(const struct sched_entity *se)
421 {
422 return se->parent;
423 }
424
425 static void
find_matching_se(struct sched_entity ** se,struct sched_entity ** pse)426 find_matching_se(struct sched_entity **se, struct sched_entity **pse)
427 {
428 int se_depth, pse_depth;
429
430 /*
431 * preemption test can be made between sibling entities who are in the
432 * same cfs_rq i.e who have a common parent. Walk up the hierarchy of
433 * both tasks until we find their ancestors who are siblings of common
434 * parent.
435 */
436
437 /* First walk up until both entities are at same depth */
438 se_depth = (*se)->depth;
439 pse_depth = (*pse)->depth;
440
441 while (se_depth > pse_depth) {
442 se_depth--;
443 *se = parent_entity(*se);
444 }
445
446 while (pse_depth > se_depth) {
447 pse_depth--;
448 *pse = parent_entity(*pse);
449 }
450
451 while (!is_same_group(*se, *pse)) {
452 *se = parent_entity(*se);
453 *pse = parent_entity(*pse);
454 }
455 }
456
tg_is_idle(struct task_group * tg)457 static int tg_is_idle(struct task_group *tg)
458 {
459 return tg->idle > 0;
460 }
461
cfs_rq_is_idle(struct cfs_rq * cfs_rq)462 static int cfs_rq_is_idle(struct cfs_rq *cfs_rq)
463 {
464 return cfs_rq->idle > 0;
465 }
466
se_is_idle(struct sched_entity * se)467 static int se_is_idle(struct sched_entity *se)
468 {
469 if (entity_is_task(se))
470 return task_has_idle_policy(task_of(se));
471 return cfs_rq_is_idle(group_cfs_rq(se));
472 }
473
474 #else /* !CONFIG_FAIR_GROUP_SCHED */
475
476 #define for_each_sched_entity(se) \
477 for (; se; se = NULL)
478
list_add_leaf_cfs_rq(struct cfs_rq * cfs_rq)479 static inline bool list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
480 {
481 return true;
482 }
483
list_del_leaf_cfs_rq(struct cfs_rq * cfs_rq)484 static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
485 {
486 }
487
assert_list_leaf_cfs_rq(struct rq * rq)488 static inline void assert_list_leaf_cfs_rq(struct rq *rq)
489 {
490 }
491
492 #define for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos) \
493 for (cfs_rq = &rq->cfs, pos = NULL; cfs_rq; cfs_rq = pos)
494
parent_entity(struct sched_entity * se)495 static inline struct sched_entity *parent_entity(struct sched_entity *se)
496 {
497 return NULL;
498 }
499
500 static inline void
find_matching_se(struct sched_entity ** se,struct sched_entity ** pse)501 find_matching_se(struct sched_entity **se, struct sched_entity **pse)
502 {
503 }
504
tg_is_idle(struct task_group * tg)505 static inline int tg_is_idle(struct task_group *tg)
506 {
507 return 0;
508 }
509
cfs_rq_is_idle(struct cfs_rq * cfs_rq)510 static int cfs_rq_is_idle(struct cfs_rq *cfs_rq)
511 {
512 return 0;
513 }
514
se_is_idle(struct sched_entity * se)515 static int se_is_idle(struct sched_entity *se)
516 {
517 return task_has_idle_policy(task_of(se));
518 }
519
520 #endif /* CONFIG_FAIR_GROUP_SCHED */
521
522 static __always_inline
523 void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec);
524
525 /**************************************************************
526 * Scheduling class tree data structure manipulation methods:
527 */
528
max_vruntime(u64 max_vruntime,u64 vruntime)529 static inline __maybe_unused u64 max_vruntime(u64 max_vruntime, u64 vruntime)
530 {
531 s64 delta = (s64)(vruntime - max_vruntime);
532 if (delta > 0)
533 max_vruntime = vruntime;
534
535 return max_vruntime;
536 }
537
min_vruntime(u64 min_vruntime,u64 vruntime)538 static inline __maybe_unused u64 min_vruntime(u64 min_vruntime, u64 vruntime)
539 {
540 s64 delta = (s64)(vruntime - min_vruntime);
541 if (delta < 0)
542 min_vruntime = vruntime;
543
544 return min_vruntime;
545 }
546
entity_before(const struct sched_entity * a,const struct sched_entity * b)547 static inline bool entity_before(const struct sched_entity *a,
548 const struct sched_entity *b)
549 {
550 /*
551 * Tiebreak on vruntime seems unnecessary since it can
552 * hardly happen.
553 */
554 return (s64)(a->deadline - b->deadline) < 0;
555 }
556
entity_key(struct cfs_rq * cfs_rq,struct sched_entity * se)557 static inline s64 entity_key(struct cfs_rq *cfs_rq, struct sched_entity *se)
558 {
559 return (s64)(se->vruntime - cfs_rq->min_vruntime);
560 }
561
562 #define __node_2_se(node) \
563 rb_entry((node), struct sched_entity, run_node)
564
565 /*
566 * Compute virtual time from the per-task service numbers:
567 *
568 * Fair schedulers conserve lag:
569 *
570 * \Sum lag_i = 0
571 *
572 * Where lag_i is given by:
573 *
574 * lag_i = S - s_i = w_i * (V - v_i)
575 *
576 * Where S is the ideal service time and V is it's virtual time counterpart.
577 * Therefore:
578 *
579 * \Sum lag_i = 0
580 * \Sum w_i * (V - v_i) = 0
581 * \Sum w_i * V - w_i * v_i = 0
582 *
583 * From which we can solve an expression for V in v_i (which we have in
584 * se->vruntime):
585 *
586 * \Sum v_i * w_i \Sum v_i * w_i
587 * V = -------------- = --------------
588 * \Sum w_i W
589 *
590 * Specifically, this is the weighted average of all entity virtual runtimes.
591 *
592 * [[ NOTE: this is only equal to the ideal scheduler under the condition
593 * that join/leave operations happen at lag_i = 0, otherwise the
594 * virtual time has non-contiguous motion equivalent to:
595 *
596 * V +-= lag_i / W
597 *
598 * Also see the comment in place_entity() that deals with this. ]]
599 *
600 * However, since v_i is u64, and the multiplication could easily overflow
601 * transform it into a relative form that uses smaller quantities:
602 *
603 * Substitute: v_i == (v_i - v0) + v0
604 *
605 * \Sum ((v_i - v0) + v0) * w_i \Sum (v_i - v0) * w_i
606 * V = ---------------------------- = --------------------- + v0
607 * W W
608 *
609 * Which we track using:
610 *
611 * v0 := cfs_rq->min_vruntime
612 * \Sum (v_i - v0) * w_i := cfs_rq->avg_vruntime
613 * \Sum w_i := cfs_rq->avg_load
614 *
615 * Since min_vruntime is a monotonic increasing variable that closely tracks
616 * the per-task service, these deltas: (v_i - v), will be in the order of the
617 * maximal (virtual) lag induced in the system due to quantisation.
618 *
619 * Also, we use scale_load_down() to reduce the size.
620 *
621 * As measured, the max (key * weight) value was ~44 bits for a kernel build.
622 */
623 static void
avg_vruntime_add(struct cfs_rq * cfs_rq,struct sched_entity * se)624 avg_vruntime_add(struct cfs_rq *cfs_rq, struct sched_entity *se)
625 {
626 unsigned long weight = scale_load_down(se->load.weight);
627 s64 key = entity_key(cfs_rq, se);
628
629 cfs_rq->avg_vruntime += key * weight;
630 cfs_rq->avg_load += weight;
631 }
632
633 static void
avg_vruntime_sub(struct cfs_rq * cfs_rq,struct sched_entity * se)634 avg_vruntime_sub(struct cfs_rq *cfs_rq, struct sched_entity *se)
635 {
636 unsigned long weight = scale_load_down(se->load.weight);
637 s64 key = entity_key(cfs_rq, se);
638
639 cfs_rq->avg_vruntime -= key * weight;
640 cfs_rq->avg_load -= weight;
641 }
642
643 static inline
avg_vruntime_update(struct cfs_rq * cfs_rq,s64 delta)644 void avg_vruntime_update(struct cfs_rq *cfs_rq, s64 delta)
645 {
646 /*
647 * v' = v + d ==> avg_vruntime' = avg_runtime - d*avg_load
648 */
649 cfs_rq->avg_vruntime -= cfs_rq->avg_load * delta;
650 }
651
652 /*
653 * Specifically: avg_runtime() + 0 must result in entity_eligible() := true
654 * For this to be so, the result of this function must have a left bias.
655 */
avg_vruntime(struct cfs_rq * cfs_rq)656 u64 avg_vruntime(struct cfs_rq *cfs_rq)
657 {
658 struct sched_entity *curr = cfs_rq->curr;
659 s64 avg = cfs_rq->avg_vruntime;
660 long load = cfs_rq->avg_load;
661
662 if (curr && curr->on_rq) {
663 unsigned long weight = scale_load_down(curr->load.weight);
664
665 avg += entity_key(cfs_rq, curr) * weight;
666 load += weight;
667 }
668
669 if (load) {
670 /* sign flips effective floor / ceiling */
671 if (avg < 0)
672 avg -= (load - 1);
673 avg = div_s64(avg, load);
674 }
675
676 return cfs_rq->min_vruntime + avg;
677 }
678
679 /*
680 * lag_i = S - s_i = w_i * (V - v_i)
681 *
682 * However, since V is approximated by the weighted average of all entities it
683 * is possible -- by addition/removal/reweight to the tree -- to move V around
684 * and end up with a larger lag than we started with.
685 *
686 * Limit this to either double the slice length with a minimum of TICK_NSEC
687 * since that is the timing granularity.
688 *
689 * EEVDF gives the following limit for a steady state system:
690 *
691 * -r_max < lag < max(r_max, q)
692 *
693 * XXX could add max_slice to the augmented data to track this.
694 */
update_entity_lag(struct cfs_rq * cfs_rq,struct sched_entity * se)695 static void update_entity_lag(struct cfs_rq *cfs_rq, struct sched_entity *se)
696 {
697 s64 vlag, limit;
698
699 SCHED_WARN_ON(!se->on_rq);
700
701 vlag = avg_vruntime(cfs_rq) - se->vruntime;
702 limit = calc_delta_fair(max_t(u64, 2*se->slice, TICK_NSEC), se);
703
704 se->vlag = clamp(vlag, -limit, limit);
705 }
706
707 /*
708 * Entity is eligible once it received less service than it ought to have,
709 * eg. lag >= 0.
710 *
711 * lag_i = S - s_i = w_i*(V - v_i)
712 *
713 * lag_i >= 0 -> V >= v_i
714 *
715 * \Sum (v_i - v)*w_i
716 * V = ------------------ + v
717 * \Sum w_i
718 *
719 * lag_i >= 0 -> \Sum (v_i - v)*w_i >= (v_i - v)*(\Sum w_i)
720 *
721 * Note: using 'avg_vruntime() > se->vruntime' is inaccurate due
722 * to the loss in precision caused by the division.
723 */
vruntime_eligible(struct cfs_rq * cfs_rq,u64 vruntime)724 static int vruntime_eligible(struct cfs_rq *cfs_rq, u64 vruntime)
725 {
726 struct sched_entity *curr = cfs_rq->curr;
727 s64 avg = cfs_rq->avg_vruntime;
728 long load = cfs_rq->avg_load;
729
730 if (curr && curr->on_rq) {
731 unsigned long weight = scale_load_down(curr->load.weight);
732
733 avg += entity_key(cfs_rq, curr) * weight;
734 load += weight;
735 }
736
737 return avg >= (s64)(vruntime - cfs_rq->min_vruntime) * load;
738 }
739
entity_eligible(struct cfs_rq * cfs_rq,struct sched_entity * se)740 int entity_eligible(struct cfs_rq *cfs_rq, struct sched_entity *se)
741 {
742 return vruntime_eligible(cfs_rq, se->vruntime);
743 }
744
__update_min_vruntime(struct cfs_rq * cfs_rq,u64 vruntime)745 static u64 __update_min_vruntime(struct cfs_rq *cfs_rq, u64 vruntime)
746 {
747 u64 min_vruntime = cfs_rq->min_vruntime;
748 /*
749 * open coded max_vruntime() to allow updating avg_vruntime
750 */
751 s64 delta = (s64)(vruntime - min_vruntime);
752 if (delta > 0) {
753 avg_vruntime_update(cfs_rq, delta);
754 min_vruntime = vruntime;
755 }
756 return min_vruntime;
757 }
758
update_min_vruntime(struct cfs_rq * cfs_rq)759 static void update_min_vruntime(struct cfs_rq *cfs_rq)
760 {
761 struct sched_entity *se = __pick_root_entity(cfs_rq);
762 struct sched_entity *curr = cfs_rq->curr;
763 u64 vruntime = cfs_rq->min_vruntime;
764
765 if (curr) {
766 if (curr->on_rq)
767 vruntime = curr->vruntime;
768 else
769 curr = NULL;
770 }
771
772 if (se) {
773 if (!curr)
774 vruntime = se->min_vruntime;
775 else
776 vruntime = min_vruntime(vruntime, se->min_vruntime);
777 }
778
779 /* ensure we never gain time by being placed backwards. */
780 cfs_rq->min_vruntime = __update_min_vruntime(cfs_rq, vruntime);
781 }
782
cfs_rq_min_slice(struct cfs_rq * cfs_rq)783 static inline u64 cfs_rq_min_slice(struct cfs_rq *cfs_rq)
784 {
785 struct sched_entity *root = __pick_root_entity(cfs_rq);
786 struct sched_entity *curr = cfs_rq->curr;
787 u64 min_slice = ~0ULL;
788
789 if (curr && curr->on_rq)
790 min_slice = curr->slice;
791
792 if (root)
793 min_slice = min(min_slice, root->min_slice);
794
795 return min_slice;
796 }
797
__entity_less(struct rb_node * a,const struct rb_node * b)798 static inline bool __entity_less(struct rb_node *a, const struct rb_node *b)
799 {
800 return entity_before(__node_2_se(a), __node_2_se(b));
801 }
802
803 #define vruntime_gt(field, lse, rse) ({ (s64)((lse)->field - (rse)->field) > 0; })
804
__min_vruntime_update(struct sched_entity * se,struct rb_node * node)805 static inline void __min_vruntime_update(struct sched_entity *se, struct rb_node *node)
806 {
807 if (node) {
808 struct sched_entity *rse = __node_2_se(node);
809 if (vruntime_gt(min_vruntime, se, rse))
810 se->min_vruntime = rse->min_vruntime;
811 }
812 }
813
__min_slice_update(struct sched_entity * se,struct rb_node * node)814 static inline void __min_slice_update(struct sched_entity *se, struct rb_node *node)
815 {
816 if (node) {
817 struct sched_entity *rse = __node_2_se(node);
818 if (rse->min_slice < se->min_slice)
819 se->min_slice = rse->min_slice;
820 }
821 }
822
823 /*
824 * se->min_vruntime = min(se->vruntime, {left,right}->min_vruntime)
825 */
min_vruntime_update(struct sched_entity * se,bool exit)826 static inline bool min_vruntime_update(struct sched_entity *se, bool exit)
827 {
828 u64 old_min_vruntime = se->min_vruntime;
829 u64 old_min_slice = se->min_slice;
830 struct rb_node *node = &se->run_node;
831
832 se->min_vruntime = se->vruntime;
833 __min_vruntime_update(se, node->rb_right);
834 __min_vruntime_update(se, node->rb_left);
835
836 se->min_slice = se->slice;
837 __min_slice_update(se, node->rb_right);
838 __min_slice_update(se, node->rb_left);
839
840 return se->min_vruntime == old_min_vruntime &&
841 se->min_slice == old_min_slice;
842 }
843
844 RB_DECLARE_CALLBACKS(static, min_vruntime_cb, struct sched_entity,
845 run_node, min_vruntime, min_vruntime_update);
846
847 /*
848 * Enqueue an entity into the rb-tree:
849 */
__enqueue_entity(struct cfs_rq * cfs_rq,struct sched_entity * se)850 static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
851 {
852 avg_vruntime_add(cfs_rq, se);
853 se->min_vruntime = se->vruntime;
854 se->min_slice = se->slice;
855 rb_add_augmented_cached(&se->run_node, &cfs_rq->tasks_timeline,
856 __entity_less, &min_vruntime_cb);
857 }
858
__dequeue_entity(struct cfs_rq * cfs_rq,struct sched_entity * se)859 static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
860 {
861 rb_erase_augmented_cached(&se->run_node, &cfs_rq->tasks_timeline,
862 &min_vruntime_cb);
863 avg_vruntime_sub(cfs_rq, se);
864 }
865
__pick_root_entity(struct cfs_rq * cfs_rq)866 struct sched_entity *__pick_root_entity(struct cfs_rq *cfs_rq)
867 {
868 struct rb_node *root = cfs_rq->tasks_timeline.rb_root.rb_node;
869
870 if (!root)
871 return NULL;
872
873 return __node_2_se(root);
874 }
875
__pick_first_entity(struct cfs_rq * cfs_rq)876 struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq)
877 {
878 struct rb_node *left = rb_first_cached(&cfs_rq->tasks_timeline);
879
880 if (!left)
881 return NULL;
882
883 return __node_2_se(left);
884 }
885
886 /*
887 * HACK, stash a copy of deadline at the point of pick in vlag,
888 * which isn't used until dequeue.
889 */
set_protect_slice(struct sched_entity * se)890 static inline void set_protect_slice(struct sched_entity *se)
891 {
892 se->vlag = se->deadline;
893 }
894
protect_slice(struct sched_entity * se)895 static inline bool protect_slice(struct sched_entity *se)
896 {
897 return se->vlag == se->deadline;
898 }
899
cancel_protect_slice(struct sched_entity * se)900 static inline void cancel_protect_slice(struct sched_entity *se)
901 {
902 if (protect_slice(se))
903 se->vlag = se->deadline + 1;
904 }
905
906 /*
907 * Earliest Eligible Virtual Deadline First
908 *
909 * In order to provide latency guarantees for different request sizes
910 * EEVDF selects the best runnable task from two criteria:
911 *
912 * 1) the task must be eligible (must be owed service)
913 *
914 * 2) from those tasks that meet 1), we select the one
915 * with the earliest virtual deadline.
916 *
917 * We can do this in O(log n) time due to an augmented RB-tree. The
918 * tree keeps the entries sorted on deadline, but also functions as a
919 * heap based on the vruntime by keeping:
920 *
921 * se->min_vruntime = min(se->vruntime, se->{left,right}->min_vruntime)
922 *
923 * Which allows tree pruning through eligibility.
924 */
pick_eevdf(struct cfs_rq * cfs_rq)925 static struct sched_entity *pick_eevdf(struct cfs_rq *cfs_rq)
926 {
927 struct rb_node *node = cfs_rq->tasks_timeline.rb_root.rb_node;
928 struct sched_entity *se = __pick_first_entity(cfs_rq);
929 struct sched_entity *curr = cfs_rq->curr;
930 struct sched_entity *best = NULL;
931
932 /*
933 * We can safely skip eligibility check if there is only one entity
934 * in this cfs_rq, saving some cycles.
935 */
936 if (cfs_rq->nr_queued == 1)
937 return curr && curr->on_rq ? curr : se;
938
939 if (curr && (!curr->on_rq || !entity_eligible(cfs_rq, curr)))
940 curr = NULL;
941
942 if (sched_feat(RUN_TO_PARITY) && curr && protect_slice(curr))
943 return curr;
944
945 /* Pick the leftmost entity if it's eligible */
946 if (se && entity_eligible(cfs_rq, se)) {
947 best = se;
948 goto found;
949 }
950
951 /* Heap search for the EEVD entity */
952 while (node) {
953 struct rb_node *left = node->rb_left;
954
955 /*
956 * Eligible entities in left subtree are always better
957 * choices, since they have earlier deadlines.
958 */
959 if (left && vruntime_eligible(cfs_rq,
960 __node_2_se(left)->min_vruntime)) {
961 node = left;
962 continue;
963 }
964
965 se = __node_2_se(node);
966
967 /*
968 * The left subtree either is empty or has no eligible
969 * entity, so check the current node since it is the one
970 * with earliest deadline that might be eligible.
971 */
972 if (entity_eligible(cfs_rq, se)) {
973 best = se;
974 break;
975 }
976
977 node = node->rb_right;
978 }
979 found:
980 if (!best || (curr && entity_before(curr, best)))
981 best = curr;
982
983 return best;
984 }
985
986 #ifdef CONFIG_SCHED_DEBUG
__pick_last_entity(struct cfs_rq * cfs_rq)987 struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq)
988 {
989 struct rb_node *last = rb_last(&cfs_rq->tasks_timeline.rb_root);
990
991 if (!last)
992 return NULL;
993
994 return __node_2_se(last);
995 }
996
997 /**************************************************************
998 * Scheduling class statistics methods:
999 */
1000 #ifdef CONFIG_SMP
sched_update_scaling(void)1001 int sched_update_scaling(void)
1002 {
1003 unsigned int factor = get_update_sysctl_factor();
1004
1005 #define WRT_SYSCTL(name) \
1006 (normalized_sysctl_##name = sysctl_##name / (factor))
1007 WRT_SYSCTL(sched_base_slice);
1008 #undef WRT_SYSCTL
1009
1010 return 0;
1011 }
1012 #endif
1013 #endif
1014
1015 static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se);
1016
1017 /*
1018 * XXX: strictly: vd_i += N*r_i/w_i such that: vd_i > ve_i
1019 * this is probably good enough.
1020 */
update_deadline(struct cfs_rq * cfs_rq,struct sched_entity * se)1021 static bool update_deadline(struct cfs_rq *cfs_rq, struct sched_entity *se)
1022 {
1023 if ((s64)(se->vruntime - se->deadline) < 0)
1024 return false;
1025
1026 /*
1027 * For EEVDF the virtual time slope is determined by w_i (iow.
1028 * nice) while the request time r_i is determined by
1029 * sysctl_sched_base_slice.
1030 */
1031 if (!se->custom_slice)
1032 se->slice = sysctl_sched_base_slice;
1033
1034 /*
1035 * EEVDF: vd_i = ve_i + r_i / w_i
1036 */
1037 se->deadline = se->vruntime + calc_delta_fair(se->slice, se);
1038
1039 /*
1040 * The task has consumed its request, reschedule.
1041 */
1042 return true;
1043 }
1044
1045 #include "pelt.h"
1046 #ifdef CONFIG_SMP
1047
1048 static int select_idle_sibling(struct task_struct *p, int prev_cpu, int cpu);
1049 static unsigned long task_h_load(struct task_struct *p);
1050 static unsigned long capacity_of(int cpu);
1051
1052 /* Give new sched_entity start runnable values to heavy its load in infant time */
init_entity_runnable_average(struct sched_entity * se)1053 void init_entity_runnable_average(struct sched_entity *se)
1054 {
1055 struct sched_avg *sa = &se->avg;
1056
1057 memset(sa, 0, sizeof(*sa));
1058
1059 /*
1060 * Tasks are initialized with full load to be seen as heavy tasks until
1061 * they get a chance to stabilize to their real load level.
1062 * Group entities are initialized with zero load to reflect the fact that
1063 * nothing has been attached to the task group yet.
1064 */
1065 if (entity_is_task(se))
1066 sa->load_avg = scale_load_down(se->load.weight);
1067
1068 /* when this task is enqueued, it will contribute to its cfs_rq's load_avg */
1069 }
1070
1071 /*
1072 * With new tasks being created, their initial util_avgs are extrapolated
1073 * based on the cfs_rq's current util_avg:
1074 *
1075 * util_avg = cfs_rq->avg.util_avg / (cfs_rq->avg.load_avg + 1)
1076 * * se_weight(se)
1077 *
1078 * However, in many cases, the above util_avg does not give a desired
1079 * value. Moreover, the sum of the util_avgs may be divergent, such
1080 * as when the series is a harmonic series.
1081 *
1082 * To solve this problem, we also cap the util_avg of successive tasks to
1083 * only 1/2 of the left utilization budget:
1084 *
1085 * util_avg_cap = (cpu_scale - cfs_rq->avg.util_avg) / 2^n
1086 *
1087 * where n denotes the nth task and cpu_scale the CPU capacity.
1088 *
1089 * For example, for a CPU with 1024 of capacity, a simplest series from
1090 * the beginning would be like:
1091 *
1092 * task util_avg: 512, 256, 128, 64, 32, 16, 8, ...
1093 * cfs_rq util_avg: 512, 768, 896, 960, 992, 1008, 1016, ...
1094 *
1095 * Finally, that extrapolated util_avg is clamped to the cap (util_avg_cap)
1096 * if util_avg > util_avg_cap.
1097 */
post_init_entity_util_avg(struct task_struct * p)1098 void post_init_entity_util_avg(struct task_struct *p)
1099 {
1100 struct sched_entity *se = &p->se;
1101 struct cfs_rq *cfs_rq = cfs_rq_of(se);
1102 struct sched_avg *sa = &se->avg;
1103 long cpu_scale = arch_scale_cpu_capacity(cpu_of(rq_of(cfs_rq)));
1104 long cap = (long)(cpu_scale - cfs_rq->avg.util_avg) / 2;
1105
1106 if (p->sched_class != &fair_sched_class) {
1107 /*
1108 * For !fair tasks do:
1109 *
1110 update_cfs_rq_load_avg(now, cfs_rq);
1111 attach_entity_load_avg(cfs_rq, se);
1112 switched_from_fair(rq, p);
1113 *
1114 * such that the next switched_to_fair() has the
1115 * expected state.
1116 */
1117 se->avg.last_update_time = cfs_rq_clock_pelt(cfs_rq);
1118 return;
1119 }
1120
1121 if (cap > 0) {
1122 if (cfs_rq->avg.util_avg != 0) {
1123 sa->util_avg = cfs_rq->avg.util_avg * se_weight(se);
1124 sa->util_avg /= (cfs_rq->avg.load_avg + 1);
1125
1126 if (sa->util_avg > cap)
1127 sa->util_avg = cap;
1128 } else {
1129 sa->util_avg = cap;
1130 }
1131 }
1132
1133 sa->runnable_avg = sa->util_avg;
1134 }
1135
1136 #else /* !CONFIG_SMP */
init_entity_runnable_average(struct sched_entity * se)1137 void init_entity_runnable_average(struct sched_entity *se)
1138 {
1139 }
post_init_entity_util_avg(struct task_struct * p)1140 void post_init_entity_util_avg(struct task_struct *p)
1141 {
1142 }
update_tg_load_avg(struct cfs_rq * cfs_rq)1143 static void update_tg_load_avg(struct cfs_rq *cfs_rq)
1144 {
1145 }
1146 #endif /* CONFIG_SMP */
1147
update_curr_se(struct rq * rq,struct sched_entity * curr)1148 static s64 update_curr_se(struct rq *rq, struct sched_entity *curr)
1149 {
1150 u64 now = rq_clock_task(rq);
1151 s64 delta_exec;
1152
1153 delta_exec = now - curr->exec_start;
1154 if (unlikely(delta_exec <= 0))
1155 return delta_exec;
1156
1157 curr->exec_start = now;
1158 curr->sum_exec_runtime += delta_exec;
1159
1160 if (schedstat_enabled()) {
1161 struct sched_statistics *stats;
1162
1163 stats = __schedstats_from_se(curr);
1164 __schedstat_set(stats->exec_max,
1165 max(delta_exec, stats->exec_max));
1166 }
1167
1168 return delta_exec;
1169 }
1170
update_curr_task(struct task_struct * p,s64 delta_exec)1171 static inline void update_curr_task(struct task_struct *p, s64 delta_exec)
1172 {
1173 trace_sched_stat_runtime(p, delta_exec);
1174 account_group_exec_runtime(p, delta_exec);
1175 cgroup_account_cputime(p, delta_exec);
1176 }
1177
did_preempt_short(struct cfs_rq * cfs_rq,struct sched_entity * curr)1178 static inline bool did_preempt_short(struct cfs_rq *cfs_rq, struct sched_entity *curr)
1179 {
1180 if (!sched_feat(PREEMPT_SHORT))
1181 return false;
1182
1183 if (curr->vlag == curr->deadline)
1184 return false;
1185
1186 return !entity_eligible(cfs_rq, curr);
1187 }
1188
do_preempt_short(struct cfs_rq * cfs_rq,struct sched_entity * pse,struct sched_entity * se)1189 static inline bool do_preempt_short(struct cfs_rq *cfs_rq,
1190 struct sched_entity *pse, struct sched_entity *se)
1191 {
1192 if (!sched_feat(PREEMPT_SHORT))
1193 return false;
1194
1195 if (pse->slice >= se->slice)
1196 return false;
1197
1198 if (!entity_eligible(cfs_rq, pse))
1199 return false;
1200
1201 if (entity_before(pse, se))
1202 return true;
1203
1204 if (!entity_eligible(cfs_rq, se))
1205 return true;
1206
1207 return false;
1208 }
1209
1210 /*
1211 * Used by other classes to account runtime.
1212 */
update_curr_common(struct rq * rq)1213 s64 update_curr_common(struct rq *rq)
1214 {
1215 struct task_struct *donor = rq->donor;
1216 s64 delta_exec;
1217
1218 delta_exec = update_curr_se(rq, &donor->se);
1219 if (likely(delta_exec > 0))
1220 update_curr_task(donor, delta_exec);
1221
1222 return delta_exec;
1223 }
1224
1225 /*
1226 * Update the current task's runtime statistics.
1227 */
update_curr(struct cfs_rq * cfs_rq)1228 static void update_curr(struct cfs_rq *cfs_rq)
1229 {
1230 struct sched_entity *curr = cfs_rq->curr;
1231 struct rq *rq = rq_of(cfs_rq);
1232 s64 delta_exec;
1233 bool resched;
1234
1235 if (unlikely(!curr))
1236 return;
1237
1238 delta_exec = update_curr_se(rq, curr);
1239 if (unlikely(delta_exec <= 0))
1240 return;
1241
1242 curr->vruntime += calc_delta_fair(delta_exec, curr);
1243 resched = update_deadline(cfs_rq, curr);
1244 update_min_vruntime(cfs_rq);
1245
1246 if (entity_is_task(curr)) {
1247 struct task_struct *p = task_of(curr);
1248
1249 update_curr_task(p, delta_exec);
1250
1251 /*
1252 * If the fair_server is active, we need to account for the
1253 * fair_server time whether or not the task is running on
1254 * behalf of fair_server or not:
1255 * - If the task is running on behalf of fair_server, we need
1256 * to limit its time based on the assigned runtime.
1257 * - Fair task that runs outside of fair_server should account
1258 * against fair_server such that it can account for this time
1259 * and possibly avoid running this period.
1260 */
1261 if (dl_server_active(&rq->fair_server))
1262 dl_server_update(&rq->fair_server, delta_exec);
1263 }
1264
1265 account_cfs_rq_runtime(cfs_rq, delta_exec);
1266
1267 if (cfs_rq->nr_queued == 1)
1268 return;
1269
1270 if (resched || did_preempt_short(cfs_rq, curr)) {
1271 resched_curr_lazy(rq);
1272 clear_buddies(cfs_rq, curr);
1273 }
1274 }
1275
update_curr_fair(struct rq * rq)1276 static void update_curr_fair(struct rq *rq)
1277 {
1278 update_curr(cfs_rq_of(&rq->donor->se));
1279 }
1280
1281 static inline void
update_stats_wait_start_fair(struct cfs_rq * cfs_rq,struct sched_entity * se)1282 update_stats_wait_start_fair(struct cfs_rq *cfs_rq, struct sched_entity *se)
1283 {
1284 struct sched_statistics *stats;
1285 struct task_struct *p = NULL;
1286
1287 if (!schedstat_enabled())
1288 return;
1289
1290 stats = __schedstats_from_se(se);
1291
1292 if (entity_is_task(se))
1293 p = task_of(se);
1294
1295 __update_stats_wait_start(rq_of(cfs_rq), p, stats);
1296 }
1297
1298 static inline void
update_stats_wait_end_fair(struct cfs_rq * cfs_rq,struct sched_entity * se)1299 update_stats_wait_end_fair(struct cfs_rq *cfs_rq, struct sched_entity *se)
1300 {
1301 struct sched_statistics *stats;
1302 struct task_struct *p = NULL;
1303
1304 if (!schedstat_enabled())
1305 return;
1306
1307 stats = __schedstats_from_se(se);
1308
1309 /*
1310 * When the sched_schedstat changes from 0 to 1, some sched se
1311 * maybe already in the runqueue, the se->statistics.wait_start
1312 * will be 0.So it will let the delta wrong. We need to avoid this
1313 * scenario.
1314 */
1315 if (unlikely(!schedstat_val(stats->wait_start)))
1316 return;
1317
1318 if (entity_is_task(se))
1319 p = task_of(se);
1320
1321 __update_stats_wait_end(rq_of(cfs_rq), p, stats);
1322 }
1323
1324 static inline void
update_stats_enqueue_sleeper_fair(struct cfs_rq * cfs_rq,struct sched_entity * se)1325 update_stats_enqueue_sleeper_fair(struct cfs_rq *cfs_rq, struct sched_entity *se)
1326 {
1327 struct sched_statistics *stats;
1328 struct task_struct *tsk = NULL;
1329
1330 if (!schedstat_enabled())
1331 return;
1332
1333 stats = __schedstats_from_se(se);
1334
1335 if (entity_is_task(se))
1336 tsk = task_of(se);
1337
1338 __update_stats_enqueue_sleeper(rq_of(cfs_rq), tsk, stats);
1339 }
1340
1341 /*
1342 * Task is being enqueued - update stats:
1343 */
1344 static inline void
update_stats_enqueue_fair(struct cfs_rq * cfs_rq,struct sched_entity * se,int flags)1345 update_stats_enqueue_fair(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
1346 {
1347 if (!schedstat_enabled())
1348 return;
1349
1350 /*
1351 * Are we enqueueing a waiting task? (for current tasks
1352 * a dequeue/enqueue event is a NOP)
1353 */
1354 if (se != cfs_rq->curr)
1355 update_stats_wait_start_fair(cfs_rq, se);
1356
1357 if (flags & ENQUEUE_WAKEUP)
1358 update_stats_enqueue_sleeper_fair(cfs_rq, se);
1359 }
1360
1361 static inline void
update_stats_dequeue_fair(struct cfs_rq * cfs_rq,struct sched_entity * se,int flags)1362 update_stats_dequeue_fair(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
1363 {
1364
1365 if (!schedstat_enabled())
1366 return;
1367
1368 /*
1369 * Mark the end of the wait period if dequeueing a
1370 * waiting task:
1371 */
1372 if (se != cfs_rq->curr)
1373 update_stats_wait_end_fair(cfs_rq, se);
1374
1375 if ((flags & DEQUEUE_SLEEP) && entity_is_task(se)) {
1376 struct task_struct *tsk = task_of(se);
1377 unsigned int state;
1378
1379 /* XXX racy against TTWU */
1380 state = READ_ONCE(tsk->__state);
1381 if (state & TASK_INTERRUPTIBLE)
1382 __schedstat_set(tsk->stats.sleep_start,
1383 rq_clock(rq_of(cfs_rq)));
1384 if (state & TASK_UNINTERRUPTIBLE)
1385 __schedstat_set(tsk->stats.block_start,
1386 rq_clock(rq_of(cfs_rq)));
1387 }
1388 }
1389
1390 /*
1391 * We are picking a new current task - update its stats:
1392 */
1393 static inline void
update_stats_curr_start(struct cfs_rq * cfs_rq,struct sched_entity * se)1394 update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
1395 {
1396 /*
1397 * We are starting a new run period:
1398 */
1399 se->exec_start = rq_clock_task(rq_of(cfs_rq));
1400 }
1401
1402 /**************************************************
1403 * Scheduling class queueing methods:
1404 */
1405
is_core_idle(int cpu)1406 static inline bool is_core_idle(int cpu)
1407 {
1408 #ifdef CONFIG_SCHED_SMT
1409 int sibling;
1410
1411 for_each_cpu(sibling, cpu_smt_mask(cpu)) {
1412 if (cpu == sibling)
1413 continue;
1414
1415 if (!idle_cpu(sibling))
1416 return false;
1417 }
1418 #endif
1419
1420 return true;
1421 }
1422
1423 #ifdef CONFIG_NUMA
1424 #define NUMA_IMBALANCE_MIN 2
1425
1426 static inline long
adjust_numa_imbalance(int imbalance,int dst_running,int imb_numa_nr)1427 adjust_numa_imbalance(int imbalance, int dst_running, int imb_numa_nr)
1428 {
1429 /*
1430 * Allow a NUMA imbalance if busy CPUs is less than the maximum
1431 * threshold. Above this threshold, individual tasks may be contending
1432 * for both memory bandwidth and any shared HT resources. This is an
1433 * approximation as the number of running tasks may not be related to
1434 * the number of busy CPUs due to sched_setaffinity.
1435 */
1436 if (dst_running > imb_numa_nr)
1437 return imbalance;
1438
1439 /*
1440 * Allow a small imbalance based on a simple pair of communicating
1441 * tasks that remain local when the destination is lightly loaded.
1442 */
1443 if (imbalance <= NUMA_IMBALANCE_MIN)
1444 return 0;
1445
1446 return imbalance;
1447 }
1448 #endif /* CONFIG_NUMA */
1449
1450 #ifdef CONFIG_NUMA_BALANCING
1451 /*
1452 * Approximate time to scan a full NUMA task in ms. The task scan period is
1453 * calculated based on the tasks virtual memory size and
1454 * numa_balancing_scan_size.
1455 */
1456 unsigned int sysctl_numa_balancing_scan_period_min = 1000;
1457 unsigned int sysctl_numa_balancing_scan_period_max = 60000;
1458
1459 /* Portion of address space to scan in MB */
1460 unsigned int sysctl_numa_balancing_scan_size = 256;
1461
1462 /* Scan @scan_size MB every @scan_period after an initial @scan_delay in ms */
1463 unsigned int sysctl_numa_balancing_scan_delay = 1000;
1464
1465 /* The page with hint page fault latency < threshold in ms is considered hot */
1466 unsigned int sysctl_numa_balancing_hot_threshold = MSEC_PER_SEC;
1467
1468 struct numa_group {
1469 refcount_t refcount;
1470
1471 spinlock_t lock; /* nr_tasks, tasks */
1472 int nr_tasks;
1473 pid_t gid;
1474 int active_nodes;
1475
1476 struct rcu_head rcu;
1477 unsigned long total_faults;
1478 unsigned long max_faults_cpu;
1479 /*
1480 * faults[] array is split into two regions: faults_mem and faults_cpu.
1481 *
1482 * Faults_cpu is used to decide whether memory should move
1483 * towards the CPU. As a consequence, these stats are weighted
1484 * more by CPU use than by memory faults.
1485 */
1486 unsigned long faults[];
1487 };
1488
1489 /*
1490 * For functions that can be called in multiple contexts that permit reading
1491 * ->numa_group (see struct task_struct for locking rules).
1492 */
deref_task_numa_group(struct task_struct * p)1493 static struct numa_group *deref_task_numa_group(struct task_struct *p)
1494 {
1495 return rcu_dereference_check(p->numa_group, p == current ||
1496 (lockdep_is_held(__rq_lockp(task_rq(p))) && !READ_ONCE(p->on_cpu)));
1497 }
1498
deref_curr_numa_group(struct task_struct * p)1499 static struct numa_group *deref_curr_numa_group(struct task_struct *p)
1500 {
1501 return rcu_dereference_protected(p->numa_group, p == current);
1502 }
1503
1504 static inline unsigned long group_faults_priv(struct numa_group *ng);
1505 static inline unsigned long group_faults_shared(struct numa_group *ng);
1506
task_nr_scan_windows(struct task_struct * p)1507 static unsigned int task_nr_scan_windows(struct task_struct *p)
1508 {
1509 unsigned long rss = 0;
1510 unsigned long nr_scan_pages;
1511
1512 /*
1513 * Calculations based on RSS as non-present and empty pages are skipped
1514 * by the PTE scanner and NUMA hinting faults should be trapped based
1515 * on resident pages
1516 */
1517 nr_scan_pages = sysctl_numa_balancing_scan_size << (20 - PAGE_SHIFT);
1518 rss = get_mm_rss(p->mm);
1519 if (!rss)
1520 rss = nr_scan_pages;
1521
1522 rss = round_up(rss, nr_scan_pages);
1523 return rss / nr_scan_pages;
1524 }
1525
1526 /* For sanity's sake, never scan more PTEs than MAX_SCAN_WINDOW MB/sec. */
1527 #define MAX_SCAN_WINDOW 2560
1528
task_scan_min(struct task_struct * p)1529 static unsigned int task_scan_min(struct task_struct *p)
1530 {
1531 unsigned int scan_size = READ_ONCE(sysctl_numa_balancing_scan_size);
1532 unsigned int scan, floor;
1533 unsigned int windows = 1;
1534
1535 if (scan_size < MAX_SCAN_WINDOW)
1536 windows = MAX_SCAN_WINDOW / scan_size;
1537 floor = 1000 / windows;
1538
1539 scan = sysctl_numa_balancing_scan_period_min / task_nr_scan_windows(p);
1540 return max_t(unsigned int, floor, scan);
1541 }
1542
task_scan_start(struct task_struct * p)1543 static unsigned int task_scan_start(struct task_struct *p)
1544 {
1545 unsigned long smin = task_scan_min(p);
1546 unsigned long period = smin;
1547 struct numa_group *ng;
1548
1549 /* Scale the maximum scan period with the amount of shared memory. */
1550 rcu_read_lock();
1551 ng = rcu_dereference(p->numa_group);
1552 if (ng) {
1553 unsigned long shared = group_faults_shared(ng);
1554 unsigned long private = group_faults_priv(ng);
1555
1556 period *= refcount_read(&ng->refcount);
1557 period *= shared + 1;
1558 period /= private + shared + 1;
1559 }
1560 rcu_read_unlock();
1561
1562 return max(smin, period);
1563 }
1564
task_scan_max(struct task_struct * p)1565 static unsigned int task_scan_max(struct task_struct *p)
1566 {
1567 unsigned long smin = task_scan_min(p);
1568 unsigned long smax;
1569 struct numa_group *ng;
1570
1571 /* Watch for min being lower than max due to floor calculations */
1572 smax = sysctl_numa_balancing_scan_period_max / task_nr_scan_windows(p);
1573
1574 /* Scale the maximum scan period with the amount of shared memory. */
1575 ng = deref_curr_numa_group(p);
1576 if (ng) {
1577 unsigned long shared = group_faults_shared(ng);
1578 unsigned long private = group_faults_priv(ng);
1579 unsigned long period = smax;
1580
1581 period *= refcount_read(&ng->refcount);
1582 period *= shared + 1;
1583 period /= private + shared + 1;
1584
1585 smax = max(smax, period);
1586 }
1587
1588 return max(smin, smax);
1589 }
1590
account_numa_enqueue(struct rq * rq,struct task_struct * p)1591 static void account_numa_enqueue(struct rq *rq, struct task_struct *p)
1592 {
1593 rq->nr_numa_running += (p->numa_preferred_nid != NUMA_NO_NODE);
1594 rq->nr_preferred_running += (p->numa_preferred_nid == task_node(p));
1595 }
1596
account_numa_dequeue(struct rq * rq,struct task_struct * p)1597 static void account_numa_dequeue(struct rq *rq, struct task_struct *p)
1598 {
1599 rq->nr_numa_running -= (p->numa_preferred_nid != NUMA_NO_NODE);
1600 rq->nr_preferred_running -= (p->numa_preferred_nid == task_node(p));
1601 }
1602
1603 /* Shared or private faults. */
1604 #define NR_NUMA_HINT_FAULT_TYPES 2
1605
1606 /* Memory and CPU locality */
1607 #define NR_NUMA_HINT_FAULT_STATS (NR_NUMA_HINT_FAULT_TYPES * 2)
1608
1609 /* Averaged statistics, and temporary buffers. */
1610 #define NR_NUMA_HINT_FAULT_BUCKETS (NR_NUMA_HINT_FAULT_STATS * 2)
1611
task_numa_group_id(struct task_struct * p)1612 pid_t task_numa_group_id(struct task_struct *p)
1613 {
1614 struct numa_group *ng;
1615 pid_t gid = 0;
1616
1617 rcu_read_lock();
1618 ng = rcu_dereference(p->numa_group);
1619 if (ng)
1620 gid = ng->gid;
1621 rcu_read_unlock();
1622
1623 return gid;
1624 }
1625
1626 /*
1627 * The averaged statistics, shared & private, memory & CPU,
1628 * occupy the first half of the array. The second half of the
1629 * array is for current counters, which are averaged into the
1630 * first set by task_numa_placement.
1631 */
task_faults_idx(enum numa_faults_stats s,int nid,int priv)1632 static inline int task_faults_idx(enum numa_faults_stats s, int nid, int priv)
1633 {
1634 return NR_NUMA_HINT_FAULT_TYPES * (s * nr_node_ids + nid) + priv;
1635 }
1636
task_faults(struct task_struct * p,int nid)1637 static inline unsigned long task_faults(struct task_struct *p, int nid)
1638 {
1639 if (!p->numa_faults)
1640 return 0;
1641
1642 return p->numa_faults[task_faults_idx(NUMA_MEM, nid, 0)] +
1643 p->numa_faults[task_faults_idx(NUMA_MEM, nid, 1)];
1644 }
1645
group_faults(struct task_struct * p,int nid)1646 static inline unsigned long group_faults(struct task_struct *p, int nid)
1647 {
1648 struct numa_group *ng = deref_task_numa_group(p);
1649
1650 if (!ng)
1651 return 0;
1652
1653 return ng->faults[task_faults_idx(NUMA_MEM, nid, 0)] +
1654 ng->faults[task_faults_idx(NUMA_MEM, nid, 1)];
1655 }
1656
group_faults_cpu(struct numa_group * group,int nid)1657 static inline unsigned long group_faults_cpu(struct numa_group *group, int nid)
1658 {
1659 return group->faults[task_faults_idx(NUMA_CPU, nid, 0)] +
1660 group->faults[task_faults_idx(NUMA_CPU, nid, 1)];
1661 }
1662
group_faults_priv(struct numa_group * ng)1663 static inline unsigned long group_faults_priv(struct numa_group *ng)
1664 {
1665 unsigned long faults = 0;
1666 int node;
1667
1668 for_each_online_node(node) {
1669 faults += ng->faults[task_faults_idx(NUMA_MEM, node, 1)];
1670 }
1671
1672 return faults;
1673 }
1674
group_faults_shared(struct numa_group * ng)1675 static inline unsigned long group_faults_shared(struct numa_group *ng)
1676 {
1677 unsigned long faults = 0;
1678 int node;
1679
1680 for_each_online_node(node) {
1681 faults += ng->faults[task_faults_idx(NUMA_MEM, node, 0)];
1682 }
1683
1684 return faults;
1685 }
1686
1687 /*
1688 * A node triggering more than 1/3 as many NUMA faults as the maximum is
1689 * considered part of a numa group's pseudo-interleaving set. Migrations
1690 * between these nodes are slowed down, to allow things to settle down.
1691 */
1692 #define ACTIVE_NODE_FRACTION 3
1693
numa_is_active_node(int nid,struct numa_group * ng)1694 static bool numa_is_active_node(int nid, struct numa_group *ng)
1695 {
1696 return group_faults_cpu(ng, nid) * ACTIVE_NODE_FRACTION > ng->max_faults_cpu;
1697 }
1698
1699 /* Handle placement on systems where not all nodes are directly connected. */
score_nearby_nodes(struct task_struct * p,int nid,int lim_dist,bool task)1700 static unsigned long score_nearby_nodes(struct task_struct *p, int nid,
1701 int lim_dist, bool task)
1702 {
1703 unsigned long score = 0;
1704 int node, max_dist;
1705
1706 /*
1707 * All nodes are directly connected, and the same distance
1708 * from each other. No need for fancy placement algorithms.
1709 */
1710 if (sched_numa_topology_type == NUMA_DIRECT)
1711 return 0;
1712
1713 /* sched_max_numa_distance may be changed in parallel. */
1714 max_dist = READ_ONCE(sched_max_numa_distance);
1715 /*
1716 * This code is called for each node, introducing N^2 complexity,
1717 * which should be OK given the number of nodes rarely exceeds 8.
1718 */
1719 for_each_online_node(node) {
1720 unsigned long faults;
1721 int dist = node_distance(nid, node);
1722
1723 /*
1724 * The furthest away nodes in the system are not interesting
1725 * for placement; nid was already counted.
1726 */
1727 if (dist >= max_dist || node == nid)
1728 continue;
1729
1730 /*
1731 * On systems with a backplane NUMA topology, compare groups
1732 * of nodes, and move tasks towards the group with the most
1733 * memory accesses. When comparing two nodes at distance
1734 * "hoplimit", only nodes closer by than "hoplimit" are part
1735 * of each group. Skip other nodes.
1736 */
1737 if (sched_numa_topology_type == NUMA_BACKPLANE && dist >= lim_dist)
1738 continue;
1739
1740 /* Add up the faults from nearby nodes. */
1741 if (task)
1742 faults = task_faults(p, node);
1743 else
1744 faults = group_faults(p, node);
1745
1746 /*
1747 * On systems with a glueless mesh NUMA topology, there are
1748 * no fixed "groups of nodes". Instead, nodes that are not
1749 * directly connected bounce traffic through intermediate
1750 * nodes; a numa_group can occupy any set of nodes.
1751 * The further away a node is, the less the faults count.
1752 * This seems to result in good task placement.
1753 */
1754 if (sched_numa_topology_type == NUMA_GLUELESS_MESH) {
1755 faults *= (max_dist - dist);
1756 faults /= (max_dist - LOCAL_DISTANCE);
1757 }
1758
1759 score += faults;
1760 }
1761
1762 return score;
1763 }
1764
1765 /*
1766 * These return the fraction of accesses done by a particular task, or
1767 * task group, on a particular numa node. The group weight is given a
1768 * larger multiplier, in order to group tasks together that are almost
1769 * evenly spread out between numa nodes.
1770 */
task_weight(struct task_struct * p,int nid,int dist)1771 static inline unsigned long task_weight(struct task_struct *p, int nid,
1772 int dist)
1773 {
1774 unsigned long faults, total_faults;
1775
1776 if (!p->numa_faults)
1777 return 0;
1778
1779 total_faults = p->total_numa_faults;
1780
1781 if (!total_faults)
1782 return 0;
1783
1784 faults = task_faults(p, nid);
1785 faults += score_nearby_nodes(p, nid, dist, true);
1786
1787 return 1000 * faults / total_faults;
1788 }
1789
group_weight(struct task_struct * p,int nid,int dist)1790 static inline unsigned long group_weight(struct task_struct *p, int nid,
1791 int dist)
1792 {
1793 struct numa_group *ng = deref_task_numa_group(p);
1794 unsigned long faults, total_faults;
1795
1796 if (!ng)
1797 return 0;
1798
1799 total_faults = ng->total_faults;
1800
1801 if (!total_faults)
1802 return 0;
1803
1804 faults = group_faults(p, nid);
1805 faults += score_nearby_nodes(p, nid, dist, false);
1806
1807 return 1000 * faults / total_faults;
1808 }
1809
1810 /*
1811 * If memory tiering mode is enabled, cpupid of slow memory page is
1812 * used to record scan time instead of CPU and PID. When tiering mode
1813 * is disabled at run time, the scan time (in cpupid) will be
1814 * interpreted as CPU and PID. So CPU needs to be checked to avoid to
1815 * access out of array bound.
1816 */
cpupid_valid(int cpupid)1817 static inline bool cpupid_valid(int cpupid)
1818 {
1819 return cpupid_to_cpu(cpupid) < nr_cpu_ids;
1820 }
1821
1822 /*
1823 * For memory tiering mode, if there are enough free pages (more than
1824 * enough watermark defined here) in fast memory node, to take full
1825 * advantage of fast memory capacity, all recently accessed slow
1826 * memory pages will be migrated to fast memory node without
1827 * considering hot threshold.
1828 */
pgdat_free_space_enough(struct pglist_data * pgdat)1829 static bool pgdat_free_space_enough(struct pglist_data *pgdat)
1830 {
1831 int z;
1832 unsigned long enough_wmark;
1833
1834 enough_wmark = max(1UL * 1024 * 1024 * 1024 >> PAGE_SHIFT,
1835 pgdat->node_present_pages >> 4);
1836 for (z = pgdat->nr_zones - 1; z >= 0; z--) {
1837 struct zone *zone = pgdat->node_zones + z;
1838
1839 if (!populated_zone(zone))
1840 continue;
1841
1842 if (zone_watermark_ok(zone, 0,
1843 promo_wmark_pages(zone) + enough_wmark,
1844 ZONE_MOVABLE, 0))
1845 return true;
1846 }
1847 return false;
1848 }
1849
1850 /*
1851 * For memory tiering mode, when page tables are scanned, the scan
1852 * time will be recorded in struct page in addition to make page
1853 * PROT_NONE for slow memory page. So when the page is accessed, in
1854 * hint page fault handler, the hint page fault latency is calculated
1855 * via,
1856 *
1857 * hint page fault latency = hint page fault time - scan time
1858 *
1859 * The smaller the hint page fault latency, the higher the possibility
1860 * for the page to be hot.
1861 */
numa_hint_fault_latency(struct folio * folio)1862 static int numa_hint_fault_latency(struct folio *folio)
1863 {
1864 int last_time, time;
1865
1866 time = jiffies_to_msecs(jiffies);
1867 last_time = folio_xchg_access_time(folio, time);
1868
1869 return (time - last_time) & PAGE_ACCESS_TIME_MASK;
1870 }
1871
1872 /*
1873 * For memory tiering mode, too high promotion/demotion throughput may
1874 * hurt application latency. So we provide a mechanism to rate limit
1875 * the number of pages that are tried to be promoted.
1876 */
numa_promotion_rate_limit(struct pglist_data * pgdat,unsigned long rate_limit,int nr)1877 static bool numa_promotion_rate_limit(struct pglist_data *pgdat,
1878 unsigned long rate_limit, int nr)
1879 {
1880 unsigned long nr_cand;
1881 unsigned int now, start;
1882
1883 now = jiffies_to_msecs(jiffies);
1884 mod_node_page_state(pgdat, PGPROMOTE_CANDIDATE, nr);
1885 nr_cand = node_page_state(pgdat, PGPROMOTE_CANDIDATE);
1886 start = pgdat->nbp_rl_start;
1887 if (now - start > MSEC_PER_SEC &&
1888 cmpxchg(&pgdat->nbp_rl_start, start, now) == start)
1889 pgdat->nbp_rl_nr_cand = nr_cand;
1890 if (nr_cand - pgdat->nbp_rl_nr_cand >= rate_limit)
1891 return true;
1892 return false;
1893 }
1894
1895 #define NUMA_MIGRATION_ADJUST_STEPS 16
1896
numa_promotion_adjust_threshold(struct pglist_data * pgdat,unsigned long rate_limit,unsigned int ref_th)1897 static void numa_promotion_adjust_threshold(struct pglist_data *pgdat,
1898 unsigned long rate_limit,
1899 unsigned int ref_th)
1900 {
1901 unsigned int now, start, th_period, unit_th, th;
1902 unsigned long nr_cand, ref_cand, diff_cand;
1903
1904 now = jiffies_to_msecs(jiffies);
1905 th_period = sysctl_numa_balancing_scan_period_max;
1906 start = pgdat->nbp_th_start;
1907 if (now - start > th_period &&
1908 cmpxchg(&pgdat->nbp_th_start, start, now) == start) {
1909 ref_cand = rate_limit *
1910 sysctl_numa_balancing_scan_period_max / MSEC_PER_SEC;
1911 nr_cand = node_page_state(pgdat, PGPROMOTE_CANDIDATE);
1912 diff_cand = nr_cand - pgdat->nbp_th_nr_cand;
1913 unit_th = ref_th * 2 / NUMA_MIGRATION_ADJUST_STEPS;
1914 th = pgdat->nbp_threshold ? : ref_th;
1915 if (diff_cand > ref_cand * 11 / 10)
1916 th = max(th - unit_th, unit_th);
1917 else if (diff_cand < ref_cand * 9 / 10)
1918 th = min(th + unit_th, ref_th * 2);
1919 pgdat->nbp_th_nr_cand = nr_cand;
1920 pgdat->nbp_threshold = th;
1921 }
1922 }
1923
should_numa_migrate_memory(struct task_struct * p,struct folio * folio,int src_nid,int dst_cpu)1924 bool should_numa_migrate_memory(struct task_struct *p, struct folio *folio,
1925 int src_nid, int dst_cpu)
1926 {
1927 struct numa_group *ng = deref_curr_numa_group(p);
1928 int dst_nid = cpu_to_node(dst_cpu);
1929 int last_cpupid, this_cpupid;
1930
1931 /*
1932 * Cannot migrate to memoryless nodes.
1933 */
1934 if (!node_state(dst_nid, N_MEMORY))
1935 return false;
1936
1937 /*
1938 * The pages in slow memory node should be migrated according
1939 * to hot/cold instead of private/shared.
1940 */
1941 if (folio_use_access_time(folio)) {
1942 struct pglist_data *pgdat;
1943 unsigned long rate_limit;
1944 unsigned int latency, th, def_th;
1945
1946 pgdat = NODE_DATA(dst_nid);
1947 if (pgdat_free_space_enough(pgdat)) {
1948 /* workload changed, reset hot threshold */
1949 pgdat->nbp_threshold = 0;
1950 return true;
1951 }
1952
1953 def_th = sysctl_numa_balancing_hot_threshold;
1954 rate_limit = sysctl_numa_balancing_promote_rate_limit << \
1955 (20 - PAGE_SHIFT);
1956 numa_promotion_adjust_threshold(pgdat, rate_limit, def_th);
1957
1958 th = pgdat->nbp_threshold ? : def_th;
1959 latency = numa_hint_fault_latency(folio);
1960 if (latency >= th)
1961 return false;
1962
1963 return !numa_promotion_rate_limit(pgdat, rate_limit,
1964 folio_nr_pages(folio));
1965 }
1966
1967 this_cpupid = cpu_pid_to_cpupid(dst_cpu, current->pid);
1968 last_cpupid = folio_xchg_last_cpupid(folio, this_cpupid);
1969
1970 if (!(sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING) &&
1971 !node_is_toptier(src_nid) && !cpupid_valid(last_cpupid))
1972 return false;
1973
1974 /*
1975 * Allow first faults or private faults to migrate immediately early in
1976 * the lifetime of a task. The magic number 4 is based on waiting for
1977 * two full passes of the "multi-stage node selection" test that is
1978 * executed below.
1979 */
1980 if ((p->numa_preferred_nid == NUMA_NO_NODE || p->numa_scan_seq <= 4) &&
1981 (cpupid_pid_unset(last_cpupid) || cpupid_match_pid(p, last_cpupid)))
1982 return true;
1983
1984 /*
1985 * Multi-stage node selection is used in conjunction with a periodic
1986 * migration fault to build a temporal task<->page relation. By using
1987 * a two-stage filter we remove short/unlikely relations.
1988 *
1989 * Using P(p) ~ n_p / n_t as per frequentist probability, we can equate
1990 * a task's usage of a particular page (n_p) per total usage of this
1991 * page (n_t) (in a given time-span) to a probability.
1992 *
1993 * Our periodic faults will sample this probability and getting the
1994 * same result twice in a row, given these samples are fully
1995 * independent, is then given by P(n)^2, provided our sample period
1996 * is sufficiently short compared to the usage pattern.
1997 *
1998 * This quadric squishes small probabilities, making it less likely we
1999 * act on an unlikely task<->page relation.
2000 */
2001 if (!cpupid_pid_unset(last_cpupid) &&
2002 cpupid_to_nid(last_cpupid) != dst_nid)
2003 return false;
2004
2005 /* Always allow migrate on private faults */
2006 if (cpupid_match_pid(p, last_cpupid))
2007 return true;
2008
2009 /* A shared fault, but p->numa_group has not been set up yet. */
2010 if (!ng)
2011 return true;
2012
2013 /*
2014 * Destination node is much more heavily used than the source
2015 * node? Allow migration.
2016 */
2017 if (group_faults_cpu(ng, dst_nid) > group_faults_cpu(ng, src_nid) *
2018 ACTIVE_NODE_FRACTION)
2019 return true;
2020
2021 /*
2022 * Distribute memory according to CPU & memory use on each node,
2023 * with 3/4 hysteresis to avoid unnecessary memory migrations:
2024 *
2025 * faults_cpu(dst) 3 faults_cpu(src)
2026 * --------------- * - > ---------------
2027 * faults_mem(dst) 4 faults_mem(src)
2028 */
2029 return group_faults_cpu(ng, dst_nid) * group_faults(p, src_nid) * 3 >
2030 group_faults_cpu(ng, src_nid) * group_faults(p, dst_nid) * 4;
2031 }
2032
2033 /*
2034 * 'numa_type' describes the node at the moment of load balancing.
2035 */
2036 enum numa_type {
2037 /* The node has spare capacity that can be used to run more tasks. */
2038 node_has_spare = 0,
2039 /*
2040 * The node is fully used and the tasks don't compete for more CPU
2041 * cycles. Nevertheless, some tasks might wait before running.
2042 */
2043 node_fully_busy,
2044 /*
2045 * The node is overloaded and can't provide expected CPU cycles to all
2046 * tasks.
2047 */
2048 node_overloaded
2049 };
2050
2051 /* Cached statistics for all CPUs within a node */
2052 struct numa_stats {
2053 unsigned long load;
2054 unsigned long runnable;
2055 unsigned long util;
2056 /* Total compute capacity of CPUs on a node */
2057 unsigned long compute_capacity;
2058 unsigned int nr_running;
2059 unsigned int weight;
2060 enum numa_type node_type;
2061 int idle_cpu;
2062 };
2063
2064 struct task_numa_env {
2065 struct task_struct *p;
2066
2067 int src_cpu, src_nid;
2068 int dst_cpu, dst_nid;
2069 int imb_numa_nr;
2070
2071 struct numa_stats src_stats, dst_stats;
2072
2073 int imbalance_pct;
2074 int dist;
2075
2076 struct task_struct *best_task;
2077 long best_imp;
2078 int best_cpu;
2079 };
2080
2081 static unsigned long cpu_load(struct rq *rq);
2082 static unsigned long cpu_runnable(struct rq *rq);
2083
2084 static inline enum
numa_classify(unsigned int imbalance_pct,struct numa_stats * ns)2085 numa_type numa_classify(unsigned int imbalance_pct,
2086 struct numa_stats *ns)
2087 {
2088 if ((ns->nr_running > ns->weight) &&
2089 (((ns->compute_capacity * 100) < (ns->util * imbalance_pct)) ||
2090 ((ns->compute_capacity * imbalance_pct) < (ns->runnable * 100))))
2091 return node_overloaded;
2092
2093 if ((ns->nr_running < ns->weight) ||
2094 (((ns->compute_capacity * 100) > (ns->util * imbalance_pct)) &&
2095 ((ns->compute_capacity * imbalance_pct) > (ns->runnable * 100))))
2096 return node_has_spare;
2097
2098 return node_fully_busy;
2099 }
2100
2101 #ifdef CONFIG_SCHED_SMT
2102 /* Forward declarations of select_idle_sibling helpers */
2103 static inline bool test_idle_cores(int cpu);
numa_idle_core(int idle_core,int cpu)2104 static inline int numa_idle_core(int idle_core, int cpu)
2105 {
2106 if (!static_branch_likely(&sched_smt_present) ||
2107 idle_core >= 0 || !test_idle_cores(cpu))
2108 return idle_core;
2109
2110 /*
2111 * Prefer cores instead of packing HT siblings
2112 * and triggering future load balancing.
2113 */
2114 if (is_core_idle(cpu))
2115 idle_core = cpu;
2116
2117 return idle_core;
2118 }
2119 #else
numa_idle_core(int idle_core,int cpu)2120 static inline int numa_idle_core(int idle_core, int cpu)
2121 {
2122 return idle_core;
2123 }
2124 #endif
2125
2126 /*
2127 * Gather all necessary information to make NUMA balancing placement
2128 * decisions that are compatible with standard load balancer. This
2129 * borrows code and logic from update_sg_lb_stats but sharing a
2130 * common implementation is impractical.
2131 */
update_numa_stats(struct task_numa_env * env,struct numa_stats * ns,int nid,bool find_idle)2132 static void update_numa_stats(struct task_numa_env *env,
2133 struct numa_stats *ns, int nid,
2134 bool find_idle)
2135 {
2136 int cpu, idle_core = -1;
2137
2138 memset(ns, 0, sizeof(*ns));
2139 ns->idle_cpu = -1;
2140
2141 rcu_read_lock();
2142 for_each_cpu(cpu, cpumask_of_node(nid)) {
2143 struct rq *rq = cpu_rq(cpu);
2144
2145 ns->load += cpu_load(rq);
2146 ns->runnable += cpu_runnable(rq);
2147 ns->util += cpu_util_cfs(cpu);
2148 ns->nr_running += rq->cfs.h_nr_runnable;
2149 ns->compute_capacity += capacity_of(cpu);
2150
2151 if (find_idle && idle_core < 0 && !rq->nr_running && idle_cpu(cpu)) {
2152 if (READ_ONCE(rq->numa_migrate_on) ||
2153 !cpumask_test_cpu(cpu, env->p->cpus_ptr))
2154 continue;
2155
2156 if (ns->idle_cpu == -1)
2157 ns->idle_cpu = cpu;
2158
2159 idle_core = numa_idle_core(idle_core, cpu);
2160 }
2161 }
2162 rcu_read_unlock();
2163
2164 ns->weight = cpumask_weight(cpumask_of_node(nid));
2165
2166 ns->node_type = numa_classify(env->imbalance_pct, ns);
2167
2168 if (idle_core >= 0)
2169 ns->idle_cpu = idle_core;
2170 }
2171
task_numa_assign(struct task_numa_env * env,struct task_struct * p,long imp)2172 static void task_numa_assign(struct task_numa_env *env,
2173 struct task_struct *p, long imp)
2174 {
2175 struct rq *rq = cpu_rq(env->dst_cpu);
2176
2177 /* Check if run-queue part of active NUMA balance. */
2178 if (env->best_cpu != env->dst_cpu && xchg(&rq->numa_migrate_on, 1)) {
2179 int cpu;
2180 int start = env->dst_cpu;
2181
2182 /* Find alternative idle CPU. */
2183 for_each_cpu_wrap(cpu, cpumask_of_node(env->dst_nid), start + 1) {
2184 if (cpu == env->best_cpu || !idle_cpu(cpu) ||
2185 !cpumask_test_cpu(cpu, env->p->cpus_ptr)) {
2186 continue;
2187 }
2188
2189 env->dst_cpu = cpu;
2190 rq = cpu_rq(env->dst_cpu);
2191 if (!xchg(&rq->numa_migrate_on, 1))
2192 goto assign;
2193 }
2194
2195 /* Failed to find an alternative idle CPU */
2196 return;
2197 }
2198
2199 assign:
2200 /*
2201 * Clear previous best_cpu/rq numa-migrate flag, since task now
2202 * found a better CPU to move/swap.
2203 */
2204 if (env->best_cpu != -1 && env->best_cpu != env->dst_cpu) {
2205 rq = cpu_rq(env->best_cpu);
2206 WRITE_ONCE(rq->numa_migrate_on, 0);
2207 }
2208
2209 if (env->best_task)
2210 put_task_struct(env->best_task);
2211 if (p)
2212 get_task_struct(p);
2213
2214 env->best_task = p;
2215 env->best_imp = imp;
2216 env->best_cpu = env->dst_cpu;
2217 }
2218
load_too_imbalanced(long src_load,long dst_load,struct task_numa_env * env)2219 static bool load_too_imbalanced(long src_load, long dst_load,
2220 struct task_numa_env *env)
2221 {
2222 long imb, old_imb;
2223 long orig_src_load, orig_dst_load;
2224 long src_capacity, dst_capacity;
2225
2226 /*
2227 * The load is corrected for the CPU capacity available on each node.
2228 *
2229 * src_load dst_load
2230 * ------------ vs ---------
2231 * src_capacity dst_capacity
2232 */
2233 src_capacity = env->src_stats.compute_capacity;
2234 dst_capacity = env->dst_stats.compute_capacity;
2235
2236 imb = abs(dst_load * src_capacity - src_load * dst_capacity);
2237
2238 orig_src_load = env->src_stats.load;
2239 orig_dst_load = env->dst_stats.load;
2240
2241 old_imb = abs(orig_dst_load * src_capacity - orig_src_load * dst_capacity);
2242
2243 /* Would this change make things worse? */
2244 return (imb > old_imb);
2245 }
2246
2247 /*
2248 * Maximum NUMA importance can be 1998 (2*999);
2249 * SMALLIMP @ 30 would be close to 1998/64.
2250 * Used to deter task migration.
2251 */
2252 #define SMALLIMP 30
2253
2254 /*
2255 * This checks if the overall compute and NUMA accesses of the system would
2256 * be improved if the source tasks was migrated to the target dst_cpu taking
2257 * into account that it might be best if task running on the dst_cpu should
2258 * be exchanged with the source task
2259 */
task_numa_compare(struct task_numa_env * env,long taskimp,long groupimp,bool maymove)2260 static bool task_numa_compare(struct task_numa_env *env,
2261 long taskimp, long groupimp, bool maymove)
2262 {
2263 struct numa_group *cur_ng, *p_ng = deref_curr_numa_group(env->p);
2264 struct rq *dst_rq = cpu_rq(env->dst_cpu);
2265 long imp = p_ng ? groupimp : taskimp;
2266 struct task_struct *cur;
2267 long src_load, dst_load;
2268 int dist = env->dist;
2269 long moveimp = imp;
2270 long load;
2271 bool stopsearch = false;
2272
2273 if (READ_ONCE(dst_rq->numa_migrate_on))
2274 return false;
2275
2276 rcu_read_lock();
2277 cur = rcu_dereference(dst_rq->curr);
2278 if (cur && ((cur->flags & PF_EXITING) || is_idle_task(cur)))
2279 cur = NULL;
2280
2281 /*
2282 * Because we have preemption enabled we can get migrated around and
2283 * end try selecting ourselves (current == env->p) as a swap candidate.
2284 */
2285 if (cur == env->p) {
2286 stopsearch = true;
2287 goto unlock;
2288 }
2289
2290 if (!cur) {
2291 if (maymove && moveimp >= env->best_imp)
2292 goto assign;
2293 else
2294 goto unlock;
2295 }
2296
2297 /* Skip this swap candidate if cannot move to the source cpu. */
2298 if (!cpumask_test_cpu(env->src_cpu, cur->cpus_ptr))
2299 goto unlock;
2300
2301 /*
2302 * Skip this swap candidate if it is not moving to its preferred
2303 * node and the best task is.
2304 */
2305 if (env->best_task &&
2306 env->best_task->numa_preferred_nid == env->src_nid &&
2307 cur->numa_preferred_nid != env->src_nid) {
2308 goto unlock;
2309 }
2310
2311 /*
2312 * "imp" is the fault differential for the source task between the
2313 * source and destination node. Calculate the total differential for
2314 * the source task and potential destination task. The more negative
2315 * the value is, the more remote accesses that would be expected to
2316 * be incurred if the tasks were swapped.
2317 *
2318 * If dst and source tasks are in the same NUMA group, or not
2319 * in any group then look only at task weights.
2320 */
2321 cur_ng = rcu_dereference(cur->numa_group);
2322 if (cur_ng == p_ng) {
2323 /*
2324 * Do not swap within a group or between tasks that have
2325 * no group if there is spare capacity. Swapping does
2326 * not address the load imbalance and helps one task at
2327 * the cost of punishing another.
2328 */
2329 if (env->dst_stats.node_type == node_has_spare)
2330 goto unlock;
2331
2332 imp = taskimp + task_weight(cur, env->src_nid, dist) -
2333 task_weight(cur, env->dst_nid, dist);
2334 /*
2335 * Add some hysteresis to prevent swapping the
2336 * tasks within a group over tiny differences.
2337 */
2338 if (cur_ng)
2339 imp -= imp / 16;
2340 } else {
2341 /*
2342 * Compare the group weights. If a task is all by itself
2343 * (not part of a group), use the task weight instead.
2344 */
2345 if (cur_ng && p_ng)
2346 imp += group_weight(cur, env->src_nid, dist) -
2347 group_weight(cur, env->dst_nid, dist);
2348 else
2349 imp += task_weight(cur, env->src_nid, dist) -
2350 task_weight(cur, env->dst_nid, dist);
2351 }
2352
2353 /* Discourage picking a task already on its preferred node */
2354 if (cur->numa_preferred_nid == env->dst_nid)
2355 imp -= imp / 16;
2356
2357 /*
2358 * Encourage picking a task that moves to its preferred node.
2359 * This potentially makes imp larger than it's maximum of
2360 * 1998 (see SMALLIMP and task_weight for why) but in this
2361 * case, it does not matter.
2362 */
2363 if (cur->numa_preferred_nid == env->src_nid)
2364 imp += imp / 8;
2365
2366 if (maymove && moveimp > imp && moveimp > env->best_imp) {
2367 imp = moveimp;
2368 cur = NULL;
2369 goto assign;
2370 }
2371
2372 /*
2373 * Prefer swapping with a task moving to its preferred node over a
2374 * task that is not.
2375 */
2376 if (env->best_task && cur->numa_preferred_nid == env->src_nid &&
2377 env->best_task->numa_preferred_nid != env->src_nid) {
2378 goto assign;
2379 }
2380
2381 /*
2382 * If the NUMA importance is less than SMALLIMP,
2383 * task migration might only result in ping pong
2384 * of tasks and also hurt performance due to cache
2385 * misses.
2386 */
2387 if (imp < SMALLIMP || imp <= env->best_imp + SMALLIMP / 2)
2388 goto unlock;
2389
2390 /*
2391 * In the overloaded case, try and keep the load balanced.
2392 */
2393 load = task_h_load(env->p) - task_h_load(cur);
2394 if (!load)
2395 goto assign;
2396
2397 dst_load = env->dst_stats.load + load;
2398 src_load = env->src_stats.load - load;
2399
2400 if (load_too_imbalanced(src_load, dst_load, env))
2401 goto unlock;
2402
2403 assign:
2404 /* Evaluate an idle CPU for a task numa move. */
2405 if (!cur) {
2406 int cpu = env->dst_stats.idle_cpu;
2407
2408 /* Nothing cached so current CPU went idle since the search. */
2409 if (cpu < 0)
2410 cpu = env->dst_cpu;
2411
2412 /*
2413 * If the CPU is no longer truly idle and the previous best CPU
2414 * is, keep using it.
2415 */
2416 if (!idle_cpu(cpu) && env->best_cpu >= 0 &&
2417 idle_cpu(env->best_cpu)) {
2418 cpu = env->best_cpu;
2419 }
2420
2421 env->dst_cpu = cpu;
2422 }
2423
2424 task_numa_assign(env, cur, imp);
2425
2426 /*
2427 * If a move to idle is allowed because there is capacity or load
2428 * balance improves then stop the search. While a better swap
2429 * candidate may exist, a search is not free.
2430 */
2431 if (maymove && !cur && env->best_cpu >= 0 && idle_cpu(env->best_cpu))
2432 stopsearch = true;
2433
2434 /*
2435 * If a swap candidate must be identified and the current best task
2436 * moves its preferred node then stop the search.
2437 */
2438 if (!maymove && env->best_task &&
2439 env->best_task->numa_preferred_nid == env->src_nid) {
2440 stopsearch = true;
2441 }
2442 unlock:
2443 rcu_read_unlock();
2444
2445 return stopsearch;
2446 }
2447
task_numa_find_cpu(struct task_numa_env * env,long taskimp,long groupimp)2448 static void task_numa_find_cpu(struct task_numa_env *env,
2449 long taskimp, long groupimp)
2450 {
2451 bool maymove = false;
2452 int cpu;
2453
2454 /*
2455 * If dst node has spare capacity, then check if there is an
2456 * imbalance that would be overruled by the load balancer.
2457 */
2458 if (env->dst_stats.node_type == node_has_spare) {
2459 unsigned int imbalance;
2460 int src_running, dst_running;
2461
2462 /*
2463 * Would movement cause an imbalance? Note that if src has
2464 * more running tasks that the imbalance is ignored as the
2465 * move improves the imbalance from the perspective of the
2466 * CPU load balancer.
2467 * */
2468 src_running = env->src_stats.nr_running - 1;
2469 dst_running = env->dst_stats.nr_running + 1;
2470 imbalance = max(0, dst_running - src_running);
2471 imbalance = adjust_numa_imbalance(imbalance, dst_running,
2472 env->imb_numa_nr);
2473
2474 /* Use idle CPU if there is no imbalance */
2475 if (!imbalance) {
2476 maymove = true;
2477 if (env->dst_stats.idle_cpu >= 0) {
2478 env->dst_cpu = env->dst_stats.idle_cpu;
2479 task_numa_assign(env, NULL, 0);
2480 return;
2481 }
2482 }
2483 } else {
2484 long src_load, dst_load, load;
2485 /*
2486 * If the improvement from just moving env->p direction is better
2487 * than swapping tasks around, check if a move is possible.
2488 */
2489 load = task_h_load(env->p);
2490 dst_load = env->dst_stats.load + load;
2491 src_load = env->src_stats.load - load;
2492 maymove = !load_too_imbalanced(src_load, dst_load, env);
2493 }
2494
2495 for_each_cpu(cpu, cpumask_of_node(env->dst_nid)) {
2496 /* Skip this CPU if the source task cannot migrate */
2497 if (!cpumask_test_cpu(cpu, env->p->cpus_ptr))
2498 continue;
2499
2500 env->dst_cpu = cpu;
2501 if (task_numa_compare(env, taskimp, groupimp, maymove))
2502 break;
2503 }
2504 }
2505
task_numa_migrate(struct task_struct * p)2506 static int task_numa_migrate(struct task_struct *p)
2507 {
2508 struct task_numa_env env = {
2509 .p = p,
2510
2511 .src_cpu = task_cpu(p),
2512 .src_nid = task_node(p),
2513
2514 .imbalance_pct = 112,
2515
2516 .best_task = NULL,
2517 .best_imp = 0,
2518 .best_cpu = -1,
2519 };
2520 unsigned long taskweight, groupweight;
2521 struct sched_domain *sd;
2522 long taskimp, groupimp;
2523 struct numa_group *ng;
2524 struct rq *best_rq;
2525 int nid, ret, dist;
2526
2527 /*
2528 * Pick the lowest SD_NUMA domain, as that would have the smallest
2529 * imbalance and would be the first to start moving tasks about.
2530 *
2531 * And we want to avoid any moving of tasks about, as that would create
2532 * random movement of tasks -- counter the numa conditions we're trying
2533 * to satisfy here.
2534 */
2535 rcu_read_lock();
2536 sd = rcu_dereference(per_cpu(sd_numa, env.src_cpu));
2537 if (sd) {
2538 env.imbalance_pct = 100 + (sd->imbalance_pct - 100) / 2;
2539 env.imb_numa_nr = sd->imb_numa_nr;
2540 }
2541 rcu_read_unlock();
2542
2543 /*
2544 * Cpusets can break the scheduler domain tree into smaller
2545 * balance domains, some of which do not cross NUMA boundaries.
2546 * Tasks that are "trapped" in such domains cannot be migrated
2547 * elsewhere, so there is no point in (re)trying.
2548 */
2549 if (unlikely(!sd)) {
2550 sched_setnuma(p, task_node(p));
2551 return -EINVAL;
2552 }
2553
2554 env.dst_nid = p->numa_preferred_nid;
2555 dist = env.dist = node_distance(env.src_nid, env.dst_nid);
2556 taskweight = task_weight(p, env.src_nid, dist);
2557 groupweight = group_weight(p, env.src_nid, dist);
2558 update_numa_stats(&env, &env.src_stats, env.src_nid, false);
2559 taskimp = task_weight(p, env.dst_nid, dist) - taskweight;
2560 groupimp = group_weight(p, env.dst_nid, dist) - groupweight;
2561 update_numa_stats(&env, &env.dst_stats, env.dst_nid, true);
2562
2563 /* Try to find a spot on the preferred nid. */
2564 task_numa_find_cpu(&env, taskimp, groupimp);
2565
2566 /*
2567 * Look at other nodes in these cases:
2568 * - there is no space available on the preferred_nid
2569 * - the task is part of a numa_group that is interleaved across
2570 * multiple NUMA nodes; in order to better consolidate the group,
2571 * we need to check other locations.
2572 */
2573 ng = deref_curr_numa_group(p);
2574 if (env.best_cpu == -1 || (ng && ng->active_nodes > 1)) {
2575 for_each_node_state(nid, N_CPU) {
2576 if (nid == env.src_nid || nid == p->numa_preferred_nid)
2577 continue;
2578
2579 dist = node_distance(env.src_nid, env.dst_nid);
2580 if (sched_numa_topology_type == NUMA_BACKPLANE &&
2581 dist != env.dist) {
2582 taskweight = task_weight(p, env.src_nid, dist);
2583 groupweight = group_weight(p, env.src_nid, dist);
2584 }
2585
2586 /* Only consider nodes where both task and groups benefit */
2587 taskimp = task_weight(p, nid, dist) - taskweight;
2588 groupimp = group_weight(p, nid, dist) - groupweight;
2589 if (taskimp < 0 && groupimp < 0)
2590 continue;
2591
2592 env.dist = dist;
2593 env.dst_nid = nid;
2594 update_numa_stats(&env, &env.dst_stats, env.dst_nid, true);
2595 task_numa_find_cpu(&env, taskimp, groupimp);
2596 }
2597 }
2598
2599 /*
2600 * If the task is part of a workload that spans multiple NUMA nodes,
2601 * and is migrating into one of the workload's active nodes, remember
2602 * this node as the task's preferred numa node, so the workload can
2603 * settle down.
2604 * A task that migrated to a second choice node will be better off
2605 * trying for a better one later. Do not set the preferred node here.
2606 */
2607 if (ng) {
2608 if (env.best_cpu == -1)
2609 nid = env.src_nid;
2610 else
2611 nid = cpu_to_node(env.best_cpu);
2612
2613 if (nid != p->numa_preferred_nid)
2614 sched_setnuma(p, nid);
2615 }
2616
2617 /* No better CPU than the current one was found. */
2618 if (env.best_cpu == -1) {
2619 trace_sched_stick_numa(p, env.src_cpu, NULL, -1);
2620 return -EAGAIN;
2621 }
2622
2623 best_rq = cpu_rq(env.best_cpu);
2624 if (env.best_task == NULL) {
2625 ret = migrate_task_to(p, env.best_cpu);
2626 WRITE_ONCE(best_rq->numa_migrate_on, 0);
2627 if (ret != 0)
2628 trace_sched_stick_numa(p, env.src_cpu, NULL, env.best_cpu);
2629 return ret;
2630 }
2631
2632 ret = migrate_swap(p, env.best_task, env.best_cpu, env.src_cpu);
2633 WRITE_ONCE(best_rq->numa_migrate_on, 0);
2634
2635 if (ret != 0)
2636 trace_sched_stick_numa(p, env.src_cpu, env.best_task, env.best_cpu);
2637 put_task_struct(env.best_task);
2638 return ret;
2639 }
2640
2641 /* Attempt to migrate a task to a CPU on the preferred node. */
numa_migrate_preferred(struct task_struct * p)2642 static void numa_migrate_preferred(struct task_struct *p)
2643 {
2644 unsigned long interval = HZ;
2645
2646 /* This task has no NUMA fault statistics yet */
2647 if (unlikely(p->numa_preferred_nid == NUMA_NO_NODE || !p->numa_faults))
2648 return;
2649
2650 /* Periodically retry migrating the task to the preferred node */
2651 interval = min(interval, msecs_to_jiffies(p->numa_scan_period) / 16);
2652 p->numa_migrate_retry = jiffies + interval;
2653
2654 /* Success if task is already running on preferred CPU */
2655 if (task_node(p) == p->numa_preferred_nid)
2656 return;
2657
2658 /* Otherwise, try migrate to a CPU on the preferred node */
2659 task_numa_migrate(p);
2660 }
2661
2662 /*
2663 * Find out how many nodes the workload is actively running on. Do this by
2664 * tracking the nodes from which NUMA hinting faults are triggered. This can
2665 * be different from the set of nodes where the workload's memory is currently
2666 * located.
2667 */
numa_group_count_active_nodes(struct numa_group * numa_group)2668 static void numa_group_count_active_nodes(struct numa_group *numa_group)
2669 {
2670 unsigned long faults, max_faults = 0;
2671 int nid, active_nodes = 0;
2672
2673 for_each_node_state(nid, N_CPU) {
2674 faults = group_faults_cpu(numa_group, nid);
2675 if (faults > max_faults)
2676 max_faults = faults;
2677 }
2678
2679 for_each_node_state(nid, N_CPU) {
2680 faults = group_faults_cpu(numa_group, nid);
2681 if (faults * ACTIVE_NODE_FRACTION > max_faults)
2682 active_nodes++;
2683 }
2684
2685 numa_group->max_faults_cpu = max_faults;
2686 numa_group->active_nodes = active_nodes;
2687 }
2688
2689 /*
2690 * When adapting the scan rate, the period is divided into NUMA_PERIOD_SLOTS
2691 * increments. The more local the fault statistics are, the higher the scan
2692 * period will be for the next scan window. If local/(local+remote) ratio is
2693 * below NUMA_PERIOD_THRESHOLD (where range of ratio is 1..NUMA_PERIOD_SLOTS)
2694 * the scan period will decrease. Aim for 70% local accesses.
2695 */
2696 #define NUMA_PERIOD_SLOTS 10
2697 #define NUMA_PERIOD_THRESHOLD 7
2698
2699 /*
2700 * Increase the scan period (slow down scanning) if the majority of
2701 * our memory is already on our local node, or if the majority of
2702 * the page accesses are shared with other processes.
2703 * Otherwise, decrease the scan period.
2704 */
update_task_scan_period(struct task_struct * p,unsigned long shared,unsigned long private)2705 static void update_task_scan_period(struct task_struct *p,
2706 unsigned long shared, unsigned long private)
2707 {
2708 unsigned int period_slot;
2709 int lr_ratio, ps_ratio;
2710 int diff;
2711
2712 unsigned long remote = p->numa_faults_locality[0];
2713 unsigned long local = p->numa_faults_locality[1];
2714
2715 /*
2716 * If there were no record hinting faults then either the task is
2717 * completely idle or all activity is in areas that are not of interest
2718 * to automatic numa balancing. Related to that, if there were failed
2719 * migration then it implies we are migrating too quickly or the local
2720 * node is overloaded. In either case, scan slower
2721 */
2722 if (local + shared == 0 || p->numa_faults_locality[2]) {
2723 p->numa_scan_period = min(p->numa_scan_period_max,
2724 p->numa_scan_period << 1);
2725
2726 p->mm->numa_next_scan = jiffies +
2727 msecs_to_jiffies(p->numa_scan_period);
2728
2729 return;
2730 }
2731
2732 /*
2733 * Prepare to scale scan period relative to the current period.
2734 * == NUMA_PERIOD_THRESHOLD scan period stays the same
2735 * < NUMA_PERIOD_THRESHOLD scan period decreases (scan faster)
2736 * >= NUMA_PERIOD_THRESHOLD scan period increases (scan slower)
2737 */
2738 period_slot = DIV_ROUND_UP(p->numa_scan_period, NUMA_PERIOD_SLOTS);
2739 lr_ratio = (local * NUMA_PERIOD_SLOTS) / (local + remote);
2740 ps_ratio = (private * NUMA_PERIOD_SLOTS) / (private + shared);
2741
2742 if (ps_ratio >= NUMA_PERIOD_THRESHOLD) {
2743 /*
2744 * Most memory accesses are local. There is no need to
2745 * do fast NUMA scanning, since memory is already local.
2746 */
2747 int slot = ps_ratio - NUMA_PERIOD_THRESHOLD;
2748 if (!slot)
2749 slot = 1;
2750 diff = slot * period_slot;
2751 } else if (lr_ratio >= NUMA_PERIOD_THRESHOLD) {
2752 /*
2753 * Most memory accesses are shared with other tasks.
2754 * There is no point in continuing fast NUMA scanning,
2755 * since other tasks may just move the memory elsewhere.
2756 */
2757 int slot = lr_ratio - NUMA_PERIOD_THRESHOLD;
2758 if (!slot)
2759 slot = 1;
2760 diff = slot * period_slot;
2761 } else {
2762 /*
2763 * Private memory faults exceed (SLOTS-THRESHOLD)/SLOTS,
2764 * yet they are not on the local NUMA node. Speed up
2765 * NUMA scanning to get the memory moved over.
2766 */
2767 int ratio = max(lr_ratio, ps_ratio);
2768 diff = -(NUMA_PERIOD_THRESHOLD - ratio) * period_slot;
2769 }
2770
2771 p->numa_scan_period = clamp(p->numa_scan_period + diff,
2772 task_scan_min(p), task_scan_max(p));
2773 memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
2774 }
2775
2776 /*
2777 * Get the fraction of time the task has been running since the last
2778 * NUMA placement cycle. The scheduler keeps similar statistics, but
2779 * decays those on a 32ms period, which is orders of magnitude off
2780 * from the dozens-of-seconds NUMA balancing period. Use the scheduler
2781 * stats only if the task is so new there are no NUMA statistics yet.
2782 */
numa_get_avg_runtime(struct task_struct * p,u64 * period)2783 static u64 numa_get_avg_runtime(struct task_struct *p, u64 *period)
2784 {
2785 u64 runtime, delta, now;
2786 /* Use the start of this time slice to avoid calculations. */
2787 now = p->se.exec_start;
2788 runtime = p->se.sum_exec_runtime;
2789
2790 if (p->last_task_numa_placement) {
2791 delta = runtime - p->last_sum_exec_runtime;
2792 *period = now - p->last_task_numa_placement;
2793
2794 /* Avoid time going backwards, prevent potential divide error: */
2795 if (unlikely((s64)*period < 0))
2796 *period = 0;
2797 } else {
2798 delta = p->se.avg.load_sum;
2799 *period = LOAD_AVG_MAX;
2800 }
2801
2802 p->last_sum_exec_runtime = runtime;
2803 p->last_task_numa_placement = now;
2804
2805 return delta;
2806 }
2807
2808 /*
2809 * Determine the preferred nid for a task in a numa_group. This needs to
2810 * be done in a way that produces consistent results with group_weight,
2811 * otherwise workloads might not converge.
2812 */
preferred_group_nid(struct task_struct * p,int nid)2813 static int preferred_group_nid(struct task_struct *p, int nid)
2814 {
2815 nodemask_t nodes;
2816 int dist;
2817
2818 /* Direct connections between all NUMA nodes. */
2819 if (sched_numa_topology_type == NUMA_DIRECT)
2820 return nid;
2821
2822 /*
2823 * On a system with glueless mesh NUMA topology, group_weight
2824 * scores nodes according to the number of NUMA hinting faults on
2825 * both the node itself, and on nearby nodes.
2826 */
2827 if (sched_numa_topology_type == NUMA_GLUELESS_MESH) {
2828 unsigned long score, max_score = 0;
2829 int node, max_node = nid;
2830
2831 dist = sched_max_numa_distance;
2832
2833 for_each_node_state(node, N_CPU) {
2834 score = group_weight(p, node, dist);
2835 if (score > max_score) {
2836 max_score = score;
2837 max_node = node;
2838 }
2839 }
2840 return max_node;
2841 }
2842
2843 /*
2844 * Finding the preferred nid in a system with NUMA backplane
2845 * interconnect topology is more involved. The goal is to locate
2846 * tasks from numa_groups near each other in the system, and
2847 * untangle workloads from different sides of the system. This requires
2848 * searching down the hierarchy of node groups, recursively searching
2849 * inside the highest scoring group of nodes. The nodemask tricks
2850 * keep the complexity of the search down.
2851 */
2852 nodes = node_states[N_CPU];
2853 for (dist = sched_max_numa_distance; dist > LOCAL_DISTANCE; dist--) {
2854 unsigned long max_faults = 0;
2855 nodemask_t max_group = NODE_MASK_NONE;
2856 int a, b;
2857
2858 /* Are there nodes at this distance from each other? */
2859 if (!find_numa_distance(dist))
2860 continue;
2861
2862 for_each_node_mask(a, nodes) {
2863 unsigned long faults = 0;
2864 nodemask_t this_group;
2865 nodes_clear(this_group);
2866
2867 /* Sum group's NUMA faults; includes a==b case. */
2868 for_each_node_mask(b, nodes) {
2869 if (node_distance(a, b) < dist) {
2870 faults += group_faults(p, b);
2871 node_set(b, this_group);
2872 node_clear(b, nodes);
2873 }
2874 }
2875
2876 /* Remember the top group. */
2877 if (faults > max_faults) {
2878 max_faults = faults;
2879 max_group = this_group;
2880 /*
2881 * subtle: at the smallest distance there is
2882 * just one node left in each "group", the
2883 * winner is the preferred nid.
2884 */
2885 nid = a;
2886 }
2887 }
2888 /* Next round, evaluate the nodes within max_group. */
2889 if (!max_faults)
2890 break;
2891 nodes = max_group;
2892 }
2893 return nid;
2894 }
2895
task_numa_placement(struct task_struct * p)2896 static void task_numa_placement(struct task_struct *p)
2897 {
2898 int seq, nid, max_nid = NUMA_NO_NODE;
2899 unsigned long max_faults = 0;
2900 unsigned long fault_types[2] = { 0, 0 };
2901 unsigned long total_faults;
2902 u64 runtime, period;
2903 spinlock_t *group_lock = NULL;
2904 struct numa_group *ng;
2905
2906 /*
2907 * The p->mm->numa_scan_seq field gets updated without
2908 * exclusive access. Use READ_ONCE() here to ensure
2909 * that the field is read in a single access:
2910 */
2911 seq = READ_ONCE(p->mm->numa_scan_seq);
2912 if (p->numa_scan_seq == seq)
2913 return;
2914 p->numa_scan_seq = seq;
2915 p->numa_scan_period_max = task_scan_max(p);
2916
2917 total_faults = p->numa_faults_locality[0] +
2918 p->numa_faults_locality[1];
2919 runtime = numa_get_avg_runtime(p, &period);
2920
2921 /* If the task is part of a group prevent parallel updates to group stats */
2922 ng = deref_curr_numa_group(p);
2923 if (ng) {
2924 group_lock = &ng->lock;
2925 spin_lock_irq(group_lock);
2926 }
2927
2928 /* Find the node with the highest number of faults */
2929 for_each_online_node(nid) {
2930 /* Keep track of the offsets in numa_faults array */
2931 int mem_idx, membuf_idx, cpu_idx, cpubuf_idx;
2932 unsigned long faults = 0, group_faults = 0;
2933 int priv;
2934
2935 for (priv = 0; priv < NR_NUMA_HINT_FAULT_TYPES; priv++) {
2936 long diff, f_diff, f_weight;
2937
2938 mem_idx = task_faults_idx(NUMA_MEM, nid, priv);
2939 membuf_idx = task_faults_idx(NUMA_MEMBUF, nid, priv);
2940 cpu_idx = task_faults_idx(NUMA_CPU, nid, priv);
2941 cpubuf_idx = task_faults_idx(NUMA_CPUBUF, nid, priv);
2942
2943 /* Decay existing window, copy faults since last scan */
2944 diff = p->numa_faults[membuf_idx] - p->numa_faults[mem_idx] / 2;
2945 fault_types[priv] += p->numa_faults[membuf_idx];
2946 p->numa_faults[membuf_idx] = 0;
2947
2948 /*
2949 * Normalize the faults_from, so all tasks in a group
2950 * count according to CPU use, instead of by the raw
2951 * number of faults. Tasks with little runtime have
2952 * little over-all impact on throughput, and thus their
2953 * faults are less important.
2954 */
2955 f_weight = div64_u64(runtime << 16, period + 1);
2956 f_weight = (f_weight * p->numa_faults[cpubuf_idx]) /
2957 (total_faults + 1);
2958 f_diff = f_weight - p->numa_faults[cpu_idx] / 2;
2959 p->numa_faults[cpubuf_idx] = 0;
2960
2961 p->numa_faults[mem_idx] += diff;
2962 p->numa_faults[cpu_idx] += f_diff;
2963 faults += p->numa_faults[mem_idx];
2964 p->total_numa_faults += diff;
2965 if (ng) {
2966 /*
2967 * safe because we can only change our own group
2968 *
2969 * mem_idx represents the offset for a given
2970 * nid and priv in a specific region because it
2971 * is at the beginning of the numa_faults array.
2972 */
2973 ng->faults[mem_idx] += diff;
2974 ng->faults[cpu_idx] += f_diff;
2975 ng->total_faults += diff;
2976 group_faults += ng->faults[mem_idx];
2977 }
2978 }
2979
2980 if (!ng) {
2981 if (faults > max_faults) {
2982 max_faults = faults;
2983 max_nid = nid;
2984 }
2985 } else if (group_faults > max_faults) {
2986 max_faults = group_faults;
2987 max_nid = nid;
2988 }
2989 }
2990
2991 /* Cannot migrate task to CPU-less node */
2992 max_nid = numa_nearest_node(max_nid, N_CPU);
2993
2994 if (ng) {
2995 numa_group_count_active_nodes(ng);
2996 spin_unlock_irq(group_lock);
2997 max_nid = preferred_group_nid(p, max_nid);
2998 }
2999
3000 if (max_faults) {
3001 /* Set the new preferred node */
3002 if (max_nid != p->numa_preferred_nid)
3003 sched_setnuma(p, max_nid);
3004 }
3005
3006 update_task_scan_period(p, fault_types[0], fault_types[1]);
3007 }
3008
get_numa_group(struct numa_group * grp)3009 static inline int get_numa_group(struct numa_group *grp)
3010 {
3011 return refcount_inc_not_zero(&grp->refcount);
3012 }
3013
put_numa_group(struct numa_group * grp)3014 static inline void put_numa_group(struct numa_group *grp)
3015 {
3016 if (refcount_dec_and_test(&grp->refcount))
3017 kfree_rcu(grp, rcu);
3018 }
3019
task_numa_group(struct task_struct * p,int cpupid,int flags,int * priv)3020 static void task_numa_group(struct task_struct *p, int cpupid, int flags,
3021 int *priv)
3022 {
3023 struct numa_group *grp, *my_grp;
3024 struct task_struct *tsk;
3025 bool join = false;
3026 int cpu = cpupid_to_cpu(cpupid);
3027 int i;
3028
3029 if (unlikely(!deref_curr_numa_group(p))) {
3030 unsigned int size = sizeof(struct numa_group) +
3031 NR_NUMA_HINT_FAULT_STATS *
3032 nr_node_ids * sizeof(unsigned long);
3033
3034 grp = kzalloc(size, GFP_KERNEL | __GFP_NOWARN);
3035 if (!grp)
3036 return;
3037
3038 refcount_set(&grp->refcount, 1);
3039 grp->active_nodes = 1;
3040 grp->max_faults_cpu = 0;
3041 spin_lock_init(&grp->lock);
3042 grp->gid = p->pid;
3043
3044 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
3045 grp->faults[i] = p->numa_faults[i];
3046
3047 grp->total_faults = p->total_numa_faults;
3048
3049 grp->nr_tasks++;
3050 rcu_assign_pointer(p->numa_group, grp);
3051 }
3052
3053 rcu_read_lock();
3054 tsk = READ_ONCE(cpu_rq(cpu)->curr);
3055
3056 if (!cpupid_match_pid(tsk, cpupid))
3057 goto no_join;
3058
3059 grp = rcu_dereference(tsk->numa_group);
3060 if (!grp)
3061 goto no_join;
3062
3063 my_grp = deref_curr_numa_group(p);
3064 if (grp == my_grp)
3065 goto no_join;
3066
3067 /*
3068 * Only join the other group if its bigger; if we're the bigger group,
3069 * the other task will join us.
3070 */
3071 if (my_grp->nr_tasks > grp->nr_tasks)
3072 goto no_join;
3073
3074 /*
3075 * Tie-break on the grp address.
3076 */
3077 if (my_grp->nr_tasks == grp->nr_tasks && my_grp > grp)
3078 goto no_join;
3079
3080 /* Always join threads in the same process. */
3081 if (tsk->mm == current->mm)
3082 join = true;
3083
3084 /* Simple filter to avoid false positives due to PID collisions */
3085 if (flags & TNF_SHARED)
3086 join = true;
3087
3088 /* Update priv based on whether false sharing was detected */
3089 *priv = !join;
3090
3091 if (join && !get_numa_group(grp))
3092 goto no_join;
3093
3094 rcu_read_unlock();
3095
3096 if (!join)
3097 return;
3098
3099 WARN_ON_ONCE(irqs_disabled());
3100 double_lock_irq(&my_grp->lock, &grp->lock);
3101
3102 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++) {
3103 my_grp->faults[i] -= p->numa_faults[i];
3104 grp->faults[i] += p->numa_faults[i];
3105 }
3106 my_grp->total_faults -= p->total_numa_faults;
3107 grp->total_faults += p->total_numa_faults;
3108
3109 my_grp->nr_tasks--;
3110 grp->nr_tasks++;
3111
3112 spin_unlock(&my_grp->lock);
3113 spin_unlock_irq(&grp->lock);
3114
3115 rcu_assign_pointer(p->numa_group, grp);
3116
3117 put_numa_group(my_grp);
3118 return;
3119
3120 no_join:
3121 rcu_read_unlock();
3122 return;
3123 }
3124
3125 /*
3126 * Get rid of NUMA statistics associated with a task (either current or dead).
3127 * If @final is set, the task is dead and has reached refcount zero, so we can
3128 * safely free all relevant data structures. Otherwise, there might be
3129 * concurrent reads from places like load balancing and procfs, and we should
3130 * reset the data back to default state without freeing ->numa_faults.
3131 */
task_numa_free(struct task_struct * p,bool final)3132 void task_numa_free(struct task_struct *p, bool final)
3133 {
3134 /* safe: p either is current or is being freed by current */
3135 struct numa_group *grp = rcu_dereference_raw(p->numa_group);
3136 unsigned long *numa_faults = p->numa_faults;
3137 unsigned long flags;
3138 int i;
3139
3140 if (!numa_faults)
3141 return;
3142
3143 if (grp) {
3144 spin_lock_irqsave(&grp->lock, flags);
3145 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
3146 grp->faults[i] -= p->numa_faults[i];
3147 grp->total_faults -= p->total_numa_faults;
3148
3149 grp->nr_tasks--;
3150 spin_unlock_irqrestore(&grp->lock, flags);
3151 RCU_INIT_POINTER(p->numa_group, NULL);
3152 put_numa_group(grp);
3153 }
3154
3155 if (final) {
3156 p->numa_faults = NULL;
3157 kfree(numa_faults);
3158 } else {
3159 p->total_numa_faults = 0;
3160 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
3161 numa_faults[i] = 0;
3162 }
3163 }
3164
3165 /*
3166 * Got a PROT_NONE fault for a page on @node.
3167 */
task_numa_fault(int last_cpupid,int mem_node,int pages,int flags)3168 void task_numa_fault(int last_cpupid, int mem_node, int pages, int flags)
3169 {
3170 struct task_struct *p = current;
3171 bool migrated = flags & TNF_MIGRATED;
3172 int cpu_node = task_node(current);
3173 int local = !!(flags & TNF_FAULT_LOCAL);
3174 struct numa_group *ng;
3175 int priv;
3176
3177 if (!static_branch_likely(&sched_numa_balancing))
3178 return;
3179
3180 /* for example, ksmd faulting in a user's mm */
3181 if (!p->mm)
3182 return;
3183
3184 /*
3185 * NUMA faults statistics are unnecessary for the slow memory
3186 * node for memory tiering mode.
3187 */
3188 if (!node_is_toptier(mem_node) &&
3189 (sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING ||
3190 !cpupid_valid(last_cpupid)))
3191 return;
3192
3193 /* Allocate buffer to track faults on a per-node basis */
3194 if (unlikely(!p->numa_faults)) {
3195 int size = sizeof(*p->numa_faults) *
3196 NR_NUMA_HINT_FAULT_BUCKETS * nr_node_ids;
3197
3198 p->numa_faults = kzalloc(size, GFP_KERNEL|__GFP_NOWARN);
3199 if (!p->numa_faults)
3200 return;
3201
3202 p->total_numa_faults = 0;
3203 memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
3204 }
3205
3206 /*
3207 * First accesses are treated as private, otherwise consider accesses
3208 * to be private if the accessing pid has not changed
3209 */
3210 if (unlikely(last_cpupid == (-1 & LAST_CPUPID_MASK))) {
3211 priv = 1;
3212 } else {
3213 priv = cpupid_match_pid(p, last_cpupid);
3214 if (!priv && !(flags & TNF_NO_GROUP))
3215 task_numa_group(p, last_cpupid, flags, &priv);
3216 }
3217
3218 /*
3219 * If a workload spans multiple NUMA nodes, a shared fault that
3220 * occurs wholly within the set of nodes that the workload is
3221 * actively using should be counted as local. This allows the
3222 * scan rate to slow down when a workload has settled down.
3223 */
3224 ng = deref_curr_numa_group(p);
3225 if (!priv && !local && ng && ng->active_nodes > 1 &&
3226 numa_is_active_node(cpu_node, ng) &&
3227 numa_is_active_node(mem_node, ng))
3228 local = 1;
3229
3230 /*
3231 * Retry to migrate task to preferred node periodically, in case it
3232 * previously failed, or the scheduler moved us.
3233 */
3234 if (time_after(jiffies, p->numa_migrate_retry)) {
3235 task_numa_placement(p);
3236 numa_migrate_preferred(p);
3237 }
3238
3239 if (migrated)
3240 p->numa_pages_migrated += pages;
3241 if (flags & TNF_MIGRATE_FAIL)
3242 p->numa_faults_locality[2] += pages;
3243
3244 p->numa_faults[task_faults_idx(NUMA_MEMBUF, mem_node, priv)] += pages;
3245 p->numa_faults[task_faults_idx(NUMA_CPUBUF, cpu_node, priv)] += pages;
3246 p->numa_faults_locality[local] += pages;
3247 }
3248
reset_ptenuma_scan(struct task_struct * p)3249 static void reset_ptenuma_scan(struct task_struct *p)
3250 {
3251 /*
3252 * We only did a read acquisition of the mmap sem, so
3253 * p->mm->numa_scan_seq is written to without exclusive access
3254 * and the update is not guaranteed to be atomic. That's not
3255 * much of an issue though, since this is just used for
3256 * statistical sampling. Use READ_ONCE/WRITE_ONCE, which are not
3257 * expensive, to avoid any form of compiler optimizations:
3258 */
3259 WRITE_ONCE(p->mm->numa_scan_seq, READ_ONCE(p->mm->numa_scan_seq) + 1);
3260 p->mm->numa_scan_offset = 0;
3261 }
3262
vma_is_accessed(struct mm_struct * mm,struct vm_area_struct * vma)3263 static bool vma_is_accessed(struct mm_struct *mm, struct vm_area_struct *vma)
3264 {
3265 unsigned long pids;
3266 /*
3267 * Allow unconditional access first two times, so that all the (pages)
3268 * of VMAs get prot_none fault introduced irrespective of accesses.
3269 * This is also done to avoid any side effect of task scanning
3270 * amplifying the unfairness of disjoint set of VMAs' access.
3271 */
3272 if ((READ_ONCE(current->mm->numa_scan_seq) - vma->numab_state->start_scan_seq) < 2)
3273 return true;
3274
3275 pids = vma->numab_state->pids_active[0] | vma->numab_state->pids_active[1];
3276 if (test_bit(hash_32(current->pid, ilog2(BITS_PER_LONG)), &pids))
3277 return true;
3278
3279 /*
3280 * Complete a scan that has already started regardless of PID access, or
3281 * some VMAs may never be scanned in multi-threaded applications:
3282 */
3283 if (mm->numa_scan_offset > vma->vm_start) {
3284 trace_sched_skip_vma_numa(mm, vma, NUMAB_SKIP_IGNORE_PID);
3285 return true;
3286 }
3287
3288 /*
3289 * This vma has not been accessed for a while, and if the number
3290 * the threads in the same process is low, which means no other
3291 * threads can help scan this vma, force a vma scan.
3292 */
3293 if (READ_ONCE(mm->numa_scan_seq) >
3294 (vma->numab_state->prev_scan_seq + get_nr_threads(current)))
3295 return true;
3296
3297 return false;
3298 }
3299
3300 #define VMA_PID_RESET_PERIOD (4 * sysctl_numa_balancing_scan_delay)
3301
3302 /*
3303 * The expensive part of numa migration is done from task_work context.
3304 * Triggered from task_tick_numa().
3305 */
task_numa_work(struct callback_head * work)3306 static void task_numa_work(struct callback_head *work)
3307 {
3308 unsigned long migrate, next_scan, now = jiffies;
3309 struct task_struct *p = current;
3310 struct mm_struct *mm = p->mm;
3311 u64 runtime = p->se.sum_exec_runtime;
3312 struct vm_area_struct *vma;
3313 unsigned long start, end;
3314 unsigned long nr_pte_updates = 0;
3315 long pages, virtpages;
3316 struct vma_iterator vmi;
3317 bool vma_pids_skipped;
3318 bool vma_pids_forced = false;
3319
3320 SCHED_WARN_ON(p != container_of(work, struct task_struct, numa_work));
3321
3322 work->next = work;
3323 /*
3324 * Who cares about NUMA placement when they're dying.
3325 *
3326 * NOTE: make sure not to dereference p->mm before this check,
3327 * exit_task_work() happens _after_ exit_mm() so we could be called
3328 * without p->mm even though we still had it when we enqueued this
3329 * work.
3330 */
3331 if (p->flags & PF_EXITING)
3332 return;
3333
3334 if (!mm->numa_next_scan) {
3335 mm->numa_next_scan = now +
3336 msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
3337 }
3338
3339 /*
3340 * Enforce maximal scan/migration frequency..
3341 */
3342 migrate = mm->numa_next_scan;
3343 if (time_before(now, migrate))
3344 return;
3345
3346 if (p->numa_scan_period == 0) {
3347 p->numa_scan_period_max = task_scan_max(p);
3348 p->numa_scan_period = task_scan_start(p);
3349 }
3350
3351 next_scan = now + msecs_to_jiffies(p->numa_scan_period);
3352 if (!try_cmpxchg(&mm->numa_next_scan, &migrate, next_scan))
3353 return;
3354
3355 /*
3356 * Delay this task enough that another task of this mm will likely win
3357 * the next time around.
3358 */
3359 p->node_stamp += 2 * TICK_NSEC;
3360
3361 pages = sysctl_numa_balancing_scan_size;
3362 pages <<= 20 - PAGE_SHIFT; /* MB in pages */
3363 virtpages = pages * 8; /* Scan up to this much virtual space */
3364 if (!pages)
3365 return;
3366
3367
3368 if (!mmap_read_trylock(mm))
3369 return;
3370
3371 /*
3372 * VMAs are skipped if the current PID has not trapped a fault within
3373 * the VMA recently. Allow scanning to be forced if there is no
3374 * suitable VMA remaining.
3375 */
3376 vma_pids_skipped = false;
3377
3378 retry_pids:
3379 start = mm->numa_scan_offset;
3380 vma_iter_init(&vmi, mm, start);
3381 vma = vma_next(&vmi);
3382 if (!vma) {
3383 reset_ptenuma_scan(p);
3384 start = 0;
3385 vma_iter_set(&vmi, start);
3386 vma = vma_next(&vmi);
3387 }
3388
3389 for (; vma; vma = vma_next(&vmi)) {
3390 if (!vma_migratable(vma) || !vma_policy_mof(vma) ||
3391 is_vm_hugetlb_page(vma) || (vma->vm_flags & VM_MIXEDMAP)) {
3392 trace_sched_skip_vma_numa(mm, vma, NUMAB_SKIP_UNSUITABLE);
3393 continue;
3394 }
3395
3396 /*
3397 * Shared library pages mapped by multiple processes are not
3398 * migrated as it is expected they are cache replicated. Avoid
3399 * hinting faults in read-only file-backed mappings or the vDSO
3400 * as migrating the pages will be of marginal benefit.
3401 */
3402 if (!vma->vm_mm ||
3403 (vma->vm_file && (vma->vm_flags & (VM_READ|VM_WRITE)) == (VM_READ))) {
3404 trace_sched_skip_vma_numa(mm, vma, NUMAB_SKIP_SHARED_RO);
3405 continue;
3406 }
3407
3408 /*
3409 * Skip inaccessible VMAs to avoid any confusion between
3410 * PROT_NONE and NUMA hinting PTEs
3411 */
3412 if (!vma_is_accessible(vma)) {
3413 trace_sched_skip_vma_numa(mm, vma, NUMAB_SKIP_INACCESSIBLE);
3414 continue;
3415 }
3416
3417 /* Initialise new per-VMA NUMAB state. */
3418 if (!vma->numab_state) {
3419 struct vma_numab_state *ptr;
3420
3421 ptr = kzalloc(sizeof(*ptr), GFP_KERNEL);
3422 if (!ptr)
3423 continue;
3424
3425 if (cmpxchg(&vma->numab_state, NULL, ptr)) {
3426 kfree(ptr);
3427 continue;
3428 }
3429
3430 vma->numab_state->start_scan_seq = mm->numa_scan_seq;
3431
3432 vma->numab_state->next_scan = now +
3433 msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
3434
3435 /* Reset happens after 4 times scan delay of scan start */
3436 vma->numab_state->pids_active_reset = vma->numab_state->next_scan +
3437 msecs_to_jiffies(VMA_PID_RESET_PERIOD);
3438
3439 /*
3440 * Ensure prev_scan_seq does not match numa_scan_seq,
3441 * to prevent VMAs being skipped prematurely on the
3442 * first scan:
3443 */
3444 vma->numab_state->prev_scan_seq = mm->numa_scan_seq - 1;
3445 }
3446
3447 /*
3448 * Scanning the VMAs of short lived tasks add more overhead. So
3449 * delay the scan for new VMAs.
3450 */
3451 if (mm->numa_scan_seq && time_before(jiffies,
3452 vma->numab_state->next_scan)) {
3453 trace_sched_skip_vma_numa(mm, vma, NUMAB_SKIP_SCAN_DELAY);
3454 continue;
3455 }
3456
3457 /* RESET access PIDs regularly for old VMAs. */
3458 if (mm->numa_scan_seq &&
3459 time_after(jiffies, vma->numab_state->pids_active_reset)) {
3460 vma->numab_state->pids_active_reset = vma->numab_state->pids_active_reset +
3461 msecs_to_jiffies(VMA_PID_RESET_PERIOD);
3462 vma->numab_state->pids_active[0] = READ_ONCE(vma->numab_state->pids_active[1]);
3463 vma->numab_state->pids_active[1] = 0;
3464 }
3465
3466 /* Do not rescan VMAs twice within the same sequence. */
3467 if (vma->numab_state->prev_scan_seq == mm->numa_scan_seq) {
3468 mm->numa_scan_offset = vma->vm_end;
3469 trace_sched_skip_vma_numa(mm, vma, NUMAB_SKIP_SEQ_COMPLETED);
3470 continue;
3471 }
3472
3473 /*
3474 * Do not scan the VMA if task has not accessed it, unless no other
3475 * VMA candidate exists.
3476 */
3477 if (!vma_pids_forced && !vma_is_accessed(mm, vma)) {
3478 vma_pids_skipped = true;
3479 trace_sched_skip_vma_numa(mm, vma, NUMAB_SKIP_PID_INACTIVE);
3480 continue;
3481 }
3482
3483 do {
3484 start = max(start, vma->vm_start);
3485 end = ALIGN(start + (pages << PAGE_SHIFT), HPAGE_SIZE);
3486 end = min(end, vma->vm_end);
3487 nr_pte_updates = change_prot_numa(vma, start, end);
3488
3489 /*
3490 * Try to scan sysctl_numa_balancing_size worth of
3491 * hpages that have at least one present PTE that
3492 * is not already PTE-numa. If the VMA contains
3493 * areas that are unused or already full of prot_numa
3494 * PTEs, scan up to virtpages, to skip through those
3495 * areas faster.
3496 */
3497 if (nr_pte_updates)
3498 pages -= (end - start) >> PAGE_SHIFT;
3499 virtpages -= (end - start) >> PAGE_SHIFT;
3500
3501 start = end;
3502 if (pages <= 0 || virtpages <= 0)
3503 goto out;
3504
3505 cond_resched();
3506 } while (end != vma->vm_end);
3507
3508 /* VMA scan is complete, do not scan until next sequence. */
3509 vma->numab_state->prev_scan_seq = mm->numa_scan_seq;
3510
3511 /*
3512 * Only force scan within one VMA at a time, to limit the
3513 * cost of scanning a potentially uninteresting VMA.
3514 */
3515 if (vma_pids_forced)
3516 break;
3517 }
3518
3519 /*
3520 * If no VMAs are remaining and VMAs were skipped due to the PID
3521 * not accessing the VMA previously, then force a scan to ensure
3522 * forward progress:
3523 */
3524 if (!vma && !vma_pids_forced && vma_pids_skipped) {
3525 vma_pids_forced = true;
3526 goto retry_pids;
3527 }
3528
3529 out:
3530 /*
3531 * It is possible to reach the end of the VMA list but the last few
3532 * VMAs are not guaranteed to the vma_migratable. If they are not, we
3533 * would find the !migratable VMA on the next scan but not reset the
3534 * scanner to the start so check it now.
3535 */
3536 if (vma)
3537 mm->numa_scan_offset = start;
3538 else
3539 reset_ptenuma_scan(p);
3540 mmap_read_unlock(mm);
3541
3542 /*
3543 * Make sure tasks use at least 32x as much time to run other code
3544 * than they used here, to limit NUMA PTE scanning overhead to 3% max.
3545 * Usually update_task_scan_period slows down scanning enough; on an
3546 * overloaded system we need to limit overhead on a per task basis.
3547 */
3548 if (unlikely(p->se.sum_exec_runtime != runtime)) {
3549 u64 diff = p->se.sum_exec_runtime - runtime;
3550 p->node_stamp += 32 * diff;
3551 }
3552 }
3553
init_numa_balancing(unsigned long clone_flags,struct task_struct * p)3554 void init_numa_balancing(unsigned long clone_flags, struct task_struct *p)
3555 {
3556 int mm_users = 0;
3557 struct mm_struct *mm = p->mm;
3558
3559 if (mm) {
3560 mm_users = atomic_read(&mm->mm_users);
3561 if (mm_users == 1) {
3562 mm->numa_next_scan = jiffies + msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
3563 mm->numa_scan_seq = 0;
3564 }
3565 }
3566 p->node_stamp = 0;
3567 p->numa_scan_seq = mm ? mm->numa_scan_seq : 0;
3568 p->numa_scan_period = sysctl_numa_balancing_scan_delay;
3569 p->numa_migrate_retry = 0;
3570 /* Protect against double add, see task_tick_numa and task_numa_work */
3571 p->numa_work.next = &p->numa_work;
3572 p->numa_faults = NULL;
3573 p->numa_pages_migrated = 0;
3574 p->total_numa_faults = 0;
3575 RCU_INIT_POINTER(p->numa_group, NULL);
3576 p->last_task_numa_placement = 0;
3577 p->last_sum_exec_runtime = 0;
3578
3579 init_task_work(&p->numa_work, task_numa_work);
3580
3581 /* New address space, reset the preferred nid */
3582 if (!(clone_flags & CLONE_VM)) {
3583 p->numa_preferred_nid = NUMA_NO_NODE;
3584 return;
3585 }
3586
3587 /*
3588 * New thread, keep existing numa_preferred_nid which should be copied
3589 * already by arch_dup_task_struct but stagger when scans start.
3590 */
3591 if (mm) {
3592 unsigned int delay;
3593
3594 delay = min_t(unsigned int, task_scan_max(current),
3595 current->numa_scan_period * mm_users * NSEC_PER_MSEC);
3596 delay += 2 * TICK_NSEC;
3597 p->node_stamp = delay;
3598 }
3599 }
3600
3601 /*
3602 * Drive the periodic memory faults..
3603 */
task_tick_numa(struct rq * rq,struct task_struct * curr)3604 static void task_tick_numa(struct rq *rq, struct task_struct *curr)
3605 {
3606 struct callback_head *work = &curr->numa_work;
3607 u64 period, now;
3608
3609 /*
3610 * We don't care about NUMA placement if we don't have memory.
3611 */
3612 if (!curr->mm || (curr->flags & (PF_EXITING | PF_KTHREAD)) || work->next != work)
3613 return;
3614
3615 /*
3616 * Using runtime rather than walltime has the dual advantage that
3617 * we (mostly) drive the selection from busy threads and that the
3618 * task needs to have done some actual work before we bother with
3619 * NUMA placement.
3620 */
3621 now = curr->se.sum_exec_runtime;
3622 period = (u64)curr->numa_scan_period * NSEC_PER_MSEC;
3623
3624 if (now > curr->node_stamp + period) {
3625 if (!curr->node_stamp)
3626 curr->numa_scan_period = task_scan_start(curr);
3627 curr->node_stamp += period;
3628
3629 if (!time_before(jiffies, curr->mm->numa_next_scan))
3630 task_work_add(curr, work, TWA_RESUME);
3631 }
3632 }
3633
update_scan_period(struct task_struct * p,int new_cpu)3634 static void update_scan_period(struct task_struct *p, int new_cpu)
3635 {
3636 int src_nid = cpu_to_node(task_cpu(p));
3637 int dst_nid = cpu_to_node(new_cpu);
3638
3639 if (!static_branch_likely(&sched_numa_balancing))
3640 return;
3641
3642 if (!p->mm || !p->numa_faults || (p->flags & PF_EXITING))
3643 return;
3644
3645 if (src_nid == dst_nid)
3646 return;
3647
3648 /*
3649 * Allow resets if faults have been trapped before one scan
3650 * has completed. This is most likely due to a new task that
3651 * is pulled cross-node due to wakeups or load balancing.
3652 */
3653 if (p->numa_scan_seq) {
3654 /*
3655 * Avoid scan adjustments if moving to the preferred
3656 * node or if the task was not previously running on
3657 * the preferred node.
3658 */
3659 if (dst_nid == p->numa_preferred_nid ||
3660 (p->numa_preferred_nid != NUMA_NO_NODE &&
3661 src_nid != p->numa_preferred_nid))
3662 return;
3663 }
3664
3665 p->numa_scan_period = task_scan_start(p);
3666 }
3667
3668 #else
task_tick_numa(struct rq * rq,struct task_struct * curr)3669 static void task_tick_numa(struct rq *rq, struct task_struct *curr)
3670 {
3671 }
3672
account_numa_enqueue(struct rq * rq,struct task_struct * p)3673 static inline void account_numa_enqueue(struct rq *rq, struct task_struct *p)
3674 {
3675 }
3676
account_numa_dequeue(struct rq * rq,struct task_struct * p)3677 static inline void account_numa_dequeue(struct rq *rq, struct task_struct *p)
3678 {
3679 }
3680
update_scan_period(struct task_struct * p,int new_cpu)3681 static inline void update_scan_period(struct task_struct *p, int new_cpu)
3682 {
3683 }
3684
3685 #endif /* CONFIG_NUMA_BALANCING */
3686
3687 static void
account_entity_enqueue(struct cfs_rq * cfs_rq,struct sched_entity * se)3688 account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
3689 {
3690 update_load_add(&cfs_rq->load, se->load.weight);
3691 #ifdef CONFIG_SMP
3692 if (entity_is_task(se)) {
3693 struct rq *rq = rq_of(cfs_rq);
3694
3695 account_numa_enqueue(rq, task_of(se));
3696 list_add(&se->group_node, &rq->cfs_tasks);
3697 }
3698 #endif
3699 cfs_rq->nr_queued++;
3700 }
3701
3702 static void
account_entity_dequeue(struct cfs_rq * cfs_rq,struct sched_entity * se)3703 account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
3704 {
3705 update_load_sub(&cfs_rq->load, se->load.weight);
3706 #ifdef CONFIG_SMP
3707 if (entity_is_task(se)) {
3708 account_numa_dequeue(rq_of(cfs_rq), task_of(se));
3709 list_del_init(&se->group_node);
3710 }
3711 #endif
3712 cfs_rq->nr_queued--;
3713 }
3714
3715 /*
3716 * Signed add and clamp on underflow.
3717 *
3718 * Explicitly do a load-store to ensure the intermediate value never hits
3719 * memory. This allows lockless observations without ever seeing the negative
3720 * values.
3721 */
3722 #define add_positive(_ptr, _val) do { \
3723 typeof(_ptr) ptr = (_ptr); \
3724 typeof(_val) val = (_val); \
3725 typeof(*ptr) res, var = READ_ONCE(*ptr); \
3726 \
3727 res = var + val; \
3728 \
3729 if (val < 0 && res > var) \
3730 res = 0; \
3731 \
3732 WRITE_ONCE(*ptr, res); \
3733 } while (0)
3734
3735 /*
3736 * Unsigned subtract and clamp on underflow.
3737 *
3738 * Explicitly do a load-store to ensure the intermediate value never hits
3739 * memory. This allows lockless observations without ever seeing the negative
3740 * values.
3741 */
3742 #define sub_positive(_ptr, _val) do { \
3743 typeof(_ptr) ptr = (_ptr); \
3744 typeof(*ptr) val = (_val); \
3745 typeof(*ptr) res, var = READ_ONCE(*ptr); \
3746 res = var - val; \
3747 if (res > var) \
3748 res = 0; \
3749 WRITE_ONCE(*ptr, res); \
3750 } while (0)
3751
3752 /*
3753 * Remove and clamp on negative, from a local variable.
3754 *
3755 * A variant of sub_positive(), which does not use explicit load-store
3756 * and is thus optimized for local variable updates.
3757 */
3758 #define lsub_positive(_ptr, _val) do { \
3759 typeof(_ptr) ptr = (_ptr); \
3760 *ptr -= min_t(typeof(*ptr), *ptr, _val); \
3761 } while (0)
3762
3763 #ifdef CONFIG_SMP
3764 static inline void
enqueue_load_avg(struct cfs_rq * cfs_rq,struct sched_entity * se)3765 enqueue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
3766 {
3767 cfs_rq->avg.load_avg += se->avg.load_avg;
3768 cfs_rq->avg.load_sum += se_weight(se) * se->avg.load_sum;
3769 }
3770
3771 static inline void
dequeue_load_avg(struct cfs_rq * cfs_rq,struct sched_entity * se)3772 dequeue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
3773 {
3774 sub_positive(&cfs_rq->avg.load_avg, se->avg.load_avg);
3775 sub_positive(&cfs_rq->avg.load_sum, se_weight(se) * se->avg.load_sum);
3776 /* See update_cfs_rq_load_avg() */
3777 cfs_rq->avg.load_sum = max_t(u32, cfs_rq->avg.load_sum,
3778 cfs_rq->avg.load_avg * PELT_MIN_DIVIDER);
3779 }
3780 #else
3781 static inline void
enqueue_load_avg(struct cfs_rq * cfs_rq,struct sched_entity * se)3782 enqueue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) { }
3783 static inline void
dequeue_load_avg(struct cfs_rq * cfs_rq,struct sched_entity * se)3784 dequeue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) { }
3785 #endif
3786
3787 static void place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags);
3788
reweight_entity(struct cfs_rq * cfs_rq,struct sched_entity * se,unsigned long weight)3789 static void reweight_entity(struct cfs_rq *cfs_rq, struct sched_entity *se,
3790 unsigned long weight)
3791 {
3792 bool curr = cfs_rq->curr == se;
3793
3794 if (se->on_rq) {
3795 /* commit outstanding execution time */
3796 update_curr(cfs_rq);
3797 update_entity_lag(cfs_rq, se);
3798 se->deadline -= se->vruntime;
3799 se->rel_deadline = 1;
3800 if (!curr)
3801 __dequeue_entity(cfs_rq, se);
3802 update_load_sub(&cfs_rq->load, se->load.weight);
3803 }
3804 dequeue_load_avg(cfs_rq, se);
3805
3806 /*
3807 * Because we keep se->vlag = V - v_i, while: lag_i = w_i*(V - v_i),
3808 * we need to scale se->vlag when w_i changes.
3809 */
3810 se->vlag = div_s64(se->vlag * se->load.weight, weight);
3811 if (se->rel_deadline)
3812 se->deadline = div_s64(se->deadline * se->load.weight, weight);
3813
3814 update_load_set(&se->load, weight);
3815
3816 #ifdef CONFIG_SMP
3817 do {
3818 u32 divider = get_pelt_divider(&se->avg);
3819
3820 se->avg.load_avg = div_u64(se_weight(se) * se->avg.load_sum, divider);
3821 } while (0);
3822 #endif
3823
3824 enqueue_load_avg(cfs_rq, se);
3825 if (se->on_rq) {
3826 update_load_add(&cfs_rq->load, se->load.weight);
3827 place_entity(cfs_rq, se, 0);
3828 if (!curr)
3829 __enqueue_entity(cfs_rq, se);
3830
3831 /*
3832 * The entity's vruntime has been adjusted, so let's check
3833 * whether the rq-wide min_vruntime needs updated too. Since
3834 * the calculations above require stable min_vruntime rather
3835 * than up-to-date one, we do the update at the end of the
3836 * reweight process.
3837 */
3838 update_min_vruntime(cfs_rq);
3839 }
3840 }
3841
reweight_task_fair(struct rq * rq,struct task_struct * p,const struct load_weight * lw)3842 static void reweight_task_fair(struct rq *rq, struct task_struct *p,
3843 const struct load_weight *lw)
3844 {
3845 struct sched_entity *se = &p->se;
3846 struct cfs_rq *cfs_rq = cfs_rq_of(se);
3847 struct load_weight *load = &se->load;
3848
3849 reweight_entity(cfs_rq, se, lw->weight);
3850 load->inv_weight = lw->inv_weight;
3851 }
3852
3853 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq);
3854
3855 #ifdef CONFIG_FAIR_GROUP_SCHED
3856 #ifdef CONFIG_SMP
3857 /*
3858 * All this does is approximate the hierarchical proportion which includes that
3859 * global sum we all love to hate.
3860 *
3861 * That is, the weight of a group entity, is the proportional share of the
3862 * group weight based on the group runqueue weights. That is:
3863 *
3864 * tg->weight * grq->load.weight
3865 * ge->load.weight = ----------------------------- (1)
3866 * \Sum grq->load.weight
3867 *
3868 * Now, because computing that sum is prohibitively expensive to compute (been
3869 * there, done that) we approximate it with this average stuff. The average
3870 * moves slower and therefore the approximation is cheaper and more stable.
3871 *
3872 * So instead of the above, we substitute:
3873 *
3874 * grq->load.weight -> grq->avg.load_avg (2)
3875 *
3876 * which yields the following:
3877 *
3878 * tg->weight * grq->avg.load_avg
3879 * ge->load.weight = ------------------------------ (3)
3880 * tg->load_avg
3881 *
3882 * Where: tg->load_avg ~= \Sum grq->avg.load_avg
3883 *
3884 * That is shares_avg, and it is right (given the approximation (2)).
3885 *
3886 * The problem with it is that because the average is slow -- it was designed
3887 * to be exactly that of course -- this leads to transients in boundary
3888 * conditions. In specific, the case where the group was idle and we start the
3889 * one task. It takes time for our CPU's grq->avg.load_avg to build up,
3890 * yielding bad latency etc..
3891 *
3892 * Now, in that special case (1) reduces to:
3893 *
3894 * tg->weight * grq->load.weight
3895 * ge->load.weight = ----------------------------- = tg->weight (4)
3896 * grp->load.weight
3897 *
3898 * That is, the sum collapses because all other CPUs are idle; the UP scenario.
3899 *
3900 * So what we do is modify our approximation (3) to approach (4) in the (near)
3901 * UP case, like:
3902 *
3903 * ge->load.weight =
3904 *
3905 * tg->weight * grq->load.weight
3906 * --------------------------------------------------- (5)
3907 * tg->load_avg - grq->avg.load_avg + grq->load.weight
3908 *
3909 * But because grq->load.weight can drop to 0, resulting in a divide by zero,
3910 * we need to use grq->avg.load_avg as its lower bound, which then gives:
3911 *
3912 *
3913 * tg->weight * grq->load.weight
3914 * ge->load.weight = ----------------------------- (6)
3915 * tg_load_avg'
3916 *
3917 * Where:
3918 *
3919 * tg_load_avg' = tg->load_avg - grq->avg.load_avg +
3920 * max(grq->load.weight, grq->avg.load_avg)
3921 *
3922 * And that is shares_weight and is icky. In the (near) UP case it approaches
3923 * (4) while in the normal case it approaches (3). It consistently
3924 * overestimates the ge->load.weight and therefore:
3925 *
3926 * \Sum ge->load.weight >= tg->weight
3927 *
3928 * hence icky!
3929 */
calc_group_shares(struct cfs_rq * cfs_rq)3930 static long calc_group_shares(struct cfs_rq *cfs_rq)
3931 {
3932 long tg_weight, tg_shares, load, shares;
3933 struct task_group *tg = cfs_rq->tg;
3934
3935 tg_shares = READ_ONCE(tg->shares);
3936
3937 load = max(scale_load_down(cfs_rq->load.weight), cfs_rq->avg.load_avg);
3938
3939 tg_weight = atomic_long_read(&tg->load_avg);
3940
3941 /* Ensure tg_weight >= load */
3942 tg_weight -= cfs_rq->tg_load_avg_contrib;
3943 tg_weight += load;
3944
3945 shares = (tg_shares * load);
3946 if (tg_weight)
3947 shares /= tg_weight;
3948
3949 /*
3950 * MIN_SHARES has to be unscaled here to support per-CPU partitioning
3951 * of a group with small tg->shares value. It is a floor value which is
3952 * assigned as a minimum load.weight to the sched_entity representing
3953 * the group on a CPU.
3954 *
3955 * E.g. on 64-bit for a group with tg->shares of scale_load(15)=15*1024
3956 * on an 8-core system with 8 tasks each runnable on one CPU shares has
3957 * to be 15*1024*1/8=1920 instead of scale_load(MIN_SHARES)=2*1024. In
3958 * case no task is runnable on a CPU MIN_SHARES=2 should be returned
3959 * instead of 0.
3960 */
3961 return clamp_t(long, shares, MIN_SHARES, tg_shares);
3962 }
3963 #endif /* CONFIG_SMP */
3964
3965 /*
3966 * Recomputes the group entity based on the current state of its group
3967 * runqueue.
3968 */
update_cfs_group(struct sched_entity * se)3969 static void update_cfs_group(struct sched_entity *se)
3970 {
3971 struct cfs_rq *gcfs_rq = group_cfs_rq(se);
3972 long shares;
3973
3974 /*
3975 * When a group becomes empty, preserve its weight. This matters for
3976 * DELAY_DEQUEUE.
3977 */
3978 if (!gcfs_rq || !gcfs_rq->load.weight)
3979 return;
3980
3981 if (throttled_hierarchy(gcfs_rq))
3982 return;
3983
3984 #ifndef CONFIG_SMP
3985 shares = READ_ONCE(gcfs_rq->tg->shares);
3986 #else
3987 shares = calc_group_shares(gcfs_rq);
3988 #endif
3989 if (unlikely(se->load.weight != shares))
3990 reweight_entity(cfs_rq_of(se), se, shares);
3991 }
3992
3993 #else /* CONFIG_FAIR_GROUP_SCHED */
update_cfs_group(struct sched_entity * se)3994 static inline void update_cfs_group(struct sched_entity *se)
3995 {
3996 }
3997 #endif /* CONFIG_FAIR_GROUP_SCHED */
3998
cfs_rq_util_change(struct cfs_rq * cfs_rq,int flags)3999 static inline void cfs_rq_util_change(struct cfs_rq *cfs_rq, int flags)
4000 {
4001 struct rq *rq = rq_of(cfs_rq);
4002
4003 if (&rq->cfs == cfs_rq) {
4004 /*
4005 * There are a few boundary cases this might miss but it should
4006 * get called often enough that that should (hopefully) not be
4007 * a real problem.
4008 *
4009 * It will not get called when we go idle, because the idle
4010 * thread is a different class (!fair), nor will the utilization
4011 * number include things like RT tasks.
4012 *
4013 * As is, the util number is not freq-invariant (we'd have to
4014 * implement arch_scale_freq_capacity() for that).
4015 *
4016 * See cpu_util_cfs().
4017 */
4018 cpufreq_update_util(rq, flags);
4019 }
4020 }
4021
4022 #ifdef CONFIG_SMP
load_avg_is_decayed(struct sched_avg * sa)4023 static inline bool load_avg_is_decayed(struct sched_avg *sa)
4024 {
4025 if (sa->load_sum)
4026 return false;
4027
4028 if (sa->util_sum)
4029 return false;
4030
4031 if (sa->runnable_sum)
4032 return false;
4033
4034 /*
4035 * _avg must be null when _sum are null because _avg = _sum / divider
4036 * Make sure that rounding and/or propagation of PELT values never
4037 * break this.
4038 */
4039 SCHED_WARN_ON(sa->load_avg ||
4040 sa->util_avg ||
4041 sa->runnable_avg);
4042
4043 return true;
4044 }
4045
cfs_rq_last_update_time(struct cfs_rq * cfs_rq)4046 static inline u64 cfs_rq_last_update_time(struct cfs_rq *cfs_rq)
4047 {
4048 return u64_u32_load_copy(cfs_rq->avg.last_update_time,
4049 cfs_rq->last_update_time_copy);
4050 }
4051 #ifdef CONFIG_FAIR_GROUP_SCHED
4052 /*
4053 * Because list_add_leaf_cfs_rq always places a child cfs_rq on the list
4054 * immediately before a parent cfs_rq, and cfs_rqs are removed from the list
4055 * bottom-up, we only have to test whether the cfs_rq before us on the list
4056 * is our child.
4057 * If cfs_rq is not on the list, test whether a child needs its to be added to
4058 * connect a branch to the tree * (see list_add_leaf_cfs_rq() for details).
4059 */
child_cfs_rq_on_list(struct cfs_rq * cfs_rq)4060 static inline bool child_cfs_rq_on_list(struct cfs_rq *cfs_rq)
4061 {
4062 struct cfs_rq *prev_cfs_rq;
4063 struct list_head *prev;
4064 struct rq *rq = rq_of(cfs_rq);
4065
4066 if (cfs_rq->on_list) {
4067 prev = cfs_rq->leaf_cfs_rq_list.prev;
4068 } else {
4069 prev = rq->tmp_alone_branch;
4070 }
4071
4072 if (prev == &rq->leaf_cfs_rq_list)
4073 return false;
4074
4075 prev_cfs_rq = container_of(prev, struct cfs_rq, leaf_cfs_rq_list);
4076
4077 return (prev_cfs_rq->tg->parent == cfs_rq->tg);
4078 }
4079
cfs_rq_is_decayed(struct cfs_rq * cfs_rq)4080 static inline bool cfs_rq_is_decayed(struct cfs_rq *cfs_rq)
4081 {
4082 if (cfs_rq->load.weight)
4083 return false;
4084
4085 if (!load_avg_is_decayed(&cfs_rq->avg))
4086 return false;
4087
4088 if (child_cfs_rq_on_list(cfs_rq))
4089 return false;
4090
4091 return true;
4092 }
4093
4094 /**
4095 * update_tg_load_avg - update the tg's load avg
4096 * @cfs_rq: the cfs_rq whose avg changed
4097 *
4098 * This function 'ensures': tg->load_avg := \Sum tg->cfs_rq[]->avg.load.
4099 * However, because tg->load_avg is a global value there are performance
4100 * considerations.
4101 *
4102 * In order to avoid having to look at the other cfs_rq's, we use a
4103 * differential update where we store the last value we propagated. This in
4104 * turn allows skipping updates if the differential is 'small'.
4105 *
4106 * Updating tg's load_avg is necessary before update_cfs_share().
4107 */
update_tg_load_avg(struct cfs_rq * cfs_rq)4108 static inline void update_tg_load_avg(struct cfs_rq *cfs_rq)
4109 {
4110 long delta;
4111 u64 now;
4112
4113 /*
4114 * No need to update load_avg for root_task_group as it is not used.
4115 */
4116 if (cfs_rq->tg == &root_task_group)
4117 return;
4118
4119 /* rq has been offline and doesn't contribute to the share anymore: */
4120 if (!cpu_active(cpu_of(rq_of(cfs_rq))))
4121 return;
4122
4123 /*
4124 * For migration heavy workloads, access to tg->load_avg can be
4125 * unbound. Limit the update rate to at most once per ms.
4126 */
4127 now = sched_clock_cpu(cpu_of(rq_of(cfs_rq)));
4128 if (now - cfs_rq->last_update_tg_load_avg < NSEC_PER_MSEC)
4129 return;
4130
4131 delta = cfs_rq->avg.load_avg - cfs_rq->tg_load_avg_contrib;
4132 if (abs(delta) > cfs_rq->tg_load_avg_contrib / 64) {
4133 atomic_long_add(delta, &cfs_rq->tg->load_avg);
4134 cfs_rq->tg_load_avg_contrib = cfs_rq->avg.load_avg;
4135 cfs_rq->last_update_tg_load_avg = now;
4136 }
4137 }
4138
clear_tg_load_avg(struct cfs_rq * cfs_rq)4139 static inline void clear_tg_load_avg(struct cfs_rq *cfs_rq)
4140 {
4141 long delta;
4142 u64 now;
4143
4144 /*
4145 * No need to update load_avg for root_task_group, as it is not used.
4146 */
4147 if (cfs_rq->tg == &root_task_group)
4148 return;
4149
4150 now = sched_clock_cpu(cpu_of(rq_of(cfs_rq)));
4151 delta = 0 - cfs_rq->tg_load_avg_contrib;
4152 atomic_long_add(delta, &cfs_rq->tg->load_avg);
4153 cfs_rq->tg_load_avg_contrib = 0;
4154 cfs_rq->last_update_tg_load_avg = now;
4155 }
4156
4157 /* CPU offline callback: */
clear_tg_offline_cfs_rqs(struct rq * rq)4158 static void __maybe_unused clear_tg_offline_cfs_rqs(struct rq *rq)
4159 {
4160 struct task_group *tg;
4161
4162 lockdep_assert_rq_held(rq);
4163
4164 /*
4165 * The rq clock has already been updated in
4166 * set_rq_offline(), so we should skip updating
4167 * the rq clock again in unthrottle_cfs_rq().
4168 */
4169 rq_clock_start_loop_update(rq);
4170
4171 rcu_read_lock();
4172 list_for_each_entry_rcu(tg, &task_groups, list) {
4173 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
4174
4175 clear_tg_load_avg(cfs_rq);
4176 }
4177 rcu_read_unlock();
4178
4179 rq_clock_stop_loop_update(rq);
4180 }
4181
4182 /*
4183 * Called within set_task_rq() right before setting a task's CPU. The
4184 * caller only guarantees p->pi_lock is held; no other assumptions,
4185 * including the state of rq->lock, should be made.
4186 */
set_task_rq_fair(struct sched_entity * se,struct cfs_rq * prev,struct cfs_rq * next)4187 void set_task_rq_fair(struct sched_entity *se,
4188 struct cfs_rq *prev, struct cfs_rq *next)
4189 {
4190 u64 p_last_update_time;
4191 u64 n_last_update_time;
4192
4193 if (!sched_feat(ATTACH_AGE_LOAD))
4194 return;
4195
4196 /*
4197 * We are supposed to update the task to "current" time, then its up to
4198 * date and ready to go to new CPU/cfs_rq. But we have difficulty in
4199 * getting what current time is, so simply throw away the out-of-date
4200 * time. This will result in the wakee task is less decayed, but giving
4201 * the wakee more load sounds not bad.
4202 */
4203 if (!(se->avg.last_update_time && prev))
4204 return;
4205
4206 p_last_update_time = cfs_rq_last_update_time(prev);
4207 n_last_update_time = cfs_rq_last_update_time(next);
4208
4209 __update_load_avg_blocked_se(p_last_update_time, se);
4210 se->avg.last_update_time = n_last_update_time;
4211 }
4212
4213 /*
4214 * When on migration a sched_entity joins/leaves the PELT hierarchy, we need to
4215 * propagate its contribution. The key to this propagation is the invariant
4216 * that for each group:
4217 *
4218 * ge->avg == grq->avg (1)
4219 *
4220 * _IFF_ we look at the pure running and runnable sums. Because they
4221 * represent the very same entity, just at different points in the hierarchy.
4222 *
4223 * Per the above update_tg_cfs_util() and update_tg_cfs_runnable() are trivial
4224 * and simply copies the running/runnable sum over (but still wrong, because
4225 * the group entity and group rq do not have their PELT windows aligned).
4226 *
4227 * However, update_tg_cfs_load() is more complex. So we have:
4228 *
4229 * ge->avg.load_avg = ge->load.weight * ge->avg.runnable_avg (2)
4230 *
4231 * And since, like util, the runnable part should be directly transferable,
4232 * the following would _appear_ to be the straight forward approach:
4233 *
4234 * grq->avg.load_avg = grq->load.weight * grq->avg.runnable_avg (3)
4235 *
4236 * And per (1) we have:
4237 *
4238 * ge->avg.runnable_avg == grq->avg.runnable_avg
4239 *
4240 * Which gives:
4241 *
4242 * ge->load.weight * grq->avg.load_avg
4243 * ge->avg.load_avg = ----------------------------------- (4)
4244 * grq->load.weight
4245 *
4246 * Except that is wrong!
4247 *
4248 * Because while for entities historical weight is not important and we
4249 * really only care about our future and therefore can consider a pure
4250 * runnable sum, runqueues can NOT do this.
4251 *
4252 * We specifically want runqueues to have a load_avg that includes
4253 * historical weights. Those represent the blocked load, the load we expect
4254 * to (shortly) return to us. This only works by keeping the weights as
4255 * integral part of the sum. We therefore cannot decompose as per (3).
4256 *
4257 * Another reason this doesn't work is that runnable isn't a 0-sum entity.
4258 * Imagine a rq with 2 tasks that each are runnable 2/3 of the time. Then the
4259 * rq itself is runnable anywhere between 2/3 and 1 depending on how the
4260 * runnable section of these tasks overlap (or not). If they were to perfectly
4261 * align the rq as a whole would be runnable 2/3 of the time. If however we
4262 * always have at least 1 runnable task, the rq as a whole is always runnable.
4263 *
4264 * So we'll have to approximate.. :/
4265 *
4266 * Given the constraint:
4267 *
4268 * ge->avg.running_sum <= ge->avg.runnable_sum <= LOAD_AVG_MAX
4269 *
4270 * We can construct a rule that adds runnable to a rq by assuming minimal
4271 * overlap.
4272 *
4273 * On removal, we'll assume each task is equally runnable; which yields:
4274 *
4275 * grq->avg.runnable_sum = grq->avg.load_sum / grq->load.weight
4276 *
4277 * XXX: only do this for the part of runnable > running ?
4278 *
4279 */
4280 static inline void
update_tg_cfs_util(struct cfs_rq * cfs_rq,struct sched_entity * se,struct cfs_rq * gcfs_rq)4281 update_tg_cfs_util(struct cfs_rq *cfs_rq, struct sched_entity *se, struct cfs_rq *gcfs_rq)
4282 {
4283 long delta_sum, delta_avg = gcfs_rq->avg.util_avg - se->avg.util_avg;
4284 u32 new_sum, divider;
4285
4286 /* Nothing to update */
4287 if (!delta_avg)
4288 return;
4289
4290 /*
4291 * cfs_rq->avg.period_contrib can be used for both cfs_rq and se.
4292 * See ___update_load_avg() for details.
4293 */
4294 divider = get_pelt_divider(&cfs_rq->avg);
4295
4296
4297 /* Set new sched_entity's utilization */
4298 se->avg.util_avg = gcfs_rq->avg.util_avg;
4299 new_sum = se->avg.util_avg * divider;
4300 delta_sum = (long)new_sum - (long)se->avg.util_sum;
4301 se->avg.util_sum = new_sum;
4302
4303 /* Update parent cfs_rq utilization */
4304 add_positive(&cfs_rq->avg.util_avg, delta_avg);
4305 add_positive(&cfs_rq->avg.util_sum, delta_sum);
4306
4307 /* See update_cfs_rq_load_avg() */
4308 cfs_rq->avg.util_sum = max_t(u32, cfs_rq->avg.util_sum,
4309 cfs_rq->avg.util_avg * PELT_MIN_DIVIDER);
4310 }
4311
4312 static inline void
update_tg_cfs_runnable(struct cfs_rq * cfs_rq,struct sched_entity * se,struct cfs_rq * gcfs_rq)4313 update_tg_cfs_runnable(struct cfs_rq *cfs_rq, struct sched_entity *se, struct cfs_rq *gcfs_rq)
4314 {
4315 long delta_sum, delta_avg = gcfs_rq->avg.runnable_avg - se->avg.runnable_avg;
4316 u32 new_sum, divider;
4317
4318 /* Nothing to update */
4319 if (!delta_avg)
4320 return;
4321
4322 /*
4323 * cfs_rq->avg.period_contrib can be used for both cfs_rq and se.
4324 * See ___update_load_avg() for details.
4325 */
4326 divider = get_pelt_divider(&cfs_rq->avg);
4327
4328 /* Set new sched_entity's runnable */
4329 se->avg.runnable_avg = gcfs_rq->avg.runnable_avg;
4330 new_sum = se->avg.runnable_avg * divider;
4331 delta_sum = (long)new_sum - (long)se->avg.runnable_sum;
4332 se->avg.runnable_sum = new_sum;
4333
4334 /* Update parent cfs_rq runnable */
4335 add_positive(&cfs_rq->avg.runnable_avg, delta_avg);
4336 add_positive(&cfs_rq->avg.runnable_sum, delta_sum);
4337 /* See update_cfs_rq_load_avg() */
4338 cfs_rq->avg.runnable_sum = max_t(u32, cfs_rq->avg.runnable_sum,
4339 cfs_rq->avg.runnable_avg * PELT_MIN_DIVIDER);
4340 }
4341
4342 static inline void
update_tg_cfs_load(struct cfs_rq * cfs_rq,struct sched_entity * se,struct cfs_rq * gcfs_rq)4343 update_tg_cfs_load(struct cfs_rq *cfs_rq, struct sched_entity *se, struct cfs_rq *gcfs_rq)
4344 {
4345 long delta_avg, running_sum, runnable_sum = gcfs_rq->prop_runnable_sum;
4346 unsigned long load_avg;
4347 u64 load_sum = 0;
4348 s64 delta_sum;
4349 u32 divider;
4350
4351 if (!runnable_sum)
4352 return;
4353
4354 gcfs_rq->prop_runnable_sum = 0;
4355
4356 /*
4357 * cfs_rq->avg.period_contrib can be used for both cfs_rq and se.
4358 * See ___update_load_avg() for details.
4359 */
4360 divider = get_pelt_divider(&cfs_rq->avg);
4361
4362 if (runnable_sum >= 0) {
4363 /*
4364 * Add runnable; clip at LOAD_AVG_MAX. Reflects that until
4365 * the CPU is saturated running == runnable.
4366 */
4367 runnable_sum += se->avg.load_sum;
4368 runnable_sum = min_t(long, runnable_sum, divider);
4369 } else {
4370 /*
4371 * Estimate the new unweighted runnable_sum of the gcfs_rq by
4372 * assuming all tasks are equally runnable.
4373 */
4374 if (scale_load_down(gcfs_rq->load.weight)) {
4375 load_sum = div_u64(gcfs_rq->avg.load_sum,
4376 scale_load_down(gcfs_rq->load.weight));
4377 }
4378
4379 /* But make sure to not inflate se's runnable */
4380 runnable_sum = min(se->avg.load_sum, load_sum);
4381 }
4382
4383 /*
4384 * runnable_sum can't be lower than running_sum
4385 * Rescale running sum to be in the same range as runnable sum
4386 * running_sum is in [0 : LOAD_AVG_MAX << SCHED_CAPACITY_SHIFT]
4387 * runnable_sum is in [0 : LOAD_AVG_MAX]
4388 */
4389 running_sum = se->avg.util_sum >> SCHED_CAPACITY_SHIFT;
4390 runnable_sum = max(runnable_sum, running_sum);
4391
4392 load_sum = se_weight(se) * runnable_sum;
4393 load_avg = div_u64(load_sum, divider);
4394
4395 delta_avg = load_avg - se->avg.load_avg;
4396 if (!delta_avg)
4397 return;
4398
4399 delta_sum = load_sum - (s64)se_weight(se) * se->avg.load_sum;
4400
4401 se->avg.load_sum = runnable_sum;
4402 se->avg.load_avg = load_avg;
4403 add_positive(&cfs_rq->avg.load_avg, delta_avg);
4404 add_positive(&cfs_rq->avg.load_sum, delta_sum);
4405 /* See update_cfs_rq_load_avg() */
4406 cfs_rq->avg.load_sum = max_t(u32, cfs_rq->avg.load_sum,
4407 cfs_rq->avg.load_avg * PELT_MIN_DIVIDER);
4408 }
4409
add_tg_cfs_propagate(struct cfs_rq * cfs_rq,long runnable_sum)4410 static inline void add_tg_cfs_propagate(struct cfs_rq *cfs_rq, long runnable_sum)
4411 {
4412 cfs_rq->propagate = 1;
4413 cfs_rq->prop_runnable_sum += runnable_sum;
4414 }
4415
4416 /* Update task and its cfs_rq load average */
propagate_entity_load_avg(struct sched_entity * se)4417 static inline int propagate_entity_load_avg(struct sched_entity *se)
4418 {
4419 struct cfs_rq *cfs_rq, *gcfs_rq;
4420
4421 if (entity_is_task(se))
4422 return 0;
4423
4424 gcfs_rq = group_cfs_rq(se);
4425 if (!gcfs_rq->propagate)
4426 return 0;
4427
4428 gcfs_rq->propagate = 0;
4429
4430 cfs_rq = cfs_rq_of(se);
4431
4432 add_tg_cfs_propagate(cfs_rq, gcfs_rq->prop_runnable_sum);
4433
4434 update_tg_cfs_util(cfs_rq, se, gcfs_rq);
4435 update_tg_cfs_runnable(cfs_rq, se, gcfs_rq);
4436 update_tg_cfs_load(cfs_rq, se, gcfs_rq);
4437
4438 trace_pelt_cfs_tp(cfs_rq);
4439 trace_pelt_se_tp(se);
4440
4441 return 1;
4442 }
4443
4444 /*
4445 * Check if we need to update the load and the utilization of a blocked
4446 * group_entity:
4447 */
skip_blocked_update(struct sched_entity * se)4448 static inline bool skip_blocked_update(struct sched_entity *se)
4449 {
4450 struct cfs_rq *gcfs_rq = group_cfs_rq(se);
4451
4452 /*
4453 * If sched_entity still have not zero load or utilization, we have to
4454 * decay it:
4455 */
4456 if (se->avg.load_avg || se->avg.util_avg)
4457 return false;
4458
4459 /*
4460 * If there is a pending propagation, we have to update the load and
4461 * the utilization of the sched_entity:
4462 */
4463 if (gcfs_rq->propagate)
4464 return false;
4465
4466 /*
4467 * Otherwise, the load and the utilization of the sched_entity is
4468 * already zero and there is no pending propagation, so it will be a
4469 * waste of time to try to decay it:
4470 */
4471 return true;
4472 }
4473
4474 #else /* CONFIG_FAIR_GROUP_SCHED */
4475
update_tg_load_avg(struct cfs_rq * cfs_rq)4476 static inline void update_tg_load_avg(struct cfs_rq *cfs_rq) {}
4477
clear_tg_offline_cfs_rqs(struct rq * rq)4478 static inline void clear_tg_offline_cfs_rqs(struct rq *rq) {}
4479
propagate_entity_load_avg(struct sched_entity * se)4480 static inline int propagate_entity_load_avg(struct sched_entity *se)
4481 {
4482 return 0;
4483 }
4484
add_tg_cfs_propagate(struct cfs_rq * cfs_rq,long runnable_sum)4485 static inline void add_tg_cfs_propagate(struct cfs_rq *cfs_rq, long runnable_sum) {}
4486
4487 #endif /* CONFIG_FAIR_GROUP_SCHED */
4488
4489 #ifdef CONFIG_NO_HZ_COMMON
migrate_se_pelt_lag(struct sched_entity * se)4490 static inline void migrate_se_pelt_lag(struct sched_entity *se)
4491 {
4492 u64 throttled = 0, now, lut;
4493 struct cfs_rq *cfs_rq;
4494 struct rq *rq;
4495 bool is_idle;
4496
4497 if (load_avg_is_decayed(&se->avg))
4498 return;
4499
4500 cfs_rq = cfs_rq_of(se);
4501 rq = rq_of(cfs_rq);
4502
4503 rcu_read_lock();
4504 is_idle = is_idle_task(rcu_dereference(rq->curr));
4505 rcu_read_unlock();
4506
4507 /*
4508 * The lag estimation comes with a cost we don't want to pay all the
4509 * time. Hence, limiting to the case where the source CPU is idle and
4510 * we know we are at the greatest risk to have an outdated clock.
4511 */
4512 if (!is_idle)
4513 return;
4514
4515 /*
4516 * Estimated "now" is: last_update_time + cfs_idle_lag + rq_idle_lag, where:
4517 *
4518 * last_update_time (the cfs_rq's last_update_time)
4519 * = cfs_rq_clock_pelt()@cfs_rq_idle
4520 * = rq_clock_pelt()@cfs_rq_idle
4521 * - cfs->throttled_clock_pelt_time@cfs_rq_idle
4522 *
4523 * cfs_idle_lag (delta between rq's update and cfs_rq's update)
4524 * = rq_clock_pelt()@rq_idle - rq_clock_pelt()@cfs_rq_idle
4525 *
4526 * rq_idle_lag (delta between now and rq's update)
4527 * = sched_clock_cpu() - rq_clock()@rq_idle
4528 *
4529 * We can then write:
4530 *
4531 * now = rq_clock_pelt()@rq_idle - cfs->throttled_clock_pelt_time +
4532 * sched_clock_cpu() - rq_clock()@rq_idle
4533 * Where:
4534 * rq_clock_pelt()@rq_idle is rq->clock_pelt_idle
4535 * rq_clock()@rq_idle is rq->clock_idle
4536 * cfs->throttled_clock_pelt_time@cfs_rq_idle
4537 * is cfs_rq->throttled_pelt_idle
4538 */
4539
4540 #ifdef CONFIG_CFS_BANDWIDTH
4541 throttled = u64_u32_load(cfs_rq->throttled_pelt_idle);
4542 /* The clock has been stopped for throttling */
4543 if (throttled == U64_MAX)
4544 return;
4545 #endif
4546 now = u64_u32_load(rq->clock_pelt_idle);
4547 /*
4548 * Paired with _update_idle_rq_clock_pelt(). It ensures at the worst case
4549 * is observed the old clock_pelt_idle value and the new clock_idle,
4550 * which lead to an underestimation. The opposite would lead to an
4551 * overestimation.
4552 */
4553 smp_rmb();
4554 lut = cfs_rq_last_update_time(cfs_rq);
4555
4556 now -= throttled;
4557 if (now < lut)
4558 /*
4559 * cfs_rq->avg.last_update_time is more recent than our
4560 * estimation, let's use it.
4561 */
4562 now = lut;
4563 else
4564 now += sched_clock_cpu(cpu_of(rq)) - u64_u32_load(rq->clock_idle);
4565
4566 __update_load_avg_blocked_se(now, se);
4567 }
4568 #else
migrate_se_pelt_lag(struct sched_entity * se)4569 static void migrate_se_pelt_lag(struct sched_entity *se) {}
4570 #endif
4571
4572 /**
4573 * update_cfs_rq_load_avg - update the cfs_rq's load/util averages
4574 * @now: current time, as per cfs_rq_clock_pelt()
4575 * @cfs_rq: cfs_rq to update
4576 *
4577 * The cfs_rq avg is the direct sum of all its entities (blocked and runnable)
4578 * avg. The immediate corollary is that all (fair) tasks must be attached.
4579 *
4580 * cfs_rq->avg is used for task_h_load() and update_cfs_share() for example.
4581 *
4582 * Return: true if the load decayed or we removed load.
4583 *
4584 * Since both these conditions indicate a changed cfs_rq->avg.load we should
4585 * call update_tg_load_avg() when this function returns true.
4586 */
4587 static inline int
update_cfs_rq_load_avg(u64 now,struct cfs_rq * cfs_rq)4588 update_cfs_rq_load_avg(u64 now, struct cfs_rq *cfs_rq)
4589 {
4590 unsigned long removed_load = 0, removed_util = 0, removed_runnable = 0;
4591 struct sched_avg *sa = &cfs_rq->avg;
4592 int decayed = 0;
4593
4594 if (cfs_rq->removed.nr) {
4595 unsigned long r;
4596 u32 divider = get_pelt_divider(&cfs_rq->avg);
4597
4598 raw_spin_lock(&cfs_rq->removed.lock);
4599 swap(cfs_rq->removed.util_avg, removed_util);
4600 swap(cfs_rq->removed.load_avg, removed_load);
4601 swap(cfs_rq->removed.runnable_avg, removed_runnable);
4602 cfs_rq->removed.nr = 0;
4603 raw_spin_unlock(&cfs_rq->removed.lock);
4604
4605 r = removed_load;
4606 sub_positive(&sa->load_avg, r);
4607 sub_positive(&sa->load_sum, r * divider);
4608 /* See sa->util_sum below */
4609 sa->load_sum = max_t(u32, sa->load_sum, sa->load_avg * PELT_MIN_DIVIDER);
4610
4611 r = removed_util;
4612 sub_positive(&sa->util_avg, r);
4613 sub_positive(&sa->util_sum, r * divider);
4614 /*
4615 * Because of rounding, se->util_sum might ends up being +1 more than
4616 * cfs->util_sum. Although this is not a problem by itself, detaching
4617 * a lot of tasks with the rounding problem between 2 updates of
4618 * util_avg (~1ms) can make cfs->util_sum becoming null whereas
4619 * cfs_util_avg is not.
4620 * Check that util_sum is still above its lower bound for the new
4621 * util_avg. Given that period_contrib might have moved since the last
4622 * sync, we are only sure that util_sum must be above or equal to
4623 * util_avg * minimum possible divider
4624 */
4625 sa->util_sum = max_t(u32, sa->util_sum, sa->util_avg * PELT_MIN_DIVIDER);
4626
4627 r = removed_runnable;
4628 sub_positive(&sa->runnable_avg, r);
4629 sub_positive(&sa->runnable_sum, r * divider);
4630 /* See sa->util_sum above */
4631 sa->runnable_sum = max_t(u32, sa->runnable_sum,
4632 sa->runnable_avg * PELT_MIN_DIVIDER);
4633
4634 /*
4635 * removed_runnable is the unweighted version of removed_load so we
4636 * can use it to estimate removed_load_sum.
4637 */
4638 add_tg_cfs_propagate(cfs_rq,
4639 -(long)(removed_runnable * divider) >> SCHED_CAPACITY_SHIFT);
4640
4641 decayed = 1;
4642 }
4643
4644 decayed |= __update_load_avg_cfs_rq(now, cfs_rq);
4645 u64_u32_store_copy(sa->last_update_time,
4646 cfs_rq->last_update_time_copy,
4647 sa->last_update_time);
4648 return decayed;
4649 }
4650
4651 /**
4652 * attach_entity_load_avg - attach this entity to its cfs_rq load avg
4653 * @cfs_rq: cfs_rq to attach to
4654 * @se: sched_entity to attach
4655 *
4656 * Must call update_cfs_rq_load_avg() before this, since we rely on
4657 * cfs_rq->avg.last_update_time being current.
4658 */
attach_entity_load_avg(struct cfs_rq * cfs_rq,struct sched_entity * se)4659 static void attach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
4660 {
4661 /*
4662 * cfs_rq->avg.period_contrib can be used for both cfs_rq and se.
4663 * See ___update_load_avg() for details.
4664 */
4665 u32 divider = get_pelt_divider(&cfs_rq->avg);
4666
4667 /*
4668 * When we attach the @se to the @cfs_rq, we must align the decay
4669 * window because without that, really weird and wonderful things can
4670 * happen.
4671 *
4672 * XXX illustrate
4673 */
4674 se->avg.last_update_time = cfs_rq->avg.last_update_time;
4675 se->avg.period_contrib = cfs_rq->avg.period_contrib;
4676
4677 /*
4678 * Hell(o) Nasty stuff.. we need to recompute _sum based on the new
4679 * period_contrib. This isn't strictly correct, but since we're
4680 * entirely outside of the PELT hierarchy, nobody cares if we truncate
4681 * _sum a little.
4682 */
4683 se->avg.util_sum = se->avg.util_avg * divider;
4684
4685 se->avg.runnable_sum = se->avg.runnable_avg * divider;
4686
4687 se->avg.load_sum = se->avg.load_avg * divider;
4688 if (se_weight(se) < se->avg.load_sum)
4689 se->avg.load_sum = div_u64(se->avg.load_sum, se_weight(se));
4690 else
4691 se->avg.load_sum = 1;
4692
4693 enqueue_load_avg(cfs_rq, se);
4694 cfs_rq->avg.util_avg += se->avg.util_avg;
4695 cfs_rq->avg.util_sum += se->avg.util_sum;
4696 cfs_rq->avg.runnable_avg += se->avg.runnable_avg;
4697 cfs_rq->avg.runnable_sum += se->avg.runnable_sum;
4698
4699 add_tg_cfs_propagate(cfs_rq, se->avg.load_sum);
4700
4701 cfs_rq_util_change(cfs_rq, 0);
4702
4703 trace_pelt_cfs_tp(cfs_rq);
4704 }
4705
4706 /**
4707 * detach_entity_load_avg - detach this entity from its cfs_rq load avg
4708 * @cfs_rq: cfs_rq to detach from
4709 * @se: sched_entity to detach
4710 *
4711 * Must call update_cfs_rq_load_avg() before this, since we rely on
4712 * cfs_rq->avg.last_update_time being current.
4713 */
detach_entity_load_avg(struct cfs_rq * cfs_rq,struct sched_entity * se)4714 static void detach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
4715 {
4716 dequeue_load_avg(cfs_rq, se);
4717 sub_positive(&cfs_rq->avg.util_avg, se->avg.util_avg);
4718 sub_positive(&cfs_rq->avg.util_sum, se->avg.util_sum);
4719 /* See update_cfs_rq_load_avg() */
4720 cfs_rq->avg.util_sum = max_t(u32, cfs_rq->avg.util_sum,
4721 cfs_rq->avg.util_avg * PELT_MIN_DIVIDER);
4722
4723 sub_positive(&cfs_rq->avg.runnable_avg, se->avg.runnable_avg);
4724 sub_positive(&cfs_rq->avg.runnable_sum, se->avg.runnable_sum);
4725 /* See update_cfs_rq_load_avg() */
4726 cfs_rq->avg.runnable_sum = max_t(u32, cfs_rq->avg.runnable_sum,
4727 cfs_rq->avg.runnable_avg * PELT_MIN_DIVIDER);
4728
4729 add_tg_cfs_propagate(cfs_rq, -se->avg.load_sum);
4730
4731 cfs_rq_util_change(cfs_rq, 0);
4732
4733 trace_pelt_cfs_tp(cfs_rq);
4734 }
4735
4736 /*
4737 * Optional action to be done while updating the load average
4738 */
4739 #define UPDATE_TG 0x1
4740 #define SKIP_AGE_LOAD 0x2
4741 #define DO_ATTACH 0x4
4742 #define DO_DETACH 0x8
4743
4744 /* Update task and its cfs_rq load average */
update_load_avg(struct cfs_rq * cfs_rq,struct sched_entity * se,int flags)4745 static inline void update_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
4746 {
4747 u64 now = cfs_rq_clock_pelt(cfs_rq);
4748 int decayed;
4749
4750 /*
4751 * Track task load average for carrying it to new CPU after migrated, and
4752 * track group sched_entity load average for task_h_load calculation in migration
4753 */
4754 if (se->avg.last_update_time && !(flags & SKIP_AGE_LOAD))
4755 __update_load_avg_se(now, cfs_rq, se);
4756
4757 decayed = update_cfs_rq_load_avg(now, cfs_rq);
4758 decayed |= propagate_entity_load_avg(se);
4759
4760 if (!se->avg.last_update_time && (flags & DO_ATTACH)) {
4761
4762 /*
4763 * DO_ATTACH means we're here from enqueue_entity().
4764 * !last_update_time means we've passed through
4765 * migrate_task_rq_fair() indicating we migrated.
4766 *
4767 * IOW we're enqueueing a task on a new CPU.
4768 */
4769 attach_entity_load_avg(cfs_rq, se);
4770 update_tg_load_avg(cfs_rq);
4771
4772 } else if (flags & DO_DETACH) {
4773 /*
4774 * DO_DETACH means we're here from dequeue_entity()
4775 * and we are migrating task out of the CPU.
4776 */
4777 detach_entity_load_avg(cfs_rq, se);
4778 update_tg_load_avg(cfs_rq);
4779 } else if (decayed) {
4780 cfs_rq_util_change(cfs_rq, 0);
4781
4782 if (flags & UPDATE_TG)
4783 update_tg_load_avg(cfs_rq);
4784 }
4785 }
4786
4787 /*
4788 * Synchronize entity load avg of dequeued entity without locking
4789 * the previous rq.
4790 */
sync_entity_load_avg(struct sched_entity * se)4791 static void sync_entity_load_avg(struct sched_entity *se)
4792 {
4793 struct cfs_rq *cfs_rq = cfs_rq_of(se);
4794 u64 last_update_time;
4795
4796 last_update_time = cfs_rq_last_update_time(cfs_rq);
4797 __update_load_avg_blocked_se(last_update_time, se);
4798 }
4799
4800 /*
4801 * Task first catches up with cfs_rq, and then subtract
4802 * itself from the cfs_rq (task must be off the queue now).
4803 */
remove_entity_load_avg(struct sched_entity * se)4804 static void remove_entity_load_avg(struct sched_entity *se)
4805 {
4806 struct cfs_rq *cfs_rq = cfs_rq_of(se);
4807 unsigned long flags;
4808
4809 /*
4810 * tasks cannot exit without having gone through wake_up_new_task() ->
4811 * enqueue_task_fair() which will have added things to the cfs_rq,
4812 * so we can remove unconditionally.
4813 */
4814
4815 sync_entity_load_avg(se);
4816
4817 raw_spin_lock_irqsave(&cfs_rq->removed.lock, flags);
4818 ++cfs_rq->removed.nr;
4819 cfs_rq->removed.util_avg += se->avg.util_avg;
4820 cfs_rq->removed.load_avg += se->avg.load_avg;
4821 cfs_rq->removed.runnable_avg += se->avg.runnable_avg;
4822 raw_spin_unlock_irqrestore(&cfs_rq->removed.lock, flags);
4823 }
4824
cfs_rq_runnable_avg(struct cfs_rq * cfs_rq)4825 static inline unsigned long cfs_rq_runnable_avg(struct cfs_rq *cfs_rq)
4826 {
4827 return cfs_rq->avg.runnable_avg;
4828 }
4829
cfs_rq_load_avg(struct cfs_rq * cfs_rq)4830 static inline unsigned long cfs_rq_load_avg(struct cfs_rq *cfs_rq)
4831 {
4832 return cfs_rq->avg.load_avg;
4833 }
4834
4835 static int sched_balance_newidle(struct rq *this_rq, struct rq_flags *rf);
4836
task_util(struct task_struct * p)4837 static inline unsigned long task_util(struct task_struct *p)
4838 {
4839 return READ_ONCE(p->se.avg.util_avg);
4840 }
4841
task_runnable(struct task_struct * p)4842 static inline unsigned long task_runnable(struct task_struct *p)
4843 {
4844 return READ_ONCE(p->se.avg.runnable_avg);
4845 }
4846
_task_util_est(struct task_struct * p)4847 static inline unsigned long _task_util_est(struct task_struct *p)
4848 {
4849 return READ_ONCE(p->se.avg.util_est) & ~UTIL_AVG_UNCHANGED;
4850 }
4851
task_util_est(struct task_struct * p)4852 static inline unsigned long task_util_est(struct task_struct *p)
4853 {
4854 return max(task_util(p), _task_util_est(p));
4855 }
4856
util_est_enqueue(struct cfs_rq * cfs_rq,struct task_struct * p)4857 static inline void util_est_enqueue(struct cfs_rq *cfs_rq,
4858 struct task_struct *p)
4859 {
4860 unsigned int enqueued;
4861
4862 if (!sched_feat(UTIL_EST))
4863 return;
4864
4865 /* Update root cfs_rq's estimated utilization */
4866 enqueued = cfs_rq->avg.util_est;
4867 enqueued += _task_util_est(p);
4868 WRITE_ONCE(cfs_rq->avg.util_est, enqueued);
4869
4870 trace_sched_util_est_cfs_tp(cfs_rq);
4871 }
4872
util_est_dequeue(struct cfs_rq * cfs_rq,struct task_struct * p)4873 static inline void util_est_dequeue(struct cfs_rq *cfs_rq,
4874 struct task_struct *p)
4875 {
4876 unsigned int enqueued;
4877
4878 if (!sched_feat(UTIL_EST))
4879 return;
4880
4881 /* Update root cfs_rq's estimated utilization */
4882 enqueued = cfs_rq->avg.util_est;
4883 enqueued -= min_t(unsigned int, enqueued, _task_util_est(p));
4884 WRITE_ONCE(cfs_rq->avg.util_est, enqueued);
4885
4886 trace_sched_util_est_cfs_tp(cfs_rq);
4887 }
4888
4889 #define UTIL_EST_MARGIN (SCHED_CAPACITY_SCALE / 100)
4890
util_est_update(struct cfs_rq * cfs_rq,struct task_struct * p,bool task_sleep)4891 static inline void util_est_update(struct cfs_rq *cfs_rq,
4892 struct task_struct *p,
4893 bool task_sleep)
4894 {
4895 unsigned int ewma, dequeued, last_ewma_diff;
4896
4897 if (!sched_feat(UTIL_EST))
4898 return;
4899
4900 /*
4901 * Skip update of task's estimated utilization when the task has not
4902 * yet completed an activation, e.g. being migrated.
4903 */
4904 if (!task_sleep)
4905 return;
4906
4907 /* Get current estimate of utilization */
4908 ewma = READ_ONCE(p->se.avg.util_est);
4909
4910 /*
4911 * If the PELT values haven't changed since enqueue time,
4912 * skip the util_est update.
4913 */
4914 if (ewma & UTIL_AVG_UNCHANGED)
4915 return;
4916
4917 /* Get utilization at dequeue */
4918 dequeued = task_util(p);
4919
4920 /*
4921 * Reset EWMA on utilization increases, the moving average is used only
4922 * to smooth utilization decreases.
4923 */
4924 if (ewma <= dequeued) {
4925 ewma = dequeued;
4926 goto done;
4927 }
4928
4929 /*
4930 * Skip update of task's estimated utilization when its members are
4931 * already ~1% close to its last activation value.
4932 */
4933 last_ewma_diff = ewma - dequeued;
4934 if (last_ewma_diff < UTIL_EST_MARGIN)
4935 goto done;
4936
4937 /*
4938 * To avoid overestimation of actual task utilization, skip updates if
4939 * we cannot grant there is idle time in this CPU.
4940 */
4941 if (dequeued > arch_scale_cpu_capacity(cpu_of(rq_of(cfs_rq))))
4942 return;
4943
4944 /*
4945 * To avoid underestimate of task utilization, skip updates of EWMA if
4946 * we cannot grant that thread got all CPU time it wanted.
4947 */
4948 if ((dequeued + UTIL_EST_MARGIN) < task_runnable(p))
4949 goto done;
4950
4951
4952 /*
4953 * Update Task's estimated utilization
4954 *
4955 * When *p completes an activation we can consolidate another sample
4956 * of the task size. This is done by using this value to update the
4957 * Exponential Weighted Moving Average (EWMA):
4958 *
4959 * ewma(t) = w * task_util(p) + (1-w) * ewma(t-1)
4960 * = w * task_util(p) + ewma(t-1) - w * ewma(t-1)
4961 * = w * (task_util(p) - ewma(t-1)) + ewma(t-1)
4962 * = w * ( -last_ewma_diff ) + ewma(t-1)
4963 * = w * (-last_ewma_diff + ewma(t-1) / w)
4964 *
4965 * Where 'w' is the weight of new samples, which is configured to be
4966 * 0.25, thus making w=1/4 ( >>= UTIL_EST_WEIGHT_SHIFT)
4967 */
4968 ewma <<= UTIL_EST_WEIGHT_SHIFT;
4969 ewma -= last_ewma_diff;
4970 ewma >>= UTIL_EST_WEIGHT_SHIFT;
4971 done:
4972 ewma |= UTIL_AVG_UNCHANGED;
4973 WRITE_ONCE(p->se.avg.util_est, ewma);
4974
4975 trace_sched_util_est_se_tp(&p->se);
4976 }
4977
get_actual_cpu_capacity(int cpu)4978 static inline unsigned long get_actual_cpu_capacity(int cpu)
4979 {
4980 unsigned long capacity = arch_scale_cpu_capacity(cpu);
4981
4982 capacity -= max(hw_load_avg(cpu_rq(cpu)), cpufreq_get_pressure(cpu));
4983
4984 return capacity;
4985 }
4986
util_fits_cpu(unsigned long util,unsigned long uclamp_min,unsigned long uclamp_max,int cpu)4987 static inline int util_fits_cpu(unsigned long util,
4988 unsigned long uclamp_min,
4989 unsigned long uclamp_max,
4990 int cpu)
4991 {
4992 unsigned long capacity = capacity_of(cpu);
4993 unsigned long capacity_orig;
4994 bool fits, uclamp_max_fits;
4995
4996 /*
4997 * Check if the real util fits without any uclamp boost/cap applied.
4998 */
4999 fits = fits_capacity(util, capacity);
5000
5001 if (!uclamp_is_used())
5002 return fits;
5003
5004 /*
5005 * We must use arch_scale_cpu_capacity() for comparing against uclamp_min and
5006 * uclamp_max. We only care about capacity pressure (by using
5007 * capacity_of()) for comparing against the real util.
5008 *
5009 * If a task is boosted to 1024 for example, we don't want a tiny
5010 * pressure to skew the check whether it fits a CPU or not.
5011 *
5012 * Similarly if a task is capped to arch_scale_cpu_capacity(little_cpu), it
5013 * should fit a little cpu even if there's some pressure.
5014 *
5015 * Only exception is for HW or cpufreq pressure since it has a direct impact
5016 * on available OPP of the system.
5017 *
5018 * We honour it for uclamp_min only as a drop in performance level
5019 * could result in not getting the requested minimum performance level.
5020 *
5021 * For uclamp_max, we can tolerate a drop in performance level as the
5022 * goal is to cap the task. So it's okay if it's getting less.
5023 */
5024 capacity_orig = arch_scale_cpu_capacity(cpu);
5025
5026 /*
5027 * We want to force a task to fit a cpu as implied by uclamp_max.
5028 * But we do have some corner cases to cater for..
5029 *
5030 *
5031 * C=z
5032 * | ___
5033 * | C=y | |
5034 * |_ _ _ _ _ _ _ _ _ ___ _ _ _ | _ | _ _ _ _ _ uclamp_max
5035 * | C=x | | | |
5036 * | ___ | | | |
5037 * | | | | | | | (util somewhere in this region)
5038 * | | | | | | |
5039 * | | | | | | |
5040 * +----------------------------------------
5041 * CPU0 CPU1 CPU2
5042 *
5043 * In the above example if a task is capped to a specific performance
5044 * point, y, then when:
5045 *
5046 * * util = 80% of x then it does not fit on CPU0 and should migrate
5047 * to CPU1
5048 * * util = 80% of y then it is forced to fit on CPU1 to honour
5049 * uclamp_max request.
5050 *
5051 * which is what we're enforcing here. A task always fits if
5052 * uclamp_max <= capacity_orig. But when uclamp_max > capacity_orig,
5053 * the normal upmigration rules should withhold still.
5054 *
5055 * Only exception is when we are on max capacity, then we need to be
5056 * careful not to block overutilized state. This is so because:
5057 *
5058 * 1. There's no concept of capping at max_capacity! We can't go
5059 * beyond this performance level anyway.
5060 * 2. The system is being saturated when we're operating near
5061 * max capacity, it doesn't make sense to block overutilized.
5062 */
5063 uclamp_max_fits = (capacity_orig == SCHED_CAPACITY_SCALE) && (uclamp_max == SCHED_CAPACITY_SCALE);
5064 uclamp_max_fits = !uclamp_max_fits && (uclamp_max <= capacity_orig);
5065 fits = fits || uclamp_max_fits;
5066
5067 /*
5068 *
5069 * C=z
5070 * | ___ (region a, capped, util >= uclamp_max)
5071 * | C=y | |
5072 * |_ _ _ _ _ _ _ _ _ ___ _ _ _ | _ | _ _ _ _ _ uclamp_max
5073 * | C=x | | | |
5074 * | ___ | | | | (region b, uclamp_min <= util <= uclamp_max)
5075 * |_ _ _|_ _|_ _ _ _| _ | _ _ _| _ | _ _ _ _ _ uclamp_min
5076 * | | | | | | |
5077 * | | | | | | | (region c, boosted, util < uclamp_min)
5078 * +----------------------------------------
5079 * CPU0 CPU1 CPU2
5080 *
5081 * a) If util > uclamp_max, then we're capped, we don't care about
5082 * actual fitness value here. We only care if uclamp_max fits
5083 * capacity without taking margin/pressure into account.
5084 * See comment above.
5085 *
5086 * b) If uclamp_min <= util <= uclamp_max, then the normal
5087 * fits_capacity() rules apply. Except we need to ensure that we
5088 * enforce we remain within uclamp_max, see comment above.
5089 *
5090 * c) If util < uclamp_min, then we are boosted. Same as (b) but we
5091 * need to take into account the boosted value fits the CPU without
5092 * taking margin/pressure into account.
5093 *
5094 * Cases (a) and (b) are handled in the 'fits' variable already. We
5095 * just need to consider an extra check for case (c) after ensuring we
5096 * handle the case uclamp_min > uclamp_max.
5097 */
5098 uclamp_min = min(uclamp_min, uclamp_max);
5099 if (fits && (util < uclamp_min) &&
5100 (uclamp_min > get_actual_cpu_capacity(cpu)))
5101 return -1;
5102
5103 return fits;
5104 }
5105
task_fits_cpu(struct task_struct * p,int cpu)5106 static inline int task_fits_cpu(struct task_struct *p, int cpu)
5107 {
5108 unsigned long uclamp_min = uclamp_eff_value(p, UCLAMP_MIN);
5109 unsigned long uclamp_max = uclamp_eff_value(p, UCLAMP_MAX);
5110 unsigned long util = task_util_est(p);
5111 /*
5112 * Return true only if the cpu fully fits the task requirements, which
5113 * include the utilization but also the performance hints.
5114 */
5115 return (util_fits_cpu(util, uclamp_min, uclamp_max, cpu) > 0);
5116 }
5117
update_misfit_status(struct task_struct * p,struct rq * rq)5118 static inline void update_misfit_status(struct task_struct *p, struct rq *rq)
5119 {
5120 int cpu = cpu_of(rq);
5121
5122 if (!sched_asym_cpucap_active())
5123 return;
5124
5125 /*
5126 * Affinity allows us to go somewhere higher? Or are we on biggest
5127 * available CPU already? Or do we fit into this CPU ?
5128 */
5129 if (!p || (p->nr_cpus_allowed == 1) ||
5130 (arch_scale_cpu_capacity(cpu) == p->max_allowed_capacity) ||
5131 task_fits_cpu(p, cpu)) {
5132
5133 rq->misfit_task_load = 0;
5134 return;
5135 }
5136
5137 /*
5138 * Make sure that misfit_task_load will not be null even if
5139 * task_h_load() returns 0.
5140 */
5141 rq->misfit_task_load = max_t(unsigned long, task_h_load(p), 1);
5142 }
5143
5144 #else /* CONFIG_SMP */
5145
cfs_rq_is_decayed(struct cfs_rq * cfs_rq)5146 static inline bool cfs_rq_is_decayed(struct cfs_rq *cfs_rq)
5147 {
5148 return !cfs_rq->nr_queued;
5149 }
5150
5151 #define UPDATE_TG 0x0
5152 #define SKIP_AGE_LOAD 0x0
5153 #define DO_ATTACH 0x0
5154 #define DO_DETACH 0x0
5155
update_load_avg(struct cfs_rq * cfs_rq,struct sched_entity * se,int not_used1)5156 static inline void update_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se, int not_used1)
5157 {
5158 cfs_rq_util_change(cfs_rq, 0);
5159 }
5160
remove_entity_load_avg(struct sched_entity * se)5161 static inline void remove_entity_load_avg(struct sched_entity *se) {}
5162
5163 static inline void
attach_entity_load_avg(struct cfs_rq * cfs_rq,struct sched_entity * se)5164 attach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {}
5165 static inline void
detach_entity_load_avg(struct cfs_rq * cfs_rq,struct sched_entity * se)5166 detach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {}
5167
sched_balance_newidle(struct rq * rq,struct rq_flags * rf)5168 static inline int sched_balance_newidle(struct rq *rq, struct rq_flags *rf)
5169 {
5170 return 0;
5171 }
5172
5173 static inline void
util_est_enqueue(struct cfs_rq * cfs_rq,struct task_struct * p)5174 util_est_enqueue(struct cfs_rq *cfs_rq, struct task_struct *p) {}
5175
5176 static inline void
util_est_dequeue(struct cfs_rq * cfs_rq,struct task_struct * p)5177 util_est_dequeue(struct cfs_rq *cfs_rq, struct task_struct *p) {}
5178
5179 static inline void
util_est_update(struct cfs_rq * cfs_rq,struct task_struct * p,bool task_sleep)5180 util_est_update(struct cfs_rq *cfs_rq, struct task_struct *p,
5181 bool task_sleep) {}
update_misfit_status(struct task_struct * p,struct rq * rq)5182 static inline void update_misfit_status(struct task_struct *p, struct rq *rq) {}
5183
5184 #endif /* CONFIG_SMP */
5185
__setparam_fair(struct task_struct * p,const struct sched_attr * attr)5186 void __setparam_fair(struct task_struct *p, const struct sched_attr *attr)
5187 {
5188 struct sched_entity *se = &p->se;
5189
5190 p->static_prio = NICE_TO_PRIO(attr->sched_nice);
5191 if (attr->sched_runtime) {
5192 se->custom_slice = 1;
5193 se->slice = clamp_t(u64, attr->sched_runtime,
5194 NSEC_PER_MSEC/10, /* HZ=1000 * 10 */
5195 NSEC_PER_MSEC*100); /* HZ=100 / 10 */
5196 } else {
5197 se->custom_slice = 0;
5198 se->slice = sysctl_sched_base_slice;
5199 }
5200 }
5201
5202 static void
place_entity(struct cfs_rq * cfs_rq,struct sched_entity * se,int flags)5203 place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
5204 {
5205 u64 vslice, vruntime = avg_vruntime(cfs_rq);
5206 s64 lag = 0;
5207
5208 if (!se->custom_slice)
5209 se->slice = sysctl_sched_base_slice;
5210 vslice = calc_delta_fair(se->slice, se);
5211
5212 /*
5213 * Due to how V is constructed as the weighted average of entities,
5214 * adding tasks with positive lag, or removing tasks with negative lag
5215 * will move 'time' backwards, this can screw around with the lag of
5216 * other tasks.
5217 *
5218 * EEVDF: placement strategy #1 / #2
5219 */
5220 if (sched_feat(PLACE_LAG) && cfs_rq->nr_queued && se->vlag) {
5221 struct sched_entity *curr = cfs_rq->curr;
5222 unsigned long load;
5223
5224 lag = se->vlag;
5225
5226 /*
5227 * If we want to place a task and preserve lag, we have to
5228 * consider the effect of the new entity on the weighted
5229 * average and compensate for this, otherwise lag can quickly
5230 * evaporate.
5231 *
5232 * Lag is defined as:
5233 *
5234 * lag_i = S - s_i = w_i * (V - v_i)
5235 *
5236 * To avoid the 'w_i' term all over the place, we only track
5237 * the virtual lag:
5238 *
5239 * vl_i = V - v_i <=> v_i = V - vl_i
5240 *
5241 * And we take V to be the weighted average of all v:
5242 *
5243 * V = (\Sum w_j*v_j) / W
5244 *
5245 * Where W is: \Sum w_j
5246 *
5247 * Then, the weighted average after adding an entity with lag
5248 * vl_i is given by:
5249 *
5250 * V' = (\Sum w_j*v_j + w_i*v_i) / (W + w_i)
5251 * = (W*V + w_i*(V - vl_i)) / (W + w_i)
5252 * = (W*V + w_i*V - w_i*vl_i) / (W + w_i)
5253 * = (V*(W + w_i) - w_i*l) / (W + w_i)
5254 * = V - w_i*vl_i / (W + w_i)
5255 *
5256 * And the actual lag after adding an entity with vl_i is:
5257 *
5258 * vl'_i = V' - v_i
5259 * = V - w_i*vl_i / (W + w_i) - (V - vl_i)
5260 * = vl_i - w_i*vl_i / (W + w_i)
5261 *
5262 * Which is strictly less than vl_i. So in order to preserve lag
5263 * we should inflate the lag before placement such that the
5264 * effective lag after placement comes out right.
5265 *
5266 * As such, invert the above relation for vl'_i to get the vl_i
5267 * we need to use such that the lag after placement is the lag
5268 * we computed before dequeue.
5269 *
5270 * vl'_i = vl_i - w_i*vl_i / (W + w_i)
5271 * = ((W + w_i)*vl_i - w_i*vl_i) / (W + w_i)
5272 *
5273 * (W + w_i)*vl'_i = (W + w_i)*vl_i - w_i*vl_i
5274 * = W*vl_i
5275 *
5276 * vl_i = (W + w_i)*vl'_i / W
5277 */
5278 load = cfs_rq->avg_load;
5279 if (curr && curr->on_rq)
5280 load += scale_load_down(curr->load.weight);
5281
5282 lag *= load + scale_load_down(se->load.weight);
5283 if (WARN_ON_ONCE(!load))
5284 load = 1;
5285 lag = div_s64(lag, load);
5286 }
5287
5288 se->vruntime = vruntime - lag;
5289
5290 if (se->rel_deadline) {
5291 se->deadline += se->vruntime;
5292 se->rel_deadline = 0;
5293 return;
5294 }
5295
5296 /*
5297 * When joining the competition; the existing tasks will be,
5298 * on average, halfway through their slice, as such start tasks
5299 * off with half a slice to ease into the competition.
5300 */
5301 if (sched_feat(PLACE_DEADLINE_INITIAL) && (flags & ENQUEUE_INITIAL))
5302 vslice /= 2;
5303
5304 /*
5305 * EEVDF: vd_i = ve_i + r_i/w_i
5306 */
5307 se->deadline = se->vruntime + vslice;
5308 }
5309
5310 static void check_enqueue_throttle(struct cfs_rq *cfs_rq);
5311 static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq);
5312
5313 static void
5314 requeue_delayed_entity(struct sched_entity *se);
5315
5316 static void
enqueue_entity(struct cfs_rq * cfs_rq,struct sched_entity * se,int flags)5317 enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
5318 {
5319 bool curr = cfs_rq->curr == se;
5320
5321 /*
5322 * If we're the current task, we must renormalise before calling
5323 * update_curr().
5324 */
5325 if (curr)
5326 place_entity(cfs_rq, se, flags);
5327
5328 update_curr(cfs_rq);
5329
5330 /*
5331 * When enqueuing a sched_entity, we must:
5332 * - Update loads to have both entity and cfs_rq synced with now.
5333 * - For group_entity, update its runnable_weight to reflect the new
5334 * h_nr_runnable of its group cfs_rq.
5335 * - For group_entity, update its weight to reflect the new share of
5336 * its group cfs_rq
5337 * - Add its new weight to cfs_rq->load.weight
5338 */
5339 update_load_avg(cfs_rq, se, UPDATE_TG | DO_ATTACH);
5340 se_update_runnable(se);
5341 /*
5342 * XXX update_load_avg() above will have attached us to the pelt sum;
5343 * but update_cfs_group() here will re-adjust the weight and have to
5344 * undo/redo all that. Seems wasteful.
5345 */
5346 update_cfs_group(se);
5347
5348 /*
5349 * XXX now that the entity has been re-weighted, and it's lag adjusted,
5350 * we can place the entity.
5351 */
5352 if (!curr)
5353 place_entity(cfs_rq, se, flags);
5354
5355 account_entity_enqueue(cfs_rq, se);
5356
5357 /* Entity has migrated, no longer consider this task hot */
5358 if (flags & ENQUEUE_MIGRATED)
5359 se->exec_start = 0;
5360
5361 check_schedstat_required();
5362 update_stats_enqueue_fair(cfs_rq, se, flags);
5363 if (!curr)
5364 __enqueue_entity(cfs_rq, se);
5365 se->on_rq = 1;
5366
5367 if (cfs_rq->nr_queued == 1) {
5368 check_enqueue_throttle(cfs_rq);
5369 if (!throttled_hierarchy(cfs_rq)) {
5370 list_add_leaf_cfs_rq(cfs_rq);
5371 } else {
5372 #ifdef CONFIG_CFS_BANDWIDTH
5373 struct rq *rq = rq_of(cfs_rq);
5374
5375 if (cfs_rq_throttled(cfs_rq) && !cfs_rq->throttled_clock)
5376 cfs_rq->throttled_clock = rq_clock(rq);
5377 if (!cfs_rq->throttled_clock_self)
5378 cfs_rq->throttled_clock_self = rq_clock(rq);
5379 #endif
5380 }
5381 }
5382 }
5383
__clear_buddies_next(struct sched_entity * se)5384 static void __clear_buddies_next(struct sched_entity *se)
5385 {
5386 for_each_sched_entity(se) {
5387 struct cfs_rq *cfs_rq = cfs_rq_of(se);
5388 if (cfs_rq->next != se)
5389 break;
5390
5391 cfs_rq->next = NULL;
5392 }
5393 }
5394
clear_buddies(struct cfs_rq * cfs_rq,struct sched_entity * se)5395 static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se)
5396 {
5397 if (cfs_rq->next == se)
5398 __clear_buddies_next(se);
5399 }
5400
5401 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq);
5402
set_delayed(struct sched_entity * se)5403 static void set_delayed(struct sched_entity *se)
5404 {
5405 se->sched_delayed = 1;
5406
5407 /*
5408 * Delayed se of cfs_rq have no tasks queued on them.
5409 * Do not adjust h_nr_runnable since dequeue_entities()
5410 * will account it for blocked tasks.
5411 */
5412 if (!entity_is_task(se))
5413 return;
5414
5415 for_each_sched_entity(se) {
5416 struct cfs_rq *cfs_rq = cfs_rq_of(se);
5417
5418 cfs_rq->h_nr_runnable--;
5419 if (cfs_rq_throttled(cfs_rq))
5420 break;
5421 }
5422 }
5423
clear_delayed(struct sched_entity * se)5424 static void clear_delayed(struct sched_entity *se)
5425 {
5426 se->sched_delayed = 0;
5427
5428 /*
5429 * Delayed se of cfs_rq have no tasks queued on them.
5430 * Do not adjust h_nr_runnable since a dequeue has
5431 * already accounted for it or an enqueue of a task
5432 * below it will account for it in enqueue_task_fair().
5433 */
5434 if (!entity_is_task(se))
5435 return;
5436
5437 for_each_sched_entity(se) {
5438 struct cfs_rq *cfs_rq = cfs_rq_of(se);
5439
5440 cfs_rq->h_nr_runnable++;
5441 if (cfs_rq_throttled(cfs_rq))
5442 break;
5443 }
5444 }
5445
finish_delayed_dequeue_entity(struct sched_entity * se)5446 static inline void finish_delayed_dequeue_entity(struct sched_entity *se)
5447 {
5448 clear_delayed(se);
5449 if (sched_feat(DELAY_ZERO) && se->vlag > 0)
5450 se->vlag = 0;
5451 }
5452
5453 static bool
dequeue_entity(struct cfs_rq * cfs_rq,struct sched_entity * se,int flags)5454 dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
5455 {
5456 bool sleep = flags & DEQUEUE_SLEEP;
5457 int action = UPDATE_TG;
5458
5459 update_curr(cfs_rq);
5460 clear_buddies(cfs_rq, se);
5461
5462 if (flags & DEQUEUE_DELAYED) {
5463 SCHED_WARN_ON(!se->sched_delayed);
5464 } else {
5465 bool delay = sleep;
5466 /*
5467 * DELAY_DEQUEUE relies on spurious wakeups, special task
5468 * states must not suffer spurious wakeups, excempt them.
5469 */
5470 if (flags & DEQUEUE_SPECIAL)
5471 delay = false;
5472
5473 SCHED_WARN_ON(delay && se->sched_delayed);
5474
5475 if (sched_feat(DELAY_DEQUEUE) && delay &&
5476 !entity_eligible(cfs_rq, se)) {
5477 update_load_avg(cfs_rq, se, 0);
5478 set_delayed(se);
5479 return false;
5480 }
5481 }
5482
5483 if (entity_is_task(se) && task_on_rq_migrating(task_of(se)))
5484 action |= DO_DETACH;
5485
5486 /*
5487 * When dequeuing a sched_entity, we must:
5488 * - Update loads to have both entity and cfs_rq synced with now.
5489 * - For group_entity, update its runnable_weight to reflect the new
5490 * h_nr_runnable of its group cfs_rq.
5491 * - Subtract its previous weight from cfs_rq->load.weight.
5492 * - For group entity, update its weight to reflect the new share
5493 * of its group cfs_rq.
5494 */
5495 update_load_avg(cfs_rq, se, action);
5496 se_update_runnable(se);
5497
5498 update_stats_dequeue_fair(cfs_rq, se, flags);
5499
5500 update_entity_lag(cfs_rq, se);
5501 if (sched_feat(PLACE_REL_DEADLINE) && !sleep) {
5502 se->deadline -= se->vruntime;
5503 se->rel_deadline = 1;
5504 }
5505
5506 if (se != cfs_rq->curr)
5507 __dequeue_entity(cfs_rq, se);
5508 se->on_rq = 0;
5509 account_entity_dequeue(cfs_rq, se);
5510
5511 /* return excess runtime on last dequeue */
5512 return_cfs_rq_runtime(cfs_rq);
5513
5514 update_cfs_group(se);
5515
5516 /*
5517 * Now advance min_vruntime if @se was the entity holding it back,
5518 * except when: DEQUEUE_SAVE && !DEQUEUE_MOVE, in this case we'll be
5519 * put back on, and if we advance min_vruntime, we'll be placed back
5520 * further than we started -- i.e. we'll be penalized.
5521 */
5522 if ((flags & (DEQUEUE_SAVE | DEQUEUE_MOVE)) != DEQUEUE_SAVE)
5523 update_min_vruntime(cfs_rq);
5524
5525 if (flags & DEQUEUE_DELAYED)
5526 finish_delayed_dequeue_entity(se);
5527
5528 if (cfs_rq->nr_queued == 0)
5529 update_idle_cfs_rq_clock_pelt(cfs_rq);
5530
5531 return true;
5532 }
5533
5534 static void
set_next_entity(struct cfs_rq * cfs_rq,struct sched_entity * se)5535 set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
5536 {
5537 clear_buddies(cfs_rq, se);
5538
5539 /* 'current' is not kept within the tree. */
5540 if (se->on_rq) {
5541 /*
5542 * Any task has to be enqueued before it get to execute on
5543 * a CPU. So account for the time it spent waiting on the
5544 * runqueue.
5545 */
5546 update_stats_wait_end_fair(cfs_rq, se);
5547 __dequeue_entity(cfs_rq, se);
5548 update_load_avg(cfs_rq, se, UPDATE_TG);
5549
5550 set_protect_slice(se);
5551 }
5552
5553 update_stats_curr_start(cfs_rq, se);
5554 SCHED_WARN_ON(cfs_rq->curr);
5555 cfs_rq->curr = se;
5556
5557 /*
5558 * Track our maximum slice length, if the CPU's load is at
5559 * least twice that of our own weight (i.e. don't track it
5560 * when there are only lesser-weight tasks around):
5561 */
5562 if (schedstat_enabled() &&
5563 rq_of(cfs_rq)->cfs.load.weight >= 2*se->load.weight) {
5564 struct sched_statistics *stats;
5565
5566 stats = __schedstats_from_se(se);
5567 __schedstat_set(stats->slice_max,
5568 max((u64)stats->slice_max,
5569 se->sum_exec_runtime - se->prev_sum_exec_runtime));
5570 }
5571
5572 se->prev_sum_exec_runtime = se->sum_exec_runtime;
5573 }
5574
5575 static int dequeue_entities(struct rq *rq, struct sched_entity *se, int flags);
5576
5577 /*
5578 * Pick the next process, keeping these things in mind, in this order:
5579 * 1) keep things fair between processes/task groups
5580 * 2) pick the "next" process, since someone really wants that to run
5581 * 3) pick the "last" process, for cache locality
5582 * 4) do not run the "skip" process, if something else is available
5583 */
5584 static struct sched_entity *
pick_next_entity(struct rq * rq,struct cfs_rq * cfs_rq)5585 pick_next_entity(struct rq *rq, struct cfs_rq *cfs_rq)
5586 {
5587 struct sched_entity *se;
5588
5589 /*
5590 * Picking the ->next buddy will affect latency but not fairness.
5591 */
5592 if (sched_feat(PICK_BUDDY) &&
5593 cfs_rq->next && entity_eligible(cfs_rq, cfs_rq->next)) {
5594 /* ->next will never be delayed */
5595 SCHED_WARN_ON(cfs_rq->next->sched_delayed);
5596 return cfs_rq->next;
5597 }
5598
5599 se = pick_eevdf(cfs_rq);
5600 if (se->sched_delayed) {
5601 dequeue_entities(rq, se, DEQUEUE_SLEEP | DEQUEUE_DELAYED);
5602 /*
5603 * Must not reference @se again, see __block_task().
5604 */
5605 return NULL;
5606 }
5607 return se;
5608 }
5609
5610 static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq);
5611
put_prev_entity(struct cfs_rq * cfs_rq,struct sched_entity * prev)5612 static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
5613 {
5614 /*
5615 * If still on the runqueue then deactivate_task()
5616 * was not called and update_curr() has to be done:
5617 */
5618 if (prev->on_rq)
5619 update_curr(cfs_rq);
5620
5621 /* throttle cfs_rqs exceeding runtime */
5622 check_cfs_rq_runtime(cfs_rq);
5623
5624 if (prev->on_rq) {
5625 update_stats_wait_start_fair(cfs_rq, prev);
5626 /* Put 'current' back into the tree. */
5627 __enqueue_entity(cfs_rq, prev);
5628 /* in !on_rq case, update occurred at dequeue */
5629 update_load_avg(cfs_rq, prev, 0);
5630 }
5631 SCHED_WARN_ON(cfs_rq->curr != prev);
5632 cfs_rq->curr = NULL;
5633 }
5634
5635 static void
entity_tick(struct cfs_rq * cfs_rq,struct sched_entity * curr,int queued)5636 entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued)
5637 {
5638 /*
5639 * Update run-time statistics of the 'current'.
5640 */
5641 update_curr(cfs_rq);
5642
5643 /*
5644 * Ensure that runnable average is periodically updated.
5645 */
5646 update_load_avg(cfs_rq, curr, UPDATE_TG);
5647 update_cfs_group(curr);
5648
5649 #ifdef CONFIG_SCHED_HRTICK
5650 /*
5651 * queued ticks are scheduled to match the slice, so don't bother
5652 * validating it and just reschedule.
5653 */
5654 if (queued) {
5655 resched_curr_lazy(rq_of(cfs_rq));
5656 return;
5657 }
5658 #endif
5659 }
5660
5661
5662 /**************************************************
5663 * CFS bandwidth control machinery
5664 */
5665
5666 #ifdef CONFIG_CFS_BANDWIDTH
5667
5668 #ifdef CONFIG_JUMP_LABEL
5669 static struct static_key __cfs_bandwidth_used;
5670
cfs_bandwidth_used(void)5671 static inline bool cfs_bandwidth_used(void)
5672 {
5673 return static_key_false(&__cfs_bandwidth_used);
5674 }
5675
cfs_bandwidth_usage_inc(void)5676 void cfs_bandwidth_usage_inc(void)
5677 {
5678 static_key_slow_inc_cpuslocked(&__cfs_bandwidth_used);
5679 }
5680
cfs_bandwidth_usage_dec(void)5681 void cfs_bandwidth_usage_dec(void)
5682 {
5683 static_key_slow_dec_cpuslocked(&__cfs_bandwidth_used);
5684 }
5685 #else /* CONFIG_JUMP_LABEL */
cfs_bandwidth_used(void)5686 static bool cfs_bandwidth_used(void)
5687 {
5688 return true;
5689 }
5690
cfs_bandwidth_usage_inc(void)5691 void cfs_bandwidth_usage_inc(void) {}
cfs_bandwidth_usage_dec(void)5692 void cfs_bandwidth_usage_dec(void) {}
5693 #endif /* CONFIG_JUMP_LABEL */
5694
5695 /*
5696 * default period for cfs group bandwidth.
5697 * default: 0.1s, units: nanoseconds
5698 */
default_cfs_period(void)5699 static inline u64 default_cfs_period(void)
5700 {
5701 return 100000000ULL;
5702 }
5703
sched_cfs_bandwidth_slice(void)5704 static inline u64 sched_cfs_bandwidth_slice(void)
5705 {
5706 return (u64)sysctl_sched_cfs_bandwidth_slice * NSEC_PER_USEC;
5707 }
5708
5709 /*
5710 * Replenish runtime according to assigned quota. We use sched_clock_cpu
5711 * directly instead of rq->clock to avoid adding additional synchronization
5712 * around rq->lock.
5713 *
5714 * requires cfs_b->lock
5715 */
__refill_cfs_bandwidth_runtime(struct cfs_bandwidth * cfs_b)5716 void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b)
5717 {
5718 s64 runtime;
5719
5720 if (unlikely(cfs_b->quota == RUNTIME_INF))
5721 return;
5722
5723 cfs_b->runtime += cfs_b->quota;
5724 runtime = cfs_b->runtime_snap - cfs_b->runtime;
5725 if (runtime > 0) {
5726 cfs_b->burst_time += runtime;
5727 cfs_b->nr_burst++;
5728 }
5729
5730 cfs_b->runtime = min(cfs_b->runtime, cfs_b->quota + cfs_b->burst);
5731 cfs_b->runtime_snap = cfs_b->runtime;
5732 }
5733
tg_cfs_bandwidth(struct task_group * tg)5734 static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
5735 {
5736 return &tg->cfs_bandwidth;
5737 }
5738
5739 /* returns 0 on failure to allocate runtime */
__assign_cfs_rq_runtime(struct cfs_bandwidth * cfs_b,struct cfs_rq * cfs_rq,u64 target_runtime)5740 static int __assign_cfs_rq_runtime(struct cfs_bandwidth *cfs_b,
5741 struct cfs_rq *cfs_rq, u64 target_runtime)
5742 {
5743 u64 min_amount, amount = 0;
5744
5745 lockdep_assert_held(&cfs_b->lock);
5746
5747 /* note: this is a positive sum as runtime_remaining <= 0 */
5748 min_amount = target_runtime - cfs_rq->runtime_remaining;
5749
5750 if (cfs_b->quota == RUNTIME_INF)
5751 amount = min_amount;
5752 else {
5753 start_cfs_bandwidth(cfs_b);
5754
5755 if (cfs_b->runtime > 0) {
5756 amount = min(cfs_b->runtime, min_amount);
5757 cfs_b->runtime -= amount;
5758 cfs_b->idle = 0;
5759 }
5760 }
5761
5762 cfs_rq->runtime_remaining += amount;
5763
5764 return cfs_rq->runtime_remaining > 0;
5765 }
5766
5767 /* returns 0 on failure to allocate runtime */
assign_cfs_rq_runtime(struct cfs_rq * cfs_rq)5768 static int assign_cfs_rq_runtime(struct cfs_rq *cfs_rq)
5769 {
5770 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
5771 int ret;
5772
5773 raw_spin_lock(&cfs_b->lock);
5774 ret = __assign_cfs_rq_runtime(cfs_b, cfs_rq, sched_cfs_bandwidth_slice());
5775 raw_spin_unlock(&cfs_b->lock);
5776
5777 return ret;
5778 }
5779
__account_cfs_rq_runtime(struct cfs_rq * cfs_rq,u64 delta_exec)5780 static void __account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec)
5781 {
5782 /* dock delta_exec before expiring quota (as it could span periods) */
5783 cfs_rq->runtime_remaining -= delta_exec;
5784
5785 if (likely(cfs_rq->runtime_remaining > 0))
5786 return;
5787
5788 if (cfs_rq->throttled)
5789 return;
5790 /*
5791 * if we're unable to extend our runtime we resched so that the active
5792 * hierarchy can be throttled
5793 */
5794 if (!assign_cfs_rq_runtime(cfs_rq) && likely(cfs_rq->curr))
5795 resched_curr(rq_of(cfs_rq));
5796 }
5797
5798 static __always_inline
account_cfs_rq_runtime(struct cfs_rq * cfs_rq,u64 delta_exec)5799 void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec)
5800 {
5801 if (!cfs_bandwidth_used() || !cfs_rq->runtime_enabled)
5802 return;
5803
5804 __account_cfs_rq_runtime(cfs_rq, delta_exec);
5805 }
5806
cfs_rq_throttled(struct cfs_rq * cfs_rq)5807 static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
5808 {
5809 return cfs_bandwidth_used() && cfs_rq->throttled;
5810 }
5811
5812 /* check whether cfs_rq, or any parent, is throttled */
throttled_hierarchy(struct cfs_rq * cfs_rq)5813 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
5814 {
5815 return cfs_bandwidth_used() && cfs_rq->throttle_count;
5816 }
5817
5818 /*
5819 * Ensure that neither of the group entities corresponding to src_cpu or
5820 * dest_cpu are members of a throttled hierarchy when performing group
5821 * load-balance operations.
5822 */
throttled_lb_pair(struct task_group * tg,int src_cpu,int dest_cpu)5823 static inline int throttled_lb_pair(struct task_group *tg,
5824 int src_cpu, int dest_cpu)
5825 {
5826 struct cfs_rq *src_cfs_rq, *dest_cfs_rq;
5827
5828 src_cfs_rq = tg->cfs_rq[src_cpu];
5829 dest_cfs_rq = tg->cfs_rq[dest_cpu];
5830
5831 return throttled_hierarchy(src_cfs_rq) ||
5832 throttled_hierarchy(dest_cfs_rq);
5833 }
5834
tg_unthrottle_up(struct task_group * tg,void * data)5835 static int tg_unthrottle_up(struct task_group *tg, void *data)
5836 {
5837 struct rq *rq = data;
5838 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
5839
5840 cfs_rq->throttle_count--;
5841 if (!cfs_rq->throttle_count) {
5842 cfs_rq->throttled_clock_pelt_time += rq_clock_pelt(rq) -
5843 cfs_rq->throttled_clock_pelt;
5844
5845 /* Add cfs_rq with load or one or more already running entities to the list */
5846 if (!cfs_rq_is_decayed(cfs_rq))
5847 list_add_leaf_cfs_rq(cfs_rq);
5848
5849 if (cfs_rq->throttled_clock_self) {
5850 u64 delta = rq_clock(rq) - cfs_rq->throttled_clock_self;
5851
5852 cfs_rq->throttled_clock_self = 0;
5853
5854 if (SCHED_WARN_ON((s64)delta < 0))
5855 delta = 0;
5856
5857 cfs_rq->throttled_clock_self_time += delta;
5858 }
5859 }
5860
5861 return 0;
5862 }
5863
tg_throttle_down(struct task_group * tg,void * data)5864 static int tg_throttle_down(struct task_group *tg, void *data)
5865 {
5866 struct rq *rq = data;
5867 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
5868
5869 /* group is entering throttled state, stop time */
5870 if (!cfs_rq->throttle_count) {
5871 cfs_rq->throttled_clock_pelt = rq_clock_pelt(rq);
5872 list_del_leaf_cfs_rq(cfs_rq);
5873
5874 SCHED_WARN_ON(cfs_rq->throttled_clock_self);
5875 if (cfs_rq->nr_queued)
5876 cfs_rq->throttled_clock_self = rq_clock(rq);
5877 }
5878 cfs_rq->throttle_count++;
5879
5880 return 0;
5881 }
5882
throttle_cfs_rq(struct cfs_rq * cfs_rq)5883 static bool throttle_cfs_rq(struct cfs_rq *cfs_rq)
5884 {
5885 struct rq *rq = rq_of(cfs_rq);
5886 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
5887 struct sched_entity *se;
5888 long queued_delta, runnable_delta, idle_delta, dequeue = 1;
5889 long rq_h_nr_queued = rq->cfs.h_nr_queued;
5890
5891 raw_spin_lock(&cfs_b->lock);
5892 /* This will start the period timer if necessary */
5893 if (__assign_cfs_rq_runtime(cfs_b, cfs_rq, 1)) {
5894 /*
5895 * We have raced with bandwidth becoming available, and if we
5896 * actually throttled the timer might not unthrottle us for an
5897 * entire period. We additionally needed to make sure that any
5898 * subsequent check_cfs_rq_runtime calls agree not to throttle
5899 * us, as we may commit to do cfs put_prev+pick_next, so we ask
5900 * for 1ns of runtime rather than just check cfs_b.
5901 */
5902 dequeue = 0;
5903 } else {
5904 list_add_tail_rcu(&cfs_rq->throttled_list,
5905 &cfs_b->throttled_cfs_rq);
5906 }
5907 raw_spin_unlock(&cfs_b->lock);
5908
5909 if (!dequeue)
5910 return false; /* Throttle no longer required. */
5911
5912 se = cfs_rq->tg->se[cpu_of(rq_of(cfs_rq))];
5913
5914 /* freeze hierarchy runnable averages while throttled */
5915 rcu_read_lock();
5916 walk_tg_tree_from(cfs_rq->tg, tg_throttle_down, tg_nop, (void *)rq);
5917 rcu_read_unlock();
5918
5919 queued_delta = cfs_rq->h_nr_queued;
5920 runnable_delta = cfs_rq->h_nr_runnable;
5921 idle_delta = cfs_rq->h_nr_idle;
5922 for_each_sched_entity(se) {
5923 struct cfs_rq *qcfs_rq = cfs_rq_of(se);
5924 int flags;
5925
5926 /* throttled entity or throttle-on-deactivate */
5927 if (!se->on_rq)
5928 goto done;
5929
5930 /*
5931 * Abuse SPECIAL to avoid delayed dequeue in this instance.
5932 * This avoids teaching dequeue_entities() about throttled
5933 * entities and keeps things relatively simple.
5934 */
5935 flags = DEQUEUE_SLEEP | DEQUEUE_SPECIAL;
5936 if (se->sched_delayed)
5937 flags |= DEQUEUE_DELAYED;
5938 dequeue_entity(qcfs_rq, se, flags);
5939
5940 if (cfs_rq_is_idle(group_cfs_rq(se)))
5941 idle_delta = cfs_rq->h_nr_queued;
5942
5943 qcfs_rq->h_nr_queued -= queued_delta;
5944 qcfs_rq->h_nr_runnable -= runnable_delta;
5945 qcfs_rq->h_nr_idle -= idle_delta;
5946
5947 if (qcfs_rq->load.weight) {
5948 /* Avoid re-evaluating load for this entity: */
5949 se = parent_entity(se);
5950 break;
5951 }
5952 }
5953
5954 for_each_sched_entity(se) {
5955 struct cfs_rq *qcfs_rq = cfs_rq_of(se);
5956 /* throttled entity or throttle-on-deactivate */
5957 if (!se->on_rq)
5958 goto done;
5959
5960 update_load_avg(qcfs_rq, se, 0);
5961 se_update_runnable(se);
5962
5963 if (cfs_rq_is_idle(group_cfs_rq(se)))
5964 idle_delta = cfs_rq->h_nr_queued;
5965
5966 qcfs_rq->h_nr_queued -= queued_delta;
5967 qcfs_rq->h_nr_runnable -= runnable_delta;
5968 qcfs_rq->h_nr_idle -= idle_delta;
5969 }
5970
5971 /* At this point se is NULL and we are at root level*/
5972 sub_nr_running(rq, queued_delta);
5973
5974 /* Stop the fair server if throttling resulted in no runnable tasks */
5975 if (rq_h_nr_queued && !rq->cfs.h_nr_queued)
5976 dl_server_stop(&rq->fair_server);
5977 done:
5978 /*
5979 * Note: distribution will already see us throttled via the
5980 * throttled-list. rq->lock protects completion.
5981 */
5982 cfs_rq->throttled = 1;
5983 SCHED_WARN_ON(cfs_rq->throttled_clock);
5984 if (cfs_rq->nr_queued)
5985 cfs_rq->throttled_clock = rq_clock(rq);
5986 return true;
5987 }
5988
unthrottle_cfs_rq(struct cfs_rq * cfs_rq)5989 void unthrottle_cfs_rq(struct cfs_rq *cfs_rq)
5990 {
5991 struct rq *rq = rq_of(cfs_rq);
5992 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
5993 struct sched_entity *se;
5994 long queued_delta, runnable_delta, idle_delta;
5995 long rq_h_nr_queued = rq->cfs.h_nr_queued;
5996
5997 se = cfs_rq->tg->se[cpu_of(rq)];
5998
5999 cfs_rq->throttled = 0;
6000
6001 update_rq_clock(rq);
6002
6003 raw_spin_lock(&cfs_b->lock);
6004 if (cfs_rq->throttled_clock) {
6005 cfs_b->throttled_time += rq_clock(rq) - cfs_rq->throttled_clock;
6006 cfs_rq->throttled_clock = 0;
6007 }
6008 list_del_rcu(&cfs_rq->throttled_list);
6009 raw_spin_unlock(&cfs_b->lock);
6010
6011 /* update hierarchical throttle state */
6012 walk_tg_tree_from(cfs_rq->tg, tg_nop, tg_unthrottle_up, (void *)rq);
6013
6014 if (!cfs_rq->load.weight) {
6015 if (!cfs_rq->on_list)
6016 return;
6017 /*
6018 * Nothing to run but something to decay (on_list)?
6019 * Complete the branch.
6020 */
6021 for_each_sched_entity(se) {
6022 if (list_add_leaf_cfs_rq(cfs_rq_of(se)))
6023 break;
6024 }
6025 goto unthrottle_throttle;
6026 }
6027
6028 queued_delta = cfs_rq->h_nr_queued;
6029 runnable_delta = cfs_rq->h_nr_runnable;
6030 idle_delta = cfs_rq->h_nr_idle;
6031 for_each_sched_entity(se) {
6032 struct cfs_rq *qcfs_rq = cfs_rq_of(se);
6033
6034 /* Handle any unfinished DELAY_DEQUEUE business first. */
6035 if (se->sched_delayed) {
6036 int flags = DEQUEUE_SLEEP | DEQUEUE_DELAYED;
6037
6038 dequeue_entity(qcfs_rq, se, flags);
6039 } else if (se->on_rq)
6040 break;
6041 enqueue_entity(qcfs_rq, se, ENQUEUE_WAKEUP);
6042
6043 if (cfs_rq_is_idle(group_cfs_rq(se)))
6044 idle_delta = cfs_rq->h_nr_queued;
6045
6046 qcfs_rq->h_nr_queued += queued_delta;
6047 qcfs_rq->h_nr_runnable += runnable_delta;
6048 qcfs_rq->h_nr_idle += idle_delta;
6049
6050 /* end evaluation on encountering a throttled cfs_rq */
6051 if (cfs_rq_throttled(qcfs_rq))
6052 goto unthrottle_throttle;
6053 }
6054
6055 for_each_sched_entity(se) {
6056 struct cfs_rq *qcfs_rq = cfs_rq_of(se);
6057
6058 update_load_avg(qcfs_rq, se, UPDATE_TG);
6059 se_update_runnable(se);
6060
6061 if (cfs_rq_is_idle(group_cfs_rq(se)))
6062 idle_delta = cfs_rq->h_nr_queued;
6063
6064 qcfs_rq->h_nr_queued += queued_delta;
6065 qcfs_rq->h_nr_runnable += runnable_delta;
6066 qcfs_rq->h_nr_idle += idle_delta;
6067
6068 /* end evaluation on encountering a throttled cfs_rq */
6069 if (cfs_rq_throttled(qcfs_rq))
6070 goto unthrottle_throttle;
6071 }
6072
6073 /* Start the fair server if un-throttling resulted in new runnable tasks */
6074 if (!rq_h_nr_queued && rq->cfs.h_nr_queued)
6075 dl_server_start(&rq->fair_server);
6076
6077 /* At this point se is NULL and we are at root level*/
6078 add_nr_running(rq, queued_delta);
6079
6080 unthrottle_throttle:
6081 assert_list_leaf_cfs_rq(rq);
6082
6083 /* Determine whether we need to wake up potentially idle CPU: */
6084 if (rq->curr == rq->idle && rq->cfs.nr_queued)
6085 resched_curr(rq);
6086 }
6087
6088 #ifdef CONFIG_SMP
__cfsb_csd_unthrottle(void * arg)6089 static void __cfsb_csd_unthrottle(void *arg)
6090 {
6091 struct cfs_rq *cursor, *tmp;
6092 struct rq *rq = arg;
6093 struct rq_flags rf;
6094
6095 rq_lock(rq, &rf);
6096
6097 /*
6098 * Iterating over the list can trigger several call to
6099 * update_rq_clock() in unthrottle_cfs_rq().
6100 * Do it once and skip the potential next ones.
6101 */
6102 update_rq_clock(rq);
6103 rq_clock_start_loop_update(rq);
6104
6105 /*
6106 * Since we hold rq lock we're safe from concurrent manipulation of
6107 * the CSD list. However, this RCU critical section annotates the
6108 * fact that we pair with sched_free_group_rcu(), so that we cannot
6109 * race with group being freed in the window between removing it
6110 * from the list and advancing to the next entry in the list.
6111 */
6112 rcu_read_lock();
6113
6114 list_for_each_entry_safe(cursor, tmp, &rq->cfsb_csd_list,
6115 throttled_csd_list) {
6116 list_del_init(&cursor->throttled_csd_list);
6117
6118 if (cfs_rq_throttled(cursor))
6119 unthrottle_cfs_rq(cursor);
6120 }
6121
6122 rcu_read_unlock();
6123
6124 rq_clock_stop_loop_update(rq);
6125 rq_unlock(rq, &rf);
6126 }
6127
__unthrottle_cfs_rq_async(struct cfs_rq * cfs_rq)6128 static inline void __unthrottle_cfs_rq_async(struct cfs_rq *cfs_rq)
6129 {
6130 struct rq *rq = rq_of(cfs_rq);
6131 bool first;
6132
6133 if (rq == this_rq()) {
6134 unthrottle_cfs_rq(cfs_rq);
6135 return;
6136 }
6137
6138 /* Already enqueued */
6139 if (SCHED_WARN_ON(!list_empty(&cfs_rq->throttled_csd_list)))
6140 return;
6141
6142 first = list_empty(&rq->cfsb_csd_list);
6143 list_add_tail(&cfs_rq->throttled_csd_list, &rq->cfsb_csd_list);
6144 if (first)
6145 smp_call_function_single_async(cpu_of(rq), &rq->cfsb_csd);
6146 }
6147 #else
__unthrottle_cfs_rq_async(struct cfs_rq * cfs_rq)6148 static inline void __unthrottle_cfs_rq_async(struct cfs_rq *cfs_rq)
6149 {
6150 unthrottle_cfs_rq(cfs_rq);
6151 }
6152 #endif
6153
unthrottle_cfs_rq_async(struct cfs_rq * cfs_rq)6154 static void unthrottle_cfs_rq_async(struct cfs_rq *cfs_rq)
6155 {
6156 lockdep_assert_rq_held(rq_of(cfs_rq));
6157
6158 if (SCHED_WARN_ON(!cfs_rq_throttled(cfs_rq) ||
6159 cfs_rq->runtime_remaining <= 0))
6160 return;
6161
6162 __unthrottle_cfs_rq_async(cfs_rq);
6163 }
6164
distribute_cfs_runtime(struct cfs_bandwidth * cfs_b)6165 static bool distribute_cfs_runtime(struct cfs_bandwidth *cfs_b)
6166 {
6167 int this_cpu = smp_processor_id();
6168 u64 runtime, remaining = 1;
6169 bool throttled = false;
6170 struct cfs_rq *cfs_rq, *tmp;
6171 struct rq_flags rf;
6172 struct rq *rq;
6173 LIST_HEAD(local_unthrottle);
6174
6175 rcu_read_lock();
6176 list_for_each_entry_rcu(cfs_rq, &cfs_b->throttled_cfs_rq,
6177 throttled_list) {
6178 rq = rq_of(cfs_rq);
6179
6180 if (!remaining) {
6181 throttled = true;
6182 break;
6183 }
6184
6185 rq_lock_irqsave(rq, &rf);
6186 if (!cfs_rq_throttled(cfs_rq))
6187 goto next;
6188
6189 /* Already queued for async unthrottle */
6190 if (!list_empty(&cfs_rq->throttled_csd_list))
6191 goto next;
6192
6193 /* By the above checks, this should never be true */
6194 SCHED_WARN_ON(cfs_rq->runtime_remaining > 0);
6195
6196 raw_spin_lock(&cfs_b->lock);
6197 runtime = -cfs_rq->runtime_remaining + 1;
6198 if (runtime > cfs_b->runtime)
6199 runtime = cfs_b->runtime;
6200 cfs_b->runtime -= runtime;
6201 remaining = cfs_b->runtime;
6202 raw_spin_unlock(&cfs_b->lock);
6203
6204 cfs_rq->runtime_remaining += runtime;
6205
6206 /* we check whether we're throttled above */
6207 if (cfs_rq->runtime_remaining > 0) {
6208 if (cpu_of(rq) != this_cpu) {
6209 unthrottle_cfs_rq_async(cfs_rq);
6210 } else {
6211 /*
6212 * We currently only expect to be unthrottling
6213 * a single cfs_rq locally.
6214 */
6215 SCHED_WARN_ON(!list_empty(&local_unthrottle));
6216 list_add_tail(&cfs_rq->throttled_csd_list,
6217 &local_unthrottle);
6218 }
6219 } else {
6220 throttled = true;
6221 }
6222
6223 next:
6224 rq_unlock_irqrestore(rq, &rf);
6225 }
6226
6227 list_for_each_entry_safe(cfs_rq, tmp, &local_unthrottle,
6228 throttled_csd_list) {
6229 struct rq *rq = rq_of(cfs_rq);
6230
6231 rq_lock_irqsave(rq, &rf);
6232
6233 list_del_init(&cfs_rq->throttled_csd_list);
6234
6235 if (cfs_rq_throttled(cfs_rq))
6236 unthrottle_cfs_rq(cfs_rq);
6237
6238 rq_unlock_irqrestore(rq, &rf);
6239 }
6240 SCHED_WARN_ON(!list_empty(&local_unthrottle));
6241
6242 rcu_read_unlock();
6243
6244 return throttled;
6245 }
6246
6247 /*
6248 * Responsible for refilling a task_group's bandwidth and unthrottling its
6249 * cfs_rqs as appropriate. If there has been no activity within the last
6250 * period the timer is deactivated until scheduling resumes; cfs_b->idle is
6251 * used to track this state.
6252 */
do_sched_cfs_period_timer(struct cfs_bandwidth * cfs_b,int overrun,unsigned long flags)6253 static int do_sched_cfs_period_timer(struct cfs_bandwidth *cfs_b, int overrun, unsigned long flags)
6254 {
6255 int throttled;
6256
6257 /* no need to continue the timer with no bandwidth constraint */
6258 if (cfs_b->quota == RUNTIME_INF)
6259 goto out_deactivate;
6260
6261 throttled = !list_empty(&cfs_b->throttled_cfs_rq);
6262 cfs_b->nr_periods += overrun;
6263
6264 /* Refill extra burst quota even if cfs_b->idle */
6265 __refill_cfs_bandwidth_runtime(cfs_b);
6266
6267 /*
6268 * idle depends on !throttled (for the case of a large deficit), and if
6269 * we're going inactive then everything else can be deferred
6270 */
6271 if (cfs_b->idle && !throttled)
6272 goto out_deactivate;
6273
6274 if (!throttled) {
6275 /* mark as potentially idle for the upcoming period */
6276 cfs_b->idle = 1;
6277 return 0;
6278 }
6279
6280 /* account preceding periods in which throttling occurred */
6281 cfs_b->nr_throttled += overrun;
6282
6283 /*
6284 * This check is repeated as we release cfs_b->lock while we unthrottle.
6285 */
6286 while (throttled && cfs_b->runtime > 0) {
6287 raw_spin_unlock_irqrestore(&cfs_b->lock, flags);
6288 /* we can't nest cfs_b->lock while distributing bandwidth */
6289 throttled = distribute_cfs_runtime(cfs_b);
6290 raw_spin_lock_irqsave(&cfs_b->lock, flags);
6291 }
6292
6293 /*
6294 * While we are ensured activity in the period following an
6295 * unthrottle, this also covers the case in which the new bandwidth is
6296 * insufficient to cover the existing bandwidth deficit. (Forcing the
6297 * timer to remain active while there are any throttled entities.)
6298 */
6299 cfs_b->idle = 0;
6300
6301 return 0;
6302
6303 out_deactivate:
6304 return 1;
6305 }
6306
6307 /* a cfs_rq won't donate quota below this amount */
6308 static const u64 min_cfs_rq_runtime = 1 * NSEC_PER_MSEC;
6309 /* minimum remaining period time to redistribute slack quota */
6310 static const u64 min_bandwidth_expiration = 2 * NSEC_PER_MSEC;
6311 /* how long we wait to gather additional slack before distributing */
6312 static const u64 cfs_bandwidth_slack_period = 5 * NSEC_PER_MSEC;
6313
6314 /*
6315 * Are we near the end of the current quota period?
6316 *
6317 * Requires cfs_b->lock for hrtimer_expires_remaining to be safe against the
6318 * hrtimer base being cleared by hrtimer_start. In the case of
6319 * migrate_hrtimers, base is never cleared, so we are fine.
6320 */
runtime_refresh_within(struct cfs_bandwidth * cfs_b,u64 min_expire)6321 static int runtime_refresh_within(struct cfs_bandwidth *cfs_b, u64 min_expire)
6322 {
6323 struct hrtimer *refresh_timer = &cfs_b->period_timer;
6324 s64 remaining;
6325
6326 /* if the call-back is running a quota refresh is already occurring */
6327 if (hrtimer_callback_running(refresh_timer))
6328 return 1;
6329
6330 /* is a quota refresh about to occur? */
6331 remaining = ktime_to_ns(hrtimer_expires_remaining(refresh_timer));
6332 if (remaining < (s64)min_expire)
6333 return 1;
6334
6335 return 0;
6336 }
6337
start_cfs_slack_bandwidth(struct cfs_bandwidth * cfs_b)6338 static void start_cfs_slack_bandwidth(struct cfs_bandwidth *cfs_b)
6339 {
6340 u64 min_left = cfs_bandwidth_slack_period + min_bandwidth_expiration;
6341
6342 /* if there's a quota refresh soon don't bother with slack */
6343 if (runtime_refresh_within(cfs_b, min_left))
6344 return;
6345
6346 /* don't push forwards an existing deferred unthrottle */
6347 if (cfs_b->slack_started)
6348 return;
6349 cfs_b->slack_started = true;
6350
6351 hrtimer_start(&cfs_b->slack_timer,
6352 ns_to_ktime(cfs_bandwidth_slack_period),
6353 HRTIMER_MODE_REL);
6354 }
6355
6356 /* we know any runtime found here is valid as update_curr() precedes return */
__return_cfs_rq_runtime(struct cfs_rq * cfs_rq)6357 static void __return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
6358 {
6359 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
6360 s64 slack_runtime = cfs_rq->runtime_remaining - min_cfs_rq_runtime;
6361
6362 if (slack_runtime <= 0)
6363 return;
6364
6365 raw_spin_lock(&cfs_b->lock);
6366 if (cfs_b->quota != RUNTIME_INF) {
6367 cfs_b->runtime += slack_runtime;
6368
6369 /* we are under rq->lock, defer unthrottling using a timer */
6370 if (cfs_b->runtime > sched_cfs_bandwidth_slice() &&
6371 !list_empty(&cfs_b->throttled_cfs_rq))
6372 start_cfs_slack_bandwidth(cfs_b);
6373 }
6374 raw_spin_unlock(&cfs_b->lock);
6375
6376 /* even if it's not valid for return we don't want to try again */
6377 cfs_rq->runtime_remaining -= slack_runtime;
6378 }
6379
return_cfs_rq_runtime(struct cfs_rq * cfs_rq)6380 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
6381 {
6382 if (!cfs_bandwidth_used())
6383 return;
6384
6385 if (!cfs_rq->runtime_enabled || cfs_rq->nr_queued)
6386 return;
6387
6388 __return_cfs_rq_runtime(cfs_rq);
6389 }
6390
6391 /*
6392 * This is done with a timer (instead of inline with bandwidth return) since
6393 * it's necessary to juggle rq->locks to unthrottle their respective cfs_rqs.
6394 */
do_sched_cfs_slack_timer(struct cfs_bandwidth * cfs_b)6395 static void do_sched_cfs_slack_timer(struct cfs_bandwidth *cfs_b)
6396 {
6397 u64 runtime = 0, slice = sched_cfs_bandwidth_slice();
6398 unsigned long flags;
6399
6400 /* confirm we're still not at a refresh boundary */
6401 raw_spin_lock_irqsave(&cfs_b->lock, flags);
6402 cfs_b->slack_started = false;
6403
6404 if (runtime_refresh_within(cfs_b, min_bandwidth_expiration)) {
6405 raw_spin_unlock_irqrestore(&cfs_b->lock, flags);
6406 return;
6407 }
6408
6409 if (cfs_b->quota != RUNTIME_INF && cfs_b->runtime > slice)
6410 runtime = cfs_b->runtime;
6411
6412 raw_spin_unlock_irqrestore(&cfs_b->lock, flags);
6413
6414 if (!runtime)
6415 return;
6416
6417 distribute_cfs_runtime(cfs_b);
6418 }
6419
6420 /*
6421 * When a group wakes up we want to make sure that its quota is not already
6422 * expired/exceeded, otherwise it may be allowed to steal additional ticks of
6423 * runtime as update_curr() throttling can not trigger until it's on-rq.
6424 */
check_enqueue_throttle(struct cfs_rq * cfs_rq)6425 static void check_enqueue_throttle(struct cfs_rq *cfs_rq)
6426 {
6427 if (!cfs_bandwidth_used())
6428 return;
6429
6430 /* an active group must be handled by the update_curr()->put() path */
6431 if (!cfs_rq->runtime_enabled || cfs_rq->curr)
6432 return;
6433
6434 /* ensure the group is not already throttled */
6435 if (cfs_rq_throttled(cfs_rq))
6436 return;
6437
6438 /* update runtime allocation */
6439 account_cfs_rq_runtime(cfs_rq, 0);
6440 if (cfs_rq->runtime_remaining <= 0)
6441 throttle_cfs_rq(cfs_rq);
6442 }
6443
sync_throttle(struct task_group * tg,int cpu)6444 static void sync_throttle(struct task_group *tg, int cpu)
6445 {
6446 struct cfs_rq *pcfs_rq, *cfs_rq;
6447
6448 if (!cfs_bandwidth_used())
6449 return;
6450
6451 if (!tg->parent)
6452 return;
6453
6454 cfs_rq = tg->cfs_rq[cpu];
6455 pcfs_rq = tg->parent->cfs_rq[cpu];
6456
6457 cfs_rq->throttle_count = pcfs_rq->throttle_count;
6458 cfs_rq->throttled_clock_pelt = rq_clock_pelt(cpu_rq(cpu));
6459 }
6460
6461 /* conditionally throttle active cfs_rq's from put_prev_entity() */
check_cfs_rq_runtime(struct cfs_rq * cfs_rq)6462 static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq)
6463 {
6464 if (!cfs_bandwidth_used())
6465 return false;
6466
6467 if (likely(!cfs_rq->runtime_enabled || cfs_rq->runtime_remaining > 0))
6468 return false;
6469
6470 /*
6471 * it's possible for a throttled entity to be forced into a running
6472 * state (e.g. set_curr_task), in this case we're finished.
6473 */
6474 if (cfs_rq_throttled(cfs_rq))
6475 return true;
6476
6477 return throttle_cfs_rq(cfs_rq);
6478 }
6479
sched_cfs_slack_timer(struct hrtimer * timer)6480 static enum hrtimer_restart sched_cfs_slack_timer(struct hrtimer *timer)
6481 {
6482 struct cfs_bandwidth *cfs_b =
6483 container_of(timer, struct cfs_bandwidth, slack_timer);
6484
6485 do_sched_cfs_slack_timer(cfs_b);
6486
6487 return HRTIMER_NORESTART;
6488 }
6489
6490 extern const u64 max_cfs_quota_period;
6491
sched_cfs_period_timer(struct hrtimer * timer)6492 static enum hrtimer_restart sched_cfs_period_timer(struct hrtimer *timer)
6493 {
6494 struct cfs_bandwidth *cfs_b =
6495 container_of(timer, struct cfs_bandwidth, period_timer);
6496 unsigned long flags;
6497 int overrun;
6498 int idle = 0;
6499 int count = 0;
6500
6501 raw_spin_lock_irqsave(&cfs_b->lock, flags);
6502 for (;;) {
6503 overrun = hrtimer_forward_now(timer, cfs_b->period);
6504 if (!overrun)
6505 break;
6506
6507 idle = do_sched_cfs_period_timer(cfs_b, overrun, flags);
6508
6509 if (++count > 3) {
6510 u64 new, old = ktime_to_ns(cfs_b->period);
6511
6512 /*
6513 * Grow period by a factor of 2 to avoid losing precision.
6514 * Precision loss in the quota/period ratio can cause __cfs_schedulable
6515 * to fail.
6516 */
6517 new = old * 2;
6518 if (new < max_cfs_quota_period) {
6519 cfs_b->period = ns_to_ktime(new);
6520 cfs_b->quota *= 2;
6521 cfs_b->burst *= 2;
6522
6523 pr_warn_ratelimited(
6524 "cfs_period_timer[cpu%d]: period too short, scaling up (new cfs_period_us = %lld, cfs_quota_us = %lld)\n",
6525 smp_processor_id(),
6526 div_u64(new, NSEC_PER_USEC),
6527 div_u64(cfs_b->quota, NSEC_PER_USEC));
6528 } else {
6529 pr_warn_ratelimited(
6530 "cfs_period_timer[cpu%d]: period too short, but cannot scale up without losing precision (cfs_period_us = %lld, cfs_quota_us = %lld)\n",
6531 smp_processor_id(),
6532 div_u64(old, NSEC_PER_USEC),
6533 div_u64(cfs_b->quota, NSEC_PER_USEC));
6534 }
6535
6536 /* reset count so we don't come right back in here */
6537 count = 0;
6538 }
6539 }
6540 if (idle)
6541 cfs_b->period_active = 0;
6542 raw_spin_unlock_irqrestore(&cfs_b->lock, flags);
6543
6544 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
6545 }
6546
init_cfs_bandwidth(struct cfs_bandwidth * cfs_b,struct cfs_bandwidth * parent)6547 void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b, struct cfs_bandwidth *parent)
6548 {
6549 raw_spin_lock_init(&cfs_b->lock);
6550 cfs_b->runtime = 0;
6551 cfs_b->quota = RUNTIME_INF;
6552 cfs_b->period = ns_to_ktime(default_cfs_period());
6553 cfs_b->burst = 0;
6554 cfs_b->hierarchical_quota = parent ? parent->hierarchical_quota : RUNTIME_INF;
6555
6556 INIT_LIST_HEAD(&cfs_b->throttled_cfs_rq);
6557 hrtimer_init(&cfs_b->period_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED);
6558 cfs_b->period_timer.function = sched_cfs_period_timer;
6559
6560 /* Add a random offset so that timers interleave */
6561 hrtimer_set_expires(&cfs_b->period_timer,
6562 get_random_u32_below(cfs_b->period));
6563 hrtimer_init(&cfs_b->slack_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
6564 cfs_b->slack_timer.function = sched_cfs_slack_timer;
6565 cfs_b->slack_started = false;
6566 }
6567
init_cfs_rq_runtime(struct cfs_rq * cfs_rq)6568 static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq)
6569 {
6570 cfs_rq->runtime_enabled = 0;
6571 INIT_LIST_HEAD(&cfs_rq->throttled_list);
6572 INIT_LIST_HEAD(&cfs_rq->throttled_csd_list);
6573 }
6574
start_cfs_bandwidth(struct cfs_bandwidth * cfs_b)6575 void start_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
6576 {
6577 lockdep_assert_held(&cfs_b->lock);
6578
6579 if (cfs_b->period_active)
6580 return;
6581
6582 cfs_b->period_active = 1;
6583 hrtimer_forward_now(&cfs_b->period_timer, cfs_b->period);
6584 hrtimer_start_expires(&cfs_b->period_timer, HRTIMER_MODE_ABS_PINNED);
6585 }
6586
destroy_cfs_bandwidth(struct cfs_bandwidth * cfs_b)6587 static void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
6588 {
6589 int __maybe_unused i;
6590
6591 /* init_cfs_bandwidth() was not called */
6592 if (!cfs_b->throttled_cfs_rq.next)
6593 return;
6594
6595 hrtimer_cancel(&cfs_b->period_timer);
6596 hrtimer_cancel(&cfs_b->slack_timer);
6597
6598 /*
6599 * It is possible that we still have some cfs_rq's pending on a CSD
6600 * list, though this race is very rare. In order for this to occur, we
6601 * must have raced with the last task leaving the group while there
6602 * exist throttled cfs_rq(s), and the period_timer must have queued the
6603 * CSD item but the remote cpu has not yet processed it. To handle this,
6604 * we can simply flush all pending CSD work inline here. We're
6605 * guaranteed at this point that no additional cfs_rq of this group can
6606 * join a CSD list.
6607 */
6608 #ifdef CONFIG_SMP
6609 for_each_possible_cpu(i) {
6610 struct rq *rq = cpu_rq(i);
6611 unsigned long flags;
6612
6613 if (list_empty(&rq->cfsb_csd_list))
6614 continue;
6615
6616 local_irq_save(flags);
6617 __cfsb_csd_unthrottle(rq);
6618 local_irq_restore(flags);
6619 }
6620 #endif
6621 }
6622
6623 /*
6624 * Both these CPU hotplug callbacks race against unregister_fair_sched_group()
6625 *
6626 * The race is harmless, since modifying bandwidth settings of unhooked group
6627 * bits doesn't do much.
6628 */
6629
6630 /* cpu online callback */
update_runtime_enabled(struct rq * rq)6631 static void __maybe_unused update_runtime_enabled(struct rq *rq)
6632 {
6633 struct task_group *tg;
6634
6635 lockdep_assert_rq_held(rq);
6636
6637 rcu_read_lock();
6638 list_for_each_entry_rcu(tg, &task_groups, list) {
6639 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
6640 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
6641
6642 raw_spin_lock(&cfs_b->lock);
6643 cfs_rq->runtime_enabled = cfs_b->quota != RUNTIME_INF;
6644 raw_spin_unlock(&cfs_b->lock);
6645 }
6646 rcu_read_unlock();
6647 }
6648
6649 /* cpu offline callback */
unthrottle_offline_cfs_rqs(struct rq * rq)6650 static void __maybe_unused unthrottle_offline_cfs_rqs(struct rq *rq)
6651 {
6652 struct task_group *tg;
6653
6654 lockdep_assert_rq_held(rq);
6655
6656 // Do not unthrottle for an active CPU
6657 if (cpumask_test_cpu(cpu_of(rq), cpu_active_mask))
6658 return;
6659
6660 /*
6661 * The rq clock has already been updated in the
6662 * set_rq_offline(), so we should skip updating
6663 * the rq clock again in unthrottle_cfs_rq().
6664 */
6665 rq_clock_start_loop_update(rq);
6666
6667 rcu_read_lock();
6668 list_for_each_entry_rcu(tg, &task_groups, list) {
6669 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
6670
6671 if (!cfs_rq->runtime_enabled)
6672 continue;
6673
6674 /*
6675 * Offline rq is schedulable till CPU is completely disabled
6676 * in take_cpu_down(), so we prevent new cfs throttling here.
6677 */
6678 cfs_rq->runtime_enabled = 0;
6679
6680 if (!cfs_rq_throttled(cfs_rq))
6681 continue;
6682
6683 /*
6684 * clock_task is not advancing so we just need to make sure
6685 * there's some valid quota amount
6686 */
6687 cfs_rq->runtime_remaining = 1;
6688 unthrottle_cfs_rq(cfs_rq);
6689 }
6690 rcu_read_unlock();
6691
6692 rq_clock_stop_loop_update(rq);
6693 }
6694
cfs_task_bw_constrained(struct task_struct * p)6695 bool cfs_task_bw_constrained(struct task_struct *p)
6696 {
6697 struct cfs_rq *cfs_rq = task_cfs_rq(p);
6698
6699 if (!cfs_bandwidth_used())
6700 return false;
6701
6702 if (cfs_rq->runtime_enabled ||
6703 tg_cfs_bandwidth(cfs_rq->tg)->hierarchical_quota != RUNTIME_INF)
6704 return true;
6705
6706 return false;
6707 }
6708
6709 #ifdef CONFIG_NO_HZ_FULL
6710 /* called from pick_next_task_fair() */
sched_fair_update_stop_tick(struct rq * rq,struct task_struct * p)6711 static void sched_fair_update_stop_tick(struct rq *rq, struct task_struct *p)
6712 {
6713 int cpu = cpu_of(rq);
6714
6715 if (!cfs_bandwidth_used())
6716 return;
6717
6718 if (!tick_nohz_full_cpu(cpu))
6719 return;
6720
6721 if (rq->nr_running != 1)
6722 return;
6723
6724 /*
6725 * We know there is only one task runnable and we've just picked it. The
6726 * normal enqueue path will have cleared TICK_DEP_BIT_SCHED if we will
6727 * be otherwise able to stop the tick. Just need to check if we are using
6728 * bandwidth control.
6729 */
6730 if (cfs_task_bw_constrained(p))
6731 tick_nohz_dep_set_cpu(cpu, TICK_DEP_BIT_SCHED);
6732 }
6733 #endif
6734
6735 #else /* CONFIG_CFS_BANDWIDTH */
6736
account_cfs_rq_runtime(struct cfs_rq * cfs_rq,u64 delta_exec)6737 static void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec) {}
check_cfs_rq_runtime(struct cfs_rq * cfs_rq)6738 static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq) { return false; }
check_enqueue_throttle(struct cfs_rq * cfs_rq)6739 static void check_enqueue_throttle(struct cfs_rq *cfs_rq) {}
sync_throttle(struct task_group * tg,int cpu)6740 static inline void sync_throttle(struct task_group *tg, int cpu) {}
return_cfs_rq_runtime(struct cfs_rq * cfs_rq)6741 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
6742
cfs_rq_throttled(struct cfs_rq * cfs_rq)6743 static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
6744 {
6745 return 0;
6746 }
6747
throttled_hierarchy(struct cfs_rq * cfs_rq)6748 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
6749 {
6750 return 0;
6751 }
6752
throttled_lb_pair(struct task_group * tg,int src_cpu,int dest_cpu)6753 static inline int throttled_lb_pair(struct task_group *tg,
6754 int src_cpu, int dest_cpu)
6755 {
6756 return 0;
6757 }
6758
6759 #ifdef CONFIG_FAIR_GROUP_SCHED
init_cfs_bandwidth(struct cfs_bandwidth * cfs_b,struct cfs_bandwidth * parent)6760 void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b, struct cfs_bandwidth *parent) {}
init_cfs_rq_runtime(struct cfs_rq * cfs_rq)6761 static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
6762 #endif
6763
tg_cfs_bandwidth(struct task_group * tg)6764 static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
6765 {
6766 return NULL;
6767 }
destroy_cfs_bandwidth(struct cfs_bandwidth * cfs_b)6768 static inline void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
update_runtime_enabled(struct rq * rq)6769 static inline void update_runtime_enabled(struct rq *rq) {}
unthrottle_offline_cfs_rqs(struct rq * rq)6770 static inline void unthrottle_offline_cfs_rqs(struct rq *rq) {}
6771 #ifdef CONFIG_CGROUP_SCHED
cfs_task_bw_constrained(struct task_struct * p)6772 bool cfs_task_bw_constrained(struct task_struct *p)
6773 {
6774 return false;
6775 }
6776 #endif
6777 #endif /* CONFIG_CFS_BANDWIDTH */
6778
6779 #if !defined(CONFIG_CFS_BANDWIDTH) || !defined(CONFIG_NO_HZ_FULL)
sched_fair_update_stop_tick(struct rq * rq,struct task_struct * p)6780 static inline void sched_fair_update_stop_tick(struct rq *rq, struct task_struct *p) {}
6781 #endif
6782
6783 /**************************************************
6784 * CFS operations on tasks:
6785 */
6786
6787 #ifdef CONFIG_SCHED_HRTICK
hrtick_start_fair(struct rq * rq,struct task_struct * p)6788 static void hrtick_start_fair(struct rq *rq, struct task_struct *p)
6789 {
6790 struct sched_entity *se = &p->se;
6791
6792 SCHED_WARN_ON(task_rq(p) != rq);
6793
6794 if (rq->cfs.h_nr_queued > 1) {
6795 u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime;
6796 u64 slice = se->slice;
6797 s64 delta = slice - ran;
6798
6799 if (delta < 0) {
6800 if (task_current_donor(rq, p))
6801 resched_curr(rq);
6802 return;
6803 }
6804 hrtick_start(rq, delta);
6805 }
6806 }
6807
6808 /*
6809 * called from enqueue/dequeue and updates the hrtick when the
6810 * current task is from our class and nr_running is low enough
6811 * to matter.
6812 */
hrtick_update(struct rq * rq)6813 static void hrtick_update(struct rq *rq)
6814 {
6815 struct task_struct *donor = rq->donor;
6816
6817 if (!hrtick_enabled_fair(rq) || donor->sched_class != &fair_sched_class)
6818 return;
6819
6820 hrtick_start_fair(rq, donor);
6821 }
6822 #else /* !CONFIG_SCHED_HRTICK */
6823 static inline void
hrtick_start_fair(struct rq * rq,struct task_struct * p)6824 hrtick_start_fair(struct rq *rq, struct task_struct *p)
6825 {
6826 }
6827
hrtick_update(struct rq * rq)6828 static inline void hrtick_update(struct rq *rq)
6829 {
6830 }
6831 #endif
6832
6833 #ifdef CONFIG_SMP
cpu_overutilized(int cpu)6834 static inline bool cpu_overutilized(int cpu)
6835 {
6836 unsigned long rq_util_min, rq_util_max;
6837
6838 if (!sched_energy_enabled())
6839 return false;
6840
6841 rq_util_min = uclamp_rq_get(cpu_rq(cpu), UCLAMP_MIN);
6842 rq_util_max = uclamp_rq_get(cpu_rq(cpu), UCLAMP_MAX);
6843
6844 /* Return true only if the utilization doesn't fit CPU's capacity */
6845 return !util_fits_cpu(cpu_util_cfs(cpu), rq_util_min, rq_util_max, cpu);
6846 }
6847
6848 /*
6849 * overutilized value make sense only if EAS is enabled
6850 */
is_rd_overutilized(struct root_domain * rd)6851 static inline bool is_rd_overutilized(struct root_domain *rd)
6852 {
6853 return !sched_energy_enabled() || READ_ONCE(rd->overutilized);
6854 }
6855
set_rd_overutilized(struct root_domain * rd,bool flag)6856 static inline void set_rd_overutilized(struct root_domain *rd, bool flag)
6857 {
6858 if (!sched_energy_enabled())
6859 return;
6860
6861 WRITE_ONCE(rd->overutilized, flag);
6862 trace_sched_overutilized_tp(rd, flag);
6863 }
6864
check_update_overutilized_status(struct rq * rq)6865 static inline void check_update_overutilized_status(struct rq *rq)
6866 {
6867 /*
6868 * overutilized field is used for load balancing decisions only
6869 * if energy aware scheduler is being used
6870 */
6871
6872 if (!is_rd_overutilized(rq->rd) && cpu_overutilized(rq->cpu))
6873 set_rd_overutilized(rq->rd, 1);
6874 }
6875 #else
check_update_overutilized_status(struct rq * rq)6876 static inline void check_update_overutilized_status(struct rq *rq) { }
6877 #endif
6878
6879 /* Runqueue only has SCHED_IDLE tasks enqueued */
sched_idle_rq(struct rq * rq)6880 static int sched_idle_rq(struct rq *rq)
6881 {
6882 return unlikely(rq->nr_running == rq->cfs.h_nr_idle &&
6883 rq->nr_running);
6884 }
6885
6886 #ifdef CONFIG_SMP
sched_idle_cpu(int cpu)6887 static int sched_idle_cpu(int cpu)
6888 {
6889 return sched_idle_rq(cpu_rq(cpu));
6890 }
6891 #endif
6892
6893 static void
requeue_delayed_entity(struct sched_entity * se)6894 requeue_delayed_entity(struct sched_entity *se)
6895 {
6896 struct cfs_rq *cfs_rq = cfs_rq_of(se);
6897
6898 /*
6899 * se->sched_delayed should imply: se->on_rq == 1.
6900 * Because a delayed entity is one that is still on
6901 * the runqueue competing until elegibility.
6902 */
6903 SCHED_WARN_ON(!se->sched_delayed);
6904 SCHED_WARN_ON(!se->on_rq);
6905
6906 if (sched_feat(DELAY_ZERO)) {
6907 update_entity_lag(cfs_rq, se);
6908 if (se->vlag > 0) {
6909 cfs_rq->nr_queued--;
6910 if (se != cfs_rq->curr)
6911 __dequeue_entity(cfs_rq, se);
6912 se->vlag = 0;
6913 place_entity(cfs_rq, se, 0);
6914 if (se != cfs_rq->curr)
6915 __enqueue_entity(cfs_rq, se);
6916 cfs_rq->nr_queued++;
6917 }
6918 }
6919
6920 update_load_avg(cfs_rq, se, 0);
6921 clear_delayed(se);
6922 }
6923
6924 /*
6925 * The enqueue_task method is called before nr_running is
6926 * increased. Here we update the fair scheduling stats and
6927 * then put the task into the rbtree:
6928 */
6929 static void
enqueue_task_fair(struct rq * rq,struct task_struct * p,int flags)6930 enqueue_task_fair(struct rq *rq, struct task_struct *p, int flags)
6931 {
6932 struct cfs_rq *cfs_rq;
6933 struct sched_entity *se = &p->se;
6934 int h_nr_idle = task_has_idle_policy(p);
6935 int h_nr_runnable = 1;
6936 int task_new = !(flags & ENQUEUE_WAKEUP);
6937 int rq_h_nr_queued = rq->cfs.h_nr_queued;
6938 u64 slice = 0;
6939
6940 /*
6941 * The code below (indirectly) updates schedutil which looks at
6942 * the cfs_rq utilization to select a frequency.
6943 * Let's add the task's estimated utilization to the cfs_rq's
6944 * estimated utilization, before we update schedutil.
6945 */
6946 if (!(p->se.sched_delayed && (task_on_rq_migrating(p) || (flags & ENQUEUE_RESTORE))))
6947 util_est_enqueue(&rq->cfs, p);
6948
6949 if (flags & ENQUEUE_DELAYED) {
6950 requeue_delayed_entity(se);
6951 return;
6952 }
6953
6954 /*
6955 * If in_iowait is set, the code below may not trigger any cpufreq
6956 * utilization updates, so do it here explicitly with the IOWAIT flag
6957 * passed.
6958 */
6959 if (p->in_iowait)
6960 cpufreq_update_util(rq, SCHED_CPUFREQ_IOWAIT);
6961
6962 if (task_new && se->sched_delayed)
6963 h_nr_runnable = 0;
6964
6965 for_each_sched_entity(se) {
6966 if (se->on_rq) {
6967 if (se->sched_delayed)
6968 requeue_delayed_entity(se);
6969 break;
6970 }
6971 cfs_rq = cfs_rq_of(se);
6972
6973 /*
6974 * Basically set the slice of group entries to the min_slice of
6975 * their respective cfs_rq. This ensures the group can service
6976 * its entities in the desired time-frame.
6977 */
6978 if (slice) {
6979 se->slice = slice;
6980 se->custom_slice = 1;
6981 }
6982 enqueue_entity(cfs_rq, se, flags);
6983 slice = cfs_rq_min_slice(cfs_rq);
6984
6985 cfs_rq->h_nr_runnable += h_nr_runnable;
6986 cfs_rq->h_nr_queued++;
6987 cfs_rq->h_nr_idle += h_nr_idle;
6988
6989 if (cfs_rq_is_idle(cfs_rq))
6990 h_nr_idle = 1;
6991
6992 /* end evaluation on encountering a throttled cfs_rq */
6993 if (cfs_rq_throttled(cfs_rq))
6994 goto enqueue_throttle;
6995
6996 flags = ENQUEUE_WAKEUP;
6997 }
6998
6999 for_each_sched_entity(se) {
7000 cfs_rq = cfs_rq_of(se);
7001
7002 update_load_avg(cfs_rq, se, UPDATE_TG);
7003 se_update_runnable(se);
7004 update_cfs_group(se);
7005
7006 se->slice = slice;
7007 if (se != cfs_rq->curr)
7008 min_vruntime_cb_propagate(&se->run_node, NULL);
7009 slice = cfs_rq_min_slice(cfs_rq);
7010
7011 cfs_rq->h_nr_runnable += h_nr_runnable;
7012 cfs_rq->h_nr_queued++;
7013 cfs_rq->h_nr_idle += h_nr_idle;
7014
7015 if (cfs_rq_is_idle(cfs_rq))
7016 h_nr_idle = 1;
7017
7018 /* end evaluation on encountering a throttled cfs_rq */
7019 if (cfs_rq_throttled(cfs_rq))
7020 goto enqueue_throttle;
7021 }
7022
7023 if (!rq_h_nr_queued && rq->cfs.h_nr_queued) {
7024 /* Account for idle runtime */
7025 if (!rq->nr_running)
7026 dl_server_update_idle_time(rq, rq->curr);
7027 dl_server_start(&rq->fair_server);
7028 }
7029
7030 /* At this point se is NULL and we are at root level*/
7031 add_nr_running(rq, 1);
7032
7033 /*
7034 * Since new tasks are assigned an initial util_avg equal to
7035 * half of the spare capacity of their CPU, tiny tasks have the
7036 * ability to cross the overutilized threshold, which will
7037 * result in the load balancer ruining all the task placement
7038 * done by EAS. As a way to mitigate that effect, do not account
7039 * for the first enqueue operation of new tasks during the
7040 * overutilized flag detection.
7041 *
7042 * A better way of solving this problem would be to wait for
7043 * the PELT signals of tasks to converge before taking them
7044 * into account, but that is not straightforward to implement,
7045 * and the following generally works well enough in practice.
7046 */
7047 if (!task_new)
7048 check_update_overutilized_status(rq);
7049
7050 enqueue_throttle:
7051 assert_list_leaf_cfs_rq(rq);
7052
7053 hrtick_update(rq);
7054 }
7055
7056 static void set_next_buddy(struct sched_entity *se);
7057
7058 /*
7059 * Basically dequeue_task_fair(), except it can deal with dequeue_entity()
7060 * failing half-way through and resume the dequeue later.
7061 *
7062 * Returns:
7063 * -1 - dequeue delayed
7064 * 0 - dequeue throttled
7065 * 1 - dequeue complete
7066 */
dequeue_entities(struct rq * rq,struct sched_entity * se,int flags)7067 static int dequeue_entities(struct rq *rq, struct sched_entity *se, int flags)
7068 {
7069 bool was_sched_idle = sched_idle_rq(rq);
7070 int rq_h_nr_queued = rq->cfs.h_nr_queued;
7071 bool task_sleep = flags & DEQUEUE_SLEEP;
7072 bool task_delayed = flags & DEQUEUE_DELAYED;
7073 struct task_struct *p = NULL;
7074 int h_nr_idle = 0;
7075 int h_nr_queued = 0;
7076 int h_nr_runnable = 0;
7077 struct cfs_rq *cfs_rq;
7078 u64 slice = 0;
7079
7080 if (entity_is_task(se)) {
7081 p = task_of(se);
7082 h_nr_queued = 1;
7083 h_nr_idle = task_has_idle_policy(p);
7084 if (task_sleep || task_delayed || !se->sched_delayed)
7085 h_nr_runnable = 1;
7086 } else {
7087 cfs_rq = group_cfs_rq(se);
7088 slice = cfs_rq_min_slice(cfs_rq);
7089 }
7090
7091 for_each_sched_entity(se) {
7092 cfs_rq = cfs_rq_of(se);
7093
7094 if (!dequeue_entity(cfs_rq, se, flags)) {
7095 if (p && &p->se == se)
7096 return -1;
7097
7098 break;
7099 }
7100
7101 cfs_rq->h_nr_runnable -= h_nr_runnable;
7102 cfs_rq->h_nr_queued -= h_nr_queued;
7103 cfs_rq->h_nr_idle -= h_nr_idle;
7104
7105 if (cfs_rq_is_idle(cfs_rq))
7106 h_nr_idle = h_nr_queued;
7107
7108 /* end evaluation on encountering a throttled cfs_rq */
7109 if (cfs_rq_throttled(cfs_rq))
7110 return 0;
7111
7112 /* Don't dequeue parent if it has other entities besides us */
7113 if (cfs_rq->load.weight) {
7114 slice = cfs_rq_min_slice(cfs_rq);
7115
7116 /* Avoid re-evaluating load for this entity: */
7117 se = parent_entity(se);
7118 /*
7119 * Bias pick_next to pick a task from this cfs_rq, as
7120 * p is sleeping when it is within its sched_slice.
7121 */
7122 if (task_sleep && se && !throttled_hierarchy(cfs_rq))
7123 set_next_buddy(se);
7124 break;
7125 }
7126 flags |= DEQUEUE_SLEEP;
7127 flags &= ~(DEQUEUE_DELAYED | DEQUEUE_SPECIAL);
7128 }
7129
7130 for_each_sched_entity(se) {
7131 cfs_rq = cfs_rq_of(se);
7132
7133 update_load_avg(cfs_rq, se, UPDATE_TG);
7134 se_update_runnable(se);
7135 update_cfs_group(se);
7136
7137 se->slice = slice;
7138 if (se != cfs_rq->curr)
7139 min_vruntime_cb_propagate(&se->run_node, NULL);
7140 slice = cfs_rq_min_slice(cfs_rq);
7141
7142 cfs_rq->h_nr_runnable -= h_nr_runnable;
7143 cfs_rq->h_nr_queued -= h_nr_queued;
7144 cfs_rq->h_nr_idle -= h_nr_idle;
7145
7146 if (cfs_rq_is_idle(cfs_rq))
7147 h_nr_idle = h_nr_queued;
7148
7149 /* end evaluation on encountering a throttled cfs_rq */
7150 if (cfs_rq_throttled(cfs_rq))
7151 return 0;
7152 }
7153
7154 sub_nr_running(rq, h_nr_queued);
7155
7156 if (rq_h_nr_queued && !rq->cfs.h_nr_queued)
7157 dl_server_stop(&rq->fair_server);
7158
7159 /* balance early to pull high priority tasks */
7160 if (unlikely(!was_sched_idle && sched_idle_rq(rq)))
7161 rq->next_balance = jiffies;
7162
7163 if (p && task_delayed) {
7164 SCHED_WARN_ON(!task_sleep);
7165 SCHED_WARN_ON(p->on_rq != 1);
7166
7167 /* Fix-up what dequeue_task_fair() skipped */
7168 hrtick_update(rq);
7169
7170 /*
7171 * Fix-up what block_task() skipped.
7172 *
7173 * Must be last, @p might not be valid after this.
7174 */
7175 __block_task(rq, p);
7176 }
7177
7178 return 1;
7179 }
7180
7181 /*
7182 * The dequeue_task method is called before nr_running is
7183 * decreased. We remove the task from the rbtree and
7184 * update the fair scheduling stats:
7185 */
dequeue_task_fair(struct rq * rq,struct task_struct * p,int flags)7186 static bool dequeue_task_fair(struct rq *rq, struct task_struct *p, int flags)
7187 {
7188 if (!(p->se.sched_delayed && (task_on_rq_migrating(p) || (flags & DEQUEUE_SAVE))))
7189 util_est_dequeue(&rq->cfs, p);
7190
7191 util_est_update(&rq->cfs, p, flags & DEQUEUE_SLEEP);
7192 if (dequeue_entities(rq, &p->se, flags) < 0)
7193 return false;
7194
7195 /*
7196 * Must not reference @p after dequeue_entities(DEQUEUE_DELAYED).
7197 */
7198
7199 hrtick_update(rq);
7200 return true;
7201 }
7202
7203 #ifdef CONFIG_SMP
7204
7205 /* Working cpumask for: sched_balance_rq(), sched_balance_newidle(). */
7206 static DEFINE_PER_CPU(cpumask_var_t, load_balance_mask);
7207 static DEFINE_PER_CPU(cpumask_var_t, select_rq_mask);
7208 static DEFINE_PER_CPU(cpumask_var_t, should_we_balance_tmpmask);
7209
7210 #ifdef CONFIG_NO_HZ_COMMON
7211
7212 static struct {
7213 cpumask_var_t idle_cpus_mask;
7214 atomic_t nr_cpus;
7215 int has_blocked; /* Idle CPUS has blocked load */
7216 int needs_update; /* Newly idle CPUs need their next_balance collated */
7217 unsigned long next_balance; /* in jiffy units */
7218 unsigned long next_blocked; /* Next update of blocked load in jiffies */
7219 } nohz ____cacheline_aligned;
7220
7221 #endif /* CONFIG_NO_HZ_COMMON */
7222
cpu_load(struct rq * rq)7223 static unsigned long cpu_load(struct rq *rq)
7224 {
7225 return cfs_rq_load_avg(&rq->cfs);
7226 }
7227
7228 /*
7229 * cpu_load_without - compute CPU load without any contributions from *p
7230 * @cpu: the CPU which load is requested
7231 * @p: the task which load should be discounted
7232 *
7233 * The load of a CPU is defined by the load of tasks currently enqueued on that
7234 * CPU as well as tasks which are currently sleeping after an execution on that
7235 * CPU.
7236 *
7237 * This method returns the load of the specified CPU by discounting the load of
7238 * the specified task, whenever the task is currently contributing to the CPU
7239 * load.
7240 */
cpu_load_without(struct rq * rq,struct task_struct * p)7241 static unsigned long cpu_load_without(struct rq *rq, struct task_struct *p)
7242 {
7243 struct cfs_rq *cfs_rq;
7244 unsigned int load;
7245
7246 /* Task has no contribution or is new */
7247 if (cpu_of(rq) != task_cpu(p) || !READ_ONCE(p->se.avg.last_update_time))
7248 return cpu_load(rq);
7249
7250 cfs_rq = &rq->cfs;
7251 load = READ_ONCE(cfs_rq->avg.load_avg);
7252
7253 /* Discount task's util from CPU's util */
7254 lsub_positive(&load, task_h_load(p));
7255
7256 return load;
7257 }
7258
cpu_runnable(struct rq * rq)7259 static unsigned long cpu_runnable(struct rq *rq)
7260 {
7261 return cfs_rq_runnable_avg(&rq->cfs);
7262 }
7263
cpu_runnable_without(struct rq * rq,struct task_struct * p)7264 static unsigned long cpu_runnable_without(struct rq *rq, struct task_struct *p)
7265 {
7266 struct cfs_rq *cfs_rq;
7267 unsigned int runnable;
7268
7269 /* Task has no contribution or is new */
7270 if (cpu_of(rq) != task_cpu(p) || !READ_ONCE(p->se.avg.last_update_time))
7271 return cpu_runnable(rq);
7272
7273 cfs_rq = &rq->cfs;
7274 runnable = READ_ONCE(cfs_rq->avg.runnable_avg);
7275
7276 /* Discount task's runnable from CPU's runnable */
7277 lsub_positive(&runnable, p->se.avg.runnable_avg);
7278
7279 return runnable;
7280 }
7281
capacity_of(int cpu)7282 static unsigned long capacity_of(int cpu)
7283 {
7284 return cpu_rq(cpu)->cpu_capacity;
7285 }
7286
record_wakee(struct task_struct * p)7287 static void record_wakee(struct task_struct *p)
7288 {
7289 /*
7290 * Only decay a single time; tasks that have less then 1 wakeup per
7291 * jiffy will not have built up many flips.
7292 */
7293 if (time_after(jiffies, current->wakee_flip_decay_ts + HZ)) {
7294 current->wakee_flips >>= 1;
7295 current->wakee_flip_decay_ts = jiffies;
7296 }
7297
7298 if (current->last_wakee != p) {
7299 current->last_wakee = p;
7300 current->wakee_flips++;
7301 }
7302 }
7303
7304 /*
7305 * Detect M:N waker/wakee relationships via a switching-frequency heuristic.
7306 *
7307 * A waker of many should wake a different task than the one last awakened
7308 * at a frequency roughly N times higher than one of its wakees.
7309 *
7310 * In order to determine whether we should let the load spread vs consolidating
7311 * to shared cache, we look for a minimum 'flip' frequency of llc_size in one
7312 * partner, and a factor of lls_size higher frequency in the other.
7313 *
7314 * With both conditions met, we can be relatively sure that the relationship is
7315 * non-monogamous, with partner count exceeding socket size.
7316 *
7317 * Waker/wakee being client/server, worker/dispatcher, interrupt source or
7318 * whatever is irrelevant, spread criteria is apparent partner count exceeds
7319 * socket size.
7320 */
wake_wide(struct task_struct * p)7321 static int wake_wide(struct task_struct *p)
7322 {
7323 unsigned int master = current->wakee_flips;
7324 unsigned int slave = p->wakee_flips;
7325 int factor = __this_cpu_read(sd_llc_size);
7326
7327 if (master < slave)
7328 swap(master, slave);
7329 if (slave < factor || master < slave * factor)
7330 return 0;
7331 return 1;
7332 }
7333
7334 /*
7335 * The purpose of wake_affine() is to quickly determine on which CPU we can run
7336 * soonest. For the purpose of speed we only consider the waking and previous
7337 * CPU.
7338 *
7339 * wake_affine_idle() - only considers 'now', it check if the waking CPU is
7340 * cache-affine and is (or will be) idle.
7341 *
7342 * wake_affine_weight() - considers the weight to reflect the average
7343 * scheduling latency of the CPUs. This seems to work
7344 * for the overloaded case.
7345 */
7346 static int
wake_affine_idle(int this_cpu,int prev_cpu,int sync)7347 wake_affine_idle(int this_cpu, int prev_cpu, int sync)
7348 {
7349 /*
7350 * If this_cpu is idle, it implies the wakeup is from interrupt
7351 * context. Only allow the move if cache is shared. Otherwise an
7352 * interrupt intensive workload could force all tasks onto one
7353 * node depending on the IO topology or IRQ affinity settings.
7354 *
7355 * If the prev_cpu is idle and cache affine then avoid a migration.
7356 * There is no guarantee that the cache hot data from an interrupt
7357 * is more important than cache hot data on the prev_cpu and from
7358 * a cpufreq perspective, it's better to have higher utilisation
7359 * on one CPU.
7360 */
7361 if (available_idle_cpu(this_cpu) && cpus_share_cache(this_cpu, prev_cpu))
7362 return available_idle_cpu(prev_cpu) ? prev_cpu : this_cpu;
7363
7364 if (sync && cpu_rq(this_cpu)->nr_running == 1)
7365 return this_cpu;
7366
7367 if (available_idle_cpu(prev_cpu))
7368 return prev_cpu;
7369
7370 return nr_cpumask_bits;
7371 }
7372
7373 static int
wake_affine_weight(struct sched_domain * sd,struct task_struct * p,int this_cpu,int prev_cpu,int sync)7374 wake_affine_weight(struct sched_domain *sd, struct task_struct *p,
7375 int this_cpu, int prev_cpu, int sync)
7376 {
7377 s64 this_eff_load, prev_eff_load;
7378 unsigned long task_load;
7379
7380 this_eff_load = cpu_load(cpu_rq(this_cpu));
7381
7382 if (sync) {
7383 unsigned long current_load = task_h_load(current);
7384
7385 if (current_load > this_eff_load)
7386 return this_cpu;
7387
7388 this_eff_load -= current_load;
7389 }
7390
7391 task_load = task_h_load(p);
7392
7393 this_eff_load += task_load;
7394 if (sched_feat(WA_BIAS))
7395 this_eff_load *= 100;
7396 this_eff_load *= capacity_of(prev_cpu);
7397
7398 prev_eff_load = cpu_load(cpu_rq(prev_cpu));
7399 prev_eff_load -= task_load;
7400 if (sched_feat(WA_BIAS))
7401 prev_eff_load *= 100 + (sd->imbalance_pct - 100) / 2;
7402 prev_eff_load *= capacity_of(this_cpu);
7403
7404 /*
7405 * If sync, adjust the weight of prev_eff_load such that if
7406 * prev_eff == this_eff that select_idle_sibling() will consider
7407 * stacking the wakee on top of the waker if no other CPU is
7408 * idle.
7409 */
7410 if (sync)
7411 prev_eff_load += 1;
7412
7413 return this_eff_load < prev_eff_load ? this_cpu : nr_cpumask_bits;
7414 }
7415
wake_affine(struct sched_domain * sd,struct task_struct * p,int this_cpu,int prev_cpu,int sync)7416 static int wake_affine(struct sched_domain *sd, struct task_struct *p,
7417 int this_cpu, int prev_cpu, int sync)
7418 {
7419 int target = nr_cpumask_bits;
7420
7421 if (sched_feat(WA_IDLE))
7422 target = wake_affine_idle(this_cpu, prev_cpu, sync);
7423
7424 if (sched_feat(WA_WEIGHT) && target == nr_cpumask_bits)
7425 target = wake_affine_weight(sd, p, this_cpu, prev_cpu, sync);
7426
7427 schedstat_inc(p->stats.nr_wakeups_affine_attempts);
7428 if (target != this_cpu)
7429 return prev_cpu;
7430
7431 schedstat_inc(sd->ttwu_move_affine);
7432 schedstat_inc(p->stats.nr_wakeups_affine);
7433 return target;
7434 }
7435
7436 static struct sched_group *
7437 sched_balance_find_dst_group(struct sched_domain *sd, struct task_struct *p, int this_cpu);
7438
7439 /*
7440 * sched_balance_find_dst_group_cpu - find the idlest CPU among the CPUs in the group.
7441 */
7442 static int
sched_balance_find_dst_group_cpu(struct sched_group * group,struct task_struct * p,int this_cpu)7443 sched_balance_find_dst_group_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
7444 {
7445 unsigned long load, min_load = ULONG_MAX;
7446 unsigned int min_exit_latency = UINT_MAX;
7447 u64 latest_idle_timestamp = 0;
7448 int least_loaded_cpu = this_cpu;
7449 int shallowest_idle_cpu = -1;
7450 int i;
7451
7452 /* Check if we have any choice: */
7453 if (group->group_weight == 1)
7454 return cpumask_first(sched_group_span(group));
7455
7456 /* Traverse only the allowed CPUs */
7457 for_each_cpu_and(i, sched_group_span(group), p->cpus_ptr) {
7458 struct rq *rq = cpu_rq(i);
7459
7460 if (!sched_core_cookie_match(rq, p))
7461 continue;
7462
7463 if (sched_idle_cpu(i))
7464 return i;
7465
7466 if (available_idle_cpu(i)) {
7467 struct cpuidle_state *idle = idle_get_state(rq);
7468 if (idle && idle->exit_latency < min_exit_latency) {
7469 /*
7470 * We give priority to a CPU whose idle state
7471 * has the smallest exit latency irrespective
7472 * of any idle timestamp.
7473 */
7474 min_exit_latency = idle->exit_latency;
7475 latest_idle_timestamp = rq->idle_stamp;
7476 shallowest_idle_cpu = i;
7477 } else if ((!idle || idle->exit_latency == min_exit_latency) &&
7478 rq->idle_stamp > latest_idle_timestamp) {
7479 /*
7480 * If equal or no active idle state, then
7481 * the most recently idled CPU might have
7482 * a warmer cache.
7483 */
7484 latest_idle_timestamp = rq->idle_stamp;
7485 shallowest_idle_cpu = i;
7486 }
7487 } else if (shallowest_idle_cpu == -1) {
7488 load = cpu_load(cpu_rq(i));
7489 if (load < min_load) {
7490 min_load = load;
7491 least_loaded_cpu = i;
7492 }
7493 }
7494 }
7495
7496 return shallowest_idle_cpu != -1 ? shallowest_idle_cpu : least_loaded_cpu;
7497 }
7498
sched_balance_find_dst_cpu(struct sched_domain * sd,struct task_struct * p,int cpu,int prev_cpu,int sd_flag)7499 static inline int sched_balance_find_dst_cpu(struct sched_domain *sd, struct task_struct *p,
7500 int cpu, int prev_cpu, int sd_flag)
7501 {
7502 int new_cpu = cpu;
7503
7504 if (!cpumask_intersects(sched_domain_span(sd), p->cpus_ptr))
7505 return prev_cpu;
7506
7507 /*
7508 * We need task's util for cpu_util_without, sync it up to
7509 * prev_cpu's last_update_time.
7510 */
7511 if (!(sd_flag & SD_BALANCE_FORK))
7512 sync_entity_load_avg(&p->se);
7513
7514 while (sd) {
7515 struct sched_group *group;
7516 struct sched_domain *tmp;
7517 int weight;
7518
7519 if (!(sd->flags & sd_flag)) {
7520 sd = sd->child;
7521 continue;
7522 }
7523
7524 group = sched_balance_find_dst_group(sd, p, cpu);
7525 if (!group) {
7526 sd = sd->child;
7527 continue;
7528 }
7529
7530 new_cpu = sched_balance_find_dst_group_cpu(group, p, cpu);
7531 if (new_cpu == cpu) {
7532 /* Now try balancing at a lower domain level of 'cpu': */
7533 sd = sd->child;
7534 continue;
7535 }
7536
7537 /* Now try balancing at a lower domain level of 'new_cpu': */
7538 cpu = new_cpu;
7539 weight = sd->span_weight;
7540 sd = NULL;
7541 for_each_domain(cpu, tmp) {
7542 if (weight <= tmp->span_weight)
7543 break;
7544 if (tmp->flags & sd_flag)
7545 sd = tmp;
7546 }
7547 }
7548
7549 return new_cpu;
7550 }
7551
__select_idle_cpu(int cpu,struct task_struct * p)7552 static inline int __select_idle_cpu(int cpu, struct task_struct *p)
7553 {
7554 if ((available_idle_cpu(cpu) || sched_idle_cpu(cpu)) &&
7555 sched_cpu_cookie_match(cpu_rq(cpu), p))
7556 return cpu;
7557
7558 return -1;
7559 }
7560
7561 #ifdef CONFIG_SCHED_SMT
7562 DEFINE_STATIC_KEY_FALSE(sched_smt_present);
7563 EXPORT_SYMBOL_GPL(sched_smt_present);
7564
set_idle_cores(int cpu,int val)7565 static inline void set_idle_cores(int cpu, int val)
7566 {
7567 struct sched_domain_shared *sds;
7568
7569 sds = rcu_dereference(per_cpu(sd_llc_shared, cpu));
7570 if (sds)
7571 WRITE_ONCE(sds->has_idle_cores, val);
7572 }
7573
test_idle_cores(int cpu)7574 static inline bool test_idle_cores(int cpu)
7575 {
7576 struct sched_domain_shared *sds;
7577
7578 sds = rcu_dereference(per_cpu(sd_llc_shared, cpu));
7579 if (sds)
7580 return READ_ONCE(sds->has_idle_cores);
7581
7582 return false;
7583 }
7584
7585 /*
7586 * Scans the local SMT mask to see if the entire core is idle, and records this
7587 * information in sd_llc_shared->has_idle_cores.
7588 *
7589 * Since SMT siblings share all cache levels, inspecting this limited remote
7590 * state should be fairly cheap.
7591 */
__update_idle_core(struct rq * rq)7592 void __update_idle_core(struct rq *rq)
7593 {
7594 int core = cpu_of(rq);
7595 int cpu;
7596
7597 rcu_read_lock();
7598 if (test_idle_cores(core))
7599 goto unlock;
7600
7601 for_each_cpu(cpu, cpu_smt_mask(core)) {
7602 if (cpu == core)
7603 continue;
7604
7605 if (!available_idle_cpu(cpu))
7606 goto unlock;
7607 }
7608
7609 set_idle_cores(core, 1);
7610 unlock:
7611 rcu_read_unlock();
7612 }
7613
7614 /*
7615 * Scan the entire LLC domain for idle cores; this dynamically switches off if
7616 * there are no idle cores left in the system; tracked through
7617 * sd_llc->shared->has_idle_cores and enabled through update_idle_core() above.
7618 */
select_idle_core(struct task_struct * p,int core,struct cpumask * cpus,int * idle_cpu)7619 static int select_idle_core(struct task_struct *p, int core, struct cpumask *cpus, int *idle_cpu)
7620 {
7621 bool idle = true;
7622 int cpu;
7623
7624 for_each_cpu(cpu, cpu_smt_mask(core)) {
7625 if (!available_idle_cpu(cpu)) {
7626 idle = false;
7627 if (*idle_cpu == -1) {
7628 if (sched_idle_cpu(cpu) && cpumask_test_cpu(cpu, cpus)) {
7629 *idle_cpu = cpu;
7630 break;
7631 }
7632 continue;
7633 }
7634 break;
7635 }
7636 if (*idle_cpu == -1 && cpumask_test_cpu(cpu, cpus))
7637 *idle_cpu = cpu;
7638 }
7639
7640 if (idle)
7641 return core;
7642
7643 cpumask_andnot(cpus, cpus, cpu_smt_mask(core));
7644 return -1;
7645 }
7646
7647 /*
7648 * Scan the local SMT mask for idle CPUs.
7649 */
select_idle_smt(struct task_struct * p,struct sched_domain * sd,int target)7650 static int select_idle_smt(struct task_struct *p, struct sched_domain *sd, int target)
7651 {
7652 int cpu;
7653
7654 for_each_cpu_and(cpu, cpu_smt_mask(target), p->cpus_ptr) {
7655 if (cpu == target)
7656 continue;
7657 /*
7658 * Check if the CPU is in the LLC scheduling domain of @target.
7659 * Due to isolcpus, there is no guarantee that all the siblings are in the domain.
7660 */
7661 if (!cpumask_test_cpu(cpu, sched_domain_span(sd)))
7662 continue;
7663 if (available_idle_cpu(cpu) || sched_idle_cpu(cpu))
7664 return cpu;
7665 }
7666
7667 return -1;
7668 }
7669
7670 #else /* CONFIG_SCHED_SMT */
7671
set_idle_cores(int cpu,int val)7672 static inline void set_idle_cores(int cpu, int val)
7673 {
7674 }
7675
test_idle_cores(int cpu)7676 static inline bool test_idle_cores(int cpu)
7677 {
7678 return false;
7679 }
7680
select_idle_core(struct task_struct * p,int core,struct cpumask * cpus,int * idle_cpu)7681 static inline int select_idle_core(struct task_struct *p, int core, struct cpumask *cpus, int *idle_cpu)
7682 {
7683 return __select_idle_cpu(core, p);
7684 }
7685
select_idle_smt(struct task_struct * p,struct sched_domain * sd,int target)7686 static inline int select_idle_smt(struct task_struct *p, struct sched_domain *sd, int target)
7687 {
7688 return -1;
7689 }
7690
7691 #endif /* CONFIG_SCHED_SMT */
7692
7693 /*
7694 * Scan the LLC domain for idle CPUs; this is dynamically regulated by
7695 * comparing the average scan cost (tracked in sd->avg_scan_cost) against the
7696 * average idle time for this rq (as found in rq->avg_idle).
7697 */
select_idle_cpu(struct task_struct * p,struct sched_domain * sd,bool has_idle_core,int target)7698 static int select_idle_cpu(struct task_struct *p, struct sched_domain *sd, bool has_idle_core, int target)
7699 {
7700 struct cpumask *cpus = this_cpu_cpumask_var_ptr(select_rq_mask);
7701 int i, cpu, idle_cpu = -1, nr = INT_MAX;
7702 struct sched_domain_shared *sd_share;
7703
7704 cpumask_and(cpus, sched_domain_span(sd), p->cpus_ptr);
7705
7706 if (sched_feat(SIS_UTIL)) {
7707 sd_share = rcu_dereference(per_cpu(sd_llc_shared, target));
7708 if (sd_share) {
7709 /* because !--nr is the condition to stop scan */
7710 nr = READ_ONCE(sd_share->nr_idle_scan) + 1;
7711 /* overloaded LLC is unlikely to have idle cpu/core */
7712 if (nr == 1)
7713 return -1;
7714 }
7715 }
7716
7717 if (static_branch_unlikely(&sched_cluster_active)) {
7718 struct sched_group *sg = sd->groups;
7719
7720 if (sg->flags & SD_CLUSTER) {
7721 for_each_cpu_wrap(cpu, sched_group_span(sg), target + 1) {
7722 if (!cpumask_test_cpu(cpu, cpus))
7723 continue;
7724
7725 if (has_idle_core) {
7726 i = select_idle_core(p, cpu, cpus, &idle_cpu);
7727 if ((unsigned int)i < nr_cpumask_bits)
7728 return i;
7729 } else {
7730 if (--nr <= 0)
7731 return -1;
7732 idle_cpu = __select_idle_cpu(cpu, p);
7733 if ((unsigned int)idle_cpu < nr_cpumask_bits)
7734 return idle_cpu;
7735 }
7736 }
7737 cpumask_andnot(cpus, cpus, sched_group_span(sg));
7738 }
7739 }
7740
7741 for_each_cpu_wrap(cpu, cpus, target + 1) {
7742 if (has_idle_core) {
7743 i = select_idle_core(p, cpu, cpus, &idle_cpu);
7744 if ((unsigned int)i < nr_cpumask_bits)
7745 return i;
7746
7747 } else {
7748 if (--nr <= 0)
7749 return -1;
7750 idle_cpu = __select_idle_cpu(cpu, p);
7751 if ((unsigned int)idle_cpu < nr_cpumask_bits)
7752 break;
7753 }
7754 }
7755
7756 if (has_idle_core)
7757 set_idle_cores(target, false);
7758
7759 return idle_cpu;
7760 }
7761
7762 /*
7763 * Scan the asym_capacity domain for idle CPUs; pick the first idle one on which
7764 * the task fits. If no CPU is big enough, but there are idle ones, try to
7765 * maximize capacity.
7766 */
7767 static int
select_idle_capacity(struct task_struct * p,struct sched_domain * sd,int target)7768 select_idle_capacity(struct task_struct *p, struct sched_domain *sd, int target)
7769 {
7770 unsigned long task_util, util_min, util_max, best_cap = 0;
7771 int fits, best_fits = 0;
7772 int cpu, best_cpu = -1;
7773 struct cpumask *cpus;
7774
7775 cpus = this_cpu_cpumask_var_ptr(select_rq_mask);
7776 cpumask_and(cpus, sched_domain_span(sd), p->cpus_ptr);
7777
7778 task_util = task_util_est(p);
7779 util_min = uclamp_eff_value(p, UCLAMP_MIN);
7780 util_max = uclamp_eff_value(p, UCLAMP_MAX);
7781
7782 for_each_cpu_wrap(cpu, cpus, target) {
7783 unsigned long cpu_cap = capacity_of(cpu);
7784
7785 if (!available_idle_cpu(cpu) && !sched_idle_cpu(cpu))
7786 continue;
7787
7788 fits = util_fits_cpu(task_util, util_min, util_max, cpu);
7789
7790 /* This CPU fits with all requirements */
7791 if (fits > 0)
7792 return cpu;
7793 /*
7794 * Only the min performance hint (i.e. uclamp_min) doesn't fit.
7795 * Look for the CPU with best capacity.
7796 */
7797 else if (fits < 0)
7798 cpu_cap = get_actual_cpu_capacity(cpu);
7799
7800 /*
7801 * First, select CPU which fits better (-1 being better than 0).
7802 * Then, select the one with best capacity at same level.
7803 */
7804 if ((fits < best_fits) ||
7805 ((fits == best_fits) && (cpu_cap > best_cap))) {
7806 best_cap = cpu_cap;
7807 best_cpu = cpu;
7808 best_fits = fits;
7809 }
7810 }
7811
7812 return best_cpu;
7813 }
7814
asym_fits_cpu(unsigned long util,unsigned long util_min,unsigned long util_max,int cpu)7815 static inline bool asym_fits_cpu(unsigned long util,
7816 unsigned long util_min,
7817 unsigned long util_max,
7818 int cpu)
7819 {
7820 if (sched_asym_cpucap_active())
7821 /*
7822 * Return true only if the cpu fully fits the task requirements
7823 * which include the utilization and the performance hints.
7824 */
7825 return (util_fits_cpu(util, util_min, util_max, cpu) > 0);
7826
7827 return true;
7828 }
7829
7830 /*
7831 * Try and locate an idle core/thread in the LLC cache domain.
7832 */
select_idle_sibling(struct task_struct * p,int prev,int target)7833 static int select_idle_sibling(struct task_struct *p, int prev, int target)
7834 {
7835 bool has_idle_core = false;
7836 struct sched_domain *sd;
7837 unsigned long task_util, util_min, util_max;
7838 int i, recent_used_cpu, prev_aff = -1;
7839
7840 /*
7841 * On asymmetric system, update task utilization because we will check
7842 * that the task fits with CPU's capacity.
7843 */
7844 if (sched_asym_cpucap_active()) {
7845 sync_entity_load_avg(&p->se);
7846 task_util = task_util_est(p);
7847 util_min = uclamp_eff_value(p, UCLAMP_MIN);
7848 util_max = uclamp_eff_value(p, UCLAMP_MAX);
7849 }
7850
7851 /*
7852 * per-cpu select_rq_mask usage
7853 */
7854 lockdep_assert_irqs_disabled();
7855
7856 if ((available_idle_cpu(target) || sched_idle_cpu(target)) &&
7857 asym_fits_cpu(task_util, util_min, util_max, target))
7858 return target;
7859
7860 /*
7861 * If the previous CPU is cache affine and idle, don't be stupid:
7862 */
7863 if (prev != target && cpus_share_cache(prev, target) &&
7864 (available_idle_cpu(prev) || sched_idle_cpu(prev)) &&
7865 asym_fits_cpu(task_util, util_min, util_max, prev)) {
7866
7867 if (!static_branch_unlikely(&sched_cluster_active) ||
7868 cpus_share_resources(prev, target))
7869 return prev;
7870
7871 prev_aff = prev;
7872 }
7873
7874 /*
7875 * Allow a per-cpu kthread to stack with the wakee if the
7876 * kworker thread and the tasks previous CPUs are the same.
7877 * The assumption is that the wakee queued work for the
7878 * per-cpu kthread that is now complete and the wakeup is
7879 * essentially a sync wakeup. An obvious example of this
7880 * pattern is IO completions.
7881 */
7882 if (is_per_cpu_kthread(current) &&
7883 in_task() &&
7884 prev == smp_processor_id() &&
7885 this_rq()->nr_running <= 1 &&
7886 asym_fits_cpu(task_util, util_min, util_max, prev)) {
7887 return prev;
7888 }
7889
7890 /* Check a recently used CPU as a potential idle candidate: */
7891 recent_used_cpu = p->recent_used_cpu;
7892 p->recent_used_cpu = prev;
7893 if (recent_used_cpu != prev &&
7894 recent_used_cpu != target &&
7895 cpus_share_cache(recent_used_cpu, target) &&
7896 (available_idle_cpu(recent_used_cpu) || sched_idle_cpu(recent_used_cpu)) &&
7897 cpumask_test_cpu(recent_used_cpu, p->cpus_ptr) &&
7898 asym_fits_cpu(task_util, util_min, util_max, recent_used_cpu)) {
7899
7900 if (!static_branch_unlikely(&sched_cluster_active) ||
7901 cpus_share_resources(recent_used_cpu, target))
7902 return recent_used_cpu;
7903
7904 } else {
7905 recent_used_cpu = -1;
7906 }
7907
7908 /*
7909 * For asymmetric CPU capacity systems, our domain of interest is
7910 * sd_asym_cpucapacity rather than sd_llc.
7911 */
7912 if (sched_asym_cpucap_active()) {
7913 sd = rcu_dereference(per_cpu(sd_asym_cpucapacity, target));
7914 /*
7915 * On an asymmetric CPU capacity system where an exclusive
7916 * cpuset defines a symmetric island (i.e. one unique
7917 * capacity_orig value through the cpuset), the key will be set
7918 * but the CPUs within that cpuset will not have a domain with
7919 * SD_ASYM_CPUCAPACITY. These should follow the usual symmetric
7920 * capacity path.
7921 */
7922 if (sd) {
7923 i = select_idle_capacity(p, sd, target);
7924 return ((unsigned)i < nr_cpumask_bits) ? i : target;
7925 }
7926 }
7927
7928 sd = rcu_dereference(per_cpu(sd_llc, target));
7929 if (!sd)
7930 return target;
7931
7932 if (sched_smt_active()) {
7933 has_idle_core = test_idle_cores(target);
7934
7935 if (!has_idle_core && cpus_share_cache(prev, target)) {
7936 i = select_idle_smt(p, sd, prev);
7937 if ((unsigned int)i < nr_cpumask_bits)
7938 return i;
7939 }
7940 }
7941
7942 i = select_idle_cpu(p, sd, has_idle_core, target);
7943 if ((unsigned)i < nr_cpumask_bits)
7944 return i;
7945
7946 /*
7947 * For cluster machines which have lower sharing cache like L2 or
7948 * LLC Tag, we tend to find an idle CPU in the target's cluster
7949 * first. But prev_cpu or recent_used_cpu may also be a good candidate,
7950 * use them if possible when no idle CPU found in select_idle_cpu().
7951 */
7952 if ((unsigned int)prev_aff < nr_cpumask_bits)
7953 return prev_aff;
7954 if ((unsigned int)recent_used_cpu < nr_cpumask_bits)
7955 return recent_used_cpu;
7956
7957 return target;
7958 }
7959
7960 /**
7961 * cpu_util() - Estimates the amount of CPU capacity used by CFS tasks.
7962 * @cpu: the CPU to get the utilization for
7963 * @p: task for which the CPU utilization should be predicted or NULL
7964 * @dst_cpu: CPU @p migrates to, -1 if @p moves from @cpu or @p == NULL
7965 * @boost: 1 to enable boosting, otherwise 0
7966 *
7967 * The unit of the return value must be the same as the one of CPU capacity
7968 * so that CPU utilization can be compared with CPU capacity.
7969 *
7970 * CPU utilization is the sum of running time of runnable tasks plus the
7971 * recent utilization of currently non-runnable tasks on that CPU.
7972 * It represents the amount of CPU capacity currently used by CFS tasks in
7973 * the range [0..max CPU capacity] with max CPU capacity being the CPU
7974 * capacity at f_max.
7975 *
7976 * The estimated CPU utilization is defined as the maximum between CPU
7977 * utilization and sum of the estimated utilization of the currently
7978 * runnable tasks on that CPU. It preserves a utilization "snapshot" of
7979 * previously-executed tasks, which helps better deduce how busy a CPU will
7980 * be when a long-sleeping task wakes up. The contribution to CPU utilization
7981 * of such a task would be significantly decayed at this point of time.
7982 *
7983 * Boosted CPU utilization is defined as max(CPU runnable, CPU utilization).
7984 * CPU contention for CFS tasks can be detected by CPU runnable > CPU
7985 * utilization. Boosting is implemented in cpu_util() so that internal
7986 * users (e.g. EAS) can use it next to external users (e.g. schedutil),
7987 * latter via cpu_util_cfs_boost().
7988 *
7989 * CPU utilization can be higher than the current CPU capacity
7990 * (f_curr/f_max * max CPU capacity) or even the max CPU capacity because
7991 * of rounding errors as well as task migrations or wakeups of new tasks.
7992 * CPU utilization has to be capped to fit into the [0..max CPU capacity]
7993 * range. Otherwise a group of CPUs (CPU0 util = 121% + CPU1 util = 80%)
7994 * could be seen as over-utilized even though CPU1 has 20% of spare CPU
7995 * capacity. CPU utilization is allowed to overshoot current CPU capacity
7996 * though since this is useful for predicting the CPU capacity required
7997 * after task migrations (scheduler-driven DVFS).
7998 *
7999 * Return: (Boosted) (estimated) utilization for the specified CPU.
8000 */
8001 static unsigned long
cpu_util(int cpu,struct task_struct * p,int dst_cpu,int boost)8002 cpu_util(int cpu, struct task_struct *p, int dst_cpu, int boost)
8003 {
8004 struct cfs_rq *cfs_rq = &cpu_rq(cpu)->cfs;
8005 unsigned long util = READ_ONCE(cfs_rq->avg.util_avg);
8006 unsigned long runnable;
8007
8008 if (boost) {
8009 runnable = READ_ONCE(cfs_rq->avg.runnable_avg);
8010 util = max(util, runnable);
8011 }
8012
8013 /*
8014 * If @dst_cpu is -1 or @p migrates from @cpu to @dst_cpu remove its
8015 * contribution. If @p migrates from another CPU to @cpu add its
8016 * contribution. In all the other cases @cpu is not impacted by the
8017 * migration so its util_avg is already correct.
8018 */
8019 if (p && task_cpu(p) == cpu && dst_cpu != cpu)
8020 lsub_positive(&util, task_util(p));
8021 else if (p && task_cpu(p) != cpu && dst_cpu == cpu)
8022 util += task_util(p);
8023
8024 if (sched_feat(UTIL_EST)) {
8025 unsigned long util_est;
8026
8027 util_est = READ_ONCE(cfs_rq->avg.util_est);
8028
8029 /*
8030 * During wake-up @p isn't enqueued yet and doesn't contribute
8031 * to any cpu_rq(cpu)->cfs.avg.util_est.
8032 * If @dst_cpu == @cpu add it to "simulate" cpu_util after @p
8033 * has been enqueued.
8034 *
8035 * During exec (@dst_cpu = -1) @p is enqueued and does
8036 * contribute to cpu_rq(cpu)->cfs.util_est.
8037 * Remove it to "simulate" cpu_util without @p's contribution.
8038 *
8039 * Despite the task_on_rq_queued(@p) check there is still a
8040 * small window for a possible race when an exec
8041 * select_task_rq_fair() races with LB's detach_task().
8042 *
8043 * detach_task()
8044 * deactivate_task()
8045 * p->on_rq = TASK_ON_RQ_MIGRATING;
8046 * -------------------------------- A
8047 * dequeue_task() \
8048 * dequeue_task_fair() + Race Time
8049 * util_est_dequeue() /
8050 * -------------------------------- B
8051 *
8052 * The additional check "current == p" is required to further
8053 * reduce the race window.
8054 */
8055 if (dst_cpu == cpu)
8056 util_est += _task_util_est(p);
8057 else if (p && unlikely(task_on_rq_queued(p) || current == p))
8058 lsub_positive(&util_est, _task_util_est(p));
8059
8060 util = max(util, util_est);
8061 }
8062
8063 return min(util, arch_scale_cpu_capacity(cpu));
8064 }
8065
cpu_util_cfs(int cpu)8066 unsigned long cpu_util_cfs(int cpu)
8067 {
8068 return cpu_util(cpu, NULL, -1, 0);
8069 }
8070
cpu_util_cfs_boost(int cpu)8071 unsigned long cpu_util_cfs_boost(int cpu)
8072 {
8073 return cpu_util(cpu, NULL, -1, 1);
8074 }
8075
8076 /*
8077 * cpu_util_without: compute cpu utilization without any contributions from *p
8078 * @cpu: the CPU which utilization is requested
8079 * @p: the task which utilization should be discounted
8080 *
8081 * The utilization of a CPU is defined by the utilization of tasks currently
8082 * enqueued on that CPU as well as tasks which are currently sleeping after an
8083 * execution on that CPU.
8084 *
8085 * This method returns the utilization of the specified CPU by discounting the
8086 * utilization of the specified task, whenever the task is currently
8087 * contributing to the CPU utilization.
8088 */
cpu_util_without(int cpu,struct task_struct * p)8089 static unsigned long cpu_util_without(int cpu, struct task_struct *p)
8090 {
8091 /* Task has no contribution or is new */
8092 if (cpu != task_cpu(p) || !READ_ONCE(p->se.avg.last_update_time))
8093 p = NULL;
8094
8095 return cpu_util(cpu, p, -1, 0);
8096 }
8097
8098 /*
8099 * This function computes an effective utilization for the given CPU, to be
8100 * used for frequency selection given the linear relation: f = u * f_max.
8101 *
8102 * The scheduler tracks the following metrics:
8103 *
8104 * cpu_util_{cfs,rt,dl,irq}()
8105 * cpu_bw_dl()
8106 *
8107 * Where the cfs,rt and dl util numbers are tracked with the same metric and
8108 * synchronized windows and are thus directly comparable.
8109 *
8110 * The cfs,rt,dl utilization are the running times measured with rq->clock_task
8111 * which excludes things like IRQ and steal-time. These latter are then accrued
8112 * in the IRQ utilization.
8113 *
8114 * The DL bandwidth number OTOH is not a measured metric but a value computed
8115 * based on the task model parameters and gives the minimal utilization
8116 * required to meet deadlines.
8117 */
effective_cpu_util(int cpu,unsigned long util_cfs,unsigned long * min,unsigned long * max)8118 unsigned long effective_cpu_util(int cpu, unsigned long util_cfs,
8119 unsigned long *min,
8120 unsigned long *max)
8121 {
8122 unsigned long util, irq, scale;
8123 struct rq *rq = cpu_rq(cpu);
8124
8125 scale = arch_scale_cpu_capacity(cpu);
8126
8127 /*
8128 * Early check to see if IRQ/steal time saturates the CPU, can be
8129 * because of inaccuracies in how we track these -- see
8130 * update_irq_load_avg().
8131 */
8132 irq = cpu_util_irq(rq);
8133 if (unlikely(irq >= scale)) {
8134 if (min)
8135 *min = scale;
8136 if (max)
8137 *max = scale;
8138 return scale;
8139 }
8140
8141 if (min) {
8142 /*
8143 * The minimum utilization returns the highest level between:
8144 * - the computed DL bandwidth needed with the IRQ pressure which
8145 * steals time to the deadline task.
8146 * - The minimum performance requirement for CFS and/or RT.
8147 */
8148 *min = max(irq + cpu_bw_dl(rq), uclamp_rq_get(rq, UCLAMP_MIN));
8149
8150 /*
8151 * When an RT task is runnable and uclamp is not used, we must
8152 * ensure that the task will run at maximum compute capacity.
8153 */
8154 if (!uclamp_is_used() && rt_rq_is_runnable(&rq->rt))
8155 *min = max(*min, scale);
8156 }
8157
8158 /*
8159 * Because the time spend on RT/DL tasks is visible as 'lost' time to
8160 * CFS tasks and we use the same metric to track the effective
8161 * utilization (PELT windows are synchronized) we can directly add them
8162 * to obtain the CPU's actual utilization.
8163 */
8164 util = util_cfs + cpu_util_rt(rq);
8165 util += cpu_util_dl(rq);
8166
8167 /*
8168 * The maximum hint is a soft bandwidth requirement, which can be lower
8169 * than the actual utilization because of uclamp_max requirements.
8170 */
8171 if (max)
8172 *max = min(scale, uclamp_rq_get(rq, UCLAMP_MAX));
8173
8174 if (util >= scale)
8175 return scale;
8176
8177 /*
8178 * There is still idle time; further improve the number by using the
8179 * IRQ metric. Because IRQ/steal time is hidden from the task clock we
8180 * need to scale the task numbers:
8181 *
8182 * max - irq
8183 * U' = irq + --------- * U
8184 * max
8185 */
8186 util = scale_irq_capacity(util, irq, scale);
8187 util += irq;
8188
8189 return min(scale, util);
8190 }
8191
sched_cpu_util(int cpu)8192 unsigned long sched_cpu_util(int cpu)
8193 {
8194 return effective_cpu_util(cpu, cpu_util_cfs(cpu), NULL, NULL);
8195 }
8196
8197 /*
8198 * energy_env - Utilization landscape for energy estimation.
8199 * @task_busy_time: Utilization contribution by the task for which we test the
8200 * placement. Given by eenv_task_busy_time().
8201 * @pd_busy_time: Utilization of the whole perf domain without the task
8202 * contribution. Given by eenv_pd_busy_time().
8203 * @cpu_cap: Maximum CPU capacity for the perf domain.
8204 * @pd_cap: Entire perf domain capacity. (pd->nr_cpus * cpu_cap).
8205 */
8206 struct energy_env {
8207 unsigned long task_busy_time;
8208 unsigned long pd_busy_time;
8209 unsigned long cpu_cap;
8210 unsigned long pd_cap;
8211 };
8212
8213 /*
8214 * Compute the task busy time for compute_energy(). This time cannot be
8215 * injected directly into effective_cpu_util() because of the IRQ scaling.
8216 * The latter only makes sense with the most recent CPUs where the task has
8217 * run.
8218 */
eenv_task_busy_time(struct energy_env * eenv,struct task_struct * p,int prev_cpu)8219 static inline void eenv_task_busy_time(struct energy_env *eenv,
8220 struct task_struct *p, int prev_cpu)
8221 {
8222 unsigned long busy_time, max_cap = arch_scale_cpu_capacity(prev_cpu);
8223 unsigned long irq = cpu_util_irq(cpu_rq(prev_cpu));
8224
8225 if (unlikely(irq >= max_cap))
8226 busy_time = max_cap;
8227 else
8228 busy_time = scale_irq_capacity(task_util_est(p), irq, max_cap);
8229
8230 eenv->task_busy_time = busy_time;
8231 }
8232
8233 /*
8234 * Compute the perf_domain (PD) busy time for compute_energy(). Based on the
8235 * utilization for each @pd_cpus, it however doesn't take into account
8236 * clamping since the ratio (utilization / cpu_capacity) is already enough to
8237 * scale the EM reported power consumption at the (eventually clamped)
8238 * cpu_capacity.
8239 *
8240 * The contribution of the task @p for which we want to estimate the
8241 * energy cost is removed (by cpu_util()) and must be calculated
8242 * separately (see eenv_task_busy_time). This ensures:
8243 *
8244 * - A stable PD utilization, no matter which CPU of that PD we want to place
8245 * the task on.
8246 *
8247 * - A fair comparison between CPUs as the task contribution (task_util())
8248 * will always be the same no matter which CPU utilization we rely on
8249 * (util_avg or util_est).
8250 *
8251 * Set @eenv busy time for the PD that spans @pd_cpus. This busy time can't
8252 * exceed @eenv->pd_cap.
8253 */
eenv_pd_busy_time(struct energy_env * eenv,struct cpumask * pd_cpus,struct task_struct * p)8254 static inline void eenv_pd_busy_time(struct energy_env *eenv,
8255 struct cpumask *pd_cpus,
8256 struct task_struct *p)
8257 {
8258 unsigned long busy_time = 0;
8259 int cpu;
8260
8261 for_each_cpu(cpu, pd_cpus) {
8262 unsigned long util = cpu_util(cpu, p, -1, 0);
8263
8264 busy_time += effective_cpu_util(cpu, util, NULL, NULL);
8265 }
8266
8267 eenv->pd_busy_time = min(eenv->pd_cap, busy_time);
8268 }
8269
8270 /*
8271 * Compute the maximum utilization for compute_energy() when the task @p
8272 * is placed on the cpu @dst_cpu.
8273 *
8274 * Returns the maximum utilization among @eenv->cpus. This utilization can't
8275 * exceed @eenv->cpu_cap.
8276 */
8277 static inline unsigned long
eenv_pd_max_util(struct energy_env * eenv,struct cpumask * pd_cpus,struct task_struct * p,int dst_cpu)8278 eenv_pd_max_util(struct energy_env *eenv, struct cpumask *pd_cpus,
8279 struct task_struct *p, int dst_cpu)
8280 {
8281 unsigned long max_util = 0;
8282 int cpu;
8283
8284 for_each_cpu(cpu, pd_cpus) {
8285 struct task_struct *tsk = (cpu == dst_cpu) ? p : NULL;
8286 unsigned long util = cpu_util(cpu, p, dst_cpu, 1);
8287 unsigned long eff_util, min, max;
8288
8289 /*
8290 * Performance domain frequency: utilization clamping
8291 * must be considered since it affects the selection
8292 * of the performance domain frequency.
8293 * NOTE: in case RT tasks are running, by default the min
8294 * utilization can be max OPP.
8295 */
8296 eff_util = effective_cpu_util(cpu, util, &min, &max);
8297
8298 /* Task's uclamp can modify min and max value */
8299 if (tsk && uclamp_is_used()) {
8300 min = max(min, uclamp_eff_value(p, UCLAMP_MIN));
8301
8302 /*
8303 * If there is no active max uclamp constraint,
8304 * directly use task's one, otherwise keep max.
8305 */
8306 if (uclamp_rq_is_idle(cpu_rq(cpu)))
8307 max = uclamp_eff_value(p, UCLAMP_MAX);
8308 else
8309 max = max(max, uclamp_eff_value(p, UCLAMP_MAX));
8310 }
8311
8312 eff_util = sugov_effective_cpu_perf(cpu, eff_util, min, max);
8313 max_util = max(max_util, eff_util);
8314 }
8315
8316 return min(max_util, eenv->cpu_cap);
8317 }
8318
8319 /*
8320 * compute_energy(): Use the Energy Model to estimate the energy that @pd would
8321 * consume for a given utilization landscape @eenv. When @dst_cpu < 0, the task
8322 * contribution is ignored.
8323 */
8324 static inline unsigned long
compute_energy(struct energy_env * eenv,struct perf_domain * pd,struct cpumask * pd_cpus,struct task_struct * p,int dst_cpu)8325 compute_energy(struct energy_env *eenv, struct perf_domain *pd,
8326 struct cpumask *pd_cpus, struct task_struct *p, int dst_cpu)
8327 {
8328 unsigned long max_util = eenv_pd_max_util(eenv, pd_cpus, p, dst_cpu);
8329 unsigned long busy_time = eenv->pd_busy_time;
8330 unsigned long energy;
8331
8332 if (dst_cpu >= 0)
8333 busy_time = min(eenv->pd_cap, busy_time + eenv->task_busy_time);
8334
8335 energy = em_cpu_energy(pd->em_pd, max_util, busy_time, eenv->cpu_cap);
8336
8337 trace_sched_compute_energy_tp(p, dst_cpu, energy, max_util, busy_time);
8338
8339 return energy;
8340 }
8341
8342 /*
8343 * find_energy_efficient_cpu(): Find most energy-efficient target CPU for the
8344 * waking task. find_energy_efficient_cpu() looks for the CPU with maximum
8345 * spare capacity in each performance domain and uses it as a potential
8346 * candidate to execute the task. Then, it uses the Energy Model to figure
8347 * out which of the CPU candidates is the most energy-efficient.
8348 *
8349 * The rationale for this heuristic is as follows. In a performance domain,
8350 * all the most energy efficient CPU candidates (according to the Energy
8351 * Model) are those for which we'll request a low frequency. When there are
8352 * several CPUs for which the frequency request will be the same, we don't
8353 * have enough data to break the tie between them, because the Energy Model
8354 * only includes active power costs. With this model, if we assume that
8355 * frequency requests follow utilization (e.g. using schedutil), the CPU with
8356 * the maximum spare capacity in a performance domain is guaranteed to be among
8357 * the best candidates of the performance domain.
8358 *
8359 * In practice, it could be preferable from an energy standpoint to pack
8360 * small tasks on a CPU in order to let other CPUs go in deeper idle states,
8361 * but that could also hurt our chances to go cluster idle, and we have no
8362 * ways to tell with the current Energy Model if this is actually a good
8363 * idea or not. So, find_energy_efficient_cpu() basically favors
8364 * cluster-packing, and spreading inside a cluster. That should at least be
8365 * a good thing for latency, and this is consistent with the idea that most
8366 * of the energy savings of EAS come from the asymmetry of the system, and
8367 * not so much from breaking the tie between identical CPUs. That's also the
8368 * reason why EAS is enabled in the topology code only for systems where
8369 * SD_ASYM_CPUCAPACITY is set.
8370 *
8371 * NOTE: Forkees are not accepted in the energy-aware wake-up path because
8372 * they don't have any useful utilization data yet and it's not possible to
8373 * forecast their impact on energy consumption. Consequently, they will be
8374 * placed by sched_balance_find_dst_cpu() on the least loaded CPU, which might turn out
8375 * to be energy-inefficient in some use-cases. The alternative would be to
8376 * bias new tasks towards specific types of CPUs first, or to try to infer
8377 * their util_avg from the parent task, but those heuristics could hurt
8378 * other use-cases too. So, until someone finds a better way to solve this,
8379 * let's keep things simple by re-using the existing slow path.
8380 */
find_energy_efficient_cpu(struct task_struct * p,int prev_cpu)8381 static int find_energy_efficient_cpu(struct task_struct *p, int prev_cpu)
8382 {
8383 struct cpumask *cpus = this_cpu_cpumask_var_ptr(select_rq_mask);
8384 unsigned long prev_delta = ULONG_MAX, best_delta = ULONG_MAX;
8385 unsigned long p_util_min = uclamp_is_used() ? uclamp_eff_value(p, UCLAMP_MIN) : 0;
8386 unsigned long p_util_max = uclamp_is_used() ? uclamp_eff_value(p, UCLAMP_MAX) : 1024;
8387 struct root_domain *rd = this_rq()->rd;
8388 int cpu, best_energy_cpu, target = -1;
8389 int prev_fits = -1, best_fits = -1;
8390 unsigned long best_actual_cap = 0;
8391 unsigned long prev_actual_cap = 0;
8392 struct sched_domain *sd;
8393 struct perf_domain *pd;
8394 struct energy_env eenv;
8395
8396 rcu_read_lock();
8397 pd = rcu_dereference(rd->pd);
8398 if (!pd)
8399 goto unlock;
8400
8401 /*
8402 * Energy-aware wake-up happens on the lowest sched_domain starting
8403 * from sd_asym_cpucapacity spanning over this_cpu and prev_cpu.
8404 */
8405 sd = rcu_dereference(*this_cpu_ptr(&sd_asym_cpucapacity));
8406 while (sd && !cpumask_test_cpu(prev_cpu, sched_domain_span(sd)))
8407 sd = sd->parent;
8408 if (!sd)
8409 goto unlock;
8410
8411 target = prev_cpu;
8412
8413 sync_entity_load_avg(&p->se);
8414 if (!task_util_est(p) && p_util_min == 0)
8415 goto unlock;
8416
8417 eenv_task_busy_time(&eenv, p, prev_cpu);
8418
8419 for (; pd; pd = pd->next) {
8420 unsigned long util_min = p_util_min, util_max = p_util_max;
8421 unsigned long cpu_cap, cpu_actual_cap, util;
8422 long prev_spare_cap = -1, max_spare_cap = -1;
8423 unsigned long rq_util_min, rq_util_max;
8424 unsigned long cur_delta, base_energy;
8425 int max_spare_cap_cpu = -1;
8426 int fits, max_fits = -1;
8427
8428 cpumask_and(cpus, perf_domain_span(pd), cpu_online_mask);
8429
8430 if (cpumask_empty(cpus))
8431 continue;
8432
8433 /* Account external pressure for the energy estimation */
8434 cpu = cpumask_first(cpus);
8435 cpu_actual_cap = get_actual_cpu_capacity(cpu);
8436
8437 eenv.cpu_cap = cpu_actual_cap;
8438 eenv.pd_cap = 0;
8439
8440 for_each_cpu(cpu, cpus) {
8441 struct rq *rq = cpu_rq(cpu);
8442
8443 eenv.pd_cap += cpu_actual_cap;
8444
8445 if (!cpumask_test_cpu(cpu, sched_domain_span(sd)))
8446 continue;
8447
8448 if (!cpumask_test_cpu(cpu, p->cpus_ptr))
8449 continue;
8450
8451 util = cpu_util(cpu, p, cpu, 0);
8452 cpu_cap = capacity_of(cpu);
8453
8454 /*
8455 * Skip CPUs that cannot satisfy the capacity request.
8456 * IOW, placing the task there would make the CPU
8457 * overutilized. Take uclamp into account to see how
8458 * much capacity we can get out of the CPU; this is
8459 * aligned with sched_cpu_util().
8460 */
8461 if (uclamp_is_used() && !uclamp_rq_is_idle(rq)) {
8462 /*
8463 * Open code uclamp_rq_util_with() except for
8464 * the clamp() part. I.e.: apply max aggregation
8465 * only. util_fits_cpu() logic requires to
8466 * operate on non clamped util but must use the
8467 * max-aggregated uclamp_{min, max}.
8468 */
8469 rq_util_min = uclamp_rq_get(rq, UCLAMP_MIN);
8470 rq_util_max = uclamp_rq_get(rq, UCLAMP_MAX);
8471
8472 util_min = max(rq_util_min, p_util_min);
8473 util_max = max(rq_util_max, p_util_max);
8474 }
8475
8476 fits = util_fits_cpu(util, util_min, util_max, cpu);
8477 if (!fits)
8478 continue;
8479
8480 lsub_positive(&cpu_cap, util);
8481
8482 if (cpu == prev_cpu) {
8483 /* Always use prev_cpu as a candidate. */
8484 prev_spare_cap = cpu_cap;
8485 prev_fits = fits;
8486 } else if ((fits > max_fits) ||
8487 ((fits == max_fits) && ((long)cpu_cap > max_spare_cap))) {
8488 /*
8489 * Find the CPU with the maximum spare capacity
8490 * among the remaining CPUs in the performance
8491 * domain.
8492 */
8493 max_spare_cap = cpu_cap;
8494 max_spare_cap_cpu = cpu;
8495 max_fits = fits;
8496 }
8497 }
8498
8499 if (max_spare_cap_cpu < 0 && prev_spare_cap < 0)
8500 continue;
8501
8502 eenv_pd_busy_time(&eenv, cpus, p);
8503 /* Compute the 'base' energy of the pd, without @p */
8504 base_energy = compute_energy(&eenv, pd, cpus, p, -1);
8505
8506 /* Evaluate the energy impact of using prev_cpu. */
8507 if (prev_spare_cap > -1) {
8508 prev_delta = compute_energy(&eenv, pd, cpus, p,
8509 prev_cpu);
8510 /* CPU utilization has changed */
8511 if (prev_delta < base_energy)
8512 goto unlock;
8513 prev_delta -= base_energy;
8514 prev_actual_cap = cpu_actual_cap;
8515 best_delta = min(best_delta, prev_delta);
8516 }
8517
8518 /* Evaluate the energy impact of using max_spare_cap_cpu. */
8519 if (max_spare_cap_cpu >= 0 && max_spare_cap > prev_spare_cap) {
8520 /* Current best energy cpu fits better */
8521 if (max_fits < best_fits)
8522 continue;
8523
8524 /*
8525 * Both don't fit performance hint (i.e. uclamp_min)
8526 * but best energy cpu has better capacity.
8527 */
8528 if ((max_fits < 0) &&
8529 (cpu_actual_cap <= best_actual_cap))
8530 continue;
8531
8532 cur_delta = compute_energy(&eenv, pd, cpus, p,
8533 max_spare_cap_cpu);
8534 /* CPU utilization has changed */
8535 if (cur_delta < base_energy)
8536 goto unlock;
8537 cur_delta -= base_energy;
8538
8539 /*
8540 * Both fit for the task but best energy cpu has lower
8541 * energy impact.
8542 */
8543 if ((max_fits > 0) && (best_fits > 0) &&
8544 (cur_delta >= best_delta))
8545 continue;
8546
8547 best_delta = cur_delta;
8548 best_energy_cpu = max_spare_cap_cpu;
8549 best_fits = max_fits;
8550 best_actual_cap = cpu_actual_cap;
8551 }
8552 }
8553 rcu_read_unlock();
8554
8555 if ((best_fits > prev_fits) ||
8556 ((best_fits > 0) && (best_delta < prev_delta)) ||
8557 ((best_fits < 0) && (best_actual_cap > prev_actual_cap)))
8558 target = best_energy_cpu;
8559
8560 return target;
8561
8562 unlock:
8563 rcu_read_unlock();
8564
8565 return target;
8566 }
8567
8568 /*
8569 * select_task_rq_fair: Select target runqueue for the waking task in domains
8570 * that have the relevant SD flag set. In practice, this is SD_BALANCE_WAKE,
8571 * SD_BALANCE_FORK, or SD_BALANCE_EXEC.
8572 *
8573 * Balances load by selecting the idlest CPU in the idlest group, or under
8574 * certain conditions an idle sibling CPU if the domain has SD_WAKE_AFFINE set.
8575 *
8576 * Returns the target CPU number.
8577 */
8578 static int
select_task_rq_fair(struct task_struct * p,int prev_cpu,int wake_flags)8579 select_task_rq_fair(struct task_struct *p, int prev_cpu, int wake_flags)
8580 {
8581 int sync = (wake_flags & WF_SYNC) && !(current->flags & PF_EXITING);
8582 struct sched_domain *tmp, *sd = NULL;
8583 int cpu = smp_processor_id();
8584 int new_cpu = prev_cpu;
8585 int want_affine = 0;
8586 /* SD_flags and WF_flags share the first nibble */
8587 int sd_flag = wake_flags & 0xF;
8588
8589 /*
8590 * required for stable ->cpus_allowed
8591 */
8592 lockdep_assert_held(&p->pi_lock);
8593 if (wake_flags & WF_TTWU) {
8594 record_wakee(p);
8595
8596 if ((wake_flags & WF_CURRENT_CPU) &&
8597 cpumask_test_cpu(cpu, p->cpus_ptr))
8598 return cpu;
8599
8600 if (!is_rd_overutilized(this_rq()->rd)) {
8601 new_cpu = find_energy_efficient_cpu(p, prev_cpu);
8602 if (new_cpu >= 0)
8603 return new_cpu;
8604 new_cpu = prev_cpu;
8605 }
8606
8607 want_affine = !wake_wide(p) && cpumask_test_cpu(cpu, p->cpus_ptr);
8608 }
8609
8610 rcu_read_lock();
8611 for_each_domain(cpu, tmp) {
8612 /*
8613 * If both 'cpu' and 'prev_cpu' are part of this domain,
8614 * cpu is a valid SD_WAKE_AFFINE target.
8615 */
8616 if (want_affine && (tmp->flags & SD_WAKE_AFFINE) &&
8617 cpumask_test_cpu(prev_cpu, sched_domain_span(tmp))) {
8618 if (cpu != prev_cpu)
8619 new_cpu = wake_affine(tmp, p, cpu, prev_cpu, sync);
8620
8621 sd = NULL; /* Prefer wake_affine over balance flags */
8622 break;
8623 }
8624
8625 /*
8626 * Usually only true for WF_EXEC and WF_FORK, as sched_domains
8627 * usually do not have SD_BALANCE_WAKE set. That means wakeup
8628 * will usually go to the fast path.
8629 */
8630 if (tmp->flags & sd_flag)
8631 sd = tmp;
8632 else if (!want_affine)
8633 break;
8634 }
8635
8636 if (unlikely(sd)) {
8637 /* Slow path */
8638 new_cpu = sched_balance_find_dst_cpu(sd, p, cpu, prev_cpu, sd_flag);
8639 } else if (wake_flags & WF_TTWU) { /* XXX always ? */
8640 /* Fast path */
8641 new_cpu = select_idle_sibling(p, prev_cpu, new_cpu);
8642 }
8643 rcu_read_unlock();
8644
8645 return new_cpu;
8646 }
8647
8648 /*
8649 * Called immediately before a task is migrated to a new CPU; task_cpu(p) and
8650 * cfs_rq_of(p) references at time of call are still valid and identify the
8651 * previous CPU. The caller guarantees p->pi_lock or task_rq(p)->lock is held.
8652 */
migrate_task_rq_fair(struct task_struct * p,int new_cpu)8653 static void migrate_task_rq_fair(struct task_struct *p, int new_cpu)
8654 {
8655 struct sched_entity *se = &p->se;
8656
8657 if (!task_on_rq_migrating(p)) {
8658 remove_entity_load_avg(se);
8659
8660 /*
8661 * Here, the task's PELT values have been updated according to
8662 * the current rq's clock. But if that clock hasn't been
8663 * updated in a while, a substantial idle time will be missed,
8664 * leading to an inflation after wake-up on the new rq.
8665 *
8666 * Estimate the missing time from the cfs_rq last_update_time
8667 * and update sched_avg to improve the PELT continuity after
8668 * migration.
8669 */
8670 migrate_se_pelt_lag(se);
8671 }
8672
8673 /* Tell new CPU we are migrated */
8674 se->avg.last_update_time = 0;
8675
8676 update_scan_period(p, new_cpu);
8677 }
8678
task_dead_fair(struct task_struct * p)8679 static void task_dead_fair(struct task_struct *p)
8680 {
8681 struct sched_entity *se = &p->se;
8682
8683 if (se->sched_delayed) {
8684 struct rq_flags rf;
8685 struct rq *rq;
8686
8687 rq = task_rq_lock(p, &rf);
8688 if (se->sched_delayed) {
8689 update_rq_clock(rq);
8690 dequeue_entities(rq, se, DEQUEUE_SLEEP | DEQUEUE_DELAYED);
8691 }
8692 task_rq_unlock(rq, p, &rf);
8693 }
8694
8695 remove_entity_load_avg(se);
8696 }
8697
8698 /*
8699 * Set the max capacity the task is allowed to run at for misfit detection.
8700 */
set_task_max_allowed_capacity(struct task_struct * p)8701 static void set_task_max_allowed_capacity(struct task_struct *p)
8702 {
8703 struct asym_cap_data *entry;
8704
8705 if (!sched_asym_cpucap_active())
8706 return;
8707
8708 rcu_read_lock();
8709 list_for_each_entry_rcu(entry, &asym_cap_list, link) {
8710 cpumask_t *cpumask;
8711
8712 cpumask = cpu_capacity_span(entry);
8713 if (!cpumask_intersects(p->cpus_ptr, cpumask))
8714 continue;
8715
8716 p->max_allowed_capacity = entry->capacity;
8717 break;
8718 }
8719 rcu_read_unlock();
8720 }
8721
set_cpus_allowed_fair(struct task_struct * p,struct affinity_context * ctx)8722 static void set_cpus_allowed_fair(struct task_struct *p, struct affinity_context *ctx)
8723 {
8724 set_cpus_allowed_common(p, ctx);
8725 set_task_max_allowed_capacity(p);
8726 }
8727
8728 static int
balance_fair(struct rq * rq,struct task_struct * prev,struct rq_flags * rf)8729 balance_fair(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
8730 {
8731 if (sched_fair_runnable(rq))
8732 return 1;
8733
8734 return sched_balance_newidle(rq, rf) != 0;
8735 }
8736 #else
set_task_max_allowed_capacity(struct task_struct * p)8737 static inline void set_task_max_allowed_capacity(struct task_struct *p) {}
8738 #endif /* CONFIG_SMP */
8739
set_next_buddy(struct sched_entity * se)8740 static void set_next_buddy(struct sched_entity *se)
8741 {
8742 for_each_sched_entity(se) {
8743 if (SCHED_WARN_ON(!se->on_rq))
8744 return;
8745 if (se_is_idle(se))
8746 return;
8747 cfs_rq_of(se)->next = se;
8748 }
8749 }
8750
8751 /*
8752 * Preempt the current task with a newly woken task if needed:
8753 */
check_preempt_wakeup_fair(struct rq * rq,struct task_struct * p,int wake_flags)8754 static void check_preempt_wakeup_fair(struct rq *rq, struct task_struct *p, int wake_flags)
8755 {
8756 struct task_struct *donor = rq->donor;
8757 struct sched_entity *se = &donor->se, *pse = &p->se;
8758 struct cfs_rq *cfs_rq = task_cfs_rq(donor);
8759 int cse_is_idle, pse_is_idle;
8760
8761 if (unlikely(se == pse))
8762 return;
8763
8764 /*
8765 * This is possible from callers such as attach_tasks(), in which we
8766 * unconditionally wakeup_preempt() after an enqueue (which may have
8767 * lead to a throttle). This both saves work and prevents false
8768 * next-buddy nomination below.
8769 */
8770 if (unlikely(throttled_hierarchy(cfs_rq_of(pse))))
8771 return;
8772
8773 if (sched_feat(NEXT_BUDDY) && !(wake_flags & WF_FORK) && !pse->sched_delayed) {
8774 set_next_buddy(pse);
8775 }
8776
8777 /*
8778 * We can come here with TIF_NEED_RESCHED already set from new task
8779 * wake up path.
8780 *
8781 * Note: this also catches the edge-case of curr being in a throttled
8782 * group (e.g. via set_curr_task), since update_curr() (in the
8783 * enqueue of curr) will have resulted in resched being set. This
8784 * prevents us from potentially nominating it as a false LAST_BUDDY
8785 * below.
8786 */
8787 if (test_tsk_need_resched(rq->curr))
8788 return;
8789
8790 if (!sched_feat(WAKEUP_PREEMPTION))
8791 return;
8792
8793 find_matching_se(&se, &pse);
8794 WARN_ON_ONCE(!pse);
8795
8796 cse_is_idle = se_is_idle(se);
8797 pse_is_idle = se_is_idle(pse);
8798
8799 /*
8800 * Preempt an idle entity in favor of a non-idle entity (and don't preempt
8801 * in the inverse case).
8802 */
8803 if (cse_is_idle && !pse_is_idle) {
8804 /*
8805 * When non-idle entity preempt an idle entity,
8806 * don't give idle entity slice protection.
8807 */
8808 cancel_protect_slice(se);
8809 goto preempt;
8810 }
8811
8812 if (cse_is_idle != pse_is_idle)
8813 return;
8814
8815 /*
8816 * BATCH and IDLE tasks do not preempt others.
8817 */
8818 if (unlikely(!normal_policy(p->policy)))
8819 return;
8820
8821 cfs_rq = cfs_rq_of(se);
8822 update_curr(cfs_rq);
8823 /*
8824 * If @p has a shorter slice than current and @p is eligible, override
8825 * current's slice protection in order to allow preemption.
8826 *
8827 * Note that even if @p does not turn out to be the most eligible
8828 * task at this moment, current's slice protection will be lost.
8829 */
8830 if (do_preempt_short(cfs_rq, pse, se))
8831 cancel_protect_slice(se);
8832
8833 /*
8834 * If @p has become the most eligible task, force preemption.
8835 */
8836 if (pick_eevdf(cfs_rq) == pse)
8837 goto preempt;
8838
8839 return;
8840
8841 preempt:
8842 resched_curr_lazy(rq);
8843 }
8844
pick_task_fair(struct rq * rq)8845 static struct task_struct *pick_task_fair(struct rq *rq)
8846 {
8847 struct sched_entity *se;
8848 struct cfs_rq *cfs_rq;
8849
8850 again:
8851 cfs_rq = &rq->cfs;
8852 if (!cfs_rq->nr_queued)
8853 return NULL;
8854
8855 do {
8856 /* Might not have done put_prev_entity() */
8857 if (cfs_rq->curr && cfs_rq->curr->on_rq)
8858 update_curr(cfs_rq);
8859
8860 if (unlikely(check_cfs_rq_runtime(cfs_rq)))
8861 goto again;
8862
8863 se = pick_next_entity(rq, cfs_rq);
8864 if (!se)
8865 goto again;
8866 cfs_rq = group_cfs_rq(se);
8867 } while (cfs_rq);
8868
8869 return task_of(se);
8870 }
8871
8872 static void __set_next_task_fair(struct rq *rq, struct task_struct *p, bool first);
8873 static void set_next_task_fair(struct rq *rq, struct task_struct *p, bool first);
8874
8875 struct task_struct *
pick_next_task_fair(struct rq * rq,struct task_struct * prev,struct rq_flags * rf)8876 pick_next_task_fair(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
8877 {
8878 struct sched_entity *se;
8879 struct task_struct *p;
8880 int new_tasks;
8881
8882 again:
8883 p = pick_task_fair(rq);
8884 if (!p)
8885 goto idle;
8886 se = &p->se;
8887
8888 #ifdef CONFIG_FAIR_GROUP_SCHED
8889 if (prev->sched_class != &fair_sched_class)
8890 goto simple;
8891
8892 __put_prev_set_next_dl_server(rq, prev, p);
8893
8894 /*
8895 * Because of the set_next_buddy() in dequeue_task_fair() it is rather
8896 * likely that a next task is from the same cgroup as the current.
8897 *
8898 * Therefore attempt to avoid putting and setting the entire cgroup
8899 * hierarchy, only change the part that actually changes.
8900 *
8901 * Since we haven't yet done put_prev_entity and if the selected task
8902 * is a different task than we started out with, try and touch the
8903 * least amount of cfs_rqs.
8904 */
8905 if (prev != p) {
8906 struct sched_entity *pse = &prev->se;
8907 struct cfs_rq *cfs_rq;
8908
8909 while (!(cfs_rq = is_same_group(se, pse))) {
8910 int se_depth = se->depth;
8911 int pse_depth = pse->depth;
8912
8913 if (se_depth <= pse_depth) {
8914 put_prev_entity(cfs_rq_of(pse), pse);
8915 pse = parent_entity(pse);
8916 }
8917 if (se_depth >= pse_depth) {
8918 set_next_entity(cfs_rq_of(se), se);
8919 se = parent_entity(se);
8920 }
8921 }
8922
8923 put_prev_entity(cfs_rq, pse);
8924 set_next_entity(cfs_rq, se);
8925
8926 __set_next_task_fair(rq, p, true);
8927 }
8928
8929 return p;
8930
8931 simple:
8932 #endif
8933 put_prev_set_next_task(rq, prev, p);
8934 return p;
8935
8936 idle:
8937 if (!rf)
8938 return NULL;
8939
8940 new_tasks = sched_balance_newidle(rq, rf);
8941
8942 /*
8943 * Because sched_balance_newidle() releases (and re-acquires) rq->lock, it is
8944 * possible for any higher priority task to appear. In that case we
8945 * must re-start the pick_next_entity() loop.
8946 */
8947 if (new_tasks < 0)
8948 return RETRY_TASK;
8949
8950 if (new_tasks > 0)
8951 goto again;
8952
8953 /*
8954 * rq is about to be idle, check if we need to update the
8955 * lost_idle_time of clock_pelt
8956 */
8957 update_idle_rq_clock_pelt(rq);
8958
8959 return NULL;
8960 }
8961
__pick_next_task_fair(struct rq * rq,struct task_struct * prev)8962 static struct task_struct *__pick_next_task_fair(struct rq *rq, struct task_struct *prev)
8963 {
8964 return pick_next_task_fair(rq, prev, NULL);
8965 }
8966
fair_server_has_tasks(struct sched_dl_entity * dl_se)8967 static bool fair_server_has_tasks(struct sched_dl_entity *dl_se)
8968 {
8969 return !!dl_se->rq->cfs.nr_queued;
8970 }
8971
fair_server_pick_task(struct sched_dl_entity * dl_se)8972 static struct task_struct *fair_server_pick_task(struct sched_dl_entity *dl_se)
8973 {
8974 return pick_task_fair(dl_se->rq);
8975 }
8976
fair_server_init(struct rq * rq)8977 void fair_server_init(struct rq *rq)
8978 {
8979 struct sched_dl_entity *dl_se = &rq->fair_server;
8980
8981 init_dl_entity(dl_se);
8982
8983 dl_server_init(dl_se, rq, fair_server_has_tasks, fair_server_pick_task);
8984 }
8985
8986 /*
8987 * Account for a descheduled task:
8988 */
put_prev_task_fair(struct rq * rq,struct task_struct * prev,struct task_struct * next)8989 static void put_prev_task_fair(struct rq *rq, struct task_struct *prev, struct task_struct *next)
8990 {
8991 struct sched_entity *se = &prev->se;
8992 struct cfs_rq *cfs_rq;
8993
8994 for_each_sched_entity(se) {
8995 cfs_rq = cfs_rq_of(se);
8996 put_prev_entity(cfs_rq, se);
8997 }
8998 }
8999
9000 /*
9001 * sched_yield() is very simple
9002 */
yield_task_fair(struct rq * rq)9003 static void yield_task_fair(struct rq *rq)
9004 {
9005 struct task_struct *curr = rq->curr;
9006 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
9007 struct sched_entity *se = &curr->se;
9008
9009 /*
9010 * Are we the only task in the tree?
9011 */
9012 if (unlikely(rq->nr_running == 1))
9013 return;
9014
9015 clear_buddies(cfs_rq, se);
9016
9017 update_rq_clock(rq);
9018 /*
9019 * Update run-time statistics of the 'current'.
9020 */
9021 update_curr(cfs_rq);
9022 /*
9023 * Tell update_rq_clock() that we've just updated,
9024 * so we don't do microscopic update in schedule()
9025 * and double the fastpath cost.
9026 */
9027 rq_clock_skip_update(rq);
9028
9029 se->deadline += calc_delta_fair(se->slice, se);
9030 }
9031
yield_to_task_fair(struct rq * rq,struct task_struct * p)9032 static bool yield_to_task_fair(struct rq *rq, struct task_struct *p)
9033 {
9034 struct sched_entity *se = &p->se;
9035
9036 /* throttled hierarchies are not runnable */
9037 if (!se->on_rq || throttled_hierarchy(cfs_rq_of(se)))
9038 return false;
9039
9040 /* Tell the scheduler that we'd really like se to run next. */
9041 set_next_buddy(se);
9042
9043 yield_task_fair(rq);
9044
9045 return true;
9046 }
9047
9048 #ifdef CONFIG_SMP
9049 /**************************************************
9050 * Fair scheduling class load-balancing methods.
9051 *
9052 * BASICS
9053 *
9054 * The purpose of load-balancing is to achieve the same basic fairness the
9055 * per-CPU scheduler provides, namely provide a proportional amount of compute
9056 * time to each task. This is expressed in the following equation:
9057 *
9058 * W_i,n/P_i == W_j,n/P_j for all i,j (1)
9059 *
9060 * Where W_i,n is the n-th weight average for CPU i. The instantaneous weight
9061 * W_i,0 is defined as:
9062 *
9063 * W_i,0 = \Sum_j w_i,j (2)
9064 *
9065 * Where w_i,j is the weight of the j-th runnable task on CPU i. This weight
9066 * is derived from the nice value as per sched_prio_to_weight[].
9067 *
9068 * The weight average is an exponential decay average of the instantaneous
9069 * weight:
9070 *
9071 * W'_i,n = (2^n - 1) / 2^n * W_i,n + 1 / 2^n * W_i,0 (3)
9072 *
9073 * C_i is the compute capacity of CPU i, typically it is the
9074 * fraction of 'recent' time available for SCHED_OTHER task execution. But it
9075 * can also include other factors [XXX].
9076 *
9077 * To achieve this balance we define a measure of imbalance which follows
9078 * directly from (1):
9079 *
9080 * imb_i,j = max{ avg(W/C), W_i/C_i } - min{ avg(W/C), W_j/C_j } (4)
9081 *
9082 * We them move tasks around to minimize the imbalance. In the continuous
9083 * function space it is obvious this converges, in the discrete case we get
9084 * a few fun cases generally called infeasible weight scenarios.
9085 *
9086 * [XXX expand on:
9087 * - infeasible weights;
9088 * - local vs global optima in the discrete case. ]
9089 *
9090 *
9091 * SCHED DOMAINS
9092 *
9093 * In order to solve the imbalance equation (4), and avoid the obvious O(n^2)
9094 * for all i,j solution, we create a tree of CPUs that follows the hardware
9095 * topology where each level pairs two lower groups (or better). This results
9096 * in O(log n) layers. Furthermore we reduce the number of CPUs going up the
9097 * tree to only the first of the previous level and we decrease the frequency
9098 * of load-balance at each level inversely proportional to the number of CPUs in
9099 * the groups.
9100 *
9101 * This yields:
9102 *
9103 * log_2 n 1 n
9104 * \Sum { --- * --- * 2^i } = O(n) (5)
9105 * i = 0 2^i 2^i
9106 * `- size of each group
9107 * | | `- number of CPUs doing load-balance
9108 * | `- freq
9109 * `- sum over all levels
9110 *
9111 * Coupled with a limit on how many tasks we can migrate every balance pass,
9112 * this makes (5) the runtime complexity of the balancer.
9113 *
9114 * An important property here is that each CPU is still (indirectly) connected
9115 * to every other CPU in at most O(log n) steps:
9116 *
9117 * The adjacency matrix of the resulting graph is given by:
9118 *
9119 * log_2 n
9120 * A_i,j = \Union (i % 2^k == 0) && i / 2^(k+1) == j / 2^(k+1) (6)
9121 * k = 0
9122 *
9123 * And you'll find that:
9124 *
9125 * A^(log_2 n)_i,j != 0 for all i,j (7)
9126 *
9127 * Showing there's indeed a path between every CPU in at most O(log n) steps.
9128 * The task movement gives a factor of O(m), giving a convergence complexity
9129 * of:
9130 *
9131 * O(nm log n), n := nr_cpus, m := nr_tasks (8)
9132 *
9133 *
9134 * WORK CONSERVING
9135 *
9136 * In order to avoid CPUs going idle while there's still work to do, new idle
9137 * balancing is more aggressive and has the newly idle CPU iterate up the domain
9138 * tree itself instead of relying on other CPUs to bring it work.
9139 *
9140 * This adds some complexity to both (5) and (8) but it reduces the total idle
9141 * time.
9142 *
9143 * [XXX more?]
9144 *
9145 *
9146 * CGROUPS
9147 *
9148 * Cgroups make a horror show out of (2), instead of a simple sum we get:
9149 *
9150 * s_k,i
9151 * W_i,0 = \Sum_j \Prod_k w_k * ----- (9)
9152 * S_k
9153 *
9154 * Where
9155 *
9156 * s_k,i = \Sum_j w_i,j,k and S_k = \Sum_i s_k,i (10)
9157 *
9158 * w_i,j,k is the weight of the j-th runnable task in the k-th cgroup on CPU i.
9159 *
9160 * The big problem is S_k, its a global sum needed to compute a local (W_i)
9161 * property.
9162 *
9163 * [XXX write more on how we solve this.. _after_ merging pjt's patches that
9164 * rewrite all of this once again.]
9165 */
9166
9167 static unsigned long __read_mostly max_load_balance_interval = HZ/10;
9168
9169 enum fbq_type { regular, remote, all };
9170
9171 /*
9172 * 'group_type' describes the group of CPUs at the moment of load balancing.
9173 *
9174 * The enum is ordered by pulling priority, with the group with lowest priority
9175 * first so the group_type can simply be compared when selecting the busiest
9176 * group. See update_sd_pick_busiest().
9177 */
9178 enum group_type {
9179 /* The group has spare capacity that can be used to run more tasks. */
9180 group_has_spare = 0,
9181 /*
9182 * The group is fully used and the tasks don't compete for more CPU
9183 * cycles. Nevertheless, some tasks might wait before running.
9184 */
9185 group_fully_busy,
9186 /*
9187 * One task doesn't fit with CPU's capacity and must be migrated to a
9188 * more powerful CPU.
9189 */
9190 group_misfit_task,
9191 /*
9192 * Balance SMT group that's fully busy. Can benefit from migration
9193 * a task on SMT with busy sibling to another CPU on idle core.
9194 */
9195 group_smt_balance,
9196 /*
9197 * SD_ASYM_PACKING only: One local CPU with higher capacity is available,
9198 * and the task should be migrated to it instead of running on the
9199 * current CPU.
9200 */
9201 group_asym_packing,
9202 /*
9203 * The tasks' affinity constraints previously prevented the scheduler
9204 * from balancing the load across the system.
9205 */
9206 group_imbalanced,
9207 /*
9208 * The CPU is overloaded and can't provide expected CPU cycles to all
9209 * tasks.
9210 */
9211 group_overloaded
9212 };
9213
9214 enum migration_type {
9215 migrate_load = 0,
9216 migrate_util,
9217 migrate_task,
9218 migrate_misfit
9219 };
9220
9221 #define LBF_ALL_PINNED 0x01
9222 #define LBF_NEED_BREAK 0x02
9223 #define LBF_DST_PINNED 0x04
9224 #define LBF_SOME_PINNED 0x08
9225 #define LBF_ACTIVE_LB 0x10
9226
9227 struct lb_env {
9228 struct sched_domain *sd;
9229
9230 struct rq *src_rq;
9231 int src_cpu;
9232
9233 int dst_cpu;
9234 struct rq *dst_rq;
9235
9236 struct cpumask *dst_grpmask;
9237 int new_dst_cpu;
9238 enum cpu_idle_type idle;
9239 long imbalance;
9240 /* The set of CPUs under consideration for load-balancing */
9241 struct cpumask *cpus;
9242
9243 unsigned int flags;
9244
9245 unsigned int loop;
9246 unsigned int loop_break;
9247 unsigned int loop_max;
9248
9249 enum fbq_type fbq_type;
9250 enum migration_type migration_type;
9251 struct list_head tasks;
9252 };
9253
9254 /*
9255 * Is this task likely cache-hot:
9256 */
task_hot(struct task_struct * p,struct lb_env * env)9257 static int task_hot(struct task_struct *p, struct lb_env *env)
9258 {
9259 s64 delta;
9260
9261 lockdep_assert_rq_held(env->src_rq);
9262
9263 if (p->sched_class != &fair_sched_class)
9264 return 0;
9265
9266 if (unlikely(task_has_idle_policy(p)))
9267 return 0;
9268
9269 /* SMT siblings share cache */
9270 if (env->sd->flags & SD_SHARE_CPUCAPACITY)
9271 return 0;
9272
9273 /*
9274 * Buddy candidates are cache hot:
9275 */
9276 if (sched_feat(CACHE_HOT_BUDDY) && env->dst_rq->nr_running &&
9277 (&p->se == cfs_rq_of(&p->se)->next))
9278 return 1;
9279
9280 if (sysctl_sched_migration_cost == -1)
9281 return 1;
9282
9283 /*
9284 * Don't migrate task if the task's cookie does not match
9285 * with the destination CPU's core cookie.
9286 */
9287 if (!sched_core_cookie_match(cpu_rq(env->dst_cpu), p))
9288 return 1;
9289
9290 if (sysctl_sched_migration_cost == 0)
9291 return 0;
9292
9293 delta = rq_clock_task(env->src_rq) - p->se.exec_start;
9294
9295 return delta < (s64)sysctl_sched_migration_cost;
9296 }
9297
9298 #ifdef CONFIG_NUMA_BALANCING
9299 /*
9300 * Returns a positive value, if task migration degrades locality.
9301 * Returns 0, if task migration is not affected by locality.
9302 * Returns a negative value, if task migration improves locality i.e migration preferred.
9303 */
migrate_degrades_locality(struct task_struct * p,struct lb_env * env)9304 static long migrate_degrades_locality(struct task_struct *p, struct lb_env *env)
9305 {
9306 struct numa_group *numa_group = rcu_dereference(p->numa_group);
9307 unsigned long src_weight, dst_weight;
9308 int src_nid, dst_nid, dist;
9309
9310 if (!static_branch_likely(&sched_numa_balancing))
9311 return 0;
9312
9313 if (!p->numa_faults || !(env->sd->flags & SD_NUMA))
9314 return 0;
9315
9316 src_nid = cpu_to_node(env->src_cpu);
9317 dst_nid = cpu_to_node(env->dst_cpu);
9318
9319 if (src_nid == dst_nid)
9320 return 0;
9321
9322 /* Migrating away from the preferred node is always bad. */
9323 if (src_nid == p->numa_preferred_nid) {
9324 if (env->src_rq->nr_running > env->src_rq->nr_preferred_running)
9325 return 1;
9326 else
9327 return 0;
9328 }
9329
9330 /* Encourage migration to the preferred node. */
9331 if (dst_nid == p->numa_preferred_nid)
9332 return -1;
9333
9334 /* Leaving a core idle is often worse than degrading locality. */
9335 if (env->idle == CPU_IDLE)
9336 return 0;
9337
9338 dist = node_distance(src_nid, dst_nid);
9339 if (numa_group) {
9340 src_weight = group_weight(p, src_nid, dist);
9341 dst_weight = group_weight(p, dst_nid, dist);
9342 } else {
9343 src_weight = task_weight(p, src_nid, dist);
9344 dst_weight = task_weight(p, dst_nid, dist);
9345 }
9346
9347 return src_weight - dst_weight;
9348 }
9349
9350 #else
migrate_degrades_locality(struct task_struct * p,struct lb_env * env)9351 static inline long migrate_degrades_locality(struct task_struct *p,
9352 struct lb_env *env)
9353 {
9354 return 0;
9355 }
9356 #endif
9357
9358 /*
9359 * Check whether the task is ineligible on the destination cpu
9360 *
9361 * When the PLACE_LAG scheduling feature is enabled and
9362 * dst_cfs_rq->nr_queued is greater than 1, if the task
9363 * is ineligible, it will also be ineligible when
9364 * it is migrated to the destination cpu.
9365 */
task_is_ineligible_on_dst_cpu(struct task_struct * p,int dest_cpu)9366 static inline int task_is_ineligible_on_dst_cpu(struct task_struct *p, int dest_cpu)
9367 {
9368 struct cfs_rq *dst_cfs_rq;
9369
9370 #ifdef CONFIG_FAIR_GROUP_SCHED
9371 dst_cfs_rq = task_group(p)->cfs_rq[dest_cpu];
9372 #else
9373 dst_cfs_rq = &cpu_rq(dest_cpu)->cfs;
9374 #endif
9375 if (sched_feat(PLACE_LAG) && dst_cfs_rq->nr_queued &&
9376 !entity_eligible(task_cfs_rq(p), &p->se))
9377 return 1;
9378
9379 return 0;
9380 }
9381
9382 /*
9383 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
9384 */
9385 static
can_migrate_task(struct task_struct * p,struct lb_env * env)9386 int can_migrate_task(struct task_struct *p, struct lb_env *env)
9387 {
9388 long degrades, hot;
9389
9390 lockdep_assert_rq_held(env->src_rq);
9391 if (p->sched_task_hot)
9392 p->sched_task_hot = 0;
9393
9394 /*
9395 * We do not migrate tasks that are:
9396 * 1) delayed dequeued unless we migrate load, or
9397 * 2) throttled_lb_pair, or
9398 * 3) cannot be migrated to this CPU due to cpus_ptr, or
9399 * 4) running (obviously), or
9400 * 5) are cache-hot on their current CPU.
9401 */
9402 if ((p->se.sched_delayed) && (env->migration_type != migrate_load))
9403 return 0;
9404
9405 if (throttled_lb_pair(task_group(p), env->src_cpu, env->dst_cpu))
9406 return 0;
9407
9408 /*
9409 * We want to prioritize the migration of eligible tasks.
9410 * For ineligible tasks we soft-limit them and only allow
9411 * them to migrate when nr_balance_failed is non-zero to
9412 * avoid load-balancing trying very hard to balance the load.
9413 */
9414 if (!env->sd->nr_balance_failed &&
9415 task_is_ineligible_on_dst_cpu(p, env->dst_cpu))
9416 return 0;
9417
9418 /* Disregard percpu kthreads; they are where they need to be. */
9419 if (kthread_is_per_cpu(p))
9420 return 0;
9421
9422 if (!cpumask_test_cpu(env->dst_cpu, p->cpus_ptr)) {
9423 int cpu;
9424
9425 schedstat_inc(p->stats.nr_failed_migrations_affine);
9426
9427 env->flags |= LBF_SOME_PINNED;
9428
9429 /*
9430 * Remember if this task can be migrated to any other CPU in
9431 * our sched_group. We may want to revisit it if we couldn't
9432 * meet load balance goals by pulling other tasks on src_cpu.
9433 *
9434 * Avoid computing new_dst_cpu
9435 * - for NEWLY_IDLE
9436 * - if we have already computed one in current iteration
9437 * - if it's an active balance
9438 */
9439 if (env->idle == CPU_NEWLY_IDLE ||
9440 env->flags & (LBF_DST_PINNED | LBF_ACTIVE_LB))
9441 return 0;
9442
9443 /* Prevent to re-select dst_cpu via env's CPUs: */
9444 for_each_cpu_and(cpu, env->dst_grpmask, env->cpus) {
9445 if (cpumask_test_cpu(cpu, p->cpus_ptr)) {
9446 env->flags |= LBF_DST_PINNED;
9447 env->new_dst_cpu = cpu;
9448 break;
9449 }
9450 }
9451
9452 return 0;
9453 }
9454
9455 /* Record that we found at least one task that could run on dst_cpu */
9456 env->flags &= ~LBF_ALL_PINNED;
9457
9458 if (task_on_cpu(env->src_rq, p)) {
9459 schedstat_inc(p->stats.nr_failed_migrations_running);
9460 return 0;
9461 }
9462
9463 /*
9464 * Aggressive migration if:
9465 * 1) active balance
9466 * 2) destination numa is preferred
9467 * 3) task is cache cold, or
9468 * 4) too many balance attempts have failed.
9469 */
9470 if (env->flags & LBF_ACTIVE_LB)
9471 return 1;
9472
9473 degrades = migrate_degrades_locality(p, env);
9474 if (!degrades)
9475 hot = task_hot(p, env);
9476 else
9477 hot = degrades > 0;
9478
9479 if (!hot || env->sd->nr_balance_failed > env->sd->cache_nice_tries) {
9480 if (hot)
9481 p->sched_task_hot = 1;
9482 return 1;
9483 }
9484
9485 schedstat_inc(p->stats.nr_failed_migrations_hot);
9486 return 0;
9487 }
9488
9489 /*
9490 * detach_task() -- detach the task for the migration specified in env
9491 */
detach_task(struct task_struct * p,struct lb_env * env)9492 static void detach_task(struct task_struct *p, struct lb_env *env)
9493 {
9494 lockdep_assert_rq_held(env->src_rq);
9495
9496 if (p->sched_task_hot) {
9497 p->sched_task_hot = 0;
9498 schedstat_inc(env->sd->lb_hot_gained[env->idle]);
9499 schedstat_inc(p->stats.nr_forced_migrations);
9500 }
9501
9502 deactivate_task(env->src_rq, p, DEQUEUE_NOCLOCK);
9503 set_task_cpu(p, env->dst_cpu);
9504 }
9505
9506 /*
9507 * detach_one_task() -- tries to dequeue exactly one task from env->src_rq, as
9508 * part of active balancing operations within "domain".
9509 *
9510 * Returns a task if successful and NULL otherwise.
9511 */
detach_one_task(struct lb_env * env)9512 static struct task_struct *detach_one_task(struct lb_env *env)
9513 {
9514 struct task_struct *p;
9515
9516 lockdep_assert_rq_held(env->src_rq);
9517
9518 list_for_each_entry_reverse(p,
9519 &env->src_rq->cfs_tasks, se.group_node) {
9520 if (!can_migrate_task(p, env))
9521 continue;
9522
9523 detach_task(p, env);
9524
9525 /*
9526 * Right now, this is only the second place where
9527 * lb_gained[env->idle] is updated (other is detach_tasks)
9528 * so we can safely collect stats here rather than
9529 * inside detach_tasks().
9530 */
9531 schedstat_inc(env->sd->lb_gained[env->idle]);
9532 return p;
9533 }
9534 return NULL;
9535 }
9536
9537 /*
9538 * detach_tasks() -- tries to detach up to imbalance load/util/tasks from
9539 * busiest_rq, as part of a balancing operation within domain "sd".
9540 *
9541 * Returns number of detached tasks if successful and 0 otherwise.
9542 */
detach_tasks(struct lb_env * env)9543 static int detach_tasks(struct lb_env *env)
9544 {
9545 struct list_head *tasks = &env->src_rq->cfs_tasks;
9546 unsigned long util, load;
9547 struct task_struct *p;
9548 int detached = 0;
9549
9550 lockdep_assert_rq_held(env->src_rq);
9551
9552 /*
9553 * Source run queue has been emptied by another CPU, clear
9554 * LBF_ALL_PINNED flag as we will not test any task.
9555 */
9556 if (env->src_rq->nr_running <= 1) {
9557 env->flags &= ~LBF_ALL_PINNED;
9558 return 0;
9559 }
9560
9561 if (env->imbalance <= 0)
9562 return 0;
9563
9564 while (!list_empty(tasks)) {
9565 /*
9566 * We don't want to steal all, otherwise we may be treated likewise,
9567 * which could at worst lead to a livelock crash.
9568 */
9569 if (env->idle && env->src_rq->nr_running <= 1)
9570 break;
9571
9572 env->loop++;
9573 /* We've more or less seen every task there is, call it quits */
9574 if (env->loop > env->loop_max)
9575 break;
9576
9577 /* take a breather every nr_migrate tasks */
9578 if (env->loop > env->loop_break) {
9579 env->loop_break += SCHED_NR_MIGRATE_BREAK;
9580 env->flags |= LBF_NEED_BREAK;
9581 break;
9582 }
9583
9584 p = list_last_entry(tasks, struct task_struct, se.group_node);
9585
9586 if (!can_migrate_task(p, env))
9587 goto next;
9588
9589 switch (env->migration_type) {
9590 case migrate_load:
9591 /*
9592 * Depending of the number of CPUs and tasks and the
9593 * cgroup hierarchy, task_h_load() can return a null
9594 * value. Make sure that env->imbalance decreases
9595 * otherwise detach_tasks() will stop only after
9596 * detaching up to loop_max tasks.
9597 */
9598 load = max_t(unsigned long, task_h_load(p), 1);
9599
9600 if (sched_feat(LB_MIN) &&
9601 load < 16 && !env->sd->nr_balance_failed)
9602 goto next;
9603
9604 /*
9605 * Make sure that we don't migrate too much load.
9606 * Nevertheless, let relax the constraint if
9607 * scheduler fails to find a good waiting task to
9608 * migrate.
9609 */
9610 if (shr_bound(load, env->sd->nr_balance_failed) > env->imbalance)
9611 goto next;
9612
9613 env->imbalance -= load;
9614 break;
9615
9616 case migrate_util:
9617 util = task_util_est(p);
9618
9619 if (shr_bound(util, env->sd->nr_balance_failed) > env->imbalance)
9620 goto next;
9621
9622 env->imbalance -= util;
9623 break;
9624
9625 case migrate_task:
9626 env->imbalance--;
9627 break;
9628
9629 case migrate_misfit:
9630 /* This is not a misfit task */
9631 if (task_fits_cpu(p, env->src_cpu))
9632 goto next;
9633
9634 env->imbalance = 0;
9635 break;
9636 }
9637
9638 detach_task(p, env);
9639 list_add(&p->se.group_node, &env->tasks);
9640
9641 detached++;
9642
9643 #ifdef CONFIG_PREEMPTION
9644 /*
9645 * NEWIDLE balancing is a source of latency, so preemptible
9646 * kernels will stop after the first task is detached to minimize
9647 * the critical section.
9648 */
9649 if (env->idle == CPU_NEWLY_IDLE)
9650 break;
9651 #endif
9652
9653 /*
9654 * We only want to steal up to the prescribed amount of
9655 * load/util/tasks.
9656 */
9657 if (env->imbalance <= 0)
9658 break;
9659
9660 continue;
9661 next:
9662 if (p->sched_task_hot)
9663 schedstat_inc(p->stats.nr_failed_migrations_hot);
9664
9665 list_move(&p->se.group_node, tasks);
9666 }
9667
9668 /*
9669 * Right now, this is one of only two places we collect this stat
9670 * so we can safely collect detach_one_task() stats here rather
9671 * than inside detach_one_task().
9672 */
9673 schedstat_add(env->sd->lb_gained[env->idle], detached);
9674
9675 return detached;
9676 }
9677
9678 /*
9679 * attach_task() -- attach the task detached by detach_task() to its new rq.
9680 */
attach_task(struct rq * rq,struct task_struct * p)9681 static void attach_task(struct rq *rq, struct task_struct *p)
9682 {
9683 lockdep_assert_rq_held(rq);
9684
9685 WARN_ON_ONCE(task_rq(p) != rq);
9686 activate_task(rq, p, ENQUEUE_NOCLOCK);
9687 wakeup_preempt(rq, p, 0);
9688 }
9689
9690 /*
9691 * attach_one_task() -- attaches the task returned from detach_one_task() to
9692 * its new rq.
9693 */
attach_one_task(struct rq * rq,struct task_struct * p)9694 static void attach_one_task(struct rq *rq, struct task_struct *p)
9695 {
9696 struct rq_flags rf;
9697
9698 rq_lock(rq, &rf);
9699 update_rq_clock(rq);
9700 attach_task(rq, p);
9701 rq_unlock(rq, &rf);
9702 }
9703
9704 /*
9705 * attach_tasks() -- attaches all tasks detached by detach_tasks() to their
9706 * new rq.
9707 */
attach_tasks(struct lb_env * env)9708 static void attach_tasks(struct lb_env *env)
9709 {
9710 struct list_head *tasks = &env->tasks;
9711 struct task_struct *p;
9712 struct rq_flags rf;
9713
9714 rq_lock(env->dst_rq, &rf);
9715 update_rq_clock(env->dst_rq);
9716
9717 while (!list_empty(tasks)) {
9718 p = list_first_entry(tasks, struct task_struct, se.group_node);
9719 list_del_init(&p->se.group_node);
9720
9721 attach_task(env->dst_rq, p);
9722 }
9723
9724 rq_unlock(env->dst_rq, &rf);
9725 }
9726
9727 #ifdef CONFIG_NO_HZ_COMMON
cfs_rq_has_blocked(struct cfs_rq * cfs_rq)9728 static inline bool cfs_rq_has_blocked(struct cfs_rq *cfs_rq)
9729 {
9730 if (cfs_rq->avg.load_avg)
9731 return true;
9732
9733 if (cfs_rq->avg.util_avg)
9734 return true;
9735
9736 return false;
9737 }
9738
others_have_blocked(struct rq * rq)9739 static inline bool others_have_blocked(struct rq *rq)
9740 {
9741 if (cpu_util_rt(rq))
9742 return true;
9743
9744 if (cpu_util_dl(rq))
9745 return true;
9746
9747 if (hw_load_avg(rq))
9748 return true;
9749
9750 if (cpu_util_irq(rq))
9751 return true;
9752
9753 return false;
9754 }
9755
update_blocked_load_tick(struct rq * rq)9756 static inline void update_blocked_load_tick(struct rq *rq)
9757 {
9758 WRITE_ONCE(rq->last_blocked_load_update_tick, jiffies);
9759 }
9760
update_blocked_load_status(struct rq * rq,bool has_blocked)9761 static inline void update_blocked_load_status(struct rq *rq, bool has_blocked)
9762 {
9763 if (!has_blocked)
9764 rq->has_blocked_load = 0;
9765 }
9766 #else
cfs_rq_has_blocked(struct cfs_rq * cfs_rq)9767 static inline bool cfs_rq_has_blocked(struct cfs_rq *cfs_rq) { return false; }
others_have_blocked(struct rq * rq)9768 static inline bool others_have_blocked(struct rq *rq) { return false; }
update_blocked_load_tick(struct rq * rq)9769 static inline void update_blocked_load_tick(struct rq *rq) {}
update_blocked_load_status(struct rq * rq,bool has_blocked)9770 static inline void update_blocked_load_status(struct rq *rq, bool has_blocked) {}
9771 #endif
9772
__update_blocked_others(struct rq * rq,bool * done)9773 static bool __update_blocked_others(struct rq *rq, bool *done)
9774 {
9775 bool updated;
9776
9777 /*
9778 * update_load_avg() can call cpufreq_update_util(). Make sure that RT,
9779 * DL and IRQ signals have been updated before updating CFS.
9780 */
9781 updated = update_other_load_avgs(rq);
9782
9783 if (others_have_blocked(rq))
9784 *done = false;
9785
9786 return updated;
9787 }
9788
9789 #ifdef CONFIG_FAIR_GROUP_SCHED
9790
__update_blocked_fair(struct rq * rq,bool * done)9791 static bool __update_blocked_fair(struct rq *rq, bool *done)
9792 {
9793 struct cfs_rq *cfs_rq, *pos;
9794 bool decayed = false;
9795 int cpu = cpu_of(rq);
9796
9797 /*
9798 * Iterates the task_group tree in a bottom up fashion, see
9799 * list_add_leaf_cfs_rq() for details.
9800 */
9801 for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos) {
9802 struct sched_entity *se;
9803
9804 if (update_cfs_rq_load_avg(cfs_rq_clock_pelt(cfs_rq), cfs_rq)) {
9805 update_tg_load_avg(cfs_rq);
9806
9807 if (cfs_rq->nr_queued == 0)
9808 update_idle_cfs_rq_clock_pelt(cfs_rq);
9809
9810 if (cfs_rq == &rq->cfs)
9811 decayed = true;
9812 }
9813
9814 /* Propagate pending load changes to the parent, if any: */
9815 se = cfs_rq->tg->se[cpu];
9816 if (se && !skip_blocked_update(se))
9817 update_load_avg(cfs_rq_of(se), se, UPDATE_TG);
9818
9819 /*
9820 * There can be a lot of idle CPU cgroups. Don't let fully
9821 * decayed cfs_rqs linger on the list.
9822 */
9823 if (cfs_rq_is_decayed(cfs_rq))
9824 list_del_leaf_cfs_rq(cfs_rq);
9825
9826 /* Don't need periodic decay once load/util_avg are null */
9827 if (cfs_rq_has_blocked(cfs_rq))
9828 *done = false;
9829 }
9830
9831 return decayed;
9832 }
9833
9834 /*
9835 * Compute the hierarchical load factor for cfs_rq and all its ascendants.
9836 * This needs to be done in a top-down fashion because the load of a child
9837 * group is a fraction of its parents load.
9838 */
update_cfs_rq_h_load(struct cfs_rq * cfs_rq)9839 static void update_cfs_rq_h_load(struct cfs_rq *cfs_rq)
9840 {
9841 struct rq *rq = rq_of(cfs_rq);
9842 struct sched_entity *se = cfs_rq->tg->se[cpu_of(rq)];
9843 unsigned long now = jiffies;
9844 unsigned long load;
9845
9846 if (cfs_rq->last_h_load_update == now)
9847 return;
9848
9849 WRITE_ONCE(cfs_rq->h_load_next, NULL);
9850 for_each_sched_entity(se) {
9851 cfs_rq = cfs_rq_of(se);
9852 WRITE_ONCE(cfs_rq->h_load_next, se);
9853 if (cfs_rq->last_h_load_update == now)
9854 break;
9855 }
9856
9857 if (!se) {
9858 cfs_rq->h_load = cfs_rq_load_avg(cfs_rq);
9859 cfs_rq->last_h_load_update = now;
9860 }
9861
9862 while ((se = READ_ONCE(cfs_rq->h_load_next)) != NULL) {
9863 load = cfs_rq->h_load;
9864 load = div64_ul(load * se->avg.load_avg,
9865 cfs_rq_load_avg(cfs_rq) + 1);
9866 cfs_rq = group_cfs_rq(se);
9867 cfs_rq->h_load = load;
9868 cfs_rq->last_h_load_update = now;
9869 }
9870 }
9871
task_h_load(struct task_struct * p)9872 static unsigned long task_h_load(struct task_struct *p)
9873 {
9874 struct cfs_rq *cfs_rq = task_cfs_rq(p);
9875
9876 update_cfs_rq_h_load(cfs_rq);
9877 return div64_ul(p->se.avg.load_avg * cfs_rq->h_load,
9878 cfs_rq_load_avg(cfs_rq) + 1);
9879 }
9880 #else
__update_blocked_fair(struct rq * rq,bool * done)9881 static bool __update_blocked_fair(struct rq *rq, bool *done)
9882 {
9883 struct cfs_rq *cfs_rq = &rq->cfs;
9884 bool decayed;
9885
9886 decayed = update_cfs_rq_load_avg(cfs_rq_clock_pelt(cfs_rq), cfs_rq);
9887 if (cfs_rq_has_blocked(cfs_rq))
9888 *done = false;
9889
9890 return decayed;
9891 }
9892
task_h_load(struct task_struct * p)9893 static unsigned long task_h_load(struct task_struct *p)
9894 {
9895 return p->se.avg.load_avg;
9896 }
9897 #endif
9898
sched_balance_update_blocked_averages(int cpu)9899 static void sched_balance_update_blocked_averages(int cpu)
9900 {
9901 bool decayed = false, done = true;
9902 struct rq *rq = cpu_rq(cpu);
9903 struct rq_flags rf;
9904
9905 rq_lock_irqsave(rq, &rf);
9906 update_blocked_load_tick(rq);
9907 update_rq_clock(rq);
9908
9909 decayed |= __update_blocked_others(rq, &done);
9910 decayed |= __update_blocked_fair(rq, &done);
9911
9912 update_blocked_load_status(rq, !done);
9913 if (decayed)
9914 cpufreq_update_util(rq, 0);
9915 rq_unlock_irqrestore(rq, &rf);
9916 }
9917
9918 /********** Helpers for sched_balance_find_src_group ************************/
9919
9920 /*
9921 * sg_lb_stats - stats of a sched_group required for load-balancing:
9922 */
9923 struct sg_lb_stats {
9924 unsigned long avg_load; /* Avg load over the CPUs of the group */
9925 unsigned long group_load; /* Total load over the CPUs of the group */
9926 unsigned long group_capacity; /* Capacity over the CPUs of the group */
9927 unsigned long group_util; /* Total utilization over the CPUs of the group */
9928 unsigned long group_runnable; /* Total runnable time over the CPUs of the group */
9929 unsigned int sum_nr_running; /* Nr of all tasks running in the group */
9930 unsigned int sum_h_nr_running; /* Nr of CFS tasks running in the group */
9931 unsigned int idle_cpus; /* Nr of idle CPUs in the group */
9932 unsigned int group_weight;
9933 enum group_type group_type;
9934 unsigned int group_asym_packing; /* Tasks should be moved to preferred CPU */
9935 unsigned int group_smt_balance; /* Task on busy SMT be moved */
9936 unsigned long group_misfit_task_load; /* A CPU has a task too big for its capacity */
9937 #ifdef CONFIG_NUMA_BALANCING
9938 unsigned int nr_numa_running;
9939 unsigned int nr_preferred_running;
9940 #endif
9941 };
9942
9943 /*
9944 * sd_lb_stats - stats of a sched_domain required for load-balancing:
9945 */
9946 struct sd_lb_stats {
9947 struct sched_group *busiest; /* Busiest group in this sd */
9948 struct sched_group *local; /* Local group in this sd */
9949 unsigned long total_load; /* Total load of all groups in sd */
9950 unsigned long total_capacity; /* Total capacity of all groups in sd */
9951 unsigned long avg_load; /* Average load across all groups in sd */
9952 unsigned int prefer_sibling; /* Tasks should go to sibling first */
9953
9954 struct sg_lb_stats busiest_stat; /* Statistics of the busiest group */
9955 struct sg_lb_stats local_stat; /* Statistics of the local group */
9956 };
9957
init_sd_lb_stats(struct sd_lb_stats * sds)9958 static inline void init_sd_lb_stats(struct sd_lb_stats *sds)
9959 {
9960 /*
9961 * Skimp on the clearing to avoid duplicate work. We can avoid clearing
9962 * local_stat because update_sg_lb_stats() does a full clear/assignment.
9963 * We must however set busiest_stat::group_type and
9964 * busiest_stat::idle_cpus to the worst busiest group because
9965 * update_sd_pick_busiest() reads these before assignment.
9966 */
9967 *sds = (struct sd_lb_stats){
9968 .busiest = NULL,
9969 .local = NULL,
9970 .total_load = 0UL,
9971 .total_capacity = 0UL,
9972 .busiest_stat = {
9973 .idle_cpus = UINT_MAX,
9974 .group_type = group_has_spare,
9975 },
9976 };
9977 }
9978
scale_rt_capacity(int cpu)9979 static unsigned long scale_rt_capacity(int cpu)
9980 {
9981 unsigned long max = get_actual_cpu_capacity(cpu);
9982 struct rq *rq = cpu_rq(cpu);
9983 unsigned long used, free;
9984 unsigned long irq;
9985
9986 irq = cpu_util_irq(rq);
9987
9988 if (unlikely(irq >= max))
9989 return 1;
9990
9991 /*
9992 * avg_rt.util_avg and avg_dl.util_avg track binary signals
9993 * (running and not running) with weights 0 and 1024 respectively.
9994 */
9995 used = cpu_util_rt(rq);
9996 used += cpu_util_dl(rq);
9997
9998 if (unlikely(used >= max))
9999 return 1;
10000
10001 free = max - used;
10002
10003 return scale_irq_capacity(free, irq, max);
10004 }
10005
update_cpu_capacity(struct sched_domain * sd,int cpu)10006 static void update_cpu_capacity(struct sched_domain *sd, int cpu)
10007 {
10008 unsigned long capacity = scale_rt_capacity(cpu);
10009 struct sched_group *sdg = sd->groups;
10010
10011 if (!capacity)
10012 capacity = 1;
10013
10014 cpu_rq(cpu)->cpu_capacity = capacity;
10015 trace_sched_cpu_capacity_tp(cpu_rq(cpu));
10016
10017 sdg->sgc->capacity = capacity;
10018 sdg->sgc->min_capacity = capacity;
10019 sdg->sgc->max_capacity = capacity;
10020 }
10021
update_group_capacity(struct sched_domain * sd,int cpu)10022 void update_group_capacity(struct sched_domain *sd, int cpu)
10023 {
10024 struct sched_domain *child = sd->child;
10025 struct sched_group *group, *sdg = sd->groups;
10026 unsigned long capacity, min_capacity, max_capacity;
10027 unsigned long interval;
10028
10029 interval = msecs_to_jiffies(sd->balance_interval);
10030 interval = clamp(interval, 1UL, max_load_balance_interval);
10031 sdg->sgc->next_update = jiffies + interval;
10032
10033 if (!child) {
10034 update_cpu_capacity(sd, cpu);
10035 return;
10036 }
10037
10038 capacity = 0;
10039 min_capacity = ULONG_MAX;
10040 max_capacity = 0;
10041
10042 if (child->flags & SD_OVERLAP) {
10043 /*
10044 * SD_OVERLAP domains cannot assume that child groups
10045 * span the current group.
10046 */
10047
10048 for_each_cpu(cpu, sched_group_span(sdg)) {
10049 unsigned long cpu_cap = capacity_of(cpu);
10050
10051 capacity += cpu_cap;
10052 min_capacity = min(cpu_cap, min_capacity);
10053 max_capacity = max(cpu_cap, max_capacity);
10054 }
10055 } else {
10056 /*
10057 * !SD_OVERLAP domains can assume that child groups
10058 * span the current group.
10059 */
10060
10061 group = child->groups;
10062 do {
10063 struct sched_group_capacity *sgc = group->sgc;
10064
10065 capacity += sgc->capacity;
10066 min_capacity = min(sgc->min_capacity, min_capacity);
10067 max_capacity = max(sgc->max_capacity, max_capacity);
10068 group = group->next;
10069 } while (group != child->groups);
10070 }
10071
10072 sdg->sgc->capacity = capacity;
10073 sdg->sgc->min_capacity = min_capacity;
10074 sdg->sgc->max_capacity = max_capacity;
10075 }
10076
10077 /*
10078 * Check whether the capacity of the rq has been noticeably reduced by side
10079 * activity. The imbalance_pct is used for the threshold.
10080 * Return true is the capacity is reduced
10081 */
10082 static inline int
check_cpu_capacity(struct rq * rq,struct sched_domain * sd)10083 check_cpu_capacity(struct rq *rq, struct sched_domain *sd)
10084 {
10085 return ((rq->cpu_capacity * sd->imbalance_pct) <
10086 (arch_scale_cpu_capacity(cpu_of(rq)) * 100));
10087 }
10088
10089 /* Check if the rq has a misfit task */
check_misfit_status(struct rq * rq)10090 static inline bool check_misfit_status(struct rq *rq)
10091 {
10092 return rq->misfit_task_load;
10093 }
10094
10095 /*
10096 * Group imbalance indicates (and tries to solve) the problem where balancing
10097 * groups is inadequate due to ->cpus_ptr constraints.
10098 *
10099 * Imagine a situation of two groups of 4 CPUs each and 4 tasks each with a
10100 * cpumask covering 1 CPU of the first group and 3 CPUs of the second group.
10101 * Something like:
10102 *
10103 * { 0 1 2 3 } { 4 5 6 7 }
10104 * * * * *
10105 *
10106 * If we were to balance group-wise we'd place two tasks in the first group and
10107 * two tasks in the second group. Clearly this is undesired as it will overload
10108 * cpu 3 and leave one of the CPUs in the second group unused.
10109 *
10110 * The current solution to this issue is detecting the skew in the first group
10111 * by noticing the lower domain failed to reach balance and had difficulty
10112 * moving tasks due to affinity constraints.
10113 *
10114 * When this is so detected; this group becomes a candidate for busiest; see
10115 * update_sd_pick_busiest(). And calculate_imbalance() and
10116 * sched_balance_find_src_group() avoid some of the usual balance conditions to allow it
10117 * to create an effective group imbalance.
10118 *
10119 * This is a somewhat tricky proposition since the next run might not find the
10120 * group imbalance and decide the groups need to be balanced again. A most
10121 * subtle and fragile situation.
10122 */
10123
sg_imbalanced(struct sched_group * group)10124 static inline int sg_imbalanced(struct sched_group *group)
10125 {
10126 return group->sgc->imbalance;
10127 }
10128
10129 /*
10130 * group_has_capacity returns true if the group has spare capacity that could
10131 * be used by some tasks.
10132 * We consider that a group has spare capacity if the number of task is
10133 * smaller than the number of CPUs or if the utilization is lower than the
10134 * available capacity for CFS tasks.
10135 * For the latter, we use a threshold to stabilize the state, to take into
10136 * account the variance of the tasks' load and to return true if the available
10137 * capacity in meaningful for the load balancer.
10138 * As an example, an available capacity of 1% can appear but it doesn't make
10139 * any benefit for the load balance.
10140 */
10141 static inline bool
group_has_capacity(unsigned int imbalance_pct,struct sg_lb_stats * sgs)10142 group_has_capacity(unsigned int imbalance_pct, struct sg_lb_stats *sgs)
10143 {
10144 if (sgs->sum_nr_running < sgs->group_weight)
10145 return true;
10146
10147 if ((sgs->group_capacity * imbalance_pct) <
10148 (sgs->group_runnable * 100))
10149 return false;
10150
10151 if ((sgs->group_capacity * 100) >
10152 (sgs->group_util * imbalance_pct))
10153 return true;
10154
10155 return false;
10156 }
10157
10158 /*
10159 * group_is_overloaded returns true if the group has more tasks than it can
10160 * handle.
10161 * group_is_overloaded is not equals to !group_has_capacity because a group
10162 * with the exact right number of tasks, has no more spare capacity but is not
10163 * overloaded so both group_has_capacity and group_is_overloaded return
10164 * false.
10165 */
10166 static inline bool
group_is_overloaded(unsigned int imbalance_pct,struct sg_lb_stats * sgs)10167 group_is_overloaded(unsigned int imbalance_pct, struct sg_lb_stats *sgs)
10168 {
10169 if (sgs->sum_nr_running <= sgs->group_weight)
10170 return false;
10171
10172 if ((sgs->group_capacity * 100) <
10173 (sgs->group_util * imbalance_pct))
10174 return true;
10175
10176 if ((sgs->group_capacity * imbalance_pct) <
10177 (sgs->group_runnable * 100))
10178 return true;
10179
10180 return false;
10181 }
10182
10183 static inline enum
group_classify(unsigned int imbalance_pct,struct sched_group * group,struct sg_lb_stats * sgs)10184 group_type group_classify(unsigned int imbalance_pct,
10185 struct sched_group *group,
10186 struct sg_lb_stats *sgs)
10187 {
10188 if (group_is_overloaded(imbalance_pct, sgs))
10189 return group_overloaded;
10190
10191 if (sg_imbalanced(group))
10192 return group_imbalanced;
10193
10194 if (sgs->group_asym_packing)
10195 return group_asym_packing;
10196
10197 if (sgs->group_smt_balance)
10198 return group_smt_balance;
10199
10200 if (sgs->group_misfit_task_load)
10201 return group_misfit_task;
10202
10203 if (!group_has_capacity(imbalance_pct, sgs))
10204 return group_fully_busy;
10205
10206 return group_has_spare;
10207 }
10208
10209 /**
10210 * sched_use_asym_prio - Check whether asym_packing priority must be used
10211 * @sd: The scheduling domain of the load balancing
10212 * @cpu: A CPU
10213 *
10214 * Always use CPU priority when balancing load between SMT siblings. When
10215 * balancing load between cores, it is not sufficient that @cpu is idle. Only
10216 * use CPU priority if the whole core is idle.
10217 *
10218 * Returns: True if the priority of @cpu must be followed. False otherwise.
10219 */
sched_use_asym_prio(struct sched_domain * sd,int cpu)10220 static bool sched_use_asym_prio(struct sched_domain *sd, int cpu)
10221 {
10222 if (!(sd->flags & SD_ASYM_PACKING))
10223 return false;
10224
10225 if (!sched_smt_active())
10226 return true;
10227
10228 return sd->flags & SD_SHARE_CPUCAPACITY || is_core_idle(cpu);
10229 }
10230
sched_asym(struct sched_domain * sd,int dst_cpu,int src_cpu)10231 static inline bool sched_asym(struct sched_domain *sd, int dst_cpu, int src_cpu)
10232 {
10233 /*
10234 * First check if @dst_cpu can do asym_packing load balance. Only do it
10235 * if it has higher priority than @src_cpu.
10236 */
10237 return sched_use_asym_prio(sd, dst_cpu) &&
10238 sched_asym_prefer(dst_cpu, src_cpu);
10239 }
10240
10241 /**
10242 * sched_group_asym - Check if the destination CPU can do asym_packing balance
10243 * @env: The load balancing environment
10244 * @sgs: Load-balancing statistics of the candidate busiest group
10245 * @group: The candidate busiest group
10246 *
10247 * @env::dst_cpu can do asym_packing if it has higher priority than the
10248 * preferred CPU of @group.
10249 *
10250 * Return: true if @env::dst_cpu can do with asym_packing load balance. False
10251 * otherwise.
10252 */
10253 static inline bool
sched_group_asym(struct lb_env * env,struct sg_lb_stats * sgs,struct sched_group * group)10254 sched_group_asym(struct lb_env *env, struct sg_lb_stats *sgs, struct sched_group *group)
10255 {
10256 /*
10257 * CPU priorities do not make sense for SMT cores with more than one
10258 * busy sibling.
10259 */
10260 if ((group->flags & SD_SHARE_CPUCAPACITY) &&
10261 (sgs->group_weight - sgs->idle_cpus != 1))
10262 return false;
10263
10264 return sched_asym(env->sd, env->dst_cpu, group->asym_prefer_cpu);
10265 }
10266
10267 /* One group has more than one SMT CPU while the other group does not */
smt_vs_nonsmt_groups(struct sched_group * sg1,struct sched_group * sg2)10268 static inline bool smt_vs_nonsmt_groups(struct sched_group *sg1,
10269 struct sched_group *sg2)
10270 {
10271 if (!sg1 || !sg2)
10272 return false;
10273
10274 return (sg1->flags & SD_SHARE_CPUCAPACITY) !=
10275 (sg2->flags & SD_SHARE_CPUCAPACITY);
10276 }
10277
smt_balance(struct lb_env * env,struct sg_lb_stats * sgs,struct sched_group * group)10278 static inline bool smt_balance(struct lb_env *env, struct sg_lb_stats *sgs,
10279 struct sched_group *group)
10280 {
10281 if (!env->idle)
10282 return false;
10283
10284 /*
10285 * For SMT source group, it is better to move a task
10286 * to a CPU that doesn't have multiple tasks sharing its CPU capacity.
10287 * Note that if a group has a single SMT, SD_SHARE_CPUCAPACITY
10288 * will not be on.
10289 */
10290 if (group->flags & SD_SHARE_CPUCAPACITY &&
10291 sgs->sum_h_nr_running > 1)
10292 return true;
10293
10294 return false;
10295 }
10296
sibling_imbalance(struct lb_env * env,struct sd_lb_stats * sds,struct sg_lb_stats * busiest,struct sg_lb_stats * local)10297 static inline long sibling_imbalance(struct lb_env *env,
10298 struct sd_lb_stats *sds,
10299 struct sg_lb_stats *busiest,
10300 struct sg_lb_stats *local)
10301 {
10302 int ncores_busiest, ncores_local;
10303 long imbalance;
10304
10305 if (!env->idle || !busiest->sum_nr_running)
10306 return 0;
10307
10308 ncores_busiest = sds->busiest->cores;
10309 ncores_local = sds->local->cores;
10310
10311 if (ncores_busiest == ncores_local) {
10312 imbalance = busiest->sum_nr_running;
10313 lsub_positive(&imbalance, local->sum_nr_running);
10314 return imbalance;
10315 }
10316
10317 /* Balance such that nr_running/ncores ratio are same on both groups */
10318 imbalance = ncores_local * busiest->sum_nr_running;
10319 lsub_positive(&imbalance, ncores_busiest * local->sum_nr_running);
10320 /* Normalize imbalance and do rounding on normalization */
10321 imbalance = 2 * imbalance + ncores_local + ncores_busiest;
10322 imbalance /= ncores_local + ncores_busiest;
10323
10324 /* Take advantage of resource in an empty sched group */
10325 if (imbalance <= 1 && local->sum_nr_running == 0 &&
10326 busiest->sum_nr_running > 1)
10327 imbalance = 2;
10328
10329 return imbalance;
10330 }
10331
10332 static inline bool
sched_reduced_capacity(struct rq * rq,struct sched_domain * sd)10333 sched_reduced_capacity(struct rq *rq, struct sched_domain *sd)
10334 {
10335 /*
10336 * When there is more than 1 task, the group_overloaded case already
10337 * takes care of cpu with reduced capacity
10338 */
10339 if (rq->cfs.h_nr_runnable != 1)
10340 return false;
10341
10342 return check_cpu_capacity(rq, sd);
10343 }
10344
10345 /**
10346 * update_sg_lb_stats - Update sched_group's statistics for load balancing.
10347 * @env: The load balancing environment.
10348 * @sds: Load-balancing data with statistics of the local group.
10349 * @group: sched_group whose statistics are to be updated.
10350 * @sgs: variable to hold the statistics for this group.
10351 * @sg_overloaded: sched_group is overloaded
10352 * @sg_overutilized: sched_group is overutilized
10353 */
update_sg_lb_stats(struct lb_env * env,struct sd_lb_stats * sds,struct sched_group * group,struct sg_lb_stats * sgs,bool * sg_overloaded,bool * sg_overutilized)10354 static inline void update_sg_lb_stats(struct lb_env *env,
10355 struct sd_lb_stats *sds,
10356 struct sched_group *group,
10357 struct sg_lb_stats *sgs,
10358 bool *sg_overloaded,
10359 bool *sg_overutilized)
10360 {
10361 int i, nr_running, local_group, sd_flags = env->sd->flags;
10362 bool balancing_at_rd = !env->sd->parent;
10363
10364 memset(sgs, 0, sizeof(*sgs));
10365
10366 local_group = group == sds->local;
10367
10368 for_each_cpu_and(i, sched_group_span(group), env->cpus) {
10369 struct rq *rq = cpu_rq(i);
10370 unsigned long load = cpu_load(rq);
10371
10372 sgs->group_load += load;
10373 sgs->group_util += cpu_util_cfs(i);
10374 sgs->group_runnable += cpu_runnable(rq);
10375 sgs->sum_h_nr_running += rq->cfs.h_nr_runnable;
10376
10377 nr_running = rq->nr_running;
10378 sgs->sum_nr_running += nr_running;
10379
10380 if (cpu_overutilized(i))
10381 *sg_overutilized = 1;
10382
10383 /*
10384 * No need to call idle_cpu() if nr_running is not 0
10385 */
10386 if (!nr_running && idle_cpu(i)) {
10387 sgs->idle_cpus++;
10388 /* Idle cpu can't have misfit task */
10389 continue;
10390 }
10391
10392 /* Overload indicator is only updated at root domain */
10393 if (balancing_at_rd && nr_running > 1)
10394 *sg_overloaded = 1;
10395
10396 #ifdef CONFIG_NUMA_BALANCING
10397 /* Only fbq_classify_group() uses this to classify NUMA groups */
10398 if (sd_flags & SD_NUMA) {
10399 sgs->nr_numa_running += rq->nr_numa_running;
10400 sgs->nr_preferred_running += rq->nr_preferred_running;
10401 }
10402 #endif
10403 if (local_group)
10404 continue;
10405
10406 if (sd_flags & SD_ASYM_CPUCAPACITY) {
10407 /* Check for a misfit task on the cpu */
10408 if (sgs->group_misfit_task_load < rq->misfit_task_load) {
10409 sgs->group_misfit_task_load = rq->misfit_task_load;
10410 *sg_overloaded = 1;
10411 }
10412 } else if (env->idle && sched_reduced_capacity(rq, env->sd)) {
10413 /* Check for a task running on a CPU with reduced capacity */
10414 if (sgs->group_misfit_task_load < load)
10415 sgs->group_misfit_task_load = load;
10416 }
10417 }
10418
10419 sgs->group_capacity = group->sgc->capacity;
10420
10421 sgs->group_weight = group->group_weight;
10422
10423 /* Check if dst CPU is idle and preferred to this group */
10424 if (!local_group && env->idle && sgs->sum_h_nr_running &&
10425 sched_group_asym(env, sgs, group))
10426 sgs->group_asym_packing = 1;
10427
10428 /* Check for loaded SMT group to be balanced to dst CPU */
10429 if (!local_group && smt_balance(env, sgs, group))
10430 sgs->group_smt_balance = 1;
10431
10432 sgs->group_type = group_classify(env->sd->imbalance_pct, group, sgs);
10433
10434 /* Computing avg_load makes sense only when group is overloaded */
10435 if (sgs->group_type == group_overloaded)
10436 sgs->avg_load = (sgs->group_load * SCHED_CAPACITY_SCALE) /
10437 sgs->group_capacity;
10438 }
10439
10440 /**
10441 * update_sd_pick_busiest - return 1 on busiest group
10442 * @env: The load balancing environment.
10443 * @sds: sched_domain statistics
10444 * @sg: sched_group candidate to be checked for being the busiest
10445 * @sgs: sched_group statistics
10446 *
10447 * Determine if @sg is a busier group than the previously selected
10448 * busiest group.
10449 *
10450 * Return: %true if @sg is a busier group than the previously selected
10451 * busiest group. %false otherwise.
10452 */
update_sd_pick_busiest(struct lb_env * env,struct sd_lb_stats * sds,struct sched_group * sg,struct sg_lb_stats * sgs)10453 static bool update_sd_pick_busiest(struct lb_env *env,
10454 struct sd_lb_stats *sds,
10455 struct sched_group *sg,
10456 struct sg_lb_stats *sgs)
10457 {
10458 struct sg_lb_stats *busiest = &sds->busiest_stat;
10459
10460 /* Make sure that there is at least one task to pull */
10461 if (!sgs->sum_h_nr_running)
10462 return false;
10463
10464 /*
10465 * Don't try to pull misfit tasks we can't help.
10466 * We can use max_capacity here as reduction in capacity on some
10467 * CPUs in the group should either be possible to resolve
10468 * internally or be covered by avg_load imbalance (eventually).
10469 */
10470 if ((env->sd->flags & SD_ASYM_CPUCAPACITY) &&
10471 (sgs->group_type == group_misfit_task) &&
10472 (!capacity_greater(capacity_of(env->dst_cpu), sg->sgc->max_capacity) ||
10473 sds->local_stat.group_type != group_has_spare))
10474 return false;
10475
10476 if (sgs->group_type > busiest->group_type)
10477 return true;
10478
10479 if (sgs->group_type < busiest->group_type)
10480 return false;
10481
10482 /*
10483 * The candidate and the current busiest group are the same type of
10484 * group. Let check which one is the busiest according to the type.
10485 */
10486
10487 switch (sgs->group_type) {
10488 case group_overloaded:
10489 /* Select the overloaded group with highest avg_load. */
10490 return sgs->avg_load > busiest->avg_load;
10491
10492 case group_imbalanced:
10493 /*
10494 * Select the 1st imbalanced group as we don't have any way to
10495 * choose one more than another.
10496 */
10497 return false;
10498
10499 case group_asym_packing:
10500 /* Prefer to move from lowest priority CPU's work */
10501 return sched_asym_prefer(sds->busiest->asym_prefer_cpu, sg->asym_prefer_cpu);
10502
10503 case group_misfit_task:
10504 /*
10505 * If we have more than one misfit sg go with the biggest
10506 * misfit.
10507 */
10508 return sgs->group_misfit_task_load > busiest->group_misfit_task_load;
10509
10510 case group_smt_balance:
10511 /*
10512 * Check if we have spare CPUs on either SMT group to
10513 * choose has spare or fully busy handling.
10514 */
10515 if (sgs->idle_cpus != 0 || busiest->idle_cpus != 0)
10516 goto has_spare;
10517
10518 fallthrough;
10519
10520 case group_fully_busy:
10521 /*
10522 * Select the fully busy group with highest avg_load. In
10523 * theory, there is no need to pull task from such kind of
10524 * group because tasks have all compute capacity that they need
10525 * but we can still improve the overall throughput by reducing
10526 * contention when accessing shared HW resources.
10527 *
10528 * XXX for now avg_load is not computed and always 0 so we
10529 * select the 1st one, except if @sg is composed of SMT
10530 * siblings.
10531 */
10532
10533 if (sgs->avg_load < busiest->avg_load)
10534 return false;
10535
10536 if (sgs->avg_load == busiest->avg_load) {
10537 /*
10538 * SMT sched groups need more help than non-SMT groups.
10539 * If @sg happens to also be SMT, either choice is good.
10540 */
10541 if (sds->busiest->flags & SD_SHARE_CPUCAPACITY)
10542 return false;
10543 }
10544
10545 break;
10546
10547 case group_has_spare:
10548 /*
10549 * Do not pick sg with SMT CPUs over sg with pure CPUs,
10550 * as we do not want to pull task off SMT core with one task
10551 * and make the core idle.
10552 */
10553 if (smt_vs_nonsmt_groups(sds->busiest, sg)) {
10554 if (sg->flags & SD_SHARE_CPUCAPACITY && sgs->sum_h_nr_running <= 1)
10555 return false;
10556 else
10557 return true;
10558 }
10559 has_spare:
10560
10561 /*
10562 * Select not overloaded group with lowest number of idle CPUs
10563 * and highest number of running tasks. We could also compare
10564 * the spare capacity which is more stable but it can end up
10565 * that the group has less spare capacity but finally more idle
10566 * CPUs which means less opportunity to pull tasks.
10567 */
10568 if (sgs->idle_cpus > busiest->idle_cpus)
10569 return false;
10570 else if ((sgs->idle_cpus == busiest->idle_cpus) &&
10571 (sgs->sum_nr_running <= busiest->sum_nr_running))
10572 return false;
10573
10574 break;
10575 }
10576
10577 /*
10578 * Candidate sg has no more than one task per CPU and has higher
10579 * per-CPU capacity. Migrating tasks to less capable CPUs may harm
10580 * throughput. Maximize throughput, power/energy consequences are not
10581 * considered.
10582 */
10583 if ((env->sd->flags & SD_ASYM_CPUCAPACITY) &&
10584 (sgs->group_type <= group_fully_busy) &&
10585 (capacity_greater(sg->sgc->min_capacity, capacity_of(env->dst_cpu))))
10586 return false;
10587
10588 return true;
10589 }
10590
10591 #ifdef CONFIG_NUMA_BALANCING
fbq_classify_group(struct sg_lb_stats * sgs)10592 static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
10593 {
10594 if (sgs->sum_h_nr_running > sgs->nr_numa_running)
10595 return regular;
10596 if (sgs->sum_h_nr_running > sgs->nr_preferred_running)
10597 return remote;
10598 return all;
10599 }
10600
fbq_classify_rq(struct rq * rq)10601 static inline enum fbq_type fbq_classify_rq(struct rq *rq)
10602 {
10603 if (rq->nr_running > rq->nr_numa_running)
10604 return regular;
10605 if (rq->nr_running > rq->nr_preferred_running)
10606 return remote;
10607 return all;
10608 }
10609 #else
fbq_classify_group(struct sg_lb_stats * sgs)10610 static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
10611 {
10612 return all;
10613 }
10614
fbq_classify_rq(struct rq * rq)10615 static inline enum fbq_type fbq_classify_rq(struct rq *rq)
10616 {
10617 return regular;
10618 }
10619 #endif /* CONFIG_NUMA_BALANCING */
10620
10621
10622 struct sg_lb_stats;
10623
10624 /*
10625 * task_running_on_cpu - return 1 if @p is running on @cpu.
10626 */
10627
task_running_on_cpu(int cpu,struct task_struct * p)10628 static unsigned int task_running_on_cpu(int cpu, struct task_struct *p)
10629 {
10630 /* Task has no contribution or is new */
10631 if (cpu != task_cpu(p) || !READ_ONCE(p->se.avg.last_update_time))
10632 return 0;
10633
10634 if (task_on_rq_queued(p))
10635 return 1;
10636
10637 return 0;
10638 }
10639
10640 /**
10641 * idle_cpu_without - would a given CPU be idle without p ?
10642 * @cpu: the processor on which idleness is tested.
10643 * @p: task which should be ignored.
10644 *
10645 * Return: 1 if the CPU would be idle. 0 otherwise.
10646 */
idle_cpu_without(int cpu,struct task_struct * p)10647 static int idle_cpu_without(int cpu, struct task_struct *p)
10648 {
10649 struct rq *rq = cpu_rq(cpu);
10650
10651 if (rq->curr != rq->idle && rq->curr != p)
10652 return 0;
10653
10654 /*
10655 * rq->nr_running can't be used but an updated version without the
10656 * impact of p on cpu must be used instead. The updated nr_running
10657 * be computed and tested before calling idle_cpu_without().
10658 */
10659
10660 if (rq->ttwu_pending)
10661 return 0;
10662
10663 return 1;
10664 }
10665
10666 /*
10667 * update_sg_wakeup_stats - Update sched_group's statistics for wakeup.
10668 * @sd: The sched_domain level to look for idlest group.
10669 * @group: sched_group whose statistics are to be updated.
10670 * @sgs: variable to hold the statistics for this group.
10671 * @p: The task for which we look for the idlest group/CPU.
10672 */
update_sg_wakeup_stats(struct sched_domain * sd,struct sched_group * group,struct sg_lb_stats * sgs,struct task_struct * p)10673 static inline void update_sg_wakeup_stats(struct sched_domain *sd,
10674 struct sched_group *group,
10675 struct sg_lb_stats *sgs,
10676 struct task_struct *p)
10677 {
10678 int i, nr_running;
10679
10680 memset(sgs, 0, sizeof(*sgs));
10681
10682 /* Assume that task can't fit any CPU of the group */
10683 if (sd->flags & SD_ASYM_CPUCAPACITY)
10684 sgs->group_misfit_task_load = 1;
10685
10686 for_each_cpu(i, sched_group_span(group)) {
10687 struct rq *rq = cpu_rq(i);
10688 unsigned int local;
10689
10690 sgs->group_load += cpu_load_without(rq, p);
10691 sgs->group_util += cpu_util_without(i, p);
10692 sgs->group_runnable += cpu_runnable_without(rq, p);
10693 local = task_running_on_cpu(i, p);
10694 sgs->sum_h_nr_running += rq->cfs.h_nr_runnable - local;
10695
10696 nr_running = rq->nr_running - local;
10697 sgs->sum_nr_running += nr_running;
10698
10699 /*
10700 * No need to call idle_cpu_without() if nr_running is not 0
10701 */
10702 if (!nr_running && idle_cpu_without(i, p))
10703 sgs->idle_cpus++;
10704
10705 /* Check if task fits in the CPU */
10706 if (sd->flags & SD_ASYM_CPUCAPACITY &&
10707 sgs->group_misfit_task_load &&
10708 task_fits_cpu(p, i))
10709 sgs->group_misfit_task_load = 0;
10710
10711 }
10712
10713 sgs->group_capacity = group->sgc->capacity;
10714
10715 sgs->group_weight = group->group_weight;
10716
10717 sgs->group_type = group_classify(sd->imbalance_pct, group, sgs);
10718
10719 /*
10720 * Computing avg_load makes sense only when group is fully busy or
10721 * overloaded
10722 */
10723 if (sgs->group_type == group_fully_busy ||
10724 sgs->group_type == group_overloaded)
10725 sgs->avg_load = (sgs->group_load * SCHED_CAPACITY_SCALE) /
10726 sgs->group_capacity;
10727 }
10728
update_pick_idlest(struct sched_group * idlest,struct sg_lb_stats * idlest_sgs,struct sched_group * group,struct sg_lb_stats * sgs)10729 static bool update_pick_idlest(struct sched_group *idlest,
10730 struct sg_lb_stats *idlest_sgs,
10731 struct sched_group *group,
10732 struct sg_lb_stats *sgs)
10733 {
10734 if (sgs->group_type < idlest_sgs->group_type)
10735 return true;
10736
10737 if (sgs->group_type > idlest_sgs->group_type)
10738 return false;
10739
10740 /*
10741 * The candidate and the current idlest group are the same type of
10742 * group. Let check which one is the idlest according to the type.
10743 */
10744
10745 switch (sgs->group_type) {
10746 case group_overloaded:
10747 case group_fully_busy:
10748 /* Select the group with lowest avg_load. */
10749 if (idlest_sgs->avg_load <= sgs->avg_load)
10750 return false;
10751 break;
10752
10753 case group_imbalanced:
10754 case group_asym_packing:
10755 case group_smt_balance:
10756 /* Those types are not used in the slow wakeup path */
10757 return false;
10758
10759 case group_misfit_task:
10760 /* Select group with the highest max capacity */
10761 if (idlest->sgc->max_capacity >= group->sgc->max_capacity)
10762 return false;
10763 break;
10764
10765 case group_has_spare:
10766 /* Select group with most idle CPUs */
10767 if (idlest_sgs->idle_cpus > sgs->idle_cpus)
10768 return false;
10769
10770 /* Select group with lowest group_util */
10771 if (idlest_sgs->idle_cpus == sgs->idle_cpus &&
10772 idlest_sgs->group_util <= sgs->group_util)
10773 return false;
10774
10775 break;
10776 }
10777
10778 return true;
10779 }
10780
10781 /*
10782 * sched_balance_find_dst_group() finds and returns the least busy CPU group within the
10783 * domain.
10784 *
10785 * Assumes p is allowed on at least one CPU in sd.
10786 */
10787 static struct sched_group *
sched_balance_find_dst_group(struct sched_domain * sd,struct task_struct * p,int this_cpu)10788 sched_balance_find_dst_group(struct sched_domain *sd, struct task_struct *p, int this_cpu)
10789 {
10790 struct sched_group *idlest = NULL, *local = NULL, *group = sd->groups;
10791 struct sg_lb_stats local_sgs, tmp_sgs;
10792 struct sg_lb_stats *sgs;
10793 unsigned long imbalance;
10794 struct sg_lb_stats idlest_sgs = {
10795 .avg_load = UINT_MAX,
10796 .group_type = group_overloaded,
10797 };
10798
10799 do {
10800 int local_group;
10801
10802 /* Skip over this group if it has no CPUs allowed */
10803 if (!cpumask_intersects(sched_group_span(group),
10804 p->cpus_ptr))
10805 continue;
10806
10807 /* Skip over this group if no cookie matched */
10808 if (!sched_group_cookie_match(cpu_rq(this_cpu), p, group))
10809 continue;
10810
10811 local_group = cpumask_test_cpu(this_cpu,
10812 sched_group_span(group));
10813
10814 if (local_group) {
10815 sgs = &local_sgs;
10816 local = group;
10817 } else {
10818 sgs = &tmp_sgs;
10819 }
10820
10821 update_sg_wakeup_stats(sd, group, sgs, p);
10822
10823 if (!local_group && update_pick_idlest(idlest, &idlest_sgs, group, sgs)) {
10824 idlest = group;
10825 idlest_sgs = *sgs;
10826 }
10827
10828 } while (group = group->next, group != sd->groups);
10829
10830
10831 /* There is no idlest group to push tasks to */
10832 if (!idlest)
10833 return NULL;
10834
10835 /* The local group has been skipped because of CPU affinity */
10836 if (!local)
10837 return idlest;
10838
10839 /*
10840 * If the local group is idler than the selected idlest group
10841 * don't try and push the task.
10842 */
10843 if (local_sgs.group_type < idlest_sgs.group_type)
10844 return NULL;
10845
10846 /*
10847 * If the local group is busier than the selected idlest group
10848 * try and push the task.
10849 */
10850 if (local_sgs.group_type > idlest_sgs.group_type)
10851 return idlest;
10852
10853 switch (local_sgs.group_type) {
10854 case group_overloaded:
10855 case group_fully_busy:
10856
10857 /* Calculate allowed imbalance based on load */
10858 imbalance = scale_load_down(NICE_0_LOAD) *
10859 (sd->imbalance_pct-100) / 100;
10860
10861 /*
10862 * When comparing groups across NUMA domains, it's possible for
10863 * the local domain to be very lightly loaded relative to the
10864 * remote domains but "imbalance" skews the comparison making
10865 * remote CPUs look much more favourable. When considering
10866 * cross-domain, add imbalance to the load on the remote node
10867 * and consider staying local.
10868 */
10869
10870 if ((sd->flags & SD_NUMA) &&
10871 ((idlest_sgs.avg_load + imbalance) >= local_sgs.avg_load))
10872 return NULL;
10873
10874 /*
10875 * If the local group is less loaded than the selected
10876 * idlest group don't try and push any tasks.
10877 */
10878 if (idlest_sgs.avg_load >= (local_sgs.avg_load + imbalance))
10879 return NULL;
10880
10881 if (100 * local_sgs.avg_load <= sd->imbalance_pct * idlest_sgs.avg_load)
10882 return NULL;
10883 break;
10884
10885 case group_imbalanced:
10886 case group_asym_packing:
10887 case group_smt_balance:
10888 /* Those type are not used in the slow wakeup path */
10889 return NULL;
10890
10891 case group_misfit_task:
10892 /* Select group with the highest max capacity */
10893 if (local->sgc->max_capacity >= idlest->sgc->max_capacity)
10894 return NULL;
10895 break;
10896
10897 case group_has_spare:
10898 #ifdef CONFIG_NUMA
10899 if (sd->flags & SD_NUMA) {
10900 int imb_numa_nr = sd->imb_numa_nr;
10901 #ifdef CONFIG_NUMA_BALANCING
10902 int idlest_cpu;
10903 /*
10904 * If there is spare capacity at NUMA, try to select
10905 * the preferred node
10906 */
10907 if (cpu_to_node(this_cpu) == p->numa_preferred_nid)
10908 return NULL;
10909
10910 idlest_cpu = cpumask_first(sched_group_span(idlest));
10911 if (cpu_to_node(idlest_cpu) == p->numa_preferred_nid)
10912 return idlest;
10913 #endif /* CONFIG_NUMA_BALANCING */
10914 /*
10915 * Otherwise, keep the task close to the wakeup source
10916 * and improve locality if the number of running tasks
10917 * would remain below threshold where an imbalance is
10918 * allowed while accounting for the possibility the
10919 * task is pinned to a subset of CPUs. If there is a
10920 * real need of migration, periodic load balance will
10921 * take care of it.
10922 */
10923 if (p->nr_cpus_allowed != NR_CPUS) {
10924 struct cpumask *cpus = this_cpu_cpumask_var_ptr(select_rq_mask);
10925
10926 cpumask_and(cpus, sched_group_span(local), p->cpus_ptr);
10927 imb_numa_nr = min(cpumask_weight(cpus), sd->imb_numa_nr);
10928 }
10929
10930 imbalance = abs(local_sgs.idle_cpus - idlest_sgs.idle_cpus);
10931 if (!adjust_numa_imbalance(imbalance,
10932 local_sgs.sum_nr_running + 1,
10933 imb_numa_nr)) {
10934 return NULL;
10935 }
10936 }
10937 #endif /* CONFIG_NUMA */
10938
10939 /*
10940 * Select group with highest number of idle CPUs. We could also
10941 * compare the utilization which is more stable but it can end
10942 * up that the group has less spare capacity but finally more
10943 * idle CPUs which means more opportunity to run task.
10944 */
10945 if (local_sgs.idle_cpus >= idlest_sgs.idle_cpus)
10946 return NULL;
10947 break;
10948 }
10949
10950 return idlest;
10951 }
10952
update_idle_cpu_scan(struct lb_env * env,unsigned long sum_util)10953 static void update_idle_cpu_scan(struct lb_env *env,
10954 unsigned long sum_util)
10955 {
10956 struct sched_domain_shared *sd_share;
10957 int llc_weight, pct;
10958 u64 x, y, tmp;
10959 /*
10960 * Update the number of CPUs to scan in LLC domain, which could
10961 * be used as a hint in select_idle_cpu(). The update of sd_share
10962 * could be expensive because it is within a shared cache line.
10963 * So the write of this hint only occurs during periodic load
10964 * balancing, rather than CPU_NEWLY_IDLE, because the latter
10965 * can fire way more frequently than the former.
10966 */
10967 if (!sched_feat(SIS_UTIL) || env->idle == CPU_NEWLY_IDLE)
10968 return;
10969
10970 llc_weight = per_cpu(sd_llc_size, env->dst_cpu);
10971 if (env->sd->span_weight != llc_weight)
10972 return;
10973
10974 sd_share = rcu_dereference(per_cpu(sd_llc_shared, env->dst_cpu));
10975 if (!sd_share)
10976 return;
10977
10978 /*
10979 * The number of CPUs to search drops as sum_util increases, when
10980 * sum_util hits 85% or above, the scan stops.
10981 * The reason to choose 85% as the threshold is because this is the
10982 * imbalance_pct(117) when a LLC sched group is overloaded.
10983 *
10984 * let y = SCHED_CAPACITY_SCALE - p * x^2 [1]
10985 * and y'= y / SCHED_CAPACITY_SCALE
10986 *
10987 * x is the ratio of sum_util compared to the CPU capacity:
10988 * x = sum_util / (llc_weight * SCHED_CAPACITY_SCALE)
10989 * y' is the ratio of CPUs to be scanned in the LLC domain,
10990 * and the number of CPUs to scan is calculated by:
10991 *
10992 * nr_scan = llc_weight * y' [2]
10993 *
10994 * When x hits the threshold of overloaded, AKA, when
10995 * x = 100 / pct, y drops to 0. According to [1],
10996 * p should be SCHED_CAPACITY_SCALE * pct^2 / 10000
10997 *
10998 * Scale x by SCHED_CAPACITY_SCALE:
10999 * x' = sum_util / llc_weight; [3]
11000 *
11001 * and finally [1] becomes:
11002 * y = SCHED_CAPACITY_SCALE -
11003 * x'^2 * pct^2 / (10000 * SCHED_CAPACITY_SCALE) [4]
11004 *
11005 */
11006 /* equation [3] */
11007 x = sum_util;
11008 do_div(x, llc_weight);
11009
11010 /* equation [4] */
11011 pct = env->sd->imbalance_pct;
11012 tmp = x * x * pct * pct;
11013 do_div(tmp, 10000 * SCHED_CAPACITY_SCALE);
11014 tmp = min_t(long, tmp, SCHED_CAPACITY_SCALE);
11015 y = SCHED_CAPACITY_SCALE - tmp;
11016
11017 /* equation [2] */
11018 y *= llc_weight;
11019 do_div(y, SCHED_CAPACITY_SCALE);
11020 if ((int)y != sd_share->nr_idle_scan)
11021 WRITE_ONCE(sd_share->nr_idle_scan, (int)y);
11022 }
11023
11024 /**
11025 * update_sd_lb_stats - Update sched_domain's statistics for load balancing.
11026 * @env: The load balancing environment.
11027 * @sds: variable to hold the statistics for this sched_domain.
11028 */
11029
update_sd_lb_stats(struct lb_env * env,struct sd_lb_stats * sds)11030 static inline void update_sd_lb_stats(struct lb_env *env, struct sd_lb_stats *sds)
11031 {
11032 struct sched_group *sg = env->sd->groups;
11033 struct sg_lb_stats *local = &sds->local_stat;
11034 struct sg_lb_stats tmp_sgs;
11035 unsigned long sum_util = 0;
11036 bool sg_overloaded = 0, sg_overutilized = 0;
11037
11038 do {
11039 struct sg_lb_stats *sgs = &tmp_sgs;
11040 int local_group;
11041
11042 local_group = cpumask_test_cpu(env->dst_cpu, sched_group_span(sg));
11043 if (local_group) {
11044 sds->local = sg;
11045 sgs = local;
11046
11047 if (env->idle != CPU_NEWLY_IDLE ||
11048 time_after_eq(jiffies, sg->sgc->next_update))
11049 update_group_capacity(env->sd, env->dst_cpu);
11050 }
11051
11052 update_sg_lb_stats(env, sds, sg, sgs, &sg_overloaded, &sg_overutilized);
11053
11054 if (!local_group && update_sd_pick_busiest(env, sds, sg, sgs)) {
11055 sds->busiest = sg;
11056 sds->busiest_stat = *sgs;
11057 }
11058
11059 /* Now, start updating sd_lb_stats */
11060 sds->total_load += sgs->group_load;
11061 sds->total_capacity += sgs->group_capacity;
11062
11063 sum_util += sgs->group_util;
11064 sg = sg->next;
11065 } while (sg != env->sd->groups);
11066
11067 /*
11068 * Indicate that the child domain of the busiest group prefers tasks
11069 * go to a child's sibling domains first. NB the flags of a sched group
11070 * are those of the child domain.
11071 */
11072 if (sds->busiest)
11073 sds->prefer_sibling = !!(sds->busiest->flags & SD_PREFER_SIBLING);
11074
11075
11076 if (env->sd->flags & SD_NUMA)
11077 env->fbq_type = fbq_classify_group(&sds->busiest_stat);
11078
11079 if (!env->sd->parent) {
11080 /* update overload indicator if we are at root domain */
11081 set_rd_overloaded(env->dst_rq->rd, sg_overloaded);
11082
11083 /* Update over-utilization (tipping point, U >= 0) indicator */
11084 set_rd_overutilized(env->dst_rq->rd, sg_overutilized);
11085 } else if (sg_overutilized) {
11086 set_rd_overutilized(env->dst_rq->rd, sg_overutilized);
11087 }
11088
11089 update_idle_cpu_scan(env, sum_util);
11090 }
11091
11092 /**
11093 * calculate_imbalance - Calculate the amount of imbalance present within the
11094 * groups of a given sched_domain during load balance.
11095 * @env: load balance environment
11096 * @sds: statistics of the sched_domain whose imbalance is to be calculated.
11097 */
calculate_imbalance(struct lb_env * env,struct sd_lb_stats * sds)11098 static inline void calculate_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
11099 {
11100 struct sg_lb_stats *local, *busiest;
11101
11102 local = &sds->local_stat;
11103 busiest = &sds->busiest_stat;
11104
11105 if (busiest->group_type == group_misfit_task) {
11106 if (env->sd->flags & SD_ASYM_CPUCAPACITY) {
11107 /* Set imbalance to allow misfit tasks to be balanced. */
11108 env->migration_type = migrate_misfit;
11109 env->imbalance = 1;
11110 } else {
11111 /*
11112 * Set load imbalance to allow moving task from cpu
11113 * with reduced capacity.
11114 */
11115 env->migration_type = migrate_load;
11116 env->imbalance = busiest->group_misfit_task_load;
11117 }
11118 return;
11119 }
11120
11121 if (busiest->group_type == group_asym_packing) {
11122 /*
11123 * In case of asym capacity, we will try to migrate all load to
11124 * the preferred CPU.
11125 */
11126 env->migration_type = migrate_task;
11127 env->imbalance = busiest->sum_h_nr_running;
11128 return;
11129 }
11130
11131 if (busiest->group_type == group_smt_balance) {
11132 /* Reduce number of tasks sharing CPU capacity */
11133 env->migration_type = migrate_task;
11134 env->imbalance = 1;
11135 return;
11136 }
11137
11138 if (busiest->group_type == group_imbalanced) {
11139 /*
11140 * In the group_imb case we cannot rely on group-wide averages
11141 * to ensure CPU-load equilibrium, try to move any task to fix
11142 * the imbalance. The next load balance will take care of
11143 * balancing back the system.
11144 */
11145 env->migration_type = migrate_task;
11146 env->imbalance = 1;
11147 return;
11148 }
11149
11150 /*
11151 * Try to use spare capacity of local group without overloading it or
11152 * emptying busiest.
11153 */
11154 if (local->group_type == group_has_spare) {
11155 if ((busiest->group_type > group_fully_busy) &&
11156 !(env->sd->flags & SD_SHARE_LLC)) {
11157 /*
11158 * If busiest is overloaded, try to fill spare
11159 * capacity. This might end up creating spare capacity
11160 * in busiest or busiest still being overloaded but
11161 * there is no simple way to directly compute the
11162 * amount of load to migrate in order to balance the
11163 * system.
11164 */
11165 env->migration_type = migrate_util;
11166 env->imbalance = max(local->group_capacity, local->group_util) -
11167 local->group_util;
11168
11169 /*
11170 * In some cases, the group's utilization is max or even
11171 * higher than capacity because of migrations but the
11172 * local CPU is (newly) idle. There is at least one
11173 * waiting task in this overloaded busiest group. Let's
11174 * try to pull it.
11175 */
11176 if (env->idle && env->imbalance == 0) {
11177 env->migration_type = migrate_task;
11178 env->imbalance = 1;
11179 }
11180
11181 return;
11182 }
11183
11184 if (busiest->group_weight == 1 || sds->prefer_sibling) {
11185 /*
11186 * When prefer sibling, evenly spread running tasks on
11187 * groups.
11188 */
11189 env->migration_type = migrate_task;
11190 env->imbalance = sibling_imbalance(env, sds, busiest, local);
11191 } else {
11192
11193 /*
11194 * If there is no overload, we just want to even the number of
11195 * idle CPUs.
11196 */
11197 env->migration_type = migrate_task;
11198 env->imbalance = max_t(long, 0,
11199 (local->idle_cpus - busiest->idle_cpus));
11200 }
11201
11202 #ifdef CONFIG_NUMA
11203 /* Consider allowing a small imbalance between NUMA groups */
11204 if (env->sd->flags & SD_NUMA) {
11205 env->imbalance = adjust_numa_imbalance(env->imbalance,
11206 local->sum_nr_running + 1,
11207 env->sd->imb_numa_nr);
11208 }
11209 #endif
11210
11211 /* Number of tasks to move to restore balance */
11212 env->imbalance >>= 1;
11213
11214 return;
11215 }
11216
11217 /*
11218 * Local is fully busy but has to take more load to relieve the
11219 * busiest group
11220 */
11221 if (local->group_type < group_overloaded) {
11222 /*
11223 * Local will become overloaded so the avg_load metrics are
11224 * finally needed.
11225 */
11226
11227 local->avg_load = (local->group_load * SCHED_CAPACITY_SCALE) /
11228 local->group_capacity;
11229
11230 /*
11231 * If the local group is more loaded than the selected
11232 * busiest group don't try to pull any tasks.
11233 */
11234 if (local->avg_load >= busiest->avg_load) {
11235 env->imbalance = 0;
11236 return;
11237 }
11238
11239 sds->avg_load = (sds->total_load * SCHED_CAPACITY_SCALE) /
11240 sds->total_capacity;
11241
11242 /*
11243 * If the local group is more loaded than the average system
11244 * load, don't try to pull any tasks.
11245 */
11246 if (local->avg_load >= sds->avg_load) {
11247 env->imbalance = 0;
11248 return;
11249 }
11250
11251 }
11252
11253 /*
11254 * Both group are or will become overloaded and we're trying to get all
11255 * the CPUs to the average_load, so we don't want to push ourselves
11256 * above the average load, nor do we wish to reduce the max loaded CPU
11257 * below the average load. At the same time, we also don't want to
11258 * reduce the group load below the group capacity. Thus we look for
11259 * the minimum possible imbalance.
11260 */
11261 env->migration_type = migrate_load;
11262 env->imbalance = min(
11263 (busiest->avg_load - sds->avg_load) * busiest->group_capacity,
11264 (sds->avg_load - local->avg_load) * local->group_capacity
11265 ) / SCHED_CAPACITY_SCALE;
11266 }
11267
11268 /******* sched_balance_find_src_group() helpers end here *********************/
11269
11270 /*
11271 * Decision matrix according to the local and busiest group type:
11272 *
11273 * busiest \ local has_spare fully_busy misfit asym imbalanced overloaded
11274 * has_spare nr_idle balanced N/A N/A balanced balanced
11275 * fully_busy nr_idle nr_idle N/A N/A balanced balanced
11276 * misfit_task force N/A N/A N/A N/A N/A
11277 * asym_packing force force N/A N/A force force
11278 * imbalanced force force N/A N/A force force
11279 * overloaded force force N/A N/A force avg_load
11280 *
11281 * N/A : Not Applicable because already filtered while updating
11282 * statistics.
11283 * balanced : The system is balanced for these 2 groups.
11284 * force : Calculate the imbalance as load migration is probably needed.
11285 * avg_load : Only if imbalance is significant enough.
11286 * nr_idle : dst_cpu is not busy and the number of idle CPUs is quite
11287 * different in groups.
11288 */
11289
11290 /**
11291 * sched_balance_find_src_group - Returns the busiest group within the sched_domain
11292 * if there is an imbalance.
11293 * @env: The load balancing environment.
11294 *
11295 * Also calculates the amount of runnable load which should be moved
11296 * to restore balance.
11297 *
11298 * Return: - The busiest group if imbalance exists.
11299 */
sched_balance_find_src_group(struct lb_env * env)11300 static struct sched_group *sched_balance_find_src_group(struct lb_env *env)
11301 {
11302 struct sg_lb_stats *local, *busiest;
11303 struct sd_lb_stats sds;
11304
11305 init_sd_lb_stats(&sds);
11306
11307 /*
11308 * Compute the various statistics relevant for load balancing at
11309 * this level.
11310 */
11311 update_sd_lb_stats(env, &sds);
11312
11313 /* There is no busy sibling group to pull tasks from */
11314 if (!sds.busiest)
11315 goto out_balanced;
11316
11317 busiest = &sds.busiest_stat;
11318
11319 /* Misfit tasks should be dealt with regardless of the avg load */
11320 if (busiest->group_type == group_misfit_task)
11321 goto force_balance;
11322
11323 if (!is_rd_overutilized(env->dst_rq->rd) &&
11324 rcu_dereference(env->dst_rq->rd->pd))
11325 goto out_balanced;
11326
11327 /* ASYM feature bypasses nice load balance check */
11328 if (busiest->group_type == group_asym_packing)
11329 goto force_balance;
11330
11331 /*
11332 * If the busiest group is imbalanced the below checks don't
11333 * work because they assume all things are equal, which typically
11334 * isn't true due to cpus_ptr constraints and the like.
11335 */
11336 if (busiest->group_type == group_imbalanced)
11337 goto force_balance;
11338
11339 local = &sds.local_stat;
11340 /*
11341 * If the local group is busier than the selected busiest group
11342 * don't try and pull any tasks.
11343 */
11344 if (local->group_type > busiest->group_type)
11345 goto out_balanced;
11346
11347 /*
11348 * When groups are overloaded, use the avg_load to ensure fairness
11349 * between tasks.
11350 */
11351 if (local->group_type == group_overloaded) {
11352 /*
11353 * If the local group is more loaded than the selected
11354 * busiest group don't try to pull any tasks.
11355 */
11356 if (local->avg_load >= busiest->avg_load)
11357 goto out_balanced;
11358
11359 /* XXX broken for overlapping NUMA groups */
11360 sds.avg_load = (sds.total_load * SCHED_CAPACITY_SCALE) /
11361 sds.total_capacity;
11362
11363 /*
11364 * Don't pull any tasks if this group is already above the
11365 * domain average load.
11366 */
11367 if (local->avg_load >= sds.avg_load)
11368 goto out_balanced;
11369
11370 /*
11371 * If the busiest group is more loaded, use imbalance_pct to be
11372 * conservative.
11373 */
11374 if (100 * busiest->avg_load <=
11375 env->sd->imbalance_pct * local->avg_load)
11376 goto out_balanced;
11377 }
11378
11379 /*
11380 * Try to move all excess tasks to a sibling domain of the busiest
11381 * group's child domain.
11382 */
11383 if (sds.prefer_sibling && local->group_type == group_has_spare &&
11384 sibling_imbalance(env, &sds, busiest, local) > 1)
11385 goto force_balance;
11386
11387 if (busiest->group_type != group_overloaded) {
11388 if (!env->idle) {
11389 /*
11390 * If the busiest group is not overloaded (and as a
11391 * result the local one too) but this CPU is already
11392 * busy, let another idle CPU try to pull task.
11393 */
11394 goto out_balanced;
11395 }
11396
11397 if (busiest->group_type == group_smt_balance &&
11398 smt_vs_nonsmt_groups(sds.local, sds.busiest)) {
11399 /* Let non SMT CPU pull from SMT CPU sharing with sibling */
11400 goto force_balance;
11401 }
11402
11403 if (busiest->group_weight > 1 &&
11404 local->idle_cpus <= (busiest->idle_cpus + 1)) {
11405 /*
11406 * If the busiest group is not overloaded
11407 * and there is no imbalance between this and busiest
11408 * group wrt idle CPUs, it is balanced. The imbalance
11409 * becomes significant if the diff is greater than 1
11410 * otherwise we might end up to just move the imbalance
11411 * on another group. Of course this applies only if
11412 * there is more than 1 CPU per group.
11413 */
11414 goto out_balanced;
11415 }
11416
11417 if (busiest->sum_h_nr_running == 1) {
11418 /*
11419 * busiest doesn't have any tasks waiting to run
11420 */
11421 goto out_balanced;
11422 }
11423 }
11424
11425 force_balance:
11426 /* Looks like there is an imbalance. Compute it */
11427 calculate_imbalance(env, &sds);
11428 return env->imbalance ? sds.busiest : NULL;
11429
11430 out_balanced:
11431 env->imbalance = 0;
11432 return NULL;
11433 }
11434
11435 /*
11436 * sched_balance_find_src_rq - find the busiest runqueue among the CPUs in the group.
11437 */
sched_balance_find_src_rq(struct lb_env * env,struct sched_group * group)11438 static struct rq *sched_balance_find_src_rq(struct lb_env *env,
11439 struct sched_group *group)
11440 {
11441 struct rq *busiest = NULL, *rq;
11442 unsigned long busiest_util = 0, busiest_load = 0, busiest_capacity = 1;
11443 unsigned int busiest_nr = 0;
11444 int i;
11445
11446 for_each_cpu_and(i, sched_group_span(group), env->cpus) {
11447 unsigned long capacity, load, util;
11448 unsigned int nr_running;
11449 enum fbq_type rt;
11450
11451 rq = cpu_rq(i);
11452 rt = fbq_classify_rq(rq);
11453
11454 /*
11455 * We classify groups/runqueues into three groups:
11456 * - regular: there are !numa tasks
11457 * - remote: there are numa tasks that run on the 'wrong' node
11458 * - all: there is no distinction
11459 *
11460 * In order to avoid migrating ideally placed numa tasks,
11461 * ignore those when there's better options.
11462 *
11463 * If we ignore the actual busiest queue to migrate another
11464 * task, the next balance pass can still reduce the busiest
11465 * queue by moving tasks around inside the node.
11466 *
11467 * If we cannot move enough load due to this classification
11468 * the next pass will adjust the group classification and
11469 * allow migration of more tasks.
11470 *
11471 * Both cases only affect the total convergence complexity.
11472 */
11473 if (rt > env->fbq_type)
11474 continue;
11475
11476 nr_running = rq->cfs.h_nr_runnable;
11477 if (!nr_running)
11478 continue;
11479
11480 capacity = capacity_of(i);
11481
11482 /*
11483 * For ASYM_CPUCAPACITY domains, don't pick a CPU that could
11484 * eventually lead to active_balancing high->low capacity.
11485 * Higher per-CPU capacity is considered better than balancing
11486 * average load.
11487 */
11488 if (env->sd->flags & SD_ASYM_CPUCAPACITY &&
11489 !capacity_greater(capacity_of(env->dst_cpu), capacity) &&
11490 nr_running == 1)
11491 continue;
11492
11493 /*
11494 * Make sure we only pull tasks from a CPU of lower priority
11495 * when balancing between SMT siblings.
11496 *
11497 * If balancing between cores, let lower priority CPUs help
11498 * SMT cores with more than one busy sibling.
11499 */
11500 if (sched_asym(env->sd, i, env->dst_cpu) && nr_running == 1)
11501 continue;
11502
11503 switch (env->migration_type) {
11504 case migrate_load:
11505 /*
11506 * When comparing with load imbalance, use cpu_load()
11507 * which is not scaled with the CPU capacity.
11508 */
11509 load = cpu_load(rq);
11510
11511 if (nr_running == 1 && load > env->imbalance &&
11512 !check_cpu_capacity(rq, env->sd))
11513 break;
11514
11515 /*
11516 * For the load comparisons with the other CPUs,
11517 * consider the cpu_load() scaled with the CPU
11518 * capacity, so that the load can be moved away
11519 * from the CPU that is potentially running at a
11520 * lower capacity.
11521 *
11522 * Thus we're looking for max(load_i / capacity_i),
11523 * crosswise multiplication to rid ourselves of the
11524 * division works out to:
11525 * load_i * capacity_j > load_j * capacity_i;
11526 * where j is our previous maximum.
11527 */
11528 if (load * busiest_capacity > busiest_load * capacity) {
11529 busiest_load = load;
11530 busiest_capacity = capacity;
11531 busiest = rq;
11532 }
11533 break;
11534
11535 case migrate_util:
11536 util = cpu_util_cfs_boost(i);
11537
11538 /*
11539 * Don't try to pull utilization from a CPU with one
11540 * running task. Whatever its utilization, we will fail
11541 * detach the task.
11542 */
11543 if (nr_running <= 1)
11544 continue;
11545
11546 if (busiest_util < util) {
11547 busiest_util = util;
11548 busiest = rq;
11549 }
11550 break;
11551
11552 case migrate_task:
11553 if (busiest_nr < nr_running) {
11554 busiest_nr = nr_running;
11555 busiest = rq;
11556 }
11557 break;
11558
11559 case migrate_misfit:
11560 /*
11561 * For ASYM_CPUCAPACITY domains with misfit tasks we
11562 * simply seek the "biggest" misfit task.
11563 */
11564 if (rq->misfit_task_load > busiest_load) {
11565 busiest_load = rq->misfit_task_load;
11566 busiest = rq;
11567 }
11568
11569 break;
11570
11571 }
11572 }
11573
11574 return busiest;
11575 }
11576
11577 /*
11578 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
11579 * so long as it is large enough.
11580 */
11581 #define MAX_PINNED_INTERVAL 512
11582
11583 static inline bool
asym_active_balance(struct lb_env * env)11584 asym_active_balance(struct lb_env *env)
11585 {
11586 /*
11587 * ASYM_PACKING needs to force migrate tasks from busy but lower
11588 * priority CPUs in order to pack all tasks in the highest priority
11589 * CPUs. When done between cores, do it only if the whole core if the
11590 * whole core is idle.
11591 *
11592 * If @env::src_cpu is an SMT core with busy siblings, let
11593 * the lower priority @env::dst_cpu help it. Do not follow
11594 * CPU priority.
11595 */
11596 return env->idle && sched_use_asym_prio(env->sd, env->dst_cpu) &&
11597 (sched_asym_prefer(env->dst_cpu, env->src_cpu) ||
11598 !sched_use_asym_prio(env->sd, env->src_cpu));
11599 }
11600
11601 static inline bool
imbalanced_active_balance(struct lb_env * env)11602 imbalanced_active_balance(struct lb_env *env)
11603 {
11604 struct sched_domain *sd = env->sd;
11605
11606 /*
11607 * The imbalanced case includes the case of pinned tasks preventing a fair
11608 * distribution of the load on the system but also the even distribution of the
11609 * threads on a system with spare capacity
11610 */
11611 if ((env->migration_type == migrate_task) &&
11612 (sd->nr_balance_failed > sd->cache_nice_tries+2))
11613 return 1;
11614
11615 return 0;
11616 }
11617
need_active_balance(struct lb_env * env)11618 static int need_active_balance(struct lb_env *env)
11619 {
11620 struct sched_domain *sd = env->sd;
11621
11622 if (asym_active_balance(env))
11623 return 1;
11624
11625 if (imbalanced_active_balance(env))
11626 return 1;
11627
11628 /*
11629 * The dst_cpu is idle and the src_cpu CPU has only 1 CFS task.
11630 * It's worth migrating the task if the src_cpu's capacity is reduced
11631 * because of other sched_class or IRQs if more capacity stays
11632 * available on dst_cpu.
11633 */
11634 if (env->idle &&
11635 (env->src_rq->cfs.h_nr_runnable == 1)) {
11636 if ((check_cpu_capacity(env->src_rq, sd)) &&
11637 (capacity_of(env->src_cpu)*sd->imbalance_pct < capacity_of(env->dst_cpu)*100))
11638 return 1;
11639 }
11640
11641 if (env->migration_type == migrate_misfit)
11642 return 1;
11643
11644 return 0;
11645 }
11646
11647 static int active_load_balance_cpu_stop(void *data);
11648
should_we_balance(struct lb_env * env)11649 static int should_we_balance(struct lb_env *env)
11650 {
11651 struct cpumask *swb_cpus = this_cpu_cpumask_var_ptr(should_we_balance_tmpmask);
11652 struct sched_group *sg = env->sd->groups;
11653 int cpu, idle_smt = -1;
11654
11655 /*
11656 * Ensure the balancing environment is consistent; can happen
11657 * when the softirq triggers 'during' hotplug.
11658 */
11659 if (!cpumask_test_cpu(env->dst_cpu, env->cpus))
11660 return 0;
11661
11662 /*
11663 * In the newly idle case, we will allow all the CPUs
11664 * to do the newly idle load balance.
11665 *
11666 * However, we bail out if we already have tasks or a wakeup pending,
11667 * to optimize wakeup latency.
11668 */
11669 if (env->idle == CPU_NEWLY_IDLE) {
11670 if (env->dst_rq->nr_running > 0 || env->dst_rq->ttwu_pending)
11671 return 0;
11672 return 1;
11673 }
11674
11675 cpumask_copy(swb_cpus, group_balance_mask(sg));
11676 /* Try to find first idle CPU */
11677 for_each_cpu_and(cpu, swb_cpus, env->cpus) {
11678 if (!idle_cpu(cpu))
11679 continue;
11680
11681 /*
11682 * Don't balance to idle SMT in busy core right away when
11683 * balancing cores, but remember the first idle SMT CPU for
11684 * later consideration. Find CPU on an idle core first.
11685 */
11686 if (!(env->sd->flags & SD_SHARE_CPUCAPACITY) && !is_core_idle(cpu)) {
11687 if (idle_smt == -1)
11688 idle_smt = cpu;
11689 /*
11690 * If the core is not idle, and first SMT sibling which is
11691 * idle has been found, then its not needed to check other
11692 * SMT siblings for idleness:
11693 */
11694 #ifdef CONFIG_SCHED_SMT
11695 cpumask_andnot(swb_cpus, swb_cpus, cpu_smt_mask(cpu));
11696 #endif
11697 continue;
11698 }
11699
11700 /*
11701 * Are we the first idle core in a non-SMT domain or higher,
11702 * or the first idle CPU in a SMT domain?
11703 */
11704 return cpu == env->dst_cpu;
11705 }
11706
11707 /* Are we the first idle CPU with busy siblings? */
11708 if (idle_smt != -1)
11709 return idle_smt == env->dst_cpu;
11710
11711 /* Are we the first CPU of this group ? */
11712 return group_balance_cpu(sg) == env->dst_cpu;
11713 }
11714
update_lb_imbalance_stat(struct lb_env * env,struct sched_domain * sd,enum cpu_idle_type idle)11715 static void update_lb_imbalance_stat(struct lb_env *env, struct sched_domain *sd,
11716 enum cpu_idle_type idle)
11717 {
11718 if (!schedstat_enabled())
11719 return;
11720
11721 switch (env->migration_type) {
11722 case migrate_load:
11723 __schedstat_add(sd->lb_imbalance_load[idle], env->imbalance);
11724 break;
11725 case migrate_util:
11726 __schedstat_add(sd->lb_imbalance_util[idle], env->imbalance);
11727 break;
11728 case migrate_task:
11729 __schedstat_add(sd->lb_imbalance_task[idle], env->imbalance);
11730 break;
11731 case migrate_misfit:
11732 __schedstat_add(sd->lb_imbalance_misfit[idle], env->imbalance);
11733 break;
11734 }
11735 }
11736
11737 /*
11738 * Check this_cpu to ensure it is balanced within domain. Attempt to move
11739 * tasks if there is an imbalance.
11740 */
sched_balance_rq(int this_cpu,struct rq * this_rq,struct sched_domain * sd,enum cpu_idle_type idle,int * continue_balancing)11741 static int sched_balance_rq(int this_cpu, struct rq *this_rq,
11742 struct sched_domain *sd, enum cpu_idle_type idle,
11743 int *continue_balancing)
11744 {
11745 int ld_moved, cur_ld_moved, active_balance = 0;
11746 struct sched_domain *sd_parent = sd->parent;
11747 struct sched_group *group;
11748 struct rq *busiest;
11749 struct rq_flags rf;
11750 struct cpumask *cpus = this_cpu_cpumask_var_ptr(load_balance_mask);
11751 struct lb_env env = {
11752 .sd = sd,
11753 .dst_cpu = this_cpu,
11754 .dst_rq = this_rq,
11755 .dst_grpmask = group_balance_mask(sd->groups),
11756 .idle = idle,
11757 .loop_break = SCHED_NR_MIGRATE_BREAK,
11758 .cpus = cpus,
11759 .fbq_type = all,
11760 .tasks = LIST_HEAD_INIT(env.tasks),
11761 };
11762
11763 cpumask_and(cpus, sched_domain_span(sd), cpu_active_mask);
11764
11765 schedstat_inc(sd->lb_count[idle]);
11766
11767 redo:
11768 if (!should_we_balance(&env)) {
11769 *continue_balancing = 0;
11770 goto out_balanced;
11771 }
11772
11773 group = sched_balance_find_src_group(&env);
11774 if (!group) {
11775 schedstat_inc(sd->lb_nobusyg[idle]);
11776 goto out_balanced;
11777 }
11778
11779 busiest = sched_balance_find_src_rq(&env, group);
11780 if (!busiest) {
11781 schedstat_inc(sd->lb_nobusyq[idle]);
11782 goto out_balanced;
11783 }
11784
11785 WARN_ON_ONCE(busiest == env.dst_rq);
11786
11787 update_lb_imbalance_stat(&env, sd, idle);
11788
11789 env.src_cpu = busiest->cpu;
11790 env.src_rq = busiest;
11791
11792 ld_moved = 0;
11793 /* Clear this flag as soon as we find a pullable task */
11794 env.flags |= LBF_ALL_PINNED;
11795 if (busiest->nr_running > 1) {
11796 /*
11797 * Attempt to move tasks. If sched_balance_find_src_group has found
11798 * an imbalance but busiest->nr_running <= 1, the group is
11799 * still unbalanced. ld_moved simply stays zero, so it is
11800 * correctly treated as an imbalance.
11801 */
11802 env.loop_max = min(sysctl_sched_nr_migrate, busiest->nr_running);
11803
11804 more_balance:
11805 rq_lock_irqsave(busiest, &rf);
11806 update_rq_clock(busiest);
11807
11808 /*
11809 * cur_ld_moved - load moved in current iteration
11810 * ld_moved - cumulative load moved across iterations
11811 */
11812 cur_ld_moved = detach_tasks(&env);
11813
11814 /*
11815 * We've detached some tasks from busiest_rq. Every
11816 * task is masked "TASK_ON_RQ_MIGRATING", so we can safely
11817 * unlock busiest->lock, and we are able to be sure
11818 * that nobody can manipulate the tasks in parallel.
11819 * See task_rq_lock() family for the details.
11820 */
11821
11822 rq_unlock(busiest, &rf);
11823
11824 if (cur_ld_moved) {
11825 attach_tasks(&env);
11826 ld_moved += cur_ld_moved;
11827 }
11828
11829 local_irq_restore(rf.flags);
11830
11831 if (env.flags & LBF_NEED_BREAK) {
11832 env.flags &= ~LBF_NEED_BREAK;
11833 goto more_balance;
11834 }
11835
11836 /*
11837 * Revisit (affine) tasks on src_cpu that couldn't be moved to
11838 * us and move them to an alternate dst_cpu in our sched_group
11839 * where they can run. The upper limit on how many times we
11840 * iterate on same src_cpu is dependent on number of CPUs in our
11841 * sched_group.
11842 *
11843 * This changes load balance semantics a bit on who can move
11844 * load to a given_cpu. In addition to the given_cpu itself
11845 * (or a ilb_cpu acting on its behalf where given_cpu is
11846 * nohz-idle), we now have balance_cpu in a position to move
11847 * load to given_cpu. In rare situations, this may cause
11848 * conflicts (balance_cpu and given_cpu/ilb_cpu deciding
11849 * _independently_ and at _same_ time to move some load to
11850 * given_cpu) causing excess load to be moved to given_cpu.
11851 * This however should not happen so much in practice and
11852 * moreover subsequent load balance cycles should correct the
11853 * excess load moved.
11854 */
11855 if ((env.flags & LBF_DST_PINNED) && env.imbalance > 0) {
11856
11857 /* Prevent to re-select dst_cpu via env's CPUs */
11858 __cpumask_clear_cpu(env.dst_cpu, env.cpus);
11859
11860 env.dst_rq = cpu_rq(env.new_dst_cpu);
11861 env.dst_cpu = env.new_dst_cpu;
11862 env.flags &= ~LBF_DST_PINNED;
11863 env.loop = 0;
11864 env.loop_break = SCHED_NR_MIGRATE_BREAK;
11865
11866 /*
11867 * Go back to "more_balance" rather than "redo" since we
11868 * need to continue with same src_cpu.
11869 */
11870 goto more_balance;
11871 }
11872
11873 /*
11874 * We failed to reach balance because of affinity.
11875 */
11876 if (sd_parent) {
11877 int *group_imbalance = &sd_parent->groups->sgc->imbalance;
11878
11879 if ((env.flags & LBF_SOME_PINNED) && env.imbalance > 0)
11880 *group_imbalance = 1;
11881 }
11882
11883 /* All tasks on this runqueue were pinned by CPU affinity */
11884 if (unlikely(env.flags & LBF_ALL_PINNED)) {
11885 __cpumask_clear_cpu(cpu_of(busiest), cpus);
11886 /*
11887 * Attempting to continue load balancing at the current
11888 * sched_domain level only makes sense if there are
11889 * active CPUs remaining as possible busiest CPUs to
11890 * pull load from which are not contained within the
11891 * destination group that is receiving any migrated
11892 * load.
11893 */
11894 if (!cpumask_subset(cpus, env.dst_grpmask)) {
11895 env.loop = 0;
11896 env.loop_break = SCHED_NR_MIGRATE_BREAK;
11897 goto redo;
11898 }
11899 goto out_all_pinned;
11900 }
11901 }
11902
11903 if (!ld_moved) {
11904 schedstat_inc(sd->lb_failed[idle]);
11905 /*
11906 * Increment the failure counter only on periodic balance.
11907 * We do not want newidle balance, which can be very
11908 * frequent, pollute the failure counter causing
11909 * excessive cache_hot migrations and active balances.
11910 *
11911 * Similarly for migration_misfit which is not related to
11912 * load/util migration, don't pollute nr_balance_failed.
11913 */
11914 if (idle != CPU_NEWLY_IDLE &&
11915 env.migration_type != migrate_misfit)
11916 sd->nr_balance_failed++;
11917
11918 if (need_active_balance(&env)) {
11919 unsigned long flags;
11920
11921 raw_spin_rq_lock_irqsave(busiest, flags);
11922
11923 /*
11924 * Don't kick the active_load_balance_cpu_stop,
11925 * if the curr task on busiest CPU can't be
11926 * moved to this_cpu:
11927 */
11928 if (!cpumask_test_cpu(this_cpu, busiest->curr->cpus_ptr)) {
11929 raw_spin_rq_unlock_irqrestore(busiest, flags);
11930 goto out_one_pinned;
11931 }
11932
11933 /* Record that we found at least one task that could run on this_cpu */
11934 env.flags &= ~LBF_ALL_PINNED;
11935
11936 /*
11937 * ->active_balance synchronizes accesses to
11938 * ->active_balance_work. Once set, it's cleared
11939 * only after active load balance is finished.
11940 */
11941 if (!busiest->active_balance) {
11942 busiest->active_balance = 1;
11943 busiest->push_cpu = this_cpu;
11944 active_balance = 1;
11945 }
11946
11947 preempt_disable();
11948 raw_spin_rq_unlock_irqrestore(busiest, flags);
11949 if (active_balance) {
11950 stop_one_cpu_nowait(cpu_of(busiest),
11951 active_load_balance_cpu_stop, busiest,
11952 &busiest->active_balance_work);
11953 }
11954 preempt_enable();
11955 }
11956 } else {
11957 sd->nr_balance_failed = 0;
11958 }
11959
11960 if (likely(!active_balance) || need_active_balance(&env)) {
11961 /* We were unbalanced, so reset the balancing interval */
11962 sd->balance_interval = sd->min_interval;
11963 }
11964
11965 goto out;
11966
11967 out_balanced:
11968 /*
11969 * We reach balance although we may have faced some affinity
11970 * constraints. Clear the imbalance flag only if other tasks got
11971 * a chance to move and fix the imbalance.
11972 */
11973 if (sd_parent && !(env.flags & LBF_ALL_PINNED)) {
11974 int *group_imbalance = &sd_parent->groups->sgc->imbalance;
11975
11976 if (*group_imbalance)
11977 *group_imbalance = 0;
11978 }
11979
11980 out_all_pinned:
11981 /*
11982 * We reach balance because all tasks are pinned at this level so
11983 * we can't migrate them. Let the imbalance flag set so parent level
11984 * can try to migrate them.
11985 */
11986 schedstat_inc(sd->lb_balanced[idle]);
11987
11988 sd->nr_balance_failed = 0;
11989
11990 out_one_pinned:
11991 ld_moved = 0;
11992
11993 /*
11994 * sched_balance_newidle() disregards balance intervals, so we could
11995 * repeatedly reach this code, which would lead to balance_interval
11996 * skyrocketing in a short amount of time. Skip the balance_interval
11997 * increase logic to avoid that.
11998 *
11999 * Similarly misfit migration which is not necessarily an indication of
12000 * the system being busy and requires lb to backoff to let it settle
12001 * down.
12002 */
12003 if (env.idle == CPU_NEWLY_IDLE ||
12004 env.migration_type == migrate_misfit)
12005 goto out;
12006
12007 /* tune up the balancing interval */
12008 if ((env.flags & LBF_ALL_PINNED &&
12009 sd->balance_interval < MAX_PINNED_INTERVAL) ||
12010 sd->balance_interval < sd->max_interval)
12011 sd->balance_interval *= 2;
12012 out:
12013 return ld_moved;
12014 }
12015
12016 static inline unsigned long
get_sd_balance_interval(struct sched_domain * sd,int cpu_busy)12017 get_sd_balance_interval(struct sched_domain *sd, int cpu_busy)
12018 {
12019 unsigned long interval = sd->balance_interval;
12020
12021 if (cpu_busy)
12022 interval *= sd->busy_factor;
12023
12024 /* scale ms to jiffies */
12025 interval = msecs_to_jiffies(interval);
12026
12027 /*
12028 * Reduce likelihood of busy balancing at higher domains racing with
12029 * balancing at lower domains by preventing their balancing periods
12030 * from being multiples of each other.
12031 */
12032 if (cpu_busy)
12033 interval -= 1;
12034
12035 interval = clamp(interval, 1UL, max_load_balance_interval);
12036
12037 return interval;
12038 }
12039
12040 static inline void
update_next_balance(struct sched_domain * sd,unsigned long * next_balance)12041 update_next_balance(struct sched_domain *sd, unsigned long *next_balance)
12042 {
12043 unsigned long interval, next;
12044
12045 /* used by idle balance, so cpu_busy = 0 */
12046 interval = get_sd_balance_interval(sd, 0);
12047 next = sd->last_balance + interval;
12048
12049 if (time_after(*next_balance, next))
12050 *next_balance = next;
12051 }
12052
12053 /*
12054 * active_load_balance_cpu_stop is run by the CPU stopper. It pushes
12055 * running tasks off the busiest CPU onto idle CPUs. It requires at
12056 * least 1 task to be running on each physical CPU where possible, and
12057 * avoids physical / logical imbalances.
12058 */
active_load_balance_cpu_stop(void * data)12059 static int active_load_balance_cpu_stop(void *data)
12060 {
12061 struct rq *busiest_rq = data;
12062 int busiest_cpu = cpu_of(busiest_rq);
12063 int target_cpu = busiest_rq->push_cpu;
12064 struct rq *target_rq = cpu_rq(target_cpu);
12065 struct sched_domain *sd;
12066 struct task_struct *p = NULL;
12067 struct rq_flags rf;
12068
12069 rq_lock_irq(busiest_rq, &rf);
12070 /*
12071 * Between queueing the stop-work and running it is a hole in which
12072 * CPUs can become inactive. We should not move tasks from or to
12073 * inactive CPUs.
12074 */
12075 if (!cpu_active(busiest_cpu) || !cpu_active(target_cpu))
12076 goto out_unlock;
12077
12078 /* Make sure the requested CPU hasn't gone down in the meantime: */
12079 if (unlikely(busiest_cpu != smp_processor_id() ||
12080 !busiest_rq->active_balance))
12081 goto out_unlock;
12082
12083 /* Is there any task to move? */
12084 if (busiest_rq->nr_running <= 1)
12085 goto out_unlock;
12086
12087 /*
12088 * This condition is "impossible", if it occurs
12089 * we need to fix it. Originally reported by
12090 * Bjorn Helgaas on a 128-CPU setup.
12091 */
12092 WARN_ON_ONCE(busiest_rq == target_rq);
12093
12094 /* Search for an sd spanning us and the target CPU. */
12095 rcu_read_lock();
12096 for_each_domain(target_cpu, sd) {
12097 if (cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
12098 break;
12099 }
12100
12101 if (likely(sd)) {
12102 struct lb_env env = {
12103 .sd = sd,
12104 .dst_cpu = target_cpu,
12105 .dst_rq = target_rq,
12106 .src_cpu = busiest_rq->cpu,
12107 .src_rq = busiest_rq,
12108 .idle = CPU_IDLE,
12109 .flags = LBF_ACTIVE_LB,
12110 };
12111
12112 schedstat_inc(sd->alb_count);
12113 update_rq_clock(busiest_rq);
12114
12115 p = detach_one_task(&env);
12116 if (p) {
12117 schedstat_inc(sd->alb_pushed);
12118 /* Active balancing done, reset the failure counter. */
12119 sd->nr_balance_failed = 0;
12120 } else {
12121 schedstat_inc(sd->alb_failed);
12122 }
12123 }
12124 rcu_read_unlock();
12125 out_unlock:
12126 busiest_rq->active_balance = 0;
12127 rq_unlock(busiest_rq, &rf);
12128
12129 if (p)
12130 attach_one_task(target_rq, p);
12131
12132 local_irq_enable();
12133
12134 return 0;
12135 }
12136
12137 /*
12138 * This flag serializes load-balancing passes over large domains
12139 * (above the NODE topology level) - only one load-balancing instance
12140 * may run at a time, to reduce overhead on very large systems with
12141 * lots of CPUs and large NUMA distances.
12142 *
12143 * - Note that load-balancing passes triggered while another one
12144 * is executing are skipped and not re-tried.
12145 *
12146 * - Also note that this does not serialize rebalance_domains()
12147 * execution, as non-SD_SERIALIZE domains will still be
12148 * load-balanced in parallel.
12149 */
12150 static atomic_t sched_balance_running = ATOMIC_INIT(0);
12151
12152 /*
12153 * Scale the max sched_balance_rq interval with the number of CPUs in the system.
12154 * This trades load-balance latency on larger machines for less cross talk.
12155 */
update_max_interval(void)12156 void update_max_interval(void)
12157 {
12158 max_load_balance_interval = HZ*num_online_cpus()/10;
12159 }
12160
update_newidle_cost(struct sched_domain * sd,u64 cost)12161 static inline bool update_newidle_cost(struct sched_domain *sd, u64 cost)
12162 {
12163 if (cost > sd->max_newidle_lb_cost) {
12164 /*
12165 * Track max cost of a domain to make sure to not delay the
12166 * next wakeup on the CPU.
12167 */
12168 sd->max_newidle_lb_cost = cost;
12169 sd->last_decay_max_lb_cost = jiffies;
12170 } else if (time_after(jiffies, sd->last_decay_max_lb_cost + HZ)) {
12171 /*
12172 * Decay the newidle max times by ~1% per second to ensure that
12173 * it is not outdated and the current max cost is actually
12174 * shorter.
12175 */
12176 sd->max_newidle_lb_cost = (sd->max_newidle_lb_cost * 253) / 256;
12177 sd->last_decay_max_lb_cost = jiffies;
12178
12179 return true;
12180 }
12181
12182 return false;
12183 }
12184
12185 /*
12186 * It checks each scheduling domain to see if it is due to be balanced,
12187 * and initiates a balancing operation if so.
12188 *
12189 * Balancing parameters are set up in init_sched_domains.
12190 */
sched_balance_domains(struct rq * rq,enum cpu_idle_type idle)12191 static void sched_balance_domains(struct rq *rq, enum cpu_idle_type idle)
12192 {
12193 int continue_balancing = 1;
12194 int cpu = rq->cpu;
12195 int busy = idle != CPU_IDLE && !sched_idle_cpu(cpu);
12196 unsigned long interval;
12197 struct sched_domain *sd;
12198 /* Earliest time when we have to do rebalance again */
12199 unsigned long next_balance = jiffies + 60*HZ;
12200 int update_next_balance = 0;
12201 int need_serialize, need_decay = 0;
12202 u64 max_cost = 0;
12203
12204 rcu_read_lock();
12205 for_each_domain(cpu, sd) {
12206 /*
12207 * Decay the newidle max times here because this is a regular
12208 * visit to all the domains.
12209 */
12210 need_decay = update_newidle_cost(sd, 0);
12211 max_cost += sd->max_newidle_lb_cost;
12212
12213 /*
12214 * Stop the load balance at this level. There is another
12215 * CPU in our sched group which is doing load balancing more
12216 * actively.
12217 */
12218 if (!continue_balancing) {
12219 if (need_decay)
12220 continue;
12221 break;
12222 }
12223
12224 interval = get_sd_balance_interval(sd, busy);
12225
12226 need_serialize = sd->flags & SD_SERIALIZE;
12227 if (need_serialize) {
12228 if (atomic_cmpxchg_acquire(&sched_balance_running, 0, 1))
12229 goto out;
12230 }
12231
12232 if (time_after_eq(jiffies, sd->last_balance + interval)) {
12233 if (sched_balance_rq(cpu, rq, sd, idle, &continue_balancing)) {
12234 /*
12235 * The LBF_DST_PINNED logic could have changed
12236 * env->dst_cpu, so we can't know our idle
12237 * state even if we migrated tasks. Update it.
12238 */
12239 idle = idle_cpu(cpu);
12240 busy = !idle && !sched_idle_cpu(cpu);
12241 }
12242 sd->last_balance = jiffies;
12243 interval = get_sd_balance_interval(sd, busy);
12244 }
12245 if (need_serialize)
12246 atomic_set_release(&sched_balance_running, 0);
12247 out:
12248 if (time_after(next_balance, sd->last_balance + interval)) {
12249 next_balance = sd->last_balance + interval;
12250 update_next_balance = 1;
12251 }
12252 }
12253 if (need_decay) {
12254 /*
12255 * Ensure the rq-wide value also decays but keep it at a
12256 * reasonable floor to avoid funnies with rq->avg_idle.
12257 */
12258 rq->max_idle_balance_cost =
12259 max((u64)sysctl_sched_migration_cost, max_cost);
12260 }
12261 rcu_read_unlock();
12262
12263 /*
12264 * next_balance will be updated only when there is a need.
12265 * When the cpu is attached to null domain for ex, it will not be
12266 * updated.
12267 */
12268 if (likely(update_next_balance))
12269 rq->next_balance = next_balance;
12270
12271 }
12272
on_null_domain(struct rq * rq)12273 static inline int on_null_domain(struct rq *rq)
12274 {
12275 return unlikely(!rcu_dereference_sched(rq->sd));
12276 }
12277
12278 #ifdef CONFIG_NO_HZ_COMMON
12279 /*
12280 * NOHZ idle load balancing (ILB) details:
12281 *
12282 * - When one of the busy CPUs notices that there may be an idle rebalancing
12283 * needed, they will kick the idle load balancer, which then does idle
12284 * load balancing for all the idle CPUs.
12285 */
find_new_ilb(void)12286 static inline int find_new_ilb(void)
12287 {
12288 const struct cpumask *hk_mask;
12289 int ilb_cpu;
12290
12291 hk_mask = housekeeping_cpumask(HK_TYPE_KERNEL_NOISE);
12292
12293 for_each_cpu_and(ilb_cpu, nohz.idle_cpus_mask, hk_mask) {
12294
12295 if (ilb_cpu == smp_processor_id())
12296 continue;
12297
12298 if (idle_cpu(ilb_cpu))
12299 return ilb_cpu;
12300 }
12301
12302 return -1;
12303 }
12304
12305 /*
12306 * Kick a CPU to do the NOHZ balancing, if it is time for it, via a cross-CPU
12307 * SMP function call (IPI).
12308 *
12309 * We pick the first idle CPU in the HK_TYPE_KERNEL_NOISE housekeeping set
12310 * (if there is one).
12311 */
kick_ilb(unsigned int flags)12312 static void kick_ilb(unsigned int flags)
12313 {
12314 int ilb_cpu;
12315
12316 /*
12317 * Increase nohz.next_balance only when if full ilb is triggered but
12318 * not if we only update stats.
12319 */
12320 if (flags & NOHZ_BALANCE_KICK)
12321 nohz.next_balance = jiffies+1;
12322
12323 ilb_cpu = find_new_ilb();
12324 if (ilb_cpu < 0)
12325 return;
12326
12327 /*
12328 * Don't bother if no new NOHZ balance work items for ilb_cpu,
12329 * i.e. all bits in flags are already set in ilb_cpu.
12330 */
12331 if ((atomic_read(nohz_flags(ilb_cpu)) & flags) == flags)
12332 return;
12333
12334 /*
12335 * Access to rq::nohz_csd is serialized by NOHZ_KICK_MASK; he who sets
12336 * the first flag owns it; cleared by nohz_csd_func().
12337 */
12338 flags = atomic_fetch_or(flags, nohz_flags(ilb_cpu));
12339 if (flags & NOHZ_KICK_MASK)
12340 return;
12341
12342 /*
12343 * This way we generate an IPI on the target CPU which
12344 * is idle, and the softirq performing NOHZ idle load balancing
12345 * will be run before returning from the IPI.
12346 */
12347 smp_call_function_single_async(ilb_cpu, &cpu_rq(ilb_cpu)->nohz_csd);
12348 }
12349
12350 /*
12351 * Current decision point for kicking the idle load balancer in the presence
12352 * of idle CPUs in the system.
12353 */
nohz_balancer_kick(struct rq * rq)12354 static void nohz_balancer_kick(struct rq *rq)
12355 {
12356 unsigned long now = jiffies;
12357 struct sched_domain_shared *sds;
12358 struct sched_domain *sd;
12359 int nr_busy, i, cpu = rq->cpu;
12360 unsigned int flags = 0;
12361
12362 if (unlikely(rq->idle_balance))
12363 return;
12364
12365 /*
12366 * We may be recently in ticked or tickless idle mode. At the first
12367 * busy tick after returning from idle, we will update the busy stats.
12368 */
12369 nohz_balance_exit_idle(rq);
12370
12371 /*
12372 * None are in tickless mode and hence no need for NOHZ idle load
12373 * balancing:
12374 */
12375 if (likely(!atomic_read(&nohz.nr_cpus)))
12376 return;
12377
12378 if (READ_ONCE(nohz.has_blocked) &&
12379 time_after(now, READ_ONCE(nohz.next_blocked)))
12380 flags = NOHZ_STATS_KICK;
12381
12382 if (time_before(now, nohz.next_balance))
12383 goto out;
12384
12385 if (rq->nr_running >= 2) {
12386 flags = NOHZ_STATS_KICK | NOHZ_BALANCE_KICK;
12387 goto out;
12388 }
12389
12390 rcu_read_lock();
12391
12392 sd = rcu_dereference(rq->sd);
12393 if (sd) {
12394 /*
12395 * If there's a runnable CFS task and the current CPU has reduced
12396 * capacity, kick the ILB to see if there's a better CPU to run on:
12397 */
12398 if (rq->cfs.h_nr_runnable >= 1 && check_cpu_capacity(rq, sd)) {
12399 flags = NOHZ_STATS_KICK | NOHZ_BALANCE_KICK;
12400 goto unlock;
12401 }
12402 }
12403
12404 sd = rcu_dereference(per_cpu(sd_asym_packing, cpu));
12405 if (sd) {
12406 /*
12407 * When ASYM_PACKING; see if there's a more preferred CPU
12408 * currently idle; in which case, kick the ILB to move tasks
12409 * around.
12410 *
12411 * When balancing between cores, all the SMT siblings of the
12412 * preferred CPU must be idle.
12413 */
12414 for_each_cpu_and(i, sched_domain_span(sd), nohz.idle_cpus_mask) {
12415 if (sched_asym(sd, i, cpu)) {
12416 flags = NOHZ_STATS_KICK | NOHZ_BALANCE_KICK;
12417 goto unlock;
12418 }
12419 }
12420 }
12421
12422 sd = rcu_dereference(per_cpu(sd_asym_cpucapacity, cpu));
12423 if (sd) {
12424 /*
12425 * When ASYM_CPUCAPACITY; see if there's a higher capacity CPU
12426 * to run the misfit task on.
12427 */
12428 if (check_misfit_status(rq)) {
12429 flags = NOHZ_STATS_KICK | NOHZ_BALANCE_KICK;
12430 goto unlock;
12431 }
12432
12433 /*
12434 * For asymmetric systems, we do not want to nicely balance
12435 * cache use, instead we want to embrace asymmetry and only
12436 * ensure tasks have enough CPU capacity.
12437 *
12438 * Skip the LLC logic because it's not relevant in that case.
12439 */
12440 goto unlock;
12441 }
12442
12443 sds = rcu_dereference(per_cpu(sd_llc_shared, cpu));
12444 if (sds) {
12445 /*
12446 * If there is an imbalance between LLC domains (IOW we could
12447 * increase the overall cache utilization), we need a less-loaded LLC
12448 * domain to pull some load from. Likewise, we may need to spread
12449 * load within the current LLC domain (e.g. packed SMT cores but
12450 * other CPUs are idle). We can't really know from here how busy
12451 * the others are - so just get a NOHZ balance going if it looks
12452 * like this LLC domain has tasks we could move.
12453 */
12454 nr_busy = atomic_read(&sds->nr_busy_cpus);
12455 if (nr_busy > 1) {
12456 flags = NOHZ_STATS_KICK | NOHZ_BALANCE_KICK;
12457 goto unlock;
12458 }
12459 }
12460 unlock:
12461 rcu_read_unlock();
12462 out:
12463 if (READ_ONCE(nohz.needs_update))
12464 flags |= NOHZ_NEXT_KICK;
12465
12466 if (flags)
12467 kick_ilb(flags);
12468 }
12469
set_cpu_sd_state_busy(int cpu)12470 static void set_cpu_sd_state_busy(int cpu)
12471 {
12472 struct sched_domain *sd;
12473
12474 rcu_read_lock();
12475 sd = rcu_dereference(per_cpu(sd_llc, cpu));
12476
12477 if (!sd || !sd->nohz_idle)
12478 goto unlock;
12479 sd->nohz_idle = 0;
12480
12481 atomic_inc(&sd->shared->nr_busy_cpus);
12482 unlock:
12483 rcu_read_unlock();
12484 }
12485
nohz_balance_exit_idle(struct rq * rq)12486 void nohz_balance_exit_idle(struct rq *rq)
12487 {
12488 SCHED_WARN_ON(rq != this_rq());
12489
12490 if (likely(!rq->nohz_tick_stopped))
12491 return;
12492
12493 rq->nohz_tick_stopped = 0;
12494 cpumask_clear_cpu(rq->cpu, nohz.idle_cpus_mask);
12495 atomic_dec(&nohz.nr_cpus);
12496
12497 set_cpu_sd_state_busy(rq->cpu);
12498 }
12499
set_cpu_sd_state_idle(int cpu)12500 static void set_cpu_sd_state_idle(int cpu)
12501 {
12502 struct sched_domain *sd;
12503
12504 rcu_read_lock();
12505 sd = rcu_dereference(per_cpu(sd_llc, cpu));
12506
12507 if (!sd || sd->nohz_idle)
12508 goto unlock;
12509 sd->nohz_idle = 1;
12510
12511 atomic_dec(&sd->shared->nr_busy_cpus);
12512 unlock:
12513 rcu_read_unlock();
12514 }
12515
12516 /*
12517 * This routine will record that the CPU is going idle with tick stopped.
12518 * This info will be used in performing idle load balancing in the future.
12519 */
nohz_balance_enter_idle(int cpu)12520 void nohz_balance_enter_idle(int cpu)
12521 {
12522 struct rq *rq = cpu_rq(cpu);
12523
12524 SCHED_WARN_ON(cpu != smp_processor_id());
12525
12526 /* If this CPU is going down, then nothing needs to be done: */
12527 if (!cpu_active(cpu))
12528 return;
12529
12530 /*
12531 * Can be set safely without rq->lock held
12532 * If a clear happens, it will have evaluated last additions because
12533 * rq->lock is held during the check and the clear
12534 */
12535 rq->has_blocked_load = 1;
12536
12537 /*
12538 * The tick is still stopped but load could have been added in the
12539 * meantime. We set the nohz.has_blocked flag to trig a check of the
12540 * *_avg. The CPU is already part of nohz.idle_cpus_mask so the clear
12541 * of nohz.has_blocked can only happen after checking the new load
12542 */
12543 if (rq->nohz_tick_stopped)
12544 goto out;
12545
12546 /* If we're a completely isolated CPU, we don't play: */
12547 if (on_null_domain(rq))
12548 return;
12549
12550 rq->nohz_tick_stopped = 1;
12551
12552 cpumask_set_cpu(cpu, nohz.idle_cpus_mask);
12553 atomic_inc(&nohz.nr_cpus);
12554
12555 /*
12556 * Ensures that if nohz_idle_balance() fails to observe our
12557 * @idle_cpus_mask store, it must observe the @has_blocked
12558 * and @needs_update stores.
12559 */
12560 smp_mb__after_atomic();
12561
12562 set_cpu_sd_state_idle(cpu);
12563
12564 WRITE_ONCE(nohz.needs_update, 1);
12565 out:
12566 /*
12567 * Each time a cpu enter idle, we assume that it has blocked load and
12568 * enable the periodic update of the load of idle CPUs
12569 */
12570 WRITE_ONCE(nohz.has_blocked, 1);
12571 }
12572
update_nohz_stats(struct rq * rq)12573 static bool update_nohz_stats(struct rq *rq)
12574 {
12575 unsigned int cpu = rq->cpu;
12576
12577 if (!rq->has_blocked_load)
12578 return false;
12579
12580 if (!cpumask_test_cpu(cpu, nohz.idle_cpus_mask))
12581 return false;
12582
12583 if (!time_after(jiffies, READ_ONCE(rq->last_blocked_load_update_tick)))
12584 return true;
12585
12586 sched_balance_update_blocked_averages(cpu);
12587
12588 return rq->has_blocked_load;
12589 }
12590
12591 /*
12592 * Internal function that runs load balance for all idle CPUs. The load balance
12593 * can be a simple update of blocked load or a complete load balance with
12594 * tasks movement depending of flags.
12595 */
_nohz_idle_balance(struct rq * this_rq,unsigned int flags)12596 static void _nohz_idle_balance(struct rq *this_rq, unsigned int flags)
12597 {
12598 /* Earliest time when we have to do rebalance again */
12599 unsigned long now = jiffies;
12600 unsigned long next_balance = now + 60*HZ;
12601 bool has_blocked_load = false;
12602 int update_next_balance = 0;
12603 int this_cpu = this_rq->cpu;
12604 int balance_cpu;
12605 struct rq *rq;
12606
12607 SCHED_WARN_ON((flags & NOHZ_KICK_MASK) == NOHZ_BALANCE_KICK);
12608
12609 /*
12610 * We assume there will be no idle load after this update and clear
12611 * the has_blocked flag. If a cpu enters idle in the mean time, it will
12612 * set the has_blocked flag and trigger another update of idle load.
12613 * Because a cpu that becomes idle, is added to idle_cpus_mask before
12614 * setting the flag, we are sure to not clear the state and not
12615 * check the load of an idle cpu.
12616 *
12617 * Same applies to idle_cpus_mask vs needs_update.
12618 */
12619 if (flags & NOHZ_STATS_KICK)
12620 WRITE_ONCE(nohz.has_blocked, 0);
12621 if (flags & NOHZ_NEXT_KICK)
12622 WRITE_ONCE(nohz.needs_update, 0);
12623
12624 /*
12625 * Ensures that if we miss the CPU, we must see the has_blocked
12626 * store from nohz_balance_enter_idle().
12627 */
12628 smp_mb();
12629
12630 /*
12631 * Start with the next CPU after this_cpu so we will end with this_cpu and let a
12632 * chance for other idle cpu to pull load.
12633 */
12634 for_each_cpu_wrap(balance_cpu, nohz.idle_cpus_mask, this_cpu+1) {
12635 if (!idle_cpu(balance_cpu))
12636 continue;
12637
12638 /*
12639 * If this CPU gets work to do, stop the load balancing
12640 * work being done for other CPUs. Next load
12641 * balancing owner will pick it up.
12642 */
12643 if (!idle_cpu(this_cpu) && need_resched()) {
12644 if (flags & NOHZ_STATS_KICK)
12645 has_blocked_load = true;
12646 if (flags & NOHZ_NEXT_KICK)
12647 WRITE_ONCE(nohz.needs_update, 1);
12648 goto abort;
12649 }
12650
12651 rq = cpu_rq(balance_cpu);
12652
12653 if (flags & NOHZ_STATS_KICK)
12654 has_blocked_load |= update_nohz_stats(rq);
12655
12656 /*
12657 * If time for next balance is due,
12658 * do the balance.
12659 */
12660 if (time_after_eq(jiffies, rq->next_balance)) {
12661 struct rq_flags rf;
12662
12663 rq_lock_irqsave(rq, &rf);
12664 update_rq_clock(rq);
12665 rq_unlock_irqrestore(rq, &rf);
12666
12667 if (flags & NOHZ_BALANCE_KICK)
12668 sched_balance_domains(rq, CPU_IDLE);
12669 }
12670
12671 if (time_after(next_balance, rq->next_balance)) {
12672 next_balance = rq->next_balance;
12673 update_next_balance = 1;
12674 }
12675 }
12676
12677 /*
12678 * next_balance will be updated only when there is a need.
12679 * When the CPU is attached to null domain for ex, it will not be
12680 * updated.
12681 */
12682 if (likely(update_next_balance))
12683 nohz.next_balance = next_balance;
12684
12685 if (flags & NOHZ_STATS_KICK)
12686 WRITE_ONCE(nohz.next_blocked,
12687 now + msecs_to_jiffies(LOAD_AVG_PERIOD));
12688
12689 abort:
12690 /* There is still blocked load, enable periodic update */
12691 if (has_blocked_load)
12692 WRITE_ONCE(nohz.has_blocked, 1);
12693 }
12694
12695 /*
12696 * In CONFIG_NO_HZ_COMMON case, the idle balance kickee will do the
12697 * rebalancing for all the CPUs for whom scheduler ticks are stopped.
12698 */
nohz_idle_balance(struct rq * this_rq,enum cpu_idle_type idle)12699 static bool nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle)
12700 {
12701 unsigned int flags = this_rq->nohz_idle_balance;
12702
12703 if (!flags)
12704 return false;
12705
12706 this_rq->nohz_idle_balance = 0;
12707
12708 if (idle != CPU_IDLE)
12709 return false;
12710
12711 _nohz_idle_balance(this_rq, flags);
12712
12713 return true;
12714 }
12715
12716 /*
12717 * Check if we need to directly run the ILB for updating blocked load before
12718 * entering idle state. Here we run ILB directly without issuing IPIs.
12719 *
12720 * Note that when this function is called, the tick may not yet be stopped on
12721 * this CPU yet. nohz.idle_cpus_mask is updated only when tick is stopped and
12722 * cleared on the next busy tick. In other words, nohz.idle_cpus_mask updates
12723 * don't align with CPUs enter/exit idle to avoid bottlenecks due to high idle
12724 * entry/exit rate (usec). So it is possible that _nohz_idle_balance() is
12725 * called from this function on (this) CPU that's not yet in the mask. That's
12726 * OK because the goal of nohz_run_idle_balance() is to run ILB only for
12727 * updating the blocked load of already idle CPUs without waking up one of
12728 * those idle CPUs and outside the preempt disable / IRQ off phase of the local
12729 * cpu about to enter idle, because it can take a long time.
12730 */
nohz_run_idle_balance(int cpu)12731 void nohz_run_idle_balance(int cpu)
12732 {
12733 unsigned int flags;
12734
12735 flags = atomic_fetch_andnot(NOHZ_NEWILB_KICK, nohz_flags(cpu));
12736
12737 /*
12738 * Update the blocked load only if no SCHED_SOFTIRQ is about to happen
12739 * (i.e. NOHZ_STATS_KICK set) and will do the same.
12740 */
12741 if ((flags == NOHZ_NEWILB_KICK) && !need_resched())
12742 _nohz_idle_balance(cpu_rq(cpu), NOHZ_STATS_KICK);
12743 }
12744
nohz_newidle_balance(struct rq * this_rq)12745 static void nohz_newidle_balance(struct rq *this_rq)
12746 {
12747 int this_cpu = this_rq->cpu;
12748
12749 /* Will wake up very soon. No time for doing anything else*/
12750 if (this_rq->avg_idle < sysctl_sched_migration_cost)
12751 return;
12752
12753 /* Don't need to update blocked load of idle CPUs*/
12754 if (!READ_ONCE(nohz.has_blocked) ||
12755 time_before(jiffies, READ_ONCE(nohz.next_blocked)))
12756 return;
12757
12758 /*
12759 * Set the need to trigger ILB in order to update blocked load
12760 * before entering idle state.
12761 */
12762 atomic_or(NOHZ_NEWILB_KICK, nohz_flags(this_cpu));
12763 }
12764
12765 #else /* !CONFIG_NO_HZ_COMMON */
nohz_balancer_kick(struct rq * rq)12766 static inline void nohz_balancer_kick(struct rq *rq) { }
12767
nohz_idle_balance(struct rq * this_rq,enum cpu_idle_type idle)12768 static inline bool nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle)
12769 {
12770 return false;
12771 }
12772
nohz_newidle_balance(struct rq * this_rq)12773 static inline void nohz_newidle_balance(struct rq *this_rq) { }
12774 #endif /* CONFIG_NO_HZ_COMMON */
12775
12776 /*
12777 * sched_balance_newidle is called by schedule() if this_cpu is about to become
12778 * idle. Attempts to pull tasks from other CPUs.
12779 *
12780 * Returns:
12781 * < 0 - we released the lock and there are !fair tasks present
12782 * 0 - failed, no new tasks
12783 * > 0 - success, new (fair) tasks present
12784 */
sched_balance_newidle(struct rq * this_rq,struct rq_flags * rf)12785 static int sched_balance_newidle(struct rq *this_rq, struct rq_flags *rf)
12786 {
12787 unsigned long next_balance = jiffies + HZ;
12788 int this_cpu = this_rq->cpu;
12789 int continue_balancing = 1;
12790 u64 t0, t1, curr_cost = 0;
12791 struct sched_domain *sd;
12792 int pulled_task = 0;
12793
12794 update_misfit_status(NULL, this_rq);
12795
12796 /*
12797 * There is a task waiting to run. No need to search for one.
12798 * Return 0; the task will be enqueued when switching to idle.
12799 */
12800 if (this_rq->ttwu_pending)
12801 return 0;
12802
12803 /*
12804 * We must set idle_stamp _before_ calling sched_balance_rq()
12805 * for CPU_NEWLY_IDLE, such that we measure the this duration
12806 * as idle time.
12807 */
12808 this_rq->idle_stamp = rq_clock(this_rq);
12809
12810 /*
12811 * Do not pull tasks towards !active CPUs...
12812 */
12813 if (!cpu_active(this_cpu))
12814 return 0;
12815
12816 /*
12817 * This is OK, because current is on_cpu, which avoids it being picked
12818 * for load-balance and preemption/IRQs are still disabled avoiding
12819 * further scheduler activity on it and we're being very careful to
12820 * re-start the picking loop.
12821 */
12822 rq_unpin_lock(this_rq, rf);
12823
12824 rcu_read_lock();
12825 sd = rcu_dereference_check_sched_domain(this_rq->sd);
12826
12827 if (!get_rd_overloaded(this_rq->rd) ||
12828 (sd && this_rq->avg_idle < sd->max_newidle_lb_cost)) {
12829
12830 if (sd)
12831 update_next_balance(sd, &next_balance);
12832 rcu_read_unlock();
12833
12834 goto out;
12835 }
12836 rcu_read_unlock();
12837
12838 raw_spin_rq_unlock(this_rq);
12839
12840 t0 = sched_clock_cpu(this_cpu);
12841 sched_balance_update_blocked_averages(this_cpu);
12842
12843 rcu_read_lock();
12844 for_each_domain(this_cpu, sd) {
12845 u64 domain_cost;
12846
12847 update_next_balance(sd, &next_balance);
12848
12849 if (this_rq->avg_idle < curr_cost + sd->max_newidle_lb_cost)
12850 break;
12851
12852 if (sd->flags & SD_BALANCE_NEWIDLE) {
12853
12854 pulled_task = sched_balance_rq(this_cpu, this_rq,
12855 sd, CPU_NEWLY_IDLE,
12856 &continue_balancing);
12857
12858 t1 = sched_clock_cpu(this_cpu);
12859 domain_cost = t1 - t0;
12860 update_newidle_cost(sd, domain_cost);
12861
12862 curr_cost += domain_cost;
12863 t0 = t1;
12864 }
12865
12866 /*
12867 * Stop searching for tasks to pull if there are
12868 * now runnable tasks on this rq.
12869 */
12870 if (pulled_task || !continue_balancing)
12871 break;
12872 }
12873 rcu_read_unlock();
12874
12875 raw_spin_rq_lock(this_rq);
12876
12877 if (curr_cost > this_rq->max_idle_balance_cost)
12878 this_rq->max_idle_balance_cost = curr_cost;
12879
12880 /*
12881 * While browsing the domains, we released the rq lock, a task could
12882 * have been enqueued in the meantime. Since we're not going idle,
12883 * pretend we pulled a task.
12884 */
12885 if (this_rq->cfs.h_nr_queued && !pulled_task)
12886 pulled_task = 1;
12887
12888 /* Is there a task of a high priority class? */
12889 if (this_rq->nr_running != this_rq->cfs.h_nr_queued)
12890 pulled_task = -1;
12891
12892 out:
12893 /* Move the next balance forward */
12894 if (time_after(this_rq->next_balance, next_balance))
12895 this_rq->next_balance = next_balance;
12896
12897 if (pulled_task)
12898 this_rq->idle_stamp = 0;
12899 else
12900 nohz_newidle_balance(this_rq);
12901
12902 rq_repin_lock(this_rq, rf);
12903
12904 return pulled_task;
12905 }
12906
12907 /*
12908 * This softirq handler is triggered via SCHED_SOFTIRQ from two places:
12909 *
12910 * - directly from the local sched_tick() for periodic load balancing
12911 *
12912 * - indirectly from a remote sched_tick() for NOHZ idle balancing
12913 * through the SMP cross-call nohz_csd_func()
12914 */
sched_balance_softirq(void)12915 static __latent_entropy void sched_balance_softirq(void)
12916 {
12917 struct rq *this_rq = this_rq();
12918 enum cpu_idle_type idle = this_rq->idle_balance;
12919 /*
12920 * If this CPU has a pending NOHZ_BALANCE_KICK, then do the
12921 * balancing on behalf of the other idle CPUs whose ticks are
12922 * stopped. Do nohz_idle_balance *before* sched_balance_domains to
12923 * give the idle CPUs a chance to load balance. Else we may
12924 * load balance only within the local sched_domain hierarchy
12925 * and abort nohz_idle_balance altogether if we pull some load.
12926 */
12927 if (nohz_idle_balance(this_rq, idle))
12928 return;
12929
12930 /* normal load balance */
12931 sched_balance_update_blocked_averages(this_rq->cpu);
12932 sched_balance_domains(this_rq, idle);
12933 }
12934
12935 /*
12936 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
12937 */
sched_balance_trigger(struct rq * rq)12938 void sched_balance_trigger(struct rq *rq)
12939 {
12940 /*
12941 * Don't need to rebalance while attached to NULL domain or
12942 * runqueue CPU is not active
12943 */
12944 if (unlikely(on_null_domain(rq) || !cpu_active(cpu_of(rq))))
12945 return;
12946
12947 if (time_after_eq(jiffies, rq->next_balance))
12948 raise_softirq(SCHED_SOFTIRQ);
12949
12950 nohz_balancer_kick(rq);
12951 }
12952
rq_online_fair(struct rq * rq)12953 static void rq_online_fair(struct rq *rq)
12954 {
12955 update_sysctl();
12956
12957 update_runtime_enabled(rq);
12958 }
12959
rq_offline_fair(struct rq * rq)12960 static void rq_offline_fair(struct rq *rq)
12961 {
12962 update_sysctl();
12963
12964 /* Ensure any throttled groups are reachable by pick_next_task */
12965 unthrottle_offline_cfs_rqs(rq);
12966
12967 /* Ensure that we remove rq contribution to group share: */
12968 clear_tg_offline_cfs_rqs(rq);
12969 }
12970
12971 #endif /* CONFIG_SMP */
12972
12973 #ifdef CONFIG_SCHED_CORE
12974 static inline bool
__entity_slice_used(struct sched_entity * se,int min_nr_tasks)12975 __entity_slice_used(struct sched_entity *se, int min_nr_tasks)
12976 {
12977 u64 rtime = se->sum_exec_runtime - se->prev_sum_exec_runtime;
12978 u64 slice = se->slice;
12979
12980 return (rtime * min_nr_tasks > slice);
12981 }
12982
12983 #define MIN_NR_TASKS_DURING_FORCEIDLE 2
task_tick_core(struct rq * rq,struct task_struct * curr)12984 static inline void task_tick_core(struct rq *rq, struct task_struct *curr)
12985 {
12986 if (!sched_core_enabled(rq))
12987 return;
12988
12989 /*
12990 * If runqueue has only one task which used up its slice and
12991 * if the sibling is forced idle, then trigger schedule to
12992 * give forced idle task a chance.
12993 *
12994 * sched_slice() considers only this active rq and it gets the
12995 * whole slice. But during force idle, we have siblings acting
12996 * like a single runqueue and hence we need to consider runnable
12997 * tasks on this CPU and the forced idle CPU. Ideally, we should
12998 * go through the forced idle rq, but that would be a perf hit.
12999 * We can assume that the forced idle CPU has at least
13000 * MIN_NR_TASKS_DURING_FORCEIDLE - 1 tasks and use that to check
13001 * if we need to give up the CPU.
13002 */
13003 if (rq->core->core_forceidle_count && rq->cfs.nr_queued == 1 &&
13004 __entity_slice_used(&curr->se, MIN_NR_TASKS_DURING_FORCEIDLE))
13005 resched_curr(rq);
13006 }
13007
13008 /*
13009 * se_fi_update - Update the cfs_rq->min_vruntime_fi in a CFS hierarchy if needed.
13010 */
se_fi_update(const struct sched_entity * se,unsigned int fi_seq,bool forceidle)13011 static void se_fi_update(const struct sched_entity *se, unsigned int fi_seq,
13012 bool forceidle)
13013 {
13014 for_each_sched_entity(se) {
13015 struct cfs_rq *cfs_rq = cfs_rq_of(se);
13016
13017 if (forceidle) {
13018 if (cfs_rq->forceidle_seq == fi_seq)
13019 break;
13020 cfs_rq->forceidle_seq = fi_seq;
13021 }
13022
13023 cfs_rq->min_vruntime_fi = cfs_rq->min_vruntime;
13024 }
13025 }
13026
task_vruntime_update(struct rq * rq,struct task_struct * p,bool in_fi)13027 void task_vruntime_update(struct rq *rq, struct task_struct *p, bool in_fi)
13028 {
13029 struct sched_entity *se = &p->se;
13030
13031 if (p->sched_class != &fair_sched_class)
13032 return;
13033
13034 se_fi_update(se, rq->core->core_forceidle_seq, in_fi);
13035 }
13036
cfs_prio_less(const struct task_struct * a,const struct task_struct * b,bool in_fi)13037 bool cfs_prio_less(const struct task_struct *a, const struct task_struct *b,
13038 bool in_fi)
13039 {
13040 struct rq *rq = task_rq(a);
13041 const struct sched_entity *sea = &a->se;
13042 const struct sched_entity *seb = &b->se;
13043 struct cfs_rq *cfs_rqa;
13044 struct cfs_rq *cfs_rqb;
13045 s64 delta;
13046
13047 SCHED_WARN_ON(task_rq(b)->core != rq->core);
13048
13049 #ifdef CONFIG_FAIR_GROUP_SCHED
13050 /*
13051 * Find an se in the hierarchy for tasks a and b, such that the se's
13052 * are immediate siblings.
13053 */
13054 while (sea->cfs_rq->tg != seb->cfs_rq->tg) {
13055 int sea_depth = sea->depth;
13056 int seb_depth = seb->depth;
13057
13058 if (sea_depth >= seb_depth)
13059 sea = parent_entity(sea);
13060 if (sea_depth <= seb_depth)
13061 seb = parent_entity(seb);
13062 }
13063
13064 se_fi_update(sea, rq->core->core_forceidle_seq, in_fi);
13065 se_fi_update(seb, rq->core->core_forceidle_seq, in_fi);
13066
13067 cfs_rqa = sea->cfs_rq;
13068 cfs_rqb = seb->cfs_rq;
13069 #else
13070 cfs_rqa = &task_rq(a)->cfs;
13071 cfs_rqb = &task_rq(b)->cfs;
13072 #endif
13073
13074 /*
13075 * Find delta after normalizing se's vruntime with its cfs_rq's
13076 * min_vruntime_fi, which would have been updated in prior calls
13077 * to se_fi_update().
13078 */
13079 delta = (s64)(sea->vruntime - seb->vruntime) +
13080 (s64)(cfs_rqb->min_vruntime_fi - cfs_rqa->min_vruntime_fi);
13081
13082 return delta > 0;
13083 }
13084
task_is_throttled_fair(struct task_struct * p,int cpu)13085 static int task_is_throttled_fair(struct task_struct *p, int cpu)
13086 {
13087 struct cfs_rq *cfs_rq;
13088
13089 #ifdef CONFIG_FAIR_GROUP_SCHED
13090 cfs_rq = task_group(p)->cfs_rq[cpu];
13091 #else
13092 cfs_rq = &cpu_rq(cpu)->cfs;
13093 #endif
13094 return throttled_hierarchy(cfs_rq);
13095 }
13096 #else
task_tick_core(struct rq * rq,struct task_struct * curr)13097 static inline void task_tick_core(struct rq *rq, struct task_struct *curr) {}
13098 #endif
13099
13100 /*
13101 * scheduler tick hitting a task of our scheduling class.
13102 *
13103 * NOTE: This function can be called remotely by the tick offload that
13104 * goes along full dynticks. Therefore no local assumption can be made
13105 * and everything must be accessed through the @rq and @curr passed in
13106 * parameters.
13107 */
task_tick_fair(struct rq * rq,struct task_struct * curr,int queued)13108 static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued)
13109 {
13110 struct cfs_rq *cfs_rq;
13111 struct sched_entity *se = &curr->se;
13112
13113 for_each_sched_entity(se) {
13114 cfs_rq = cfs_rq_of(se);
13115 entity_tick(cfs_rq, se, queued);
13116 }
13117
13118 if (static_branch_unlikely(&sched_numa_balancing))
13119 task_tick_numa(rq, curr);
13120
13121 update_misfit_status(curr, rq);
13122 check_update_overutilized_status(task_rq(curr));
13123
13124 task_tick_core(rq, curr);
13125 }
13126
13127 /*
13128 * called on fork with the child task as argument from the parent's context
13129 * - child not yet on the tasklist
13130 * - preemption disabled
13131 */
task_fork_fair(struct task_struct * p)13132 static void task_fork_fair(struct task_struct *p)
13133 {
13134 set_task_max_allowed_capacity(p);
13135 }
13136
13137 /*
13138 * Priority of the task has changed. Check to see if we preempt
13139 * the current task.
13140 */
13141 static void
prio_changed_fair(struct rq * rq,struct task_struct * p,int oldprio)13142 prio_changed_fair(struct rq *rq, struct task_struct *p, int oldprio)
13143 {
13144 if (!task_on_rq_queued(p))
13145 return;
13146
13147 if (rq->cfs.nr_queued == 1)
13148 return;
13149
13150 /*
13151 * Reschedule if we are currently running on this runqueue and
13152 * our priority decreased, or if we are not currently running on
13153 * this runqueue and our priority is higher than the current's
13154 */
13155 if (task_current_donor(rq, p)) {
13156 if (p->prio > oldprio)
13157 resched_curr(rq);
13158 } else
13159 wakeup_preempt(rq, p, 0);
13160 }
13161
13162 #ifdef CONFIG_FAIR_GROUP_SCHED
13163 /*
13164 * Propagate the changes of the sched_entity across the tg tree to make it
13165 * visible to the root
13166 */
propagate_entity_cfs_rq(struct sched_entity * se)13167 static void propagate_entity_cfs_rq(struct sched_entity *se)
13168 {
13169 struct cfs_rq *cfs_rq = cfs_rq_of(se);
13170
13171 if (cfs_rq_throttled(cfs_rq))
13172 return;
13173
13174 if (!throttled_hierarchy(cfs_rq))
13175 list_add_leaf_cfs_rq(cfs_rq);
13176
13177 /* Start to propagate at parent */
13178 se = se->parent;
13179
13180 for_each_sched_entity(se) {
13181 cfs_rq = cfs_rq_of(se);
13182
13183 update_load_avg(cfs_rq, se, UPDATE_TG);
13184
13185 if (cfs_rq_throttled(cfs_rq))
13186 break;
13187
13188 if (!throttled_hierarchy(cfs_rq))
13189 list_add_leaf_cfs_rq(cfs_rq);
13190 }
13191 }
13192 #else
propagate_entity_cfs_rq(struct sched_entity * se)13193 static void propagate_entity_cfs_rq(struct sched_entity *se) { }
13194 #endif
13195
detach_entity_cfs_rq(struct sched_entity * se)13196 static void detach_entity_cfs_rq(struct sched_entity *se)
13197 {
13198 struct cfs_rq *cfs_rq = cfs_rq_of(se);
13199
13200 #ifdef CONFIG_SMP
13201 /*
13202 * In case the task sched_avg hasn't been attached:
13203 * - A forked task which hasn't been woken up by wake_up_new_task().
13204 * - A task which has been woken up by try_to_wake_up() but is
13205 * waiting for actually being woken up by sched_ttwu_pending().
13206 */
13207 if (!se->avg.last_update_time)
13208 return;
13209 #endif
13210
13211 /* Catch up with the cfs_rq and remove our load when we leave */
13212 update_load_avg(cfs_rq, se, 0);
13213 detach_entity_load_avg(cfs_rq, se);
13214 update_tg_load_avg(cfs_rq);
13215 propagate_entity_cfs_rq(se);
13216 }
13217
attach_entity_cfs_rq(struct sched_entity * se)13218 static void attach_entity_cfs_rq(struct sched_entity *se)
13219 {
13220 struct cfs_rq *cfs_rq = cfs_rq_of(se);
13221
13222 /* Synchronize entity with its cfs_rq */
13223 update_load_avg(cfs_rq, se, sched_feat(ATTACH_AGE_LOAD) ? 0 : SKIP_AGE_LOAD);
13224 attach_entity_load_avg(cfs_rq, se);
13225 update_tg_load_avg(cfs_rq);
13226 propagate_entity_cfs_rq(se);
13227 }
13228
detach_task_cfs_rq(struct task_struct * p)13229 static void detach_task_cfs_rq(struct task_struct *p)
13230 {
13231 struct sched_entity *se = &p->se;
13232
13233 detach_entity_cfs_rq(se);
13234 }
13235
attach_task_cfs_rq(struct task_struct * p)13236 static void attach_task_cfs_rq(struct task_struct *p)
13237 {
13238 struct sched_entity *se = &p->se;
13239
13240 attach_entity_cfs_rq(se);
13241 }
13242
switched_from_fair(struct rq * rq,struct task_struct * p)13243 static void switched_from_fair(struct rq *rq, struct task_struct *p)
13244 {
13245 detach_task_cfs_rq(p);
13246 }
13247
switched_to_fair(struct rq * rq,struct task_struct * p)13248 static void switched_to_fair(struct rq *rq, struct task_struct *p)
13249 {
13250 SCHED_WARN_ON(p->se.sched_delayed);
13251
13252 attach_task_cfs_rq(p);
13253
13254 set_task_max_allowed_capacity(p);
13255
13256 if (task_on_rq_queued(p)) {
13257 /*
13258 * We were most likely switched from sched_rt, so
13259 * kick off the schedule if running, otherwise just see
13260 * if we can still preempt the current task.
13261 */
13262 if (task_current_donor(rq, p))
13263 resched_curr(rq);
13264 else
13265 wakeup_preempt(rq, p, 0);
13266 }
13267 }
13268
__set_next_task_fair(struct rq * rq,struct task_struct * p,bool first)13269 static void __set_next_task_fair(struct rq *rq, struct task_struct *p, bool first)
13270 {
13271 struct sched_entity *se = &p->se;
13272
13273 #ifdef CONFIG_SMP
13274 if (task_on_rq_queued(p)) {
13275 /*
13276 * Move the next running task to the front of the list, so our
13277 * cfs_tasks list becomes MRU one.
13278 */
13279 list_move(&se->group_node, &rq->cfs_tasks);
13280 }
13281 #endif
13282 if (!first)
13283 return;
13284
13285 SCHED_WARN_ON(se->sched_delayed);
13286
13287 if (hrtick_enabled_fair(rq))
13288 hrtick_start_fair(rq, p);
13289
13290 update_misfit_status(p, rq);
13291 sched_fair_update_stop_tick(rq, p);
13292 }
13293
13294 /*
13295 * Account for a task changing its policy or group.
13296 *
13297 * This routine is mostly called to set cfs_rq->curr field when a task
13298 * migrates between groups/classes.
13299 */
set_next_task_fair(struct rq * rq,struct task_struct * p,bool first)13300 static void set_next_task_fair(struct rq *rq, struct task_struct *p, bool first)
13301 {
13302 struct sched_entity *se = &p->se;
13303
13304 for_each_sched_entity(se) {
13305 struct cfs_rq *cfs_rq = cfs_rq_of(se);
13306
13307 set_next_entity(cfs_rq, se);
13308 /* ensure bandwidth has been allocated on our new cfs_rq */
13309 account_cfs_rq_runtime(cfs_rq, 0);
13310 }
13311
13312 __set_next_task_fair(rq, p, first);
13313 }
13314
init_cfs_rq(struct cfs_rq * cfs_rq)13315 void init_cfs_rq(struct cfs_rq *cfs_rq)
13316 {
13317 cfs_rq->tasks_timeline = RB_ROOT_CACHED;
13318 cfs_rq->min_vruntime = (u64)(-(1LL << 20));
13319 #ifdef CONFIG_SMP
13320 raw_spin_lock_init(&cfs_rq->removed.lock);
13321 #endif
13322 }
13323
13324 #ifdef CONFIG_FAIR_GROUP_SCHED
task_change_group_fair(struct task_struct * p)13325 static void task_change_group_fair(struct task_struct *p)
13326 {
13327 /*
13328 * We couldn't detach or attach a forked task which
13329 * hasn't been woken up by wake_up_new_task().
13330 */
13331 if (READ_ONCE(p->__state) == TASK_NEW)
13332 return;
13333
13334 detach_task_cfs_rq(p);
13335
13336 #ifdef CONFIG_SMP
13337 /* Tell se's cfs_rq has been changed -- migrated */
13338 p->se.avg.last_update_time = 0;
13339 #endif
13340 set_task_rq(p, task_cpu(p));
13341 attach_task_cfs_rq(p);
13342 }
13343
free_fair_sched_group(struct task_group * tg)13344 void free_fair_sched_group(struct task_group *tg)
13345 {
13346 int i;
13347
13348 for_each_possible_cpu(i) {
13349 if (tg->cfs_rq)
13350 kfree(tg->cfs_rq[i]);
13351 if (tg->se)
13352 kfree(tg->se[i]);
13353 }
13354
13355 kfree(tg->cfs_rq);
13356 kfree(tg->se);
13357 }
13358
alloc_fair_sched_group(struct task_group * tg,struct task_group * parent)13359 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
13360 {
13361 struct sched_entity *se;
13362 struct cfs_rq *cfs_rq;
13363 int i;
13364
13365 tg->cfs_rq = kcalloc(nr_cpu_ids, sizeof(cfs_rq), GFP_KERNEL);
13366 if (!tg->cfs_rq)
13367 goto err;
13368 tg->se = kcalloc(nr_cpu_ids, sizeof(se), GFP_KERNEL);
13369 if (!tg->se)
13370 goto err;
13371
13372 tg->shares = NICE_0_LOAD;
13373
13374 init_cfs_bandwidth(tg_cfs_bandwidth(tg), tg_cfs_bandwidth(parent));
13375
13376 for_each_possible_cpu(i) {
13377 cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
13378 GFP_KERNEL, cpu_to_node(i));
13379 if (!cfs_rq)
13380 goto err;
13381
13382 se = kzalloc_node(sizeof(struct sched_entity_stats),
13383 GFP_KERNEL, cpu_to_node(i));
13384 if (!se)
13385 goto err_free_rq;
13386
13387 init_cfs_rq(cfs_rq);
13388 init_tg_cfs_entry(tg, cfs_rq, se, i, parent->se[i]);
13389 init_entity_runnable_average(se);
13390 }
13391
13392 return 1;
13393
13394 err_free_rq:
13395 kfree(cfs_rq);
13396 err:
13397 return 0;
13398 }
13399
online_fair_sched_group(struct task_group * tg)13400 void online_fair_sched_group(struct task_group *tg)
13401 {
13402 struct sched_entity *se;
13403 struct rq_flags rf;
13404 struct rq *rq;
13405 int i;
13406
13407 for_each_possible_cpu(i) {
13408 rq = cpu_rq(i);
13409 se = tg->se[i];
13410 rq_lock_irq(rq, &rf);
13411 update_rq_clock(rq);
13412 attach_entity_cfs_rq(se);
13413 sync_throttle(tg, i);
13414 rq_unlock_irq(rq, &rf);
13415 }
13416 }
13417
unregister_fair_sched_group(struct task_group * tg)13418 void unregister_fair_sched_group(struct task_group *tg)
13419 {
13420 int cpu;
13421
13422 destroy_cfs_bandwidth(tg_cfs_bandwidth(tg));
13423
13424 for_each_possible_cpu(cpu) {
13425 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu];
13426 struct sched_entity *se = tg->se[cpu];
13427 struct rq *rq = cpu_rq(cpu);
13428
13429 if (se) {
13430 if (se->sched_delayed) {
13431 guard(rq_lock_irqsave)(rq);
13432 if (se->sched_delayed) {
13433 update_rq_clock(rq);
13434 dequeue_entities(rq, se, DEQUEUE_SLEEP | DEQUEUE_DELAYED);
13435 }
13436 list_del_leaf_cfs_rq(cfs_rq);
13437 }
13438 remove_entity_load_avg(se);
13439 }
13440
13441 /*
13442 * Only empty task groups can be destroyed; so we can speculatively
13443 * check on_list without danger of it being re-added.
13444 */
13445 if (cfs_rq->on_list) {
13446 guard(rq_lock_irqsave)(rq);
13447 list_del_leaf_cfs_rq(cfs_rq);
13448 }
13449 }
13450 }
13451
init_tg_cfs_entry(struct task_group * tg,struct cfs_rq * cfs_rq,struct sched_entity * se,int cpu,struct sched_entity * parent)13452 void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
13453 struct sched_entity *se, int cpu,
13454 struct sched_entity *parent)
13455 {
13456 struct rq *rq = cpu_rq(cpu);
13457
13458 cfs_rq->tg = tg;
13459 cfs_rq->rq = rq;
13460 init_cfs_rq_runtime(cfs_rq);
13461
13462 tg->cfs_rq[cpu] = cfs_rq;
13463 tg->se[cpu] = se;
13464
13465 /* se could be NULL for root_task_group */
13466 if (!se)
13467 return;
13468
13469 if (!parent) {
13470 se->cfs_rq = &rq->cfs;
13471 se->depth = 0;
13472 } else {
13473 se->cfs_rq = parent->my_q;
13474 se->depth = parent->depth + 1;
13475 }
13476
13477 se->my_q = cfs_rq;
13478 /* guarantee group entities always have weight */
13479 update_load_set(&se->load, NICE_0_LOAD);
13480 se->parent = parent;
13481 }
13482
13483 static DEFINE_MUTEX(shares_mutex);
13484
__sched_group_set_shares(struct task_group * tg,unsigned long shares)13485 static int __sched_group_set_shares(struct task_group *tg, unsigned long shares)
13486 {
13487 int i;
13488
13489 lockdep_assert_held(&shares_mutex);
13490
13491 /*
13492 * We can't change the weight of the root cgroup.
13493 */
13494 if (!tg->se[0])
13495 return -EINVAL;
13496
13497 shares = clamp(shares, scale_load(MIN_SHARES), scale_load(MAX_SHARES));
13498
13499 if (tg->shares == shares)
13500 return 0;
13501
13502 tg->shares = shares;
13503 for_each_possible_cpu(i) {
13504 struct rq *rq = cpu_rq(i);
13505 struct sched_entity *se = tg->se[i];
13506 struct rq_flags rf;
13507
13508 /* Propagate contribution to hierarchy */
13509 rq_lock_irqsave(rq, &rf);
13510 update_rq_clock(rq);
13511 for_each_sched_entity(se) {
13512 update_load_avg(cfs_rq_of(se), se, UPDATE_TG);
13513 update_cfs_group(se);
13514 }
13515 rq_unlock_irqrestore(rq, &rf);
13516 }
13517
13518 return 0;
13519 }
13520
sched_group_set_shares(struct task_group * tg,unsigned long shares)13521 int sched_group_set_shares(struct task_group *tg, unsigned long shares)
13522 {
13523 int ret;
13524
13525 mutex_lock(&shares_mutex);
13526 if (tg_is_idle(tg))
13527 ret = -EINVAL;
13528 else
13529 ret = __sched_group_set_shares(tg, shares);
13530 mutex_unlock(&shares_mutex);
13531
13532 return ret;
13533 }
13534
sched_group_set_idle(struct task_group * tg,long idle)13535 int sched_group_set_idle(struct task_group *tg, long idle)
13536 {
13537 int i;
13538
13539 if (tg == &root_task_group)
13540 return -EINVAL;
13541
13542 if (idle < 0 || idle > 1)
13543 return -EINVAL;
13544
13545 mutex_lock(&shares_mutex);
13546
13547 if (tg->idle == idle) {
13548 mutex_unlock(&shares_mutex);
13549 return 0;
13550 }
13551
13552 tg->idle = idle;
13553
13554 for_each_possible_cpu(i) {
13555 struct rq *rq = cpu_rq(i);
13556 struct sched_entity *se = tg->se[i];
13557 struct cfs_rq *grp_cfs_rq = tg->cfs_rq[i];
13558 bool was_idle = cfs_rq_is_idle(grp_cfs_rq);
13559 long idle_task_delta;
13560 struct rq_flags rf;
13561
13562 rq_lock_irqsave(rq, &rf);
13563
13564 grp_cfs_rq->idle = idle;
13565 if (WARN_ON_ONCE(was_idle == cfs_rq_is_idle(grp_cfs_rq)))
13566 goto next_cpu;
13567
13568 idle_task_delta = grp_cfs_rq->h_nr_queued -
13569 grp_cfs_rq->h_nr_idle;
13570 if (!cfs_rq_is_idle(grp_cfs_rq))
13571 idle_task_delta *= -1;
13572
13573 for_each_sched_entity(se) {
13574 struct cfs_rq *cfs_rq = cfs_rq_of(se);
13575
13576 if (!se->on_rq)
13577 break;
13578
13579 cfs_rq->h_nr_idle += idle_task_delta;
13580
13581 /* Already accounted at parent level and above. */
13582 if (cfs_rq_is_idle(cfs_rq))
13583 break;
13584 }
13585
13586 next_cpu:
13587 rq_unlock_irqrestore(rq, &rf);
13588 }
13589
13590 /* Idle groups have minimum weight. */
13591 if (tg_is_idle(tg))
13592 __sched_group_set_shares(tg, scale_load(WEIGHT_IDLEPRIO));
13593 else
13594 __sched_group_set_shares(tg, NICE_0_LOAD);
13595
13596 mutex_unlock(&shares_mutex);
13597 return 0;
13598 }
13599
13600 #endif /* CONFIG_FAIR_GROUP_SCHED */
13601
13602
get_rr_interval_fair(struct rq * rq,struct task_struct * task)13603 static unsigned int get_rr_interval_fair(struct rq *rq, struct task_struct *task)
13604 {
13605 struct sched_entity *se = &task->se;
13606 unsigned int rr_interval = 0;
13607
13608 /*
13609 * Time slice is 0 for SCHED_OTHER tasks that are on an otherwise
13610 * idle runqueue:
13611 */
13612 if (rq->cfs.load.weight)
13613 rr_interval = NS_TO_JIFFIES(se->slice);
13614
13615 return rr_interval;
13616 }
13617
13618 /*
13619 * All the scheduling class methods:
13620 */
13621 DEFINE_SCHED_CLASS(fair) = {
13622
13623 .enqueue_task = enqueue_task_fair,
13624 .dequeue_task = dequeue_task_fair,
13625 .yield_task = yield_task_fair,
13626 .yield_to_task = yield_to_task_fair,
13627
13628 .wakeup_preempt = check_preempt_wakeup_fair,
13629
13630 .pick_task = pick_task_fair,
13631 .pick_next_task = __pick_next_task_fair,
13632 .put_prev_task = put_prev_task_fair,
13633 .set_next_task = set_next_task_fair,
13634
13635 #ifdef CONFIG_SMP
13636 .balance = balance_fair,
13637 .select_task_rq = select_task_rq_fair,
13638 .migrate_task_rq = migrate_task_rq_fair,
13639
13640 .rq_online = rq_online_fair,
13641 .rq_offline = rq_offline_fair,
13642
13643 .task_dead = task_dead_fair,
13644 .set_cpus_allowed = set_cpus_allowed_fair,
13645 #endif
13646
13647 .task_tick = task_tick_fair,
13648 .task_fork = task_fork_fair,
13649
13650 .reweight_task = reweight_task_fair,
13651 .prio_changed = prio_changed_fair,
13652 .switched_from = switched_from_fair,
13653 .switched_to = switched_to_fair,
13654
13655 .get_rr_interval = get_rr_interval_fair,
13656
13657 .update_curr = update_curr_fair,
13658
13659 #ifdef CONFIG_FAIR_GROUP_SCHED
13660 .task_change_group = task_change_group_fair,
13661 #endif
13662
13663 #ifdef CONFIG_SCHED_CORE
13664 .task_is_throttled = task_is_throttled_fair,
13665 #endif
13666
13667 #ifdef CONFIG_UCLAMP_TASK
13668 .uclamp_enabled = 1,
13669 #endif
13670 };
13671
13672 #ifdef CONFIG_SCHED_DEBUG
print_cfs_stats(struct seq_file * m,int cpu)13673 void print_cfs_stats(struct seq_file *m, int cpu)
13674 {
13675 struct cfs_rq *cfs_rq, *pos;
13676
13677 rcu_read_lock();
13678 for_each_leaf_cfs_rq_safe(cpu_rq(cpu), cfs_rq, pos)
13679 print_cfs_rq(m, cpu, cfs_rq);
13680 rcu_read_unlock();
13681 }
13682
13683 #ifdef CONFIG_NUMA_BALANCING
show_numa_stats(struct task_struct * p,struct seq_file * m)13684 void show_numa_stats(struct task_struct *p, struct seq_file *m)
13685 {
13686 int node;
13687 unsigned long tsf = 0, tpf = 0, gsf = 0, gpf = 0;
13688 struct numa_group *ng;
13689
13690 rcu_read_lock();
13691 ng = rcu_dereference(p->numa_group);
13692 for_each_online_node(node) {
13693 if (p->numa_faults) {
13694 tsf = p->numa_faults[task_faults_idx(NUMA_MEM, node, 0)];
13695 tpf = p->numa_faults[task_faults_idx(NUMA_MEM, node, 1)];
13696 }
13697 if (ng) {
13698 gsf = ng->faults[task_faults_idx(NUMA_MEM, node, 0)],
13699 gpf = ng->faults[task_faults_idx(NUMA_MEM, node, 1)];
13700 }
13701 print_numa_stats(m, node, tsf, tpf, gsf, gpf);
13702 }
13703 rcu_read_unlock();
13704 }
13705 #endif /* CONFIG_NUMA_BALANCING */
13706 #endif /* CONFIG_SCHED_DEBUG */
13707
init_sched_fair_class(void)13708 __init void init_sched_fair_class(void)
13709 {
13710 #ifdef CONFIG_SMP
13711 int i;
13712
13713 for_each_possible_cpu(i) {
13714 zalloc_cpumask_var_node(&per_cpu(load_balance_mask, i), GFP_KERNEL, cpu_to_node(i));
13715 zalloc_cpumask_var_node(&per_cpu(select_rq_mask, i), GFP_KERNEL, cpu_to_node(i));
13716 zalloc_cpumask_var_node(&per_cpu(should_we_balance_tmpmask, i),
13717 GFP_KERNEL, cpu_to_node(i));
13718
13719 #ifdef CONFIG_CFS_BANDWIDTH
13720 INIT_CSD(&cpu_rq(i)->cfsb_csd, __cfsb_csd_unthrottle, cpu_rq(i));
13721 INIT_LIST_HEAD(&cpu_rq(i)->cfsb_csd_list);
13722 #endif
13723 }
13724
13725 open_softirq(SCHED_SOFTIRQ, sched_balance_softirq);
13726
13727 #ifdef CONFIG_NO_HZ_COMMON
13728 nohz.next_balance = jiffies;
13729 nohz.next_blocked = jiffies;
13730 zalloc_cpumask_var(&nohz.idle_cpus_mask, GFP_NOWAIT);
13731 #endif
13732 #endif /* SMP */
13733
13734 }
13735