1 /*
2 * linux/net/sunrpc/gss_krb5_crypto.c
3 *
4 * Copyright (c) 2000-2008 The Regents of the University of Michigan.
5 * All rights reserved.
6 *
7 * Andy Adamson <[email protected]>
8 * Bruce Fields <[email protected]>
9 */
10
11 /*
12 * Copyright (C) 1998 by the FundsXpress, INC.
13 *
14 * All rights reserved.
15 *
16 * Export of this software from the United States of America may require
17 * a specific license from the United States Government. It is the
18 * responsibility of any person or organization contemplating export to
19 * obtain such a license before exporting.
20 *
21 * WITHIN THAT CONSTRAINT, permission to use, copy, modify, and
22 * distribute this software and its documentation for any purpose and
23 * without fee is hereby granted, provided that the above copyright
24 * notice appear in all copies and that both that copyright notice and
25 * this permission notice appear in supporting documentation, and that
26 * the name of FundsXpress. not be used in advertising or publicity pertaining
27 * to distribution of the software without specific, written prior
28 * permission. FundsXpress makes no representations about the suitability of
29 * this software for any purpose. It is provided "as is" without express
30 * or implied warranty.
31 *
32 * THIS SOFTWARE IS PROVIDED ``AS IS'' AND WITHOUT ANY EXPRESS OR
33 * IMPLIED WARRANTIES, INCLUDING, WITHOUT LIMITATION, THE IMPLIED
34 * WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR A PARTICULAR PURPOSE.
35 */
36
37 #include <crypto/hash.h>
38 #include <crypto/skcipher.h>
39 #include <crypto/utils.h>
40 #include <linux/err.h>
41 #include <linux/types.h>
42 #include <linux/mm.h>
43 #include <linux/scatterlist.h>
44 #include <linux/highmem.h>
45 #include <linux/pagemap.h>
46 #include <linux/random.h>
47 #include <linux/sunrpc/gss_krb5.h>
48 #include <linux/sunrpc/xdr.h>
49 #include <kunit/visibility.h>
50
51 #include "gss_krb5_internal.h"
52
53 #if IS_ENABLED(CONFIG_SUNRPC_DEBUG)
54 # define RPCDBG_FACILITY RPCDBG_AUTH
55 #endif
56
57 /**
58 * krb5_make_confounder - Generate a confounder string
59 * @p: memory location into which to write the string
60 * @conflen: string length to write, in octets
61 *
62 * RFCs 1964 and 3961 mention only "a random confounder" without going
63 * into detail about its function or cryptographic requirements. The
64 * assumed purpose is to prevent repeated encryption of a plaintext with
65 * the same key from generating the same ciphertext. It is also used to
66 * pad minimum plaintext length to at least a single cipher block.
67 *
68 * However, in situations like the GSS Kerberos 5 mechanism, where the
69 * encryption IV is always all zeroes, the confounder also effectively
70 * functions like an IV. Thus, not only must it be unique from message
71 * to message, but it must also be difficult to predict. Otherwise an
72 * attacker can correlate the confounder to previous or future values,
73 * making the encryption easier to break.
74 *
75 * Given that the primary consumer of this encryption mechanism is a
76 * network storage protocol, a type of traffic that often carries
77 * predictable payloads (eg, all zeroes when reading unallocated blocks
78 * from a file), our confounder generation has to be cryptographically
79 * strong.
80 */
krb5_make_confounder(u8 * p,int conflen)81 void krb5_make_confounder(u8 *p, int conflen)
82 {
83 get_random_bytes(p, conflen);
84 }
85
86 /**
87 * krb5_encrypt - simple encryption of an RPCSEC GSS payload
88 * @tfm: initialized cipher transform
89 * @iv: pointer to an IV
90 * @in: plaintext to encrypt
91 * @out: OUT: ciphertext
92 * @length: length of input and output buffers, in bytes
93 *
94 * @iv may be NULL to force the use of an all-zero IV.
95 * The buffer containing the IV must be as large as the
96 * cipher's ivsize.
97 *
98 * Return values:
99 * %0: @in successfully encrypted into @out
100 * negative errno: @in not encrypted
101 */
102 u32
krb5_encrypt(struct crypto_sync_skcipher * tfm,void * iv,void * in,void * out,int length)103 krb5_encrypt(
104 struct crypto_sync_skcipher *tfm,
105 void * iv,
106 void * in,
107 void * out,
108 int length)
109 {
110 u32 ret = -EINVAL;
111 struct scatterlist sg[1];
112 u8 local_iv[GSS_KRB5_MAX_BLOCKSIZE] = {0};
113 SYNC_SKCIPHER_REQUEST_ON_STACK(req, tfm);
114
115 if (length % crypto_sync_skcipher_blocksize(tfm) != 0)
116 goto out;
117
118 if (crypto_sync_skcipher_ivsize(tfm) > GSS_KRB5_MAX_BLOCKSIZE) {
119 dprintk("RPC: gss_k5encrypt: tfm iv size too large %d\n",
120 crypto_sync_skcipher_ivsize(tfm));
121 goto out;
122 }
123
124 if (iv)
125 memcpy(local_iv, iv, crypto_sync_skcipher_ivsize(tfm));
126
127 memcpy(out, in, length);
128 sg_init_one(sg, out, length);
129
130 skcipher_request_set_sync_tfm(req, tfm);
131 skcipher_request_set_callback(req, 0, NULL, NULL);
132 skcipher_request_set_crypt(req, sg, sg, length, local_iv);
133
134 ret = crypto_skcipher_encrypt(req);
135 skcipher_request_zero(req);
136 out:
137 dprintk("RPC: krb5_encrypt returns %d\n", ret);
138 return ret;
139 }
140
141 /**
142 * krb5_decrypt - simple decryption of an RPCSEC GSS payload
143 * @tfm: initialized cipher transform
144 * @iv: pointer to an IV
145 * @in: ciphertext to decrypt
146 * @out: OUT: plaintext
147 * @length: length of input and output buffers, in bytes
148 *
149 * @iv may be NULL to force the use of an all-zero IV.
150 * The buffer containing the IV must be as large as the
151 * cipher's ivsize.
152 *
153 * Return values:
154 * %0: @in successfully decrypted into @out
155 * negative errno: @in not decrypted
156 */
157 u32
krb5_decrypt(struct crypto_sync_skcipher * tfm,void * iv,void * in,void * out,int length)158 krb5_decrypt(
159 struct crypto_sync_skcipher *tfm,
160 void * iv,
161 void * in,
162 void * out,
163 int length)
164 {
165 u32 ret = -EINVAL;
166 struct scatterlist sg[1];
167 u8 local_iv[GSS_KRB5_MAX_BLOCKSIZE] = {0};
168 SYNC_SKCIPHER_REQUEST_ON_STACK(req, tfm);
169
170 if (length % crypto_sync_skcipher_blocksize(tfm) != 0)
171 goto out;
172
173 if (crypto_sync_skcipher_ivsize(tfm) > GSS_KRB5_MAX_BLOCKSIZE) {
174 dprintk("RPC: gss_k5decrypt: tfm iv size too large %d\n",
175 crypto_sync_skcipher_ivsize(tfm));
176 goto out;
177 }
178 if (iv)
179 memcpy(local_iv, iv, crypto_sync_skcipher_ivsize(tfm));
180
181 memcpy(out, in, length);
182 sg_init_one(sg, out, length);
183
184 skcipher_request_set_sync_tfm(req, tfm);
185 skcipher_request_set_callback(req, 0, NULL, NULL);
186 skcipher_request_set_crypt(req, sg, sg, length, local_iv);
187
188 ret = crypto_skcipher_decrypt(req);
189 skcipher_request_zero(req);
190 out:
191 dprintk("RPC: gss_k5decrypt returns %d\n",ret);
192 return ret;
193 }
194
195 static int
checksummer(struct scatterlist * sg,void * data)196 checksummer(struct scatterlist *sg, void *data)
197 {
198 struct ahash_request *req = data;
199
200 ahash_request_set_crypt(req, sg, NULL, sg->length);
201
202 return crypto_ahash_update(req);
203 }
204
205 /*
206 * checksum the plaintext data and hdrlen bytes of the token header
207 * The checksum is performed over the first 8 bytes of the
208 * gss token header and then over the data body
209 */
210 u32
make_checksum(struct krb5_ctx * kctx,char * header,int hdrlen,struct xdr_buf * body,int body_offset,u8 * cksumkey,unsigned int usage,struct xdr_netobj * cksumout)211 make_checksum(struct krb5_ctx *kctx, char *header, int hdrlen,
212 struct xdr_buf *body, int body_offset, u8 *cksumkey,
213 unsigned int usage, struct xdr_netobj *cksumout)
214 {
215 struct crypto_ahash *tfm;
216 struct ahash_request *req;
217 struct scatterlist sg[1];
218 int err = -1;
219 u8 *checksumdata;
220 unsigned int checksumlen;
221
222 if (cksumout->len < kctx->gk5e->cksumlength) {
223 dprintk("%s: checksum buffer length, %u, too small for %s\n",
224 __func__, cksumout->len, kctx->gk5e->name);
225 return GSS_S_FAILURE;
226 }
227
228 checksumdata = kmalloc(GSS_KRB5_MAX_CKSUM_LEN, GFP_KERNEL);
229 if (checksumdata == NULL)
230 return GSS_S_FAILURE;
231
232 tfm = crypto_alloc_ahash(kctx->gk5e->cksum_name, 0, CRYPTO_ALG_ASYNC);
233 if (IS_ERR(tfm))
234 goto out_free_cksum;
235
236 req = ahash_request_alloc(tfm, GFP_KERNEL);
237 if (!req)
238 goto out_free_ahash;
239
240 ahash_request_set_callback(req, CRYPTO_TFM_REQ_MAY_SLEEP, NULL, NULL);
241
242 checksumlen = crypto_ahash_digestsize(tfm);
243
244 if (cksumkey != NULL) {
245 err = crypto_ahash_setkey(tfm, cksumkey,
246 kctx->gk5e->keylength);
247 if (err)
248 goto out;
249 }
250
251 err = crypto_ahash_init(req);
252 if (err)
253 goto out;
254 sg_init_one(sg, header, hdrlen);
255 ahash_request_set_crypt(req, sg, NULL, hdrlen);
256 err = crypto_ahash_update(req);
257 if (err)
258 goto out;
259 err = xdr_process_buf(body, body_offset, body->len - body_offset,
260 checksummer, req);
261 if (err)
262 goto out;
263 ahash_request_set_crypt(req, NULL, checksumdata, 0);
264 err = crypto_ahash_final(req);
265 if (err)
266 goto out;
267
268 switch (kctx->gk5e->ctype) {
269 case CKSUMTYPE_RSA_MD5:
270 err = krb5_encrypt(kctx->seq, NULL, checksumdata,
271 checksumdata, checksumlen);
272 if (err)
273 goto out;
274 memcpy(cksumout->data,
275 checksumdata + checksumlen - kctx->gk5e->cksumlength,
276 kctx->gk5e->cksumlength);
277 break;
278 case CKSUMTYPE_HMAC_SHA1_DES3:
279 memcpy(cksumout->data, checksumdata, kctx->gk5e->cksumlength);
280 break;
281 default:
282 BUG();
283 break;
284 }
285 cksumout->len = kctx->gk5e->cksumlength;
286 out:
287 ahash_request_free(req);
288 out_free_ahash:
289 crypto_free_ahash(tfm);
290 out_free_cksum:
291 kfree(checksumdata);
292 return err ? GSS_S_FAILURE : 0;
293 }
294
295 /**
296 * gss_krb5_checksum - Compute the MAC for a GSS Wrap or MIC token
297 * @tfm: an initialized hash transform
298 * @header: pointer to a buffer containing the token header, or NULL
299 * @hdrlen: number of octets in @header
300 * @body: xdr_buf containing an RPC message (body.len is the message length)
301 * @body_offset: byte offset into @body to start checksumming
302 * @cksumout: OUT: a buffer to be filled in with the computed HMAC
303 *
304 * Usually expressed as H = HMAC(K, message)[1..h] .
305 *
306 * Caller provides the truncation length of the output token (h) in
307 * cksumout.len.
308 *
309 * Return values:
310 * %GSS_S_COMPLETE: Digest computed, @cksumout filled in
311 * %GSS_S_FAILURE: Call failed
312 */
313 u32
gss_krb5_checksum(struct crypto_ahash * tfm,char * header,int hdrlen,const struct xdr_buf * body,int body_offset,struct xdr_netobj * cksumout)314 gss_krb5_checksum(struct crypto_ahash *tfm, char *header, int hdrlen,
315 const struct xdr_buf *body, int body_offset,
316 struct xdr_netobj *cksumout)
317 {
318 struct ahash_request *req;
319 int err = -ENOMEM;
320 u8 *checksumdata;
321
322 checksumdata = kmalloc(crypto_ahash_digestsize(tfm), GFP_KERNEL);
323 if (!checksumdata)
324 return GSS_S_FAILURE;
325
326 req = ahash_request_alloc(tfm, GFP_KERNEL);
327 if (!req)
328 goto out_free_cksum;
329 ahash_request_set_callback(req, CRYPTO_TFM_REQ_MAY_SLEEP, NULL, NULL);
330 err = crypto_ahash_init(req);
331 if (err)
332 goto out_free_ahash;
333
334 /*
335 * Per RFC 4121 Section 4.2.4, the checksum is performed over the
336 * data body first, then over the octets in "header".
337 */
338 err = xdr_process_buf(body, body_offset, body->len - body_offset,
339 checksummer, req);
340 if (err)
341 goto out_free_ahash;
342 if (header) {
343 struct scatterlist sg[1];
344
345 sg_init_one(sg, header, hdrlen);
346 ahash_request_set_crypt(req, sg, NULL, hdrlen);
347 err = crypto_ahash_update(req);
348 if (err)
349 goto out_free_ahash;
350 }
351
352 ahash_request_set_crypt(req, NULL, checksumdata, 0);
353 err = crypto_ahash_final(req);
354 if (err)
355 goto out_free_ahash;
356
357 memcpy(cksumout->data, checksumdata,
358 min_t(int, cksumout->len, crypto_ahash_digestsize(tfm)));
359
360 out_free_ahash:
361 ahash_request_free(req);
362 out_free_cksum:
363 kfree_sensitive(checksumdata);
364 return err ? GSS_S_FAILURE : GSS_S_COMPLETE;
365 }
366 EXPORT_SYMBOL_IF_KUNIT(gss_krb5_checksum);
367
368 struct encryptor_desc {
369 u8 iv[GSS_KRB5_MAX_BLOCKSIZE];
370 struct skcipher_request *req;
371 int pos;
372 struct xdr_buf *outbuf;
373 struct page **pages;
374 struct scatterlist infrags[4];
375 struct scatterlist outfrags[4];
376 int fragno;
377 int fraglen;
378 };
379
380 static int
encryptor(struct scatterlist * sg,void * data)381 encryptor(struct scatterlist *sg, void *data)
382 {
383 struct encryptor_desc *desc = data;
384 struct xdr_buf *outbuf = desc->outbuf;
385 struct crypto_sync_skcipher *tfm =
386 crypto_sync_skcipher_reqtfm(desc->req);
387 struct page *in_page;
388 int thislen = desc->fraglen + sg->length;
389 int fraglen, ret;
390 int page_pos;
391
392 /* Worst case is 4 fragments: head, end of page 1, start
393 * of page 2, tail. Anything more is a bug. */
394 BUG_ON(desc->fragno > 3);
395
396 page_pos = desc->pos - outbuf->head[0].iov_len;
397 if (page_pos >= 0 && page_pos < outbuf->page_len) {
398 /* pages are not in place: */
399 int i = (page_pos + outbuf->page_base) >> PAGE_SHIFT;
400 in_page = desc->pages[i];
401 } else {
402 in_page = sg_page(sg);
403 }
404 sg_set_page(&desc->infrags[desc->fragno], in_page, sg->length,
405 sg->offset);
406 sg_set_page(&desc->outfrags[desc->fragno], sg_page(sg), sg->length,
407 sg->offset);
408 desc->fragno++;
409 desc->fraglen += sg->length;
410 desc->pos += sg->length;
411
412 fraglen = thislen & (crypto_sync_skcipher_blocksize(tfm) - 1);
413 thislen -= fraglen;
414
415 if (thislen == 0)
416 return 0;
417
418 sg_mark_end(&desc->infrags[desc->fragno - 1]);
419 sg_mark_end(&desc->outfrags[desc->fragno - 1]);
420
421 skcipher_request_set_crypt(desc->req, desc->infrags, desc->outfrags,
422 thislen, desc->iv);
423
424 ret = crypto_skcipher_encrypt(desc->req);
425 if (ret)
426 return ret;
427
428 sg_init_table(desc->infrags, 4);
429 sg_init_table(desc->outfrags, 4);
430
431 if (fraglen) {
432 sg_set_page(&desc->outfrags[0], sg_page(sg), fraglen,
433 sg->offset + sg->length - fraglen);
434 desc->infrags[0] = desc->outfrags[0];
435 sg_assign_page(&desc->infrags[0], in_page);
436 desc->fragno = 1;
437 desc->fraglen = fraglen;
438 } else {
439 desc->fragno = 0;
440 desc->fraglen = 0;
441 }
442 return 0;
443 }
444
445 struct decryptor_desc {
446 u8 iv[GSS_KRB5_MAX_BLOCKSIZE];
447 struct skcipher_request *req;
448 struct scatterlist frags[4];
449 int fragno;
450 int fraglen;
451 };
452
453 static int
decryptor(struct scatterlist * sg,void * data)454 decryptor(struct scatterlist *sg, void *data)
455 {
456 struct decryptor_desc *desc = data;
457 int thislen = desc->fraglen + sg->length;
458 struct crypto_sync_skcipher *tfm =
459 crypto_sync_skcipher_reqtfm(desc->req);
460 int fraglen, ret;
461
462 /* Worst case is 4 fragments: head, end of page 1, start
463 * of page 2, tail. Anything more is a bug. */
464 BUG_ON(desc->fragno > 3);
465 sg_set_page(&desc->frags[desc->fragno], sg_page(sg), sg->length,
466 sg->offset);
467 desc->fragno++;
468 desc->fraglen += sg->length;
469
470 fraglen = thislen & (crypto_sync_skcipher_blocksize(tfm) - 1);
471 thislen -= fraglen;
472
473 if (thislen == 0)
474 return 0;
475
476 sg_mark_end(&desc->frags[desc->fragno - 1]);
477
478 skcipher_request_set_crypt(desc->req, desc->frags, desc->frags,
479 thislen, desc->iv);
480
481 ret = crypto_skcipher_decrypt(desc->req);
482 if (ret)
483 return ret;
484
485 sg_init_table(desc->frags, 4);
486
487 if (fraglen) {
488 sg_set_page(&desc->frags[0], sg_page(sg), fraglen,
489 sg->offset + sg->length - fraglen);
490 desc->fragno = 1;
491 desc->fraglen = fraglen;
492 } else {
493 desc->fragno = 0;
494 desc->fraglen = 0;
495 }
496 return 0;
497 }
498
499 /*
500 * This function makes the assumption that it was ultimately called
501 * from gss_wrap().
502 *
503 * The client auth_gss code moves any existing tail data into a
504 * separate page before calling gss_wrap.
505 * The server svcauth_gss code ensures that both the head and the
506 * tail have slack space of RPC_MAX_AUTH_SIZE before calling gss_wrap.
507 *
508 * Even with that guarantee, this function may be called more than
509 * once in the processing of gss_wrap(). The best we can do is
510 * verify at compile-time (see GSS_KRB5_SLACK_CHECK) that the
511 * largest expected shift will fit within RPC_MAX_AUTH_SIZE.
512 * At run-time we can verify that a single invocation of this
513 * function doesn't attempt to use more the RPC_MAX_AUTH_SIZE.
514 */
515
516 int
xdr_extend_head(struct xdr_buf * buf,unsigned int base,unsigned int shiftlen)517 xdr_extend_head(struct xdr_buf *buf, unsigned int base, unsigned int shiftlen)
518 {
519 u8 *p;
520
521 if (shiftlen == 0)
522 return 0;
523
524 BUG_ON(shiftlen > RPC_MAX_AUTH_SIZE);
525
526 p = buf->head[0].iov_base + base;
527
528 memmove(p + shiftlen, p, buf->head[0].iov_len - base);
529
530 buf->head[0].iov_len += shiftlen;
531 buf->len += shiftlen;
532
533 return 0;
534 }
535
536 static u32
gss_krb5_cts_crypt(struct crypto_sync_skcipher * cipher,struct xdr_buf * buf,u32 offset,u8 * iv,struct page ** pages,int encrypt)537 gss_krb5_cts_crypt(struct crypto_sync_skcipher *cipher, struct xdr_buf *buf,
538 u32 offset, u8 *iv, struct page **pages, int encrypt)
539 {
540 u32 ret;
541 struct scatterlist sg[1];
542 SYNC_SKCIPHER_REQUEST_ON_STACK(req, cipher);
543 u8 *data;
544 struct page **save_pages;
545 u32 len = buf->len - offset;
546
547 if (len > GSS_KRB5_MAX_BLOCKSIZE * 2) {
548 WARN_ON(0);
549 return -ENOMEM;
550 }
551 data = kmalloc(GSS_KRB5_MAX_BLOCKSIZE * 2, GFP_KERNEL);
552 if (!data)
553 return -ENOMEM;
554
555 /*
556 * For encryption, we want to read from the cleartext
557 * page cache pages, and write the encrypted data to
558 * the supplied xdr_buf pages.
559 */
560 save_pages = buf->pages;
561 if (encrypt)
562 buf->pages = pages;
563
564 ret = read_bytes_from_xdr_buf(buf, offset, data, len);
565 buf->pages = save_pages;
566 if (ret)
567 goto out;
568
569 sg_init_one(sg, data, len);
570
571 skcipher_request_set_sync_tfm(req, cipher);
572 skcipher_request_set_callback(req, 0, NULL, NULL);
573 skcipher_request_set_crypt(req, sg, sg, len, iv);
574
575 if (encrypt)
576 ret = crypto_skcipher_encrypt(req);
577 else
578 ret = crypto_skcipher_decrypt(req);
579
580 skcipher_request_zero(req);
581
582 if (ret)
583 goto out;
584
585 ret = write_bytes_to_xdr_buf(buf, offset, data, len);
586
587 #if IS_ENABLED(CONFIG_KUNIT)
588 /*
589 * CBC-CTS does not define an output IV but RFC 3962 defines it as the
590 * penultimate block of ciphertext, so copy that into the IV buffer
591 * before returning.
592 */
593 if (encrypt)
594 memcpy(iv, data, crypto_sync_skcipher_ivsize(cipher));
595 #endif
596
597 out:
598 kfree(data);
599 return ret;
600 }
601
602 /**
603 * krb5_cbc_cts_encrypt - encrypt in CBC mode with CTS
604 * @cts_tfm: CBC cipher with CTS
605 * @cbc_tfm: base CBC cipher
606 * @offset: starting byte offset for plaintext
607 * @buf: OUT: output buffer
608 * @pages: plaintext
609 * @iv: output CBC initialization vector, or NULL
610 * @ivsize: size of @iv, in octets
611 *
612 * To provide confidentiality, encrypt using cipher block chaining
613 * with ciphertext stealing. Message integrity is handled separately.
614 *
615 * Return values:
616 * %0: encryption successful
617 * negative errno: encryption could not be completed
618 */
619 VISIBLE_IF_KUNIT
krb5_cbc_cts_encrypt(struct crypto_sync_skcipher * cts_tfm,struct crypto_sync_skcipher * cbc_tfm,u32 offset,struct xdr_buf * buf,struct page ** pages,u8 * iv,unsigned int ivsize)620 int krb5_cbc_cts_encrypt(struct crypto_sync_skcipher *cts_tfm,
621 struct crypto_sync_skcipher *cbc_tfm,
622 u32 offset, struct xdr_buf *buf, struct page **pages,
623 u8 *iv, unsigned int ivsize)
624 {
625 u32 blocksize, nbytes, nblocks, cbcbytes;
626 struct encryptor_desc desc;
627 int err;
628
629 blocksize = crypto_sync_skcipher_blocksize(cts_tfm);
630 nbytes = buf->len - offset;
631 nblocks = (nbytes + blocksize - 1) / blocksize;
632 cbcbytes = 0;
633 if (nblocks > 2)
634 cbcbytes = (nblocks - 2) * blocksize;
635
636 memset(desc.iv, 0, sizeof(desc.iv));
637
638 /* Handle block-sized chunks of plaintext with CBC. */
639 if (cbcbytes) {
640 SYNC_SKCIPHER_REQUEST_ON_STACK(req, cbc_tfm);
641
642 desc.pos = offset;
643 desc.fragno = 0;
644 desc.fraglen = 0;
645 desc.pages = pages;
646 desc.outbuf = buf;
647 desc.req = req;
648
649 skcipher_request_set_sync_tfm(req, cbc_tfm);
650 skcipher_request_set_callback(req, 0, NULL, NULL);
651
652 sg_init_table(desc.infrags, 4);
653 sg_init_table(desc.outfrags, 4);
654
655 err = xdr_process_buf(buf, offset, cbcbytes, encryptor, &desc);
656 skcipher_request_zero(req);
657 if (err)
658 return err;
659 }
660
661 /* Remaining plaintext is handled with CBC-CTS. */
662 err = gss_krb5_cts_crypt(cts_tfm, buf, offset + cbcbytes,
663 desc.iv, pages, 1);
664 if (err)
665 return err;
666
667 if (unlikely(iv))
668 memcpy(iv, desc.iv, ivsize);
669 return 0;
670 }
671 EXPORT_SYMBOL_IF_KUNIT(krb5_cbc_cts_encrypt);
672
673 /**
674 * krb5_cbc_cts_decrypt - decrypt in CBC mode with CTS
675 * @cts_tfm: CBC cipher with CTS
676 * @cbc_tfm: base CBC cipher
677 * @offset: starting byte offset for plaintext
678 * @buf: OUT: output buffer
679 *
680 * Return values:
681 * %0: decryption successful
682 * negative errno: decryption could not be completed
683 */
684 VISIBLE_IF_KUNIT
krb5_cbc_cts_decrypt(struct crypto_sync_skcipher * cts_tfm,struct crypto_sync_skcipher * cbc_tfm,u32 offset,struct xdr_buf * buf)685 int krb5_cbc_cts_decrypt(struct crypto_sync_skcipher *cts_tfm,
686 struct crypto_sync_skcipher *cbc_tfm,
687 u32 offset, struct xdr_buf *buf)
688 {
689 u32 blocksize, nblocks, cbcbytes;
690 struct decryptor_desc desc;
691 int err;
692
693 blocksize = crypto_sync_skcipher_blocksize(cts_tfm);
694 nblocks = (buf->len + blocksize - 1) / blocksize;
695 cbcbytes = 0;
696 if (nblocks > 2)
697 cbcbytes = (nblocks - 2) * blocksize;
698
699 memset(desc.iv, 0, sizeof(desc.iv));
700
701 /* Handle block-sized chunks of plaintext with CBC. */
702 if (cbcbytes) {
703 SYNC_SKCIPHER_REQUEST_ON_STACK(req, cbc_tfm);
704
705 desc.fragno = 0;
706 desc.fraglen = 0;
707 desc.req = req;
708
709 skcipher_request_set_sync_tfm(req, cbc_tfm);
710 skcipher_request_set_callback(req, 0, NULL, NULL);
711
712 sg_init_table(desc.frags, 4);
713
714 err = xdr_process_buf(buf, 0, cbcbytes, decryptor, &desc);
715 skcipher_request_zero(req);
716 if (err)
717 return err;
718 }
719
720 /* Remaining plaintext is handled with CBC-CTS. */
721 return gss_krb5_cts_crypt(cts_tfm, buf, cbcbytes, desc.iv, NULL, 0);
722 }
723 EXPORT_SYMBOL_IF_KUNIT(krb5_cbc_cts_decrypt);
724
725 u32
gss_krb5_aes_encrypt(struct krb5_ctx * kctx,u32 offset,struct xdr_buf * buf,struct page ** pages)726 gss_krb5_aes_encrypt(struct krb5_ctx *kctx, u32 offset,
727 struct xdr_buf *buf, struct page **pages)
728 {
729 u32 err;
730 struct xdr_netobj hmac;
731 u8 *ecptr;
732 struct crypto_sync_skcipher *cipher, *aux_cipher;
733 struct crypto_ahash *ahash;
734 struct page **save_pages;
735 unsigned int conflen;
736
737 if (kctx->initiate) {
738 cipher = kctx->initiator_enc;
739 aux_cipher = kctx->initiator_enc_aux;
740 ahash = kctx->initiator_integ;
741 } else {
742 cipher = kctx->acceptor_enc;
743 aux_cipher = kctx->acceptor_enc_aux;
744 ahash = kctx->acceptor_integ;
745 }
746 conflen = crypto_sync_skcipher_blocksize(cipher);
747
748 /* hide the gss token header and insert the confounder */
749 offset += GSS_KRB5_TOK_HDR_LEN;
750 if (xdr_extend_head(buf, offset, conflen))
751 return GSS_S_FAILURE;
752 krb5_make_confounder(buf->head[0].iov_base + offset, conflen);
753 offset -= GSS_KRB5_TOK_HDR_LEN;
754
755 if (buf->tail[0].iov_base != NULL) {
756 ecptr = buf->tail[0].iov_base + buf->tail[0].iov_len;
757 } else {
758 buf->tail[0].iov_base = buf->head[0].iov_base
759 + buf->head[0].iov_len;
760 buf->tail[0].iov_len = 0;
761 ecptr = buf->tail[0].iov_base;
762 }
763
764 /* copy plaintext gss token header after filler (if any) */
765 memcpy(ecptr, buf->head[0].iov_base + offset, GSS_KRB5_TOK_HDR_LEN);
766 buf->tail[0].iov_len += GSS_KRB5_TOK_HDR_LEN;
767 buf->len += GSS_KRB5_TOK_HDR_LEN;
768
769 hmac.len = kctx->gk5e->cksumlength;
770 hmac.data = buf->tail[0].iov_base + buf->tail[0].iov_len;
771
772 /*
773 * When we are called, pages points to the real page cache
774 * data -- which we can't go and encrypt! buf->pages points
775 * to scratch pages which we are going to send off to the
776 * client/server. Swap in the plaintext pages to calculate
777 * the hmac.
778 */
779 save_pages = buf->pages;
780 buf->pages = pages;
781
782 err = gss_krb5_checksum(ahash, NULL, 0, buf,
783 offset + GSS_KRB5_TOK_HDR_LEN, &hmac);
784 buf->pages = save_pages;
785 if (err)
786 return GSS_S_FAILURE;
787
788 err = krb5_cbc_cts_encrypt(cipher, aux_cipher,
789 offset + GSS_KRB5_TOK_HDR_LEN,
790 buf, pages, NULL, 0);
791 if (err)
792 return GSS_S_FAILURE;
793
794 /* Now update buf to account for HMAC */
795 buf->tail[0].iov_len += kctx->gk5e->cksumlength;
796 buf->len += kctx->gk5e->cksumlength;
797
798 return GSS_S_COMPLETE;
799 }
800
801 u32
gss_krb5_aes_decrypt(struct krb5_ctx * kctx,u32 offset,u32 len,struct xdr_buf * buf,u32 * headskip,u32 * tailskip)802 gss_krb5_aes_decrypt(struct krb5_ctx *kctx, u32 offset, u32 len,
803 struct xdr_buf *buf, u32 *headskip, u32 *tailskip)
804 {
805 struct crypto_sync_skcipher *cipher, *aux_cipher;
806 struct crypto_ahash *ahash;
807 struct xdr_netobj our_hmac_obj;
808 u8 our_hmac[GSS_KRB5_MAX_CKSUM_LEN];
809 u8 pkt_hmac[GSS_KRB5_MAX_CKSUM_LEN];
810 struct xdr_buf subbuf;
811 u32 ret = 0;
812
813 if (kctx->initiate) {
814 cipher = kctx->acceptor_enc;
815 aux_cipher = kctx->acceptor_enc_aux;
816 ahash = kctx->acceptor_integ;
817 } else {
818 cipher = kctx->initiator_enc;
819 aux_cipher = kctx->initiator_enc_aux;
820 ahash = kctx->initiator_integ;
821 }
822
823 /* create a segment skipping the header and leaving out the checksum */
824 xdr_buf_subsegment(buf, &subbuf, offset + GSS_KRB5_TOK_HDR_LEN,
825 (len - offset - GSS_KRB5_TOK_HDR_LEN -
826 kctx->gk5e->cksumlength));
827
828 ret = krb5_cbc_cts_decrypt(cipher, aux_cipher, 0, &subbuf);
829 if (ret)
830 goto out_err;
831
832 our_hmac_obj.len = kctx->gk5e->cksumlength;
833 our_hmac_obj.data = our_hmac;
834 ret = gss_krb5_checksum(ahash, NULL, 0, &subbuf, 0, &our_hmac_obj);
835 if (ret)
836 goto out_err;
837
838 /* Get the packet's hmac value */
839 ret = read_bytes_from_xdr_buf(buf, len - kctx->gk5e->cksumlength,
840 pkt_hmac, kctx->gk5e->cksumlength);
841 if (ret)
842 goto out_err;
843
844 if (crypto_memneq(pkt_hmac, our_hmac, kctx->gk5e->cksumlength) != 0) {
845 ret = GSS_S_BAD_SIG;
846 goto out_err;
847 }
848 *headskip = crypto_sync_skcipher_blocksize(cipher);
849 *tailskip = kctx->gk5e->cksumlength;
850 out_err:
851 if (ret && ret != GSS_S_BAD_SIG)
852 ret = GSS_S_FAILURE;
853 return ret;
854 }
855
856 /**
857 * krb5_etm_checksum - Compute a MAC for a GSS Wrap token
858 * @cipher: an initialized cipher transform
859 * @tfm: an initialized hash transform
860 * @body: xdr_buf containing an RPC message (body.len is the message length)
861 * @body_offset: byte offset into @body to start checksumming
862 * @cksumout: OUT: a buffer to be filled in with the computed HMAC
863 *
864 * Usually expressed as H = HMAC(K, IV | ciphertext)[1..h] .
865 *
866 * Caller provides the truncation length of the output token (h) in
867 * cksumout.len.
868 *
869 * Return values:
870 * %GSS_S_COMPLETE: Digest computed, @cksumout filled in
871 * %GSS_S_FAILURE: Call failed
872 */
873 VISIBLE_IF_KUNIT
krb5_etm_checksum(struct crypto_sync_skcipher * cipher,struct crypto_ahash * tfm,const struct xdr_buf * body,int body_offset,struct xdr_netobj * cksumout)874 u32 krb5_etm_checksum(struct crypto_sync_skcipher *cipher,
875 struct crypto_ahash *tfm, const struct xdr_buf *body,
876 int body_offset, struct xdr_netobj *cksumout)
877 {
878 unsigned int ivsize = crypto_sync_skcipher_ivsize(cipher);
879 struct ahash_request *req;
880 struct scatterlist sg[1];
881 u8 *iv, *checksumdata;
882 int err = -ENOMEM;
883
884 checksumdata = kmalloc(crypto_ahash_digestsize(tfm), GFP_KERNEL);
885 if (!checksumdata)
886 return GSS_S_FAILURE;
887 /* For RPCSEC, the "initial cipher state" is always all zeroes. */
888 iv = kzalloc(ivsize, GFP_KERNEL);
889 if (!iv)
890 goto out_free_mem;
891
892 req = ahash_request_alloc(tfm, GFP_KERNEL);
893 if (!req)
894 goto out_free_mem;
895 ahash_request_set_callback(req, CRYPTO_TFM_REQ_MAY_SLEEP, NULL, NULL);
896 err = crypto_ahash_init(req);
897 if (err)
898 goto out_free_ahash;
899
900 sg_init_one(sg, iv, ivsize);
901 ahash_request_set_crypt(req, sg, NULL, ivsize);
902 err = crypto_ahash_update(req);
903 if (err)
904 goto out_free_ahash;
905 err = xdr_process_buf(body, body_offset, body->len - body_offset,
906 checksummer, req);
907 if (err)
908 goto out_free_ahash;
909
910 ahash_request_set_crypt(req, NULL, checksumdata, 0);
911 err = crypto_ahash_final(req);
912 if (err)
913 goto out_free_ahash;
914 memcpy(cksumout->data, checksumdata, cksumout->len);
915
916 out_free_ahash:
917 ahash_request_free(req);
918 out_free_mem:
919 kfree(iv);
920 kfree_sensitive(checksumdata);
921 return err ? GSS_S_FAILURE : GSS_S_COMPLETE;
922 }
923 EXPORT_SYMBOL_IF_KUNIT(krb5_etm_checksum);
924
925 /**
926 * krb5_etm_encrypt - Encrypt using the RFC 8009 rules
927 * @kctx: Kerberos context
928 * @offset: starting offset of the payload, in bytes
929 * @buf: OUT: send buffer to contain the encrypted payload
930 * @pages: plaintext payload
931 *
932 * The main difference with aes_encrypt is that "The HMAC is
933 * calculated over the cipher state concatenated with the AES
934 * output, instead of being calculated over the confounder and
935 * plaintext. This allows the message receiver to verify the
936 * integrity of the message before decrypting the message."
937 *
938 * RFC 8009 Section 5:
939 *
940 * encryption function: as follows, where E() is AES encryption in
941 * CBC-CS3 mode, and h is the size of truncated HMAC (128 bits or
942 * 192 bits as described above).
943 *
944 * N = random value of length 128 bits (the AES block size)
945 * IV = cipher state
946 * C = E(Ke, N | plaintext, IV)
947 * H = HMAC(Ki, IV | C)
948 * ciphertext = C | H[1..h]
949 *
950 * This encryption formula provides AEAD EtM with key separation.
951 *
952 * Return values:
953 * %GSS_S_COMPLETE: Encryption successful
954 * %GSS_S_FAILURE: Encryption failed
955 */
956 u32
krb5_etm_encrypt(struct krb5_ctx * kctx,u32 offset,struct xdr_buf * buf,struct page ** pages)957 krb5_etm_encrypt(struct krb5_ctx *kctx, u32 offset,
958 struct xdr_buf *buf, struct page **pages)
959 {
960 struct crypto_sync_skcipher *cipher, *aux_cipher;
961 struct crypto_ahash *ahash;
962 struct xdr_netobj hmac;
963 unsigned int conflen;
964 u8 *ecptr;
965 u32 err;
966
967 if (kctx->initiate) {
968 cipher = kctx->initiator_enc;
969 aux_cipher = kctx->initiator_enc_aux;
970 ahash = kctx->initiator_integ;
971 } else {
972 cipher = kctx->acceptor_enc;
973 aux_cipher = kctx->acceptor_enc_aux;
974 ahash = kctx->acceptor_integ;
975 }
976 conflen = crypto_sync_skcipher_blocksize(cipher);
977
978 offset += GSS_KRB5_TOK_HDR_LEN;
979 if (xdr_extend_head(buf, offset, conflen))
980 return GSS_S_FAILURE;
981 krb5_make_confounder(buf->head[0].iov_base + offset, conflen);
982 offset -= GSS_KRB5_TOK_HDR_LEN;
983
984 if (buf->tail[0].iov_base) {
985 ecptr = buf->tail[0].iov_base + buf->tail[0].iov_len;
986 } else {
987 buf->tail[0].iov_base = buf->head[0].iov_base
988 + buf->head[0].iov_len;
989 buf->tail[0].iov_len = 0;
990 ecptr = buf->tail[0].iov_base;
991 }
992
993 memcpy(ecptr, buf->head[0].iov_base + offset, GSS_KRB5_TOK_HDR_LEN);
994 buf->tail[0].iov_len += GSS_KRB5_TOK_HDR_LEN;
995 buf->len += GSS_KRB5_TOK_HDR_LEN;
996
997 err = krb5_cbc_cts_encrypt(cipher, aux_cipher,
998 offset + GSS_KRB5_TOK_HDR_LEN,
999 buf, pages, NULL, 0);
1000 if (err)
1001 return GSS_S_FAILURE;
1002
1003 hmac.data = buf->tail[0].iov_base + buf->tail[0].iov_len;
1004 hmac.len = kctx->gk5e->cksumlength;
1005 err = krb5_etm_checksum(cipher, ahash,
1006 buf, offset + GSS_KRB5_TOK_HDR_LEN, &hmac);
1007 if (err)
1008 goto out_err;
1009 buf->tail[0].iov_len += kctx->gk5e->cksumlength;
1010 buf->len += kctx->gk5e->cksumlength;
1011
1012 return GSS_S_COMPLETE;
1013
1014 out_err:
1015 return GSS_S_FAILURE;
1016 }
1017
1018 /**
1019 * krb5_etm_decrypt - Decrypt using the RFC 8009 rules
1020 * @kctx: Kerberos context
1021 * @offset: starting offset of the ciphertext, in bytes
1022 * @len:
1023 * @buf:
1024 * @headskip: OUT: the enctype's confounder length, in octets
1025 * @tailskip: OUT: the enctype's HMAC length, in octets
1026 *
1027 * RFC 8009 Section 5:
1028 *
1029 * decryption function: as follows, where D() is AES decryption in
1030 * CBC-CS3 mode, and h is the size of truncated HMAC.
1031 *
1032 * (C, H) = ciphertext
1033 * (Note: H is the last h bits of the ciphertext.)
1034 * IV = cipher state
1035 * if H != HMAC(Ki, IV | C)[1..h]
1036 * stop, report error
1037 * (N, P) = D(Ke, C, IV)
1038 *
1039 * Return values:
1040 * %GSS_S_COMPLETE: Decryption successful
1041 * %GSS_S_BAD_SIG: computed HMAC != received HMAC
1042 * %GSS_S_FAILURE: Decryption failed
1043 */
1044 u32
krb5_etm_decrypt(struct krb5_ctx * kctx,u32 offset,u32 len,struct xdr_buf * buf,u32 * headskip,u32 * tailskip)1045 krb5_etm_decrypt(struct krb5_ctx *kctx, u32 offset, u32 len,
1046 struct xdr_buf *buf, u32 *headskip, u32 *tailskip)
1047 {
1048 struct crypto_sync_skcipher *cipher, *aux_cipher;
1049 u8 our_hmac[GSS_KRB5_MAX_CKSUM_LEN];
1050 u8 pkt_hmac[GSS_KRB5_MAX_CKSUM_LEN];
1051 struct xdr_netobj our_hmac_obj;
1052 struct crypto_ahash *ahash;
1053 struct xdr_buf subbuf;
1054 u32 ret = 0;
1055
1056 if (kctx->initiate) {
1057 cipher = kctx->acceptor_enc;
1058 aux_cipher = kctx->acceptor_enc_aux;
1059 ahash = kctx->acceptor_integ;
1060 } else {
1061 cipher = kctx->initiator_enc;
1062 aux_cipher = kctx->initiator_enc_aux;
1063 ahash = kctx->initiator_integ;
1064 }
1065
1066 /* Extract the ciphertext into @subbuf. */
1067 xdr_buf_subsegment(buf, &subbuf, offset + GSS_KRB5_TOK_HDR_LEN,
1068 (len - offset - GSS_KRB5_TOK_HDR_LEN -
1069 kctx->gk5e->cksumlength));
1070
1071 our_hmac_obj.data = our_hmac;
1072 our_hmac_obj.len = kctx->gk5e->cksumlength;
1073 ret = krb5_etm_checksum(cipher, ahash, &subbuf, 0, &our_hmac_obj);
1074 if (ret)
1075 goto out_err;
1076 ret = read_bytes_from_xdr_buf(buf, len - kctx->gk5e->cksumlength,
1077 pkt_hmac, kctx->gk5e->cksumlength);
1078 if (ret)
1079 goto out_err;
1080 if (crypto_memneq(pkt_hmac, our_hmac, kctx->gk5e->cksumlength) != 0) {
1081 ret = GSS_S_BAD_SIG;
1082 goto out_err;
1083 }
1084
1085 ret = krb5_cbc_cts_decrypt(cipher, aux_cipher, 0, &subbuf);
1086 if (ret) {
1087 ret = GSS_S_FAILURE;
1088 goto out_err;
1089 }
1090
1091 *headskip = crypto_sync_skcipher_blocksize(cipher);
1092 *tailskip = kctx->gk5e->cksumlength;
1093 return GSS_S_COMPLETE;
1094
1095 out_err:
1096 if (ret != GSS_S_BAD_SIG)
1097 ret = GSS_S_FAILURE;
1098 return ret;
1099 }
1100