1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Landlock LSM - Filesystem management and hooks
4 *
5 * Copyright © 2016-2020 Mickaël Salaün <[email protected]>
6 * Copyright © 2018-2020 ANSSI
7 * Copyright © 2021-2022 Microsoft Corporation
8 * Copyright © 2022 Günther Noack <[email protected]>
9 * Copyright © 2023-2024 Google LLC
10 */
11
12 #include <asm/ioctls.h>
13 #include <kunit/test.h>
14 #include <linux/atomic.h>
15 #include <linux/bitops.h>
16 #include <linux/bits.h>
17 #include <linux/compiler_types.h>
18 #include <linux/dcache.h>
19 #include <linux/err.h>
20 #include <linux/falloc.h>
21 #include <linux/fs.h>
22 #include <linux/init.h>
23 #include <linux/kernel.h>
24 #include <linux/limits.h>
25 #include <linux/list.h>
26 #include <linux/lsm_hooks.h>
27 #include <linux/mount.h>
28 #include <linux/namei.h>
29 #include <linux/path.h>
30 #include <linux/pid.h>
31 #include <linux/rcupdate.h>
32 #include <linux/sched/signal.h>
33 #include <linux/spinlock.h>
34 #include <linux/stat.h>
35 #include <linux/types.h>
36 #include <linux/wait_bit.h>
37 #include <linux/workqueue.h>
38 #include <uapi/linux/fiemap.h>
39 #include <uapi/linux/landlock.h>
40
41 #include "access.h"
42 #include "common.h"
43 #include "cred.h"
44 #include "fs.h"
45 #include "limits.h"
46 #include "object.h"
47 #include "ruleset.h"
48 #include "setup.h"
49
50 /* Underlying object management */
51
release_inode(struct landlock_object * const object)52 static void release_inode(struct landlock_object *const object)
53 __releases(object->lock)
54 {
55 struct inode *const inode = object->underobj;
56 struct super_block *sb;
57
58 if (!inode) {
59 spin_unlock(&object->lock);
60 return;
61 }
62
63 /*
64 * Protects against concurrent use by hook_sb_delete() of the reference
65 * to the underlying inode.
66 */
67 object->underobj = NULL;
68 /*
69 * Makes sure that if the filesystem is concurrently unmounted,
70 * hook_sb_delete() will wait for us to finish iput().
71 */
72 sb = inode->i_sb;
73 atomic_long_inc(&landlock_superblock(sb)->inode_refs);
74 spin_unlock(&object->lock);
75 /*
76 * Because object->underobj was not NULL, hook_sb_delete() and
77 * get_inode_object() guarantee that it is safe to reset
78 * landlock_inode(inode)->object while it is not NULL. It is therefore
79 * not necessary to lock inode->i_lock.
80 */
81 rcu_assign_pointer(landlock_inode(inode)->object, NULL);
82 /*
83 * Now, new rules can safely be tied to @inode with get_inode_object().
84 */
85
86 iput(inode);
87 if (atomic_long_dec_and_test(&landlock_superblock(sb)->inode_refs))
88 wake_up_var(&landlock_superblock(sb)->inode_refs);
89 }
90
91 static const struct landlock_object_underops landlock_fs_underops = {
92 .release = release_inode
93 };
94
95 /* IOCTL helpers */
96
97 /**
98 * is_masked_device_ioctl - Determine whether an IOCTL command is always
99 * permitted with Landlock for device files. These commands can not be
100 * restricted on device files by enforcing a Landlock policy.
101 *
102 * @cmd: The IOCTL command that is supposed to be run.
103 *
104 * By default, any IOCTL on a device file requires the
105 * LANDLOCK_ACCESS_FS_IOCTL_DEV right. However, we blanket-permit some
106 * commands, if:
107 *
108 * 1. The command is implemented in fs/ioctl.c's do_vfs_ioctl(),
109 * not in f_ops->unlocked_ioctl() or f_ops->compat_ioctl().
110 *
111 * 2. The command is harmless when invoked on devices.
112 *
113 * We also permit commands that do not make sense for devices, but where the
114 * do_vfs_ioctl() implementation returns a more conventional error code.
115 *
116 * Any new IOCTL commands that are implemented in fs/ioctl.c's do_vfs_ioctl()
117 * should be considered for inclusion here.
118 *
119 * Returns: true if the IOCTL @cmd can not be restricted with Landlock for
120 * device files.
121 */
is_masked_device_ioctl(const unsigned int cmd)122 static __attribute_const__ bool is_masked_device_ioctl(const unsigned int cmd)
123 {
124 switch (cmd) {
125 /*
126 * FIOCLEX, FIONCLEX, FIONBIO and FIOASYNC manipulate the FD's
127 * close-on-exec and the file's buffered-IO and async flags. These
128 * operations are also available through fcntl(2), and are
129 * unconditionally permitted in Landlock.
130 */
131 case FIOCLEX:
132 case FIONCLEX:
133 case FIONBIO:
134 case FIOASYNC:
135 /*
136 * FIOQSIZE queries the size of a regular file, directory, or link.
137 *
138 * We still permit it, because it always returns -ENOTTY for
139 * other file types.
140 */
141 case FIOQSIZE:
142 /*
143 * FIFREEZE and FITHAW freeze and thaw the file system which the
144 * given file belongs to. Requires CAP_SYS_ADMIN.
145 *
146 * These commands operate on the file system's superblock rather
147 * than on the file itself. The same operations can also be
148 * done through any other file or directory on the same file
149 * system, so it is safe to permit these.
150 */
151 case FIFREEZE:
152 case FITHAW:
153 /*
154 * FS_IOC_FIEMAP queries information about the allocation of
155 * blocks within a file.
156 *
157 * This IOCTL command only makes sense for regular files and is
158 * not implemented by devices. It is harmless to permit.
159 */
160 case FS_IOC_FIEMAP:
161 /*
162 * FIGETBSZ queries the file system's block size for a file or
163 * directory.
164 *
165 * This command operates on the file system's superblock rather
166 * than on the file itself. The same operation can also be done
167 * through any other file or directory on the same file system,
168 * so it is safe to permit it.
169 */
170 case FIGETBSZ:
171 /*
172 * FICLONE, FICLONERANGE and FIDEDUPERANGE make files share
173 * their underlying storage ("reflink") between source and
174 * destination FDs, on file systems which support that.
175 *
176 * These IOCTL commands only apply to regular files
177 * and are harmless to permit for device files.
178 */
179 case FICLONE:
180 case FICLONERANGE:
181 case FIDEDUPERANGE:
182 /*
183 * FS_IOC_GETFSUUID and FS_IOC_GETFSSYSFSPATH both operate on
184 * the file system superblock, not on the specific file, so
185 * these operations are available through any other file on the
186 * same file system as well.
187 */
188 case FS_IOC_GETFSUUID:
189 case FS_IOC_GETFSSYSFSPATH:
190 return true;
191
192 /*
193 * FIONREAD, FS_IOC_GETFLAGS, FS_IOC_SETFLAGS, FS_IOC_FSGETXATTR and
194 * FS_IOC_FSSETXATTR are forwarded to device implementations.
195 */
196
197 /*
198 * file_ioctl() commands (FIBMAP, FS_IOC_RESVSP, FS_IOC_RESVSP64,
199 * FS_IOC_UNRESVSP, FS_IOC_UNRESVSP64 and FS_IOC_ZERO_RANGE) are
200 * forwarded to device implementations, so not permitted.
201 */
202
203 /* Other commands are guarded by the access right. */
204 default:
205 return false;
206 }
207 }
208
209 /*
210 * is_masked_device_ioctl_compat - same as the helper above, but checking the
211 * "compat" IOCTL commands.
212 *
213 * The IOCTL commands with special handling in compat-mode should behave the
214 * same as their non-compat counterparts.
215 */
216 static __attribute_const__ bool
is_masked_device_ioctl_compat(const unsigned int cmd)217 is_masked_device_ioctl_compat(const unsigned int cmd)
218 {
219 switch (cmd) {
220 /* FICLONE is permitted, same as in the non-compat variant. */
221 case FICLONE:
222 return true;
223
224 #if defined(CONFIG_X86_64)
225 /*
226 * FS_IOC_RESVSP_32, FS_IOC_RESVSP64_32, FS_IOC_UNRESVSP_32,
227 * FS_IOC_UNRESVSP64_32, FS_IOC_ZERO_RANGE_32: not blanket-permitted,
228 * for consistency with their non-compat variants.
229 */
230 case FS_IOC_RESVSP_32:
231 case FS_IOC_RESVSP64_32:
232 case FS_IOC_UNRESVSP_32:
233 case FS_IOC_UNRESVSP64_32:
234 case FS_IOC_ZERO_RANGE_32:
235 #endif
236
237 /*
238 * FS_IOC32_GETFLAGS, FS_IOC32_SETFLAGS are forwarded to their device
239 * implementations.
240 */
241 case FS_IOC32_GETFLAGS:
242 case FS_IOC32_SETFLAGS:
243 return false;
244 default:
245 return is_masked_device_ioctl(cmd);
246 }
247 }
248
249 /* Ruleset management */
250
get_inode_object(struct inode * const inode)251 static struct landlock_object *get_inode_object(struct inode *const inode)
252 {
253 struct landlock_object *object, *new_object;
254 struct landlock_inode_security *inode_sec = landlock_inode(inode);
255
256 rcu_read_lock();
257 retry:
258 object = rcu_dereference(inode_sec->object);
259 if (object) {
260 if (likely(refcount_inc_not_zero(&object->usage))) {
261 rcu_read_unlock();
262 return object;
263 }
264 /*
265 * We are racing with release_inode(), the object is going
266 * away. Wait for release_inode(), then retry.
267 */
268 spin_lock(&object->lock);
269 spin_unlock(&object->lock);
270 goto retry;
271 }
272 rcu_read_unlock();
273
274 /*
275 * If there is no object tied to @inode, then create a new one (without
276 * holding any locks).
277 */
278 new_object = landlock_create_object(&landlock_fs_underops, inode);
279 if (IS_ERR(new_object))
280 return new_object;
281
282 /*
283 * Protects against concurrent calls to get_inode_object() or
284 * hook_sb_delete().
285 */
286 spin_lock(&inode->i_lock);
287 if (unlikely(rcu_access_pointer(inode_sec->object))) {
288 /* Someone else just created the object, bail out and retry. */
289 spin_unlock(&inode->i_lock);
290 kfree(new_object);
291
292 rcu_read_lock();
293 goto retry;
294 }
295
296 /*
297 * @inode will be released by hook_sb_delete() on its superblock
298 * shutdown, or by release_inode() when no more ruleset references the
299 * related object.
300 */
301 ihold(inode);
302 rcu_assign_pointer(inode_sec->object, new_object);
303 spin_unlock(&inode->i_lock);
304 return new_object;
305 }
306
307 /* All access rights that can be tied to files. */
308 /* clang-format off */
309 #define ACCESS_FILE ( \
310 LANDLOCK_ACCESS_FS_EXECUTE | \
311 LANDLOCK_ACCESS_FS_WRITE_FILE | \
312 LANDLOCK_ACCESS_FS_READ_FILE | \
313 LANDLOCK_ACCESS_FS_TRUNCATE | \
314 LANDLOCK_ACCESS_FS_IOCTL_DEV)
315 /* clang-format on */
316
317 /*
318 * @path: Should have been checked by get_path_from_fd().
319 */
landlock_append_fs_rule(struct landlock_ruleset * const ruleset,const struct path * const path,access_mask_t access_rights)320 int landlock_append_fs_rule(struct landlock_ruleset *const ruleset,
321 const struct path *const path,
322 access_mask_t access_rights)
323 {
324 int err;
325 struct landlock_id id = {
326 .type = LANDLOCK_KEY_INODE,
327 };
328
329 /* Files only get access rights that make sense. */
330 if (!d_is_dir(path->dentry) &&
331 (access_rights | ACCESS_FILE) != ACCESS_FILE)
332 return -EINVAL;
333 if (WARN_ON_ONCE(ruleset->num_layers != 1))
334 return -EINVAL;
335
336 /* Transforms relative access rights to absolute ones. */
337 access_rights |= LANDLOCK_MASK_ACCESS_FS &
338 ~landlock_get_fs_access_mask(ruleset, 0);
339 id.key.object = get_inode_object(d_backing_inode(path->dentry));
340 if (IS_ERR(id.key.object))
341 return PTR_ERR(id.key.object);
342 mutex_lock(&ruleset->lock);
343 err = landlock_insert_rule(ruleset, id, access_rights);
344 mutex_unlock(&ruleset->lock);
345 /*
346 * No need to check for an error because landlock_insert_rule()
347 * increments the refcount for the new object if needed.
348 */
349 landlock_put_object(id.key.object);
350 return err;
351 }
352
353 /* Access-control management */
354
355 /*
356 * The lifetime of the returned rule is tied to @domain.
357 *
358 * Returns NULL if no rule is found or if @dentry is negative.
359 */
360 static const struct landlock_rule *
find_rule(const struct landlock_ruleset * const domain,const struct dentry * const dentry)361 find_rule(const struct landlock_ruleset *const domain,
362 const struct dentry *const dentry)
363 {
364 const struct landlock_rule *rule;
365 const struct inode *inode;
366 struct landlock_id id = {
367 .type = LANDLOCK_KEY_INODE,
368 };
369
370 /* Ignores nonexistent leafs. */
371 if (d_is_negative(dentry))
372 return NULL;
373
374 inode = d_backing_inode(dentry);
375 rcu_read_lock();
376 id.key.object = rcu_dereference(landlock_inode(inode)->object);
377 rule = landlock_find_rule(domain, id);
378 rcu_read_unlock();
379 return rule;
380 }
381
382 /*
383 * Allows access to pseudo filesystems that will never be mountable (e.g.
384 * sockfs, pipefs), but can still be reachable through
385 * /proc/<pid>/fd/<file-descriptor>
386 */
is_nouser_or_private(const struct dentry * dentry)387 static bool is_nouser_or_private(const struct dentry *dentry)
388 {
389 return (dentry->d_sb->s_flags & SB_NOUSER) ||
390 (d_is_positive(dentry) &&
391 unlikely(IS_PRIVATE(d_backing_inode(dentry))));
392 }
393
394 static const struct access_masks any_fs = {
395 .fs = ~0,
396 };
397
get_current_fs_domain(void)398 static const struct landlock_ruleset *get_current_fs_domain(void)
399 {
400 return landlock_get_applicable_domain(landlock_get_current_domain(),
401 any_fs);
402 }
403
404 /*
405 * Check that a destination file hierarchy has more restrictions than a source
406 * file hierarchy. This is only used for link and rename actions.
407 *
408 * @layer_masks_child2: Optional child masks.
409 */
no_more_access(const layer_mask_t (* const layer_masks_parent1)[LANDLOCK_NUM_ACCESS_FS],const layer_mask_t (* const layer_masks_child1)[LANDLOCK_NUM_ACCESS_FS],const bool child1_is_directory,const layer_mask_t (* const layer_masks_parent2)[LANDLOCK_NUM_ACCESS_FS],const layer_mask_t (* const layer_masks_child2)[LANDLOCK_NUM_ACCESS_FS],const bool child2_is_directory)410 static bool no_more_access(
411 const layer_mask_t (*const layer_masks_parent1)[LANDLOCK_NUM_ACCESS_FS],
412 const layer_mask_t (*const layer_masks_child1)[LANDLOCK_NUM_ACCESS_FS],
413 const bool child1_is_directory,
414 const layer_mask_t (*const layer_masks_parent2)[LANDLOCK_NUM_ACCESS_FS],
415 const layer_mask_t (*const layer_masks_child2)[LANDLOCK_NUM_ACCESS_FS],
416 const bool child2_is_directory)
417 {
418 unsigned long access_bit;
419
420 for (access_bit = 0; access_bit < ARRAY_SIZE(*layer_masks_parent2);
421 access_bit++) {
422 /* Ignores accesses that only make sense for directories. */
423 const bool is_file_access =
424 !!(BIT_ULL(access_bit) & ACCESS_FILE);
425
426 if (child1_is_directory || is_file_access) {
427 /*
428 * Checks if the destination restrictions are a
429 * superset of the source ones (i.e. inherited access
430 * rights without child exceptions):
431 * restrictions(parent2) >= restrictions(child1)
432 */
433 if ((((*layer_masks_parent1)[access_bit] &
434 (*layer_masks_child1)[access_bit]) |
435 (*layer_masks_parent2)[access_bit]) !=
436 (*layer_masks_parent2)[access_bit])
437 return false;
438 }
439
440 if (!layer_masks_child2)
441 continue;
442 if (child2_is_directory || is_file_access) {
443 /*
444 * Checks inverted restrictions for RENAME_EXCHANGE:
445 * restrictions(parent1) >= restrictions(child2)
446 */
447 if ((((*layer_masks_parent2)[access_bit] &
448 (*layer_masks_child2)[access_bit]) |
449 (*layer_masks_parent1)[access_bit]) !=
450 (*layer_masks_parent1)[access_bit])
451 return false;
452 }
453 }
454 return true;
455 }
456
457 #define NMA_TRUE(...) KUNIT_EXPECT_TRUE(test, no_more_access(__VA_ARGS__))
458 #define NMA_FALSE(...) KUNIT_EXPECT_FALSE(test, no_more_access(__VA_ARGS__))
459
460 #ifdef CONFIG_SECURITY_LANDLOCK_KUNIT_TEST
461
test_no_more_access(struct kunit * const test)462 static void test_no_more_access(struct kunit *const test)
463 {
464 const layer_mask_t rx0[LANDLOCK_NUM_ACCESS_FS] = {
465 [BIT_INDEX(LANDLOCK_ACCESS_FS_EXECUTE)] = BIT_ULL(0),
466 [BIT_INDEX(LANDLOCK_ACCESS_FS_READ_FILE)] = BIT_ULL(0),
467 };
468 const layer_mask_t mx0[LANDLOCK_NUM_ACCESS_FS] = {
469 [BIT_INDEX(LANDLOCK_ACCESS_FS_EXECUTE)] = BIT_ULL(0),
470 [BIT_INDEX(LANDLOCK_ACCESS_FS_MAKE_REG)] = BIT_ULL(0),
471 };
472 const layer_mask_t x0[LANDLOCK_NUM_ACCESS_FS] = {
473 [BIT_INDEX(LANDLOCK_ACCESS_FS_EXECUTE)] = BIT_ULL(0),
474 };
475 const layer_mask_t x1[LANDLOCK_NUM_ACCESS_FS] = {
476 [BIT_INDEX(LANDLOCK_ACCESS_FS_EXECUTE)] = BIT_ULL(1),
477 };
478 const layer_mask_t x01[LANDLOCK_NUM_ACCESS_FS] = {
479 [BIT_INDEX(LANDLOCK_ACCESS_FS_EXECUTE)] = BIT_ULL(0) |
480 BIT_ULL(1),
481 };
482 const layer_mask_t allows_all[LANDLOCK_NUM_ACCESS_FS] = {};
483
484 /* Checks without restriction. */
485 NMA_TRUE(&x0, &allows_all, false, &allows_all, NULL, false);
486 NMA_TRUE(&allows_all, &x0, false, &allows_all, NULL, false);
487 NMA_FALSE(&x0, &x0, false, &allows_all, NULL, false);
488
489 /*
490 * Checks that we can only refer a file if no more access could be
491 * inherited.
492 */
493 NMA_TRUE(&x0, &x0, false, &rx0, NULL, false);
494 NMA_TRUE(&rx0, &rx0, false, &rx0, NULL, false);
495 NMA_FALSE(&rx0, &rx0, false, &x0, NULL, false);
496 NMA_FALSE(&rx0, &rx0, false, &x1, NULL, false);
497
498 /* Checks allowed referring with different nested domains. */
499 NMA_TRUE(&x0, &x1, false, &x0, NULL, false);
500 NMA_TRUE(&x1, &x0, false, &x0, NULL, false);
501 NMA_TRUE(&x0, &x01, false, &x0, NULL, false);
502 NMA_TRUE(&x0, &x01, false, &rx0, NULL, false);
503 NMA_TRUE(&x01, &x0, false, &x0, NULL, false);
504 NMA_TRUE(&x01, &x0, false, &rx0, NULL, false);
505 NMA_FALSE(&x01, &x01, false, &x0, NULL, false);
506
507 /* Checks that file access rights are also enforced for a directory. */
508 NMA_FALSE(&rx0, &rx0, true, &x0, NULL, false);
509
510 /* Checks that directory access rights don't impact file referring... */
511 NMA_TRUE(&mx0, &mx0, false, &x0, NULL, false);
512 /* ...but only directory referring. */
513 NMA_FALSE(&mx0, &mx0, true, &x0, NULL, false);
514
515 /* Checks directory exchange. */
516 NMA_TRUE(&mx0, &mx0, true, &mx0, &mx0, true);
517 NMA_TRUE(&mx0, &mx0, true, &mx0, &x0, true);
518 NMA_FALSE(&mx0, &mx0, true, &x0, &mx0, true);
519 NMA_FALSE(&mx0, &mx0, true, &x0, &x0, true);
520 NMA_FALSE(&mx0, &mx0, true, &x1, &x1, true);
521
522 /* Checks file exchange with directory access rights... */
523 NMA_TRUE(&mx0, &mx0, false, &mx0, &mx0, false);
524 NMA_TRUE(&mx0, &mx0, false, &mx0, &x0, false);
525 NMA_TRUE(&mx0, &mx0, false, &x0, &mx0, false);
526 NMA_TRUE(&mx0, &mx0, false, &x0, &x0, false);
527 /* ...and with file access rights. */
528 NMA_TRUE(&rx0, &rx0, false, &rx0, &rx0, false);
529 NMA_TRUE(&rx0, &rx0, false, &rx0, &x0, false);
530 NMA_FALSE(&rx0, &rx0, false, &x0, &rx0, false);
531 NMA_FALSE(&rx0, &rx0, false, &x0, &x0, false);
532 NMA_FALSE(&rx0, &rx0, false, &x1, &x1, false);
533
534 /*
535 * Allowing the following requests should not be a security risk
536 * because domain 0 denies execute access, and domain 1 is always
537 * nested with domain 0. However, adding an exception for this case
538 * would mean to check all nested domains to make sure none can get
539 * more privileges (e.g. processes only sandboxed by domain 0).
540 * Moreover, this behavior (i.e. composition of N domains) could then
541 * be inconsistent compared to domain 1's ruleset alone (e.g. it might
542 * be denied to link/rename with domain 1's ruleset, whereas it would
543 * be allowed if nested on top of domain 0). Another drawback would be
544 * to create a cover channel that could enable sandboxed processes to
545 * infer most of the filesystem restrictions from their domain. To
546 * make it simple, efficient, safe, and more consistent, this case is
547 * always denied.
548 */
549 NMA_FALSE(&x1, &x1, false, &x0, NULL, false);
550 NMA_FALSE(&x1, &x1, false, &rx0, NULL, false);
551 NMA_FALSE(&x1, &x1, true, &x0, NULL, false);
552 NMA_FALSE(&x1, &x1, true, &rx0, NULL, false);
553
554 /* Checks the same case of exclusive domains with a file... */
555 NMA_TRUE(&x1, &x1, false, &x01, NULL, false);
556 NMA_FALSE(&x1, &x1, false, &x01, &x0, false);
557 NMA_FALSE(&x1, &x1, false, &x01, &x01, false);
558 NMA_FALSE(&x1, &x1, false, &x0, &x0, false);
559 /* ...and with a directory. */
560 NMA_FALSE(&x1, &x1, false, &x0, &x0, true);
561 NMA_FALSE(&x1, &x1, true, &x0, &x0, false);
562 NMA_FALSE(&x1, &x1, true, &x0, &x0, true);
563 }
564
565 #endif /* CONFIG_SECURITY_LANDLOCK_KUNIT_TEST */
566
567 #undef NMA_TRUE
568 #undef NMA_FALSE
569
is_layer_masks_allowed(layer_mask_t (* const layer_masks)[LANDLOCK_NUM_ACCESS_FS])570 static bool is_layer_masks_allowed(
571 layer_mask_t (*const layer_masks)[LANDLOCK_NUM_ACCESS_FS])
572 {
573 return !memchr_inv(layer_masks, 0, sizeof(*layer_masks));
574 }
575
576 /*
577 * Removes @layer_masks accesses that are not requested.
578 *
579 * Returns true if the request is allowed, false otherwise.
580 */
581 static bool
scope_to_request(const access_mask_t access_request,layer_mask_t (* const layer_masks)[LANDLOCK_NUM_ACCESS_FS])582 scope_to_request(const access_mask_t access_request,
583 layer_mask_t (*const layer_masks)[LANDLOCK_NUM_ACCESS_FS])
584 {
585 const unsigned long access_req = access_request;
586 unsigned long access_bit;
587
588 if (WARN_ON_ONCE(!layer_masks))
589 return true;
590
591 for_each_clear_bit(access_bit, &access_req, ARRAY_SIZE(*layer_masks))
592 (*layer_masks)[access_bit] = 0;
593
594 return is_layer_masks_allowed(layer_masks);
595 }
596
597 #ifdef CONFIG_SECURITY_LANDLOCK_KUNIT_TEST
598
test_scope_to_request_with_exec_none(struct kunit * const test)599 static void test_scope_to_request_with_exec_none(struct kunit *const test)
600 {
601 /* Allows everything. */
602 layer_mask_t layer_masks[LANDLOCK_NUM_ACCESS_FS] = {};
603
604 /* Checks and scopes with execute. */
605 KUNIT_EXPECT_TRUE(test, scope_to_request(LANDLOCK_ACCESS_FS_EXECUTE,
606 &layer_masks));
607 KUNIT_EXPECT_EQ(test, 0,
608 layer_masks[BIT_INDEX(LANDLOCK_ACCESS_FS_EXECUTE)]);
609 KUNIT_EXPECT_EQ(test, 0,
610 layer_masks[BIT_INDEX(LANDLOCK_ACCESS_FS_WRITE_FILE)]);
611 }
612
test_scope_to_request_with_exec_some(struct kunit * const test)613 static void test_scope_to_request_with_exec_some(struct kunit *const test)
614 {
615 /* Denies execute and write. */
616 layer_mask_t layer_masks[LANDLOCK_NUM_ACCESS_FS] = {
617 [BIT_INDEX(LANDLOCK_ACCESS_FS_EXECUTE)] = BIT_ULL(0),
618 [BIT_INDEX(LANDLOCK_ACCESS_FS_WRITE_FILE)] = BIT_ULL(1),
619 };
620
621 /* Checks and scopes with execute. */
622 KUNIT_EXPECT_FALSE(test, scope_to_request(LANDLOCK_ACCESS_FS_EXECUTE,
623 &layer_masks));
624 KUNIT_EXPECT_EQ(test, BIT_ULL(0),
625 layer_masks[BIT_INDEX(LANDLOCK_ACCESS_FS_EXECUTE)]);
626 KUNIT_EXPECT_EQ(test, 0,
627 layer_masks[BIT_INDEX(LANDLOCK_ACCESS_FS_WRITE_FILE)]);
628 }
629
test_scope_to_request_without_access(struct kunit * const test)630 static void test_scope_to_request_without_access(struct kunit *const test)
631 {
632 /* Denies execute and write. */
633 layer_mask_t layer_masks[LANDLOCK_NUM_ACCESS_FS] = {
634 [BIT_INDEX(LANDLOCK_ACCESS_FS_EXECUTE)] = BIT_ULL(0),
635 [BIT_INDEX(LANDLOCK_ACCESS_FS_WRITE_FILE)] = BIT_ULL(1),
636 };
637
638 /* Checks and scopes without access request. */
639 KUNIT_EXPECT_TRUE(test, scope_to_request(0, &layer_masks));
640 KUNIT_EXPECT_EQ(test, 0,
641 layer_masks[BIT_INDEX(LANDLOCK_ACCESS_FS_EXECUTE)]);
642 KUNIT_EXPECT_EQ(test, 0,
643 layer_masks[BIT_INDEX(LANDLOCK_ACCESS_FS_WRITE_FILE)]);
644 }
645
646 #endif /* CONFIG_SECURITY_LANDLOCK_KUNIT_TEST */
647
648 /*
649 * Returns true if there is at least one access right different than
650 * LANDLOCK_ACCESS_FS_REFER.
651 */
652 static bool
is_eacces(const layer_mask_t (* const layer_masks)[LANDLOCK_NUM_ACCESS_FS],const access_mask_t access_request)653 is_eacces(const layer_mask_t (*const layer_masks)[LANDLOCK_NUM_ACCESS_FS],
654 const access_mask_t access_request)
655 {
656 unsigned long access_bit;
657 /* LANDLOCK_ACCESS_FS_REFER alone must return -EXDEV. */
658 const unsigned long access_check = access_request &
659 ~LANDLOCK_ACCESS_FS_REFER;
660
661 if (!layer_masks)
662 return false;
663
664 for_each_set_bit(access_bit, &access_check, ARRAY_SIZE(*layer_masks)) {
665 if ((*layer_masks)[access_bit])
666 return true;
667 }
668 return false;
669 }
670
671 #define IE_TRUE(...) KUNIT_EXPECT_TRUE(test, is_eacces(__VA_ARGS__))
672 #define IE_FALSE(...) KUNIT_EXPECT_FALSE(test, is_eacces(__VA_ARGS__))
673
674 #ifdef CONFIG_SECURITY_LANDLOCK_KUNIT_TEST
675
test_is_eacces_with_none(struct kunit * const test)676 static void test_is_eacces_with_none(struct kunit *const test)
677 {
678 const layer_mask_t layer_masks[LANDLOCK_NUM_ACCESS_FS] = {};
679
680 IE_FALSE(&layer_masks, 0);
681 IE_FALSE(&layer_masks, LANDLOCK_ACCESS_FS_REFER);
682 IE_FALSE(&layer_masks, LANDLOCK_ACCESS_FS_EXECUTE);
683 IE_FALSE(&layer_masks, LANDLOCK_ACCESS_FS_WRITE_FILE);
684 }
685
test_is_eacces_with_refer(struct kunit * const test)686 static void test_is_eacces_with_refer(struct kunit *const test)
687 {
688 const layer_mask_t layer_masks[LANDLOCK_NUM_ACCESS_FS] = {
689 [BIT_INDEX(LANDLOCK_ACCESS_FS_REFER)] = BIT_ULL(0),
690 };
691
692 IE_FALSE(&layer_masks, 0);
693 IE_FALSE(&layer_masks, LANDLOCK_ACCESS_FS_REFER);
694 IE_FALSE(&layer_masks, LANDLOCK_ACCESS_FS_EXECUTE);
695 IE_FALSE(&layer_masks, LANDLOCK_ACCESS_FS_WRITE_FILE);
696 }
697
test_is_eacces_with_write(struct kunit * const test)698 static void test_is_eacces_with_write(struct kunit *const test)
699 {
700 const layer_mask_t layer_masks[LANDLOCK_NUM_ACCESS_FS] = {
701 [BIT_INDEX(LANDLOCK_ACCESS_FS_WRITE_FILE)] = BIT_ULL(0),
702 };
703
704 IE_FALSE(&layer_masks, 0);
705 IE_FALSE(&layer_masks, LANDLOCK_ACCESS_FS_REFER);
706 IE_FALSE(&layer_masks, LANDLOCK_ACCESS_FS_EXECUTE);
707
708 IE_TRUE(&layer_masks, LANDLOCK_ACCESS_FS_WRITE_FILE);
709 }
710
711 #endif /* CONFIG_SECURITY_LANDLOCK_KUNIT_TEST */
712
713 #undef IE_TRUE
714 #undef IE_FALSE
715
716 /**
717 * is_access_to_paths_allowed - Check accesses for requests with a common path
718 *
719 * @domain: Domain to check against.
720 * @path: File hierarchy to walk through.
721 * @access_request_parent1: Accesses to check, once @layer_masks_parent1 is
722 * equal to @layer_masks_parent2 (if any). This is tied to the unique
723 * requested path for most actions, or the source in case of a refer action
724 * (i.e. rename or link), or the source and destination in case of
725 * RENAME_EXCHANGE.
726 * @layer_masks_parent1: Pointer to a matrix of layer masks per access
727 * masks, identifying the layers that forbid a specific access. Bits from
728 * this matrix can be unset according to the @path walk. An empty matrix
729 * means that @domain allows all possible Landlock accesses (i.e. not only
730 * those identified by @access_request_parent1). This matrix can
731 * initially refer to domain layer masks and, when the accesses for the
732 * destination and source are the same, to requested layer masks.
733 * @dentry_child1: Dentry to the initial child of the parent1 path. This
734 * pointer must be NULL for non-refer actions (i.e. not link nor rename).
735 * @access_request_parent2: Similar to @access_request_parent1 but for a
736 * request involving a source and a destination. This refers to the
737 * destination, except in case of RENAME_EXCHANGE where it also refers to
738 * the source. Must be set to 0 when using a simple path request.
739 * @layer_masks_parent2: Similar to @layer_masks_parent1 but for a refer
740 * action. This must be NULL otherwise.
741 * @dentry_child2: Dentry to the initial child of the parent2 path. This
742 * pointer is only set for RENAME_EXCHANGE actions and must be NULL
743 * otherwise.
744 *
745 * This helper first checks that the destination has a superset of restrictions
746 * compared to the source (if any) for a common path. Because of
747 * RENAME_EXCHANGE actions, source and destinations may be swapped. It then
748 * checks that the collected accesses and the remaining ones are enough to
749 * allow the request.
750 *
751 * Returns:
752 * - true if the access request is granted;
753 * - false otherwise.
754 */
is_access_to_paths_allowed(const struct landlock_ruleset * const domain,const struct path * const path,const access_mask_t access_request_parent1,layer_mask_t (* const layer_masks_parent1)[LANDLOCK_NUM_ACCESS_FS],const struct dentry * const dentry_child1,const access_mask_t access_request_parent2,layer_mask_t (* const layer_masks_parent2)[LANDLOCK_NUM_ACCESS_FS],const struct dentry * const dentry_child2)755 static bool is_access_to_paths_allowed(
756 const struct landlock_ruleset *const domain,
757 const struct path *const path,
758 const access_mask_t access_request_parent1,
759 layer_mask_t (*const layer_masks_parent1)[LANDLOCK_NUM_ACCESS_FS],
760 const struct dentry *const dentry_child1,
761 const access_mask_t access_request_parent2,
762 layer_mask_t (*const layer_masks_parent2)[LANDLOCK_NUM_ACCESS_FS],
763 const struct dentry *const dentry_child2)
764 {
765 bool allowed_parent1 = false, allowed_parent2 = false, is_dom_check,
766 child1_is_directory = true, child2_is_directory = true;
767 struct path walker_path;
768 access_mask_t access_masked_parent1, access_masked_parent2;
769 layer_mask_t _layer_masks_child1[LANDLOCK_NUM_ACCESS_FS],
770 _layer_masks_child2[LANDLOCK_NUM_ACCESS_FS];
771 layer_mask_t(*layer_masks_child1)[LANDLOCK_NUM_ACCESS_FS] = NULL,
772 (*layer_masks_child2)[LANDLOCK_NUM_ACCESS_FS] = NULL;
773
774 if (!access_request_parent1 && !access_request_parent2)
775 return true;
776 if (WARN_ON_ONCE(!domain || !path))
777 return true;
778 if (is_nouser_or_private(path->dentry))
779 return true;
780 if (WARN_ON_ONCE(domain->num_layers < 1 || !layer_masks_parent1))
781 return false;
782
783 allowed_parent1 = is_layer_masks_allowed(layer_masks_parent1);
784
785 if (unlikely(layer_masks_parent2)) {
786 if (WARN_ON_ONCE(!dentry_child1))
787 return false;
788
789 allowed_parent2 = is_layer_masks_allowed(layer_masks_parent2);
790
791 /*
792 * For a double request, first check for potential privilege
793 * escalation by looking at domain handled accesses (which are
794 * a superset of the meaningful requested accesses).
795 */
796 access_masked_parent1 = access_masked_parent2 =
797 landlock_union_access_masks(domain).fs;
798 is_dom_check = true;
799 } else {
800 if (WARN_ON_ONCE(dentry_child1 || dentry_child2))
801 return false;
802 /* For a simple request, only check for requested accesses. */
803 access_masked_parent1 = access_request_parent1;
804 access_masked_parent2 = access_request_parent2;
805 is_dom_check = false;
806 }
807
808 if (unlikely(dentry_child1)) {
809 landlock_unmask_layers(
810 find_rule(domain, dentry_child1),
811 landlock_init_layer_masks(
812 domain, LANDLOCK_MASK_ACCESS_FS,
813 &_layer_masks_child1, LANDLOCK_KEY_INODE),
814 &_layer_masks_child1, ARRAY_SIZE(_layer_masks_child1));
815 layer_masks_child1 = &_layer_masks_child1;
816 child1_is_directory = d_is_dir(dentry_child1);
817 }
818 if (unlikely(dentry_child2)) {
819 landlock_unmask_layers(
820 find_rule(domain, dentry_child2),
821 landlock_init_layer_masks(
822 domain, LANDLOCK_MASK_ACCESS_FS,
823 &_layer_masks_child2, LANDLOCK_KEY_INODE),
824 &_layer_masks_child2, ARRAY_SIZE(_layer_masks_child2));
825 layer_masks_child2 = &_layer_masks_child2;
826 child2_is_directory = d_is_dir(dentry_child2);
827 }
828
829 walker_path = *path;
830 path_get(&walker_path);
831 /*
832 * We need to walk through all the hierarchy to not miss any relevant
833 * restriction.
834 */
835 while (true) {
836 struct dentry *parent_dentry;
837 const struct landlock_rule *rule;
838
839 /*
840 * If at least all accesses allowed on the destination are
841 * already allowed on the source, respectively if there is at
842 * least as much as restrictions on the destination than on the
843 * source, then we can safely refer files from the source to
844 * the destination without risking a privilege escalation.
845 * This also applies in the case of RENAME_EXCHANGE, which
846 * implies checks on both direction. This is crucial for
847 * standalone multilayered security policies. Furthermore,
848 * this helps avoid policy writers to shoot themselves in the
849 * foot.
850 */
851 if (unlikely(is_dom_check &&
852 no_more_access(
853 layer_masks_parent1, layer_masks_child1,
854 child1_is_directory, layer_masks_parent2,
855 layer_masks_child2,
856 child2_is_directory))) {
857 /*
858 * Now, downgrades the remaining checks from domain
859 * handled accesses to requested accesses.
860 */
861 is_dom_check = false;
862 access_masked_parent1 = access_request_parent1;
863 access_masked_parent2 = access_request_parent2;
864
865 allowed_parent1 =
866 allowed_parent1 ||
867 scope_to_request(access_masked_parent1,
868 layer_masks_parent1);
869 allowed_parent2 =
870 allowed_parent2 ||
871 scope_to_request(access_masked_parent2,
872 layer_masks_parent2);
873
874 /* Stops when all accesses are granted. */
875 if (allowed_parent1 && allowed_parent2)
876 break;
877 }
878
879 rule = find_rule(domain, walker_path.dentry);
880 allowed_parent1 = allowed_parent1 ||
881 landlock_unmask_layers(
882 rule, access_masked_parent1,
883 layer_masks_parent1,
884 ARRAY_SIZE(*layer_masks_parent1));
885 allowed_parent2 = allowed_parent2 ||
886 landlock_unmask_layers(
887 rule, access_masked_parent2,
888 layer_masks_parent2,
889 ARRAY_SIZE(*layer_masks_parent2));
890
891 /* Stops when a rule from each layer grants access. */
892 if (allowed_parent1 && allowed_parent2)
893 break;
894 jump_up:
895 if (walker_path.dentry == walker_path.mnt->mnt_root) {
896 if (follow_up(&walker_path)) {
897 /* Ignores hidden mount points. */
898 goto jump_up;
899 } else {
900 /*
901 * Stops at the real root. Denies access
902 * because not all layers have granted access.
903 */
904 break;
905 }
906 }
907 if (unlikely(IS_ROOT(walker_path.dentry))) {
908 /*
909 * Stops at disconnected root directories. Only allows
910 * access to internal filesystems (e.g. nsfs, which is
911 * reachable through /proc/<pid>/ns/<namespace>).
912 */
913 if (walker_path.mnt->mnt_flags & MNT_INTERNAL) {
914 allowed_parent1 = true;
915 allowed_parent2 = true;
916 }
917 break;
918 }
919 parent_dentry = dget_parent(walker_path.dentry);
920 dput(walker_path.dentry);
921 walker_path.dentry = parent_dentry;
922 }
923 path_put(&walker_path);
924
925 return allowed_parent1 && allowed_parent2;
926 }
927
current_check_access_path(const struct path * const path,access_mask_t access_request)928 static int current_check_access_path(const struct path *const path,
929 access_mask_t access_request)
930 {
931 const struct landlock_ruleset *const dom = get_current_fs_domain();
932 layer_mask_t layer_masks[LANDLOCK_NUM_ACCESS_FS] = {};
933
934 if (!dom)
935 return 0;
936
937 access_request = landlock_init_layer_masks(
938 dom, access_request, &layer_masks, LANDLOCK_KEY_INODE);
939 if (is_access_to_paths_allowed(dom, path, access_request, &layer_masks,
940 NULL, 0, NULL, NULL))
941 return 0;
942
943 return -EACCES;
944 }
945
get_mode_access(const umode_t mode)946 static __attribute_const__ access_mask_t get_mode_access(const umode_t mode)
947 {
948 switch (mode & S_IFMT) {
949 case S_IFLNK:
950 return LANDLOCK_ACCESS_FS_MAKE_SYM;
951 case S_IFDIR:
952 return LANDLOCK_ACCESS_FS_MAKE_DIR;
953 case S_IFCHR:
954 return LANDLOCK_ACCESS_FS_MAKE_CHAR;
955 case S_IFBLK:
956 return LANDLOCK_ACCESS_FS_MAKE_BLOCK;
957 case S_IFIFO:
958 return LANDLOCK_ACCESS_FS_MAKE_FIFO;
959 case S_IFSOCK:
960 return LANDLOCK_ACCESS_FS_MAKE_SOCK;
961 case S_IFREG:
962 case 0:
963 /* A zero mode translates to S_IFREG. */
964 default:
965 /* Treats weird files as regular files. */
966 return LANDLOCK_ACCESS_FS_MAKE_REG;
967 }
968 }
969
maybe_remove(const struct dentry * const dentry)970 static access_mask_t maybe_remove(const struct dentry *const dentry)
971 {
972 if (d_is_negative(dentry))
973 return 0;
974 return d_is_dir(dentry) ? LANDLOCK_ACCESS_FS_REMOVE_DIR :
975 LANDLOCK_ACCESS_FS_REMOVE_FILE;
976 }
977
978 /**
979 * collect_domain_accesses - Walk through a file path and collect accesses
980 *
981 * @domain: Domain to check against.
982 * @mnt_root: Last directory to check.
983 * @dir: Directory to start the walk from.
984 * @layer_masks_dom: Where to store the collected accesses.
985 *
986 * This helper is useful to begin a path walk from the @dir directory to a
987 * @mnt_root directory used as a mount point. This mount point is the common
988 * ancestor between the source and the destination of a renamed and linked
989 * file. While walking from @dir to @mnt_root, we record all the domain's
990 * allowed accesses in @layer_masks_dom.
991 *
992 * This is similar to is_access_to_paths_allowed() but much simpler because it
993 * only handles walking on the same mount point and only checks one set of
994 * accesses.
995 *
996 * Returns:
997 * - true if all the domain access rights are allowed for @dir;
998 * - false if the walk reached @mnt_root.
999 */
collect_domain_accesses(const struct landlock_ruleset * const domain,const struct dentry * const mnt_root,struct dentry * dir,layer_mask_t (* const layer_masks_dom)[LANDLOCK_NUM_ACCESS_FS])1000 static bool collect_domain_accesses(
1001 const struct landlock_ruleset *const domain,
1002 const struct dentry *const mnt_root, struct dentry *dir,
1003 layer_mask_t (*const layer_masks_dom)[LANDLOCK_NUM_ACCESS_FS])
1004 {
1005 unsigned long access_dom;
1006 bool ret = false;
1007
1008 if (WARN_ON_ONCE(!domain || !mnt_root || !dir || !layer_masks_dom))
1009 return true;
1010 if (is_nouser_or_private(dir))
1011 return true;
1012
1013 access_dom = landlock_init_layer_masks(domain, LANDLOCK_MASK_ACCESS_FS,
1014 layer_masks_dom,
1015 LANDLOCK_KEY_INODE);
1016
1017 dget(dir);
1018 while (true) {
1019 struct dentry *parent_dentry;
1020
1021 /* Gets all layers allowing all domain accesses. */
1022 if (landlock_unmask_layers(find_rule(domain, dir), access_dom,
1023 layer_masks_dom,
1024 ARRAY_SIZE(*layer_masks_dom))) {
1025 /*
1026 * Stops when all handled accesses are allowed by at
1027 * least one rule in each layer.
1028 */
1029 ret = true;
1030 break;
1031 }
1032
1033 /* We should not reach a root other than @mnt_root. */
1034 if (dir == mnt_root || WARN_ON_ONCE(IS_ROOT(dir)))
1035 break;
1036
1037 parent_dentry = dget_parent(dir);
1038 dput(dir);
1039 dir = parent_dentry;
1040 }
1041 dput(dir);
1042 return ret;
1043 }
1044
1045 /**
1046 * current_check_refer_path - Check if a rename or link action is allowed
1047 *
1048 * @old_dentry: File or directory requested to be moved or linked.
1049 * @new_dir: Destination parent directory.
1050 * @new_dentry: Destination file or directory.
1051 * @removable: Sets to true if it is a rename operation.
1052 * @exchange: Sets to true if it is a rename operation with RENAME_EXCHANGE.
1053 *
1054 * Because of its unprivileged constraints, Landlock relies on file hierarchies
1055 * (and not only inodes) to tie access rights to files. Being able to link or
1056 * rename a file hierarchy brings some challenges. Indeed, moving or linking a
1057 * file (i.e. creating a new reference to an inode) can have an impact on the
1058 * actions allowed for a set of files if it would change its parent directory
1059 * (i.e. reparenting).
1060 *
1061 * To avoid trivial access right bypasses, Landlock first checks if the file or
1062 * directory requested to be moved would gain new access rights inherited from
1063 * its new hierarchy. Before returning any error, Landlock then checks that
1064 * the parent source hierarchy and the destination hierarchy would allow the
1065 * link or rename action. If it is not the case, an error with EACCES is
1066 * returned to inform user space that there is no way to remove or create the
1067 * requested source file type. If it should be allowed but the new inherited
1068 * access rights would be greater than the source access rights, then the
1069 * kernel returns an error with EXDEV. Prioritizing EACCES over EXDEV enables
1070 * user space to abort the whole operation if there is no way to do it, or to
1071 * manually copy the source to the destination if this remains allowed, e.g.
1072 * because file creation is allowed on the destination directory but not direct
1073 * linking.
1074 *
1075 * To achieve this goal, the kernel needs to compare two file hierarchies: the
1076 * one identifying the source file or directory (including itself), and the
1077 * destination one. This can be seen as a multilayer partial ordering problem.
1078 * The kernel walks through these paths and collects in a matrix the access
1079 * rights that are denied per layer. These matrices are then compared to see
1080 * if the destination one has more (or the same) restrictions as the source
1081 * one. If this is the case, the requested action will not return EXDEV, which
1082 * doesn't mean the action is allowed. The parent hierarchy of the source
1083 * (i.e. parent directory), and the destination hierarchy must also be checked
1084 * to verify that they explicitly allow such action (i.e. referencing,
1085 * creation and potentially removal rights). The kernel implementation is then
1086 * required to rely on potentially four matrices of access rights: one for the
1087 * source file or directory (i.e. the child), a potentially other one for the
1088 * other source/destination (in case of RENAME_EXCHANGE), one for the source
1089 * parent hierarchy and a last one for the destination hierarchy. These
1090 * ephemeral matrices take some space on the stack, which limits the number of
1091 * layers to a deemed reasonable number: 16.
1092 *
1093 * Returns:
1094 * - 0 if access is allowed;
1095 * - -EXDEV if @old_dentry would inherit new access rights from @new_dir;
1096 * - -EACCES if file removal or creation is denied.
1097 */
current_check_refer_path(struct dentry * const old_dentry,const struct path * const new_dir,struct dentry * const new_dentry,const bool removable,const bool exchange)1098 static int current_check_refer_path(struct dentry *const old_dentry,
1099 const struct path *const new_dir,
1100 struct dentry *const new_dentry,
1101 const bool removable, const bool exchange)
1102 {
1103 const struct landlock_ruleset *const dom = get_current_fs_domain();
1104 bool allow_parent1, allow_parent2;
1105 access_mask_t access_request_parent1, access_request_parent2;
1106 struct path mnt_dir;
1107 struct dentry *old_parent;
1108 layer_mask_t layer_masks_parent1[LANDLOCK_NUM_ACCESS_FS] = {},
1109 layer_masks_parent2[LANDLOCK_NUM_ACCESS_FS] = {};
1110
1111 if (!dom)
1112 return 0;
1113 if (WARN_ON_ONCE(dom->num_layers < 1))
1114 return -EACCES;
1115 if (unlikely(d_is_negative(old_dentry)))
1116 return -ENOENT;
1117 if (exchange) {
1118 if (unlikely(d_is_negative(new_dentry)))
1119 return -ENOENT;
1120 access_request_parent1 =
1121 get_mode_access(d_backing_inode(new_dentry)->i_mode);
1122 } else {
1123 access_request_parent1 = 0;
1124 }
1125 access_request_parent2 =
1126 get_mode_access(d_backing_inode(old_dentry)->i_mode);
1127 if (removable) {
1128 access_request_parent1 |= maybe_remove(old_dentry);
1129 access_request_parent2 |= maybe_remove(new_dentry);
1130 }
1131
1132 /* The mount points are the same for old and new paths, cf. EXDEV. */
1133 if (old_dentry->d_parent == new_dir->dentry) {
1134 /*
1135 * The LANDLOCK_ACCESS_FS_REFER access right is not required
1136 * for same-directory referer (i.e. no reparenting).
1137 */
1138 access_request_parent1 = landlock_init_layer_masks(
1139 dom, access_request_parent1 | access_request_parent2,
1140 &layer_masks_parent1, LANDLOCK_KEY_INODE);
1141 if (is_access_to_paths_allowed(
1142 dom, new_dir, access_request_parent1,
1143 &layer_masks_parent1, NULL, 0, NULL, NULL))
1144 return 0;
1145 return -EACCES;
1146 }
1147
1148 access_request_parent1 |= LANDLOCK_ACCESS_FS_REFER;
1149 access_request_parent2 |= LANDLOCK_ACCESS_FS_REFER;
1150
1151 /* Saves the common mount point. */
1152 mnt_dir.mnt = new_dir->mnt;
1153 mnt_dir.dentry = new_dir->mnt->mnt_root;
1154
1155 /*
1156 * old_dentry may be the root of the common mount point and
1157 * !IS_ROOT(old_dentry) at the same time (e.g. with open_tree() and
1158 * OPEN_TREE_CLONE). We do not need to call dget(old_parent) because
1159 * we keep a reference to old_dentry.
1160 */
1161 old_parent = (old_dentry == mnt_dir.dentry) ? old_dentry :
1162 old_dentry->d_parent;
1163
1164 /* new_dir->dentry is equal to new_dentry->d_parent */
1165 allow_parent1 = collect_domain_accesses(dom, mnt_dir.dentry, old_parent,
1166 &layer_masks_parent1);
1167 allow_parent2 = collect_domain_accesses(
1168 dom, mnt_dir.dentry, new_dir->dentry, &layer_masks_parent2);
1169
1170 if (allow_parent1 && allow_parent2)
1171 return 0;
1172
1173 /*
1174 * To be able to compare source and destination domain access rights,
1175 * take into account the @old_dentry access rights aggregated with its
1176 * parent access rights. This will be useful to compare with the
1177 * destination parent access rights.
1178 */
1179 if (is_access_to_paths_allowed(
1180 dom, &mnt_dir, access_request_parent1, &layer_masks_parent1,
1181 old_dentry, access_request_parent2, &layer_masks_parent2,
1182 exchange ? new_dentry : NULL))
1183 return 0;
1184
1185 /*
1186 * This prioritizes EACCES over EXDEV for all actions, including
1187 * renames with RENAME_EXCHANGE.
1188 */
1189 if (likely(is_eacces(&layer_masks_parent1, access_request_parent1) ||
1190 is_eacces(&layer_masks_parent2, access_request_parent2)))
1191 return -EACCES;
1192
1193 /*
1194 * Gracefully forbids reparenting if the destination directory
1195 * hierarchy is not a superset of restrictions of the source directory
1196 * hierarchy, or if LANDLOCK_ACCESS_FS_REFER is not allowed by the
1197 * source or the destination.
1198 */
1199 return -EXDEV;
1200 }
1201
1202 /* Inode hooks */
1203
hook_inode_free_security_rcu(void * inode_security)1204 static void hook_inode_free_security_rcu(void *inode_security)
1205 {
1206 struct landlock_inode_security *inode_sec;
1207
1208 /*
1209 * All inodes must already have been untied from their object by
1210 * release_inode() or hook_sb_delete().
1211 */
1212 inode_sec = inode_security + landlock_blob_sizes.lbs_inode;
1213 WARN_ON_ONCE(inode_sec->object);
1214 }
1215
1216 /* Super-block hooks */
1217
1218 /*
1219 * Release the inodes used in a security policy.
1220 *
1221 * Cf. fsnotify_unmount_inodes() and invalidate_inodes()
1222 */
hook_sb_delete(struct super_block * const sb)1223 static void hook_sb_delete(struct super_block *const sb)
1224 {
1225 struct inode *inode, *prev_inode = NULL;
1226
1227 if (!landlock_initialized)
1228 return;
1229
1230 spin_lock(&sb->s_inode_list_lock);
1231 list_for_each_entry(inode, &sb->s_inodes, i_sb_list) {
1232 struct landlock_object *object;
1233
1234 /* Only handles referenced inodes. */
1235 if (!atomic_read(&inode->i_count))
1236 continue;
1237
1238 /*
1239 * Protects against concurrent modification of inode (e.g.
1240 * from get_inode_object()).
1241 */
1242 spin_lock(&inode->i_lock);
1243 /*
1244 * Checks I_FREEING and I_WILL_FREE to protect against a race
1245 * condition when release_inode() just called iput(), which
1246 * could lead to a NULL dereference of inode->security or a
1247 * second call to iput() for the same Landlock object. Also
1248 * checks I_NEW because such inode cannot be tied to an object.
1249 */
1250 if (inode->i_state & (I_FREEING | I_WILL_FREE | I_NEW)) {
1251 spin_unlock(&inode->i_lock);
1252 continue;
1253 }
1254
1255 rcu_read_lock();
1256 object = rcu_dereference(landlock_inode(inode)->object);
1257 if (!object) {
1258 rcu_read_unlock();
1259 spin_unlock(&inode->i_lock);
1260 continue;
1261 }
1262 /* Keeps a reference to this inode until the next loop walk. */
1263 __iget(inode);
1264 spin_unlock(&inode->i_lock);
1265
1266 /*
1267 * If there is no concurrent release_inode() ongoing, then we
1268 * are in charge of calling iput() on this inode, otherwise we
1269 * will just wait for it to finish.
1270 */
1271 spin_lock(&object->lock);
1272 if (object->underobj == inode) {
1273 object->underobj = NULL;
1274 spin_unlock(&object->lock);
1275 rcu_read_unlock();
1276
1277 /*
1278 * Because object->underobj was not NULL,
1279 * release_inode() and get_inode_object() guarantee
1280 * that it is safe to reset
1281 * landlock_inode(inode)->object while it is not NULL.
1282 * It is therefore not necessary to lock inode->i_lock.
1283 */
1284 rcu_assign_pointer(landlock_inode(inode)->object, NULL);
1285 /*
1286 * At this point, we own the ihold() reference that was
1287 * originally set up by get_inode_object() and the
1288 * __iget() reference that we just set in this loop
1289 * walk. Therefore the following call to iput() will
1290 * not sleep nor drop the inode because there is now at
1291 * least two references to it.
1292 */
1293 iput(inode);
1294 } else {
1295 spin_unlock(&object->lock);
1296 rcu_read_unlock();
1297 }
1298
1299 if (prev_inode) {
1300 /*
1301 * At this point, we still own the __iget() reference
1302 * that we just set in this loop walk. Therefore we
1303 * can drop the list lock and know that the inode won't
1304 * disappear from under us until the next loop walk.
1305 */
1306 spin_unlock(&sb->s_inode_list_lock);
1307 /*
1308 * We can now actually put the inode reference from the
1309 * previous loop walk, which is not needed anymore.
1310 */
1311 iput(prev_inode);
1312 cond_resched();
1313 spin_lock(&sb->s_inode_list_lock);
1314 }
1315 prev_inode = inode;
1316 }
1317 spin_unlock(&sb->s_inode_list_lock);
1318
1319 /* Puts the inode reference from the last loop walk, if any. */
1320 if (prev_inode)
1321 iput(prev_inode);
1322 /* Waits for pending iput() in release_inode(). */
1323 wait_var_event(&landlock_superblock(sb)->inode_refs,
1324 !atomic_long_read(&landlock_superblock(sb)->inode_refs));
1325 }
1326
1327 /*
1328 * Because a Landlock security policy is defined according to the filesystem
1329 * topology (i.e. the mount namespace), changing it may grant access to files
1330 * not previously allowed.
1331 *
1332 * To make it simple, deny any filesystem topology modification by landlocked
1333 * processes. Non-landlocked processes may still change the namespace of a
1334 * landlocked process, but this kind of threat must be handled by a system-wide
1335 * access-control security policy.
1336 *
1337 * This could be lifted in the future if Landlock can safely handle mount
1338 * namespace updates requested by a landlocked process. Indeed, we could
1339 * update the current domain (which is currently read-only) by taking into
1340 * account the accesses of the source and the destination of a new mount point.
1341 * However, it would also require to make all the child domains dynamically
1342 * inherit these new constraints. Anyway, for backward compatibility reasons,
1343 * a dedicated user space option would be required (e.g. as a ruleset flag).
1344 */
hook_sb_mount(const char * const dev_name,const struct path * const path,const char * const type,const unsigned long flags,void * const data)1345 static int hook_sb_mount(const char *const dev_name,
1346 const struct path *const path, const char *const type,
1347 const unsigned long flags, void *const data)
1348 {
1349 if (!get_current_fs_domain())
1350 return 0;
1351 return -EPERM;
1352 }
1353
hook_move_mount(const struct path * const from_path,const struct path * const to_path)1354 static int hook_move_mount(const struct path *const from_path,
1355 const struct path *const to_path)
1356 {
1357 if (!get_current_fs_domain())
1358 return 0;
1359 return -EPERM;
1360 }
1361
1362 /*
1363 * Removing a mount point may reveal a previously hidden file hierarchy, which
1364 * may then grant access to files, which may have previously been forbidden.
1365 */
hook_sb_umount(struct vfsmount * const mnt,const int flags)1366 static int hook_sb_umount(struct vfsmount *const mnt, const int flags)
1367 {
1368 if (!get_current_fs_domain())
1369 return 0;
1370 return -EPERM;
1371 }
1372
hook_sb_remount(struct super_block * const sb,void * const mnt_opts)1373 static int hook_sb_remount(struct super_block *const sb, void *const mnt_opts)
1374 {
1375 if (!get_current_fs_domain())
1376 return 0;
1377 return -EPERM;
1378 }
1379
1380 /*
1381 * pivot_root(2), like mount(2), changes the current mount namespace. It must
1382 * then be forbidden for a landlocked process.
1383 *
1384 * However, chroot(2) may be allowed because it only changes the relative root
1385 * directory of the current process. Moreover, it can be used to restrict the
1386 * view of the filesystem.
1387 */
hook_sb_pivotroot(const struct path * const old_path,const struct path * const new_path)1388 static int hook_sb_pivotroot(const struct path *const old_path,
1389 const struct path *const new_path)
1390 {
1391 if (!get_current_fs_domain())
1392 return 0;
1393 return -EPERM;
1394 }
1395
1396 /* Path hooks */
1397
hook_path_link(struct dentry * const old_dentry,const struct path * const new_dir,struct dentry * const new_dentry)1398 static int hook_path_link(struct dentry *const old_dentry,
1399 const struct path *const new_dir,
1400 struct dentry *const new_dentry)
1401 {
1402 return current_check_refer_path(old_dentry, new_dir, new_dentry, false,
1403 false);
1404 }
1405
hook_path_rename(const struct path * const old_dir,struct dentry * const old_dentry,const struct path * const new_dir,struct dentry * const new_dentry,const unsigned int flags)1406 static int hook_path_rename(const struct path *const old_dir,
1407 struct dentry *const old_dentry,
1408 const struct path *const new_dir,
1409 struct dentry *const new_dentry,
1410 const unsigned int flags)
1411 {
1412 /* old_dir refers to old_dentry->d_parent and new_dir->mnt */
1413 return current_check_refer_path(old_dentry, new_dir, new_dentry, true,
1414 !!(flags & RENAME_EXCHANGE));
1415 }
1416
hook_path_mkdir(const struct path * const dir,struct dentry * const dentry,const umode_t mode)1417 static int hook_path_mkdir(const struct path *const dir,
1418 struct dentry *const dentry, const umode_t mode)
1419 {
1420 return current_check_access_path(dir, LANDLOCK_ACCESS_FS_MAKE_DIR);
1421 }
1422
hook_path_mknod(const struct path * const dir,struct dentry * const dentry,const umode_t mode,const unsigned int dev)1423 static int hook_path_mknod(const struct path *const dir,
1424 struct dentry *const dentry, const umode_t mode,
1425 const unsigned int dev)
1426 {
1427 return current_check_access_path(dir, get_mode_access(mode));
1428 }
1429
hook_path_symlink(const struct path * const dir,struct dentry * const dentry,const char * const old_name)1430 static int hook_path_symlink(const struct path *const dir,
1431 struct dentry *const dentry,
1432 const char *const old_name)
1433 {
1434 return current_check_access_path(dir, LANDLOCK_ACCESS_FS_MAKE_SYM);
1435 }
1436
hook_path_unlink(const struct path * const dir,struct dentry * const dentry)1437 static int hook_path_unlink(const struct path *const dir,
1438 struct dentry *const dentry)
1439 {
1440 return current_check_access_path(dir, LANDLOCK_ACCESS_FS_REMOVE_FILE);
1441 }
1442
hook_path_rmdir(const struct path * const dir,struct dentry * const dentry)1443 static int hook_path_rmdir(const struct path *const dir,
1444 struct dentry *const dentry)
1445 {
1446 return current_check_access_path(dir, LANDLOCK_ACCESS_FS_REMOVE_DIR);
1447 }
1448
hook_path_truncate(const struct path * const path)1449 static int hook_path_truncate(const struct path *const path)
1450 {
1451 return current_check_access_path(path, LANDLOCK_ACCESS_FS_TRUNCATE);
1452 }
1453
1454 /* File hooks */
1455
1456 /**
1457 * get_required_file_open_access - Get access needed to open a file
1458 *
1459 * @file: File being opened.
1460 *
1461 * Returns the access rights that are required for opening the given file,
1462 * depending on the file type and open mode.
1463 */
1464 static access_mask_t
get_required_file_open_access(const struct file * const file)1465 get_required_file_open_access(const struct file *const file)
1466 {
1467 access_mask_t access = 0;
1468
1469 if (file->f_mode & FMODE_READ) {
1470 /* A directory can only be opened in read mode. */
1471 if (S_ISDIR(file_inode(file)->i_mode))
1472 return LANDLOCK_ACCESS_FS_READ_DIR;
1473 access = LANDLOCK_ACCESS_FS_READ_FILE;
1474 }
1475 if (file->f_mode & FMODE_WRITE)
1476 access |= LANDLOCK_ACCESS_FS_WRITE_FILE;
1477 /* __FMODE_EXEC is indeed part of f_flags, not f_mode. */
1478 if (file->f_flags & __FMODE_EXEC)
1479 access |= LANDLOCK_ACCESS_FS_EXECUTE;
1480 return access;
1481 }
1482
hook_file_alloc_security(struct file * const file)1483 static int hook_file_alloc_security(struct file *const file)
1484 {
1485 /*
1486 * Grants all access rights, even if most of them are not checked later
1487 * on. It is more consistent.
1488 *
1489 * Notably, file descriptors for regular files can also be acquired
1490 * without going through the file_open hook, for example when using
1491 * memfd_create(2).
1492 */
1493 landlock_file(file)->allowed_access = LANDLOCK_MASK_ACCESS_FS;
1494 return 0;
1495 }
1496
is_device(const struct file * const file)1497 static bool is_device(const struct file *const file)
1498 {
1499 const struct inode *inode = file_inode(file);
1500
1501 return S_ISBLK(inode->i_mode) || S_ISCHR(inode->i_mode);
1502 }
1503
hook_file_open(struct file * const file)1504 static int hook_file_open(struct file *const file)
1505 {
1506 layer_mask_t layer_masks[LANDLOCK_NUM_ACCESS_FS] = {};
1507 access_mask_t open_access_request, full_access_request, allowed_access,
1508 optional_access;
1509 const struct landlock_ruleset *const dom =
1510 landlock_get_applicable_domain(
1511 landlock_cred(file->f_cred)->domain, any_fs);
1512
1513 if (!dom)
1514 return 0;
1515
1516 /*
1517 * Because a file may be opened with O_PATH, get_required_file_open_access()
1518 * may return 0. This case will be handled with a future Landlock
1519 * evolution.
1520 */
1521 open_access_request = get_required_file_open_access(file);
1522
1523 /*
1524 * We look up more access than what we immediately need for open(), so
1525 * that we can later authorize operations on opened files.
1526 */
1527 optional_access = LANDLOCK_ACCESS_FS_TRUNCATE;
1528 if (is_device(file))
1529 optional_access |= LANDLOCK_ACCESS_FS_IOCTL_DEV;
1530
1531 full_access_request = open_access_request | optional_access;
1532
1533 if (is_access_to_paths_allowed(
1534 dom, &file->f_path,
1535 landlock_init_layer_masks(dom, full_access_request,
1536 &layer_masks, LANDLOCK_KEY_INODE),
1537 &layer_masks, NULL, 0, NULL, NULL)) {
1538 allowed_access = full_access_request;
1539 } else {
1540 unsigned long access_bit;
1541 const unsigned long access_req = full_access_request;
1542
1543 /*
1544 * Calculate the actual allowed access rights from layer_masks.
1545 * Add each access right to allowed_access which has not been
1546 * vetoed by any layer.
1547 */
1548 allowed_access = 0;
1549 for_each_set_bit(access_bit, &access_req,
1550 ARRAY_SIZE(layer_masks)) {
1551 if (!layer_masks[access_bit])
1552 allowed_access |= BIT_ULL(access_bit);
1553 }
1554 }
1555
1556 /*
1557 * For operations on already opened files (i.e. ftruncate()), it is the
1558 * access rights at the time of open() which decide whether the
1559 * operation is permitted. Therefore, we record the relevant subset of
1560 * file access rights in the opened struct file.
1561 */
1562 landlock_file(file)->allowed_access = allowed_access;
1563
1564 if ((open_access_request & allowed_access) == open_access_request)
1565 return 0;
1566
1567 return -EACCES;
1568 }
1569
hook_file_truncate(struct file * const file)1570 static int hook_file_truncate(struct file *const file)
1571 {
1572 /*
1573 * Allows truncation if the truncate right was available at the time of
1574 * opening the file, to get a consistent access check as for read, write
1575 * and execute operations.
1576 *
1577 * Note: For checks done based on the file's Landlock allowed access, we
1578 * enforce them independently of whether the current thread is in a
1579 * Landlock domain, so that open files passed between independent
1580 * processes retain their behaviour.
1581 */
1582 if (landlock_file(file)->allowed_access & LANDLOCK_ACCESS_FS_TRUNCATE)
1583 return 0;
1584 return -EACCES;
1585 }
1586
hook_file_ioctl(struct file * file,unsigned int cmd,unsigned long arg)1587 static int hook_file_ioctl(struct file *file, unsigned int cmd,
1588 unsigned long arg)
1589 {
1590 access_mask_t allowed_access = landlock_file(file)->allowed_access;
1591
1592 /*
1593 * It is the access rights at the time of opening the file which
1594 * determine whether IOCTL can be used on the opened file later.
1595 *
1596 * The access right is attached to the opened file in hook_file_open().
1597 */
1598 if (allowed_access & LANDLOCK_ACCESS_FS_IOCTL_DEV)
1599 return 0;
1600
1601 if (!is_device(file))
1602 return 0;
1603
1604 if (is_masked_device_ioctl(cmd))
1605 return 0;
1606
1607 return -EACCES;
1608 }
1609
hook_file_ioctl_compat(struct file * file,unsigned int cmd,unsigned long arg)1610 static int hook_file_ioctl_compat(struct file *file, unsigned int cmd,
1611 unsigned long arg)
1612 {
1613 access_mask_t allowed_access = landlock_file(file)->allowed_access;
1614
1615 /*
1616 * It is the access rights at the time of opening the file which
1617 * determine whether IOCTL can be used on the opened file later.
1618 *
1619 * The access right is attached to the opened file in hook_file_open().
1620 */
1621 if (allowed_access & LANDLOCK_ACCESS_FS_IOCTL_DEV)
1622 return 0;
1623
1624 if (!is_device(file))
1625 return 0;
1626
1627 if (is_masked_device_ioctl_compat(cmd))
1628 return 0;
1629
1630 return -EACCES;
1631 }
1632
1633 /*
1634 * Always allow sending signals between threads of the same process. This
1635 * ensures consistency with hook_task_kill().
1636 */
control_current_fowner(struct fown_struct * const fown)1637 static bool control_current_fowner(struct fown_struct *const fown)
1638 {
1639 struct task_struct *p;
1640
1641 /*
1642 * Lock already held by __f_setown(), see commit 26f204380a3c ("fs: Fix
1643 * file_set_fowner LSM hook inconsistencies").
1644 */
1645 lockdep_assert_held(&fown->lock);
1646
1647 /*
1648 * Some callers (e.g. fcntl_dirnotify) may not be in an RCU read-side
1649 * critical section.
1650 */
1651 guard(rcu)();
1652 p = pid_task(fown->pid, fown->pid_type);
1653 if (!p)
1654 return true;
1655
1656 return !same_thread_group(p, current);
1657 }
1658
hook_file_set_fowner(struct file * file)1659 static void hook_file_set_fowner(struct file *file)
1660 {
1661 struct landlock_ruleset *prev_dom;
1662 struct landlock_ruleset *new_dom = NULL;
1663
1664 if (control_current_fowner(file_f_owner(file))) {
1665 new_dom = landlock_get_current_domain();
1666 landlock_get_ruleset(new_dom);
1667 }
1668
1669 prev_dom = landlock_file(file)->fown_domain;
1670 landlock_file(file)->fown_domain = new_dom;
1671
1672 /* May be called in an RCU read-side critical section. */
1673 landlock_put_ruleset_deferred(prev_dom);
1674 }
1675
hook_file_free_security(struct file * file)1676 static void hook_file_free_security(struct file *file)
1677 {
1678 landlock_put_ruleset_deferred(landlock_file(file)->fown_domain);
1679 }
1680
1681 static struct security_hook_list landlock_hooks[] __ro_after_init = {
1682 LSM_HOOK_INIT(inode_free_security_rcu, hook_inode_free_security_rcu),
1683
1684 LSM_HOOK_INIT(sb_delete, hook_sb_delete),
1685 LSM_HOOK_INIT(sb_mount, hook_sb_mount),
1686 LSM_HOOK_INIT(move_mount, hook_move_mount),
1687 LSM_HOOK_INIT(sb_umount, hook_sb_umount),
1688 LSM_HOOK_INIT(sb_remount, hook_sb_remount),
1689 LSM_HOOK_INIT(sb_pivotroot, hook_sb_pivotroot),
1690
1691 LSM_HOOK_INIT(path_link, hook_path_link),
1692 LSM_HOOK_INIT(path_rename, hook_path_rename),
1693 LSM_HOOK_INIT(path_mkdir, hook_path_mkdir),
1694 LSM_HOOK_INIT(path_mknod, hook_path_mknod),
1695 LSM_HOOK_INIT(path_symlink, hook_path_symlink),
1696 LSM_HOOK_INIT(path_unlink, hook_path_unlink),
1697 LSM_HOOK_INIT(path_rmdir, hook_path_rmdir),
1698 LSM_HOOK_INIT(path_truncate, hook_path_truncate),
1699
1700 LSM_HOOK_INIT(file_alloc_security, hook_file_alloc_security),
1701 LSM_HOOK_INIT(file_open, hook_file_open),
1702 LSM_HOOK_INIT(file_truncate, hook_file_truncate),
1703 LSM_HOOK_INIT(file_ioctl, hook_file_ioctl),
1704 LSM_HOOK_INIT(file_ioctl_compat, hook_file_ioctl_compat),
1705 LSM_HOOK_INIT(file_set_fowner, hook_file_set_fowner),
1706 LSM_HOOK_INIT(file_free_security, hook_file_free_security),
1707 };
1708
landlock_add_fs_hooks(void)1709 __init void landlock_add_fs_hooks(void)
1710 {
1711 security_add_hooks(landlock_hooks, ARRAY_SIZE(landlock_hooks),
1712 &landlock_lsmid);
1713 }
1714
1715 #ifdef CONFIG_SECURITY_LANDLOCK_KUNIT_TEST
1716
1717 /* clang-format off */
1718 static struct kunit_case test_cases[] = {
1719 KUNIT_CASE(test_no_more_access),
1720 KUNIT_CASE(test_scope_to_request_with_exec_none),
1721 KUNIT_CASE(test_scope_to_request_with_exec_some),
1722 KUNIT_CASE(test_scope_to_request_without_access),
1723 KUNIT_CASE(test_is_eacces_with_none),
1724 KUNIT_CASE(test_is_eacces_with_refer),
1725 KUNIT_CASE(test_is_eacces_with_write),
1726 {}
1727 };
1728 /* clang-format on */
1729
1730 static struct kunit_suite test_suite = {
1731 .name = "landlock_fs",
1732 .test_cases = test_cases,
1733 };
1734
1735 kunit_test_suite(test_suite);
1736
1737 #endif /* CONFIG_SECURITY_LANDLOCK_KUNIT_TEST */
1738