1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * tools/testing/selftests/kvm/lib/kvm_util.c
4 *
5 * Copyright (C) 2018, Google LLC.
6 */
7 #include "test_util.h"
8 #include "kvm_util.h"
9 #include "processor.h"
10 #include "ucall_common.h"
11
12 #include <assert.h>
13 #include <sched.h>
14 #include <sys/mman.h>
15 #include <sys/types.h>
16 #include <sys/stat.h>
17 #include <unistd.h>
18 #include <linux/kernel.h>
19
20 #define KVM_UTIL_MIN_PFN 2
21
22 uint32_t guest_random_seed;
23 struct guest_random_state guest_rng;
24 static uint32_t last_guest_seed;
25
26 static int vcpu_mmap_sz(void);
27
open_path_or_exit(const char * path,int flags)28 int open_path_or_exit(const char *path, int flags)
29 {
30 int fd;
31
32 fd = open(path, flags);
33 __TEST_REQUIRE(fd >= 0 || errno != ENOENT, "Cannot open %s: %s", path, strerror(errno));
34 TEST_ASSERT(fd >= 0, "Failed to open '%s'", path);
35
36 return fd;
37 }
38
39 /*
40 * Open KVM_DEV_PATH if available, otherwise exit the entire program.
41 *
42 * Input Args:
43 * flags - The flags to pass when opening KVM_DEV_PATH.
44 *
45 * Return:
46 * The opened file descriptor of /dev/kvm.
47 */
_open_kvm_dev_path_or_exit(int flags)48 static int _open_kvm_dev_path_or_exit(int flags)
49 {
50 return open_path_or_exit(KVM_DEV_PATH, flags);
51 }
52
open_kvm_dev_path_or_exit(void)53 int open_kvm_dev_path_or_exit(void)
54 {
55 return _open_kvm_dev_path_or_exit(O_RDONLY);
56 }
57
get_module_param(const char * module_name,const char * param,void * buffer,size_t buffer_size)58 static ssize_t get_module_param(const char *module_name, const char *param,
59 void *buffer, size_t buffer_size)
60 {
61 const int path_size = 128;
62 char path[path_size];
63 ssize_t bytes_read;
64 int fd, r;
65
66 r = snprintf(path, path_size, "/sys/module/%s/parameters/%s",
67 module_name, param);
68 TEST_ASSERT(r < path_size,
69 "Failed to construct sysfs path in %d bytes.", path_size);
70
71 fd = open_path_or_exit(path, O_RDONLY);
72
73 bytes_read = read(fd, buffer, buffer_size);
74 TEST_ASSERT(bytes_read > 0, "read(%s) returned %ld, wanted %ld bytes",
75 path, bytes_read, buffer_size);
76
77 r = close(fd);
78 TEST_ASSERT(!r, "close(%s) failed", path);
79 return bytes_read;
80 }
81
get_module_param_integer(const char * module_name,const char * param)82 static int get_module_param_integer(const char *module_name, const char *param)
83 {
84 /*
85 * 16 bytes to hold a 64-bit value (1 byte per char), 1 byte for the
86 * NUL char, and 1 byte because the kernel sucks and inserts a newline
87 * at the end.
88 */
89 char value[16 + 1 + 1];
90 ssize_t r;
91
92 memset(value, '\0', sizeof(value));
93
94 r = get_module_param(module_name, param, value, sizeof(value));
95 TEST_ASSERT(value[r - 1] == '\n',
96 "Expected trailing newline, got char '%c'", value[r - 1]);
97
98 /*
99 * Squash the newline, otherwise atoi_paranoid() will complain about
100 * trailing non-NUL characters in the string.
101 */
102 value[r - 1] = '\0';
103 return atoi_paranoid(value);
104 }
105
get_module_param_bool(const char * module_name,const char * param)106 static bool get_module_param_bool(const char *module_name, const char *param)
107 {
108 char value;
109 ssize_t r;
110
111 r = get_module_param(module_name, param, &value, sizeof(value));
112 TEST_ASSERT_EQ(r, 1);
113
114 if (value == 'Y')
115 return true;
116 else if (value == 'N')
117 return false;
118
119 TEST_FAIL("Unrecognized value '%c' for boolean module param", value);
120 }
121
get_kvm_param_bool(const char * param)122 bool get_kvm_param_bool(const char *param)
123 {
124 return get_module_param_bool("kvm", param);
125 }
126
get_kvm_intel_param_bool(const char * param)127 bool get_kvm_intel_param_bool(const char *param)
128 {
129 return get_module_param_bool("kvm_intel", param);
130 }
131
get_kvm_amd_param_bool(const char * param)132 bool get_kvm_amd_param_bool(const char *param)
133 {
134 return get_module_param_bool("kvm_amd", param);
135 }
136
get_kvm_param_integer(const char * param)137 int get_kvm_param_integer(const char *param)
138 {
139 return get_module_param_integer("kvm", param);
140 }
141
get_kvm_intel_param_integer(const char * param)142 int get_kvm_intel_param_integer(const char *param)
143 {
144 return get_module_param_integer("kvm_intel", param);
145 }
146
get_kvm_amd_param_integer(const char * param)147 int get_kvm_amd_param_integer(const char *param)
148 {
149 return get_module_param_integer("kvm_amd", param);
150 }
151
152 /*
153 * Capability
154 *
155 * Input Args:
156 * cap - Capability
157 *
158 * Output Args: None
159 *
160 * Return:
161 * On success, the Value corresponding to the capability (KVM_CAP_*)
162 * specified by the value of cap. On failure a TEST_ASSERT failure
163 * is produced.
164 *
165 * Looks up and returns the value corresponding to the capability
166 * (KVM_CAP_*) given by cap.
167 */
kvm_check_cap(long cap)168 unsigned int kvm_check_cap(long cap)
169 {
170 int ret;
171 int kvm_fd;
172
173 kvm_fd = open_kvm_dev_path_or_exit();
174 ret = __kvm_ioctl(kvm_fd, KVM_CHECK_EXTENSION, (void *)cap);
175 TEST_ASSERT(ret >= 0, KVM_IOCTL_ERROR(KVM_CHECK_EXTENSION, ret));
176
177 close(kvm_fd);
178
179 return (unsigned int)ret;
180 }
181
vm_enable_dirty_ring(struct kvm_vm * vm,uint32_t ring_size)182 void vm_enable_dirty_ring(struct kvm_vm *vm, uint32_t ring_size)
183 {
184 if (vm_check_cap(vm, KVM_CAP_DIRTY_LOG_RING_ACQ_REL))
185 vm_enable_cap(vm, KVM_CAP_DIRTY_LOG_RING_ACQ_REL, ring_size);
186 else
187 vm_enable_cap(vm, KVM_CAP_DIRTY_LOG_RING, ring_size);
188 vm->dirty_ring_size = ring_size;
189 }
190
vm_open(struct kvm_vm * vm)191 static void vm_open(struct kvm_vm *vm)
192 {
193 vm->kvm_fd = _open_kvm_dev_path_or_exit(O_RDWR);
194
195 TEST_REQUIRE(kvm_has_cap(KVM_CAP_IMMEDIATE_EXIT));
196
197 vm->fd = __kvm_ioctl(vm->kvm_fd, KVM_CREATE_VM, (void *)vm->type);
198 TEST_ASSERT(vm->fd >= 0, KVM_IOCTL_ERROR(KVM_CREATE_VM, vm->fd));
199 }
200
vm_guest_mode_string(uint32_t i)201 const char *vm_guest_mode_string(uint32_t i)
202 {
203 static const char * const strings[] = {
204 [VM_MODE_P52V48_4K] = "PA-bits:52, VA-bits:48, 4K pages",
205 [VM_MODE_P52V48_16K] = "PA-bits:52, VA-bits:48, 16K pages",
206 [VM_MODE_P52V48_64K] = "PA-bits:52, VA-bits:48, 64K pages",
207 [VM_MODE_P48V48_4K] = "PA-bits:48, VA-bits:48, 4K pages",
208 [VM_MODE_P48V48_16K] = "PA-bits:48, VA-bits:48, 16K pages",
209 [VM_MODE_P48V48_64K] = "PA-bits:48, VA-bits:48, 64K pages",
210 [VM_MODE_P40V48_4K] = "PA-bits:40, VA-bits:48, 4K pages",
211 [VM_MODE_P40V48_16K] = "PA-bits:40, VA-bits:48, 16K pages",
212 [VM_MODE_P40V48_64K] = "PA-bits:40, VA-bits:48, 64K pages",
213 [VM_MODE_PXXV48_4K] = "PA-bits:ANY, VA-bits:48, 4K pages",
214 [VM_MODE_P47V64_4K] = "PA-bits:47, VA-bits:64, 4K pages",
215 [VM_MODE_P44V64_4K] = "PA-bits:44, VA-bits:64, 4K pages",
216 [VM_MODE_P36V48_4K] = "PA-bits:36, VA-bits:48, 4K pages",
217 [VM_MODE_P36V48_16K] = "PA-bits:36, VA-bits:48, 16K pages",
218 [VM_MODE_P36V48_64K] = "PA-bits:36, VA-bits:48, 64K pages",
219 [VM_MODE_P36V47_16K] = "PA-bits:36, VA-bits:47, 16K pages",
220 };
221 _Static_assert(sizeof(strings)/sizeof(char *) == NUM_VM_MODES,
222 "Missing new mode strings?");
223
224 TEST_ASSERT(i < NUM_VM_MODES, "Guest mode ID %d too big", i);
225
226 return strings[i];
227 }
228
229 const struct vm_guest_mode_params vm_guest_mode_params[] = {
230 [VM_MODE_P52V48_4K] = { 52, 48, 0x1000, 12 },
231 [VM_MODE_P52V48_16K] = { 52, 48, 0x4000, 14 },
232 [VM_MODE_P52V48_64K] = { 52, 48, 0x10000, 16 },
233 [VM_MODE_P48V48_4K] = { 48, 48, 0x1000, 12 },
234 [VM_MODE_P48V48_16K] = { 48, 48, 0x4000, 14 },
235 [VM_MODE_P48V48_64K] = { 48, 48, 0x10000, 16 },
236 [VM_MODE_P40V48_4K] = { 40, 48, 0x1000, 12 },
237 [VM_MODE_P40V48_16K] = { 40, 48, 0x4000, 14 },
238 [VM_MODE_P40V48_64K] = { 40, 48, 0x10000, 16 },
239 [VM_MODE_PXXV48_4K] = { 0, 0, 0x1000, 12 },
240 [VM_MODE_P47V64_4K] = { 47, 64, 0x1000, 12 },
241 [VM_MODE_P44V64_4K] = { 44, 64, 0x1000, 12 },
242 [VM_MODE_P36V48_4K] = { 36, 48, 0x1000, 12 },
243 [VM_MODE_P36V48_16K] = { 36, 48, 0x4000, 14 },
244 [VM_MODE_P36V48_64K] = { 36, 48, 0x10000, 16 },
245 [VM_MODE_P36V47_16K] = { 36, 47, 0x4000, 14 },
246 };
247 _Static_assert(sizeof(vm_guest_mode_params)/sizeof(struct vm_guest_mode_params) == NUM_VM_MODES,
248 "Missing new mode params?");
249
250 /*
251 * Initializes vm->vpages_valid to match the canonical VA space of the
252 * architecture.
253 *
254 * The default implementation is valid for architectures which split the
255 * range addressed by a single page table into a low and high region
256 * based on the MSB of the VA. On architectures with this behavior
257 * the VA region spans [0, 2^(va_bits - 1)), [-(2^(va_bits - 1), -1].
258 */
vm_vaddr_populate_bitmap(struct kvm_vm * vm)259 __weak void vm_vaddr_populate_bitmap(struct kvm_vm *vm)
260 {
261 sparsebit_set_num(vm->vpages_valid,
262 0, (1ULL << (vm->va_bits - 1)) >> vm->page_shift);
263 sparsebit_set_num(vm->vpages_valid,
264 (~((1ULL << (vm->va_bits - 1)) - 1)) >> vm->page_shift,
265 (1ULL << (vm->va_bits - 1)) >> vm->page_shift);
266 }
267
____vm_create(struct vm_shape shape)268 struct kvm_vm *____vm_create(struct vm_shape shape)
269 {
270 struct kvm_vm *vm;
271
272 vm = calloc(1, sizeof(*vm));
273 TEST_ASSERT(vm != NULL, "Insufficient Memory");
274
275 INIT_LIST_HEAD(&vm->vcpus);
276 vm->regions.gpa_tree = RB_ROOT;
277 vm->regions.hva_tree = RB_ROOT;
278 hash_init(vm->regions.slot_hash);
279
280 vm->mode = shape.mode;
281 vm->type = shape.type;
282
283 vm->pa_bits = vm_guest_mode_params[vm->mode].pa_bits;
284 vm->va_bits = vm_guest_mode_params[vm->mode].va_bits;
285 vm->page_size = vm_guest_mode_params[vm->mode].page_size;
286 vm->page_shift = vm_guest_mode_params[vm->mode].page_shift;
287
288 /* Setup mode specific traits. */
289 switch (vm->mode) {
290 case VM_MODE_P52V48_4K:
291 vm->pgtable_levels = 4;
292 break;
293 case VM_MODE_P52V48_64K:
294 vm->pgtable_levels = 3;
295 break;
296 case VM_MODE_P48V48_4K:
297 vm->pgtable_levels = 4;
298 break;
299 case VM_MODE_P48V48_64K:
300 vm->pgtable_levels = 3;
301 break;
302 case VM_MODE_P40V48_4K:
303 case VM_MODE_P36V48_4K:
304 vm->pgtable_levels = 4;
305 break;
306 case VM_MODE_P40V48_64K:
307 case VM_MODE_P36V48_64K:
308 vm->pgtable_levels = 3;
309 break;
310 case VM_MODE_P52V48_16K:
311 case VM_MODE_P48V48_16K:
312 case VM_MODE_P40V48_16K:
313 case VM_MODE_P36V48_16K:
314 vm->pgtable_levels = 4;
315 break;
316 case VM_MODE_P36V47_16K:
317 vm->pgtable_levels = 3;
318 break;
319 case VM_MODE_PXXV48_4K:
320 #ifdef __x86_64__
321 kvm_get_cpu_address_width(&vm->pa_bits, &vm->va_bits);
322 kvm_init_vm_address_properties(vm);
323 /*
324 * Ignore KVM support for 5-level paging (vm->va_bits == 57),
325 * it doesn't take effect unless a CR4.LA57 is set, which it
326 * isn't for this mode (48-bit virtual address space).
327 */
328 TEST_ASSERT(vm->va_bits == 48 || vm->va_bits == 57,
329 "Linear address width (%d bits) not supported",
330 vm->va_bits);
331 pr_debug("Guest physical address width detected: %d\n",
332 vm->pa_bits);
333 vm->pgtable_levels = 4;
334 vm->va_bits = 48;
335 #else
336 TEST_FAIL("VM_MODE_PXXV48_4K not supported on non-x86 platforms");
337 #endif
338 break;
339 case VM_MODE_P47V64_4K:
340 vm->pgtable_levels = 5;
341 break;
342 case VM_MODE_P44V64_4K:
343 vm->pgtable_levels = 5;
344 break;
345 default:
346 TEST_FAIL("Unknown guest mode: 0x%x", vm->mode);
347 }
348
349 #ifdef __aarch64__
350 TEST_ASSERT(!vm->type, "ARM doesn't support test-provided types");
351 if (vm->pa_bits != 40)
352 vm->type = KVM_VM_TYPE_ARM_IPA_SIZE(vm->pa_bits);
353 #endif
354
355 vm_open(vm);
356
357 /* Limit to VA-bit canonical virtual addresses. */
358 vm->vpages_valid = sparsebit_alloc();
359 vm_vaddr_populate_bitmap(vm);
360
361 /* Limit physical addresses to PA-bits. */
362 vm->max_gfn = vm_compute_max_gfn(vm);
363
364 /* Allocate and setup memory for guest. */
365 vm->vpages_mapped = sparsebit_alloc();
366
367 return vm;
368 }
369
vm_nr_pages_required(enum vm_guest_mode mode,uint32_t nr_runnable_vcpus,uint64_t extra_mem_pages)370 static uint64_t vm_nr_pages_required(enum vm_guest_mode mode,
371 uint32_t nr_runnable_vcpus,
372 uint64_t extra_mem_pages)
373 {
374 uint64_t page_size = vm_guest_mode_params[mode].page_size;
375 uint64_t nr_pages;
376
377 TEST_ASSERT(nr_runnable_vcpus,
378 "Use vm_create_barebones() for VMs that _never_ have vCPUs");
379
380 TEST_ASSERT(nr_runnable_vcpus <= kvm_check_cap(KVM_CAP_MAX_VCPUS),
381 "nr_vcpus = %d too large for host, max-vcpus = %d",
382 nr_runnable_vcpus, kvm_check_cap(KVM_CAP_MAX_VCPUS));
383
384 /*
385 * Arbitrarily allocate 512 pages (2mb when page size is 4kb) for the
386 * test code and other per-VM assets that will be loaded into memslot0.
387 */
388 nr_pages = 512;
389
390 /* Account for the per-vCPU stacks on behalf of the test. */
391 nr_pages += nr_runnable_vcpus * DEFAULT_STACK_PGS;
392
393 /*
394 * Account for the number of pages needed for the page tables. The
395 * maximum page table size for a memory region will be when the
396 * smallest page size is used. Considering each page contains x page
397 * table descriptors, the total extra size for page tables (for extra
398 * N pages) will be: N/x+N/x^2+N/x^3+... which is definitely smaller
399 * than N/x*2.
400 */
401 nr_pages += (nr_pages + extra_mem_pages) / PTES_PER_MIN_PAGE * 2;
402
403 /* Account for the number of pages needed by ucall. */
404 nr_pages += ucall_nr_pages_required(page_size);
405
406 return vm_adjust_num_guest_pages(mode, nr_pages);
407 }
408
__vm_create(struct vm_shape shape,uint32_t nr_runnable_vcpus,uint64_t nr_extra_pages)409 struct kvm_vm *__vm_create(struct vm_shape shape, uint32_t nr_runnable_vcpus,
410 uint64_t nr_extra_pages)
411 {
412 uint64_t nr_pages = vm_nr_pages_required(shape.mode, nr_runnable_vcpus,
413 nr_extra_pages);
414 struct userspace_mem_region *slot0;
415 struct kvm_vm *vm;
416 int i;
417
418 pr_debug("%s: mode='%s' type='%d', pages='%ld'\n", __func__,
419 vm_guest_mode_string(shape.mode), shape.type, nr_pages);
420
421 vm = ____vm_create(shape);
422
423 vm_userspace_mem_region_add(vm, VM_MEM_SRC_ANONYMOUS, 0, 0, nr_pages, 0);
424 for (i = 0; i < NR_MEM_REGIONS; i++)
425 vm->memslots[i] = 0;
426
427 kvm_vm_elf_load(vm, program_invocation_name);
428
429 /*
430 * TODO: Add proper defines to protect the library's memslots, and then
431 * carve out memslot1 for the ucall MMIO address. KVM treats writes to
432 * read-only memslots as MMIO, and creating a read-only memslot for the
433 * MMIO region would prevent silently clobbering the MMIO region.
434 */
435 slot0 = memslot2region(vm, 0);
436 ucall_init(vm, slot0->region.guest_phys_addr + slot0->region.memory_size);
437
438 if (guest_random_seed != last_guest_seed) {
439 pr_info("Random seed: 0x%x\n", guest_random_seed);
440 last_guest_seed = guest_random_seed;
441 }
442 guest_rng = new_guest_random_state(guest_random_seed);
443 sync_global_to_guest(vm, guest_rng);
444
445 kvm_arch_vm_post_create(vm);
446
447 return vm;
448 }
449
450 /*
451 * VM Create with customized parameters
452 *
453 * Input Args:
454 * mode - VM Mode (e.g. VM_MODE_P52V48_4K)
455 * nr_vcpus - VCPU count
456 * extra_mem_pages - Non-slot0 physical memory total size
457 * guest_code - Guest entry point
458 * vcpuids - VCPU IDs
459 *
460 * Output Args: None
461 *
462 * Return:
463 * Pointer to opaque structure that describes the created VM.
464 *
465 * Creates a VM with the mode specified by mode (e.g. VM_MODE_P52V48_4K).
466 * extra_mem_pages is only used to calculate the maximum page table size,
467 * no real memory allocation for non-slot0 memory in this function.
468 */
__vm_create_with_vcpus(struct vm_shape shape,uint32_t nr_vcpus,uint64_t extra_mem_pages,void * guest_code,struct kvm_vcpu * vcpus[])469 struct kvm_vm *__vm_create_with_vcpus(struct vm_shape shape, uint32_t nr_vcpus,
470 uint64_t extra_mem_pages,
471 void *guest_code, struct kvm_vcpu *vcpus[])
472 {
473 struct kvm_vm *vm;
474 int i;
475
476 TEST_ASSERT(!nr_vcpus || vcpus, "Must provide vCPU array");
477
478 vm = __vm_create(shape, nr_vcpus, extra_mem_pages);
479
480 for (i = 0; i < nr_vcpus; ++i)
481 vcpus[i] = vm_vcpu_add(vm, i, guest_code);
482
483 return vm;
484 }
485
__vm_create_shape_with_one_vcpu(struct vm_shape shape,struct kvm_vcpu ** vcpu,uint64_t extra_mem_pages,void * guest_code)486 struct kvm_vm *__vm_create_shape_with_one_vcpu(struct vm_shape shape,
487 struct kvm_vcpu **vcpu,
488 uint64_t extra_mem_pages,
489 void *guest_code)
490 {
491 struct kvm_vcpu *vcpus[1];
492 struct kvm_vm *vm;
493
494 vm = __vm_create_with_vcpus(shape, 1, extra_mem_pages, guest_code, vcpus);
495
496 *vcpu = vcpus[0];
497 return vm;
498 }
499
500 /*
501 * VM Restart
502 *
503 * Input Args:
504 * vm - VM that has been released before
505 *
506 * Output Args: None
507 *
508 * Reopens the file descriptors associated to the VM and reinstates the
509 * global state, such as the irqchip and the memory regions that are mapped
510 * into the guest.
511 */
kvm_vm_restart(struct kvm_vm * vmp)512 void kvm_vm_restart(struct kvm_vm *vmp)
513 {
514 int ctr;
515 struct userspace_mem_region *region;
516
517 vm_open(vmp);
518 if (vmp->has_irqchip)
519 vm_create_irqchip(vmp);
520
521 hash_for_each(vmp->regions.slot_hash, ctr, region, slot_node) {
522 int ret = ioctl(vmp->fd, KVM_SET_USER_MEMORY_REGION2, ®ion->region);
523
524 TEST_ASSERT(ret == 0, "KVM_SET_USER_MEMORY_REGION2 IOCTL failed,\n"
525 " rc: %i errno: %i\n"
526 " slot: %u flags: 0x%x\n"
527 " guest_phys_addr: 0x%llx size: 0x%llx",
528 ret, errno, region->region.slot,
529 region->region.flags,
530 region->region.guest_phys_addr,
531 region->region.memory_size);
532 }
533 }
534
vm_arch_vcpu_recreate(struct kvm_vm * vm,uint32_t vcpu_id)535 __weak struct kvm_vcpu *vm_arch_vcpu_recreate(struct kvm_vm *vm,
536 uint32_t vcpu_id)
537 {
538 return __vm_vcpu_add(vm, vcpu_id);
539 }
540
vm_recreate_with_one_vcpu(struct kvm_vm * vm)541 struct kvm_vcpu *vm_recreate_with_one_vcpu(struct kvm_vm *vm)
542 {
543 kvm_vm_restart(vm);
544
545 return vm_vcpu_recreate(vm, 0);
546 }
547
kvm_pin_this_task_to_pcpu(uint32_t pcpu)548 void kvm_pin_this_task_to_pcpu(uint32_t pcpu)
549 {
550 cpu_set_t mask;
551 int r;
552
553 CPU_ZERO(&mask);
554 CPU_SET(pcpu, &mask);
555 r = sched_setaffinity(0, sizeof(mask), &mask);
556 TEST_ASSERT(!r, "sched_setaffinity() failed for pCPU '%u'.", pcpu);
557 }
558
parse_pcpu(const char * cpu_str,const cpu_set_t * allowed_mask)559 static uint32_t parse_pcpu(const char *cpu_str, const cpu_set_t *allowed_mask)
560 {
561 uint32_t pcpu = atoi_non_negative("CPU number", cpu_str);
562
563 TEST_ASSERT(CPU_ISSET(pcpu, allowed_mask),
564 "Not allowed to run on pCPU '%d', check cgroups?", pcpu);
565 return pcpu;
566 }
567
kvm_print_vcpu_pinning_help(void)568 void kvm_print_vcpu_pinning_help(void)
569 {
570 const char *name = program_invocation_name;
571
572 printf(" -c: Pin tasks to physical CPUs. Takes a list of comma separated\n"
573 " values (target pCPU), one for each vCPU, plus an optional\n"
574 " entry for the main application task (specified via entry\n"
575 " <nr_vcpus + 1>). If used, entries must be provided for all\n"
576 " vCPUs, i.e. pinning vCPUs is all or nothing.\n\n"
577 " E.g. to create 3 vCPUs, pin vCPU0=>pCPU22, vCPU1=>pCPU23,\n"
578 " vCPU2=>pCPU24, and pin the application task to pCPU50:\n\n"
579 " %s -v 3 -c 22,23,24,50\n\n"
580 " To leave the application task unpinned, drop the final entry:\n\n"
581 " %s -v 3 -c 22,23,24\n\n"
582 " (default: no pinning)\n", name, name);
583 }
584
kvm_parse_vcpu_pinning(const char * pcpus_string,uint32_t vcpu_to_pcpu[],int nr_vcpus)585 void kvm_parse_vcpu_pinning(const char *pcpus_string, uint32_t vcpu_to_pcpu[],
586 int nr_vcpus)
587 {
588 cpu_set_t allowed_mask;
589 char *cpu, *cpu_list;
590 char delim[2] = ",";
591 int i, r;
592
593 cpu_list = strdup(pcpus_string);
594 TEST_ASSERT(cpu_list, "strdup() allocation failed.");
595
596 r = sched_getaffinity(0, sizeof(allowed_mask), &allowed_mask);
597 TEST_ASSERT(!r, "sched_getaffinity() failed");
598
599 cpu = strtok(cpu_list, delim);
600
601 /* 1. Get all pcpus for vcpus. */
602 for (i = 0; i < nr_vcpus; i++) {
603 TEST_ASSERT(cpu, "pCPU not provided for vCPU '%d'", i);
604 vcpu_to_pcpu[i] = parse_pcpu(cpu, &allowed_mask);
605 cpu = strtok(NULL, delim);
606 }
607
608 /* 2. Check if the main worker needs to be pinned. */
609 if (cpu) {
610 kvm_pin_this_task_to_pcpu(parse_pcpu(cpu, &allowed_mask));
611 cpu = strtok(NULL, delim);
612 }
613
614 TEST_ASSERT(!cpu, "pCPU list contains trailing garbage characters '%s'", cpu);
615 free(cpu_list);
616 }
617
618 /*
619 * Userspace Memory Region Find
620 *
621 * Input Args:
622 * vm - Virtual Machine
623 * start - Starting VM physical address
624 * end - Ending VM physical address, inclusive.
625 *
626 * Output Args: None
627 *
628 * Return:
629 * Pointer to overlapping region, NULL if no such region.
630 *
631 * Searches for a region with any physical memory that overlaps with
632 * any portion of the guest physical addresses from start to end
633 * inclusive. If multiple overlapping regions exist, a pointer to any
634 * of the regions is returned. Null is returned only when no overlapping
635 * region exists.
636 */
637 static struct userspace_mem_region *
userspace_mem_region_find(struct kvm_vm * vm,uint64_t start,uint64_t end)638 userspace_mem_region_find(struct kvm_vm *vm, uint64_t start, uint64_t end)
639 {
640 struct rb_node *node;
641
642 for (node = vm->regions.gpa_tree.rb_node; node; ) {
643 struct userspace_mem_region *region =
644 container_of(node, struct userspace_mem_region, gpa_node);
645 uint64_t existing_start = region->region.guest_phys_addr;
646 uint64_t existing_end = region->region.guest_phys_addr
647 + region->region.memory_size - 1;
648 if (start <= existing_end && end >= existing_start)
649 return region;
650
651 if (start < existing_start)
652 node = node->rb_left;
653 else
654 node = node->rb_right;
655 }
656
657 return NULL;
658 }
659
vcpu_arch_free(struct kvm_vcpu * vcpu)660 __weak void vcpu_arch_free(struct kvm_vcpu *vcpu)
661 {
662
663 }
664
665 /*
666 * VM VCPU Remove
667 *
668 * Input Args:
669 * vcpu - VCPU to remove
670 *
671 * Output Args: None
672 *
673 * Return: None, TEST_ASSERT failures for all error conditions
674 *
675 * Removes a vCPU from a VM and frees its resources.
676 */
vm_vcpu_rm(struct kvm_vm * vm,struct kvm_vcpu * vcpu)677 static void vm_vcpu_rm(struct kvm_vm *vm, struct kvm_vcpu *vcpu)
678 {
679 int ret;
680
681 if (vcpu->dirty_gfns) {
682 ret = munmap(vcpu->dirty_gfns, vm->dirty_ring_size);
683 TEST_ASSERT(!ret, __KVM_SYSCALL_ERROR("munmap()", ret));
684 vcpu->dirty_gfns = NULL;
685 }
686
687 ret = munmap(vcpu->run, vcpu_mmap_sz());
688 TEST_ASSERT(!ret, __KVM_SYSCALL_ERROR("munmap()", ret));
689
690 ret = close(vcpu->fd);
691 TEST_ASSERT(!ret, __KVM_SYSCALL_ERROR("close()", ret));
692
693 list_del(&vcpu->list);
694
695 vcpu_arch_free(vcpu);
696 free(vcpu);
697 }
698
kvm_vm_release(struct kvm_vm * vmp)699 void kvm_vm_release(struct kvm_vm *vmp)
700 {
701 struct kvm_vcpu *vcpu, *tmp;
702 int ret;
703
704 list_for_each_entry_safe(vcpu, tmp, &vmp->vcpus, list)
705 vm_vcpu_rm(vmp, vcpu);
706
707 ret = close(vmp->fd);
708 TEST_ASSERT(!ret, __KVM_SYSCALL_ERROR("close()", ret));
709
710 ret = close(vmp->kvm_fd);
711 TEST_ASSERT(!ret, __KVM_SYSCALL_ERROR("close()", ret));
712 }
713
__vm_mem_region_delete(struct kvm_vm * vm,struct userspace_mem_region * region)714 static void __vm_mem_region_delete(struct kvm_vm *vm,
715 struct userspace_mem_region *region)
716 {
717 int ret;
718
719 rb_erase(®ion->gpa_node, &vm->regions.gpa_tree);
720 rb_erase(®ion->hva_node, &vm->regions.hva_tree);
721 hash_del(®ion->slot_node);
722
723 sparsebit_free(®ion->unused_phy_pages);
724 sparsebit_free(®ion->protected_phy_pages);
725 ret = munmap(region->mmap_start, region->mmap_size);
726 TEST_ASSERT(!ret, __KVM_SYSCALL_ERROR("munmap()", ret));
727 if (region->fd >= 0) {
728 /* There's an extra map when using shared memory. */
729 ret = munmap(region->mmap_alias, region->mmap_size);
730 TEST_ASSERT(!ret, __KVM_SYSCALL_ERROR("munmap()", ret));
731 close(region->fd);
732 }
733 if (region->region.guest_memfd >= 0)
734 close(region->region.guest_memfd);
735
736 free(region);
737 }
738
739 /*
740 * Destroys and frees the VM pointed to by vmp.
741 */
kvm_vm_free(struct kvm_vm * vmp)742 void kvm_vm_free(struct kvm_vm *vmp)
743 {
744 int ctr;
745 struct hlist_node *node;
746 struct userspace_mem_region *region;
747
748 if (vmp == NULL)
749 return;
750
751 /* Free cached stats metadata and close FD */
752 if (vmp->stats_fd) {
753 free(vmp->stats_desc);
754 close(vmp->stats_fd);
755 }
756
757 /* Free userspace_mem_regions. */
758 hash_for_each_safe(vmp->regions.slot_hash, ctr, node, region, slot_node)
759 __vm_mem_region_delete(vmp, region);
760
761 /* Free sparsebit arrays. */
762 sparsebit_free(&vmp->vpages_valid);
763 sparsebit_free(&vmp->vpages_mapped);
764
765 kvm_vm_release(vmp);
766
767 /* Free the structure describing the VM. */
768 free(vmp);
769 }
770
kvm_memfd_alloc(size_t size,bool hugepages)771 int kvm_memfd_alloc(size_t size, bool hugepages)
772 {
773 int memfd_flags = MFD_CLOEXEC;
774 int fd, r;
775
776 if (hugepages)
777 memfd_flags |= MFD_HUGETLB;
778
779 fd = memfd_create("kvm_selftest", memfd_flags);
780 TEST_ASSERT(fd != -1, __KVM_SYSCALL_ERROR("memfd_create()", fd));
781
782 r = ftruncate(fd, size);
783 TEST_ASSERT(!r, __KVM_SYSCALL_ERROR("ftruncate()", r));
784
785 r = fallocate(fd, FALLOC_FL_PUNCH_HOLE | FALLOC_FL_KEEP_SIZE, 0, size);
786 TEST_ASSERT(!r, __KVM_SYSCALL_ERROR("fallocate()", r));
787
788 return fd;
789 }
790
vm_userspace_mem_region_gpa_insert(struct rb_root * gpa_tree,struct userspace_mem_region * region)791 static void vm_userspace_mem_region_gpa_insert(struct rb_root *gpa_tree,
792 struct userspace_mem_region *region)
793 {
794 struct rb_node **cur, *parent;
795
796 for (cur = &gpa_tree->rb_node, parent = NULL; *cur; ) {
797 struct userspace_mem_region *cregion;
798
799 cregion = container_of(*cur, typeof(*cregion), gpa_node);
800 parent = *cur;
801 if (region->region.guest_phys_addr <
802 cregion->region.guest_phys_addr)
803 cur = &(*cur)->rb_left;
804 else {
805 TEST_ASSERT(region->region.guest_phys_addr !=
806 cregion->region.guest_phys_addr,
807 "Duplicate GPA in region tree");
808
809 cur = &(*cur)->rb_right;
810 }
811 }
812
813 rb_link_node(®ion->gpa_node, parent, cur);
814 rb_insert_color(®ion->gpa_node, gpa_tree);
815 }
816
vm_userspace_mem_region_hva_insert(struct rb_root * hva_tree,struct userspace_mem_region * region)817 static void vm_userspace_mem_region_hva_insert(struct rb_root *hva_tree,
818 struct userspace_mem_region *region)
819 {
820 struct rb_node **cur, *parent;
821
822 for (cur = &hva_tree->rb_node, parent = NULL; *cur; ) {
823 struct userspace_mem_region *cregion;
824
825 cregion = container_of(*cur, typeof(*cregion), hva_node);
826 parent = *cur;
827 if (region->host_mem < cregion->host_mem)
828 cur = &(*cur)->rb_left;
829 else {
830 TEST_ASSERT(region->host_mem !=
831 cregion->host_mem,
832 "Duplicate HVA in region tree");
833
834 cur = &(*cur)->rb_right;
835 }
836 }
837
838 rb_link_node(®ion->hva_node, parent, cur);
839 rb_insert_color(®ion->hva_node, hva_tree);
840 }
841
842
__vm_set_user_memory_region(struct kvm_vm * vm,uint32_t slot,uint32_t flags,uint64_t gpa,uint64_t size,void * hva)843 int __vm_set_user_memory_region(struct kvm_vm *vm, uint32_t slot, uint32_t flags,
844 uint64_t gpa, uint64_t size, void *hva)
845 {
846 struct kvm_userspace_memory_region region = {
847 .slot = slot,
848 .flags = flags,
849 .guest_phys_addr = gpa,
850 .memory_size = size,
851 .userspace_addr = (uintptr_t)hva,
852 };
853
854 return ioctl(vm->fd, KVM_SET_USER_MEMORY_REGION, ®ion);
855 }
856
vm_set_user_memory_region(struct kvm_vm * vm,uint32_t slot,uint32_t flags,uint64_t gpa,uint64_t size,void * hva)857 void vm_set_user_memory_region(struct kvm_vm *vm, uint32_t slot, uint32_t flags,
858 uint64_t gpa, uint64_t size, void *hva)
859 {
860 int ret = __vm_set_user_memory_region(vm, slot, flags, gpa, size, hva);
861
862 TEST_ASSERT(!ret, "KVM_SET_USER_MEMORY_REGION failed, errno = %d (%s)",
863 errno, strerror(errno));
864 }
865
866 #define TEST_REQUIRE_SET_USER_MEMORY_REGION2() \
867 __TEST_REQUIRE(kvm_has_cap(KVM_CAP_USER_MEMORY2), \
868 "KVM selftests now require KVM_SET_USER_MEMORY_REGION2 (introduced in v6.8)")
869
__vm_set_user_memory_region2(struct kvm_vm * vm,uint32_t slot,uint32_t flags,uint64_t gpa,uint64_t size,void * hva,uint32_t guest_memfd,uint64_t guest_memfd_offset)870 int __vm_set_user_memory_region2(struct kvm_vm *vm, uint32_t slot, uint32_t flags,
871 uint64_t gpa, uint64_t size, void *hva,
872 uint32_t guest_memfd, uint64_t guest_memfd_offset)
873 {
874 struct kvm_userspace_memory_region2 region = {
875 .slot = slot,
876 .flags = flags,
877 .guest_phys_addr = gpa,
878 .memory_size = size,
879 .userspace_addr = (uintptr_t)hva,
880 .guest_memfd = guest_memfd,
881 .guest_memfd_offset = guest_memfd_offset,
882 };
883
884 TEST_REQUIRE_SET_USER_MEMORY_REGION2();
885
886 return ioctl(vm->fd, KVM_SET_USER_MEMORY_REGION2, ®ion);
887 }
888
vm_set_user_memory_region2(struct kvm_vm * vm,uint32_t slot,uint32_t flags,uint64_t gpa,uint64_t size,void * hva,uint32_t guest_memfd,uint64_t guest_memfd_offset)889 void vm_set_user_memory_region2(struct kvm_vm *vm, uint32_t slot, uint32_t flags,
890 uint64_t gpa, uint64_t size, void *hva,
891 uint32_t guest_memfd, uint64_t guest_memfd_offset)
892 {
893 int ret = __vm_set_user_memory_region2(vm, slot, flags, gpa, size, hva,
894 guest_memfd, guest_memfd_offset);
895
896 TEST_ASSERT(!ret, "KVM_SET_USER_MEMORY_REGION2 failed, errno = %d (%s)",
897 errno, strerror(errno));
898 }
899
900
901 /* FIXME: This thing needs to be ripped apart and rewritten. */
vm_mem_add(struct kvm_vm * vm,enum vm_mem_backing_src_type src_type,uint64_t guest_paddr,uint32_t slot,uint64_t npages,uint32_t flags,int guest_memfd,uint64_t guest_memfd_offset)902 void vm_mem_add(struct kvm_vm *vm, enum vm_mem_backing_src_type src_type,
903 uint64_t guest_paddr, uint32_t slot, uint64_t npages,
904 uint32_t flags, int guest_memfd, uint64_t guest_memfd_offset)
905 {
906 int ret;
907 struct userspace_mem_region *region;
908 size_t backing_src_pagesz = get_backing_src_pagesz(src_type);
909 size_t mem_size = npages * vm->page_size;
910 size_t alignment;
911
912 TEST_REQUIRE_SET_USER_MEMORY_REGION2();
913
914 TEST_ASSERT(vm_adjust_num_guest_pages(vm->mode, npages) == npages,
915 "Number of guest pages is not compatible with the host. "
916 "Try npages=%d", vm_adjust_num_guest_pages(vm->mode, npages));
917
918 TEST_ASSERT((guest_paddr % vm->page_size) == 0, "Guest physical "
919 "address not on a page boundary.\n"
920 " guest_paddr: 0x%lx vm->page_size: 0x%x",
921 guest_paddr, vm->page_size);
922 TEST_ASSERT((((guest_paddr >> vm->page_shift) + npages) - 1)
923 <= vm->max_gfn, "Physical range beyond maximum "
924 "supported physical address,\n"
925 " guest_paddr: 0x%lx npages: 0x%lx\n"
926 " vm->max_gfn: 0x%lx vm->page_size: 0x%x",
927 guest_paddr, npages, vm->max_gfn, vm->page_size);
928
929 /*
930 * Confirm a mem region with an overlapping address doesn't
931 * already exist.
932 */
933 region = (struct userspace_mem_region *) userspace_mem_region_find(
934 vm, guest_paddr, (guest_paddr + npages * vm->page_size) - 1);
935 if (region != NULL)
936 TEST_FAIL("overlapping userspace_mem_region already "
937 "exists\n"
938 " requested guest_paddr: 0x%lx npages: 0x%lx "
939 "page_size: 0x%x\n"
940 " existing guest_paddr: 0x%lx size: 0x%lx",
941 guest_paddr, npages, vm->page_size,
942 (uint64_t) region->region.guest_phys_addr,
943 (uint64_t) region->region.memory_size);
944
945 /* Confirm no region with the requested slot already exists. */
946 hash_for_each_possible(vm->regions.slot_hash, region, slot_node,
947 slot) {
948 if (region->region.slot != slot)
949 continue;
950
951 TEST_FAIL("A mem region with the requested slot "
952 "already exists.\n"
953 " requested slot: %u paddr: 0x%lx npages: 0x%lx\n"
954 " existing slot: %u paddr: 0x%lx size: 0x%lx",
955 slot, guest_paddr, npages,
956 region->region.slot,
957 (uint64_t) region->region.guest_phys_addr,
958 (uint64_t) region->region.memory_size);
959 }
960
961 /* Allocate and initialize new mem region structure. */
962 region = calloc(1, sizeof(*region));
963 TEST_ASSERT(region != NULL, "Insufficient Memory");
964 region->mmap_size = mem_size;
965
966 #ifdef __s390x__
967 /* On s390x, the host address must be aligned to 1M (due to PGSTEs) */
968 alignment = 0x100000;
969 #else
970 alignment = 1;
971 #endif
972
973 /*
974 * When using THP mmap is not guaranteed to returned a hugepage aligned
975 * address so we have to pad the mmap. Padding is not needed for HugeTLB
976 * because mmap will always return an address aligned to the HugeTLB
977 * page size.
978 */
979 if (src_type == VM_MEM_SRC_ANONYMOUS_THP)
980 alignment = max(backing_src_pagesz, alignment);
981
982 TEST_ASSERT_EQ(guest_paddr, align_up(guest_paddr, backing_src_pagesz));
983
984 /* Add enough memory to align up if necessary */
985 if (alignment > 1)
986 region->mmap_size += alignment;
987
988 region->fd = -1;
989 if (backing_src_is_shared(src_type))
990 region->fd = kvm_memfd_alloc(region->mmap_size,
991 src_type == VM_MEM_SRC_SHARED_HUGETLB);
992
993 region->mmap_start = mmap(NULL, region->mmap_size,
994 PROT_READ | PROT_WRITE,
995 vm_mem_backing_src_alias(src_type)->flag,
996 region->fd, 0);
997 TEST_ASSERT(region->mmap_start != MAP_FAILED,
998 __KVM_SYSCALL_ERROR("mmap()", (int)(unsigned long)MAP_FAILED));
999
1000 TEST_ASSERT(!is_backing_src_hugetlb(src_type) ||
1001 region->mmap_start == align_ptr_up(region->mmap_start, backing_src_pagesz),
1002 "mmap_start %p is not aligned to HugeTLB page size 0x%lx",
1003 region->mmap_start, backing_src_pagesz);
1004
1005 /* Align host address */
1006 region->host_mem = align_ptr_up(region->mmap_start, alignment);
1007
1008 /* As needed perform madvise */
1009 if ((src_type == VM_MEM_SRC_ANONYMOUS ||
1010 src_type == VM_MEM_SRC_ANONYMOUS_THP) && thp_configured()) {
1011 ret = madvise(region->host_mem, mem_size,
1012 src_type == VM_MEM_SRC_ANONYMOUS ? MADV_NOHUGEPAGE : MADV_HUGEPAGE);
1013 TEST_ASSERT(ret == 0, "madvise failed, addr: %p length: 0x%lx src_type: %s",
1014 region->host_mem, mem_size,
1015 vm_mem_backing_src_alias(src_type)->name);
1016 }
1017
1018 region->backing_src_type = src_type;
1019
1020 if (flags & KVM_MEM_GUEST_MEMFD) {
1021 if (guest_memfd < 0) {
1022 uint32_t guest_memfd_flags = 0;
1023 TEST_ASSERT(!guest_memfd_offset,
1024 "Offset must be zero when creating new guest_memfd");
1025 guest_memfd = vm_create_guest_memfd(vm, mem_size, guest_memfd_flags);
1026 } else {
1027 /*
1028 * Install a unique fd for each memslot so that the fd
1029 * can be closed when the region is deleted without
1030 * needing to track if the fd is owned by the framework
1031 * or by the caller.
1032 */
1033 guest_memfd = dup(guest_memfd);
1034 TEST_ASSERT(guest_memfd >= 0, __KVM_SYSCALL_ERROR("dup()", guest_memfd));
1035 }
1036
1037 region->region.guest_memfd = guest_memfd;
1038 region->region.guest_memfd_offset = guest_memfd_offset;
1039 } else {
1040 region->region.guest_memfd = -1;
1041 }
1042
1043 region->unused_phy_pages = sparsebit_alloc();
1044 if (vm_arch_has_protected_memory(vm))
1045 region->protected_phy_pages = sparsebit_alloc();
1046 sparsebit_set_num(region->unused_phy_pages,
1047 guest_paddr >> vm->page_shift, npages);
1048 region->region.slot = slot;
1049 region->region.flags = flags;
1050 region->region.guest_phys_addr = guest_paddr;
1051 region->region.memory_size = npages * vm->page_size;
1052 region->region.userspace_addr = (uintptr_t) region->host_mem;
1053 ret = __vm_ioctl(vm, KVM_SET_USER_MEMORY_REGION2, ®ion->region);
1054 TEST_ASSERT(ret == 0, "KVM_SET_USER_MEMORY_REGION2 IOCTL failed,\n"
1055 " rc: %i errno: %i\n"
1056 " slot: %u flags: 0x%x\n"
1057 " guest_phys_addr: 0x%lx size: 0x%lx guest_memfd: %d",
1058 ret, errno, slot, flags,
1059 guest_paddr, (uint64_t) region->region.memory_size,
1060 region->region.guest_memfd);
1061
1062 /* Add to quick lookup data structures */
1063 vm_userspace_mem_region_gpa_insert(&vm->regions.gpa_tree, region);
1064 vm_userspace_mem_region_hva_insert(&vm->regions.hva_tree, region);
1065 hash_add(vm->regions.slot_hash, ®ion->slot_node, slot);
1066
1067 /* If shared memory, create an alias. */
1068 if (region->fd >= 0) {
1069 region->mmap_alias = mmap(NULL, region->mmap_size,
1070 PROT_READ | PROT_WRITE,
1071 vm_mem_backing_src_alias(src_type)->flag,
1072 region->fd, 0);
1073 TEST_ASSERT(region->mmap_alias != MAP_FAILED,
1074 __KVM_SYSCALL_ERROR("mmap()", (int)(unsigned long)MAP_FAILED));
1075
1076 /* Align host alias address */
1077 region->host_alias = align_ptr_up(region->mmap_alias, alignment);
1078 }
1079 }
1080
vm_userspace_mem_region_add(struct kvm_vm * vm,enum vm_mem_backing_src_type src_type,uint64_t guest_paddr,uint32_t slot,uint64_t npages,uint32_t flags)1081 void vm_userspace_mem_region_add(struct kvm_vm *vm,
1082 enum vm_mem_backing_src_type src_type,
1083 uint64_t guest_paddr, uint32_t slot,
1084 uint64_t npages, uint32_t flags)
1085 {
1086 vm_mem_add(vm, src_type, guest_paddr, slot, npages, flags, -1, 0);
1087 }
1088
1089 /*
1090 * Memslot to region
1091 *
1092 * Input Args:
1093 * vm - Virtual Machine
1094 * memslot - KVM memory slot ID
1095 *
1096 * Output Args: None
1097 *
1098 * Return:
1099 * Pointer to memory region structure that describe memory region
1100 * using kvm memory slot ID given by memslot. TEST_ASSERT failure
1101 * on error (e.g. currently no memory region using memslot as a KVM
1102 * memory slot ID).
1103 */
1104 struct userspace_mem_region *
memslot2region(struct kvm_vm * vm,uint32_t memslot)1105 memslot2region(struct kvm_vm *vm, uint32_t memslot)
1106 {
1107 struct userspace_mem_region *region;
1108
1109 hash_for_each_possible(vm->regions.slot_hash, region, slot_node,
1110 memslot)
1111 if (region->region.slot == memslot)
1112 return region;
1113
1114 fprintf(stderr, "No mem region with the requested slot found,\n"
1115 " requested slot: %u\n", memslot);
1116 fputs("---- vm dump ----\n", stderr);
1117 vm_dump(stderr, vm, 2);
1118 TEST_FAIL("Mem region not found");
1119 return NULL;
1120 }
1121
1122 /*
1123 * VM Memory Region Flags Set
1124 *
1125 * Input Args:
1126 * vm - Virtual Machine
1127 * flags - Starting guest physical address
1128 *
1129 * Output Args: None
1130 *
1131 * Return: None
1132 *
1133 * Sets the flags of the memory region specified by the value of slot,
1134 * to the values given by flags.
1135 */
vm_mem_region_set_flags(struct kvm_vm * vm,uint32_t slot,uint32_t flags)1136 void vm_mem_region_set_flags(struct kvm_vm *vm, uint32_t slot, uint32_t flags)
1137 {
1138 int ret;
1139 struct userspace_mem_region *region;
1140
1141 region = memslot2region(vm, slot);
1142
1143 region->region.flags = flags;
1144
1145 ret = __vm_ioctl(vm, KVM_SET_USER_MEMORY_REGION2, ®ion->region);
1146
1147 TEST_ASSERT(ret == 0, "KVM_SET_USER_MEMORY_REGION2 IOCTL failed,\n"
1148 " rc: %i errno: %i slot: %u flags: 0x%x",
1149 ret, errno, slot, flags);
1150 }
1151
1152 /*
1153 * VM Memory Region Move
1154 *
1155 * Input Args:
1156 * vm - Virtual Machine
1157 * slot - Slot of the memory region to move
1158 * new_gpa - Starting guest physical address
1159 *
1160 * Output Args: None
1161 *
1162 * Return: None
1163 *
1164 * Change the gpa of a memory region.
1165 */
vm_mem_region_move(struct kvm_vm * vm,uint32_t slot,uint64_t new_gpa)1166 void vm_mem_region_move(struct kvm_vm *vm, uint32_t slot, uint64_t new_gpa)
1167 {
1168 struct userspace_mem_region *region;
1169 int ret;
1170
1171 region = memslot2region(vm, slot);
1172
1173 region->region.guest_phys_addr = new_gpa;
1174
1175 ret = __vm_ioctl(vm, KVM_SET_USER_MEMORY_REGION2, ®ion->region);
1176
1177 TEST_ASSERT(!ret, "KVM_SET_USER_MEMORY_REGION2 failed\n"
1178 "ret: %i errno: %i slot: %u new_gpa: 0x%lx",
1179 ret, errno, slot, new_gpa);
1180 }
1181
1182 /*
1183 * VM Memory Region Delete
1184 *
1185 * Input Args:
1186 * vm - Virtual Machine
1187 * slot - Slot of the memory region to delete
1188 *
1189 * Output Args: None
1190 *
1191 * Return: None
1192 *
1193 * Delete a memory region.
1194 */
vm_mem_region_delete(struct kvm_vm * vm,uint32_t slot)1195 void vm_mem_region_delete(struct kvm_vm *vm, uint32_t slot)
1196 {
1197 struct userspace_mem_region *region = memslot2region(vm, slot);
1198
1199 region->region.memory_size = 0;
1200 vm_ioctl(vm, KVM_SET_USER_MEMORY_REGION2, ®ion->region);
1201
1202 __vm_mem_region_delete(vm, region);
1203 }
1204
vm_guest_mem_fallocate(struct kvm_vm * vm,uint64_t base,uint64_t size,bool punch_hole)1205 void vm_guest_mem_fallocate(struct kvm_vm *vm, uint64_t base, uint64_t size,
1206 bool punch_hole)
1207 {
1208 const int mode = FALLOC_FL_KEEP_SIZE | (punch_hole ? FALLOC_FL_PUNCH_HOLE : 0);
1209 struct userspace_mem_region *region;
1210 uint64_t end = base + size;
1211 uint64_t gpa, len;
1212 off_t fd_offset;
1213 int ret;
1214
1215 for (gpa = base; gpa < end; gpa += len) {
1216 uint64_t offset;
1217
1218 region = userspace_mem_region_find(vm, gpa, gpa);
1219 TEST_ASSERT(region && region->region.flags & KVM_MEM_GUEST_MEMFD,
1220 "Private memory region not found for GPA 0x%lx", gpa);
1221
1222 offset = gpa - region->region.guest_phys_addr;
1223 fd_offset = region->region.guest_memfd_offset + offset;
1224 len = min_t(uint64_t, end - gpa, region->region.memory_size - offset);
1225
1226 ret = fallocate(region->region.guest_memfd, mode, fd_offset, len);
1227 TEST_ASSERT(!ret, "fallocate() failed to %s at %lx (len = %lu), fd = %d, mode = %x, offset = %lx",
1228 punch_hole ? "punch hole" : "allocate", gpa, len,
1229 region->region.guest_memfd, mode, fd_offset);
1230 }
1231 }
1232
1233 /* Returns the size of a vCPU's kvm_run structure. */
vcpu_mmap_sz(void)1234 static int vcpu_mmap_sz(void)
1235 {
1236 int dev_fd, ret;
1237
1238 dev_fd = open_kvm_dev_path_or_exit();
1239
1240 ret = ioctl(dev_fd, KVM_GET_VCPU_MMAP_SIZE, NULL);
1241 TEST_ASSERT(ret >= sizeof(struct kvm_run),
1242 KVM_IOCTL_ERROR(KVM_GET_VCPU_MMAP_SIZE, ret));
1243
1244 close(dev_fd);
1245
1246 return ret;
1247 }
1248
vcpu_exists(struct kvm_vm * vm,uint32_t vcpu_id)1249 static bool vcpu_exists(struct kvm_vm *vm, uint32_t vcpu_id)
1250 {
1251 struct kvm_vcpu *vcpu;
1252
1253 list_for_each_entry(vcpu, &vm->vcpus, list) {
1254 if (vcpu->id == vcpu_id)
1255 return true;
1256 }
1257
1258 return false;
1259 }
1260
1261 /*
1262 * Adds a virtual CPU to the VM specified by vm with the ID given by vcpu_id.
1263 * No additional vCPU setup is done. Returns the vCPU.
1264 */
__vm_vcpu_add(struct kvm_vm * vm,uint32_t vcpu_id)1265 struct kvm_vcpu *__vm_vcpu_add(struct kvm_vm *vm, uint32_t vcpu_id)
1266 {
1267 struct kvm_vcpu *vcpu;
1268
1269 /* Confirm a vcpu with the specified id doesn't already exist. */
1270 TEST_ASSERT(!vcpu_exists(vm, vcpu_id), "vCPU%d already exists", vcpu_id);
1271
1272 /* Allocate and initialize new vcpu structure. */
1273 vcpu = calloc(1, sizeof(*vcpu));
1274 TEST_ASSERT(vcpu != NULL, "Insufficient Memory");
1275
1276 vcpu->vm = vm;
1277 vcpu->id = vcpu_id;
1278 vcpu->fd = __vm_ioctl(vm, KVM_CREATE_VCPU, (void *)(unsigned long)vcpu_id);
1279 TEST_ASSERT_VM_VCPU_IOCTL(vcpu->fd >= 0, KVM_CREATE_VCPU, vcpu->fd, vm);
1280
1281 TEST_ASSERT(vcpu_mmap_sz() >= sizeof(*vcpu->run), "vcpu mmap size "
1282 "smaller than expected, vcpu_mmap_sz: %i expected_min: %zi",
1283 vcpu_mmap_sz(), sizeof(*vcpu->run));
1284 vcpu->run = (struct kvm_run *) mmap(NULL, vcpu_mmap_sz(),
1285 PROT_READ | PROT_WRITE, MAP_SHARED, vcpu->fd, 0);
1286 TEST_ASSERT(vcpu->run != MAP_FAILED,
1287 __KVM_SYSCALL_ERROR("mmap()", (int)(unsigned long)MAP_FAILED));
1288
1289 /* Add to linked-list of VCPUs. */
1290 list_add(&vcpu->list, &vm->vcpus);
1291
1292 return vcpu;
1293 }
1294
1295 /*
1296 * VM Virtual Address Unused Gap
1297 *
1298 * Input Args:
1299 * vm - Virtual Machine
1300 * sz - Size (bytes)
1301 * vaddr_min - Minimum Virtual Address
1302 *
1303 * Output Args: None
1304 *
1305 * Return:
1306 * Lowest virtual address at or below vaddr_min, with at least
1307 * sz unused bytes. TEST_ASSERT failure if no area of at least
1308 * size sz is available.
1309 *
1310 * Within the VM specified by vm, locates the lowest starting virtual
1311 * address >= vaddr_min, that has at least sz unallocated bytes. A
1312 * TEST_ASSERT failure occurs for invalid input or no area of at least
1313 * sz unallocated bytes >= vaddr_min is available.
1314 */
vm_vaddr_unused_gap(struct kvm_vm * vm,size_t sz,vm_vaddr_t vaddr_min)1315 vm_vaddr_t vm_vaddr_unused_gap(struct kvm_vm *vm, size_t sz,
1316 vm_vaddr_t vaddr_min)
1317 {
1318 uint64_t pages = (sz + vm->page_size - 1) >> vm->page_shift;
1319
1320 /* Determine lowest permitted virtual page index. */
1321 uint64_t pgidx_start = (vaddr_min + vm->page_size - 1) >> vm->page_shift;
1322 if ((pgidx_start * vm->page_size) < vaddr_min)
1323 goto no_va_found;
1324
1325 /* Loop over section with enough valid virtual page indexes. */
1326 if (!sparsebit_is_set_num(vm->vpages_valid,
1327 pgidx_start, pages))
1328 pgidx_start = sparsebit_next_set_num(vm->vpages_valid,
1329 pgidx_start, pages);
1330 do {
1331 /*
1332 * Are there enough unused virtual pages available at
1333 * the currently proposed starting virtual page index.
1334 * If not, adjust proposed starting index to next
1335 * possible.
1336 */
1337 if (sparsebit_is_clear_num(vm->vpages_mapped,
1338 pgidx_start, pages))
1339 goto va_found;
1340 pgidx_start = sparsebit_next_clear_num(vm->vpages_mapped,
1341 pgidx_start, pages);
1342 if (pgidx_start == 0)
1343 goto no_va_found;
1344
1345 /*
1346 * If needed, adjust proposed starting virtual address,
1347 * to next range of valid virtual addresses.
1348 */
1349 if (!sparsebit_is_set_num(vm->vpages_valid,
1350 pgidx_start, pages)) {
1351 pgidx_start = sparsebit_next_set_num(
1352 vm->vpages_valid, pgidx_start, pages);
1353 if (pgidx_start == 0)
1354 goto no_va_found;
1355 }
1356 } while (pgidx_start != 0);
1357
1358 no_va_found:
1359 TEST_FAIL("No vaddr of specified pages available, pages: 0x%lx", pages);
1360
1361 /* NOT REACHED */
1362 return -1;
1363
1364 va_found:
1365 TEST_ASSERT(sparsebit_is_set_num(vm->vpages_valid,
1366 pgidx_start, pages),
1367 "Unexpected, invalid virtual page index range,\n"
1368 " pgidx_start: 0x%lx\n"
1369 " pages: 0x%lx",
1370 pgidx_start, pages);
1371 TEST_ASSERT(sparsebit_is_clear_num(vm->vpages_mapped,
1372 pgidx_start, pages),
1373 "Unexpected, pages already mapped,\n"
1374 " pgidx_start: 0x%lx\n"
1375 " pages: 0x%lx",
1376 pgidx_start, pages);
1377
1378 return pgidx_start * vm->page_size;
1379 }
1380
____vm_vaddr_alloc(struct kvm_vm * vm,size_t sz,vm_vaddr_t vaddr_min,enum kvm_mem_region_type type,bool protected)1381 static vm_vaddr_t ____vm_vaddr_alloc(struct kvm_vm *vm, size_t sz,
1382 vm_vaddr_t vaddr_min,
1383 enum kvm_mem_region_type type,
1384 bool protected)
1385 {
1386 uint64_t pages = (sz >> vm->page_shift) + ((sz % vm->page_size) != 0);
1387
1388 virt_pgd_alloc(vm);
1389 vm_paddr_t paddr = __vm_phy_pages_alloc(vm, pages,
1390 KVM_UTIL_MIN_PFN * vm->page_size,
1391 vm->memslots[type], protected);
1392
1393 /*
1394 * Find an unused range of virtual page addresses of at least
1395 * pages in length.
1396 */
1397 vm_vaddr_t vaddr_start = vm_vaddr_unused_gap(vm, sz, vaddr_min);
1398
1399 /* Map the virtual pages. */
1400 for (vm_vaddr_t vaddr = vaddr_start; pages > 0;
1401 pages--, vaddr += vm->page_size, paddr += vm->page_size) {
1402
1403 virt_pg_map(vm, vaddr, paddr);
1404
1405 sparsebit_set(vm->vpages_mapped, vaddr >> vm->page_shift);
1406 }
1407
1408 return vaddr_start;
1409 }
1410
__vm_vaddr_alloc(struct kvm_vm * vm,size_t sz,vm_vaddr_t vaddr_min,enum kvm_mem_region_type type)1411 vm_vaddr_t __vm_vaddr_alloc(struct kvm_vm *vm, size_t sz, vm_vaddr_t vaddr_min,
1412 enum kvm_mem_region_type type)
1413 {
1414 return ____vm_vaddr_alloc(vm, sz, vaddr_min, type,
1415 vm_arch_has_protected_memory(vm));
1416 }
1417
vm_vaddr_alloc_shared(struct kvm_vm * vm,size_t sz,vm_vaddr_t vaddr_min,enum kvm_mem_region_type type)1418 vm_vaddr_t vm_vaddr_alloc_shared(struct kvm_vm *vm, size_t sz,
1419 vm_vaddr_t vaddr_min,
1420 enum kvm_mem_region_type type)
1421 {
1422 return ____vm_vaddr_alloc(vm, sz, vaddr_min, type, false);
1423 }
1424
1425 /*
1426 * VM Virtual Address Allocate
1427 *
1428 * Input Args:
1429 * vm - Virtual Machine
1430 * sz - Size in bytes
1431 * vaddr_min - Minimum starting virtual address
1432 *
1433 * Output Args: None
1434 *
1435 * Return:
1436 * Starting guest virtual address
1437 *
1438 * Allocates at least sz bytes within the virtual address space of the vm
1439 * given by vm. The allocated bytes are mapped to a virtual address >=
1440 * the address given by vaddr_min. Note that each allocation uses a
1441 * a unique set of pages, with the minimum real allocation being at least
1442 * a page. The allocated physical space comes from the TEST_DATA memory region.
1443 */
vm_vaddr_alloc(struct kvm_vm * vm,size_t sz,vm_vaddr_t vaddr_min)1444 vm_vaddr_t vm_vaddr_alloc(struct kvm_vm *vm, size_t sz, vm_vaddr_t vaddr_min)
1445 {
1446 return __vm_vaddr_alloc(vm, sz, vaddr_min, MEM_REGION_TEST_DATA);
1447 }
1448
1449 /*
1450 * VM Virtual Address Allocate Pages
1451 *
1452 * Input Args:
1453 * vm - Virtual Machine
1454 *
1455 * Output Args: None
1456 *
1457 * Return:
1458 * Starting guest virtual address
1459 *
1460 * Allocates at least N system pages worth of bytes within the virtual address
1461 * space of the vm.
1462 */
vm_vaddr_alloc_pages(struct kvm_vm * vm,int nr_pages)1463 vm_vaddr_t vm_vaddr_alloc_pages(struct kvm_vm *vm, int nr_pages)
1464 {
1465 return vm_vaddr_alloc(vm, nr_pages * getpagesize(), KVM_UTIL_MIN_VADDR);
1466 }
1467
__vm_vaddr_alloc_page(struct kvm_vm * vm,enum kvm_mem_region_type type)1468 vm_vaddr_t __vm_vaddr_alloc_page(struct kvm_vm *vm, enum kvm_mem_region_type type)
1469 {
1470 return __vm_vaddr_alloc(vm, getpagesize(), KVM_UTIL_MIN_VADDR, type);
1471 }
1472
1473 /*
1474 * VM Virtual Address Allocate Page
1475 *
1476 * Input Args:
1477 * vm - Virtual Machine
1478 *
1479 * Output Args: None
1480 *
1481 * Return:
1482 * Starting guest virtual address
1483 *
1484 * Allocates at least one system page worth of bytes within the virtual address
1485 * space of the vm.
1486 */
vm_vaddr_alloc_page(struct kvm_vm * vm)1487 vm_vaddr_t vm_vaddr_alloc_page(struct kvm_vm *vm)
1488 {
1489 return vm_vaddr_alloc_pages(vm, 1);
1490 }
1491
1492 /*
1493 * Map a range of VM virtual address to the VM's physical address
1494 *
1495 * Input Args:
1496 * vm - Virtual Machine
1497 * vaddr - Virtuall address to map
1498 * paddr - VM Physical Address
1499 * npages - The number of pages to map
1500 *
1501 * Output Args: None
1502 *
1503 * Return: None
1504 *
1505 * Within the VM given by @vm, creates a virtual translation for
1506 * @npages starting at @vaddr to the page range starting at @paddr.
1507 */
virt_map(struct kvm_vm * vm,uint64_t vaddr,uint64_t paddr,unsigned int npages)1508 void virt_map(struct kvm_vm *vm, uint64_t vaddr, uint64_t paddr,
1509 unsigned int npages)
1510 {
1511 size_t page_size = vm->page_size;
1512 size_t size = npages * page_size;
1513
1514 TEST_ASSERT(vaddr + size > vaddr, "Vaddr overflow");
1515 TEST_ASSERT(paddr + size > paddr, "Paddr overflow");
1516
1517 while (npages--) {
1518 virt_pg_map(vm, vaddr, paddr);
1519 sparsebit_set(vm->vpages_mapped, vaddr >> vm->page_shift);
1520
1521 vaddr += page_size;
1522 paddr += page_size;
1523 }
1524 }
1525
1526 /*
1527 * Address VM Physical to Host Virtual
1528 *
1529 * Input Args:
1530 * vm - Virtual Machine
1531 * gpa - VM physical address
1532 *
1533 * Output Args: None
1534 *
1535 * Return:
1536 * Equivalent host virtual address
1537 *
1538 * Locates the memory region containing the VM physical address given
1539 * by gpa, within the VM given by vm. When found, the host virtual
1540 * address providing the memory to the vm physical address is returned.
1541 * A TEST_ASSERT failure occurs if no region containing gpa exists.
1542 */
addr_gpa2hva(struct kvm_vm * vm,vm_paddr_t gpa)1543 void *addr_gpa2hva(struct kvm_vm *vm, vm_paddr_t gpa)
1544 {
1545 struct userspace_mem_region *region;
1546
1547 gpa = vm_untag_gpa(vm, gpa);
1548
1549 region = userspace_mem_region_find(vm, gpa, gpa);
1550 if (!region) {
1551 TEST_FAIL("No vm physical memory at 0x%lx", gpa);
1552 return NULL;
1553 }
1554
1555 return (void *)((uintptr_t)region->host_mem
1556 + (gpa - region->region.guest_phys_addr));
1557 }
1558
1559 /*
1560 * Address Host Virtual to VM Physical
1561 *
1562 * Input Args:
1563 * vm - Virtual Machine
1564 * hva - Host virtual address
1565 *
1566 * Output Args: None
1567 *
1568 * Return:
1569 * Equivalent VM physical address
1570 *
1571 * Locates the memory region containing the host virtual address given
1572 * by hva, within the VM given by vm. When found, the equivalent
1573 * VM physical address is returned. A TEST_ASSERT failure occurs if no
1574 * region containing hva exists.
1575 */
addr_hva2gpa(struct kvm_vm * vm,void * hva)1576 vm_paddr_t addr_hva2gpa(struct kvm_vm *vm, void *hva)
1577 {
1578 struct rb_node *node;
1579
1580 for (node = vm->regions.hva_tree.rb_node; node; ) {
1581 struct userspace_mem_region *region =
1582 container_of(node, struct userspace_mem_region, hva_node);
1583
1584 if (hva >= region->host_mem) {
1585 if (hva <= (region->host_mem
1586 + region->region.memory_size - 1))
1587 return (vm_paddr_t)((uintptr_t)
1588 region->region.guest_phys_addr
1589 + (hva - (uintptr_t)region->host_mem));
1590
1591 node = node->rb_right;
1592 } else
1593 node = node->rb_left;
1594 }
1595
1596 TEST_FAIL("No mapping to a guest physical address, hva: %p", hva);
1597 return -1;
1598 }
1599
1600 /*
1601 * Address VM physical to Host Virtual *alias*.
1602 *
1603 * Input Args:
1604 * vm - Virtual Machine
1605 * gpa - VM physical address
1606 *
1607 * Output Args: None
1608 *
1609 * Return:
1610 * Equivalent address within the host virtual *alias* area, or NULL
1611 * (without failing the test) if the guest memory is not shared (so
1612 * no alias exists).
1613 *
1614 * Create a writable, shared virtual=>physical alias for the specific GPA.
1615 * The primary use case is to allow the host selftest to manipulate guest
1616 * memory without mapping said memory in the guest's address space. And, for
1617 * userfaultfd-based demand paging, to do so without triggering userfaults.
1618 */
addr_gpa2alias(struct kvm_vm * vm,vm_paddr_t gpa)1619 void *addr_gpa2alias(struct kvm_vm *vm, vm_paddr_t gpa)
1620 {
1621 struct userspace_mem_region *region;
1622 uintptr_t offset;
1623
1624 region = userspace_mem_region_find(vm, gpa, gpa);
1625 if (!region)
1626 return NULL;
1627
1628 if (!region->host_alias)
1629 return NULL;
1630
1631 offset = gpa - region->region.guest_phys_addr;
1632 return (void *) ((uintptr_t) region->host_alias + offset);
1633 }
1634
1635 /* Create an interrupt controller chip for the specified VM. */
vm_create_irqchip(struct kvm_vm * vm)1636 void vm_create_irqchip(struct kvm_vm *vm)
1637 {
1638 vm_ioctl(vm, KVM_CREATE_IRQCHIP, NULL);
1639
1640 vm->has_irqchip = true;
1641 }
1642
_vcpu_run(struct kvm_vcpu * vcpu)1643 int _vcpu_run(struct kvm_vcpu *vcpu)
1644 {
1645 int rc;
1646
1647 do {
1648 rc = __vcpu_run(vcpu);
1649 } while (rc == -1 && errno == EINTR);
1650
1651 if (!rc)
1652 assert_on_unhandled_exception(vcpu);
1653
1654 return rc;
1655 }
1656
1657 /*
1658 * Invoke KVM_RUN on a vCPU until KVM returns something other than -EINTR.
1659 * Assert if the KVM returns an error (other than -EINTR).
1660 */
vcpu_run(struct kvm_vcpu * vcpu)1661 void vcpu_run(struct kvm_vcpu *vcpu)
1662 {
1663 int ret = _vcpu_run(vcpu);
1664
1665 TEST_ASSERT(!ret, KVM_IOCTL_ERROR(KVM_RUN, ret));
1666 }
1667
vcpu_run_complete_io(struct kvm_vcpu * vcpu)1668 void vcpu_run_complete_io(struct kvm_vcpu *vcpu)
1669 {
1670 int ret;
1671
1672 vcpu->run->immediate_exit = 1;
1673 ret = __vcpu_run(vcpu);
1674 vcpu->run->immediate_exit = 0;
1675
1676 TEST_ASSERT(ret == -1 && errno == EINTR,
1677 "KVM_RUN IOCTL didn't exit immediately, rc: %i, errno: %i",
1678 ret, errno);
1679 }
1680
1681 /*
1682 * Get the list of guest registers which are supported for
1683 * KVM_GET_ONE_REG/KVM_SET_ONE_REG ioctls. Returns a kvm_reg_list pointer,
1684 * it is the caller's responsibility to free the list.
1685 */
vcpu_get_reg_list(struct kvm_vcpu * vcpu)1686 struct kvm_reg_list *vcpu_get_reg_list(struct kvm_vcpu *vcpu)
1687 {
1688 struct kvm_reg_list reg_list_n = { .n = 0 }, *reg_list;
1689 int ret;
1690
1691 ret = __vcpu_ioctl(vcpu, KVM_GET_REG_LIST, ®_list_n);
1692 TEST_ASSERT(ret == -1 && errno == E2BIG, "KVM_GET_REG_LIST n=0");
1693
1694 reg_list = calloc(1, sizeof(*reg_list) + reg_list_n.n * sizeof(__u64));
1695 reg_list->n = reg_list_n.n;
1696 vcpu_ioctl(vcpu, KVM_GET_REG_LIST, reg_list);
1697 return reg_list;
1698 }
1699
vcpu_map_dirty_ring(struct kvm_vcpu * vcpu)1700 void *vcpu_map_dirty_ring(struct kvm_vcpu *vcpu)
1701 {
1702 uint32_t page_size = getpagesize();
1703 uint32_t size = vcpu->vm->dirty_ring_size;
1704
1705 TEST_ASSERT(size > 0, "Should enable dirty ring first");
1706
1707 if (!vcpu->dirty_gfns) {
1708 void *addr;
1709
1710 addr = mmap(NULL, size, PROT_READ, MAP_PRIVATE, vcpu->fd,
1711 page_size * KVM_DIRTY_LOG_PAGE_OFFSET);
1712 TEST_ASSERT(addr == MAP_FAILED, "Dirty ring mapped private");
1713
1714 addr = mmap(NULL, size, PROT_READ | PROT_EXEC, MAP_PRIVATE, vcpu->fd,
1715 page_size * KVM_DIRTY_LOG_PAGE_OFFSET);
1716 TEST_ASSERT(addr == MAP_FAILED, "Dirty ring mapped exec");
1717
1718 addr = mmap(NULL, size, PROT_READ | PROT_WRITE, MAP_SHARED, vcpu->fd,
1719 page_size * KVM_DIRTY_LOG_PAGE_OFFSET);
1720 TEST_ASSERT(addr != MAP_FAILED, "Dirty ring map failed");
1721
1722 vcpu->dirty_gfns = addr;
1723 vcpu->dirty_gfns_count = size / sizeof(struct kvm_dirty_gfn);
1724 }
1725
1726 return vcpu->dirty_gfns;
1727 }
1728
1729 /*
1730 * Device Ioctl
1731 */
1732
__kvm_has_device_attr(int dev_fd,uint32_t group,uint64_t attr)1733 int __kvm_has_device_attr(int dev_fd, uint32_t group, uint64_t attr)
1734 {
1735 struct kvm_device_attr attribute = {
1736 .group = group,
1737 .attr = attr,
1738 .flags = 0,
1739 };
1740
1741 return ioctl(dev_fd, KVM_HAS_DEVICE_ATTR, &attribute);
1742 }
1743
__kvm_test_create_device(struct kvm_vm * vm,uint64_t type)1744 int __kvm_test_create_device(struct kvm_vm *vm, uint64_t type)
1745 {
1746 struct kvm_create_device create_dev = {
1747 .type = type,
1748 .flags = KVM_CREATE_DEVICE_TEST,
1749 };
1750
1751 return __vm_ioctl(vm, KVM_CREATE_DEVICE, &create_dev);
1752 }
1753
__kvm_create_device(struct kvm_vm * vm,uint64_t type)1754 int __kvm_create_device(struct kvm_vm *vm, uint64_t type)
1755 {
1756 struct kvm_create_device create_dev = {
1757 .type = type,
1758 .fd = -1,
1759 .flags = 0,
1760 };
1761 int err;
1762
1763 err = __vm_ioctl(vm, KVM_CREATE_DEVICE, &create_dev);
1764 TEST_ASSERT(err <= 0, "KVM_CREATE_DEVICE shouldn't return a positive value");
1765 return err ? : create_dev.fd;
1766 }
1767
__kvm_device_attr_get(int dev_fd,uint32_t group,uint64_t attr,void * val)1768 int __kvm_device_attr_get(int dev_fd, uint32_t group, uint64_t attr, void *val)
1769 {
1770 struct kvm_device_attr kvmattr = {
1771 .group = group,
1772 .attr = attr,
1773 .flags = 0,
1774 .addr = (uintptr_t)val,
1775 };
1776
1777 return __kvm_ioctl(dev_fd, KVM_GET_DEVICE_ATTR, &kvmattr);
1778 }
1779
__kvm_device_attr_set(int dev_fd,uint32_t group,uint64_t attr,void * val)1780 int __kvm_device_attr_set(int dev_fd, uint32_t group, uint64_t attr, void *val)
1781 {
1782 struct kvm_device_attr kvmattr = {
1783 .group = group,
1784 .attr = attr,
1785 .flags = 0,
1786 .addr = (uintptr_t)val,
1787 };
1788
1789 return __kvm_ioctl(dev_fd, KVM_SET_DEVICE_ATTR, &kvmattr);
1790 }
1791
1792 /*
1793 * IRQ related functions.
1794 */
1795
_kvm_irq_line(struct kvm_vm * vm,uint32_t irq,int level)1796 int _kvm_irq_line(struct kvm_vm *vm, uint32_t irq, int level)
1797 {
1798 struct kvm_irq_level irq_level = {
1799 .irq = irq,
1800 .level = level,
1801 };
1802
1803 return __vm_ioctl(vm, KVM_IRQ_LINE, &irq_level);
1804 }
1805
kvm_irq_line(struct kvm_vm * vm,uint32_t irq,int level)1806 void kvm_irq_line(struct kvm_vm *vm, uint32_t irq, int level)
1807 {
1808 int ret = _kvm_irq_line(vm, irq, level);
1809
1810 TEST_ASSERT(ret >= 0, KVM_IOCTL_ERROR(KVM_IRQ_LINE, ret));
1811 }
1812
kvm_gsi_routing_create(void)1813 struct kvm_irq_routing *kvm_gsi_routing_create(void)
1814 {
1815 struct kvm_irq_routing *routing;
1816 size_t size;
1817
1818 size = sizeof(struct kvm_irq_routing);
1819 /* Allocate space for the max number of entries: this wastes 196 KBs. */
1820 size += KVM_MAX_IRQ_ROUTES * sizeof(struct kvm_irq_routing_entry);
1821 routing = calloc(1, size);
1822 assert(routing);
1823
1824 return routing;
1825 }
1826
kvm_gsi_routing_irqchip_add(struct kvm_irq_routing * routing,uint32_t gsi,uint32_t pin)1827 void kvm_gsi_routing_irqchip_add(struct kvm_irq_routing *routing,
1828 uint32_t gsi, uint32_t pin)
1829 {
1830 int i;
1831
1832 assert(routing);
1833 assert(routing->nr < KVM_MAX_IRQ_ROUTES);
1834
1835 i = routing->nr;
1836 routing->entries[i].gsi = gsi;
1837 routing->entries[i].type = KVM_IRQ_ROUTING_IRQCHIP;
1838 routing->entries[i].flags = 0;
1839 routing->entries[i].u.irqchip.irqchip = 0;
1840 routing->entries[i].u.irqchip.pin = pin;
1841 routing->nr++;
1842 }
1843
_kvm_gsi_routing_write(struct kvm_vm * vm,struct kvm_irq_routing * routing)1844 int _kvm_gsi_routing_write(struct kvm_vm *vm, struct kvm_irq_routing *routing)
1845 {
1846 int ret;
1847
1848 assert(routing);
1849 ret = __vm_ioctl(vm, KVM_SET_GSI_ROUTING, routing);
1850 free(routing);
1851
1852 return ret;
1853 }
1854
kvm_gsi_routing_write(struct kvm_vm * vm,struct kvm_irq_routing * routing)1855 void kvm_gsi_routing_write(struct kvm_vm *vm, struct kvm_irq_routing *routing)
1856 {
1857 int ret;
1858
1859 ret = _kvm_gsi_routing_write(vm, routing);
1860 TEST_ASSERT(!ret, KVM_IOCTL_ERROR(KVM_SET_GSI_ROUTING, ret));
1861 }
1862
1863 /*
1864 * VM Dump
1865 *
1866 * Input Args:
1867 * vm - Virtual Machine
1868 * indent - Left margin indent amount
1869 *
1870 * Output Args:
1871 * stream - Output FILE stream
1872 *
1873 * Return: None
1874 *
1875 * Dumps the current state of the VM given by vm, to the FILE stream
1876 * given by stream.
1877 */
vm_dump(FILE * stream,struct kvm_vm * vm,uint8_t indent)1878 void vm_dump(FILE *stream, struct kvm_vm *vm, uint8_t indent)
1879 {
1880 int ctr;
1881 struct userspace_mem_region *region;
1882 struct kvm_vcpu *vcpu;
1883
1884 fprintf(stream, "%*smode: 0x%x\n", indent, "", vm->mode);
1885 fprintf(stream, "%*sfd: %i\n", indent, "", vm->fd);
1886 fprintf(stream, "%*spage_size: 0x%x\n", indent, "", vm->page_size);
1887 fprintf(stream, "%*sMem Regions:\n", indent, "");
1888 hash_for_each(vm->regions.slot_hash, ctr, region, slot_node) {
1889 fprintf(stream, "%*sguest_phys: 0x%lx size: 0x%lx "
1890 "host_virt: %p\n", indent + 2, "",
1891 (uint64_t) region->region.guest_phys_addr,
1892 (uint64_t) region->region.memory_size,
1893 region->host_mem);
1894 fprintf(stream, "%*sunused_phy_pages: ", indent + 2, "");
1895 sparsebit_dump(stream, region->unused_phy_pages, 0);
1896 if (region->protected_phy_pages) {
1897 fprintf(stream, "%*sprotected_phy_pages: ", indent + 2, "");
1898 sparsebit_dump(stream, region->protected_phy_pages, 0);
1899 }
1900 }
1901 fprintf(stream, "%*sMapped Virtual Pages:\n", indent, "");
1902 sparsebit_dump(stream, vm->vpages_mapped, indent + 2);
1903 fprintf(stream, "%*spgd_created: %u\n", indent, "",
1904 vm->pgd_created);
1905 if (vm->pgd_created) {
1906 fprintf(stream, "%*sVirtual Translation Tables:\n",
1907 indent + 2, "");
1908 virt_dump(stream, vm, indent + 4);
1909 }
1910 fprintf(stream, "%*sVCPUs:\n", indent, "");
1911
1912 list_for_each_entry(vcpu, &vm->vcpus, list)
1913 vcpu_dump(stream, vcpu, indent + 2);
1914 }
1915
1916 #define KVM_EXIT_STRING(x) {KVM_EXIT_##x, #x}
1917
1918 /* Known KVM exit reasons */
1919 static struct exit_reason {
1920 unsigned int reason;
1921 const char *name;
1922 } exit_reasons_known[] = {
1923 KVM_EXIT_STRING(UNKNOWN),
1924 KVM_EXIT_STRING(EXCEPTION),
1925 KVM_EXIT_STRING(IO),
1926 KVM_EXIT_STRING(HYPERCALL),
1927 KVM_EXIT_STRING(DEBUG),
1928 KVM_EXIT_STRING(HLT),
1929 KVM_EXIT_STRING(MMIO),
1930 KVM_EXIT_STRING(IRQ_WINDOW_OPEN),
1931 KVM_EXIT_STRING(SHUTDOWN),
1932 KVM_EXIT_STRING(FAIL_ENTRY),
1933 KVM_EXIT_STRING(INTR),
1934 KVM_EXIT_STRING(SET_TPR),
1935 KVM_EXIT_STRING(TPR_ACCESS),
1936 KVM_EXIT_STRING(S390_SIEIC),
1937 KVM_EXIT_STRING(S390_RESET),
1938 KVM_EXIT_STRING(DCR),
1939 KVM_EXIT_STRING(NMI),
1940 KVM_EXIT_STRING(INTERNAL_ERROR),
1941 KVM_EXIT_STRING(OSI),
1942 KVM_EXIT_STRING(PAPR_HCALL),
1943 KVM_EXIT_STRING(S390_UCONTROL),
1944 KVM_EXIT_STRING(WATCHDOG),
1945 KVM_EXIT_STRING(S390_TSCH),
1946 KVM_EXIT_STRING(EPR),
1947 KVM_EXIT_STRING(SYSTEM_EVENT),
1948 KVM_EXIT_STRING(S390_STSI),
1949 KVM_EXIT_STRING(IOAPIC_EOI),
1950 KVM_EXIT_STRING(HYPERV),
1951 KVM_EXIT_STRING(ARM_NISV),
1952 KVM_EXIT_STRING(X86_RDMSR),
1953 KVM_EXIT_STRING(X86_WRMSR),
1954 KVM_EXIT_STRING(DIRTY_RING_FULL),
1955 KVM_EXIT_STRING(AP_RESET_HOLD),
1956 KVM_EXIT_STRING(X86_BUS_LOCK),
1957 KVM_EXIT_STRING(XEN),
1958 KVM_EXIT_STRING(RISCV_SBI),
1959 KVM_EXIT_STRING(RISCV_CSR),
1960 KVM_EXIT_STRING(NOTIFY),
1961 #ifdef KVM_EXIT_MEMORY_NOT_PRESENT
1962 KVM_EXIT_STRING(MEMORY_NOT_PRESENT),
1963 #endif
1964 };
1965
1966 /*
1967 * Exit Reason String
1968 *
1969 * Input Args:
1970 * exit_reason - Exit reason
1971 *
1972 * Output Args: None
1973 *
1974 * Return:
1975 * Constant string pointer describing the exit reason.
1976 *
1977 * Locates and returns a constant string that describes the KVM exit
1978 * reason given by exit_reason. If no such string is found, a constant
1979 * string of "Unknown" is returned.
1980 */
exit_reason_str(unsigned int exit_reason)1981 const char *exit_reason_str(unsigned int exit_reason)
1982 {
1983 unsigned int n1;
1984
1985 for (n1 = 0; n1 < ARRAY_SIZE(exit_reasons_known); n1++) {
1986 if (exit_reason == exit_reasons_known[n1].reason)
1987 return exit_reasons_known[n1].name;
1988 }
1989
1990 return "Unknown";
1991 }
1992
1993 /*
1994 * Physical Contiguous Page Allocator
1995 *
1996 * Input Args:
1997 * vm - Virtual Machine
1998 * num - number of pages
1999 * paddr_min - Physical address minimum
2000 * memslot - Memory region to allocate page from
2001 * protected - True if the pages will be used as protected/private memory
2002 *
2003 * Output Args: None
2004 *
2005 * Return:
2006 * Starting physical address
2007 *
2008 * Within the VM specified by vm, locates a range of available physical
2009 * pages at or above paddr_min. If found, the pages are marked as in use
2010 * and their base address is returned. A TEST_ASSERT failure occurs if
2011 * not enough pages are available at or above paddr_min.
2012 */
__vm_phy_pages_alloc(struct kvm_vm * vm,size_t num,vm_paddr_t paddr_min,uint32_t memslot,bool protected)2013 vm_paddr_t __vm_phy_pages_alloc(struct kvm_vm *vm, size_t num,
2014 vm_paddr_t paddr_min, uint32_t memslot,
2015 bool protected)
2016 {
2017 struct userspace_mem_region *region;
2018 sparsebit_idx_t pg, base;
2019
2020 TEST_ASSERT(num > 0, "Must allocate at least one page");
2021
2022 TEST_ASSERT((paddr_min % vm->page_size) == 0, "Min physical address "
2023 "not divisible by page size.\n"
2024 " paddr_min: 0x%lx page_size: 0x%x",
2025 paddr_min, vm->page_size);
2026
2027 region = memslot2region(vm, memslot);
2028 TEST_ASSERT(!protected || region->protected_phy_pages,
2029 "Region doesn't support protected memory");
2030
2031 base = pg = paddr_min >> vm->page_shift;
2032 do {
2033 for (; pg < base + num; ++pg) {
2034 if (!sparsebit_is_set(region->unused_phy_pages, pg)) {
2035 base = pg = sparsebit_next_set(region->unused_phy_pages, pg);
2036 break;
2037 }
2038 }
2039 } while (pg && pg != base + num);
2040
2041 if (pg == 0) {
2042 fprintf(stderr, "No guest physical page available, "
2043 "paddr_min: 0x%lx page_size: 0x%x memslot: %u\n",
2044 paddr_min, vm->page_size, memslot);
2045 fputs("---- vm dump ----\n", stderr);
2046 vm_dump(stderr, vm, 2);
2047 abort();
2048 }
2049
2050 for (pg = base; pg < base + num; ++pg) {
2051 sparsebit_clear(region->unused_phy_pages, pg);
2052 if (protected)
2053 sparsebit_set(region->protected_phy_pages, pg);
2054 }
2055
2056 return base * vm->page_size;
2057 }
2058
vm_phy_page_alloc(struct kvm_vm * vm,vm_paddr_t paddr_min,uint32_t memslot)2059 vm_paddr_t vm_phy_page_alloc(struct kvm_vm *vm, vm_paddr_t paddr_min,
2060 uint32_t memslot)
2061 {
2062 return vm_phy_pages_alloc(vm, 1, paddr_min, memslot);
2063 }
2064
vm_alloc_page_table(struct kvm_vm * vm)2065 vm_paddr_t vm_alloc_page_table(struct kvm_vm *vm)
2066 {
2067 return vm_phy_page_alloc(vm, KVM_GUEST_PAGE_TABLE_MIN_PADDR,
2068 vm->memslots[MEM_REGION_PT]);
2069 }
2070
2071 /*
2072 * Address Guest Virtual to Host Virtual
2073 *
2074 * Input Args:
2075 * vm - Virtual Machine
2076 * gva - VM virtual address
2077 *
2078 * Output Args: None
2079 *
2080 * Return:
2081 * Equivalent host virtual address
2082 */
addr_gva2hva(struct kvm_vm * vm,vm_vaddr_t gva)2083 void *addr_gva2hva(struct kvm_vm *vm, vm_vaddr_t gva)
2084 {
2085 return addr_gpa2hva(vm, addr_gva2gpa(vm, gva));
2086 }
2087
vm_compute_max_gfn(struct kvm_vm * vm)2088 unsigned long __weak vm_compute_max_gfn(struct kvm_vm *vm)
2089 {
2090 return ((1ULL << vm->pa_bits) >> vm->page_shift) - 1;
2091 }
2092
vm_calc_num_pages(unsigned int num_pages,unsigned int page_shift,unsigned int new_page_shift,bool ceil)2093 static unsigned int vm_calc_num_pages(unsigned int num_pages,
2094 unsigned int page_shift,
2095 unsigned int new_page_shift,
2096 bool ceil)
2097 {
2098 unsigned int n = 1 << (new_page_shift - page_shift);
2099
2100 if (page_shift >= new_page_shift)
2101 return num_pages * (1 << (page_shift - new_page_shift));
2102
2103 return num_pages / n + !!(ceil && num_pages % n);
2104 }
2105
getpageshift(void)2106 static inline int getpageshift(void)
2107 {
2108 return __builtin_ffs(getpagesize()) - 1;
2109 }
2110
2111 unsigned int
vm_num_host_pages(enum vm_guest_mode mode,unsigned int num_guest_pages)2112 vm_num_host_pages(enum vm_guest_mode mode, unsigned int num_guest_pages)
2113 {
2114 return vm_calc_num_pages(num_guest_pages,
2115 vm_guest_mode_params[mode].page_shift,
2116 getpageshift(), true);
2117 }
2118
2119 unsigned int
vm_num_guest_pages(enum vm_guest_mode mode,unsigned int num_host_pages)2120 vm_num_guest_pages(enum vm_guest_mode mode, unsigned int num_host_pages)
2121 {
2122 return vm_calc_num_pages(num_host_pages, getpageshift(),
2123 vm_guest_mode_params[mode].page_shift, false);
2124 }
2125
vm_calc_num_guest_pages(enum vm_guest_mode mode,size_t size)2126 unsigned int vm_calc_num_guest_pages(enum vm_guest_mode mode, size_t size)
2127 {
2128 unsigned int n;
2129 n = DIV_ROUND_UP(size, vm_guest_mode_params[mode].page_size);
2130 return vm_adjust_num_guest_pages(mode, n);
2131 }
2132
2133 /*
2134 * Read binary stats descriptors
2135 *
2136 * Input Args:
2137 * stats_fd - the file descriptor for the binary stats file from which to read
2138 * header - the binary stats metadata header corresponding to the given FD
2139 *
2140 * Output Args: None
2141 *
2142 * Return:
2143 * A pointer to a newly allocated series of stat descriptors.
2144 * Caller is responsible for freeing the returned kvm_stats_desc.
2145 *
2146 * Read the stats descriptors from the binary stats interface.
2147 */
read_stats_descriptors(int stats_fd,struct kvm_stats_header * header)2148 struct kvm_stats_desc *read_stats_descriptors(int stats_fd,
2149 struct kvm_stats_header *header)
2150 {
2151 struct kvm_stats_desc *stats_desc;
2152 ssize_t desc_size, total_size, ret;
2153
2154 desc_size = get_stats_descriptor_size(header);
2155 total_size = header->num_desc * desc_size;
2156
2157 stats_desc = calloc(header->num_desc, desc_size);
2158 TEST_ASSERT(stats_desc, "Allocate memory for stats descriptors");
2159
2160 ret = pread(stats_fd, stats_desc, total_size, header->desc_offset);
2161 TEST_ASSERT(ret == total_size, "Read KVM stats descriptors");
2162
2163 return stats_desc;
2164 }
2165
2166 /*
2167 * Read stat data for a particular stat
2168 *
2169 * Input Args:
2170 * stats_fd - the file descriptor for the binary stats file from which to read
2171 * header - the binary stats metadata header corresponding to the given FD
2172 * desc - the binary stat metadata for the particular stat to be read
2173 * max_elements - the maximum number of 8-byte values to read into data
2174 *
2175 * Output Args:
2176 * data - the buffer into which stat data should be read
2177 *
2178 * Read the data values of a specified stat from the binary stats interface.
2179 */
read_stat_data(int stats_fd,struct kvm_stats_header * header,struct kvm_stats_desc * desc,uint64_t * data,size_t max_elements)2180 void read_stat_data(int stats_fd, struct kvm_stats_header *header,
2181 struct kvm_stats_desc *desc, uint64_t *data,
2182 size_t max_elements)
2183 {
2184 size_t nr_elements = min_t(ssize_t, desc->size, max_elements);
2185 size_t size = nr_elements * sizeof(*data);
2186 ssize_t ret;
2187
2188 TEST_ASSERT(desc->size, "No elements in stat '%s'", desc->name);
2189 TEST_ASSERT(max_elements, "Zero elements requested for stat '%s'", desc->name);
2190
2191 ret = pread(stats_fd, data, size,
2192 header->data_offset + desc->offset);
2193
2194 TEST_ASSERT(ret >= 0, "pread() failed on stat '%s', errno: %i (%s)",
2195 desc->name, errno, strerror(errno));
2196 TEST_ASSERT(ret == size,
2197 "pread() on stat '%s' read %ld bytes, wanted %lu bytes",
2198 desc->name, size, ret);
2199 }
2200
2201 /*
2202 * Read the data of the named stat
2203 *
2204 * Input Args:
2205 * vm - the VM for which the stat should be read
2206 * stat_name - the name of the stat to read
2207 * max_elements - the maximum number of 8-byte values to read into data
2208 *
2209 * Output Args:
2210 * data - the buffer into which stat data should be read
2211 *
2212 * Read the data values of a specified stat from the binary stats interface.
2213 */
__vm_get_stat(struct kvm_vm * vm,const char * stat_name,uint64_t * data,size_t max_elements)2214 void __vm_get_stat(struct kvm_vm *vm, const char *stat_name, uint64_t *data,
2215 size_t max_elements)
2216 {
2217 struct kvm_stats_desc *desc;
2218 size_t size_desc;
2219 int i;
2220
2221 if (!vm->stats_fd) {
2222 vm->stats_fd = vm_get_stats_fd(vm);
2223 read_stats_header(vm->stats_fd, &vm->stats_header);
2224 vm->stats_desc = read_stats_descriptors(vm->stats_fd,
2225 &vm->stats_header);
2226 }
2227
2228 size_desc = get_stats_descriptor_size(&vm->stats_header);
2229
2230 for (i = 0; i < vm->stats_header.num_desc; ++i) {
2231 desc = (void *)vm->stats_desc + (i * size_desc);
2232
2233 if (strcmp(desc->name, stat_name))
2234 continue;
2235
2236 read_stat_data(vm->stats_fd, &vm->stats_header, desc,
2237 data, max_elements);
2238
2239 break;
2240 }
2241 }
2242
kvm_arch_vm_post_create(struct kvm_vm * vm)2243 __weak void kvm_arch_vm_post_create(struct kvm_vm *vm)
2244 {
2245 }
2246
kvm_selftest_arch_init(void)2247 __weak void kvm_selftest_arch_init(void)
2248 {
2249 }
2250
kvm_selftest_init(void)2251 void __attribute((constructor)) kvm_selftest_init(void)
2252 {
2253 /* Tell stdout not to buffer its content. */
2254 setbuf(stdout, NULL);
2255
2256 guest_random_seed = last_guest_seed = random();
2257 pr_info("Random seed: 0x%x\n", guest_random_seed);
2258
2259 kvm_selftest_arch_init();
2260 }
2261
vm_is_gpa_protected(struct kvm_vm * vm,vm_paddr_t paddr)2262 bool vm_is_gpa_protected(struct kvm_vm *vm, vm_paddr_t paddr)
2263 {
2264 sparsebit_idx_t pg = 0;
2265 struct userspace_mem_region *region;
2266
2267 if (!vm_arch_has_protected_memory(vm))
2268 return false;
2269
2270 region = userspace_mem_region_find(vm, paddr, paddr);
2271 TEST_ASSERT(region, "No vm physical memory at 0x%lx", paddr);
2272
2273 pg = paddr >> vm->page_shift;
2274 return sparsebit_is_set(region->protected_phy_pages, pg);
2275 }
2276