1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * fill_buf benchmark
4 *
5 * Copyright (C) 2018 Intel Corporation
6 *
7 * Authors:
8 * Sai Praneeth Prakhya <[email protected]>,
9 * Fenghua Yu <[email protected]>
10 */
11 #include <stdio.h>
12 #include <unistd.h>
13 #include <stdlib.h>
14 #include <sys/types.h>
15 #include <sys/wait.h>
16 #include <inttypes.h>
17 #include <string.h>
18
19 #include "resctrl.h"
20
21 #define CL_SIZE (64)
22 #define PAGE_SIZE (4 * 1024)
23 #define MB (1024 * 1024)
24
sb(void)25 static void sb(void)
26 {
27 #if defined(__i386) || defined(__x86_64)
28 asm volatile("sfence\n\t"
29 : : : "memory");
30 #endif
31 }
32
cl_flush(void * p)33 static void cl_flush(void *p)
34 {
35 #if defined(__i386) || defined(__x86_64)
36 asm volatile("clflush (%0)\n\t"
37 : : "r"(p) : "memory");
38 #endif
39 }
40
mem_flush(unsigned char * buf,size_t buf_size)41 void mem_flush(unsigned char *buf, size_t buf_size)
42 {
43 unsigned char *cp = buf;
44 size_t i = 0;
45
46 buf_size = buf_size / CL_SIZE; /* mem size in cache lines */
47
48 for (i = 0; i < buf_size; i++)
49 cl_flush(&cp[i * CL_SIZE]);
50
51 sb();
52 }
53
54 /*
55 * Buffer index step advance to workaround HW prefetching interfering with
56 * the measurements.
57 *
58 * Must be a prime to step through all indexes of the buffer.
59 *
60 * Some primes work better than others on some architectures (from MBA/MBM
61 * result stability point of view).
62 */
63 #define FILL_IDX_MULT 23
64
fill_one_span_read(unsigned char * buf,size_t buf_size)65 static int fill_one_span_read(unsigned char *buf, size_t buf_size)
66 {
67 unsigned int size = buf_size / (CL_SIZE / 2);
68 unsigned int i, idx = 0;
69 unsigned char sum = 0;
70
71 /*
72 * Read the buffer in an order that is unexpected by HW prefetching
73 * optimizations to prevent them interfering with the caching pattern.
74 *
75 * The read order is (in terms of halves of cachelines):
76 * i * FILL_IDX_MULT % size
77 * The formula is open-coded below to avoiding modulo inside the loop
78 * as it improves MBA/MBM result stability on some architectures.
79 */
80 for (i = 0; i < size; i++) {
81 sum += buf[idx * (CL_SIZE / 2)];
82
83 idx += FILL_IDX_MULT;
84 while (idx >= size)
85 idx -= size;
86 }
87
88 return sum;
89 }
90
fill_cache_read(unsigned char * buf,size_t buf_size,bool once)91 void fill_cache_read(unsigned char *buf, size_t buf_size, bool once)
92 {
93 int ret = 0;
94
95 while (1) {
96 ret = fill_one_span_read(buf, buf_size);
97 if (once)
98 break;
99 }
100
101 /* Consume read result so that reading memory is not optimized out. */
102 *value_sink = ret;
103 }
104
alloc_buffer(size_t buf_size,bool memflush)105 unsigned char *alloc_buffer(size_t buf_size, bool memflush)
106 {
107 void *buf = NULL;
108 uint64_t *p64;
109 ssize_t s64;
110 int ret;
111
112 ret = posix_memalign(&buf, PAGE_SIZE, buf_size);
113 if (ret < 0)
114 return NULL;
115
116 /* Initialize the buffer */
117 p64 = buf;
118 s64 = buf_size / sizeof(uint64_t);
119
120 while (s64 > 0) {
121 *p64 = (uint64_t)rand();
122 p64 += (CL_SIZE / sizeof(uint64_t));
123 s64 -= (CL_SIZE / sizeof(uint64_t));
124 }
125
126 /* Flush the memory before using to avoid "cache hot pages" effect */
127 if (memflush)
128 mem_flush(buf, buf_size);
129
130 return buf;
131 }
132
get_fill_buf_size(int cpu_no,const char * cache_type)133 ssize_t get_fill_buf_size(int cpu_no, const char *cache_type)
134 {
135 unsigned long cache_total_size = 0;
136 int ret;
137
138 ret = get_cache_size(cpu_no, cache_type, &cache_total_size);
139 if (ret)
140 return ret;
141
142 return cache_total_size * 2 > MINIMUM_SPAN ?
143 cache_total_size * 2 : MINIMUM_SPAN;
144 }
145