xref: /openwifi/driver/xilinx_dma/xilinx_dma.c (revision b1dd94e38780b1645f1f7894c71908d8218f3d7f)
1 /*
2  * DMA driver for Xilinx Video DMA Engine
3  * SPDX-FileCopyrightText: Copyright (C) 2010-2014 Xilinx, Inc. All rights reserved
4  * Based on the Freescale DMA driver
5  * Modified by Xianjun Jiao
6  * SPDX-License-Identifier: GPL-2.0-or-later
7  *
8  * Description:
9  * The AXI Video Direct Memory Access (AXI VDMA) core is a soft Xilinx IP
10  * core that provides high-bandwidth direct memory access between memory
11  * and AXI4-Stream type video target peripherals. The core provides efficient
12  * two dimensional DMA operations with independent asynchronous read (S2MM)
13  * and write (MM2S) channel operation. It can be configured to have either
14  * one channel or two channels. If configured as two channels, one is to
15  * transmit to the video device (MM2S) and another is to receive from the
16  * video device (S2MM). Initialization, status, interrupt and management
17  * registers are accessed through an AXI4-Lite slave interface.
18  *
19  * The AXI Direct Memory Access (AXI DMA) core is a soft Xilinx IP core that
20  * provides high-bandwidth one dimensional direct memory access between memory
21  * and AXI4-Stream target peripherals. It supports one receive and one
22  * transmit channel, both of them optional at synthesis time.
23  *
24  * The AXI CDMA, is a soft IP, which provides high-bandwidth Direct Memory
25  * Access (DMA) between a memory-mapped source address and a memory-mapped
26  * destination address.
27  *
28  * This program is free software: you can redistribute it and/or modify
29  * it under the terms of the GNU General Public License as published by
30  * the Free Software Foundation, either version 2 of the License, or
31  * (at your option) any later version.
32  */
33 
34 #include <linux/bitops.h>
35 #include <linux/dmapool.h>
36 #include <linux/dma/xilinx_dma.h>
37 #include <linux/init.h>
38 #include <linux/interrupt.h>
39 #include <linux/io.h>
40 #include <linux/iopoll.h>
41 #include <linux/module.h>
42 #include <linux/of_address.h>
43 #include <linux/of_dma.h>
44 #include <linux/of_platform.h>
45 #include <linux/of_irq.h>
46 #include <linux/slab.h>
47 #include <linux/clk.h>
48 #include <linux/io-64-nonatomic-lo-hi.h>
49 
50 #include "../dmaengine.h"
51 
52 /* Register/Descriptor Offsets */
53 #define XILINX_DMA_MM2S_CTRL_OFFSET		0x0000
54 #define XILINX_DMA_S2MM_CTRL_OFFSET		0x0030
55 #define XILINX_VDMA_MM2S_DESC_OFFSET		0x0050
56 #define XILINX_VDMA_S2MM_DESC_OFFSET		0x00a0
57 
58 /* Control Registers */
59 #define XILINX_DMA_REG_DMACR			0x0000
60 #define XILINX_DMA_DMACR_DELAY_MAX		0xff
61 #define XILINX_DMA_DMACR_DELAY_SHIFT		24
62 #define XILINX_DMA_DMACR_FRAME_COUNT_MAX	0xff
63 #define XILINX_DMA_DMACR_FRAME_COUNT_SHIFT	16
64 #define XILINX_DMA_DMACR_ERR_IRQ		BIT(14)
65 #define XILINX_DMA_DMACR_DLY_CNT_IRQ		BIT(13)
66 #define XILINX_DMA_DMACR_FRM_CNT_IRQ		BIT(12)
67 #define XILINX_DMA_DMACR_MASTER_SHIFT		8
68 #define XILINX_DMA_DMACR_FSYNCSRC_SHIFT	5
69 #define XILINX_DMA_DMACR_FRAMECNT_EN		BIT(4)
70 #define XILINX_DMA_DMACR_GENLOCK_EN		BIT(3)
71 #define XILINX_DMA_DMACR_RESET			BIT(2)
72 #define XILINX_DMA_DMACR_CIRC_EN		BIT(1)
73 #define XILINX_DMA_DMACR_RUNSTOP		BIT(0)
74 #define XILINX_DMA_DMACR_FSYNCSRC_MASK		GENMASK(6, 5)
75 
76 #define XILINX_DMA_REG_DMASR			0x0004
77 #define XILINX_DMA_DMASR_EOL_LATE_ERR		BIT(15)
78 #define XILINX_DMA_DMASR_ERR_IRQ		BIT(14)
79 #define XILINX_DMA_DMASR_DLY_CNT_IRQ		BIT(13)
80 #define XILINX_DMA_DMASR_FRM_CNT_IRQ		BIT(12)
81 #define XILINX_DMA_DMASR_SOF_LATE_ERR		BIT(11)
82 #define XILINX_DMA_DMASR_SG_DEC_ERR		BIT(10)
83 #define XILINX_DMA_DMASR_SG_SLV_ERR		BIT(9)
84 #define XILINX_DMA_DMASR_EOF_EARLY_ERR		BIT(8)
85 #define XILINX_DMA_DMASR_SOF_EARLY_ERR		BIT(7)
86 #define XILINX_DMA_DMASR_DMA_DEC_ERR		BIT(6)
87 #define XILINX_DMA_DMASR_DMA_SLAVE_ERR		BIT(5)
88 #define XILINX_DMA_DMASR_DMA_INT_ERR		BIT(4)
89 #define XILINX_DMA_DMASR_IDLE			BIT(1)
90 #define XILINX_DMA_DMASR_HALTED		BIT(0)
91 #define XILINX_DMA_DMASR_DELAY_MASK		GENMASK(31, 24)
92 #define XILINX_DMA_DMASR_FRAME_COUNT_MASK	GENMASK(23, 16)
93 
94 #define XILINX_DMA_REG_CURDESC			0x0008
95 #define XILINX_DMA_REG_TAILDESC		0x0010
96 #define XILINX_DMA_REG_REG_INDEX		0x0014
97 #define XILINX_DMA_REG_FRMSTORE		0x0018
98 #define XILINX_DMA_REG_THRESHOLD		0x001c
99 #define XILINX_DMA_REG_FRMPTR_STS		0x0024
100 #define XILINX_DMA_REG_PARK_PTR		0x0028
101 #define XILINX_DMA_PARK_PTR_WR_REF_SHIFT	8
102 #define XILINX_DMA_PARK_PTR_WR_REF_MASK		GENMASK(12, 8)
103 #define XILINX_DMA_PARK_PTR_RD_REF_SHIFT	0
104 #define XILINX_DMA_PARK_PTR_RD_REF_MASK		GENMASK(4, 0)
105 #define XILINX_DMA_REG_VDMA_VERSION		0x002c
106 
107 /* Register Direct Mode Registers */
108 #define XILINX_DMA_REG_VSIZE			0x0000
109 #define XILINX_DMA_REG_HSIZE			0x0004
110 
111 #define XILINX_DMA_REG_FRMDLY_STRIDE		0x0008
112 #define XILINX_DMA_FRMDLY_STRIDE_FRMDLY_SHIFT	24
113 #define XILINX_DMA_FRMDLY_STRIDE_STRIDE_SHIFT	0
114 
115 #define XILINX_VDMA_REG_START_ADDRESS(n)	(0x000c + 4 * (n))
116 #define XILINX_VDMA_REG_START_ADDRESS_64(n)	(0x000c + 8 * (n))
117 
118 #define XILINX_VDMA_REG_ENABLE_VERTICAL_FLIP	0x00ec
119 #define XILINX_VDMA_ENABLE_VERTICAL_FLIP	BIT(0)
120 
121 /* HW specific definitions */
122 #define XILINX_DMA_MAX_CHANS_PER_DEVICE	0x20
123 
124 #define XILINX_DMA_DMAXR_ALL_IRQ_MASK	\
125 		(XILINX_DMA_DMASR_FRM_CNT_IRQ | \
126 		 XILINX_DMA_DMASR_DLY_CNT_IRQ | \
127 		 XILINX_DMA_DMASR_ERR_IRQ)
128 
129 #define XILINX_DMA_DMASR_ALL_ERR_MASK	\
130 		(XILINX_DMA_DMASR_EOL_LATE_ERR | \
131 		 XILINX_DMA_DMASR_SOF_LATE_ERR | \
132 		 XILINX_DMA_DMASR_SG_DEC_ERR | \
133 		 XILINX_DMA_DMASR_SG_SLV_ERR | \
134 		 XILINX_DMA_DMASR_EOF_EARLY_ERR | \
135 		 XILINX_DMA_DMASR_SOF_EARLY_ERR | \
136 		 XILINX_DMA_DMASR_DMA_DEC_ERR | \
137 		 XILINX_DMA_DMASR_DMA_SLAVE_ERR | \
138 		 XILINX_DMA_DMASR_DMA_INT_ERR)
139 
140 /*
141  * Recoverable errors are DMA Internal error, SOF Early, EOF Early
142  * and SOF Late. They are only recoverable when C_FLUSH_ON_FSYNC
143  * is enabled in the h/w system.
144  */
145 #define XILINX_DMA_DMASR_ERR_RECOVER_MASK	\
146 		(XILINX_DMA_DMASR_SOF_LATE_ERR | \
147 		 XILINX_DMA_DMASR_EOF_EARLY_ERR | \
148 		 XILINX_DMA_DMASR_SOF_EARLY_ERR | \
149 		 XILINX_DMA_DMASR_DMA_INT_ERR)
150 
151 /* Axi VDMA Flush on Fsync bits */
152 #define XILINX_DMA_FLUSH_S2MM		3
153 #define XILINX_DMA_FLUSH_MM2S		2
154 #define XILINX_DMA_FLUSH_BOTH		1
155 
156 /* Delay loop counter to prevent hardware failure */
157 #define XILINX_DMA_LOOP_COUNT		1000000
158 
159 /* AXI DMA Specific Registers/Offsets */
160 #define XILINX_DMA_REG_SRCDSTADDR	0x18
161 #define XILINX_DMA_REG_BTT		0x28
162 
163 /* AXI DMA Specific Masks/Bit fields */
164 #define XILINX_DMA_MAX_TRANS_LEN_MIN	8
165 #define XILINX_DMA_MAX_TRANS_LEN_MAX	23
166 #define XILINX_DMA_V2_MAX_TRANS_LEN_MAX	26
167 #define XILINX_DMA_CR_COALESCE_MAX	GENMASK(23, 16)
168 #define XILINX_DMA_CR_CYCLIC_BD_EN_MASK	BIT(4)
169 #define XILINX_DMA_CR_COALESCE_SHIFT	16
170 #define XILINX_DMA_BD_SOP		BIT(27)
171 #define XILINX_DMA_BD_EOP		BIT(26)
172 #define XILINX_DMA_COALESCE_MAX		255
173 #define XILINX_DMA_NUM_DESCS		255
174 #define XILINX_DMA_NUM_APP_WORDS	5
175 
176 /* Multi-Channel DMA Descriptor offsets*/
177 #define XILINX_DMA_MCRX_CDESC(x)	(0x40 + (x-1) * 0x20)
178 #define XILINX_DMA_MCRX_TDESC(x)	(0x48 + (x-1) * 0x20)
179 
180 /* Multi-Channel DMA Masks/Shifts */
181 #define XILINX_DMA_BD_HSIZE_MASK	GENMASK(15, 0)
182 #define XILINX_DMA_BD_STRIDE_MASK	GENMASK(15, 0)
183 #define XILINX_DMA_BD_VSIZE_MASK	GENMASK(31, 19)
184 #define XILINX_DMA_BD_TDEST_MASK	GENMASK(4, 0)
185 #define XILINX_DMA_BD_STRIDE_SHIFT	0
186 #define XILINX_DMA_BD_VSIZE_SHIFT	19
187 
188 /* AXI CDMA Specific Registers/Offsets */
189 #define XILINX_CDMA_REG_SRCADDR		0x18
190 #define XILINX_CDMA_REG_DSTADDR		0x20
191 
192 /* AXI CDMA Specific Masks */
193 #define XILINX_CDMA_CR_SGMODE          BIT(3)
194 
195 /**
196  * struct xilinx_vdma_desc_hw - Hardware Descriptor
197  * @next_desc: Next Descriptor Pointer @0x00
198  * @pad1: Reserved @0x04
199  * @buf_addr: Buffer address @0x08
200  * @buf_addr_msb: MSB of Buffer address @0x0C
201  * @vsize: Vertical Size @0x10
202  * @hsize: Horizontal Size @0x14
203  * @stride: Number of bytes between the first
204  *	    pixels of each horizontal line @0x18
205  */
206 struct xilinx_vdma_desc_hw {
207 	u32 next_desc;
208 	u32 pad1;
209 	u32 buf_addr;
210 	u32 buf_addr_msb;
211 	u32 vsize;
212 	u32 hsize;
213 	u32 stride;
214 } __aligned(64);
215 
216 /**
217  * struct xilinx_axidma_desc_hw - Hardware Descriptor for AXI DMA
218  * @next_desc: Next Descriptor Pointer @0x00
219  * @next_desc_msb: MSB of Next Descriptor Pointer @0x04
220  * @buf_addr: Buffer address @0x08
221  * @buf_addr_msb: MSB of Buffer address @0x0C
222  * @mcdma_control: Control field for mcdma @0x10
223  * @vsize_stride: Vsize and Stride field for mcdma @0x14
224  * @control: Control field @0x18
225  * @status: Status field @0x1C
226  * @app: APP Fields @0x20 - 0x30
227  */
228 struct xilinx_axidma_desc_hw {
229 	u32 next_desc;
230 	u32 next_desc_msb;
231 	u32 buf_addr;
232 	u32 buf_addr_msb;
233 	u32 mcdma_control;
234 	u32 vsize_stride;
235 	u32 control;
236 	u32 status;
237 	u32 app[XILINX_DMA_NUM_APP_WORDS];
238 } __aligned(64);
239 
240 /**
241  * struct xilinx_cdma_desc_hw - Hardware Descriptor
242  * @next_desc: Next Descriptor Pointer @0x00
243  * @next_desc_msb: Next Descriptor Pointer MSB @0x04
244  * @src_addr: Source address @0x08
245  * @src_addr_msb: Source address MSB @0x0C
246  * @dest_addr: Destination address @0x10
247  * @dest_addr_msb: Destination address MSB @0x14
248  * @control: Control field @0x18
249  * @status: Status field @0x1C
250  */
251 struct xilinx_cdma_desc_hw {
252 	u32 next_desc;
253 	u32 next_desc_msb;
254 	u32 src_addr;
255 	u32 src_addr_msb;
256 	u32 dest_addr;
257 	u32 dest_addr_msb;
258 	u32 control;
259 	u32 status;
260 } __aligned(64);
261 
262 /**
263  * struct xilinx_vdma_tx_segment - Descriptor segment
264  * @hw: Hardware descriptor
265  * @node: Node in the descriptor segments list
266  * @phys: Physical address of segment
267  */
268 struct xilinx_vdma_tx_segment {
269 	struct xilinx_vdma_desc_hw hw;
270 	struct list_head node;
271 	dma_addr_t phys;
272 } __aligned(64);
273 
274 /**
275  * struct xilinx_axidma_tx_segment - Descriptor segment
276  * @hw: Hardware descriptor
277  * @node: Node in the descriptor segments list
278  * @phys: Physical address of segment
279  */
280 struct xilinx_axidma_tx_segment {
281 	struct xilinx_axidma_desc_hw hw;
282 	struct list_head node;
283 	dma_addr_t phys;
284 } __aligned(64);
285 
286 /**
287  * struct xilinx_cdma_tx_segment - Descriptor segment
288  * @hw: Hardware descriptor
289  * @node: Node in the descriptor segments list
290  * @phys: Physical address of segment
291  */
292 struct xilinx_cdma_tx_segment {
293 	struct xilinx_cdma_desc_hw hw;
294 	struct list_head node;
295 	dma_addr_t phys;
296 } __aligned(64);
297 
298 /**
299  * struct xilinx_dma_tx_descriptor - Per Transaction structure
300  * @async_tx: Async transaction descriptor
301  * @segments: TX segments list
302  * @node: Node in the channel descriptors list
303  * @cyclic: Check for cyclic transfers.
304  */
305 struct xilinx_dma_tx_descriptor {
306 	struct dma_async_tx_descriptor async_tx;
307 	struct list_head segments;
308 	struct list_head node;
309 	bool cyclic;
310 };
311 
312 /**
313  * struct xilinx_dma_chan - Driver specific DMA channel structure
314  * @xdev: Driver specific device structure
315  * @ctrl_offset: Control registers offset
316  * @desc_offset: TX descriptor registers offset
317  * @lock: Descriptor operation lock
318  * @pending_list: Descriptors waiting
319  * @active_list: Descriptors ready to submit
320  * @done_list: Complete descriptors
321  * @free_seg_list: Free descriptors
322  * @common: DMA common channel
323  * @desc_pool: Descriptors pool
324  * @dev: The dma device
325  * @irq: Channel IRQ
326  * @id: Channel ID
327  * @direction: Transfer direction
328  * @num_frms: Number of frames
329  * @has_sg: Support scatter transfers
330  * @cyclic: Check for cyclic transfers.
331  * @genlock: Support genlock mode
332  * @err: Channel has errors
333  * @idle: Check for channel idle
334  * @tasklet: Cleanup work after irq
335  * @config: Device configuration info
336  * @flush_on_fsync: Flush on Frame sync
337  * @desc_pendingcount: Descriptor pending count
338  * @ext_addr: Indicates 64 bit addressing is supported by dma channel
339  * @desc_submitcount: Descriptor h/w submitted count
340  * @residue: Residue for AXI DMA
341  * @seg_v: Statically allocated segments base
342  * @seg_p: Physical allocated segments base
343  * @cyclic_seg_v: Statically allocated segment base for cyclic transfers
344  * @cyclic_seg_p: Physical allocated segments base for cyclic dma
345  * @start_transfer: Differentiate b/w DMA IP's transfer
346  * @stop_transfer: Differentiate b/w DMA IP's quiesce
347  * @tdest: TDEST value for mcdma
348  * @has_vflip: S2MM vertical flip
349  */
350 struct xilinx_dma_chan {
351 	struct xilinx_dma_device *xdev;
352 	u32 ctrl_offset;
353 	u32 desc_offset;
354 	spinlock_t lock;
355 	struct list_head pending_list;
356 	struct list_head active_list;
357 	struct list_head done_list;
358 	struct list_head free_seg_list;
359 	struct dma_chan common;
360 	struct dma_pool *desc_pool;
361 	struct device *dev;
362 	int irq;
363 	int id;
364 	enum dma_transfer_direction direction;
365 	int num_frms;
366 	bool has_sg;
367 	bool cyclic;
368 	bool genlock;
369 	bool err;
370 	bool idle;
371 	struct tasklet_struct tasklet;
372 	struct xilinx_vdma_config config;
373 	bool flush_on_fsync;
374 	u32 desc_pendingcount;
375 	bool ext_addr;
376 	u32 desc_submitcount;
377 	u32 residue;
378 	struct xilinx_axidma_tx_segment *seg_v;
379 	dma_addr_t seg_p;
380 	struct xilinx_axidma_tx_segment *cyclic_seg_v;
381 	dma_addr_t cyclic_seg_p;
382 	void (*start_transfer)(struct xilinx_dma_chan *chan);
383 	int (*stop_transfer)(struct xilinx_dma_chan *chan);
384 	u16 tdest;
385 	bool has_vflip;
386 	u32 buf_idx; // each irq this value increase 1. in cyclic mode, we use residue return this idx via device_tx_status/xilinx_dma_tx_status
387 };
388 
389 /**
390  * enum xdma_ip_type - DMA IP type.
391  *
392  * @XDMA_TYPE_AXIDMA: Axi dma ip.
393  * @XDMA_TYPE_CDMA: Axi cdma ip.
394  * @XDMA_TYPE_VDMA: Axi vdma ip.
395  *
396  */
397 enum xdma_ip_type {
398 	XDMA_TYPE_AXIDMA = 0,
399 	XDMA_TYPE_CDMA,
400 	XDMA_TYPE_VDMA,
401 };
402 
403 struct xilinx_dma_config {
404 	enum xdma_ip_type dmatype;
405 	int (*clk_init)(struct platform_device *pdev, struct clk **axi_clk,
406 			struct clk **tx_clk, struct clk **txs_clk,
407 			struct clk **rx_clk, struct clk **rxs_clk);
408 };
409 
410 /**
411  * struct xilinx_dma_device - DMA device structure
412  * @regs: I/O mapped base address
413  * @dev: Device Structure
414  * @common: DMA device structure
415  * @chan: Driver specific DMA channel
416  * @has_sg: Specifies whether Scatter-Gather is present or not
417  * @mcdma: Specifies whether Multi-Channel is present or not
418  * @flush_on_fsync: Flush on frame sync
419  * @ext_addr: Indicates 64 bit addressing is supported by dma device
420  * @pdev: Platform device structure pointer
421  * @dma_config: DMA config structure
422  * @axi_clk: DMA Axi4-lite interface clock
423  * @tx_clk: DMA mm2s clock
424  * @txs_clk: DMA mm2s stream clock
425  * @rx_clk: DMA s2mm clock
426  * @rxs_clk: DMA s2mm stream clock
427  * @nr_channels: Number of channels DMA device supports
428  * @chan_id: DMA channel identifier
429  * @max_buffer_len: Max buffer length
430  */
431 struct xilinx_dma_device {
432 	void __iomem *regs;
433 	struct device *dev;
434 	struct dma_device common;
435 	struct xilinx_dma_chan *chan[XILINX_DMA_MAX_CHANS_PER_DEVICE];
436 	bool has_sg;
437 	bool mcdma;
438 	u32 flush_on_fsync;
439 	bool ext_addr;
440 	struct platform_device  *pdev;
441 	const struct xilinx_dma_config *dma_config;
442 	struct clk *axi_clk;
443 	struct clk *tx_clk;
444 	struct clk *txs_clk;
445 	struct clk *rx_clk;
446 	struct clk *rxs_clk;
447 	u32 nr_channels;
448 	u32 chan_id;
449 	u32 max_buffer_len;
450 };
451 
452 /* Macros */
453 #define to_xilinx_chan(chan) \
454 	container_of(chan, struct xilinx_dma_chan, common)
455 #define to_dma_tx_descriptor(tx) \
456 	container_of(tx, struct xilinx_dma_tx_descriptor, async_tx)
457 #define xilinx_dma_poll_timeout(chan, reg, val, cond, delay_us, timeout_us) \
458 	readl_poll_timeout(chan->xdev->regs + chan->ctrl_offset + reg, val, \
459 			   cond, delay_us, timeout_us)
460 
461 /* IO accessors */
dma_read(struct xilinx_dma_chan * chan,u32 reg)462 static inline u32 dma_read(struct xilinx_dma_chan *chan, u32 reg)
463 {
464 	return ioread32(chan->xdev->regs + reg);
465 }
466 
dma_write(struct xilinx_dma_chan * chan,u32 reg,u32 value)467 static inline void dma_write(struct xilinx_dma_chan *chan, u32 reg, u32 value)
468 {
469 	iowrite32(value, chan->xdev->regs + reg);
470 }
471 
vdma_desc_write(struct xilinx_dma_chan * chan,u32 reg,u32 value)472 static inline void vdma_desc_write(struct xilinx_dma_chan *chan, u32 reg,
473 				   u32 value)
474 {
475 	dma_write(chan, chan->desc_offset + reg, value);
476 }
477 
dma_ctrl_read(struct xilinx_dma_chan * chan,u32 reg)478 static inline u32 dma_ctrl_read(struct xilinx_dma_chan *chan, u32 reg)
479 {
480 	return dma_read(chan, chan->ctrl_offset + reg);
481 }
482 
dma_ctrl_write(struct xilinx_dma_chan * chan,u32 reg,u32 value)483 static inline void dma_ctrl_write(struct xilinx_dma_chan *chan, u32 reg,
484 				   u32 value)
485 {
486 	dma_write(chan, chan->ctrl_offset + reg, value);
487 }
488 
dma_ctrl_clr(struct xilinx_dma_chan * chan,u32 reg,u32 clr)489 static inline void dma_ctrl_clr(struct xilinx_dma_chan *chan, u32 reg,
490 				 u32 clr)
491 {
492 	dma_ctrl_write(chan, reg, dma_ctrl_read(chan, reg) & ~clr);
493 }
494 
dma_ctrl_set(struct xilinx_dma_chan * chan,u32 reg,u32 set)495 static inline void dma_ctrl_set(struct xilinx_dma_chan *chan, u32 reg,
496 				 u32 set)
497 {
498 	dma_ctrl_write(chan, reg, dma_ctrl_read(chan, reg) | set);
499 }
500 
501 /**
502  * vdma_desc_write_64 - 64-bit descriptor write
503  * @chan: Driver specific VDMA channel
504  * @reg: Register to write
505  * @value_lsb: lower address of the descriptor.
506  * @value_msb: upper address of the descriptor.
507  *
508  * Since vdma driver is trying to write to a register offset which is not a
509  * multiple of 64 bits(ex : 0x5c), we are writing as two separate 32 bits
510  * instead of a single 64 bit register write.
511  */
vdma_desc_write_64(struct xilinx_dma_chan * chan,u32 reg,u32 value_lsb,u32 value_msb)512 static inline void vdma_desc_write_64(struct xilinx_dma_chan *chan, u32 reg,
513 				      u32 value_lsb, u32 value_msb)
514 {
515 	/* Write the lsb 32 bits*/
516 	writel(value_lsb, chan->xdev->regs + chan->desc_offset + reg);
517 
518 	/* Write the msb 32 bits */
519 	writel(value_msb, chan->xdev->regs + chan->desc_offset + reg + 4);
520 }
521 
dma_writeq(struct xilinx_dma_chan * chan,u32 reg,u64 value)522 static inline void dma_writeq(struct xilinx_dma_chan *chan, u32 reg, u64 value)
523 {
524 	lo_hi_writeq(value, chan->xdev->regs + chan->ctrl_offset + reg);
525 }
526 
xilinx_write(struct xilinx_dma_chan * chan,u32 reg,dma_addr_t addr)527 static inline void xilinx_write(struct xilinx_dma_chan *chan, u32 reg,
528 				dma_addr_t addr)
529 {
530 	if (chan->ext_addr)
531 		dma_writeq(chan, reg, addr);
532 	else
533 		dma_ctrl_write(chan, reg, addr);
534 }
535 
xilinx_axidma_buf(struct xilinx_dma_chan * chan,struct xilinx_axidma_desc_hw * hw,dma_addr_t buf_addr,size_t sg_used,size_t period_len)536 static inline void xilinx_axidma_buf(struct xilinx_dma_chan *chan,
537 				     struct xilinx_axidma_desc_hw *hw,
538 				     dma_addr_t buf_addr, size_t sg_used,
539 				     size_t period_len)
540 {
541 	if (chan->ext_addr) {
542 		hw->buf_addr = lower_32_bits(buf_addr + sg_used + period_len);
543 		hw->buf_addr_msb = upper_32_bits(buf_addr + sg_used +
544 						 period_len);
545 	} else {
546 		hw->buf_addr = buf_addr + sg_used + period_len;
547 	}
548 }
549 
550 /* -----------------------------------------------------------------------------
551  * Descriptors and segments alloc and free
552  */
553 
554 /**
555  * xilinx_vdma_alloc_tx_segment - Allocate transaction segment
556  * @chan: Driver specific DMA channel
557  *
558  * Return: The allocated segment on success and NULL on failure.
559  */
560 static struct xilinx_vdma_tx_segment *
xilinx_vdma_alloc_tx_segment(struct xilinx_dma_chan * chan)561 xilinx_vdma_alloc_tx_segment(struct xilinx_dma_chan *chan)
562 {
563 	struct xilinx_vdma_tx_segment *segment;
564 	dma_addr_t phys;
565 
566 	segment = dma_pool_zalloc(chan->desc_pool, GFP_ATOMIC, &phys);
567 	if (!segment)
568 		return NULL;
569 
570 	segment->phys = phys;
571 
572 	return segment;
573 }
574 
575 /**
576  * xilinx_cdma_alloc_tx_segment - Allocate transaction segment
577  * @chan: Driver specific DMA channel
578  *
579  * Return: The allocated segment on success and NULL on failure.
580  */
581 static struct xilinx_cdma_tx_segment *
xilinx_cdma_alloc_tx_segment(struct xilinx_dma_chan * chan)582 xilinx_cdma_alloc_tx_segment(struct xilinx_dma_chan *chan)
583 {
584 	struct xilinx_cdma_tx_segment *segment;
585 	dma_addr_t phys;
586 
587 	segment = dma_pool_zalloc(chan->desc_pool, GFP_ATOMIC, &phys);
588 	if (!segment)
589 		return NULL;
590 
591 	segment->phys = phys;
592 
593 	return segment;
594 }
595 
596 /**
597  * xilinx_axidma_alloc_tx_segment - Allocate transaction segment
598  * @chan: Driver specific DMA channel
599  *
600  * Return: The allocated segment on success and NULL on failure.
601  */
602 static struct xilinx_axidma_tx_segment *
xilinx_axidma_alloc_tx_segment(struct xilinx_dma_chan * chan)603 xilinx_axidma_alloc_tx_segment(struct xilinx_dma_chan *chan)
604 {
605 	struct xilinx_axidma_tx_segment *segment = NULL;
606 	unsigned long flags;
607 
608 	spin_lock_irqsave(&chan->lock, flags);
609 	if (!list_empty(&chan->free_seg_list)) {
610 		segment = list_first_entry(&chan->free_seg_list,
611 					   struct xilinx_axidma_tx_segment,
612 					   node);
613 		list_del(&segment->node);
614 	}
615 	spin_unlock_irqrestore(&chan->lock, flags);
616 
617 	return segment;
618 }
619 
xilinx_dma_clean_hw_desc(struct xilinx_axidma_desc_hw * hw)620 static void xilinx_dma_clean_hw_desc(struct xilinx_axidma_desc_hw *hw)
621 {
622 	u32 next_desc = hw->next_desc;
623 	u32 next_desc_msb = hw->next_desc_msb;
624 
625 	memset(hw, 0, sizeof(struct xilinx_axidma_desc_hw));
626 
627 	hw->next_desc = next_desc;
628 	hw->next_desc_msb = next_desc_msb;
629 }
630 
631 /**
632  * xilinx_dma_free_tx_segment - Free transaction segment
633  * @chan: Driver specific DMA channel
634  * @segment: DMA transaction segment
635  */
xilinx_dma_free_tx_segment(struct xilinx_dma_chan * chan,struct xilinx_axidma_tx_segment * segment)636 static void xilinx_dma_free_tx_segment(struct xilinx_dma_chan *chan,
637 				struct xilinx_axidma_tx_segment *segment)
638 {
639 	xilinx_dma_clean_hw_desc(&segment->hw);
640 
641 	list_add_tail(&segment->node, &chan->free_seg_list);
642 }
643 
644 /**
645  * xilinx_cdma_free_tx_segment - Free transaction segment
646  * @chan: Driver specific DMA channel
647  * @segment: DMA transaction segment
648  */
xilinx_cdma_free_tx_segment(struct xilinx_dma_chan * chan,struct xilinx_cdma_tx_segment * segment)649 static void xilinx_cdma_free_tx_segment(struct xilinx_dma_chan *chan,
650 				struct xilinx_cdma_tx_segment *segment)
651 {
652 	dma_pool_free(chan->desc_pool, segment, segment->phys);
653 }
654 
655 /**
656  * xilinx_vdma_free_tx_segment - Free transaction segment
657  * @chan: Driver specific DMA channel
658  * @segment: DMA transaction segment
659  */
xilinx_vdma_free_tx_segment(struct xilinx_dma_chan * chan,struct xilinx_vdma_tx_segment * segment)660 static void xilinx_vdma_free_tx_segment(struct xilinx_dma_chan *chan,
661 					struct xilinx_vdma_tx_segment *segment)
662 {
663 	dma_pool_free(chan->desc_pool, segment, segment->phys);
664 }
665 
666 /**
667  * xilinx_dma_tx_descriptor - Allocate transaction descriptor
668  * @chan: Driver specific DMA channel
669  *
670  * Return: The allocated descriptor on success and NULL on failure.
671  */
672 static struct xilinx_dma_tx_descriptor *
xilinx_dma_alloc_tx_descriptor(struct xilinx_dma_chan * chan)673 xilinx_dma_alloc_tx_descriptor(struct xilinx_dma_chan *chan)
674 {
675 	struct xilinx_dma_tx_descriptor *desc;
676 
677 	desc = kzalloc(sizeof(*desc), GFP_KERNEL);
678 	if (!desc)
679 		return NULL;
680 
681 	INIT_LIST_HEAD(&desc->segments);
682 
683 	return desc;
684 }
685 
686 /**
687  * xilinx_dma_free_tx_descriptor - Free transaction descriptor
688  * @chan: Driver specific DMA channel
689  * @desc: DMA transaction descriptor
690  */
691 static void
xilinx_dma_free_tx_descriptor(struct xilinx_dma_chan * chan,struct xilinx_dma_tx_descriptor * desc)692 xilinx_dma_free_tx_descriptor(struct xilinx_dma_chan *chan,
693 			       struct xilinx_dma_tx_descriptor *desc)
694 {
695 	struct xilinx_vdma_tx_segment *segment, *next;
696 	struct xilinx_cdma_tx_segment *cdma_segment, *cdma_next;
697 	struct xilinx_axidma_tx_segment *axidma_segment, *axidma_next;
698 
699 	if (!desc)
700 		return;
701 
702 	if (chan->xdev->dma_config->dmatype == XDMA_TYPE_VDMA) {
703 		list_for_each_entry_safe(segment, next, &desc->segments, node) {
704 			list_del(&segment->node);
705 			xilinx_vdma_free_tx_segment(chan, segment);
706 		}
707 	} else if (chan->xdev->dma_config->dmatype == XDMA_TYPE_CDMA) {
708 		list_for_each_entry_safe(cdma_segment, cdma_next,
709 					 &desc->segments, node) {
710 			list_del(&cdma_segment->node);
711 			xilinx_cdma_free_tx_segment(chan, cdma_segment);
712 		}
713 	} else {
714 		list_for_each_entry_safe(axidma_segment, axidma_next,
715 					 &desc->segments, node) {
716 			list_del(&axidma_segment->node);
717 			xilinx_dma_free_tx_segment(chan, axidma_segment);
718 		}
719 	}
720 
721 	kfree(desc);
722 }
723 
724 /* Required functions */
725 
726 /**
727  * xilinx_dma_free_desc_list - Free descriptors list
728  * @chan: Driver specific DMA channel
729  * @list: List to parse and delete the descriptor
730  */
xilinx_dma_free_desc_list(struct xilinx_dma_chan * chan,struct list_head * list)731 static void xilinx_dma_free_desc_list(struct xilinx_dma_chan *chan,
732 					struct list_head *list)
733 {
734 	struct xilinx_dma_tx_descriptor *desc, *next;
735 
736 	list_for_each_entry_safe(desc, next, list, node) {
737 		list_del(&desc->node);
738 		xilinx_dma_free_tx_descriptor(chan, desc);
739 	}
740 }
741 
742 /**
743  * xilinx_dma_free_descriptors - Free channel descriptors
744  * @chan: Driver specific DMA channel
745  */
xilinx_dma_free_descriptors(struct xilinx_dma_chan * chan)746 static void xilinx_dma_free_descriptors(struct xilinx_dma_chan *chan)
747 {
748 	unsigned long flags;
749 
750 	spin_lock_irqsave(&chan->lock, flags);
751 
752 	xilinx_dma_free_desc_list(chan, &chan->pending_list);
753 	xilinx_dma_free_desc_list(chan, &chan->done_list);
754 	xilinx_dma_free_desc_list(chan, &chan->active_list);
755 
756 	spin_unlock_irqrestore(&chan->lock, flags);
757 }
758 
759 /**
760  * xilinx_dma_free_chan_resources - Free channel resources
761  * @dchan: DMA channel
762  */
xilinx_dma_free_chan_resources(struct dma_chan * dchan)763 static void xilinx_dma_free_chan_resources(struct dma_chan *dchan)
764 {
765 	struct xilinx_dma_chan *chan = to_xilinx_chan(dchan);
766 	unsigned long flags;
767 
768 	dev_dbg(chan->dev, "Free all channel resources.\n");
769 
770 	xilinx_dma_free_descriptors(chan);
771 
772 	if (chan->xdev->dma_config->dmatype == XDMA_TYPE_AXIDMA) {
773 		spin_lock_irqsave(&chan->lock, flags);
774 		INIT_LIST_HEAD(&chan->free_seg_list);
775 		spin_unlock_irqrestore(&chan->lock, flags);
776 
777 		/* Free memory that is allocated for BD */
778 		dma_free_coherent(chan->dev, sizeof(*chan->seg_v) *
779 				  XILINX_DMA_NUM_DESCS, chan->seg_v,
780 				  chan->seg_p);
781 
782 		/* Free Memory that is allocated for cyclic DMA Mode */
783 		dma_free_coherent(chan->dev, sizeof(*chan->cyclic_seg_v),
784 				  chan->cyclic_seg_v, chan->cyclic_seg_p);
785 	}
786 
787 	if (chan->xdev->dma_config->dmatype != XDMA_TYPE_AXIDMA) {
788 		dma_pool_destroy(chan->desc_pool);
789 		chan->desc_pool = NULL;
790 	}
791 }
792 
793 /**
794  * xilinx_dma_chan_handle_cyclic - Cyclic dma callback
795  * @chan: Driver specific dma channel
796  * @desc: dma transaction descriptor
797  * @flags: flags for spin lock
798  */
xilinx_dma_chan_handle_cyclic(struct xilinx_dma_chan * chan,struct xilinx_dma_tx_descriptor * desc,unsigned long * flags)799 static void xilinx_dma_chan_handle_cyclic(struct xilinx_dma_chan *chan,
800 					  struct xilinx_dma_tx_descriptor *desc,
801 					  unsigned long *flags)
802 {
803 	dma_async_tx_callback callback;
804 	void *callback_param;
805 
806 	callback = desc->async_tx.callback;
807 	callback_param = desc->async_tx.callback_param;
808 	if (callback) {
809 		spin_unlock_irqrestore(&chan->lock, *flags);
810 		callback(callback_param);
811 		spin_lock_irqsave(&chan->lock, *flags);
812 	}
813 }
814 
815 /**
816  * xilinx_dma_chan_desc_cleanup - Clean channel descriptors
817  * @chan: Driver specific DMA channel
818  */
xilinx_dma_chan_desc_cleanup(struct xilinx_dma_chan * chan)819 static void xilinx_dma_chan_desc_cleanup(struct xilinx_dma_chan *chan)
820 {
821 	struct xilinx_dma_tx_descriptor *desc, *next;
822 	unsigned long flags;
823 
824 	spin_lock_irqsave(&chan->lock, flags);
825 
826 	list_for_each_entry_safe(desc, next, &chan->done_list, node) {
827 		struct dmaengine_desc_callback cb;
828 
829 		if (desc->cyclic) {
830 			xilinx_dma_chan_handle_cyclic(chan, desc, &flags);
831 			break;
832 		}
833 
834 		/* Remove from the list of running transactions */
835 		list_del(&desc->node);
836 
837 		/* Run the link descriptor callback function */
838 		dmaengine_desc_get_callback(&desc->async_tx, &cb);
839 		if (dmaengine_desc_callback_valid(&cb)) {
840 			spin_unlock_irqrestore(&chan->lock, flags);
841 			dmaengine_desc_callback_invoke(&cb, NULL);
842 			spin_lock_irqsave(&chan->lock, flags);
843 		}
844 
845 		/* Run any dependencies, then free the descriptor */
846 		dma_run_dependencies(&desc->async_tx);
847 		xilinx_dma_free_tx_descriptor(chan, desc);
848 	}
849 
850 	spin_unlock_irqrestore(&chan->lock, flags);
851 }
852 
853 /**
854  * xilinx_dma_do_tasklet - Schedule completion tasklet
855  * @data: Pointer to the Xilinx DMA channel structure
856  */
xilinx_dma_do_tasklet(unsigned long data)857 static void xilinx_dma_do_tasklet(unsigned long data)
858 {
859 	struct xilinx_dma_chan *chan = (struct xilinx_dma_chan *)data;
860 
861 	xilinx_dma_chan_desc_cleanup(chan);
862 }
863 
864 /**
865  * xilinx_dma_alloc_chan_resources - Allocate channel resources
866  * @dchan: DMA channel
867  *
868  * Return: '0' on success and failure value on error
869  */
xilinx_dma_alloc_chan_resources(struct dma_chan * dchan)870 static int xilinx_dma_alloc_chan_resources(struct dma_chan *dchan)
871 {
872 	struct xilinx_dma_chan *chan = to_xilinx_chan(dchan);
873 	int i;
874 
875 	/* Has this channel already been allocated? */
876 	if (chan->desc_pool)
877 		return 0;
878 
879 	/*
880 	 * We need the descriptor to be aligned to 64bytes
881 	 * for meeting Xilinx VDMA specification requirement.
882 	 */
883 	if (chan->xdev->dma_config->dmatype == XDMA_TYPE_AXIDMA) {
884 		/* Allocate the buffer descriptors. */
885 		chan->seg_v = dma_zalloc_coherent(chan->dev,
886 						  sizeof(*chan->seg_v) *
887 						  XILINX_DMA_NUM_DESCS,
888 						  &chan->seg_p, GFP_KERNEL);
889 		if (!chan->seg_v) {
890 			dev_err(chan->dev,
891 				"unable to allocate channel %d descriptors\n",
892 				chan->id);
893 			return -ENOMEM;
894 		}
895 		/*
896 		 * For cyclic DMA mode we need to program the tail Descriptor
897 		 * register with a value which is not a part of the BD chain
898 		 * so allocating a desc segment during channel allocation for
899 		 * programming tail descriptor.
900 		 */
901 		chan->cyclic_seg_v = dma_zalloc_coherent(chan->dev,
902 					sizeof(*chan->cyclic_seg_v),
903 					&chan->cyclic_seg_p, GFP_KERNEL);
904 		if (!chan->cyclic_seg_v) {
905 			dev_err(chan->dev,
906 				"unable to allocate desc segment for cyclic DMA\n");
907 			dma_free_coherent(chan->dev, sizeof(*chan->seg_v) *
908 				XILINX_DMA_NUM_DESCS, chan->seg_v,
909 				chan->seg_p);
910 			return -ENOMEM;
911 		}
912 		chan->cyclic_seg_v->phys = chan->cyclic_seg_p;
913 
914 		for (i = 0; i < XILINX_DMA_NUM_DESCS; i++) {
915 			chan->seg_v[i].hw.next_desc =
916 			lower_32_bits(chan->seg_p + sizeof(*chan->seg_v) *
917 				((i + 1) % XILINX_DMA_NUM_DESCS));
918 			chan->seg_v[i].hw.next_desc_msb =
919 			upper_32_bits(chan->seg_p + sizeof(*chan->seg_v) *
920 				((i + 1) % XILINX_DMA_NUM_DESCS));
921 			chan->seg_v[i].phys = chan->seg_p +
922 				sizeof(*chan->seg_v) * i;
923 			list_add_tail(&chan->seg_v[i].node,
924 				      &chan->free_seg_list);
925 		}
926 	} else if (chan->xdev->dma_config->dmatype == XDMA_TYPE_CDMA) {
927 		chan->desc_pool = dma_pool_create("xilinx_cdma_desc_pool",
928 				   chan->dev,
929 				   sizeof(struct xilinx_cdma_tx_segment),
930 				   __alignof__(struct xilinx_cdma_tx_segment),
931 				   0);
932 	} else {
933 		chan->desc_pool = dma_pool_create("xilinx_vdma_desc_pool",
934 				     chan->dev,
935 				     sizeof(struct xilinx_vdma_tx_segment),
936 				     __alignof__(struct xilinx_vdma_tx_segment),
937 				     0);
938 	}
939 
940 	if (!chan->desc_pool &&
941 	    (chan->xdev->dma_config->dmatype != XDMA_TYPE_AXIDMA)) {
942 		dev_err(chan->dev,
943 			"unable to allocate channel %d descriptor pool\n",
944 			chan->id);
945 		return -ENOMEM;
946 	}
947 
948 	dma_cookie_init(dchan);
949 
950 	if (chan->xdev->dma_config->dmatype == XDMA_TYPE_AXIDMA) {
951 		/* For AXI DMA resetting once channel will reset the
952 		 * other channel as well so enable the interrupts here.
953 		 */
954 		dma_ctrl_set(chan, XILINX_DMA_REG_DMACR,
955 			      XILINX_DMA_DMAXR_ALL_IRQ_MASK);
956 	}
957 
958 	if ((chan->xdev->dma_config->dmatype == XDMA_TYPE_CDMA) && chan->has_sg)
959 		dma_ctrl_set(chan, XILINX_DMA_REG_DMACR,
960 			     XILINX_CDMA_CR_SGMODE);
961 
962 	return 0;
963 }
964 
965 /**
966  * xilinx_dma_tx_status - Get DMA transaction status
967  * @dchan: DMA channel
968  * @cookie: Transaction identifier
969  * @txstate: Transaction state
970  *
971  * Return: DMA transaction status
972  */
xilinx_dma_tx_status(struct dma_chan * dchan,dma_cookie_t cookie,struct dma_tx_state * txstate)973 static enum dma_status xilinx_dma_tx_status(struct dma_chan *dchan,
974 					dma_cookie_t cookie,
975 					struct dma_tx_state *txstate)
976 {
977 	struct xilinx_dma_chan *chan = to_xilinx_chan(dchan);
978 	struct xilinx_dma_tx_descriptor *desc;
979 	struct xilinx_axidma_tx_segment *segment;
980 	struct xilinx_axidma_desc_hw *hw;
981 	enum dma_status ret;
982 	unsigned long flags;
983 	u32 residue = 0;
984 
985 	ret = dma_cookie_status(dchan, cookie, txstate);
986 	if (ret == DMA_COMPLETE || !txstate)
987 		return ret;
988 
989 	if (chan->xdev->dma_config->dmatype == XDMA_TYPE_AXIDMA) {
990 		spin_lock_irqsave(&chan->lock, flags);
991 
992 		desc = list_last_entry(&chan->active_list,
993 				       struct xilinx_dma_tx_descriptor, node);
994 		if (chan->has_sg) {
995 			list_for_each_entry(segment, &desc->segments, node) {
996 				hw = &segment->hw;
997 				residue += (hw->control - hw->status) &
998 					   chan->xdev->max_buffer_len;
999 			}
1000 		}
1001 		spin_unlock_irqrestore(&chan->lock, flags);
1002 
1003 		chan->residue = residue;
1004 		if (chan->cyclic)
1005 			dma_set_residue(txstate, chan->buf_idx);
1006 		else
1007 			dma_set_residue(txstate, chan->residue);
1008 	}
1009 
1010 	return ret;
1011 }
1012 
1013 /**
1014  * xilinx_dma_stop_transfer - Halt DMA channel
1015  * @chan: Driver specific DMA channel
1016  *
1017  * Return: '0' on success and failure value on error
1018  */
xilinx_dma_stop_transfer(struct xilinx_dma_chan * chan)1019 static int xilinx_dma_stop_transfer(struct xilinx_dma_chan *chan)
1020 {
1021 	u32 val;
1022 
1023 	dma_ctrl_clr(chan, XILINX_DMA_REG_DMACR, XILINX_DMA_DMACR_RUNSTOP);
1024 
1025 	/* Wait for the hardware to halt */
1026 	return xilinx_dma_poll_timeout(chan, XILINX_DMA_REG_DMASR, val,
1027 				       val & XILINX_DMA_DMASR_HALTED, 0,
1028 				       XILINX_DMA_LOOP_COUNT);
1029 }
1030 
1031 /**
1032  * xilinx_cdma_stop_transfer - Wait for the current transfer to complete
1033  * @chan: Driver specific DMA channel
1034  *
1035  * Return: '0' on success and failure value on error
1036  */
xilinx_cdma_stop_transfer(struct xilinx_dma_chan * chan)1037 static int xilinx_cdma_stop_transfer(struct xilinx_dma_chan *chan)
1038 {
1039 	u32 val;
1040 
1041 	return xilinx_dma_poll_timeout(chan, XILINX_DMA_REG_DMASR, val,
1042 				       val & XILINX_DMA_DMASR_IDLE, 0,
1043 				       XILINX_DMA_LOOP_COUNT);
1044 }
1045 
1046 /**
1047  * xilinx_dma_start - Start DMA channel
1048  * @chan: Driver specific DMA channel
1049  */
xilinx_dma_start(struct xilinx_dma_chan * chan)1050 static void xilinx_dma_start(struct xilinx_dma_chan *chan)
1051 {
1052 	int err;
1053 	u32 val;
1054 
1055 	dma_ctrl_set(chan, XILINX_DMA_REG_DMACR, XILINX_DMA_DMACR_RUNSTOP);
1056 
1057 	/* Wait for the hardware to start */
1058 	err = xilinx_dma_poll_timeout(chan, XILINX_DMA_REG_DMASR, val,
1059 				      !(val & XILINX_DMA_DMASR_HALTED), 0,
1060 				      XILINX_DMA_LOOP_COUNT);
1061 
1062 	if (err) {
1063 		dev_err(chan->dev, "Cannot start channel %p: %x\n",
1064 			chan, dma_ctrl_read(chan, XILINX_DMA_REG_DMASR));
1065 
1066 		chan->err = true;
1067 	}
1068 }
1069 
1070 /**
1071  * xilinx_vdma_start_transfer - Starts VDMA transfer
1072  * @chan: Driver specific channel struct pointer
1073  */
xilinx_vdma_start_transfer(struct xilinx_dma_chan * chan)1074 static void xilinx_vdma_start_transfer(struct xilinx_dma_chan *chan)
1075 {
1076 	struct xilinx_vdma_config *config = &chan->config;
1077 	struct xilinx_dma_tx_descriptor *desc, *tail_desc;
1078 	u32 reg, j;
1079 	struct xilinx_vdma_tx_segment *tail_segment;
1080 
1081 	/* This function was invoked with lock held */
1082 	if (chan->err)
1083 		return;
1084 
1085 	if (!chan->idle)
1086 		return;
1087 
1088 	if (list_empty(&chan->pending_list))
1089 		return;
1090 
1091 	desc = list_first_entry(&chan->pending_list,
1092 				struct xilinx_dma_tx_descriptor, node);
1093 	tail_desc = list_last_entry(&chan->pending_list,
1094 				    struct xilinx_dma_tx_descriptor, node);
1095 
1096 	tail_segment = list_last_entry(&tail_desc->segments,
1097 				       struct xilinx_vdma_tx_segment, node);
1098 
1099 	/*
1100 	 * If hardware is idle, then all descriptors on the running lists are
1101 	 * done, start new transfers
1102 	 */
1103 	if (chan->has_sg)
1104 		dma_ctrl_write(chan, XILINX_DMA_REG_CURDESC,
1105 				desc->async_tx.phys);
1106 
1107 	/* Configure the hardware using info in the config structure */
1108 	if (chan->has_vflip) {
1109 		reg = dma_read(chan, XILINX_VDMA_REG_ENABLE_VERTICAL_FLIP);
1110 		reg &= ~XILINX_VDMA_ENABLE_VERTICAL_FLIP;
1111 		reg |= config->vflip_en;
1112 		dma_write(chan, XILINX_VDMA_REG_ENABLE_VERTICAL_FLIP,
1113 			  reg);
1114 	}
1115 
1116 	reg = dma_ctrl_read(chan, XILINX_DMA_REG_DMACR);
1117 
1118 	if (config->frm_cnt_en)
1119 		reg |= XILINX_DMA_DMACR_FRAMECNT_EN;
1120 	else
1121 		reg &= ~XILINX_DMA_DMACR_FRAMECNT_EN;
1122 
1123 	/*
1124 	 * With SG, start with circular mode, so that BDs can be fetched.
1125 	 * In direct register mode, if not parking, enable circular mode
1126 	 */
1127 	if (chan->has_sg || !config->park)
1128 		reg |= XILINX_DMA_DMACR_CIRC_EN;
1129 
1130 	if (config->park)
1131 		reg &= ~XILINX_DMA_DMACR_CIRC_EN;
1132 
1133 	dma_ctrl_write(chan, XILINX_DMA_REG_DMACR, reg);
1134 
1135 	j = chan->desc_submitcount;
1136 	reg = dma_read(chan, XILINX_DMA_REG_PARK_PTR);
1137 	if (chan->direction == DMA_MEM_TO_DEV) {
1138 		reg &= ~XILINX_DMA_PARK_PTR_RD_REF_MASK;
1139 		reg |= j << XILINX_DMA_PARK_PTR_RD_REF_SHIFT;
1140 	} else {
1141 		reg &= ~XILINX_DMA_PARK_PTR_WR_REF_MASK;
1142 		reg |= j << XILINX_DMA_PARK_PTR_WR_REF_SHIFT;
1143 	}
1144 	dma_write(chan, XILINX_DMA_REG_PARK_PTR, reg);
1145 
1146 	/* Start the hardware */
1147 	xilinx_dma_start(chan);
1148 
1149 	if (chan->err)
1150 		return;
1151 
1152 	/* Start the transfer */
1153 	if (chan->has_sg) {
1154 		dma_ctrl_write(chan, XILINX_DMA_REG_TAILDESC,
1155 				tail_segment->phys);
1156 		list_splice_tail_init(&chan->pending_list, &chan->active_list);
1157 		chan->desc_pendingcount = 0;
1158 	} else {
1159 		struct xilinx_vdma_tx_segment *segment, *last = NULL;
1160 		int i = 0;
1161 
1162 		if (chan->desc_submitcount < chan->num_frms)
1163 			i = chan->desc_submitcount;
1164 
1165 		list_for_each_entry(segment, &desc->segments, node) {
1166 			if (chan->ext_addr)
1167 				vdma_desc_write_64(chan,
1168 					XILINX_VDMA_REG_START_ADDRESS_64(i++),
1169 					segment->hw.buf_addr,
1170 					segment->hw.buf_addr_msb);
1171 			else
1172 				vdma_desc_write(chan,
1173 					XILINX_VDMA_REG_START_ADDRESS(i++),
1174 					segment->hw.buf_addr);
1175 
1176 			last = segment;
1177 		}
1178 
1179 		if (!last)
1180 			return;
1181 
1182 		/* HW expects these parameters to be same for one transaction */
1183 		vdma_desc_write(chan, XILINX_DMA_REG_HSIZE, last->hw.hsize);
1184 		vdma_desc_write(chan, XILINX_DMA_REG_FRMDLY_STRIDE,
1185 				last->hw.stride);
1186 		vdma_desc_write(chan, XILINX_DMA_REG_VSIZE, last->hw.vsize);
1187 
1188 		chan->desc_submitcount++;
1189 		chan->desc_pendingcount--;
1190 		list_del(&desc->node);
1191 		list_add_tail(&desc->node, &chan->active_list);
1192 		if (chan->desc_submitcount == chan->num_frms)
1193 			chan->desc_submitcount = 0;
1194 	}
1195 
1196 	chan->idle = false;
1197 }
1198 
1199 /**
1200  * xilinx_cdma_start_transfer - Starts cdma transfer
1201  * @chan: Driver specific channel struct pointer
1202  */
xilinx_cdma_start_transfer(struct xilinx_dma_chan * chan)1203 static void xilinx_cdma_start_transfer(struct xilinx_dma_chan *chan)
1204 {
1205 	struct xilinx_dma_tx_descriptor *head_desc, *tail_desc;
1206 	struct xilinx_cdma_tx_segment *tail_segment;
1207 	u32 ctrl_reg = dma_read(chan, XILINX_DMA_REG_DMACR);
1208 
1209 	if (chan->err)
1210 		return;
1211 
1212 	if (!chan->idle)
1213 		return;
1214 
1215 	if (list_empty(&chan->pending_list))
1216 		return;
1217 
1218 	head_desc = list_first_entry(&chan->pending_list,
1219 				     struct xilinx_dma_tx_descriptor, node);
1220 	tail_desc = list_last_entry(&chan->pending_list,
1221 				    struct xilinx_dma_tx_descriptor, node);
1222 	tail_segment = list_last_entry(&tail_desc->segments,
1223 				       struct xilinx_cdma_tx_segment, node);
1224 
1225 	if (chan->desc_pendingcount <= XILINX_DMA_COALESCE_MAX) {
1226 		ctrl_reg &= ~XILINX_DMA_CR_COALESCE_MAX;
1227 		ctrl_reg |= chan->desc_pendingcount <<
1228 				XILINX_DMA_CR_COALESCE_SHIFT;
1229 		dma_ctrl_write(chan, XILINX_DMA_REG_DMACR, ctrl_reg);
1230 	}
1231 
1232 	if (chan->has_sg) {
1233 		dma_ctrl_clr(chan, XILINX_DMA_REG_DMACR,
1234 			     XILINX_CDMA_CR_SGMODE);
1235 
1236 		dma_ctrl_set(chan, XILINX_DMA_REG_DMACR,
1237 			     XILINX_CDMA_CR_SGMODE);
1238 
1239 		xilinx_write(chan, XILINX_DMA_REG_CURDESC,
1240 			     head_desc->async_tx.phys);
1241 
1242 		/* Update tail ptr register which will start the transfer */
1243 		xilinx_write(chan, XILINX_DMA_REG_TAILDESC,
1244 			     tail_segment->phys);
1245 	} else {
1246 		/* In simple mode */
1247 		struct xilinx_cdma_tx_segment *segment;
1248 		struct xilinx_cdma_desc_hw *hw;
1249 
1250 		segment = list_first_entry(&head_desc->segments,
1251 					   struct xilinx_cdma_tx_segment,
1252 					   node);
1253 
1254 		hw = &segment->hw;
1255 
1256 		xilinx_write(chan, XILINX_CDMA_REG_SRCADDR, (dma_addr_t)
1257 			     ((u64)hw->src_addr_msb << 32 | hw->src_addr));
1258 		xilinx_write(chan, XILINX_CDMA_REG_DSTADDR, (dma_addr_t)
1259 			     ((u64)hw->dest_addr_msb << 32 | hw->dest_addr));
1260 
1261 		/* Start the transfer */
1262 		dma_ctrl_write(chan, XILINX_DMA_REG_BTT,
1263 				hw->control & chan->xdev->max_buffer_len);
1264 	}
1265 
1266 	list_splice_tail_init(&chan->pending_list, &chan->active_list);
1267 	chan->desc_pendingcount = 0;
1268 	chan->idle = false;
1269 }
1270 
1271 /**
1272  * xilinx_dma_start_transfer - Starts DMA transfer
1273  * @chan: Driver specific channel struct pointer
1274  */
xilinx_dma_start_transfer(struct xilinx_dma_chan * chan)1275 static void xilinx_dma_start_transfer(struct xilinx_dma_chan *chan)
1276 {
1277 	struct xilinx_dma_tx_descriptor *head_desc, *tail_desc;
1278 	struct xilinx_axidma_tx_segment *tail_segment;
1279 	u32 reg;
1280 
1281 	if (chan->err)
1282 		return;
1283 
1284 	if (!chan->idle)
1285 		return;
1286 
1287 	if (list_empty(&chan->pending_list))
1288 		return;
1289 
1290 	head_desc = list_first_entry(&chan->pending_list,
1291 				     struct xilinx_dma_tx_descriptor, node);
1292 	tail_desc = list_last_entry(&chan->pending_list,
1293 				    struct xilinx_dma_tx_descriptor, node);
1294 	tail_segment = list_last_entry(&tail_desc->segments,
1295 				       struct xilinx_axidma_tx_segment, node);
1296 
1297 	reg = dma_ctrl_read(chan, XILINX_DMA_REG_DMACR);
1298 
1299 	if (chan->desc_pendingcount <= XILINX_DMA_COALESCE_MAX) {
1300 		reg &= ~XILINX_DMA_CR_COALESCE_MAX;
1301 		reg |= chan->desc_pendingcount <<
1302 				  XILINX_DMA_CR_COALESCE_SHIFT;
1303 		dma_ctrl_write(chan, XILINX_DMA_REG_DMACR, reg);
1304 	}
1305 
1306 	if (chan->has_sg && !chan->xdev->mcdma)
1307 		xilinx_write(chan, XILINX_DMA_REG_CURDESC,
1308 			     head_desc->async_tx.phys);
1309 
1310 	if (chan->has_sg && chan->xdev->mcdma) {
1311 		if (chan->direction == DMA_MEM_TO_DEV) {
1312 			dma_ctrl_write(chan, XILINX_DMA_REG_CURDESC,
1313 				       head_desc->async_tx.phys);
1314 		} else {
1315 			if (!chan->tdest) {
1316 				dma_ctrl_write(chan, XILINX_DMA_REG_CURDESC,
1317 				       head_desc->async_tx.phys);
1318 			} else {
1319 				dma_ctrl_write(chan,
1320 					XILINX_DMA_MCRX_CDESC(chan->tdest),
1321 				       head_desc->async_tx.phys);
1322 			}
1323 		}
1324 	}
1325 
1326 	xilinx_dma_start(chan);
1327 
1328 	if (chan->err)
1329 		return;
1330 
1331 	/* Start the transfer */
1332 	if (chan->has_sg && !chan->xdev->mcdma) {
1333 		if (chan->cyclic)
1334 			xilinx_write(chan, XILINX_DMA_REG_TAILDESC,
1335 				     chan->cyclic_seg_v->phys);
1336 		else
1337 			xilinx_write(chan, XILINX_DMA_REG_TAILDESC,
1338 				     tail_segment->phys);
1339 	} else if (chan->has_sg && chan->xdev->mcdma) {
1340 		if (chan->direction == DMA_MEM_TO_DEV) {
1341 			dma_ctrl_write(chan, XILINX_DMA_REG_TAILDESC,
1342 			       tail_segment->phys);
1343 		} else {
1344 			if (!chan->tdest) {
1345 				dma_ctrl_write(chan, XILINX_DMA_REG_TAILDESC,
1346 					       tail_segment->phys);
1347 			} else {
1348 				dma_ctrl_write(chan,
1349 					XILINX_DMA_MCRX_TDESC(chan->tdest),
1350 					tail_segment->phys);
1351 			}
1352 		}
1353 	} else {
1354 		struct xilinx_axidma_tx_segment *segment;
1355 		struct xilinx_axidma_desc_hw *hw;
1356 
1357 		segment = list_first_entry(&head_desc->segments,
1358 					   struct xilinx_axidma_tx_segment,
1359 					   node);
1360 		hw = &segment->hw;
1361 
1362 		xilinx_write(chan, XILINX_DMA_REG_SRCDSTADDR, hw->buf_addr);
1363 
1364 		/* Start the transfer */
1365 		dma_ctrl_write(chan, XILINX_DMA_REG_BTT,
1366 			       hw->control & chan->xdev->max_buffer_len);
1367 	}
1368 
1369 	list_splice_tail_init(&chan->pending_list, &chan->active_list);
1370 	chan->desc_pendingcount = 0;
1371 	chan->idle = false;
1372 }
1373 
1374 /**
1375  * xilinx_dma_issue_pending - Issue pending transactions
1376  * @dchan: DMA channel
1377  */
xilinx_dma_issue_pending(struct dma_chan * dchan)1378 static void xilinx_dma_issue_pending(struct dma_chan *dchan)
1379 {
1380 	struct xilinx_dma_chan *chan = to_xilinx_chan(dchan);
1381 	unsigned long flags;
1382 
1383 	spin_lock_irqsave(&chan->lock, flags);
1384 	chan->start_transfer(chan);
1385 	spin_unlock_irqrestore(&chan->lock, flags);
1386 }
1387 
1388 /**
1389  * xilinx_dma_complete_descriptor - Mark the active descriptor as complete
1390  * @chan : xilinx DMA channel
1391  *
1392  * CONTEXT: hardirq
1393  */
xilinx_dma_complete_descriptor(struct xilinx_dma_chan * chan)1394 static void xilinx_dma_complete_descriptor(struct xilinx_dma_chan *chan)
1395 {
1396 	struct xilinx_dma_tx_descriptor *desc, *next;
1397 
1398 	/* This function was invoked with lock held */
1399 	if (list_empty(&chan->active_list))
1400 		return;
1401 
1402 	list_for_each_entry_safe(desc, next, &chan->active_list, node) {
1403 		list_del(&desc->node);
1404 		if (!desc->cyclic)
1405 			dma_cookie_complete(&desc->async_tx);
1406 		list_add_tail(&desc->node, &chan->done_list);
1407 	}
1408 }
1409 
1410 /**
1411  * xilinx_dma_reset - Reset DMA channel
1412  * @chan: Driver specific DMA channel
1413  *
1414  * Return: '0' on success and failure value on error
1415  */
xilinx_dma_reset(struct xilinx_dma_chan * chan)1416 static int xilinx_dma_reset(struct xilinx_dma_chan *chan)
1417 {
1418 	int err;
1419 	u32 tmp;
1420 
1421 	dma_ctrl_set(chan, XILINX_DMA_REG_DMACR, XILINX_DMA_DMACR_RESET);
1422 
1423 	/* Wait for the hardware to finish reset */
1424 	err = xilinx_dma_poll_timeout(chan, XILINX_DMA_REG_DMACR, tmp,
1425 				      !(tmp & XILINX_DMA_DMACR_RESET), 0,
1426 				      XILINX_DMA_LOOP_COUNT);
1427 
1428 	if (err) {
1429 		dev_err(chan->dev, "reset timeout, cr %x, sr %x\n",
1430 			dma_ctrl_read(chan, XILINX_DMA_REG_DMACR),
1431 			dma_ctrl_read(chan, XILINX_DMA_REG_DMASR));
1432 		return -ETIMEDOUT;
1433 	}
1434 
1435 	chan->err = false;
1436 	chan->idle = true;
1437 	chan->desc_submitcount = 0;
1438 
1439 	return err;
1440 }
1441 
1442 /**
1443  * xilinx_dma_chan_reset - Reset DMA channel and enable interrupts
1444  * @chan: Driver specific DMA channel
1445  *
1446  * Return: '0' on success and failure value on error
1447  */
xilinx_dma_chan_reset(struct xilinx_dma_chan * chan)1448 static int xilinx_dma_chan_reset(struct xilinx_dma_chan *chan)
1449 {
1450 	int err;
1451 
1452 	/* Reset VDMA */
1453 	err = xilinx_dma_reset(chan);
1454 	if (err)
1455 		return err;
1456 
1457 	/* Enable interrupts */
1458 	dma_ctrl_set(chan, XILINX_DMA_REG_DMACR,
1459 		      XILINX_DMA_DMAXR_ALL_IRQ_MASK);
1460 
1461 	return 0;
1462 }
1463 
1464 /**
1465  * xilinx_dma_irq_handler - DMA Interrupt handler
1466  * @irq: IRQ number
1467  * @data: Pointer to the Xilinx DMA channel structure
1468  *
1469  * Return: IRQ_HANDLED/IRQ_NONE
1470  */
xilinx_dma_irq_handler(int irq,void * data)1471 static irqreturn_t xilinx_dma_irq_handler(int irq, void *data)
1472 {
1473 	struct xilinx_dma_chan *chan = data;
1474 	u32 status;
1475 
1476 	/* Read the status and ack the interrupts. */
1477 	status = dma_ctrl_read(chan, XILINX_DMA_REG_DMASR);
1478 	if (!(status & XILINX_DMA_DMAXR_ALL_IRQ_MASK))
1479 		return IRQ_NONE;
1480 
1481 	dma_ctrl_write(chan, XILINX_DMA_REG_DMASR,
1482 			status & XILINX_DMA_DMAXR_ALL_IRQ_MASK);
1483 
1484 	if (status & XILINX_DMA_DMASR_ERR_IRQ) {
1485 		/*
1486 		 * An error occurred. If C_FLUSH_ON_FSYNC is enabled and the
1487 		 * error is recoverable, ignore it. Otherwise flag the error.
1488 		 *
1489 		 * Only recoverable errors can be cleared in the DMASR register,
1490 		 * make sure not to write to other error bits to 1.
1491 		 */
1492 		u32 errors = status & XILINX_DMA_DMASR_ALL_ERR_MASK;
1493 
1494 		dma_ctrl_write(chan, XILINX_DMA_REG_DMASR,
1495 				errors & XILINX_DMA_DMASR_ERR_RECOVER_MASK);
1496 
1497 		if (!chan->flush_on_fsync ||
1498 		    (errors & ~XILINX_DMA_DMASR_ERR_RECOVER_MASK)) {
1499 			dev_err(chan->dev,
1500 				"Channel %p has errors %x, cdr %x tdr %x\n",
1501 				chan, errors,
1502 				dma_ctrl_read(chan, XILINX_DMA_REG_CURDESC),
1503 				dma_ctrl_read(chan, XILINX_DMA_REG_TAILDESC));
1504 			chan->err = true;
1505 		}
1506 	}
1507 
1508 	if (status & XILINX_DMA_DMASR_DLY_CNT_IRQ) {
1509 		/*
1510 		 * Device takes too long to do the transfer when user requires
1511 		 * responsiveness.
1512 		 */
1513 		dev_dbg(chan->dev, "Inter-packet latency too long\n");
1514 	}
1515 
1516 	if (status & XILINX_DMA_DMASR_FRM_CNT_IRQ) {
1517 		spin_lock(&chan->lock);
1518 		xilinx_dma_complete_descriptor(chan);
1519 		chan->idle = true;
1520 		chan->start_transfer(chan);
1521 		chan->buf_idx++;
1522 		spin_unlock(&chan->lock);
1523 	}
1524 
1525 	tasklet_schedule(&chan->tasklet);
1526 	return IRQ_HANDLED;
1527 }
1528 
1529 /**
1530  * append_desc_queue - Queuing descriptor
1531  * @chan: Driver specific dma channel
1532  * @desc: dma transaction descriptor
1533  */
append_desc_queue(struct xilinx_dma_chan * chan,struct xilinx_dma_tx_descriptor * desc)1534 static void append_desc_queue(struct xilinx_dma_chan *chan,
1535 			      struct xilinx_dma_tx_descriptor *desc)
1536 {
1537 	struct xilinx_vdma_tx_segment *tail_segment;
1538 	struct xilinx_dma_tx_descriptor *tail_desc;
1539 	struct xilinx_axidma_tx_segment *axidma_tail_segment;
1540 	struct xilinx_cdma_tx_segment *cdma_tail_segment;
1541 
1542 	if (list_empty(&chan->pending_list))
1543 		goto append;
1544 
1545 	/*
1546 	 * Add the hardware descriptor to the chain of hardware descriptors
1547 	 * that already exists in memory.
1548 	 */
1549 	tail_desc = list_last_entry(&chan->pending_list,
1550 				    struct xilinx_dma_tx_descriptor, node);
1551 	if (chan->xdev->dma_config->dmatype == XDMA_TYPE_VDMA) {
1552 		tail_segment = list_last_entry(&tail_desc->segments,
1553 					       struct xilinx_vdma_tx_segment,
1554 					       node);
1555 		tail_segment->hw.next_desc = (u32)desc->async_tx.phys;
1556 	} else if (chan->xdev->dma_config->dmatype == XDMA_TYPE_CDMA) {
1557 		cdma_tail_segment = list_last_entry(&tail_desc->segments,
1558 						struct xilinx_cdma_tx_segment,
1559 						node);
1560 		cdma_tail_segment->hw.next_desc = (u32)desc->async_tx.phys;
1561 	} else {
1562 		axidma_tail_segment = list_last_entry(&tail_desc->segments,
1563 					       struct xilinx_axidma_tx_segment,
1564 					       node);
1565 		axidma_tail_segment->hw.next_desc = (u32)desc->async_tx.phys;
1566 	}
1567 
1568 	/*
1569 	 * Add the software descriptor and all children to the list
1570 	 * of pending transactions
1571 	 */
1572 append:
1573 	list_add_tail(&desc->node, &chan->pending_list);
1574 	chan->desc_pendingcount++;
1575 
1576 	if (chan->has_sg && (chan->xdev->dma_config->dmatype == XDMA_TYPE_VDMA)
1577 	    && unlikely(chan->desc_pendingcount > chan->num_frms)) {
1578 		dev_dbg(chan->dev, "desc pendingcount is too high\n");
1579 		chan->desc_pendingcount = chan->num_frms;
1580 	}
1581 }
1582 
1583 /**
1584  * xilinx_dma_tx_submit - Submit DMA transaction
1585  * @tx: Async transaction descriptor
1586  *
1587  * Return: cookie value on success and failure value on error
1588  */
xilinx_dma_tx_submit(struct dma_async_tx_descriptor * tx)1589 static dma_cookie_t xilinx_dma_tx_submit(struct dma_async_tx_descriptor *tx)
1590 {
1591 	struct xilinx_dma_tx_descriptor *desc = to_dma_tx_descriptor(tx);
1592 	struct xilinx_dma_chan *chan = to_xilinx_chan(tx->chan);
1593 	dma_cookie_t cookie;
1594 	unsigned long flags;
1595 	int err;
1596 
1597 	if (chan->cyclic) {
1598 		xilinx_dma_free_tx_descriptor(chan, desc);
1599 		return -EBUSY;
1600 	}
1601 
1602 	if (chan->err) {
1603 		/*
1604 		 * If reset fails, need to hard reset the system.
1605 		 * Channel is no longer functional
1606 		 */
1607 		err = xilinx_dma_chan_reset(chan);
1608 		if (err < 0)
1609 			return err;
1610 	}
1611 
1612 	spin_lock_irqsave(&chan->lock, flags);
1613 
1614 	cookie = dma_cookie_assign(tx);
1615 
1616 	/* Put this transaction onto the tail of the pending queue */
1617 	append_desc_queue(chan, desc);
1618 
1619 	if (desc->cyclic)
1620 		chan->cyclic = true;
1621 
1622 	spin_unlock_irqrestore(&chan->lock, flags);
1623 
1624 	return cookie;
1625 }
1626 
1627 /**
1628  * xilinx_vdma_dma_prep_interleaved - prepare a descriptor for a
1629  *	DMA_SLAVE transaction
1630  * @dchan: DMA channel
1631  * @xt: Interleaved template pointer
1632  * @flags: transfer ack flags
1633  *
1634  * Return: Async transaction descriptor on success and NULL on failure
1635  */
1636 static struct dma_async_tx_descriptor *
xilinx_vdma_dma_prep_interleaved(struct dma_chan * dchan,struct dma_interleaved_template * xt,unsigned long flags)1637 xilinx_vdma_dma_prep_interleaved(struct dma_chan *dchan,
1638 				 struct dma_interleaved_template *xt,
1639 				 unsigned long flags)
1640 {
1641 	struct xilinx_dma_chan *chan = to_xilinx_chan(dchan);
1642 	struct xilinx_dma_tx_descriptor *desc;
1643 	struct xilinx_vdma_tx_segment *segment;
1644 	struct xilinx_vdma_desc_hw *hw;
1645 
1646 	if (!is_slave_direction(xt->dir))
1647 		return NULL;
1648 
1649 	if (!xt->numf || !xt->sgl[0].size)
1650 		return NULL;
1651 
1652 	if (xt->frame_size != 1)
1653 		return NULL;
1654 
1655 	/* Allocate a transaction descriptor. */
1656 	desc = xilinx_dma_alloc_tx_descriptor(chan);
1657 	if (!desc)
1658 		return NULL;
1659 
1660 	dma_async_tx_descriptor_init(&desc->async_tx, &chan->common);
1661 	desc->async_tx.tx_submit = xilinx_dma_tx_submit;
1662 	async_tx_ack(&desc->async_tx);
1663 
1664 	/* Allocate the link descriptor from DMA pool */
1665 	segment = xilinx_vdma_alloc_tx_segment(chan);
1666 	if (!segment)
1667 		goto error;
1668 
1669 	/* Fill in the hardware descriptor */
1670 	hw = &segment->hw;
1671 	hw->vsize = xt->numf;
1672 	hw->hsize = xt->sgl[0].size;
1673 	hw->stride = (xt->sgl[0].icg + xt->sgl[0].size) <<
1674 			XILINX_DMA_FRMDLY_STRIDE_STRIDE_SHIFT;
1675 	hw->stride |= chan->config.frm_dly <<
1676 			XILINX_DMA_FRMDLY_STRIDE_FRMDLY_SHIFT;
1677 
1678 	if (xt->dir != DMA_MEM_TO_DEV) {
1679 		if (chan->ext_addr) {
1680 			hw->buf_addr = lower_32_bits(xt->dst_start);
1681 			hw->buf_addr_msb = upper_32_bits(xt->dst_start);
1682 		} else {
1683 			hw->buf_addr = xt->dst_start;
1684 		}
1685 	} else {
1686 		if (chan->ext_addr) {
1687 			hw->buf_addr = lower_32_bits(xt->src_start);
1688 			hw->buf_addr_msb = upper_32_bits(xt->src_start);
1689 		} else {
1690 			hw->buf_addr = xt->src_start;
1691 		}
1692 	}
1693 
1694 	/* Insert the segment into the descriptor segments list. */
1695 	list_add_tail(&segment->node, &desc->segments);
1696 
1697 	/* Link the last hardware descriptor with the first. */
1698 	segment = list_first_entry(&desc->segments,
1699 				   struct xilinx_vdma_tx_segment, node);
1700 	desc->async_tx.phys = segment->phys;
1701 
1702 	return &desc->async_tx;
1703 
1704 error:
1705 	xilinx_dma_free_tx_descriptor(chan, desc);
1706 	return NULL;
1707 }
1708 
1709 /**
1710  * xilinx_cdma_prep_memcpy - prepare descriptors for a memcpy transaction
1711  * @dchan: DMA channel
1712  * @dma_dst: destination address
1713  * @dma_src: source address
1714  * @len: transfer length
1715  * @flags: transfer ack flags
1716  *
1717  * Return: Async transaction descriptor on success and NULL on failure
1718  */
1719 static struct dma_async_tx_descriptor *
xilinx_cdma_prep_memcpy(struct dma_chan * dchan,dma_addr_t dma_dst,dma_addr_t dma_src,size_t len,unsigned long flags)1720 xilinx_cdma_prep_memcpy(struct dma_chan *dchan, dma_addr_t dma_dst,
1721 			dma_addr_t dma_src, size_t len, unsigned long flags)
1722 {
1723 	struct xilinx_dma_chan *chan = to_xilinx_chan(dchan);
1724 	struct xilinx_dma_tx_descriptor *desc;
1725 	struct xilinx_cdma_tx_segment *segment;
1726 	struct xilinx_cdma_desc_hw *hw;
1727 
1728 	if (!len || len > chan->xdev->max_buffer_len)
1729 		return NULL;
1730 
1731 	desc = xilinx_dma_alloc_tx_descriptor(chan);
1732 	if (!desc)
1733 		return NULL;
1734 
1735 	dma_async_tx_descriptor_init(&desc->async_tx, &chan->common);
1736 	desc->async_tx.tx_submit = xilinx_dma_tx_submit;
1737 
1738 	/* Allocate the link descriptor from DMA pool */
1739 	segment = xilinx_cdma_alloc_tx_segment(chan);
1740 	if (!segment)
1741 		goto error;
1742 
1743 	hw = &segment->hw;
1744 	hw->control = len;
1745 	hw->src_addr = dma_src;
1746 	hw->dest_addr = dma_dst;
1747 	if (chan->ext_addr) {
1748 		hw->src_addr_msb = upper_32_bits(dma_src);
1749 		hw->dest_addr_msb = upper_32_bits(dma_dst);
1750 	}
1751 
1752 	/* Insert the segment into the descriptor segments list. */
1753 	list_add_tail(&segment->node, &desc->segments);
1754 
1755 	desc->async_tx.phys = segment->phys;
1756 	hw->next_desc = segment->phys;
1757 
1758 	return &desc->async_tx;
1759 
1760 error:
1761 	xilinx_dma_free_tx_descriptor(chan, desc);
1762 	return NULL;
1763 }
1764 
1765 /**
1766  * xilinx_cdma_prep_sg - prepare descriptors for a memory sg transaction
1767  * @dchan: DMA channel
1768  * @dst_sg: Destination scatter list
1769  * @dst_sg_len: Number of entries in destination scatter list
1770  * @src_sg: Source scatter list
1771  * @src_sg_len: Number of entries in source scatter list
1772  * @flags: transfer ack flags
1773  *
1774  * Return: Async transaction descriptor on success and NULL on failure
1775  */
xilinx_cdma_prep_sg(struct dma_chan * dchan,struct scatterlist * dst_sg,unsigned int dst_sg_len,struct scatterlist * src_sg,unsigned int src_sg_len,unsigned long flags)1776 static struct dma_async_tx_descriptor *xilinx_cdma_prep_sg(
1777 			struct dma_chan *dchan, struct scatterlist *dst_sg,
1778 			unsigned int dst_sg_len, struct scatterlist *src_sg,
1779 			unsigned int src_sg_len, unsigned long flags)
1780 {
1781 	struct xilinx_dma_chan *chan = to_xilinx_chan(dchan);
1782 	struct xilinx_dma_tx_descriptor *desc;
1783 	struct xilinx_cdma_tx_segment *segment, *prev = NULL;
1784 	struct xilinx_cdma_desc_hw *hw;
1785 	size_t len, dst_avail, src_avail;
1786 	dma_addr_t dma_dst, dma_src;
1787 
1788 	if (unlikely(dst_sg_len == 0 || src_sg_len == 0))
1789 		return NULL;
1790 
1791 	if (unlikely(dst_sg == NULL || src_sg == NULL))
1792 		return NULL;
1793 
1794 	desc = xilinx_dma_alloc_tx_descriptor(chan);
1795 	if (!desc)
1796 		return NULL;
1797 
1798 	dma_async_tx_descriptor_init(&desc->async_tx, &chan->common);
1799 	desc->async_tx.tx_submit = xilinx_dma_tx_submit;
1800 
1801 	dst_avail = sg_dma_len(dst_sg);
1802 	src_avail = sg_dma_len(src_sg);
1803 	/*
1804 	 * loop until there is either no more source or no more destination
1805 	 * scatterlist entry
1806 	 */
1807 	while (true) {
1808 		len = min_t(size_t, src_avail, dst_avail);
1809 		len = min_t(size_t, len, chan->xdev->max_buffer_len);
1810 		if (len == 0)
1811 			goto fetch;
1812 
1813 		/* Allocate the link descriptor from DMA pool */
1814 		segment = xilinx_cdma_alloc_tx_segment(chan);
1815 		if (!segment)
1816 			goto error;
1817 
1818 		dma_dst = sg_dma_address(dst_sg) + sg_dma_len(dst_sg) -
1819 			dst_avail;
1820 		dma_src = sg_dma_address(src_sg) + sg_dma_len(src_sg) -
1821 			src_avail;
1822 		hw = &segment->hw;
1823 		hw->control = len;
1824 		hw->src_addr = dma_src;
1825 		hw->dest_addr = dma_dst;
1826 		if (chan->ext_addr) {
1827 			hw->src_addr_msb = upper_32_bits(dma_src);
1828 			hw->dest_addr_msb = upper_32_bits(dma_dst);
1829 		}
1830 
1831 		if (prev)
1832 			prev->hw.next_desc = segment->phys;
1833 
1834 		prev = segment;
1835 		dst_avail -= len;
1836 		src_avail -= len;
1837 		list_add_tail(&segment->node, &desc->segments);
1838 
1839 fetch:
1840 		/* Fetch the next dst scatterlist entry */
1841 		if (dst_avail == 0) {
1842 			if (dst_sg_len == 0)
1843 				break;
1844 			dst_sg = sg_next(dst_sg);
1845 			if (dst_sg == NULL)
1846 				break;
1847 			dst_sg_len--;
1848 			dst_avail = sg_dma_len(dst_sg);
1849 		}
1850 		/* Fetch the next src scatterlist entry */
1851 		if (src_avail == 0) {
1852 			if (src_sg_len == 0)
1853 				break;
1854 			src_sg = sg_next(src_sg);
1855 			if (src_sg == NULL)
1856 				break;
1857 			src_sg_len--;
1858 			src_avail = sg_dma_len(src_sg);
1859 		}
1860 	}
1861 
1862 	/* Link the last hardware descriptor with the first. */
1863 	segment = list_first_entry(&desc->segments,
1864 				struct xilinx_cdma_tx_segment, node);
1865 	desc->async_tx.phys = segment->phys;
1866 	prev->hw.next_desc = segment->phys;
1867 
1868 	return &desc->async_tx;
1869 
1870 error:
1871 	xilinx_dma_free_tx_descriptor(chan, desc);
1872 	return NULL;
1873 }
1874 
1875 /**
1876  * xilinx_dma_prep_slave_sg - prepare descriptors for a DMA_SLAVE transaction
1877  * @dchan: DMA channel
1878  * @sgl: scatterlist to transfer to/from
1879  * @sg_len: number of entries in @scatterlist
1880  * @direction: DMA direction
1881  * @flags: transfer ack flags
1882  * @context: APP words of the descriptor
1883  *
1884  * Return: Async transaction descriptor on success and NULL on failure
1885  */
xilinx_dma_prep_slave_sg(struct dma_chan * dchan,struct scatterlist * sgl,unsigned int sg_len,enum dma_transfer_direction direction,unsigned long flags,void * context)1886 static struct dma_async_tx_descriptor *xilinx_dma_prep_slave_sg(
1887 	struct dma_chan *dchan, struct scatterlist *sgl, unsigned int sg_len,
1888 	enum dma_transfer_direction direction, unsigned long flags,
1889 	void *context)
1890 {
1891 	struct xilinx_dma_chan *chan = to_xilinx_chan(dchan);
1892 	struct xilinx_dma_tx_descriptor *desc;
1893 	struct xilinx_axidma_tx_segment *segment = NULL;
1894 	u32 *app_w = (u32 *)context;
1895 	struct scatterlist *sg;
1896 	size_t copy;
1897 	size_t sg_used;
1898 	unsigned int i;
1899 
1900 	if (!is_slave_direction(direction))
1901 		return NULL;
1902 
1903 	/* Allocate a transaction descriptor. */
1904 	desc = xilinx_dma_alloc_tx_descriptor(chan);
1905 	if (!desc)
1906 		return NULL;
1907 
1908 	dma_async_tx_descriptor_init(&desc->async_tx, &chan->common);
1909 	desc->async_tx.tx_submit = xilinx_dma_tx_submit;
1910 
1911 	/* Build transactions using information in the scatter gather list */
1912 	for_each_sg(sgl, sg, sg_len, i) {
1913 		sg_used = 0;
1914 
1915 		/* Loop until the entire scatterlist entry is used */
1916 		while (sg_used < sg_dma_len(sg)) {
1917 			struct xilinx_axidma_desc_hw *hw;
1918 
1919 			/* Get a free segment */
1920 			segment = xilinx_axidma_alloc_tx_segment(chan);
1921 			if (!segment)
1922 				goto error;
1923 
1924 			/*
1925 			 * Calculate the maximum number of bytes to transfer,
1926 			 * making sure it is less than the hw limit
1927 			 */
1928 			copy = min_t(size_t, sg_dma_len(sg) - sg_used,
1929 				     chan->xdev->max_buffer_len);
1930 			hw = &segment->hw;
1931 
1932 			/* Fill in the descriptor */
1933 			xilinx_axidma_buf(chan, hw, sg_dma_address(sg),
1934 					  sg_used, 0);
1935 
1936 			hw->control = copy;
1937 
1938 			if (chan->direction == DMA_MEM_TO_DEV) {
1939 				if (app_w)
1940 					memcpy(hw->app, app_w, sizeof(u32) *
1941 					       XILINX_DMA_NUM_APP_WORDS);
1942 			}
1943 
1944 			sg_used += copy;
1945 
1946 			/*
1947 			 * Insert the segment into the descriptor segments
1948 			 * list.
1949 			 */
1950 			list_add_tail(&segment->node, &desc->segments);
1951 		}
1952 	}
1953 
1954 	segment = list_first_entry(&desc->segments,
1955 				   struct xilinx_axidma_tx_segment, node);
1956 	desc->async_tx.phys = segment->phys;
1957 
1958 	/* For the last DMA_MEM_TO_DEV transfer, set EOP */
1959 	if (chan->direction == DMA_MEM_TO_DEV) {
1960 		segment->hw.control |= XILINX_DMA_BD_SOP;
1961 		segment = list_last_entry(&desc->segments,
1962 					  struct xilinx_axidma_tx_segment,
1963 					  node);
1964 		segment->hw.control |= XILINX_DMA_BD_EOP;
1965 	}
1966 
1967 	return &desc->async_tx;
1968 
1969 error:
1970 	xilinx_dma_free_tx_descriptor(chan, desc);
1971 	return NULL;
1972 }
1973 
1974 /**
1975  * xilinx_dma_prep_dma_cyclic - prepare descriptors for a DMA_SLAVE transaction
1976  * @dchan: DMA channel
1977  * @buf_addr: Physical address of the buffer
1978  * @buf_len: Total length of the cyclic buffers
1979  * @period_len: length of individual cyclic buffer
1980  * @direction: DMA direction
1981  * @flags: transfer ack flags
1982  *
1983  * Return: Async transaction descriptor on success and NULL on failure
1984  */
xilinx_dma_prep_dma_cyclic(struct dma_chan * dchan,dma_addr_t buf_addr,size_t buf_len,size_t period_len,enum dma_transfer_direction direction,unsigned long flags)1985 static struct dma_async_tx_descriptor *xilinx_dma_prep_dma_cyclic(
1986 	struct dma_chan *dchan, dma_addr_t buf_addr, size_t buf_len,
1987 	size_t period_len, enum dma_transfer_direction direction,
1988 	unsigned long flags)
1989 {
1990 	struct xilinx_dma_chan *chan = to_xilinx_chan(dchan);
1991 	struct xilinx_dma_tx_descriptor *desc;
1992 	struct xilinx_axidma_tx_segment *segment, *head_segment, *prev = NULL;
1993 	size_t copy, sg_used;
1994 	unsigned int num_periods;
1995 	int i;
1996 	u32 reg;
1997 
1998 	if (!period_len)
1999 		return NULL;
2000 
2001 	num_periods = buf_len / period_len;
2002 
2003 	if (!num_periods)
2004 		return NULL;
2005 
2006 	if (!is_slave_direction(direction))
2007 		return NULL;
2008 
2009 	/* Allocate a transaction descriptor. */
2010 	desc = xilinx_dma_alloc_tx_descriptor(chan);
2011 	if (!desc)
2012 		return NULL;
2013 
2014 	chan->direction = direction;
2015 	dma_async_tx_descriptor_init(&desc->async_tx, &chan->common);
2016 	desc->async_tx.tx_submit = xilinx_dma_tx_submit;
2017 
2018 	chan->buf_idx = 0;
2019 
2020 	for (i = 0; i < num_periods; ++i) {
2021 		sg_used = 0;
2022 
2023 		while (sg_used < period_len) {
2024 			struct xilinx_axidma_desc_hw *hw;
2025 
2026 			/* Get a free segment */
2027 			segment = xilinx_axidma_alloc_tx_segment(chan);
2028 			if (!segment)
2029 				goto error;
2030 
2031 			/*
2032 			 * Calculate the maximum number of bytes to transfer,
2033 			 * making sure it is less than the hw limit
2034 			 */
2035 			copy = min_t(size_t, period_len - sg_used,
2036 				     chan->xdev->max_buffer_len);
2037 			hw = &segment->hw;
2038 			xilinx_axidma_buf(chan, hw, buf_addr, sg_used,
2039 					  period_len * i);
2040 			hw->control = copy;
2041 
2042 			if (prev)
2043 				prev->hw.next_desc = segment->phys;
2044 
2045 			prev = segment;
2046 			sg_used += copy;
2047 
2048 			/*
2049 			 * Insert the segment into the descriptor segments
2050 			 * list.
2051 			 */
2052 			list_add_tail(&segment->node, &desc->segments);
2053 		}
2054 	}
2055 
2056 	head_segment = list_first_entry(&desc->segments,
2057 				   struct xilinx_axidma_tx_segment, node);
2058 	desc->async_tx.phys = head_segment->phys;
2059 
2060 	desc->cyclic = true;
2061 	reg = dma_ctrl_read(chan, XILINX_DMA_REG_DMACR);
2062 	reg |= XILINX_DMA_CR_CYCLIC_BD_EN_MASK;
2063 	dma_ctrl_write(chan, XILINX_DMA_REG_DMACR, reg);
2064 
2065 	segment = list_last_entry(&desc->segments,
2066 				  struct xilinx_axidma_tx_segment,
2067 				  node);
2068 	segment->hw.next_desc = (u32) head_segment->phys;
2069 
2070 	/* For the last DMA_MEM_TO_DEV transfer, set EOP */
2071 	if (direction == DMA_MEM_TO_DEV) {
2072 		head_segment->hw.control |= XILINX_DMA_BD_SOP;
2073 		segment->hw.control |= XILINX_DMA_BD_EOP;
2074 	}
2075 
2076 	return &desc->async_tx;
2077 
2078 error:
2079 	xilinx_dma_free_tx_descriptor(chan, desc);
2080 	return NULL;
2081 }
2082 
2083 /**
2084  * xilinx_dma_prep_interleaved - prepare a descriptor for a
2085  *	DMA_SLAVE transaction
2086  * @dchan: DMA channel
2087  * @xt: Interleaved template pointer
2088  * @flags: transfer ack flags
2089  *
2090  * Return: Async transaction descriptor on success and NULL on failure
2091  */
2092 static struct dma_async_tx_descriptor *
xilinx_dma_prep_interleaved(struct dma_chan * dchan,struct dma_interleaved_template * xt,unsigned long flags)2093 xilinx_dma_prep_interleaved(struct dma_chan *dchan,
2094 				 struct dma_interleaved_template *xt,
2095 				 unsigned long flags)
2096 {
2097 	struct xilinx_dma_chan *chan = to_xilinx_chan(dchan);
2098 	struct xilinx_dma_tx_descriptor *desc;
2099 	struct xilinx_axidma_tx_segment *segment;
2100 	struct xilinx_axidma_desc_hw *hw;
2101 
2102 	if (!is_slave_direction(xt->dir))
2103 		return NULL;
2104 
2105 	if (!xt->numf || !xt->sgl[0].size)
2106 		return NULL;
2107 
2108 	if (xt->frame_size != 1)
2109 		return NULL;
2110 
2111 	/* Allocate a transaction descriptor. */
2112 	desc = xilinx_dma_alloc_tx_descriptor(chan);
2113 	if (!desc)
2114 		return NULL;
2115 
2116 	chan->direction = xt->dir;
2117 	dma_async_tx_descriptor_init(&desc->async_tx, &chan->common);
2118 	desc->async_tx.tx_submit = xilinx_dma_tx_submit;
2119 
2120 	/* Get a free segment */
2121 	segment = xilinx_axidma_alloc_tx_segment(chan);
2122 	if (!segment)
2123 		goto error;
2124 
2125 	hw = &segment->hw;
2126 
2127 	/* Fill in the descriptor */
2128 	if (xt->dir != DMA_MEM_TO_DEV)
2129 		hw->buf_addr = xt->dst_start;
2130 	else
2131 		hw->buf_addr = xt->src_start;
2132 
2133 	hw->mcdma_control = chan->tdest & XILINX_DMA_BD_TDEST_MASK;
2134 	hw->vsize_stride = (xt->numf << XILINX_DMA_BD_VSIZE_SHIFT) &
2135 			    XILINX_DMA_BD_VSIZE_MASK;
2136 	hw->vsize_stride |= (xt->sgl[0].icg + xt->sgl[0].size) &
2137 			    XILINX_DMA_BD_STRIDE_MASK;
2138 	hw->control = xt->sgl[0].size & XILINX_DMA_BD_HSIZE_MASK;
2139 
2140 	/*
2141 	 * Insert the segment into the descriptor segments
2142 	 * list.
2143 	 */
2144 	list_add_tail(&segment->node, &desc->segments);
2145 
2146 
2147 	segment = list_first_entry(&desc->segments,
2148 				   struct xilinx_axidma_tx_segment, node);
2149 	desc->async_tx.phys = segment->phys;
2150 
2151 	/* For the last DMA_MEM_TO_DEV transfer, set EOP */
2152 	if (xt->dir == DMA_MEM_TO_DEV) {
2153 		segment->hw.control |= XILINX_DMA_BD_SOP;
2154 		segment = list_last_entry(&desc->segments,
2155 					  struct xilinx_axidma_tx_segment,
2156 					  node);
2157 		segment->hw.control |= XILINX_DMA_BD_EOP;
2158 	}
2159 
2160 	return &desc->async_tx;
2161 
2162 error:
2163 	xilinx_dma_free_tx_descriptor(chan, desc);
2164 	return NULL;
2165 }
2166 
2167 /**
2168  * xilinx_dma_terminate_all - Halt the channel and free descriptors
2169  * @dchan: Driver specific DMA Channel pointer
2170  *
2171  * Return: '0' always.
2172  */
xilinx_dma_terminate_all(struct dma_chan * dchan)2173 static int xilinx_dma_terminate_all(struct dma_chan *dchan)
2174 {
2175 	struct xilinx_dma_chan *chan = to_xilinx_chan(dchan);
2176 	u32 reg;
2177 	int err;
2178 
2179 	if (!chan->cyclic) {
2180 		err = chan->stop_transfer(chan);
2181 		if (err) {
2182 			dev_err(chan->dev, "Cannot stop channel %p: %x\n",
2183 				chan, dma_ctrl_read(chan,
2184 				XILINX_DMA_REG_DMASR));
2185 			chan->err = true;
2186 		}
2187 	}
2188 
2189 	xilinx_dma_chan_reset(chan);
2190 	/* Remove and free all of the descriptors in the lists */
2191 	xilinx_dma_free_descriptors(chan);
2192 	chan->idle = true;
2193 
2194 	if (chan->cyclic) {
2195 		reg = dma_ctrl_read(chan, XILINX_DMA_REG_DMACR);
2196 		reg &= ~XILINX_DMA_CR_CYCLIC_BD_EN_MASK;
2197 		dma_ctrl_write(chan, XILINX_DMA_REG_DMACR, reg);
2198 		chan->cyclic = false;
2199 	}
2200 
2201 	if ((chan->xdev->dma_config->dmatype == XDMA_TYPE_CDMA) && chan->has_sg)
2202 		dma_ctrl_clr(chan, XILINX_DMA_REG_DMACR,
2203 			     XILINX_CDMA_CR_SGMODE);
2204 
2205 	return 0;
2206 }
2207 
2208 /**
2209  * xilinx_dma_channel_set_config - Configure VDMA channel
2210  * Run-time configuration for Axi VDMA, supports:
2211  * . halt the channel
2212  * . configure interrupt coalescing and inter-packet delay threshold
2213  * . start/stop parking
2214  * . enable genlock
2215  *
2216  * @dchan: DMA channel
2217  * @cfg: VDMA device configuration pointer
2218  *
2219  * Return: '0' on success and failure value on error
2220  */
xilinx_vdma_channel_set_config(struct dma_chan * dchan,struct xilinx_vdma_config * cfg)2221 int xilinx_vdma_channel_set_config(struct dma_chan *dchan,
2222 					struct xilinx_vdma_config *cfg)
2223 {
2224 	struct xilinx_dma_chan *chan = to_xilinx_chan(dchan);
2225 	u32 dmacr;
2226 
2227 	if (cfg->reset)
2228 		return xilinx_dma_chan_reset(chan);
2229 
2230 	dmacr = dma_ctrl_read(chan, XILINX_DMA_REG_DMACR);
2231 
2232 	chan->config.frm_dly = cfg->frm_dly;
2233 	chan->config.park = cfg->park;
2234 
2235 	/* genlock settings */
2236 	chan->config.gen_lock = cfg->gen_lock;
2237 	chan->config.master = cfg->master;
2238 
2239 	if (cfg->gen_lock && chan->genlock) {
2240 		dmacr |= XILINX_DMA_DMACR_GENLOCK_EN;
2241 		dmacr |= cfg->master << XILINX_DMA_DMACR_MASTER_SHIFT;
2242 	}
2243 
2244 	chan->config.frm_cnt_en = cfg->frm_cnt_en;
2245 	chan->config.vflip_en = cfg->vflip_en;
2246 
2247 	if (cfg->park)
2248 		chan->config.park_frm = cfg->park_frm;
2249 	else
2250 		chan->config.park_frm = -1;
2251 
2252 	chan->config.coalesc = cfg->coalesc;
2253 	chan->config.delay = cfg->delay;
2254 
2255 	if (cfg->coalesc <= XILINX_DMA_DMACR_FRAME_COUNT_MAX) {
2256 		dmacr |= cfg->coalesc << XILINX_DMA_DMACR_FRAME_COUNT_SHIFT;
2257 		chan->config.coalesc = cfg->coalesc;
2258 	}
2259 
2260 	if (cfg->delay <= XILINX_DMA_DMACR_DELAY_MAX) {
2261 		dmacr |= cfg->delay << XILINX_DMA_DMACR_DELAY_SHIFT;
2262 		chan->config.delay = cfg->delay;
2263 	}
2264 
2265 	/* FSync Source selection */
2266 	dmacr &= ~XILINX_DMA_DMACR_FSYNCSRC_MASK;
2267 	dmacr |= cfg->ext_fsync << XILINX_DMA_DMACR_FSYNCSRC_SHIFT;
2268 
2269 	dma_ctrl_write(chan, XILINX_DMA_REG_DMACR, dmacr);
2270 
2271 	return 0;
2272 }
2273 EXPORT_SYMBOL(xilinx_vdma_channel_set_config);
2274 
2275 /* -----------------------------------------------------------------------------
2276  * Probe and remove
2277  */
2278 
2279 /**
2280  * xilinx_dma_chan_remove - Per Channel remove function
2281  * @chan: Driver specific DMA channel
2282  */
xilinx_dma_chan_remove(struct xilinx_dma_chan * chan)2283 static void xilinx_dma_chan_remove(struct xilinx_dma_chan *chan)
2284 {
2285 	/* Disable all interrupts */
2286 	dma_ctrl_clr(chan, XILINX_DMA_REG_DMACR,
2287 		      XILINX_DMA_DMAXR_ALL_IRQ_MASK);
2288 
2289 	if (chan->irq > 0)
2290 		free_irq(chan->irq, chan);
2291 
2292 	tasklet_kill(&chan->tasklet);
2293 
2294 	list_del(&chan->common.device_node);
2295 }
2296 
axidma_clk_init(struct platform_device * pdev,struct clk ** axi_clk,struct clk ** tx_clk,struct clk ** rx_clk,struct clk ** sg_clk,struct clk ** tmp_clk)2297 static int axidma_clk_init(struct platform_device *pdev, struct clk **axi_clk,
2298 			    struct clk **tx_clk, struct clk **rx_clk,
2299 			    struct clk **sg_clk, struct clk **tmp_clk)
2300 {
2301 	int err;
2302 
2303 	*tmp_clk = NULL;
2304 
2305 	*axi_clk = devm_clk_get(&pdev->dev, "s_axi_lite_aclk");
2306 	if (IS_ERR(*axi_clk)) {
2307 		err = PTR_ERR(*axi_clk);
2308 		dev_err(&pdev->dev, "failed to get axi_aclk (%d)\n", err);
2309 		return err;
2310 	}
2311 
2312 	*tx_clk = devm_clk_get(&pdev->dev, "m_axi_mm2s_aclk");
2313 	if (IS_ERR(*tx_clk))
2314 		*tx_clk = NULL;
2315 
2316 	*rx_clk = devm_clk_get(&pdev->dev, "m_axi_s2mm_aclk");
2317 	if (IS_ERR(*rx_clk))
2318 		*rx_clk = NULL;
2319 
2320 	*sg_clk = devm_clk_get(&pdev->dev, "m_axi_sg_aclk");
2321 	if (IS_ERR(*sg_clk))
2322 		*sg_clk = NULL;
2323 
2324 	err = clk_prepare_enable(*axi_clk);
2325 	if (err) {
2326 		dev_err(&pdev->dev, "failed to enable axi_clk (%d)\n", err);
2327 		return err;
2328 	}
2329 
2330 	err = clk_prepare_enable(*tx_clk);
2331 	if (err) {
2332 		dev_err(&pdev->dev, "failed to enable tx_clk (%d)\n", err);
2333 		goto err_disable_axiclk;
2334 	}
2335 
2336 	err = clk_prepare_enable(*rx_clk);
2337 	if (err) {
2338 		dev_err(&pdev->dev, "failed to enable rx_clk (%d)\n", err);
2339 		goto err_disable_txclk;
2340 	}
2341 
2342 	err = clk_prepare_enable(*sg_clk);
2343 	if (err) {
2344 		dev_err(&pdev->dev, "failed to enable sg_clk (%d)\n", err);
2345 		goto err_disable_rxclk;
2346 	}
2347 
2348 	return 0;
2349 
2350 err_disable_rxclk:
2351 	clk_disable_unprepare(*rx_clk);
2352 err_disable_txclk:
2353 	clk_disable_unprepare(*tx_clk);
2354 err_disable_axiclk:
2355 	clk_disable_unprepare(*axi_clk);
2356 
2357 	return err;
2358 }
2359 
axicdma_clk_init(struct platform_device * pdev,struct clk ** axi_clk,struct clk ** dev_clk,struct clk ** tmp_clk,struct clk ** tmp1_clk,struct clk ** tmp2_clk)2360 static int axicdma_clk_init(struct platform_device *pdev, struct clk **axi_clk,
2361 			    struct clk **dev_clk, struct clk **tmp_clk,
2362 			    struct clk **tmp1_clk, struct clk **tmp2_clk)
2363 {
2364 	int err;
2365 
2366 	*tmp_clk = NULL;
2367 	*tmp1_clk = NULL;
2368 	*tmp2_clk = NULL;
2369 
2370 	*axi_clk = devm_clk_get(&pdev->dev, "s_axi_lite_aclk");
2371 	if (IS_ERR(*axi_clk)) {
2372 		err = PTR_ERR(*axi_clk);
2373 		dev_err(&pdev->dev, "failed to get axi_clk (%d)\n", err);
2374 		return err;
2375 	}
2376 
2377 	*dev_clk = devm_clk_get(&pdev->dev, "m_axi_aclk");
2378 	if (IS_ERR(*dev_clk)) {
2379 		err = PTR_ERR(*dev_clk);
2380 		dev_err(&pdev->dev, "failed to get dev_clk (%d)\n", err);
2381 		return err;
2382 	}
2383 
2384 	err = clk_prepare_enable(*axi_clk);
2385 	if (err) {
2386 		dev_err(&pdev->dev, "failed to enable axi_clk (%d)\n", err);
2387 		return err;
2388 	}
2389 
2390 	err = clk_prepare_enable(*dev_clk);
2391 	if (err) {
2392 		dev_err(&pdev->dev, "failed to enable dev_clk (%d)\n", err);
2393 		goto err_disable_axiclk;
2394 	}
2395 
2396 	return 0;
2397 
2398 err_disable_axiclk:
2399 	clk_disable_unprepare(*axi_clk);
2400 
2401 	return err;
2402 }
2403 
axivdma_clk_init(struct platform_device * pdev,struct clk ** axi_clk,struct clk ** tx_clk,struct clk ** txs_clk,struct clk ** rx_clk,struct clk ** rxs_clk)2404 static int axivdma_clk_init(struct platform_device *pdev, struct clk **axi_clk,
2405 			    struct clk **tx_clk, struct clk **txs_clk,
2406 			    struct clk **rx_clk, struct clk **rxs_clk)
2407 {
2408 	int err;
2409 
2410 	*axi_clk = devm_clk_get(&pdev->dev, "s_axi_lite_aclk");
2411 	if (IS_ERR(*axi_clk)) {
2412 		err = PTR_ERR(*axi_clk);
2413 		dev_err(&pdev->dev, "failed to get axi_aclk (%d)\n", err);
2414 		return err;
2415 	}
2416 
2417 	*tx_clk = devm_clk_get(&pdev->dev, "m_axi_mm2s_aclk");
2418 	if (IS_ERR(*tx_clk))
2419 		*tx_clk = NULL;
2420 
2421 	*txs_clk = devm_clk_get(&pdev->dev, "m_axis_mm2s_aclk");
2422 	if (IS_ERR(*txs_clk))
2423 		*txs_clk = NULL;
2424 
2425 	*rx_clk = devm_clk_get(&pdev->dev, "m_axi_s2mm_aclk");
2426 	if (IS_ERR(*rx_clk))
2427 		*rx_clk = NULL;
2428 
2429 	*rxs_clk = devm_clk_get(&pdev->dev, "s_axis_s2mm_aclk");
2430 	if (IS_ERR(*rxs_clk))
2431 		*rxs_clk = NULL;
2432 
2433 	err = clk_prepare_enable(*axi_clk);
2434 	if (err) {
2435 		dev_err(&pdev->dev, "failed to enable axi_clk (%d)\n", err);
2436 		return err;
2437 	}
2438 
2439 	err = clk_prepare_enable(*tx_clk);
2440 	if (err) {
2441 		dev_err(&pdev->dev, "failed to enable tx_clk (%d)\n", err);
2442 		goto err_disable_axiclk;
2443 	}
2444 
2445 	err = clk_prepare_enable(*txs_clk);
2446 	if (err) {
2447 		dev_err(&pdev->dev, "failed to enable txs_clk (%d)\n", err);
2448 		goto err_disable_txclk;
2449 	}
2450 
2451 	err = clk_prepare_enable(*rx_clk);
2452 	if (err) {
2453 		dev_err(&pdev->dev, "failed to enable rx_clk (%d)\n", err);
2454 		goto err_disable_txsclk;
2455 	}
2456 
2457 	err = clk_prepare_enable(*rxs_clk);
2458 	if (err) {
2459 		dev_err(&pdev->dev, "failed to enable rxs_clk (%d)\n", err);
2460 		goto err_disable_rxclk;
2461 	}
2462 
2463 	return 0;
2464 
2465 err_disable_rxclk:
2466 	clk_disable_unprepare(*rx_clk);
2467 err_disable_txsclk:
2468 	clk_disable_unprepare(*txs_clk);
2469 err_disable_txclk:
2470 	clk_disable_unprepare(*tx_clk);
2471 err_disable_axiclk:
2472 	clk_disable_unprepare(*axi_clk);
2473 
2474 	return err;
2475 }
2476 
xdma_disable_allclks(struct xilinx_dma_device * xdev)2477 static void xdma_disable_allclks(struct xilinx_dma_device *xdev)
2478 {
2479 	clk_disable_unprepare(xdev->rxs_clk);
2480 	clk_disable_unprepare(xdev->rx_clk);
2481 	clk_disable_unprepare(xdev->txs_clk);
2482 	clk_disable_unprepare(xdev->tx_clk);
2483 	clk_disable_unprepare(xdev->axi_clk);
2484 }
2485 
2486 /**
2487  * xilinx_dma_chan_probe - Per Channel Probing
2488  * It get channel features from the device tree entry and
2489  * initialize special channel handling routines
2490  *
2491  * @xdev: Driver specific device structure
2492  * @node: Device node
2493  * @chan_id: DMA Channel id
2494  *
2495  * Return: '0' on success and failure value on error
2496  */
xilinx_dma_chan_probe(struct xilinx_dma_device * xdev,struct device_node * node,int chan_id)2497 static int xilinx_dma_chan_probe(struct xilinx_dma_device *xdev,
2498 				  struct device_node *node, int chan_id)
2499 {
2500 	struct xilinx_dma_chan *chan;
2501 	bool has_dre = false;
2502 	u32 value, width;
2503 	int err;
2504 
2505 	/* Allocate and initialize the channel structure */
2506 	chan = devm_kzalloc(xdev->dev, sizeof(*chan), GFP_KERNEL);
2507 	if (!chan)
2508 		return -ENOMEM;
2509 
2510 	chan->dev = xdev->dev;
2511 	chan->xdev = xdev;
2512 	chan->has_sg = xdev->has_sg;
2513 	chan->desc_pendingcount = 0x0;
2514 	chan->ext_addr = xdev->ext_addr;
2515 	/* This variable ensures that descriptors are not
2516 	 * Submitted when dma engine is in progress. This variable is
2517 	 * Added to avoid polling for a bit in the status register to
2518 	 * Know dma state in the driver hot path.
2519 	 */
2520 	chan->idle = true;
2521 
2522 	spin_lock_init(&chan->lock);
2523 	INIT_LIST_HEAD(&chan->pending_list);
2524 	INIT_LIST_HEAD(&chan->done_list);
2525 	INIT_LIST_HEAD(&chan->active_list);
2526 	INIT_LIST_HEAD(&chan->free_seg_list);
2527 
2528 	/* Retrieve the channel properties from the device tree */
2529 	has_dre = of_property_read_bool(node, "xlnx,include-dre");
2530 
2531 	chan->genlock = of_property_read_bool(node, "xlnx,genlock-mode");
2532 
2533 	err = of_property_read_u32(node, "xlnx,datawidth", &value);
2534 	if (err) {
2535 		dev_err(xdev->dev, "missing xlnx,datawidth property\n");
2536 		return err;
2537 	}
2538 	width = value >> 3; /* Convert bits to bytes */
2539 
2540 	/* If data width is greater than 8 bytes, DRE is not in hw */
2541 	if (width > 8)
2542 		has_dre = false;
2543 
2544 	if (!has_dre)
2545 		xdev->common.copy_align = fls(width - 1);
2546 
2547 	if (of_device_is_compatible(node, "xlnx,axi-vdma-mm2s-channel") ||
2548 	    of_device_is_compatible(node, "xlnx,axi-dma-mm2s-channel") ||
2549 	    of_device_is_compatible(node, "xlnx,axi-cdma-channel")) {
2550 		chan->direction = DMA_MEM_TO_DEV;
2551 		chan->id = chan_id;
2552 		chan->tdest = chan_id;
2553 		xdev->common.directions = BIT(DMA_MEM_TO_DEV);
2554 
2555 		chan->ctrl_offset = XILINX_DMA_MM2S_CTRL_OFFSET;
2556 		if (xdev->dma_config->dmatype == XDMA_TYPE_VDMA) {
2557 			chan->desc_offset = XILINX_VDMA_MM2S_DESC_OFFSET;
2558 			chan->config.park = 1;
2559 
2560 			if (xdev->flush_on_fsync == XILINX_DMA_FLUSH_BOTH ||
2561 			    xdev->flush_on_fsync == XILINX_DMA_FLUSH_MM2S)
2562 				chan->flush_on_fsync = true;
2563 		}
2564 	} else if (of_device_is_compatible(node,
2565 					   "xlnx,axi-vdma-s2mm-channel") ||
2566 		   of_device_is_compatible(node,
2567 					   "xlnx,axi-dma-s2mm-channel")) {
2568 		chan->direction = DMA_DEV_TO_MEM;
2569 		chan->id = chan_id;
2570 		chan->tdest = chan_id - xdev->nr_channels;
2571 		xdev->common.directions |= BIT(DMA_DEV_TO_MEM);
2572 		chan->has_vflip = of_property_read_bool(node,
2573 					"xlnx,enable-vert-flip");
2574 		if (chan->has_vflip) {
2575 			chan->config.vflip_en = dma_read(chan,
2576 				XILINX_VDMA_REG_ENABLE_VERTICAL_FLIP) &
2577 				XILINX_VDMA_ENABLE_VERTICAL_FLIP;
2578 		}
2579 
2580 		chan->ctrl_offset = XILINX_DMA_S2MM_CTRL_OFFSET;
2581 		if (xdev->dma_config->dmatype == XDMA_TYPE_VDMA) {
2582 			chan->desc_offset = XILINX_VDMA_S2MM_DESC_OFFSET;
2583 			chan->config.park = 1;
2584 
2585 			if (xdev->flush_on_fsync == XILINX_DMA_FLUSH_BOTH ||
2586 			    xdev->flush_on_fsync == XILINX_DMA_FLUSH_S2MM)
2587 				chan->flush_on_fsync = true;
2588 		}
2589 	} else {
2590 		dev_err(xdev->dev, "Invalid channel compatible node\n");
2591 		return -EINVAL;
2592 	}
2593 
2594 	/* Request the interrupt */
2595 	chan->irq = irq_of_parse_and_map(node, 0);
2596 	err = request_irq(chan->irq, xilinx_dma_irq_handler, IRQF_SHARED,
2597 			  "xilinx-dma-controller", chan);
2598 	if (err) {
2599 		dev_err(xdev->dev, "unable to request IRQ %d\n", chan->irq);
2600 		return err;
2601 	}
2602 
2603 	if (xdev->dma_config->dmatype == XDMA_TYPE_AXIDMA) {
2604 		chan->start_transfer = xilinx_dma_start_transfer;
2605 		chan->stop_transfer = xilinx_dma_stop_transfer;
2606 	} else if (xdev->dma_config->dmatype == XDMA_TYPE_CDMA) {
2607 		chan->start_transfer = xilinx_cdma_start_transfer;
2608 		chan->stop_transfer = xilinx_cdma_stop_transfer;
2609 	} else {
2610 		chan->start_transfer = xilinx_vdma_start_transfer;
2611 		chan->stop_transfer = xilinx_dma_stop_transfer;
2612 	}
2613 
2614 	/* Initialize the tasklet */
2615 	tasklet_init(&chan->tasklet, xilinx_dma_do_tasklet,
2616 			(unsigned long)chan);
2617 
2618 	/*
2619 	 * Initialize the DMA channel and add it to the DMA engine channels
2620 	 * list.
2621 	 */
2622 	chan->common.device = &xdev->common;
2623 
2624 	list_add_tail(&chan->common.device_node, &xdev->common.channels);
2625 	xdev->chan[chan->id] = chan;
2626 
2627 	/* Reset the channel */
2628 	err = xilinx_dma_chan_reset(chan);
2629 	if (err < 0) {
2630 		dev_err(xdev->dev, "Reset channel failed\n");
2631 		return err;
2632 	}
2633 
2634 	return 0;
2635 }
2636 
2637 /**
2638  * xilinx_dma_child_probe - Per child node probe
2639  * It get number of dma-channels per child node from
2640  * device-tree and initializes all the channels.
2641  *
2642  * @xdev: Driver specific device structure
2643  * @node: Device node
2644  *
2645  * Return: 0 always.
2646  */
xilinx_dma_child_probe(struct xilinx_dma_device * xdev,struct device_node * node)2647 static int xilinx_dma_child_probe(struct xilinx_dma_device *xdev,
2648 				    struct device_node *node)
2649 {
2650 	int ret, i, nr_channels = 1;
2651 
2652 	ret = of_property_read_u32(node, "dma-channels", &nr_channels);
2653 	if ((ret < 0) && xdev->mcdma)
2654 		dev_warn(xdev->dev, "missing dma-channels property\n");
2655 
2656 	for (i = 0; i < nr_channels; i++)
2657 		xilinx_dma_chan_probe(xdev, node, xdev->chan_id++);
2658 
2659 	xdev->nr_channels += nr_channels;
2660 
2661 	return 0;
2662 }
2663 
2664 /**
2665  * of_dma_xilinx_xlate - Translation function
2666  * @dma_spec: Pointer to DMA specifier as found in the device tree
2667  * @ofdma: Pointer to DMA controller data
2668  *
2669  * Return: DMA channel pointer on success and NULL on error
2670  */
of_dma_xilinx_xlate(struct of_phandle_args * dma_spec,struct of_dma * ofdma)2671 static struct dma_chan *of_dma_xilinx_xlate(struct of_phandle_args *dma_spec,
2672 						struct of_dma *ofdma)
2673 {
2674 	struct xilinx_dma_device *xdev = ofdma->of_dma_data;
2675 	int chan_id = dma_spec->args[0];
2676 
2677 	if (chan_id >= xdev->nr_channels || !xdev->chan[chan_id])
2678 		return NULL;
2679 
2680 	return dma_get_slave_channel(&xdev->chan[chan_id]->common);
2681 }
2682 
2683 static const struct xilinx_dma_config axidma_config = {
2684 	.dmatype = XDMA_TYPE_AXIDMA,
2685 	.clk_init = axidma_clk_init,
2686 };
2687 
2688 static const struct xilinx_dma_config axicdma_config = {
2689 	.dmatype = XDMA_TYPE_CDMA,
2690 	.clk_init = axicdma_clk_init,
2691 };
2692 
2693 static const struct xilinx_dma_config axivdma_config = {
2694 	.dmatype = XDMA_TYPE_VDMA,
2695 	.clk_init = axivdma_clk_init,
2696 };
2697 
2698 static const struct of_device_id xilinx_dma_of_ids[] = {
2699 	{ .compatible = "xlnx,axi-dma-1.00.a", .data = &axidma_config },
2700 	{ .compatible = "xlnx,axi-cdma-1.00.a", .data = &axicdma_config },
2701 	{ .compatible = "xlnx,axi-vdma-1.00.a", .data = &axivdma_config },
2702 	{}
2703 };
2704 MODULE_DEVICE_TABLE(of, xilinx_dma_of_ids);
2705 
2706 /**
2707  * xilinx_dma_probe - Driver probe function
2708  * @pdev: Pointer to the platform_device structure
2709  *
2710  * Return: '0' on success and failure value on error
2711  */
xilinx_dma_probe(struct platform_device * pdev)2712 static int xilinx_dma_probe(struct platform_device *pdev)
2713 {
2714 	int (*clk_init)(struct platform_device *, struct clk **, struct clk **,
2715 			struct clk **, struct clk **, struct clk **)
2716 					= axivdma_clk_init;
2717 	struct device_node *node = pdev->dev.of_node;
2718 	struct xilinx_dma_device *xdev;
2719 	struct device_node *child, *np = pdev->dev.of_node;
2720 	struct resource *io;
2721 	u32 num_frames, addr_width, len_width;
2722 	int i, err;
2723 
2724 	/* Allocate and initialize the DMA engine structure */
2725 	xdev = devm_kzalloc(&pdev->dev, sizeof(*xdev), GFP_KERNEL);
2726 	if (!xdev)
2727 		return -ENOMEM;
2728 
2729 	xdev->dev = &pdev->dev;
2730 	if (np) {
2731 		const struct of_device_id *match;
2732 
2733 		match = of_match_node(xilinx_dma_of_ids, np);
2734 		if (match && match->data) {
2735 			xdev->dma_config = match->data;
2736 			clk_init = xdev->dma_config->clk_init;
2737 		}
2738 	}
2739 
2740 	err = clk_init(pdev, &xdev->axi_clk, &xdev->tx_clk, &xdev->txs_clk,
2741 		       &xdev->rx_clk, &xdev->rxs_clk);
2742 	if (err)
2743 		return err;
2744 
2745 	/* Request and map I/O memory */
2746 	io = platform_get_resource(pdev, IORESOURCE_MEM, 0);
2747 	xdev->regs = devm_ioremap_resource(&pdev->dev, io);
2748 	if (IS_ERR(xdev->regs))
2749 		return PTR_ERR(xdev->regs);
2750 
2751 	/* Retrieve the DMA engine properties from the device tree */
2752 	xdev->has_sg = of_property_read_bool(node, "xlnx,include-sg");
2753 	xdev->max_buffer_len = GENMASK(XILINX_DMA_MAX_TRANS_LEN_MAX - 1, 0);
2754 
2755 	if (xdev->dma_config->dmatype == XDMA_TYPE_AXIDMA) {
2756 		xdev->mcdma = of_property_read_bool(node, "xlnx,mcdma");
2757 		if (!of_property_read_u32(node, "xlnx,sg-length-width",
2758 					  &len_width)) {
2759 			if (len_width < XILINX_DMA_MAX_TRANS_LEN_MIN ||
2760 			    len_width > XILINX_DMA_V2_MAX_TRANS_LEN_MAX) {
2761 				dev_warn(xdev->dev,
2762 					 "invalid xlnx,sg-length-width property value using default width\n");
2763 			} else {
2764 				if (len_width > XILINX_DMA_MAX_TRANS_LEN_MAX)
2765 					dev_warn(xdev->dev, "Please ensure that IP supports buffer length > 23 bits\n");
2766 
2767 				xdev->max_buffer_len = GENMASK(len_width - 1, 0);
2768 			}
2769 		}
2770 	}
2771 
2772 	if (xdev->dma_config->dmatype == XDMA_TYPE_VDMA) {
2773 		err = of_property_read_u32(node, "xlnx,num-fstores",
2774 					   &num_frames);
2775 		if (err < 0) {
2776 			dev_err(xdev->dev,
2777 				"missing xlnx,num-fstores property\n");
2778 			return err;
2779 		}
2780 
2781 		err = of_property_read_u32(node, "xlnx,flush-fsync",
2782 					   &xdev->flush_on_fsync);
2783 		if (err < 0)
2784 			dev_warn(xdev->dev,
2785 				 "missing xlnx,flush-fsync property\n");
2786 	}
2787 
2788 	err = of_property_read_u32(node, "xlnx,addrwidth", &addr_width);
2789 	if (err < 0)
2790 		dev_warn(xdev->dev, "missing xlnx,addrwidth property\n");
2791 
2792 	if (addr_width > 32)
2793 		xdev->ext_addr = true;
2794 	else
2795 		xdev->ext_addr = false;
2796 
2797 	/* Set the dma mask bits */
2798 	dma_set_mask(xdev->dev, DMA_BIT_MASK(addr_width));
2799 
2800 	/* Initialize the DMA engine */
2801 	xdev->common.dev = &pdev->dev;
2802 
2803 	INIT_LIST_HEAD(&xdev->common.channels);
2804 	if (!(xdev->dma_config->dmatype == XDMA_TYPE_CDMA)) {
2805 		dma_cap_set(DMA_SLAVE, xdev->common.cap_mask);
2806 		dma_cap_set(DMA_PRIVATE, xdev->common.cap_mask);
2807 	}
2808 
2809 	xdev->common.dst_addr_widths = BIT(addr_width / 8);
2810 	xdev->common.src_addr_widths = BIT(addr_width / 8);
2811 	xdev->common.device_alloc_chan_resources =
2812 				xilinx_dma_alloc_chan_resources;
2813 	xdev->common.device_free_chan_resources =
2814 				xilinx_dma_free_chan_resources;
2815 	xdev->common.device_terminate_all = xilinx_dma_terminate_all;
2816 	xdev->common.device_tx_status = xilinx_dma_tx_status;
2817 	xdev->common.device_issue_pending = xilinx_dma_issue_pending;
2818 	if (xdev->dma_config->dmatype == XDMA_TYPE_AXIDMA) {
2819 		dma_cap_set(DMA_CYCLIC, xdev->common.cap_mask);
2820 		xdev->common.device_prep_slave_sg = xilinx_dma_prep_slave_sg;
2821 		xdev->common.device_prep_dma_cyclic =
2822 					  xilinx_dma_prep_dma_cyclic;
2823 		xdev->common.device_prep_interleaved_dma =
2824 					xilinx_dma_prep_interleaved;
2825 		/* Residue calculation is supported by only AXI DMA */
2826 		xdev->common.residue_granularity =
2827 					  DMA_RESIDUE_GRANULARITY_SEGMENT;
2828 	} else if (xdev->dma_config->dmatype == XDMA_TYPE_CDMA) {
2829 		dma_cap_set(DMA_MEMCPY, xdev->common.cap_mask);
2830 		dma_cap_set(DMA_SG, xdev->common.cap_mask);
2831 		xdev->common.device_prep_dma_memcpy = xilinx_cdma_prep_memcpy;
2832 		xdev->common.device_prep_dma_sg = xilinx_cdma_prep_sg;
2833 	} else {
2834 		xdev->common.device_prep_interleaved_dma =
2835 				xilinx_vdma_dma_prep_interleaved;
2836 	}
2837 
2838 	platform_set_drvdata(pdev, xdev);
2839 
2840 	/* Initialize the channels */
2841 	for_each_child_of_node(node, child) {
2842 		err = xilinx_dma_child_probe(xdev, child);
2843 		if (err < 0)
2844 			goto disable_clks;
2845 	}
2846 
2847 	if (xdev->dma_config->dmatype == XDMA_TYPE_VDMA) {
2848 		for (i = 0; i < xdev->nr_channels; i++)
2849 			if (xdev->chan[i])
2850 				xdev->chan[i]->num_frms = num_frames;
2851 	}
2852 
2853 	/* Register the DMA engine with the core */
2854 	dma_async_device_register(&xdev->common);
2855 
2856 	err = of_dma_controller_register(node, of_dma_xilinx_xlate,
2857 					 xdev);
2858 	if (err < 0) {
2859 		dev_err(&pdev->dev, "Unable to register DMA to DT\n");
2860 		dma_async_device_unregister(&xdev->common);
2861 		goto error;
2862 	}
2863 
2864 	if (xdev->dma_config->dmatype == XDMA_TYPE_AXIDMA)
2865 		dev_info(&pdev->dev, "Xilinx AXI DMA Engine Driver Probed!!\n");
2866 	else if (xdev->dma_config->dmatype == XDMA_TYPE_CDMA)
2867 		dev_info(&pdev->dev, "Xilinx AXI CDMA Engine Driver Probed!!\n");
2868 	else
2869 		dev_info(&pdev->dev, "Xilinx AXI VDMA Engine Driver Probed!!\n");
2870 
2871 	return 0;
2872 
2873 disable_clks:
2874 	xdma_disable_allclks(xdev);
2875 error:
2876 	for (i = 0; i < xdev->nr_channels; i++)
2877 		if (xdev->chan[i])
2878 			xilinx_dma_chan_remove(xdev->chan[i]);
2879 
2880 	return err;
2881 }
2882 
2883 /**
2884  * xilinx_dma_remove - Driver remove function
2885  * @pdev: Pointer to the platform_device structure
2886  *
2887  * Return: Always '0'
2888  */
xilinx_dma_remove(struct platform_device * pdev)2889 static int xilinx_dma_remove(struct platform_device *pdev)
2890 {
2891 	struct xilinx_dma_device *xdev = platform_get_drvdata(pdev);
2892 	int i;
2893 
2894 	of_dma_controller_free(pdev->dev.of_node);
2895 
2896 	dma_async_device_unregister(&xdev->common);
2897 
2898 	for (i = 0; i < xdev->nr_channels; i++)
2899 		if (xdev->chan[i])
2900 			xilinx_dma_chan_remove(xdev->chan[i]);
2901 
2902 	xdma_disable_allclks(xdev);
2903 
2904 	return 0;
2905 }
2906 
2907 static struct platform_driver xilinx_vdma_driver = {
2908 	.driver = {
2909 		.name = "xilinx-vdma",
2910 		.of_match_table = xilinx_dma_of_ids,
2911 	},
2912 	.probe = xilinx_dma_probe,
2913 	.remove = xilinx_dma_remove,
2914 };
2915 
2916 module_platform_driver(xilinx_vdma_driver);
2917 
2918 MODULE_AUTHOR("Xilinx, Inc. and Xianjun Jiao");
2919 MODULE_DESCRIPTION("Xilinx VDMA driver");
2920 MODULE_LICENSE("GPL v2");
2921